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Abstract

The problem of minimizing the share size of threshold secret-sharing schemes is a basic re-
search question that has been extensively studied. Ideally, one strives for schemes in which the
share size equals the secret size. While this is achievable for large secrets (Shamir, CACM ’79),
no similar solutions are known for the case of binary, single-bit secrets. Current approaches
often rely on so-called ramp secret sharing that achieves a constant share size at the expense
of a slight gap between the privacy and the correctness thresholds. In the case of single-bit
shares, this leads to a large gap which is typically unacceptable. The possibility of a meaning-
ful notion of secret sharing scheme with 1-bit shares and almost optimal threshold has been left
wide open. Of special interest is the case of threshold 0.5, which is motivated by information-
theoretic honest-majority secure multiparty computation (MPC).

In this work, we present a new stochastic model for secret-sharing where each party is cor-
rupted by the adversary with probability p, independently of the other parties, and correctness
and privacy are required to hold with high probability over the choice of the corrupt parties.
We present new secret sharing schemes with single-bit shares that tolerate any constant cor-
ruption probability p < 0.5. Our construction is based on a novel connection between such
stochastic secret-sharing schemes and error-correcting codes that achieve capacity over the bi-
nary erasure channel.

Our schemes are linear and multiplicative. We demonstrate the usefulness of the model
by using our new schemes to construct MPC protocols with security against an adversary that
passively corrupts an arbitrary subset of 0.499n of the parties, where the online communication
per party consists of a single bit per AND gate and zero communication per XOR gate. Unlike
competing approaches for communication-efficient MPC, our solution is applicable even in a
real-time model in which the parties should compute a Boolean circuit whose gates arrive in
real-time, one at a time, and are not known in advance.
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1 Introduction

Shamir’s secret sharing scheme [Sha79] stands out as an ideal n-party threshold secret sharing
scheme for several reasons. First, it hides the secret from any set of t parties (t-privacy), and allows
every t+1 parties to recover the secret ((t+1)-correctness). It is also linear over the underlying field
F, and the share size is just one field element, which is optimal for the secret-domain F. In addition,
in the presence of an honest majority (i.e., t < n/2) it is also multiplicative, which means that if two
secret s and s′ are shared via the sharing vectors (s1, . . . , sn) and (s′1, . . . , s

′
n), respectively, then the

multiplication s · s′ can be computed as a linear combination of the values s1 · s′1, . . . , sn · s′n. These
useful properties make Shamir’s scheme an extremely powerful tool with numerous applications,
including secure multiparty computation (MPC) (e.g., [BGW88, CCD88, RB89]), cryptographic
combiners (e.g., [Her05, HKN+05]) and private information retrieval (e.g., [BI01]).

The main downside of Shamir’s scheme is that the underlying field F must be larger than
the number of shares n. In the important case of binary secrets (which is motivated by secure
computation of binary circuits), this means that the share size is Ω(log n) bits, leading to a “waste”
in both communication and storage. Indeed, a dream version of Shamir that works over the binary
field would be extremely useful. Unfortunately, coding-theoretic arguments show that such a
scheme does not exist. In particular, linear secret sharing schemes with t-privacy and (t + 1)-
correctness are equivalent to Maximum Distance Separable (MDS) codes, for which it is known
that the alphabet size has to be larger than (n + 2)/2 for every 1 ≤ t ≤ n − 2 (see [CDN15]).
Furthermore, under standard coding-theoretic conjectures, the alphabet size must be at least n −
O(1) [HP03, CDN15].

Known Relaxations. As a next best alternative, previous works slightly relaxed the require-
ment, and allowed some gap between the privacy parameter tp and the correctness parameter
tc. That is, privacy should hold with respect to every set of size at most tp, and correctness should
hold with respect to any set of size at least tc, but for any set of size t ∈ (tp, tc) we don’t care
whether the parties can reveal the secret or not. Such schemes are known as (tp, tc)-ramp secret
sharing, and when the gap is linear, i.e., tc − tp = ϵn for some constant ϵ > 0, they can be built
with a constant alphabet size based on Algebraic Geometric (AG) codes [CC06] or random linear
codes [CCG+07]. In the context of MPC, they reduce the share size from logarithmic (as in Shamir)
to constant, leading to improved communication complexity at the expense of slightly degrading
the resiliency threshold (see, e.g., [CC06]). Ramp secret-sharing has also found applications in
other areas of cryptography, such as the construction of efficient zero-knowledge proofs [IKOS09]
and OT-combiners [HIKN08]. The downside of these schemes is that the rate degrades with the
relative correctness-to-privacy gap ϵ. In particular, in all known constructions of ramp secret shar-
ing the alphabet size grows with 1/ϵ, so a small gap between tp and tc results in schemes with a
large constant-size alphabet. The dependency in 1/ϵ turns to be inherent: it is shown in [BGK20]
that the alphabet size should be at least 1/2ϵ.

We briefly mention that one can use packed secret sharing [FY92, CC06, CCG+07] to share many
secrets together using only a single share per party, at the cost of an additional degrading in the
resiliency threshold. While this technique allows to improve the rate between the number of
shared bits and the share size, there are natural scenarios that do not allow for such a batching.
(See Section 1.3.)
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This work: 1-bit share size. In this work, we study the question of sharing a binary secret with
share size of just one bit. We ask,

Is there a meaningful model that allows for 1-bit Shamir-like secret sharing? Can such a scheme
be useful for secure multiparty computation in the standard-model?

We answer both questions in the affirmative. First, we present a new model, called the stochastic
corruptions model, were each party is corrupted with probability p, independently of the other
parties. For this model, we construct a Shamir-like secret sharing scheme with share size of only
one bit for any corruption probability p < 1/2. We then show how to transform schemes in this
model to schemes in the standard corruptions model, and use this to derive new MPC protocols
with improved efficiency.

1.1 Secret Sharing in the Stochastic Corruptions Model

We initiate the study of the p-stochastic-corruption model, where the adversary corrupts each party
with probability p, independently of the other parties. As a motivating example, consider the basic
scenario of n servers that wish to securely compute a joint function of their private inputs, where
security is required in case of failures or malfunctions of some of the servers. We can use standard
solutions from the MPC literature whose security holds even against a stronger adversary that is
allowed to choose the identity of the corrupt servers. However, this is an overkill since in our case
the failures and malfunctions of the servers behave like a stochastic process, and they are not under
the control of an adversary. A textbook solution that makes over-pessimistic assumptions on the
power of the adversary can still be used, but it may lead to unnecessary overhead.1 We continue
with the definition of secret sharing in the stochastic corruption model.

Stochastic secret sharing. A p-stochastic secret sharing with error ϵ, is a randomized algorithm D
that maps a secret s to n shares s1, . . . , sn, so that the following holds with probability at least 1− ϵ
over the choice of corrupt parties T ⊆ {1, . . . , n} in the p-stochastic corruption model:

• (Correctness) Given the shares (si)i∈{1,...,n}\T of the honest parties, it is possible to recover the
secret s.

• (Privacy) The shares (si)i∈T of the corrupt parties reveal no information about the secret s.

By default, we take ϵ to be negligible in the number of parties. Note that to obtain a sub-constant
error probability ϵ, it is required that p < 1/2.

1-bit stochastic secret sharing. Quite surprisingly, we show that p-stochastic secret sharing can
be realized with share size of only 1 bit! The scheme is based on the binary Reed-Muller code (with an
appropriate choice of parameters), and the shares are just the evaluations of a random multivariate
polynomial over F2 whose free coefficient is the secret s. In fact, the structure of the Reed-Muller
code implies that our secret sharing scheme is also multiplicative, which is an important feature

1We note that secret sharing in the stochastic model may also be natural in other areas of cryptography outside of
MPC, e.g., in leakage resilient circuits in the random probing model [ISW03], where each wire is leaked to the adversary
with probability p, and in combiners to cryptographic primitives whose security is violated with probability p over the
internal randomness (see [IMSW14]).
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for the applications. The result is summarized in the following theorem. (See Theorem 3.6 for a
more detailed statement.)

Theorem 1.1. There exists an n-party linear secret sharing scheme, such that for every 0 < p < 1/2 the
scheme is a p-stochastic secret sharing scheme with error ϵ(n) = 2−Ωp(

√
n). The scheme has share size of

just 1 bit, and the sharing time is O(n · log(n)).2 In addition, the scheme is multiplicative.

To obtain the theorem, we establish a strong connection between stochastic secret sharing and
linear codes C that, together with their dual C⊥, can recover from erasures in the binary era-
sure channel BEC(p).3 We then rely on the breakthrough result of [KKM+17] that shows that
Reed-Muller codes achieves capacity over the BEC channel, and exploit the fact that the dual of a
Reed-Muller code is also a Reed-Muller code (with different parameters) and so it is also capacity
achieving.

Since a random linear code over F2, as well as its dual, achieve the capacity of BEC with all
but negligible probability, we can obtain an alternative to the Reed-Muller construction and still
maintain a share size of 1 bit. In fact, using the technique of Druk and Ishai [DI14] we construct a
family of linear secret sharing scheme, such that a random scheme from the family is a p-stochastic
secret sharing scheme with all but negligible probability, and, in addition, sharing a secret requires
only linear time. The result is summarized in the following theorem. (See Corollary 3.11 for a more
detailed statement.)

Theorem 1.2. There exists a probabilistic polynomial time algorithm Gen that on input 1n samples the
description of an n-party linear secret sharing scheme Sn with 1-bit share size and sharing time O(n),4

such that for every 0 < p < 1/2, with probability at least 1 − 2−Ωp(n) over the choice of Sn by Gen, the
scheme Sn is p-stochastic secret sharing with error ϵ(n) = 2−Ωp(n).

In fact, in this construction we can take p to be as large as p = 1
2 −

1
n0.49 and still obtain

sub-exponential error probability. We also note that for a constant 0 < p < 1/2 this construc-
tion achieves exponentially-small error probability, which is better than the sub-exponential error
probability of the Reed-Muller construction. However, unlike the Reed-Muller construction, this
construction is non-explicit and, more importantly, not multiplicative. The question of construct-
ing a linear-time multiplicative stochastic secret sharing scheme with share size of 1 bit remains
an interesting open problem.5

1.2 From Stochastic Corruptions to Standard Corruptions

Perhaps surprisingly, secret sharing schemes in the stochastic model can be successfully used for
MPC in the standard corruption model. To show this, let us introduce an intermediate model of
t-static secret sharing that relaxes the properties of ramp secret sharing without losing the features
that are necessary for MPC and other typical applications. We will later see that stochastic secret
sharing can be easily upgraded to this model without increasing the share size.

2While by default we measure the computational complexity in the RAM model, the sharing procedure in Theo-
rem 1.1 can even be implemented by a circuit of size O(n · logn).

3We mention that a similar idea appears implicitly in the work of [IMSW14] in the context of OT-combiners.
4In fact, the sharing procedure in Theorem 1.2 can even be implemented by a circuit of size O(n).
5The construction from Theorem 1.2 can be turned into a multiplicative scheme by using the technique of [CDM00,

CCG+07]. However, this transformation increases the share-size to 2 bits and increases the computational complexity
to O(n2). (The exponentially-small error probability is preserved). See Remark 3.12 for more details.
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t-static secret sharing. A t-static secret sharing scheme with error ϵ, is a secret sharing scheme
with public randomness r. It allows a dealer to share a secret s among n parties, so that for every
set of corrupt parties T ⊆ {1, . . . , n} of size at most t, the following holds with probability at least
1− ϵ over the choice of the public randomness r:

• (Correctness) The honest parties (i.e., the parties in {1, . . . , n} \ T ) can recover the secret s.

• (Privacy) The corrupt parties in T have no information about the secret s.

We emphasize that the public randomness r is chosen once and for all, and can be reused by the
dealer, and even by other dealers. However, it is crucially assumed that the adversary chooses
which parties to corrupt independently of r, and so this notion is tailored to the case of static
adversaries. Indeed, in the common setting of MPC with static security, one needs only correctness
with respect to the fixed set of honest parties and privacy with respect to the fixed set of corrupted
parties. In this setting, the properties of standard secret sharing (i.e., correctness/privacy for all
large/small subsets) are simply an “overkill”!

From stochastic corruptions to t corruptions. It is not hard to transform any p-stochastic secret
sharing S into a t-static secret sharing S′, where t = ⌊pn⌋, while preserving the share size of S. To
do so, we simply permute the identity of the parties. That is, the public randomness of S′ consists
of a public random permutation π of {1, . . . , n}, and to share a secret s among the n parties, S′ first
samples the shares (s1, . . . , sn) according to S and sends the share sπ(i) to the ith party.

We think about permuting the parties as a preprocessing step, that is executed once and for
all, and can be computed in time O(n · log(n)). Jumping ahead, in the context of MPC this prepro-
cessing step can be implemented at the beginning of the protocol by executing a sub-protocol for
permuting the identities. Once the permutation is sampled, we can share a secret under S′ with
complexity that is linear in the sharing complexity of S.

We therefore obtain the following corollaries. (See Theorem 4.5 and Theorem 4.6 for more
detailed versions.)

Corollary 1.3. There exists an n-party linear secret sharing scheme, such that for every 0 < p < 1/2 the
scheme is pn-static secret sharing scheme with error ϵ(n) = 2−Ωp(

√
n). The scheme has share size of just 1

bit and public randomness of O(n · log(n)) bits. In addition, the scheme is multiplicative, and sharing a
secret requires O(n · log(n)) operations in the RAM model.

Corollary 1.4. There exist a probabilistic polynomial time algorithm Gen that on input 1n samples the
description of an n-party secret sharing scheme Sn with 1-bit share size, such that for every 0 < p < 1/2,
with probability at least 1 − 2−Ωp(n) over the choice of Sn by Gen, the scheme Sn is pn-static linear secret
sharing scheme with error ϵ(n) = 2−Ωp(n). In addition, after a preprocessing time of O(n · log(n)), sharing
a secret requires O(n) time in the RAM model.

Like in the case of Theorem 1.2, in Corollary 1.4 we can take p to be as large as p = 1
2 −

1
n0.49

and still obtain sub-exponential error probability.6

6We note that achieving a threshold of 1
2
−O( 1

n
) is impossible. See Section 4.2 for more details.
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Comparison with ramp secret sharing. We observe that for every t ≤ 1−ϵ
2 · n, a (t, t+ ϵn)-ramp

secret sharing is also a t-static secret sharing with zero error and no public randomness. (Indeed,
privacy holds for every set of t corrupt parties, while correctness holds for the set of honest parties
since it is of size at least n − t ≥ t + ϵn.) The converse direction does not hold since ramp secret
sharing provides security against an adaptive adversary. Overall, t-static secret sharing is a strict
relaxation of ramp secret sharing. This relaxation is, in fact, necessary for obtaining share size of
1 bit, since it is known [BGK20] that any (tp, tc)-ramp secret sharing with share size of 1 bit must
satisfy tc − tp ≥ (n + 2)/3. Put differently, a (t, t + ϵn)-ramp secret sharing with single-bit shares
must satisfy ϵ ≥ 1/3. In comparison, our t-static secret sharing schemes achieve 1-bit share size for
t arbitrarily close to n/2. In Section A we compare our scheme to concrete constructions of ramp
secret sharing from AG codes and random linear codes.

1.3 Application: Efficient MPC in the Real-Time Computation Model

Using the preprocessing techniques of [BH08], our secret-sharing schemes can be used to realize
communication-efficient MPC protocols for computing a Boolean circuit C, in which each party
communicates a single bit per gate. In fact, we can even obtain a preprocessing phase in which
the communication complexity per party is O(|C|), where |C| is the size of C.

Theorem 1.5 (Informal). Let ϵ > 0, let n be the number of parties, and let t be number of corrupt servers
such that t = (12 − ϵ)n. Then for every Boolean circuit C there exists a statistically-secure n-party MPC
protocol with error 2−Ωϵ(

√
n) that securely computes C. The protocol has a preprocessing phase that depends

only on |C| and has communication O(n · |C|). In addition, in the online phase every party communicates
a single bit per gate.

As part of our construction we provide a seedless randomness extractor that takes a binary
string x ∈ {0, 1}n that has (12 + ϵ)n random bits in random coordinates I ⊆ {1, . . . , n}, and with
probability 2−Ωϵ(n) over the choice of I outputs a random binary string y of length (12 + ϵ

2)n. This
can be seen as a variant of the bit-extraction problem of [CGH+85]. Using the technique of [DI14],
our randomness extractor can even be described as a linear function with linear-size circuit. We
mention that previous works could achieve similar results only for a larger alphabet size, or re-
quire x to have a much larger fraction of random bits (see, e.g., [BH08, CCXY18, LXYY23]).

Comparison with previous works. Most information-theoretic secure computation protocols
either rely on gate-by-gate sharing or on packed secret sharing.7 The first, more classical ap-
proach [BGW88, CCD88], allocates a single share per each wire of the circuit C. In an on-
line/offline setting this gate-by-gate approach leads to online communication of a single share per
party for each multiplication gate, and so the total online communication is at most |C|n · k where
k is the bit length of shares. Our solution fits into this framework and achieves k = 1 and privacy
threshold of 0.499. Previous gate-by-gate solutions suffer from worse tradeoffs that are inher-
ited from the the aforementioned size-vs-privacy tradeoffs in ramp secret sharing schemes. A
more modern approach [DIK10, GIP15, GIOZ17, GPS21] bypasses the gate-by-gate paradigm by

7One can further reduce communication by delegating the computation to a small random committee of super-
logarithmic size. This technique can be applied on top of the two other approaches and so we ignore it in the current
discussion. We do mention that this approach reduces the overall communication but typically incurs a relatively large
(e.g., quasi-polynomial) error probability for the event that the adversary corrupts a majority of the committee.

7



packing together several gates into a single share via the use of packed secret sharing [FY92]. In
this way, the parties can securely compute a block of ℓ gates at the cost of a single computation.
Combining this technique with additional ideas, [GPS21] have constructed a protocol with com-
munication overhead of O(|C|) bits (assuming that the circuit is larger than the number of inputs
and outputs). However, packed secret sharing has several drawbacks. First, for every layer it
requires manipulating the order of the packed secrets, which result in a large computation over-
head. Second, it requires knowing in advance the structure of the next layer of computation in the
circuit. Therefore, it seems inapplicable in the case where the circuit is not known in advance, and
the gates are revealed in real-time, one-at-a-time. In comparison, our protocol is very efficient: the
total computation overhead in the preprocessing phase is O(n · log(n)) while the total computation
overhead in the online phase is merely O(n) Boolean operations. In addition, the preprocessing of
our protocol does not depend on the computed circuit, but only on its size, and therefore our pro-
tocol can handle the gates one-by-one in an online manner. This is especially useful in a real-time
computation model where the gates of the circuit are chosen dynamically on-the-fly. Details follow.

1.3.1 The Real-Time Computation Model

Let us begin with two motivating examples. Assume that an ordered array, that contains m distinct
keys (integers), is secret shared among n servers. The servers also hold a secret sharing of a key
k∗ that appears in the array, and the goal of the servers is to learn the rank (i.e., the location) of k∗

in the array, without learning any other information about the array. The classical approach is to
consider a circuit that implements the search for k∗, and securely compute this circuit. However,
this circuit depends on the entire array, so its size is at least linear in m. We note that a better
approach would be if we do not use the circuit model, which is oblivious, and run a sequence of
operations that is chosen on the fly based on the results of previous operations. Concretely, the
servers can simply apply binary search algorithm, with secure comparisons at each step. That is,
whenever the binary search algorithm requires comparing k∗ to the ith key in the array, the servers
engage in a secure protocol to check whether k∗ is smaller, larger, or equal to the ith key. Given
this information, the servers can now continue with the binary search, until they find the location
of k∗ in the array. This reduces the dependency on m from linear (in the circuit-based approach)
to logarithmic, and also preserves security, as the results of the comparisons can be deduced from
the rank of k∗, so the servers learn no information other than the rank.

Let us further consider a scenario in which several servers hold some shared state S of a func-
tion F (e.g., a Large Language Model) and a client streams public inputs p1, . . . , pi, . . . to F that
should lead to an online sequence of (possibly public) outputs y1, . . . , yi, . . . and to updates in
the state. We can translate each bit pi to a sequence of Boolean gates that should be applied on
the shared state. In this case, these gates are not known at the beginning and are only available
during run-time. Moreover, the computation is reactive and the bit pi+1 may depend on previous
outcomes y1, . . . , yi.

The real-time computation model. These examples demonstrate that in some scenarios it is nat-
ural to choose which instructions to perform based on intermediate values of the computation. We
consider a new model of computation, called the real-time computation model. The model consists
of a single client and n servers, and there are m input-bits x1, . . . , xm ∈ {0, 1} that are secret shared
among the servers. The goal is to allow the client to guide the servers in the manipulation of the
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shared inputs, without letting the servers learn any information about the inputs.
More formally, the client has access to an interface that includes R ≥ m registers, where the

ith input bit is stored in the ith register. In each step the client can ask (1) to sum/multiply the
content of registers i and j and put the result in register k, (2) to assign some value to a register, (3)
to increase the number of registers, and (4) to reveal the value of the ith register to the client. The
servers get the instructions from the client one-by-one and should perform operations over the
secret-shared values, so that when the client asks to reveal the value of the ith register, the servers
can send the client information that allows her to compute this value. We formalize this model in
the framework of universal composability (UC) in Section 5, using an ideal functionality.

We note that basic protocols in the real-time model can be constructed based on the BGW-
paradigm [BGW88] assuming that t < n/2, and even the GMW-paradigm [GMW87] for any t ≤ n.
In Section 5 we then prove that Theorem 1.5 holds even in the real-time computation model. In
particular, for each Boolean instruction each server sends at most a single bit which seems to be
optimal in the real-time model. (See [DNPR16] for a lower-bound in a related model.)

Organization. The paper is organised as follows. In Section 2 we present preliminaries regard-
ing error correcting codes and secret sharing. In Section 3 we discuss stochastic secret sharing,
present a general transformation from error-correcting codes to stochastic secret sharing, and pro-
vide constructions. Then, in Section 4 we discuss t-static secret sharing, show how to transform
stochastic secret sharing to t-static secret sharing, and prove a lower bound on 1-bit static secret
sharing. In Section 5 we present applications to MPC. In the appendix, a comparison of our codes
with concrete constructions of ramp secret sharing appears in Section A.

2 Preliminaries

In this section we present basic preliminaries regarding error correcting codes, secret sharing and
probability theory.

2.1 Error Correcting Codes

We briefly recall basic notions in error correcting codes. For a more detailed explanation, the
reader is referred to [Rot06, GRS23]. Throughout, we take any vector x to be a row vector, and
denote the corresponding column vector by xT .

Basics. For a prime power q and positive integers k ≤ n, an [n, k]q code C is a linear subspace
of Fn

q of dimension k. We denote the rate of the code by ρ := k/n. A generator matrix of C is a
k × n matrix G ∈ Fk×n

q , whose rows span C. The elements of C are called codewords, and every
codeword c can be written (uniquely) as c = m · G for some vector m ∈ Fk

q . There exists an

(n− k)× n matrix H ∈ F(n−k)×n
q , called the parity check matrix, that satisfies H · yT = 0 if and only

if y ∈ C. The dual code of C, denoted C⊥, is the [n, n − k]q code generated by the parity check
matrix H .

Erasure channels and MAP-decoder. For 0 < p < 1, the q-ary erasure channel with erasure proba-
bility p, denoted QEC(p), takes as an input a vector x ∈ Fn

q and outputs a vector y ∈ (Fq ∪ {?})n

9



that is obtained from x by replacing the ith entry of x with the erasure symbol ‘?’ with probability
p, independently of the other coordinates. The binary erasure channel with erasure probability p, de-
noted BEC(p), is just the 2-ary erasure channel with erasure probability p. We usually denote the
set of erased coordinates by J ⊆ [n], and the set of non-erased coordinates by I = {1, . . . , n} \ J .

For an [n, k]q code C, we define the block-maximum-a-priori decoder (block-MAP decoder) of C
to be the decoder that (1) takes as an input a vector y ∈ (Fq ∪ {?})n, and (2) if there exists a
unique codeword c ∈ C that agrees with y on all non-erased coordinates, the decoder returns
c; otherwise the decoder returns a special failure symbol ⊥. We note that for linear codes, the
block-MAP decoder boils down to finding a unique solution of a linear system of equations or
announcing that no unique solution exists, which can be done in polynomial time via Gaussian
Elimination.

Remark 2.1 (Decoding from erasures for linear codes.). For a linear [n, k]q code C, the block-MAP
decoder successfully recovers a codeword c ∈ C that was transmitted through the q-ary erasure channel
if and only if the set of erased coordinates J ⊆ {1, . . . , n} does not cover any codeword, i.e., if there is no
non-zero codeword c′ ∈ C such that c′[i] ̸= 0 only if i ∈ J . In particular, the success of the block-MAP
decoder does not depend on the choice of the codeword c, but only on the erasure pattern J .

Indeed, if the codeword c was transmitted and the vector y is the received word, then the block-MAP
decoder fails if and only if there exists another codeword c′′ ∈ C that agrees with c on all non-erased
coordinates. Therefore, the codeword c′ := c− c′′ is zero on all entries outside J , and it is non-zero since c
and c′ disagree on at least one coordinate in J . For the other direction, note that if there exists a non-zero
codeword c′ ∈ C such that c′[i] ̸= 0 only if i ∈ J , then the codeword c′′ = c + c′ agrees with c on all
coordinates outside J , and disagrees with c on at least one coordinate in J , so the block-MAP decoder fails.

Asymptotic complexity. To capture the asymptotic complexity and parameters of the codes we
assume that there exists a deterministic polynomial time algorithm Gen that on input 1n outputs
a description of the encoding and decoding function of a code Cn of length n (e.g., circuits or
a RAM programs that compute the encoding and decoding). In most cases we are interested in
binary codes Cn that together with their dual codes achieve negligible error probability ϵ(n) over
the erasure channel BEC(p) for some given constant p.

We are also interested in the case where Gen is allowed to be probabilistic, so on input 1n the
algorithm Gen samples a description of the encoding and decoding functions of a code Cn from a
family Sn of codes of length n. In this case we usually require that, except with negligible prob-
ability, with overwhelming probability 1 − n−ω(1) over the internal randomness of Gen, the code
Cn satisfies some property, e.g., together with its dual code it achieves negligible error probability
ϵ(n) in the erasure channel BEC(p).

2.2 Secret Sharing

We continue with basic notions in secret sharing. The following definitions are taken with minor
changes from [ANP23].

Definition 2.2 (Partial access structure). A partial access structure over n parties is a pair (Γ0,Γ1)
where Γ0,Γ1 ⊆ 2[n] are non-empty collections of sets such that (1) B ̸⊆ A for every A ∈ Γ0, B ∈ Γ1,
(2) for every A ∈ Γ0 and B ⊆ A it holds that B ∈ Γ0, and (3) for every A ∈ Γ1 and B ⊇ A it holds that
B ∈ Γ1. Sets in Γ1 are called authorized, and sets in Γ0 are called unauthorized.
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For positive integers tp < tc ≤ n the (tp, tc)-ramp access structure over n parties (Γ0,Γ1) is defined
by letting Γ0 be the collection of all subsets of size at most tp and letting Γ1 be the collection of all subsets of
size at least tc.

Definition 2.3 (Secret sharing and ramp secret sharing). Let S be a finite set of size at least 2, letR be
a finite set, and let (Γ0,Γ1) be a partial access structure. An n-party secret sharing scheme that realizes the
partial access structure (Γ0,Γ1) with domain of secrets S and randomness domainR, is a pair of algorithms
(Share,Recover) such that

• Share is a randomized algorithm, that takes a secret s ∈ S and randomness r ∈ R, and returns n
shares s1, . . . , sn.

• Recover is a deterministic algorithm, that takes a set I ⊆ {1, . . . , n} and shares (si)i∈I and either
returns some element s′ ∈ S or a failure symbol ⊥.

The algorithms satisfy the following properties.

• (Correctness) For every secret s ∈ S, every fixed randomness r ∈ R, and every authorized set
I ∈ Γ1, it holds that Recover(I, (si)i∈I) = s, where (s1, . . . , sn) = Share(s; r).

• (Privacy) For every unauthorized set I ∈ Γ0, and for every pair of secrets s, s′ ∈ S , it holds
that the random variables (si)i∈I have the same distribution as the random variables (s′i)i∈I , where
(s1, . . . , sn) = Share(s; r), (s′1, . . . , s

′
n) = Share(s′; r), and r is uniformly distributed overR.

For positive integers tp < tc ≤ n, an n-party (tp, tc)-ramp secret sharing scheme with domain of secrets
S and randomness domainR is a secret sharing scheme that realizes the (tp, tc)-ramp access structure.

A t-out-of-n secret sharing scheme is a (t− 1, t)-ramp secret sharing scheme. A secret sharing
scheme is linear over a finite field Fq if the secret-domain S equals to Fq, the randomness-domainR
is a vector space over Fq, and the function Share is a linear transformation over Fq. We will restrict
our attention to linear secret sharing schemes in which each share is a single field element. Note
that, by linearity, if (s1, . . . , sn) is a valid sharing of a secret s and (s′1, . . . , s

′
n) is a valid sharing of

s′ then, for any scalars a, b ∈ Fq, it holds that (a · s1 + b · s′1, . . . , a · sn + b · s′n) is a valid sharing of
a · s+ b · s′.

A linear secret sharing scheme is multiplicative [CDM00] if for every secret s (resp., s′) and
every valid shares (s1, . . . , sn) (resp., (s′1, . . . , s

′
n)), it holds that s · s′ can be written as a linear

combination of s1 · s′1, . . . , sn · s′n. A t-out-of-n secret sharing scheme is strongly multiplicative if for
any set I of size at least n − (t − 1), it holds that s · s′ can be written as a linear combination of
(si · s′i)i∈I .

To capture the asymptotic complexity of the scheme, we think of tp(n) and tc(n) as functions
of n, and consider a deterministic algorithm Gen that on input 1n outputs the description of the al-
gorithms (Sharen,Recovern) of an n-party (tp(n), tc(n))-ramp secret sharing scheme. In some cases
we allow Gen to be probabilistic, and then we require that with overwhelming probability over the
internal randomness of Gen, the output (Sharen,Recovern) of Gen is an n-party (tp(n), tc(n))-ramp
secret sharing scheme.

2.3 A Useful Fact

We will use the following simple variant of Markov’s inequality.
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Fact 2.4. Let A and B be non-empty sets, and let P : A × B → {0, 1} be a predicate. Let A be any
distribution over A, and let B be an independent distribution over B. Assume that

Pr
a←A
b←B

[P (a, b) = 0] ≤ ϵ

for some ϵ > 0. Then with probability at least 1−
√
ϵ over the choice of a← A it holds that

Pr
b←B

[P (a, b) = 0] ≤
√
ϵ. (1)

Proof. Say that a ∈ A is “good” if it satisfies (1), and otherwise say that it is “bad”. Our goal is
to prove that a ← A is good with probability at least 1 −

√
ϵ. Assume towards contradiction that

a← A is bad with probability more than
√
ϵ. Then

ϵ ≥ Pr
a←A
b←B

[P (a, b) = 0] ≥ Pr
a←A
b←B

[P (a, b) = 0 | a is bad] · Pr
a←A

[a is bad] >
√
ϵ ·
√
ϵ = ϵ,

in contradiction. The fact follows.

3 Stochastic Secret sharing

In this section we construct stochastic secret sharing schemes. In Section 3.1 we prove that every
error-correcting code that, together with its dual code, perform well over the erasure channel,
can be transformed into a stochastic secret sharing scheme. Then, we use this transformation to
construct a stochastic secret sharing scheme from the Reed-Muller code (Section 3.2) and from
linear codes with linear-size circuit (Section 3.3). Whenever possible, we present our results in a
general way, over an arbitrary finite field Fq. Our final constructions are then obtained by taking
q = 2.

We begin with a formal definition of stochastic secret sharing.

Definition 3.1 (p-stochastic secret sharing). Let 0 < p < 1/2 and 0 < ϵ < 1. Let n > 0 be an integer,
and let S be a finite set of size at least 2. An n-party p-stochastic secret sharing scheme wtih error ϵ for a
domain of secrets S is a pair of algorithms (Share,Recover) such that

• Share is a randomized algorithm, that takes a secret s ∈ S and randomness, and returns n shares
s1, . . . , sn.

• Recover is a deterministic algorithm, that takes a set I ⊆ {1, . . . , n} and shares (si)i∈I and either
returns some element s′ ∈ S or a failure symbol ⊥.

The algorithms satisfy the following properties. Let Corrupt be the random variable corresponding to the set
of corrupt parties, where every i ∈ {1, . . . , n} belongs to Corrupt with probability p, independently of the
other parties. Let Honest = {1, . . . , n} \ Corrupt be the set of honest parties. Then with probability 1 − ϵ
over the choice of Corrupt, the following properties hold:

• (Correctness) For every secret s ∈ S, and every string r of randomness, it holds that
Recover(Honest, (si)i∈Honest) = s, where (s1, . . . , sn) = Share(s; r).
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• (Privacy) For every pair of secrets s, s′ ∈ S, it holds that the random variables (si)i∈Corrupt have
the same distribution as the random variables (s′i)i∈Corrupt, where (s1, . . . , sn) are sampled from
Share(s; r) and (s′1, . . . , s

′
n) are sampled from Share(s′; r), and r is uniformly distributed.

Equivalently, a secret sharing scheme that realizes an n-party partial access structure (Γ0,Γ1)
is a p-stochastic secret sharing scheme with error ϵ if

Pr[Corrupt ∈ Γ0

∧
Honest ∈ Γ1] ≥ 1− ϵ,

where Corrupt ⊂ [n] is sampled by choosing each i ∈ [n] independently with probability p and
Honest = {1, . . . , n} \ Corrupt.

We note that the definitions of linear and multiplicative secret sharing schemes extend natu-
rally to stochastic secret sharing. For the asymptotic notion, we consider a (possibly probabilistic)
algorithm Gen that on input 1n outputs the description of the algorithms (Sharen,Recovern) of an
n-party secret sharing scheme. We usually require that for every constant 0 < p < 1/2, with
overwhelming probability over the internal randomness of Gen, the scheme is p-stochastic secret
sharing with negligible error ϵp(n).

3.1 From Erasure Coding to Stochastic Secret Sharing

We begin with the following standard transformation from error-correcting codes to secret sharing
schemes [MS81, Mas93, Mas95].

Construction 3.2. Let Fq be a finite field, and let C be a linear error-correcting code over Fq with block
length n+ 1. Define StochSS(C) in the following way:

• (Sharing) The randomized algorithm Share takes as an input a secret s ∈ Fq, picks a random code-
word (c0, c1 . . . , cn) ← C conditioned on c0 = s, sets si := ci for every i ∈ {1, . . . , n} and outputs
the shares (s1, . . . , sn).

• (Recovery) The algorithm Recover takes as an input a set I ⊆ {1, . . . , n} and shares (si)i∈I . If
there exists a unique codeword c ∈ C such that c[i] = si for all i ∈ I , the algorithm returns c[0].
Otherwise, the algorithm returns a failure symbol ⊥.

Modern works (e.g., [CCG+07, Theorem 1]) have shown that if C and its dual C⊥ behave well
with respect to worst-case erasures (i.e., both of them have a good distance), then the resulting
secret sharing scheme is a ramp secret sharing scheme. The following lemma shows that in order
to get stochastic secret sharing it is enough to require that C and C⊥ behave well with respect to
stochastic erasures in QEC(p).

Lemma 3.3 (Main lemma). Let n > 0 be an integer, let Fq be a finite field, let C be a linear error-correcting
code over Fq with block length n+ 1, and let C⊥ be its dual code. Let 0 < p < 1/2 and assume that

1. The probability that the block-MAP decoder of C fails in the q-ary erasures channel QEC(p) is at
most ϵ, and,

2. The probability that the block-MAP decoder of C⊥ fails in the q-ary erasures channel QEC(p) is at
most δ.

Then StochSS(C) is a linear n-party p-stochastic secret sharing scheme with error (ϵ+ δ)/p.
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Proof. In the following we denote by J ⊆ {0, 1, . . . , n} the random variable that corresponds to the
set of coordinates erased by the QEC(p) channel, and by I = {0, 1, . . . , n} \ J the set of non-erased
coordinates. We also denote by Corrupt ⊆ {1, . . . , n} the random variable corresponding to the set
of corrupt parties in the p-stochastic corruptions model, and the set of honest parties by Honest =
{1, . . . , n} \ Corrupt. We observe that the random variable Honest has the same distribution as
the random variable I conditioned on the event that 0 /∈ I ; Equivalently, the random variable
Corrupt ∪ {0} has the same distribution as the random variable J conditioned on the event that
0 ∈ J .

Let D be the block-MAP decoder of C, and let D⊥ the block-MAP decoder of C⊥. Recall that
D (resp., D⊥) fails if and only if the set of erased coordinates J covers some codeword in C (resp.,
C⊥). (See Remark 2.1.) We continue with the proof of correctness.

Correctness. We first prove that correctness holds with probability 1 − ϵ/p over the choice of
Corrupt. We observe that correctness holds whenever D succeeds recovering from erasures when
the non-erased coordinates are Honest. Indeed, in this case the honest parties can recover the
codeword c and output the secret c0. By assumption

ϵ ≥ Pr
I
[D fails when non-erased coordinates are I]

≥ Pr
I
[D fails when non-erased coordinates are I | 0 /∈ I] · Pr[0 /∈ I]

= Pr
Honest

[D fails when non-erased coordinates are Honest] · p,

and therefore, the probability that D fails when the non-erased coordinates are Honest is at most
ϵ/p.

Privacy. Next, we prove that privacy holds with probability 1 − δ/p over the choice of Corrupt.
Let G ∈ Fk×(n+1)

q be the generator matrix of C. We first observe that if the columns of G when
restricted to Corrupt ∪ {0} are linearly independent, then privacy holds. Indeed, in this case the
restriction of a random codeword to the columns in Corrupt ∪ {0} results in a random vector, and
therefore, even conditioned on c0 = s, the shares of the corrupt parties are uniformly distributed.

Therefore, it remains to prove that the columns in Corrupt ∪ {0} are linearly independent with
probability at least 1− δ/p. Observe that if the columns in Corrupt ∪ {0} are linearly dependent if
and only if there exists a non-zero vector c ∈ Fn

q such that (1) G · cT = 0, and (2) c[i] ̸= 0 only if
i ∈ Corrupt ∪ {0}. Since G is the parity check matrix of C⊥, this occurs if and only if there exists
a non-zero codeword c ∈ C⊥ such that c[i] ̸= 0 only if i ∈ Corrupt ∪ {0}, and as we’ve noted,
this occurs if and only if D⊥ fails when the erased coordinates are Corrupt∪{0}. Since the random
variable Corrupt∪{0} is distributed like the random variable J conditioned on the event that 0 ∈ J ,
we obtain,

δ ≥ Pr
J
[D⊥ fails when erased coordinates are J ]

≥ Pr
J
[D⊥ fails when erased coordinates are J | 0 ∈ J ] · Pr[0 ∈ J ]

= Pr
Corrupt

[D⊥ fails when erased coordinates are Corrupt ∪ {0}] · p,

and therefore, the columns in Corrupt ∪ {0} are linearly independent with probability at least
1− δ/p.
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Conclusion. We conclude that with probability 1− ϵ/p− δ/p, both correctness and privacy hold,
as required. In addition, it is not hard to see that the scheme is linear. This concludes the proof of
the lemma.

3.2 Stochastic Secret Sharing from Binary Reed-Muller Code

In this section we prove Theorem 1.1. For an m-variate polynomial f(x1, . . . , xm) ∈ F2[x1, . . . , xm],
denote by Eval(f) ∈ {0, 1}2m the vector of evaluations of f on all the elements of Fm

2 . For integeres
0 ≤ r ≤ m, we define the (binary) Reed-Muller code with parameters r,m as follows:

RM(r,m) = {Eval(f) : f ∈ F2[x1, . . . , xm], deg(f) ≤ r}.

It is well-known (see, e.g., [GRS23]) that the length of the code is n = 2m, the dimension is k =∑r
i=0

(
m
i

)
, the distance is 2m−r, and that the dual of RM(r,m) is RM(m− r − 1,m).

The following theorem, which is a special case of the results of [KKM+17], shows that
RM(⌊m/2⌋ ,m) achieves the capacity of the binary erasure channel.

Theorem 3.4 ([KKM+17]). For every constant 0 < p < 1/2 there exists a constant δ > 0 such that for
sufficiently large m, the error probability of the block-MAP decoder of RM(⌊m/2⌋ ,m) in BEC(p) is at most
exp(−δ · 2m/2).

For every m > 1 let Cm be the code RM(⌊(m− 1)/2⌋ ,m), and observe that the length of Cm is
2m. We continue with the definition of our secret sharing scheme.

Construction 3.5. For every positive integer n we define the n-party secret sharing scheme RMStochSSn
with domain of secrets {0, 1} in the following way.

• If n = 2m − 1 for some positive integer m, we let RMStochSSn be the n-party secret sharing scheme
defined by applying Construction 3.2 on the code Cm.

• Otherwise, if 2m − 1 < n < 2m+1 − 1 for some positive integer m, we define RMStochSSn to be
the scheme that executes RMStochSS2m−1 with the first 2m − 1 parties. That is, to share a secret
s ∈ {0, 1} the first 2m − 1 shares are sampled according to the scheme RMStochSS2m−1, while the
rest of the shares are empty strings. To recover the secret of a set I ⊆ {1, . . . , n}, we execute the
recovery algorithm of RMStochSS2m−1 on the shares of the parties in the set I ∩ {1, . . . , 2m − 1}.

Theorem 3.6. For every constant 0 < p < 1/2 there exists a constant δ > 0 such that for all sufficiently
large n, the scheme RMStochSSn = (Sharen,Recovern) is a linear n-party p-stochastic secret sharing
scheme with error ϵ = ϵ(n) = 2−δ·

√
n and share size of 1 bit for the domain of secrets {0, 1}. In addition,

the scheme is multiplicative, and the circuit size of Sharen is at most O(n · log(n)).

Proof. We first provide a proof for the special case where n = n(m) = 2m − 1, and then explain
how to extend the proof for every value of n.

Secret sharing. Recall that Cm is the code RM(⌊(m− 1)/2⌋ ,m). Observe that the dual code of
Cm, denoted C⊥m, is the code RM(m − ⌊(m− 1)/2⌋ − 1,m), and that, by definition, both Cm and
C⊥m are subsets of the code RM(⌊m/2⌋ ,m). Since the block-MAP decoder errs if and only if the
set of erasures covers a codeword (see Remark 2.1), we conclude that Cm and C⊥m also achieve
capacity over the BEC channel. That is, for every constant 0 < p < 1/2 there exists a constant
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δ > 0 such that the error probability of the block-MAP decoder of Cm and C⊥m in BEC(p) is at most
exp(−δ · 2m/2) for all sufficiently large m. Therefore, by Lemma 3.3 we are guaranteed that every
constant 0 < p < 1/2 there exists a constant δ > 0 so that for all sufficiently large m the scheme
RMStochSSn(m) is p-stochastic secret sharing with error 2−δ

√
n.

Multiplication. To see that the secret sharing is multiplicative, we note that the sharing vec-
tors (s1, . . . , sn) and (s′1, . . . , s

′
n) of secrets s and s′ correspond to the evaluations of an m-variate

polynomial of degree less than m/2. Therefore, the vector (s1 · s′1, . . . , sn · s′n) corresponds to the
evaluations of an m-variate polynomial of degree at most m−1. The dual code of RM(m−1,m) is
RM(0,m), that contains the all-1 vector (1, 1, . . . , 1). In particular, every codeword (a0, a1, . . . , an)
of RM(m−1,m) satisfies that a0 = a1+ . . .+an. Therefore, it holds that s ·s′ = s1 ·s′1+ . . .+sn ·s′n.
In other words, the vector (s1 · s′1, . . . , sn · s′n) is a (non-randomized) n-out-of-n secret sharing of
s · s′.

The sharing procedure. Observe that the sharing procedure of RMStochSSn(m) is equivalent to
picking a random polynomial f(x1, . . . , xm) of degree at most ⌊(m− 1)/2⌋ whose free coefficient
is s, and setting the shares to be the evaluations of the polynomial on all the points in Fm

2 except
for (0, . . . , 0).

To bound the circuit size required to compute the shares of the secret (measured by the
number of wires), it is enough to bound the circuit size required to encode a codeword in
RM(⌊(m− 1)/2⌋ ,m). Observe that every polynomial f(x1, . . . , xm) of degree ⌊(m− 1)/2⌋ can be
written as f(x1, . . . , xm) = g(x1, . . . , xm−1)+xm ·h(x1, . . . , xm−1), where g has degree ⌊(m− 1)/2⌋
and h has degree ⌊(m− 1)/2⌋−1. Denote by SIZE(r,m) the circuit size of the encoder of RM(r,m),
and observe that SIZE(⌊(m− 1)/2⌋ ,m) ≤ SIZE(⌊(m− 1)/2⌋ ,m− 1) + SIZE(⌊(m− 1)/2⌋ − 1,m−
1) + 2m. Therefore, one can verify that SIZE(⌊(m− 1)/2⌋ ,m) ≤ O(2m ·m) = O(n · log n).

Extending the construction for every n. It is not hard to verify that for 2m − 1 < n < 2m+1 − 1,
the secret sharing scheme RMStochSSn achieves the same security guarantees as RMStochSS2m−1.
That is, if RMStochSS2m−1 is a (2m − 1)-party p-stochastic secret sharing with error ϵ(2m − 1)
then RMStochSSn is an n-party p-stochastic secret sharing with error ϵ(n) = ϵ(2m − 1), so the
error of RMStochSSn is the same as the error of RMStochSS2m−1. This concludes the proof of the
theorem.

3.3 Stochastic Secret Sharing with Linear-Size Circuits

In this section we prove Theorem 1.2. Our construction is based on the linear uniform output
family constructed by [DI14].

Definition 3.7 (Linear uniform output family [DI14]). Let Fq be a finite field and let k ≤ n be positive
integers. A (q, k, n)-linear uniform output family is a distributionM over k × n matrices over Fq that
satisfies

Pr
M←M

[x ·M = y] = q−n

for every non-zero vector x ∈ Fk
q and every vector y ∈ Fn

q .
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We continue by showing that a linear uniform output family implies stochastic secret shar-
ing. To do so, we first prove that a linear uniform output family implies good codes for erasure
recovery over the QEC. Then, we use the main lemma (Lemma 3.3) to obtain stochastic secret
sharing.

For a k × n matrix M ∈ Fk×n, we denote by C(M) the linear code generated by M , and by
C(M)⊥ the linear code whose parity-check matrix is M . Observe that C(M)⊥ is indeed the dual
code of C(M). The following theorem shows that with overwhelming probability over the choice
of M ←M, both C(M) and C(M)⊥ are good codes for erasure recovery over QEC.

Theorem 3.8. Let Fq be a finite field, let k be a positive integer and let n = 2k. LetM be a (q, k, n)-linear

uniform output family. Let 0 < δ < 1/2 and let p = 1/2− δ. Then, with probability at least 1− 4 · 2−
δ2

4
n

over the choice of M ← M the following holds: (1) the probability that the block-MAP decoder of C(M)

fails in the q-ary erasure channel QEC(p) is at most
√
2 · 2−

δ2

4
n, and (2) the the probability that the block-

MAP decoder of C(M)⊥ fails in the q-ary erasure channel QEC(p) is at most
√
2 · 2−

δ2

4
n.

Theorem 3.8 immediately follows from two more general lemmas: Lemma 3.13 that shows
that C(M) is a good erasure code, and is proved in Section 3.3.1; and Lemma 3.15 that shows that
that C(M)⊥ is a good erasure code, and is proved in Section 3.3.2. Using the Main Lemma 3.3 we
immediately obtain the following corollary.

Corollary 3.9. Let Fq be a finite field, let k be a positive integer and let n+1 = 2k. LetM be a (q, k, n+1)-

linear uniform output family. Let 0 < δ < 1/2 and let p = 1/2− δ. With probability at least 1− 4 · 2−
δ2

4
n

over the choice of M ←M the following holds. The scheme StochSS(C(M)) is a linear n-party p-stochastic

secret sharing scheme over Fq with error ϵ = ϵ(n) = 4
p · 2

− δ2

4
n for the domain of secrets Fq.

To obtain an n-party secret sharing scheme for an even n, we can just take the construction for
(n + 1)-party secret sharing scheme and ignore the last share, at the cost of increasing the error
probability from ϵ(n+ 1) to ϵ(n+ 1)/p.

Linear time stochastic secret sharing. It remains to prove that there exists a (q, k, n)-linear uni-
form output familyM for which we can implement the sharing function of StochSS(C(M)) by a
linear-size circuit. For a k×n matrix M , let AM (x) : Fk

q → Fn
q be the linear function corresponding

to left multiplication by M , i.e., AM (x) = x ·M . The work of [DI14] constructs a linear uniform
output family with linear-size circuits for AM , as summarized in the following theorem.

Theorem 3.10 ([DI14]). Let Fq be a finite field of size q, and let c be a positive integer. Then there exist
(1) a family of distributions (Mk)k>1 such thatMk is a (q, k, ck)-linear uniform output family, and (2) a
probabilistic polynomial-time algorithm Gen that takes as an input 1k and samples an arithmetic circuit of
size O(k) that computes AM (x), where M is distributed according toMk.

In particular, by taking c = 2, we get thatMk is a family of (q, k, n + 1 = 2k)-linear uniform
output family, with circuit of size O(n) for AM . As observed by [DI14], for every M in the support
ofMk, we can implement the sharing procedure of StochSS(C(M)) by a linear-size circuit. Indeed,
let us fix a global codeword c∗ ∈ C(M), c∗ = (c∗0, c

∗
1 . . . , c

∗
n) with c∗0 ̸= 0. To pick a random

codeword whose 0th entry is s, we do as follows: (1) we pick a random vector c′ ∈ C(M) by
computing c′ = AM (x) for x ← Fk

q , (2) compute c = c′ + α · c∗ where α ∈ Fq is defined to be
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α =
s−c′0
c∗0

. By Theorem 3.10 AM (x) has a linear-size circuit, and it is not hard to see that, since
c∗ is fixed, the second step can also be computed by a linear size circuit. We therefore obtain the
following corollary.

Corollary 3.11. Let Fq be a finite field. There exists a probabilistic polynomial time algorithm Gen that on
input 1n samples the description of an n-party linear secret sharing scheme Sn = (Sharen,Recovern) over
Fq, such that Sharen is represented by a circuit of size O(n), and for every 0 < δ < 1/2 and p = 1/2− δ,

with probability at least 1 − 4 · 2−
δ2

4
n over the choice of Sn, the scheme Sn is p-stochastic secret sharing

with error ϵ = ϵ(n) = 4
p2
· 2−

δ2

4
n for the domain of secrets Fq.

Theorem 1.2 now follows by taking the finite field to be F2.

Remark 3.12 (On 2-bits multiplicative secret sharing.). The above scheme is not multiplicative. How-
ever, using the technique of [CDM00, CCG+07], we can turn it into a multiplicative stochastic secret
sharing scheme while preserving the exponentially-small error. This is done at the expense of increasing the
share size to 2 bits, and the computation time to O(n2).

The idea is to share a secret s ∈ {0, 1} by handing a pair of bits (si, s′i) to the ith party where the vector
(s1, . . . , sn) is sampled according to StochSS(C(M)) and the vector (s′1, . . . , s

′
n) is sampled according to

StochSS(C(M)⊥). By Corollary 3.9 it is not hard to see that if M is sampled from a linear uniform output
family, then with all but exponentially-small probability this scheme is a stochastic secret sharing scheme. In
addition, the scheme is multiplicative, since for two secret s, t ∈ {0, 1} with shares ((s1, s′1), . . . , (sn, s

′
n))

and ((t1, t
′
1), . . . , (tn, t

′
n)), respectively, it holds that s · t = s1 · t′1+ . . .+ sn · t′n. To see this, simply observe

that (s, s1, . . . , sn) ∈ C(M) and (t, t′1, . . . , t
′
n) ∈ C(M)⊥ so s · t+ s1 · t′1 + . . .+ sn · t′n = 0.

3.3.1 C(M) is a Good Erasure Code

In this section we prove the following lemma.

Lemma 3.13. Let Fq be a finite field of size q, let 0 < p < 1, let δ > 0, and let k ≤ n be positive integers
that satisfy k/n = 1− p− δ. LetM be a (q, k, n)-linear uniform output family. Then with probability at

least 1−
√
2 · 2−

δ2

4
n over the choice of M ←M, the probability that the block-MAP decoder of C(M) fails

in the q-ary erasure channel QEC(p) is at most
√
2 · 2−

δ2

4
n.

To prove Lemma 3.13 we need the following claim.

Claim 3.14. Let Fq be a finite field, and letM be a (q, k, n)-linear uniform output family. Let I ⊆ [n] be a
subset of size ℓ > k, and denote by M |I the restriction of the matrix M to the columns in I . Then

Pr
M←M

[rank(M |I) = k] ≥ 1− q−(ℓ−k).

Proof. Observe that rank(M |I) < k if and only if there exists a non-zero vector x ∈ Fk
q such that

x ·M |I = 0. Therefore,

Pr
M←M

[rank(M |I) < k] = Pr
M←M

[∃ non-zero x ∈ Fk
q s.t. x ·M |I = 0]

≤ qk · q−ℓ

= q−(ℓ−k),

where the inequality follows by union bound, and since M is a (q, k, n)-linear uniform output
family. This completes the proof of the claim.
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We continue with the proof of Lemma 3.13.

Proof of Lemma 3.13. In the following we denote by J ⊆ {1, . . . , n} the random variable that corre-
sponds to the set of coordinates erased by the QEC(p) channel, and by I = {1, . . . , n} \ J the set
of non-erased coordinates. By Chernoff’s bound, the probability that the size of J is more than
(p+ δ/2)n is at most exp(−2 · δ2n/4) = exp(−δ2n/2). Let M |I be the matrix M when restricted to
the columns of non-erased coordinates, and observe that the block-MAP decoder fails if and only
if the k rows of M |I are linearly dependent. Now,

Pr
M←M

(J,I=[n]\J)

[rank(M |I) = k] ≥
⌊(p+δ/2)n⌋∑

s=0

Pr
M←M

(J,I=[n]\J)

[rank(M |I) = k | |J | = s] · Pr[|J | = s]

≥ (1− q−(n−(p+δ/2)n)+k)

⌊(p+δ/2)n⌋∑
s=0

Pr[|J | = s]

= (1− q−(1−(p+δ/2))n+(1−p−δ)n) · Pr[|J | ≤ ⌊(p+ δ/2)n⌋]
≥ (1− q−n·δ/2)(1− exp(−δ2n/2))

> 1− 2 · 2−
δ2

2
·n,

where we used Claim 3.14 in the second inequality, using the fact that |I| = n − |J | ≥ n −
⌊(p+ δ/2)n⌋ ≥ (1 − (p + δ/2))n > (1 − p − δ)n = k for every J with |J | ≤ ⌊(p+ δ/2)n⌋. Then,

by Fact 2.4, with probability at least 1 −
√
2 · 2−

δ2

4
n over the choice of M ← M it holds that the

probability that the block-MAP decoder of C(M) fails is at most
√
2 · 2−

δ2

4
n. This completes the

proof of the lemma.

3.3.2 C(M)⊥ is a Good Erasure Code

In this section we prove the following lemma.

Lemma 3.15. Let Fq be a finite field of size q, let 0 < p < 1, let δ > 0, and let k ≤ n be positive integers
that satisfy (n−k)/n = 1−p−δ. LetM be a (q, k, n)-linear uniform output family. Then with probability

at least 1−
√
2 · 2−

δ2

4
n over the choice of M ←M, the probability that the block-MAP decoder of C(M)⊥

fails in the q-ary erasure channel QEC(p) is at most
√
2 · 2−

δ2

4
n.

To prove Lemma 3.15 we need the following XOR-lemma, due to [CGH+85]. The following
version is taken from [DI14, Lemma 2].

Lemma 3.16 (XOR-lemma). Let x = (x1, . . . , xn) be a random variable, distributed over Fn
q . Then x is

uniformly distributed if and only if for every non-zero vector (y1, . . . , yn) ∈ Fn
q it holds that the random

variable y1 · x1 + . . .+ yn · xn is uniformly distributed over Fq.

The XOR-lemma implies that for every (q, k, n)-linear uniform output familyM the following
holds:

Pr
M←M

[M · xT = zT ] = q−k,
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for every non-zero x ∈ Fn
q and every z ∈ Fk

q . Indeed, for every non-zero vector y ∈ Fk
q the

random variable y ·M is uniformly distributed, since M is sampled from a (q, k, n)-linear uniform
output family. Therefore, for every non-zero x ∈ Fn

q and every non-zero vector y ∈ Fk
q the random

variable y ·M · xT is uniformly distributed. Hence, by the XOR-lemma, for every non-zero vector
x ∈ Fn

q , the random variable M · xT is uniformly distributed. We continue with the following
claim, that is required for the proof of Lemma 3.15.

Claim 3.17. Let Fq be a finite field, and letM ba a (q, k, n)-linear uniform output family. Let J ⊆ [n] be
a subset of size ℓ < k, and denote by M |J the matrix M when restricted to the columns in J . Then

Pr
M←M

[rank(M |J) = ℓ] ≥ 1− q−(k−ℓ).

Proof. Observe that rank(M |J) < ℓ if and only if there exists a non-zero vector x ∈ Fn
q whose

support is a subset of J such that M · xT = 0. Therefore,

Pr
M←M

[rank(M |J) < ℓ] = Pr
M←M

[∃ non-zero x ∈ Fn
q with support in J s.t. M · xT = 0]

≤ qℓ · q−k

= q−(k−ℓ),

where the inequality follows by union bound, and since M · xT is uniformly distributed over Fk

for M ←M. This completes the proof of the claim.

We continue with the proof of Lemma 3.15.

Proof of Lemma 3.15. In the following we denote by J ⊆ {1, . . . , n} the random variable that corre-
sponds to the set of coordinates erased by the QEC(p) channel, and by I = {1, . . . , n} \ J the set
of non-erased coordinates. By Chernoff’s bound, the probability that the size of J is more than
(p+ δ/2)n is at most exp(−2 · δ2n/4) = exp(−δ2n/2).

Recall that the block-MAP decoder of C(M)⊥ fails on J if and only if J covers a codeword in
C(M)⊥. Since M is the parity check matrix of C(M)⊥, this happens if and only if the columns of
M |J are linearly dependent. Now

Pr
M←M

J

[rank(M |J) = |J |] ≥
⌊(p+δ/2)n⌋∑

s=0

Pr
M←M

J

[rank(M |J) = s | |J | = s] · Pr[|J | = s]

≥ (1− q−k+(p+δ/2)n) ·
⌊(p+δ/2)n⌋∑

s=0

Pr[|J | = s]

= (1− q−(p+δ)n+(p+δ/2)n) · Pr[|J | < ⌊(p+ δ/2)n⌋]
≥ (1− q−δ·n/2) · (1− exp(−δ2n/2))

> 1− 2 · 2−
δ2

2
·n

where we used Claim 3.17 in the second inequality, using the fact that |J | = ⌊(p+ δ/2)n⌋ < (p +

δ)n = k. Then, by Fact 2.4, with probability at least 1 −
√
2 · 2−

δ2

4
n over the choice of M ← M it

holds that the probability that the block-MAP decoder of C(M)⊥ fails is at most
√
2 · 2−

δ2

4
n. This

completes the proof of the lemma.
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4 Static Secret Sharing

In this section we show a general transformation from p-stochastic secret sharing to t-static secret
sharing, and also prove a lower bound on 1-bit static secret sharing. We begin with a formal
definition of t-static secret sharing.

Definition 4.1 (t-static secret sharing). Let t ≤ n be positive integers, let ϵ > 0, and let S be a finite set
of size at least 2. An n-party t-static secret sharing scheme with error ϵ for a domain of secrets S is a triple
of algorithms (GenRand,Share,Recover) such that

• GenRand is a randomized algorithm that outputs a string of public randomness R.

• Share is a randomized algorithm, that takes a secret s ∈ S, the public randomness R, and private
randomness r, and returns n shares s1, . . . , sn.

• Recover is a deterministic algorithm, that takes a set I ⊆ {1, . . . , n}, shares (si)i∈I , and the public
randomness R, and either returns some element s′ ∈ S or a failure symbol ⊥.

The algorithms satisfy the following properties. For every set Corrupt ⊆ {1, . . . , n} of size at most t, with
probability at least 1− ϵ over the choice of R, the following properties hold:

• (Correctness) For every secret s ∈ S , and every string r of private randomness, it holds that
RecoverR(Honest, (si)i∈Honest) = s, where (s1, . . . , sn) = ShareR(s; r) and Honest = {1, . . . , n} \
Corrupt.

• (Privacy) For every pair of secrets s, s′ ∈ S, it holds that the random variables (si)i∈Corrupt have
the same distribution as the random variables (s′i)i∈Corrupt, where (s1, . . . , sn) are sampled from
ShareR(s; r) and (s′1, . . . , s

′
n) are sampled from ShareR(s

′; r), and r is uniformly distributed.

A t-static secret sharing scheme is linear if for every choice of the public randomness R, the
secret sharing scheme defined by (ShareR,RecoverR) is linear. The definition of multiplicative
secret sharing scheme extends in the same way as well.

4.1 From Stochastic Corruptions to Standard Corruptions

The transformation from p-stochastic secret sharing to t-static secret sharing is presented in the
following construction.

Construction 4.2. Let (Share′,Recover′) be an n-party p-stochastic secret sharing with error ϵ. Consider
the following secret sharing scheme (GenRand,Share,Recover) with public randomness:

• (Public randomness) The algorithm GenRand samples a random permutation π of {1, . . . , n} and
outputs π.

• (Sharing) The randomized algorithm Share takes as an input a secret s and the public randomness
π, samples randomness r for Share′, and computes (s′1, . . . , s

′
n) := Share′(s; r). For every i ∈

{1, . . . , n} the algorithm sets si := s′π(i) and outputs (s1, . . . , sn).

• (Recovery) The algorithm Recover takes as an input a set I ⊆ {1, . . . , n}, shares (si)i∈I , and the
public randomness π, sets I ′ := π(I) = {π(i) : i ∈ I} and s′π(i) := si for every i ∈ I , and returns
Recover′(I ′, (s′i)i∈I′).
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Lemma 4.3. Let n be a positive integer, let S be a finite set, let 0 < ϵ′ < 1 and 0 < p < 1/2, and let
S′ = (Share′,Recover′) be an n-party p-stochastic secret sharing with error ϵ′ for the domain of secret S.
Let S = (GenRand,Share,Recover) be the scheme obtained by applying Construction 4.2 on S′. Then the
scheme S is an n-party ⌊pn⌋-static secret sharing with error ϵ ≤ 2ϵ′ for the domain of secrets S. In addition,
if S′ is linear (resp., multiplicative) then S is linear (resp., multiplicative).

Proof. Fix any set Corrupt ⊆ {1, . . . , n} of t ≤ ⌊pn⌋ corrupt parties, and let Honest = {1, . . . , n} \
Corrupt be the set of the honest parties. Let π be a random permutation, and observe that the
random variable π(Corrupt) = {π(i) : i ∈ Corrupt} is uniformly distributed over sets of size t of
{1, . . . , n}. Our goal is to prove that in the scheme S′ both correctness and privacy hold for the set
π(Corrupt) of corrupt parties, with probability at least 1− ϵ over the choice of π.

Let J ⊆ {1, . . . , n} be the random variable that corresponds to the set of corrupt parties in the
p-stochastic corruption model, and let BAD be the set of all subsets L ⊆ {1, . . . , n} such that if
J = L then either correctness or privacy (or both) in the scheme S′ do not hold. For every integer
0 ≤ m ≤ n, we denote by J ||J |=m the random variable J conditioned on the event that |J | = m,
and we note that it is uniformly distributed over subsets of {1, . . . , n} of size m. Since J ||J |=t has
the same distribution as π(Corrupt), our goal is to prove that with probability at least 1− ϵ it holds
that J ||J |=t /∈ BAD. For this, we need the following claim.

Claim 4.4. For every integers 0 ≤ m < m′ ≤ n it holds that

Pr[J ∈ BAD | |J | = m′] ≥ Pr[J ∈ BAD | |J | = m].

Proof. It is enough to prove that Pr[J ∈ BAD | |J | = m + 1] ≥ Pr[J ∈ BAD | |J | = m], since the
claim follows by induction. Now, J ||J |=m+1 is uniform over subsets of {1, . . . , n} of size m + 1,
and we think of picking such a set as a 2-step procedure: (1) pick a random subsets J ′ ⊆ {1, . . . , n}
of size m, and (2) pick an additional integer from {1, . . . , n} \ J ′ at random. Therefore, Pr[J ∈
BAD | |J | = m + 1] ≥ Pr[J ′ ∈ BAD | |J | = m + 1] = Pr[J ∈ BAD | |J | = m]. This completes the
proof of the claim.

We observe that |J | is at least t with probability at least 1/2. Indeed, it is known that any me-
dian of the Binomial distribution with n trials and success probability p in each trial lies between
⌊np⌋ to ⌈np⌉ (see [KB80]). Therefore,

ϵ′ ≥ Pr[J ∈ BAD]

=
n∑

m=0

Pr[J ∈ BAD | |J | = m] · Pr[|J | = m]

≥
n∑

m=t

Pr[J ∈ BAD | |J | = m] · Pr[|J | = m]

≥ Pr[J ∈ BAD | |J | = t] ·
n∑

m=t

Pr[|J | = m]

= Pr[J ∈ BAD | |J | = t] · Pr[|J | ≥ t]

≥ Pr[J ∈ BAD | |J | = t] · 1
2
,
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where in the third inequality we used Claim 4.4. We conclude that Pr[J ∈ BAD | |J | = t] ≤ 2ϵ′.
Finally, it is not hard to see that if S′ is linear (resp., multiplicative), then so is S. This completes
the proof of the lemma.

t-static secret sharing from Reed-Muller code. For every positive integer n, let RMStatSSn be
the static secret sharing scheme obtained by applying Construction 4.2 on RMStochSSn from The-
orem 3.6. Then Lemma 4.3 immediately implies the following theorem, that corresponds to Corol-
lary 1.3.

Theorem 4.5. For every constant 0 < p < 1/2 there exists a constant δ such that for all sufficiently large
n, the scheme RMStatSSn = (GenRandn, Sharen,Recovern) is a linear n-party ⌊pn⌋-static secret sharing
scheme with error ϵ = ϵ(n) = 2−δ·

√
n, and share size of 1 bit for the domain of secrets {0, 1}. In addition,

the scheme is multiplicative, and can be computed in time O(n · log(n)) in the RAM model.

t-static secret sharing from linear uniform output family. Similarly, if we apply Lemma 4.3 on
the stochastic secret sharing scheme that is based on linear uniform output family (Corollary 3.11)
then we obtain the following theorem, that corresponds to Corollary 1.4 when taking the field to
be F2.

Theorem 4.6. Let Fq be a finite field. There exists a probabilistic polynomial time algorithm Gen that on
input 1n samples the description of an n-party secret sharing scheme Sn = (GenRandn, Sharen,Recovern)

over Fq, such that for every 0 < δ < 1/2, with probability at least 1 − 4 · 2−
δ2

4
n over the choice of Sn,

the scheme Sn is ⌊(1/2− δ)n⌋-static linear secret sharing scheme with error ϵ = ϵ(n) = 8
(1/2−δ)2 · 2

− δ2

4
n

for the domain of secrets Fq. Algorithm GenRandn can be implemented in time O(n · log(n)) in the RAM
model, and outputs a public string of length O(n · log(n)). In addition, Sharen requires a preprocessing
time of O(n · log(n)), and after that sharing a secret requires O(n) time in the RAM model.

4.2 Lower Bound on Static Secret Sharing

In this section we prove the following lower bound on static secret sharing.

Theorem 4.7. For every positive integer n ≥ 5, and every 0 < c < (n − 4)/6 there is no 1-bit n-party
(12 − δ)n-static secret sharing scheme with error ϵ for the domain of secrets {0, 1}, where δ = c

n and
ϵ = 2−6c−6.

In particular, when δ = O(1/n) then ϵ = Ω(1), and when δ = O(log(n)/n) then ϵ ≥ 1/poly(n).
We mention that the theorem can be extended to stochastic secret sharing as well (with slight
degradation of the parameters) using Lemma 4.3. Proving Theorem 4.7 is done in two steps:
First, we prove that any (12 − δ)n-static secret sharing scheme with sufficiently low error ϵ can be
translated into a (standard) k-party (k2 − δn− 1, k2 + δn+1)-ramp secret sharing; Then, we use the
lower bounds of [BGK20] on ramp secret sharing to get a contradiction.

For the first part, we have the following lemma. (In this section, all logarithms are base 2.)

Lemma 4.8. Let S be a finite set, let n ≥ 5 be a positive integer, let 0 < δ < 1
2 −

2
n and 0 ≤ ϵ < 2−2δn−5,

and let S = (GenRand, Share,Recover) be an n-party (12 − δ)n-static secret sharing scheme with error ϵ
for the domain of secrets S . Assume that the share size of S is ℓ bits. Then for k = min{n, ⌊log(1/ϵ)⌋}
there exists a k-party (tp, tc)-ramp secret sharing scheme for the domain of secrets S with share size of ℓ
bits, where tp = k

2 − δn− 1 and tc =
k
2 + δn+ 1.
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Let us first observe that the parameters make sense. First, we note that k > 2δn + 4. Indeed,
if k = n then this follows from the requirement δ < 1

2 −
2
n ; Otherwise, if k = ⌊log(1/ϵ)⌋ then this

follows from the requirement ϵ < 2−2δn−5. As a consequence we obtain that the number of parties
k in the new scheme is at least 5, that tp = k

2 − δn − 1 > 1 and that tc = k
2 + δn + 1 < k − 1. We

continue with the proof of the lemma.

Proof of Lemma 4.8. We split into cases.

Case 1: ϵ < 2−n. In this case n ≤ ⌊log(1/ϵ)⌋ so we set k = n. It suffices to prove that there exists
a public random string R∗ such that if we execute the scheme S with the public random string
fixed to R∗, hereafter denoted by SR∗ , then (1) correctness holds with respect to every set of size
at least (12 + δ)n, and (2) privacy holds with respect to every set of size at most (12 − δ)n. The proof
uses the probabilistic method and a simple union-bound. Specifically, fix a subset Q ⊆ {1, . . . , n}
of size at most (12 − δ)n, and let us say that Q fails with respect to public randomness R if either
(1) correctness fails with respect to the set of honest parties {1, . . . , n} \Q, or (2) privacy fails with
respect to the set of corrupt parties Q. Then, by definition, Q fails for a randomly chosen R with
probability of at most 2ϵ. By a union-bound over all 2n−1 subsets Q ⊆ {1, . . . , n} of size at most
(12 − δ)n, we conclude that

Pr
R
[∃Q ⊆ {1, . . . , n}, |Q| ≤ (

1

2
− δ)n, s.t. Q fails with respect to R] ≤ 2n−1 · 2ϵ < 1,

as required.

Case 2: ϵ ≥ 2−n. In the second case we assume that 2−n ≤ ϵ < 2−2δn−5, so ⌊log(1/ϵ)⌋ ≤ n
and we set k = ⌊log(1/ϵ)⌋. We define three sets of parties, A,B and C, where A = {1, . . . , k},
B = {k + 1, . . . , k + ⌊(n− k)/2⌋} (so |B| = ⌊(n− k)/2⌋), and C = {1, . . . , n} \ (A ∪ B). Observe
that B and C might be empty. Looking forward, A will be the set of parties in the new ramp secret
sharing scheme, while the shares of parties in B will be public and known to all the parties in A.
Finally, we will ignore the shares of parties in C. We begin with the following formal claim.

Claim 4.9. There is a choice of R∗ for which the following holds:

• Every subset A′ of size at most (k/2 − δn − 1) of A has no information about the secret, even given
the shares of parties in B. (That is, privacy holds with respect to the set A′ ∪B.)

• Every subset A′ of size at least (k/2 + δn+ 1) of A can recover the secret given the shares of parties
in B. (That is, correctness holds with respect to the set A′ ∪B.)

Proof. For a subset Q ⊆ A of size at most k
2 −δn−1, we say that Q fails with respect to the choice of

the public randomness R generated by GenRand if either (1) correctness fails with respect to the set
of honest parties (A \Q)∪B, or (2) privacy fails with respect to the set of corrupt parties (Q∪B).
Since |(A\Q)∪B| ≥ (k2 +δn+1)+⌊(n− k)/2⌋ ≥ (1/2+δ)n, then by the correctness of the scheme
S we get that the correctness fails with probability at most ϵ over the choice of R. Similarly, since
|Q ∪ B| ≤ (k2 − δn − 1) + ⌊(n− k)/2⌋ ≤ (1/2 − δ)n, then by the privacy of the scheme S we get
that the privacy fails with probability at most ϵ over the choice of R. Since the number of subsets
Q ⊆ A of size at most (k2 − δn− 1) is less than 2k−1, we conclude that

Pr
R
[∃Q ⊆ A, |Q| ≤ (

k

2
− δn− 1), s.t. Q fails with respect to R] < 2k−1 · 2ϵ ≤ 1.
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Therefore, there exists public randomness R∗ such that every subset Q ⊆ A of size at most (k2 −
δn− 1) does not fail with respect to R∗. The claim follows.

We continue with the definition of the ramp secret sharing scheme. Let s∗ ∈ S be some secret,
and let (s∗1, . . . , s

∗
n) = ShareR∗(s∗; r∗) be the shares of s∗ generated by Share when the public ran-

dom string is fixed to R∗ and the internal randomness is fixed to some string r∗ (e.g., the all-zero
string).

Consider the following k-party secret sharing scheme S′ = (Share′,Recover′):

• (Share′): To share a secret s ∈ S, sample shares (s1, . . . , sn) according to ShareR∗(s; r) condi-
tioned on si = s∗i for every i ∈ B. Output (s1, . . . , sk). (Recall that A = {1, . . . , k}.)

• (Recover′): For a set I ⊆ {1, . . . , k}, given the shares (si)i∈I the recovery algorithm outputs
RecoverR∗(I ∪B, (si)i∈I ∪ (s∗i )i∈B).

We continue by proving that S′ is a (k2 − δn − 1, k2 + δn + 1)-ramp secret sharing scheme. First,
we observe that the sharing algorithm Share′ is well defined. Indeed, by construction, we know
that privacy in S holds with respect to the set B when the public string is R∗, and therefore for
every secret s ∈ S there are shares (s1, . . . , sn) such that (si)i∈B = (s∗i )i∈B . We conclude that for
every secret s ∈ S, the sharing algorithm Share′ can sample shares (s1, . . . , sn) = ShareR∗(s; r)
conditioned on si = s∗i for all i ∈ B.

To see that correctness holds in S′, fix any secret s ∈ S , any set I ⊆ {1, . . . , k} of size at
least (k2 + δn+ 1) and any shares (si)i∈I of s that were generated by Share′. Since the complement
Q = A\I is a set of size at most k

2−δn−1, then by construction correctness in S holds with respect
to the set I ∪B when the public string is R∗, and therefore RecoverR∗(I ∪B, (si)i∈I ∪ (s∗i )i∈B) = s.

Finally, to see that privacy holds, fix any pair of secrets s, s′ ∈ S and any set Q ⊆ {1, . . . , k}
of size at most (k2 − δn − 1). By construction, privacy in S holds with respect to the set Q ∪ B
when the public string is R∗. That is, the shares (si)i∈Q∪B have the same distribution as (s′i)i∈Q∪B
where (s1, . . . , sn) = ShareR∗(s; r) and (s′1, . . . , s

′
n) = ShareR∗(s′; r) and r is uniformly distributed.

In particular, the shares (si)i∈Q∪B have the same distribution as (s′i)i∈Q∪B even conditioned on the
event that the shares of parties in B are (s∗i )i∈B . Therefore the shares (si)i∈Q that are generated by
Share′ when the secret is s have the same distribution as the shares (s′i)i∈Q that are generated by
Share′ when the secret is s′. This concludes the proof of the lemma.

We continue with the proof of Theorem 4.7.

Proof of Theorem 4.7. Fix n ≥ 5 and 0 < c < (n − 4)/6. Assume towards contradiction that there
exists a 1-bit n-party (1/2− δ)-static secret sharing scheme S with error ϵ for the domain of secrets
{0, 1}, where δ = c

n and ϵ = 2−6c−6. Observe that 0 < δ < 1
2 −

2
n and 0 ≤ ϵ < 2−2δn−5. Therefore,

by Lemma 4.8, there exists a 1-bit k-party (tp, tc)-ramp secret sharing scheme S′ for the domain of
secrets {0, 1}, where k = min{n, ⌊log(1/ϵ)⌋}, tp = k

2 − δn − 1 and tc = k
2 + δn + 1. We split into

cases.

• First, we assume that n ≤ ⌊log(1/ϵ)⌋, so k = n, tp = (12 − δ)n − 1 and tc = (12 + δn) + 1.
Therefore, the lower bound of [BGK20] implies that the share size of S′ is at least log((n +
tc − tp + 2)/(2(tc − tp))) = log((n + 2c + 4)/(4c + 4)) > 1 bits, where we used the fact that
c < (n− 4)/6. This contradicts the 1-bit share size of S′.
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• Next, we assume that n > ⌊log(1/ϵ)⌋ so k = ⌊log(1/ϵ)⌋. A straightforward calculation shows
that 6c+5 ≤ k, so tp ≥ (2k−1)/6 and tc ≤ (4k+1)/6. Therefore, the lower bound of [BGK20]
implies that the share size of S′ is at least log((k + tc − tp + 2)/(2(tc − tp))) > 1 bits. This
contradicts the 1-bit share size of S′.

This concludes the proof of the theorem.

5 MPC in the Real-Time Computation Model

In this section we present our results regarding MPC in the real-time computation model. All
our results are proved in the framework of universal composability (UC), the reader is referred
to [Can01] for more details. Throughout, we will be interested in security against a passive adver-
sary that corrupts a minority of the parties. We consider a single client and n servers and formalize
the requirements from the real-time computation model via the following reactive functionality.

Public parameters: Positive integer m denoting the number of inputs.

Server’s Inputs: The ith server inputs m bits x1,i, . . . , xm,i ∈ F2.

Initialize registers: The functionality initializes R = m registers, denoted r1, . . . , rR. For j = 1, . . . ,m
the value of rj is initialized to xj := xj,1 + . . .+ xj,n,.

Interaction with Client: Upon receiving an instruction inst from the client, the functionality returns inst
to all the parties (the servers and the client) and acts as follows (all arithmetic operations are performed
over F2).

• If inst = (add, i, j, k) for i, j, k ∈ {1, . . . , R}, then the functionality sets the value of rk to be the sum
of ri and rj , i.e., rk ← ri + rj .

• If inst = (add1, k) for k ∈ {1, . . . , R}, then the functionality sets the value of rk to be the value of rk
plus 1, i.e., rk ← rk + 1.

• If inst = (multiply, i, j, k) for i, j, k ∈ {1, . . . , R}, then the functionality sets the value of rk to be the
multiplication of the value of ri and the value of rj , i.e., rk ← ri · rj .

• If inst = increase then the functionality adds an additional register, initialized to 0, and increases the
counter by 1, i.e., R← R+ 1.

• If inst = (output, i) for i ∈ {1, . . . , R} then the functionality returns the value of ri to the client.

Functionality FRT-MPC

Figure 1: Functionality FRT-MPC

Remark 5.1 (On the choice of n-out-of-n secret sharing). Observe that the inputs of the servers form an
n-out-of-n secret sharing of the bits x1, . . . , xm. We mention that the choice of n-out-of-n secret sharing is
arbitrary, and is done without loss of generality, since in the protocol we can always translate the n-out-of-n
secret sharing of x1, . . . , xm into another secret sharing in time and communication that depend only on m
and n, and are independent of the number of instructions B.

The communication complexity. In the real-time model, the communication complexity of a
protocol includes all the bits that the servers send throughout the execution of the protocol. We
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emphasize that we do not count the instruction messages from the client to the server in the com-
munication complexity (but we do count the messages from the servers to the client). Indeed, in
many natural examples the instructions can either be deduced by the servers based on some exter-
nal source (like in the example of secure rank computation in Section 1.3.1), or many instructions
can be given in a succinct way. Finally, if the instructions cannot be represented in a succinct way
(say, they are chosen at random), then every protocol has to communicate them to the servers.

5.1 Our Protocol

In this section we realize the functionality FRT-MPC. In Section 5.1.1 we present an efficient algo-
rithm for randomness extraction, and use it in Section 5.1.2 to construct our protocol. Finally, in
Section 5.1.3 we discuss several variants of the basic protocol.

Settings and notations. Let 0 < ϵ < 1/2, and consider n servers P1, . . . , Pn and a single client. A
static, passive adversary can corrupt the client and up to t of the servers, where t = (12 − ϵ)n. We
denote the set of corrupt servers by Corrupt, and the set of honest servers by Honest = {1, . . . , n} \
Corrupt. We assume that the parties have access to secure point-to-point channels, as well as to a
broadcast channel.8

For simplicity we assume that n is of the form n = 2α − 1 for some integer α, and
we later explain how to extend the protocol for every value of n. We let RMStatSS =
(GenRandRM, ShareRM,RecoverRM) be the linear n-party t-static secret sharing scheme over F2 that
is based on Reed-Muller codes (see Theorem 4.5). Since n = 2α − 1 then the share of each
party is a single bit (i.e., none of the shares are empty strings, see Construction 3.5). We let
Sn-n = (Sharen-n,Recovern-n) denote the standard n-out-of-n secret sharing scheme over F2. For
a secret s we denote by [s]RMπ the secret sharing of s using RMStatSS and public permutation π,
where we assume that π is chosen once and for all. We also denote by [s]n-n the secret sharing of s
using Sn-n.

We note that both RMStatSS and Sn-n are linear secret sharing schemes. Therefore, if two secrets
s and s′ are shared among the servers via [s] and [s′], then a secret sharing of s+s′ can be obtained
by locally summing-up the shares of s and s′, which we denote by [s+s′] = [s]+[s′]. This definition
is extended naturally to a general linear function that is defined by a k × n matrix M , where we
denote by ([s′1], . . . , [s

′
k])

T = M · ([s1], . . . , [sn])T the application of the linear function M on the
vector of shares ([s1], . . . , [sn]) that results in a new vector of shares ([s′1], . . . , [s

′
k]).

5.1.1 Efficient Randomness Extraction with Passive Security

In this section we present an efficient protocol that allows the servers to efficiently generate many
random secret-shared values. For this, we let every Pi share a random value si, and our goal is to
combine the shares of [s1], . . . , [sn] into secret sharing of ⌊n/2⌋ random values that are not known
to the adversary. Note that this task is not trivial, because the corrupt servers shared up to t of the
original values.

8For a passive adversary, a broadcast channel can be emulated by simply sending the same message over the private
channels. However, if the parties have access to a broadcast channel, we can further reduce the exact communication
complexity, and therefore we analyse both cases. We emphasize that the computation and communication overhead,
as well as the asymptotic complexity, remain the same with or without a broadcast channel.
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To do so, we first present a simple probabilistic construction of a linear function that extracts
⌊n/2⌋ random bits out of a string of n bits that contains at least n − t random bits in unknown
random coordinates. This can be seen as a variant of the bit-extraction problem of [CGH+85]. Our
main technical tool will be a (2, ⌊n/2⌋ , n)-linear uniform output family (see Definition 3.7).

Randomness extractor. LetM be a (2, ⌊n/2⌋ , n)-linear uniform output family. Let J ⊆ {1, . . . , n}
be a random set of size t, and let I = {1, . . . , n} \ J be its complement of size n − t > ⌊n/2⌋. Let
x ∈ Fn

2 be a random string, and denote the restriction of x to coordinates in J by x|J .
Our goal is to construct an ⌊n/2⌋×n matrix M over F2, such that with high probability over the

choice of J , the random variable (x|J ,M · xT ) is uniformly distributed over Ft+⌊n/2⌋
2 . Indeed, this

would imply that with high probability over the choice of J , and for every fixing of the t entries
x|J , the random variable M · xT , which we think of as the extracted randomness of length ⌊n/2⌋,
is uniformly distributed.

We continue with a probabilistic construction of such a matrix M , using the linear uniform
output family M. We say that a matrix M is “good”, if the probability over the choice of J
and I = {1, . . . , n} \ J that the random variable (x|J ,M · xT ) is uniformly distributed is at least
1 − 2−ϵ·n/2. We prove that picking a matrix according to M results in a good matrix with over-
whelming probability. We begin with the following simple claim, where we denote by M |I the
restriction of M to the columns in I .

Claim 5.2. For every choice of M , J and I = {1, . . . , n} \ J such that the ⌊n/2⌋× (n− t) submatrix M |I
has full rank, it holds that the random variable (x|J ,M · xT ) is uniformly distributed over Ft+⌊n/2⌋

2 .

Proof. By definition the random variable x|J is uniformly distributed over Ft
2. Fix this random

variable. To see that M · xT is uniformly distributed even conditioned on x|J , we observe that
M ·xT = M |J · (x|J)T +M |I · (x|I)T , where M |J · (x|J)T is some fixed vector. By assumption, M |I
has full rank, i.e., rank(M |I) = ⌊n/2⌋. Therefore, the columns of M |I span F⌊n/2⌋2 , and therefore the
random variable M |I · (x|I)T , which is just a random linear combination of the columns of M |I , is
uniformly distributed over F⌊n/2⌋. This concludes the proof of the claim.

The following lemma shows that a random choice of M ← M results in a good matrix with
high probability.

Lemma 5.3. The matrix M is good with probability at least 1− 2−ϵ·n/2 over the choice M ←M.

Proof. By Claim 5.2 we notice that M is good if Pr(J,I=[n]\J)[rank(M |I) = ⌊n/2⌋] ≥ 1 − 2−ϵ·n/2.
From Claim 3.14 we know that for every choice of J and I = {1, . . . , n}\J , the matrix M |I has full
rank with probability at least 1 − 2−ϵ·n, i.e., PrM←M[rank(M |I) = ⌊n/2⌋] ≥ 1 − 2−ϵ·n. Therefore,
by Fact 2.4, the matrix M is good with probability at least 1 − 2−ϵ·n/2, which completes the proof
of the lemma.

Our protocol. We continue with an efficient protocol for generating random secret-shared bits.
Formally, we consider an arbitrary linear secret sharing scheme S over F2, denote the shares of a
secret s by [s], and assume that S provides privacy against the set of corrupt parties.9 Our goal is

9For now, it will be convenient to think of S as either Sn-n or RMStatSS. To simplify the presentation, when S =
RMStatSS, let us assume that the public randomness for RMStatSS was already generated, and condition on the event
that RMStatSS provides correctness and privacy against the set of corrupt parties.

28



to implement the functionality FshareRandomValues that samples random bits s′1, . . . , s
′
⌊n/2⌋ and shares

them among the servers via S.
The protocol has public parameters: a matrix M from a (2, ⌊n/2⌋ , n)-linear uniform output

family M, and a permutation π of {1, . . . , n}. We assume that (M,π) are picked once and for
all, and can be used in many executions of the protocol. The protocol is standard: First, we let
each server Pi share a random bit si to the other servers; then, we simply let the servers locally
compute ⌊n/2⌋ secret-shared random values defined by the linear operation ([s′1], . . . , [s

′
⌊n/2⌋])

T =

M · ([sπ(1)], . . . , [sπ(n)])T . Since the secret sharing scheme is linear, this computation is done locally
by the servers, and requires no communication. Full details of the protocol are given in Figure 2.

Public parameters: A linear secret sharing scheme S over F2. An ⌊n/2⌋ × n matrix M ∈ F⌊n/2⌋×n, and
a permutation π of {1, . . . , n}.

The protocol: The servers do as follows.

1. Each server Pi picks a random bit si and shares it among the servers via [si].

2. The servers locally compute the linear function

([s′1], . . . , [s
′
⌊n/2⌋])

T = M · ([sπ(1)], . . . , [sπ(n)])T .

3. The servers output their shares in [s′1], . . . , [s
′
⌊n/2⌋].

Protocol shareRandomValues

Figure 2: Protocol shareRandomValues

Claim 5.4. Assume that M is good, and that π is chosen at random at the beginning of the execution,
and is independent of the set of corrupt parties. Then Protocol shareRandomValues is a statistically-secure
UC-secure implementation of FshareRandomValues with error 1− 2−ϵ·n/2, against an adversary that passively
corrupts at most t of the parties.

Proof sketch. First, we observe that the protocol merely consists of secure computation of the shares
of (s′1, . . . , s

′
⌊n/2⌋)

T = M · (sπ(1), . . . , sπ(n))T . Therefore, it is enough to prove that s′1, . . . , s
′
⌊n/2⌋

are uniformly distributed with overwhelming probability, even conditioned on the values of
(si)i∈Corrupt that are picked by the corrupt servers.

Assume that the matrix M is good. Observe that π(Corrupt) = {π(i) : i ∈ Corrupt} is a uni-
formly distributed set of size at most t, and therefore with probability at least 1− 2−ϵ·n/2 over the
choice of π, the random variable ((si)i∈Corrupt, s

′
1, . . . , s

′
⌊n/2⌋) is uniformly distributed. In particu-

lar, for every choice of (si)i∈Corrupt, the random variables s′1, . . . , s
′
⌊n/2⌋ are uniformly distributed,

as required. This concludes the proof of the claim.

Remark 5.5 (Generating shares of random bits using two secret sharing schemes.). In our final
protocol, we would like to generate shares of the same random bits s′1, . . . , s

′
⌊n/2⌋ using both Sn-n and

RMStatSS. We capture this task via shareRandomValues by taking the underlying linear secret shar-
ing scheme S := (Sn-n,RMStatSS) to be the scheme that simultaneously shares a secret via both Sn-n

and RMStatSS using independent randomness. Consequently, the ith share under S is a two-bit vector
whose first (resp., second) entry is the ith share under Sn-n (resp., ith share under RMStatSS). The linear
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computation ([s′1], . . . , [s
′
⌊n/2⌋])

T = M · ([sπ(1)], . . . , [sπ(n)])T proceeds in the same way, where we think
of ([sπ(1)], . . . , [sπ(n)])T as an n × 2 matrix. Equivalently, the servers hold both [s1]

n-n, . . . , [sn]
n-n and

[s1]
RM, . . . , [sn]

RM, and locally compute ([s′1]
n-n, . . . , [s′⌊n/2⌋]

n-n)T = M · ([sπ(1)]n-n, . . . , [sπ(n)]
n-n)T and

([s′1]
RM, . . . , [s′⌊n/2⌋]

RM)T = M · ([sπ(1)]RM, . . . , [sπ(n)]
RM)T .

Efficiency. We note that the only communication in the protocol consists of sharing the secrets
s1, . . . , sn via S. As for the computational complexity, each server Pi computes the shares [si],
and also has to locally compute the linear function M on its shares from ([sπ(1)], . . . , [sπ(n)]). We
note that using the construction of [DI14] for a linear uniform output family that has linear-size
circuits for left multiplication (see Theorem 3.10), we can also obtain linear-size circuits for right
multiplication, see [DI14, Lemma 6]. Therefore, right multiplication by M can be executed in linear
time. It is not hard to see that given a preprocessing stage of the permutation π, that generates a
length-n list L with L[i] = π(i), we can multiply M by the permuted values in time O(n) in the
RAM model. This preprocessing stage is executed only once, requires only O(n · log(n)) time in
the RAM model, and can be used later in all the executions of shareRandomValues.10

5.1.2 The Basic Protocol

We continue with a description of our basic protocol, with offline/online phases for the case where
an upper bound B on the number of instructions is known.11 We then explain how this protocol
can be extended for the general cases, where no upper bound on the number of instructions is
known, and discuss some additional variants of the protocol.

Our protocol is parameterized by an ⌊n/2⌋ × n matrix M ∈ F⌊n/2⌋×n2 , that is sampled once
and for all, and is hardwired into the protocol. This matrix will be used for the sub-protocol
shareRandomValues, and as discussed in Section 5.1.1, if we sample it from the (2, ⌊n/2⌋ , n)-linear
uniform output family of [DI14], then M is “good” with probability at least 1− 2−ϵ·n/2. Therefore,
we always assume that M is indeed good. We continue with an overview of our protocol.

Initialization. Already in the offline phase, we let the parties generate a random permutation π
for the Reed-Muller secret sharing scheme and for the sub-protocol shareRandomValues. This step
is executed by letting P1 pick a random permutation π and broadcast it. Since the set of (passively)
corrupt parties Corrupt was chosen by the adversary at the beginning of the execution, it holds that
with probability 1−2−Ω(

√
n) over the choice of π both correctness and privacy for the Reed-Muller

secret sharing scheme RMStatSS hold, and with probability 1−2−ϵ·n/2 over the choice of π the sub-
protocol shareRandomValues with parameters M and π can be used to generate shares of random
values. Let us condition on this event.

The invariant. We denote the values of the registers r1, . . . , rR by v1, . . . , vR, where initially R =
m and v1 = x1, . . . , vm = xm. Throughout, we keep the invariant that vi is shared among the

10In fact, if for every m ≤ n the RAM model allows us to pick a random integer between 1 to m in time O(1), then
using (modern versions of) the Fisher-Yates shuffle [FY38], the preprocessing time can be reduced to O(n). See [Knu14]
for more information.

11Formally, we assume that the ideal functionality FRT-MPC also contains a public parameter B for the upper bound
on the number of instructions. The functionality counts the instructions it receives from the client and aborts after B
instructions.
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servers using [vi]
RM
π .

To make sure that the invariant holds at the beginning of the online phase, we let the
servers execute an off-the-shelf MPC protocol to securely translate the n-out-of-n secret sharing
[x1]

n-n, . . . , [xm]n-n that they get as an input, into shares [x1]
RM
π , . . . , [xm]RMπ of the Reed-Muller se-

cret sharing. This step requires communication and computation of poly(n,m) which is indepen-
dent of the number of instructions B, which we take to be much larger than m.12

As in most MPC protocols, performing linear operations over the registers is simple, and re-
quires no communication, since the underlying secret sharing scheme is linear. Therefore, we
continue by discussing the multiplication of two registers.

Multiplying two registers. Assume that the servers are instructed to multiply vi and vj and store
the result in rk. The invariant guarantees that the servers hold [vi]

RM
π and [vj ]

RM
π and our goal is to

compute a fresh sharing of [vi · vj ]RMπ . We denote the ℓth share of vi (resp., vj) by vi,ℓ (resp., vj,ℓ).
To compute the multiplication, we follow (a variant of) the technique of [BH08].

Let us first assume that a random bit s is distributed among the servers both using the Reed-
Muller secret sharing scheme [s]RMπ , and using the n-out-of-n secret sharing scheme [s]n-n. We
denote the shares by (sRM1 , . . . , sRMn ) and (sn-n

1 , . . . , sn-n
n ), respectively. Later, we will explain how

the servers can generate the shares efficiently in the offline phase.
To compute the multiplication, we recall that if we multiply the shares of vi and vj , then the

vector (vi,1 ·vj,1, . . . , vi,n ·vj,n) correspond to a (non-randomized) n-out-of-n secret sharing of vi ·vj .
(See the discussion about the multiplication properties of the scheme in Section 3.2.) We therefore
let every Pℓ send vi,ℓ ·vj,ℓ+sn-n

ℓ to P1. We observe that the vector (vi,1 ·vj,1+sn-n
1 , . . . , vi,n ·vj,n+sn-n

n )
is a randomized n-out-of-n secret sharing of vi · vj + s, so it reveals no information other than
vi · vj + s, which is just a random bit, since s is uniformly distributed. We then simply let P1

recover the bit b := vi · vj + s and broadcast b. Given this bit, the servers locally compute [vi ·
vj ]

RM
π := [s]RMπ + [b]RMπ , where [b]RMπ corresponds to some canonical sharing of bi,j under RMStatSS

with public randomness π. (E.g., the all bi,j vector that corresponds to the constant multivariate
polynomial bi,j).

We observe that this step requires each server to communicate exactly 1 bit!13 In addition, the
total computation time of this step is O(n) in the RAM model.

Generating shares of random variables. We continue by explaining how to generate shares of
random bits already in the offline phase. Since we have an upper bound B on the number of
multiplication gates, our goal is to share B random bits s′1, . . . , s

′
B using both the Reed-Muller

secret sharing and the n-out-of-n secret sharing. It is enough to explain how to share ⌊n/2⌋ random
values among the servers, since sharing B values can be done by repeating this process (in parallel)
for B/ ⌊n/2⌋ times. To share ⌊n/2⌋ random bits, we simply execute shareRandomValues with the
secret sharing scheme S = (Sn-n,RMStatSS), see Remark 5.5 for more details.

Observe that sharing B random values among the servers requires communication complexity
of at most 4(1 + 2

n)Bn + 2n2 bits. One can also verify that the total computational complexity of

12We mention that this procedure can be executed efficiently using the techniques developed in this work. See
Remark 5.7 for more details.

13 If a broadcast channel is not available, then every server communicates 1 bit, except for P1 that communicates
n − 1 bits. We can balance this cost across many multiplications by letting each party take the role of P1 once in every
n multiplications. The amortized communication cost of each party per multiplication gate become 1 + 1/n.
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the servers is O(B ·n · log(n)) in the RAM model, due to the cost of generating Reed-Muller shares.

Randomizing outputs. To simplify the simulator, when the jth operation of the client is to reveal
the value of ri, we let the servers send the shares of [vi]RMπ +[s′j ]

RM
π +[s′j ]

n-n, that form a randomized
n-out-of-n secret sharing of vi.

The protocol. The protocol appears in Figure 3.

Public parameters: Positive integer m denoting the number of inputs. An ⌊n/2⌋ × n matrix M ∈
F⌊n/2⌋×n. A positive integer B, denoting an upper bounds on the number of instructions.

Offline phase:

1. (Generate public randomness) The first server P1 broadcasts a random permutation π of {1, . . . , n}.
The permutation is used both as a public randomness for the Reed-Muller secret sharing RMStatSS,
as well as a public parameter in the execution of the sub-protocol shareRandomValues .

2. (Generate shared randomness) Let L = ⌈B/ ⌊n/2⌋⌉. For every j = 1, . . . , L, the servers execute
shareRandomValues with the secret sharing scheme S = (Sn-n,RMStatSS) (see Remark 5.5) to gener-
ate shares [s′1,j ]

RM
π , . . . , [s′⌊n/2⌋,j ]

RM
π , and [s′1,j ]

n-n, . . . , [s′⌊n/2⌋,j ]
n-n. We emphasize that in all execution

we use the matrix M and permutation π as the public parameters of shareRandomValues.
Observe that this step generates L · ⌊n/2⌋ ≥ B shares of random values. To simplify notation, we
denote by [s′1]

RM
π , . . . , [s′B ]

RM
π , and [s′1]

n-n, . . . , [s′B ]
n-n the first B shared values that are generated in

this step.

Online phase:

1. (Inputs) The ith server holds inputs x1,i, . . . , xm,i ∈ F2, that correspond to the ith shares of
[x1]

n-n, . . . , [xm]n-n. The servers execute an MPC protocol Π (say, that of [BGW88]) to translate the
shares [x1]

n-n, . . . , [xm]n-n into fresh shares of [x1]
RM
π , . . . , [xm]RMπ .

2. (Computing instructions) Consider R = m virtual registers, denoted r1, . . . , rR, where at first xi is
stored at ri. Throughout we keep the invariant that the value of ri, denoted vi is shared among
the servers using [vi]

RM
π . This is true at the beginning, since for every i = 1, . . . ,m the servers hold

[x1]
RM
π , . . . , [xm]RMπ .

The servers locally initialize a counter for number of the current instruction number, which is up-
dated after the execution of every instruction. The servers also locally initialize a counter for the
number of registers R.
Upon receiving an instruction inst from the client, the servers do as follows.

(a) If inst = (add, i, j, k) for i, j, k ∈ {1, . . . , R}, then the servers locally compute [vk]
RM
π := [vi]

RM
π +

[vj ]
RM
π .

(b) If inst = (add1, k) for k ∈ {1, . . . , R}, then servers locally compute [vk]
RM
π := [vk]

RM
π +[1]RMπ , where

[1]RMπ corresponds to the shares defined by the constant polynomial 1.
(c) If inst = (multiply, i, j, k) for i, j, k ∈ {1, . . . , R}, then every Pℓ does as follows.

i. Let c be the current instruction number (as per the instruction counter).
ii. Let vi,ℓ and vj,ℓ be the shares of Pℓ in [vi]

RM
π and [vj ]

RM
π , respectively. Let s′c,ℓ be the share of Pℓ

in [s′c]
n-n.

Protocol RT-MPC
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iii. Pℓ sends bℓ := vi,ℓ · vj,ℓ + s′c,ℓ to P1.
Upon receiving b1, . . . , bn from the servers, P1 computes b := b1 + . . .+ bn and broadcasts b. The
servers then set [vk]RMπ := [s′c]

RM
π + [b]RMπ , where [b]RMπ corresponds to the shares defined by the

constant polynomial b.
(d) If inst = increase then the servers increase the counter of R by 1, and add an additional virtual

server. The value of the new register is 0, and the servers hold a default sharing of [0]RMπ defined
by the constant polynomial 0.

(e) If inst = (output, i) for i ∈ {1, . . . , R}, and c is the current instruction number, then the servers
send [vi]

RM
π + [s′c]

RM
π + [s′c]

n-n to the client. The client uses Recovern-n to recover the value vi from
the shares, and outputs vi.

Figure 3: Protocol RT-MPC

Extension to any number of parties. The construction can be extended to any number of parties
2α ≤ n ≤ 2α+1 − 2 by picking a random committee of size 2α − 1 to execute the protocol, since the
random committee contains at least (12 +

ϵ
2)-fraction of honest servers with probability 1−2−Ωϵ(n).

See further discussion in Section 5.1.3. We therefore obtain the following theorem.

Theorem 5.6. Let ϵ > 0, let n be the number of servers and let t = (12 − ϵ)n. Then protocol RT-MPC is a
UC-secure realization of FRT-MPC with a bound B on the number of instructions, with statistical security
and error 2−Ωϵ(

√
n) against a static, passive adversary that can corrupt the client and up to t servers.

The total communication complexity in the offline phase is O(Bn + mn + n2) bits, and in the online
phase is Bn+mn bits. The total computational complexity in the offline phase is O(Bn log(n)+mn log(n))
and in the online phase is O(Bn+mn).

By “total communication complexity” (resp., “total computational complexity”) we mean the
total number of bits sent in the protocol (resp., the total number of RAM-operations performed in
the protocol), taken over all the parties.

Proof sketch. We continue with a proof of security for our protocol (the efficiency of the protocol is
analysed below). Since our protocol follows the approach of [BGW88], with multiplication com-
puted using the technique of [BH08], it provides perfect security conditioned on the events that (1)
the secret sharing scheme RMStatSS with permutation π has perfect correctness and privacy, and
(2) the sub-protocol shareRandomValues with public parameters (M,π) securely generates shares
of random values. To bound the error probability, we note that the matrix M is good (event E0)
with probability 1 − 2−ϵ·n/2. Conditioned on this event, we notice that for every choice of the set
Corrupt of corrupt parties it holds that (1) the secret sharing scheme RMStatSS provides perfect
security (event E1) with probability 1 − 2−Ω(

√
n) over the choice of π, and (2) the sub-protocol

shareRandomValues with public parameters (M,π) (event E2) securely generates shares of random
bits with probability 1 − 2−ϵ·n/2 over the choice of π. Therefore, the total error of our protocol is
2−Ω(

√
n).

For completeness, we describe a simulator that achieves perfect security conditioned on the
event E0 ∧ E1 ∧ E2. For simplicity, we focus on the case where n = 2α − 1. (The generalization to
any number of parties n is straightforward.)
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Offline phase. In the offline phase, the simulator picks a random permutation π of {1, . . . , n},
and sets π to be the broadcast message of P1. For j = 1, . . . , L, to simulate the jthe execution of
shareRandomValues we simply let the simulator execute the protocol honestly. That is, for every
i ∈ Honest the simulator picks a random bit si,j , computes a fresh secret sharing [si,j ]

RM
π and

[si,j ]
n-n, and gives the corrupt servers their corresponding shares. The simulator executes the

corrupt servers honestly to obtain the shares that they generate in the jth execution, as well as
their shares of the extracted randomness s′1,j , . . . , s

′
⌊n/2⌋,j . Following the notation of the protocol,

let us denote by s′1, . . . , s
′
B the first B random bits that are generated in this process.

Online phase. At the beginning of the online phase, the environment picks the inputs of the
parties. The simulator receives the inputs of the corrupt servers (xi,j)i∈{1,...,m},j∈Corrupt. The
initialization process, in which the servers execute an MPC protocol Π to translate the shares
[x1]

n-n, . . . , [xm]n-n into fresh shares [x1]RMπ , . . . , [xm]RMπ is simulated as follows. First, we set x′i = 0
for all i = 1, . . . ,m, and sample fresh sharing [x′i]

RM
π . Then we execute the simulator of Π on the

inputs of the corrupt servers (xi,j)i∈{1,...,m},j∈Corrupt, and the outputs of the corrupt servers in Π,
that we set to be their shares in [x′1]

RM
π , . . . , [x′m]RMπ .

At this point the simulator holds the Reed-Muller shares of the corrupt servers for the values
v1, . . . , vR of the registers, that we denote by (vi,j)i∈R,j∈Corrupt. The simulator also holds the shares
of the corrupt servers for the values s′1, . . . , s

′
B . We denote the shares of [s′i]

n-n that the corrupt
servers hold by (σn-n

i,j )j∈Corrupt, and the shares of [s′i]
RM
π by (σRM

i,j )j∈Corrupt. We continue by explain-
ing how to simulate the instructions of the client (that are chosen by the environment). After
each step, the simulator holds the shares of the corrupt servers for the updated values v1, . . . , vR.
Throughout, we let the simulator hold a counter for the current number of instruction and the
current number of registers.

For the instruction (add, i, j, k) we simply set vk,ℓ = vi,ℓ + vj,ℓ for every ℓ ∈ Corrupt. Similarly,
for the instruction (add1, k) we simply update vk,ℓ to be vk,ℓ + 1 for every ℓ ∈ Corrupt. To simulate
the instruction increase, we simply let the simulator update the counter for the number of registers
R← R+1, and also set all the shares of the new register to be 0, i.e., vR,ℓ = 0 for every ℓ ∈ Corrupt.

Assume that the cth instruction is (multiply, i, j, k). The simulator computes the messages that
the corrupt servers send to P1 (i.e., the value vi,ℓ · vj,ℓ + σn-n

c,ℓ for every ℓ ∈ Corrupt) and send them
on behalf of the corrupt servers. To simulate the broadcast of P1, we split into cases.

• If P1 is honest, then the simulator simulates its broadcast by picking a random bit b and
setting b to be the broadcast. Then the simulator sets vk,ℓ = b+ σRM

c,ℓ .

• If P1 is corrupted, then the message from an honest Pℓ to P1 is simulated by a random bit.
Given all the messages to P1, the simulator computes the bit b and broadcasts it on behalf of
P1. The simulator sets vk,ℓ = b+ σRM

c,ℓ for every corrupt Pℓ.

Finally, if the instruction is (output, i) and the client is corrupted, the simulator first receives the
output y ∈ {0, 1}. The simulator samples an n-out-of-n secret sharing of y, denoted (y1, . . . , yn)
conditioned on yℓ = vi,ℓ + σn-n

i,ℓ + σRM
i,ℓ for every ℓ ∈ Corrupt. The simulator sends yi to the client on

behalf of Pi. This completes the description of the simulator.

Remark 5.7 (Efficient initialization). At the beginning of the online phase, the servers translate the shares
[x1]

n-n, . . . , [xm]n-n to shares [x1]
RM
π , . . . , [xm]RMπ using an arbitrary protocol Π. We note that using the

techniques developed in this work, this task can be executed efficiently in the following way. Already in the
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offline phase, we let the servers generate m shares of random bits ρ1, . . . , ρm both via Sn-n and RMStatSS,
by executing shareRandomValues with S = (Sn-n,RMStatSS) for ⌈m/ ⌊n/2⌋⌉ times (this is the same
technique used to generate the shares of s′1, . . . , s

′
B). In the online phase, for each xi the servers send their

shares of [xi]n-n+[ρi]
n-n to P1, and P1 recovers bi = xi+ρi and broadcasts bi.14 Finally, the servers locally

compute [xi]
RM
π := [ρi]

RM
π + [bi]

RM
π , where [bi]

RM
π is some canonical sharing of bi under RMStatSS with

public randomness π. (E.g., the all bi vector that corresponds to the constant multivariate polynomial bi).
This procedure requires communicating a total of 4(1 + 2

n)mn+ 2n2 bits in the offline phase, and mn
bits in the online phase. The total computational complexity in the offline phase is O(m · n · log(n)), due to
the generation of the Reed-Muller shares, and in the online phase is O(mn).

Efficiency. We continue with an analysis of the efficiency of our protocol, assuming that we
follow the initialization procedure of Remark 5.7. In the offline phase, the total communication
is at most 4(1 + 2

n)Bn + 4(1 + 2
n)mn + 4n2 + O(n · log(n)) bits, where B is the upper bound on

the number of instructions. As we usually think of B ≫ n,m, this means that the total offline
communication overhead per instruction is 4(1 + 2

n)n + o(1) = 4n + 8 + o(1). In the online
phase, the initialization step requires communication of mn bits. In addition, the instructions
add, add1 and increase require no communication. To execute the instruction multiply and output,
every server communicates exactly 1 bit. Therefore the total online communication overhead per
instruction is at most n+ o(1).

As for the computational complexity, in the offline phase each party performs O(B · log(n)+m ·
log(n)) operations in the RAM model, so the total computational complexity in the offline phase
is O(B · n · log(n) +mn · log(n)). In the online phase, each party performs a constant number of
operations per input in the initialization, except for P1 which performs O(n) operations per input
(summing up the bits and recovering the secret). Therefore, the initialization can be executed in
total computational complexity of O(mn). Similarly, every instruction in the online model can
be executed in total computational complexity of O(n), so the total computational complexity of
the online phase is O(Bn + mn). We conclude that the total offline computational overhead per
instruction is O(n · log(n)) and the total online computation overhead per instruction is O(n).

5.1.3 Variants of the Basic Protocol

Protocol with unbounded number of instructions. So far we assumed that there is an upper
bound B on the number of instructions. We observe that the only place where we use the upper
bound B is the generation of the shared random bits [s′1]

RM
π , . . . , [s′B]

RM
π and [s′1]

n-n, . . . , [s′B]
n-n.

When there is no upper bound on the number of instructions, we simply generate these shares
in the online phase, on-the-fly. That is, we let the servers generate ⌊n/2⌋ shares of random bits,
by letting each of them share a single random bit, and then execute shareRandomValues. Those
random bits will be used for the computation of ⌊n/2⌋ multiplication instructions, after which
we repeat the process. We note that the total communication and computation complexity of the
protocol remains the same. However, since some of the work is postponed to the online phase, the
exact communication and computation complexity of the online phase grow. Indeed, the online
total communication overhead per instruction is 5n + 8 + o(1) bits, and the total computational
overhead per instruction is O(n · log(n)).

14Like in Footnote 13, this task can be balanced across all the parties.
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Improving efficiency by picking a committee. Following the technique of Bracha [Bra87], we
observe that we can improve the efficiency of the protocol picking a random committee A of n′

servers, and let only the servers inside the committee to execute the protocol. With probability at
least 1−2−ϵ2·n′/2, the committee A contains at least (12+

ϵ
2)-fraction of honest servers, and therefore

security holds.
More formally, at the beginning of the execution we let P1 broadcast a random committee A of

n′ servers. We identify the servers in the committee as n′ servers (P ′1, . . . , P
′
n′) and execute the n′-

party protocol with (P ′1, . . . , P
′
n′). This approach is applicable for all parts of the protocol, except

the initialization step, in which the servers translate the shares [x1]
n-n, . . . , [xn]

n-n to Reed-Muller
shares. Indeed, in this step the shares of all the servers are required in order to recover x1, . . . , xn
and re-share them using the Reed-Muller scheme. Therefore, this is the only phase where all
servers participate in the execution, but the new Reed-Muller shares that are generated in this
step are n′-party Reed-Muller secret sharing that are given only to the parties in the committee A.
We emphasize that this step is independent of the number of instructions B, and therefore does
not affect the overhead of the protocol.

The error probability of the n′-party protocol is 2−Ω(
√
n′) and therefore we can take n′ =

log2+δ(n) for any δ > 0 and still maintain negligible error. We note that the total communica-
tion overhead per instruction in the offline phase is reduced to (4 log2+δ(n) + 8) + o(1) bits, and
the total communication overhead per instruction in the online phase is log2+δ(n) + o(1) bits.
As for the computational complexity, the total overhead per instruction in the offline phase is
O(log2+δ(n) · log log(n)) and in the online phase it is O(log2+δ(n)).
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A Appendix: Comparison with Ramp Secret Sharing

In this section we compare our scheme to concrete constructions of ramp secret sharing from AG
codes and random linear codes.

Comparison with AG codes. A (t, t + ϵn)-ramp linear secret sharing scheme with constant size
alphabet O(1/ϵ2) can be constructed from AG codes (see [CC06]). For every t < (12−ϵ)n the scheme
is multiplicative, and for t < (13−

2ϵ
3 )n the scheme is even strongly multiplicative15. Compared to AG

codes, our constructions achieve a share size of 1 bit by using only simple algebraic techniques.
This simplicity allows us to have efficient sharing procedure with linear or quasi-linear time. To
the best of our knowledge, sharing a secret in an AG-codes scheme requires O(n2) operations.

Comparison with random linear codes. Using the fact that random linear codes achieve the
Gilbert-Varshamov bound, it is possible to construct a (t, t + ϵn)-ramp linear secret sharing from
linear codes over some constant-size alphabet that depends on t, ϵ, with probability 1− 2−Ω(n). In
fact, the work of Druk and Ishai [DI14] constructs such schemes with a sharing function that has
a linear-size circuit. Insisting on binary shares, and, say, 0.49n-privacy, this method can only obtain
a (0.49n, 0.999n)-ramp secret.

Unfortunately, these schemes are not multiplicative. Multiplicative schemes can be achieved
using the techniques of [CDM00, CCG+07], by combining shares from a linear code and its dual.
In particular, [CCG+07] prove that for every ϵ > 0, and every integer m, there exists a finite field
Fq for q = Oϵ,m(1), such that a random linear code over Fq is ((12 − ϵ)n, 12n)-ramp linear secret
sharing with probability 1 − 2−m. However, using this technique they cannot achieve linear-size
circuits for the sharing function. In addition, if we insist on binary shares, this method can only
achieve a (0.1n, 0.9n)-ramp secret sharing.

Summary. The results are summarized in the following table. The first row corresponds to our
first construction, that is based on Reed-Muller codes, and the second row correspond to the con-
struction based on random linear codes and the technique of [DI14]. For simplicity, in the error
probability we count both the initialization error of randomized constructions, as well as the error
parameter of our t-static secret sharing.

15A (t, t+ ϵn)-ramp linear secret sharing scheme is strongly multiplicative if for any set I of size n− t, and any two
secret s and s′ that are shared via the sharing vectors (s1, . . . , sn) and (s′1, . . . , s

′
n), respectively, the multiplication s · s′

can be computed as a linear combination of the values (si · s′i)i∈I .
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Scheme Type Parameters Share Size Sharing Time Error Multiplicative? Strongly
(Bits) Probability Multiplicative?

Construction 1 t-static t = pn 1 O(n · log(n)) 2−Ωp(
√
n) Yes No

0 < p < 1/2

Construction 2⋆ t-static t = pn 1 O(n)§ 2−Ωp(n) No No
0 < p < 1/2

Shamir [Sha79] Threshold t = tp = tc − 1 O(log(n)) O(n · log(n)) - for t < n/2 for t < n/3

AG Codes [CC06] ramp tp = t O(log(1/ϵ)) O(n2) - for t < (12 − ϵ)n for t < (13 −
2ϵ
3 )n

tc = t+ ϵn

Random Linear ramp tp = t O t
n
,ϵ(1) O(n) 2−Ω(n) No No

Codes [DI14]⋆ tc = t+ ϵn

Random Linear ramp tp = (12 − ϵ)n Oϵ,m(1) O(n2) 2−m Yes No
Codes [CCG+07]⋆ tc =

1
2n

⋆ Randomized construction.
§ Requires preprocessing time of O(n · log(n)).

Table 1: Comparison of secret sharing schemes

42

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


