Electronic Colloquium on Computational Complexity, Report No. 109 (2024)

On the Cook-Mertz Tree Evaluation procedure

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science, Rehovot, ISRAEL.

June 29, 2024

Abstract

The input to the Tree Evaluation problem is a binary tree of height h in which each internal
vertex is associated with a function mapping pairs of /-bit strings to ¢-bit strings, and each leaf
is assigned an £-bit string. The desired output is the value of the root, where the value of each
internal node is defined by applying the corresponding function to the value of its children.

We provide an exposition and a digest of the recent result of Cook and Mertz (ECCC,
TR23-174), which asserts that Tree Evaluation problem can be solved in space O((h+¢) -log).
In particular, we point out that the algebraic manipulation (using roots of unity) performed
in the original work is merely a special case of univariate polynomial interpolation. Using
this observation we provide a more transparent exposition of the result as well as a low order
quantitative improvement (i.e., we improve the space complexity from O((¢ + h) - log¥) to
Ol + h-log¥)).

Our exposition refers to the “global storage” model rather than to the “catalytic storage”
model used by Cook and Mertz, which can be viewed as a special case. We believe that the
global storage model is more flexible and intuitive, but our exposition can be easily adapted to
the catalytic storage model.

Contents

1 Main text: An alternative exposition of [1] 1
2 Digest and beyond 4
3 The global storage model (mainly reproduced from [2, Sec. 5.2.4.2]) 5
4 Tedious details 6

ISSN 1433-8092

1 Main text: An alternative exposition of [1]

In this section we provide an alternative exposition of Cook and Mertz theorem [1] that asserts
that the Tree Evaluation problem can be solved in space O(logn - loglogn), where n denotes
the length of the input. In particular, we point out that the algebraic manipulation (relying on
roots of unity) performed in [1] is merely a special case of univariate polynomial interpolation.
This observation allows for a more transparent presentation as well as a (low order) quantitative
improvement (presented in Section 2).!

The Tree Evaluation problem (TrEv,). The input to this computational problem is a rooted
binary tree of height h in which internal nodes represent arbitrary gates mapping pairs of /-bit
strings to £-bit strings, and each leaf carries an ¢-bit string. Specifically, nodes in the tree are

associated with strings of length at most h such that the nodes u0 and ul are the children of

the node u € U & U?:_OI{O, 1}!. For every u € U, the internal node u is associated with a gate

fu : {0, 1} — {0, 1}, and the leaf u € {0, 1}" is assigned the value v, € {0, 1}*. Hence, the input
is the description of all |U| = 2" — 1 gates (i.e., all f,’s) and the values assigned to the 2" leaves;
that is, the length of the input is (2" — 1) - (2% - ¢) + 2" . £ = exp(6O(h + £)). The desired output is
vy such that for every u € U it holds that

Uy = fu(Uuoavul)- (1)

(For the history and significance of the Tree Evaluation problem, see [1].)

The straightforward recursive algorithm. Observing that the value at node u is determined
by the values at its two children, we compute v, by first making a recursive call for the value
of vyg and then making a recursive call for the value of v,;. Hence, before making the second
recursive call, we maintain the value v, in the local memory of the current execution (which refers
to node u). Once we obtain v,;, we compute v,, and output it. The crucial point is that each level
of recursion uses a local memory that is different from the memory that is used by other levels.
Hence, the space complexity of the algorithm that unravells the recursion is O(h - £).

Towards the improved (recursive) algorithm. The first step is conceptual: It consists of
abandoning the paradigm of “good programming” under which a recursive call uses a different
work space than the execution that calls it. Instead, we shall use the same global space for both
executions, whereas only a much smaller work space will be allocated to each recursive level as
its local space. (Such a model, spelled-out in Section 3, was used by us in [2, Sec. 5.2.4.2]; the
“catalytic space model” used by [1] is a special case.)

The key question is how to implement the foregoing recursion in this (global storage) model.
For starters, suppose that the global memory holds three ¢-bit strings, denoted z, y and z. Further
suppose that we have a procedure that, for any u € U and o € {0, 1}, when invoked with (uo, x,y, 2)
on the global space, returns (uo, x,y, z @ vy,) on the global space, where vy, is recursively defined
as in Eq. (1). Then, when invoked with (u, x,y, z) on the global space, we can return (u, z,y, zHvy,)
(such that v, = fi(vy0,vu1)) by proceeding as follows:

'Referring to the parameters h and £ as defined below, we improve the space complexity from O((£+ h) -log¥) to
O+ h-logt).

1. Making a recursive call on (u0,y,z,z), we update the global space to (u0,y,z,z"), where
T Vuo-

(Note that we re-arranged the parts of the global space so that the variable holding z is
updated (to a value denoted z’) and the other variables are left intact.)

2. Making a recursive call on (ul, ', z,y), we update the global space to (ul,2’,z,v'), where

def
Y YDy

3. Miraculously compute 2’ e Ju(vuo, vy1) based on ' = x B vy and ¥ = y D vy, while
preserving the values of ’ and /.

4. Making a recursive call on (u0,%', 2/, 2’), we update the global space to (u0,y’, 2/, x).

(Note that 2’ @ vy equals the original value of x.)
5. Making a recursive call on (ul,z,2’,y"), we update the global space to (ul,z,2’,y).
6. Return (u,z,y, 2').

Indeed, the problem is with the miraculous step (i.e., Step 3): We wish to compute z® fi,(vuo, Vu1),
but we don’t have v,g and wv,;, but rather versions of these values that are masked by the original
values of x and y, respectively. There is hope for such a miracle only if we have a few versions of
this masking. Suppose, for example, that f,, were a linear (over GF(2)) function and that we have
the values of f,(2/,y") and f,(z,y); then, using f,(2',y) @ fu(z,y) = fu(@’ @z, ®y), we can
obtain f,(z' ® z,y ®y) = fu(vuo,vy1). This ignores the problem of having to store both f, (2, /)
and fy(x,y). The last problem can be overcomed if we deal with the bits of these ¢-bit values one
at a time; that is, for each i € [¢], we first compute the i*" of f,(2,7') and of f,(x,y), and then
obtain the corresponding bit of fy,(vy0, Vu1)-

Multi-linear extensions and interpolation Needless to say, we do not want to assume that
the f,’s are linear. The alternative of using multi-linear extensions (of functions describing the
output bits) arises naturally. Indeed, we considering multi-linear extensions of the corresponding
functions, where these extensions are in a (prime) field K that contains at least 2¢ 4 2 elements.
Specifically, for every u € U and i € [{], let f,i(z,y) equal the i*! bit of f,(z,y). Next, we define
J?u,i : K x K — K to be the multi-linear extension of f,; : {0,1}¢ x {0,1}* — {0,1}. Now,
suppose that we are given the values of f;,(ﬂc\ + vg, jy + v1) for every j € {1,...,2¢0 + 1} C K,
where j - (z1,...,2¢) = (j21,...,j2¢). Using polynomial interpolation (on the degree 2¢ univariate
polynomial (in j) obtained by fixing u,4,Z,y, vy and v1), we obtain J/“;Z(OEE + vo, 0y + v1). Note,
however, that a naive implementation of this interpolation involves operating on these 2¢+ 1 values
(after storing them in memory). Fortunately, the interpolation formula is a linear combination of
these 20+ 1 values, and so we need not store these values but can rather operate on them on-the-fly
(while only storing the partial linear combination computed so far).

Actually, as observed in [1], using specific interpolation points allows for a more explicit inter-
polation that merely sums-up the values (rather than using a more general linear combination).

Specifically, these interpolation points are powers of an m!" root of unity (in K), where m > ¢/ def oy

and m < || = O(¢). Denoting such a root by w, we observe that for any multi-linear polynomial
p: KY = K it holds that

Z p(wiz) + w1, ey zp +wp) = m - plwy, ..., we). (2)
Jjeml

(Eq. (2) can be proved by considering each monomial separately.)?

The improved (recursive) algorithm. For sake of simplicity, we first assume that we have
oracle access to F : U x [(] x K** — K defined by

F(u,i,7,5) % fui(@9). (3)
The global memory that we use will hold three (-long sequences over K, denoted Z, y and Z,
as well as a string of length at most ¢, denoted u. Now, suppose that we have a procedure
that, for any v € U and o,7 € {0,1}, when invoked with (uc,7,%,y,z) on the global space,
returns (uo,2,7,% + (—1)7 - vy,) on the global space, where v,, € {0,1}¢ C K’ is recursively
defined as in Eq. (1).3 Then, when invoked with (u,7,Z,7, %) on the global space, we can return
(u, 2,7, %2 + (—1)Twvy,) such that v, = fu(vu0,vu1), by proceeding in m iterations.*

In iteration j € [m], for each i € [¢], we increment the current value of the ith element
of Z by (—=1)7 - fui(WT + vy, w’y + vy1)/m, while maintaining (u, z,y) intact.
Recall that, by Eq. (2), Zje[m] fu’i(wj:f + vyo, WY + vy1)/m equals fy i (vyo, Vu1)-

The ;" iteration proceeds as follows.

1. Making a recursive call on (u0, 0,7, 2, w/Z), we update the global space to (u0,7, 2, 2'),

where 7/ % Wiz + Vy0-

2. Making a recursive call on (ul,0,7’, 2, w/%), we update the global space to (ul,7’,2,7),
where 7’ def WY+ vy

3. For each i € [/], letting 2; denote the i*" element of Z € K¢, compute z; + (—1)7 -
F(u,4,7’',9')/m by making an oracle call to F, and update the value of z; ac-
cordingly. Note that in the i*® sub-step only the i*" element of the sequence Z is
updated (and that division by m compensates for the factor of m in Eq. (2)).

*For any I C [¢], it holds that

Sl = ¥ 3 ([w) (I1)

jelm] iel jelm] SCI \ies i€I\S

5o (1) (1)

SCI je[m] = ieI\S
= m- H ws,

where the last equality uses } ., w* =0 for s € [¢'] C [m — 1] and 2iciml W’ =m.

3The variable/parameter 7 allows us to either add or subtract the value vy,. In our recursive calls, we shall need
both options.

4The following description is for the case of v € U. In case u € {0, 1}2, we may just obtain v, from the input
oracle (e.g., augment F such that F'(u) = vy).

4. Making a recursive call on (u0, 1,7, 2, 2'), we update the global space to (u0, 7', 2, w/T).
(Note that 7’ — v,o = W/T.)

5. Making a recursive call on (ul, 1,w’Z, Z, %), we update the global space to (ul,w’/T, Z, w’7).

6. Re-arrange the global space to contain (u,7,¥, %), while noting that each z; got
incremented by (—1)7 - fuy i(WZ + vyo, W Y + vy1)/m.

Using Eq. (2), we note that (after the m iterations) the value of each Z; equals the initial
value plus (—1)7 - fui(vuo, vu1) = (—=1)7 - vy

The foregoing recursive procedure uses a global space of length £ + O(1) + (3 4 o(1)) - log, |K|¢ =
O(¢log|K|) and a local space of length logym = O(logf). (The o(1) - log, |K| term accounts for
the space complexity of various manipulations (including maintaining the counter i € [¢]), whereas
the local space is used only for recording j € [m].)

Using a composition lemma akin [2, Lem. 5.10] (reproduced as Lemma 4), it follows that the Tree
Evaluation problem (with parameters h and ¢) can be solved in space O((h+ ¢) -log ¢), when using
oracle access to F', which in turn can be evaluated in linear space (i.e., space linear in O(¢log |K|)).?
Using a naive composition (see Section 4 for details), it follows that

Theorem 1 (Cook and Mertz [1]): The space complexity of TrEvy, 4 is O((h +£) - log {).

Recalling that the length of the input to TrEvy, ¢ is exponential in h + ¢, it follows that TrEvy, ¢ is
solved in space O(logn - loglogn), where n = exp(©(h + ¢)).

2 Digest and beyond

As hinted above, we believe that the model of global storage (as outlined in [2, Def. 5.8] and
reproduced in Section 3) is more flexible and intuitive than the model of catalytic storage used
in [1], which may be viewed as a special case. Hence, we used the global storage model rather
than the catalytic storage model in our exposition.

As hinted above, the interpolation formula given in Eq. (2), which relies on an m'™ root of unity,
is inessential for the proof of Theorem 1. More generally, recalling that the ﬁu-’s are polynomials of
total degree 2/, we can use univariate polynomial interpolation based on any 2¢'+1 points (on a line
that passes through the desired point), while noting that such interpolation can be represented by
a linear combination of the polynomial’s values (with coefficients that depend on the interpolation
points and the desired point). The only advantage of using Eq. (2) is that the interpolation formula
is a simple sum (i.e., all coefficients are 1).

Capitalizing on the last paragraph, we can reduce the length of global storage used by the
recursive procedure from O(¢log¢) to O(¢). This can be done by viewing the f,’s as functions from
[k]F x [k]* to [k]*, where k¥ = 2¢ (ie., K = ©({/log¥)), and using low degree extensions of the

th

®Recall that computing F calls for computing the corresponding f;,i, which is a multi-linear extension of f, ;. As
for computing fu,i, it requires obtaining all values of f.; (cf. Footnote 8).

5To see that the catalytic is a special case of the global model, we note a correspondence between the catalytic
(resp., ordinary) storage of the catalytic model and the global (resp., local) memory of the model defined in Section 3.
A “clean computation” (in the catalytic model) that results in adding a desired value to one set of registers while
keeping another set of registers intact can be emulated by a corresponding transformation of the global storage.

corresponding f,;’s (i.e., fui(z,y) € [k] is the i*® symbol in f,(z,y) € [k]*).” Specifically, these
extensions are 2k-variate polynomials of individual degree k — 1 over I, where K is a finite field
of size poly(k) that is greater than m = 2k? (and [k] C K).® Thus, fu, : Kk x K¥ — K has total
degree 2k - (k — 1) < m, whereas its input length (i.e., log, |K2*|) equals log,(poly(k)?*) = O(¥).
Consequently, we can obtain the value of]/C;’i(vo, v1) by univariate polynomial interpolation from
the values of]?m(jf + vg, jy + v1) for all j € [m]. Hence, the revised recursive procedure uses a
global space of length O(¢) and local space of length logy m = O(log ¢). Again, using a composition
lemma akin [2, Lem. 5.10], it follows that TrEv; ; can be solved in space O(¢+ h-log¢), when using
oracle access to F': U x [{] x K?* — KC, which in turn can be evaluated in linear space (i.e., space
linear in O(¢)).? Hence (see Section 4 for details), we obtain

Theorem 2 (an improvement over [1]): The space complezity of TrEvy, ¢ is O(¢ + h - log?).

In particular, for h = O(¢/log{), the problem can be solved in logarithmic space (because, in this
case, the input length is n = exp(©(¢)), whereas O(¢ + h -logl) = O({) = O(logn)).

Needless to say, the question of whether TrEvy, o can be solved in O(¢ 4 h) space remains open.
The stumbling block for our approach is that we use O(log¢) bits of local storage for indexing
poly(¢) different evaluations of f, ;.

3 The global storage model (mainly reproduced from [2, Sec. 5.2.4.2])

(This model was introduced in [2, Sec. 5.2.4] in order to facilitate a modular presentation of Rein-
gold’s UCONN algorithm [3].)

The aim of this model is to support a composition result that is beneficial in the context of recur-
sive calls. The basic idea is deviating from the paradigm that allocates separate input/output and
query devices to each level in the recursion, and combining all these devices in a single (“global”)
device, which will be used by all levels of the recursion. That is, rather than following the “struc-
tured programming” methodology of using locally designated space for passing information to the
subroutine, we use the “bad programming” methodology of passing information through global
variables. (As usual, this notion is formulated by referring to the model of multi-tape Turing
machine, but it can be formulated in any other reasonable model of computation.)

Definition 3 (following [2, Def. 5.8]): A global-tape oracle machine is defined as an oracle machine
(cf. [2, Def. 1.11]), except that the input, output and oracle tapes are replaced by a single global-tape.
In addition, the machine has a constant number of work tapes, called the local-tapes. The machine
obtains its input from the global-tape, writes each query on this very tape, obtains the corresponding

"More generally, we may replace {0,1}¢ by S* such that k = ©(¢/log) and S C K has size 2°/%.
8Indeed, for simplicity, _we assume that K is of prime cardinality. In general, for S C K, the low degree extension
of f:S* — S is given by f: K! — K such that

Flar, o ze) = Z (H Xai(xi)) - flat, ..., ar),
ielt]

where xq () = [Thes\(ay (@ —b)/(a—b) is a degree S| — 1 univariate polynomial.
9We can also assign to F' the task of providing the coefficients of the linear combination used in the interpolation.
As detailed in Section 4, these coefficients can be computed in o({) space.

answer from this tape, and writes its final output on this tape. (We stress that, as a result of
invoking the oracle f, the contents of the global-tape changes from q to f(q).)'° In addition, the
machine can use the global-tape also for its internal computations. The space complexity of such
a machine is stated when referring separately to its use of the global-tape and to its use of the
local-tapes.

Note that in our presentation of Theorem 1 we also used oracle calls to a function F. This was
done for the sake of simplicity, and these oracle calls (unlike the recursive calls) can be modeled by
the usual mechanism (of oracle tapes).

Composing global-tape oracle machines. As stated above, global-tape oracle machines are
beneficial in the context of recursive composition, as indicated by Lemma 4 (which relies on this
model in a crucial way). The key observation is that all levels in the recursive composition may
re-use the same global storage, and only the local storage gets added. Consequently, we have the
following composition lemma.

Lemma 4 (recursive composition in the global-tape model [2, Lem. 5.10]): Suppose that there
erists a global-tape oracle machine that, for every i =1,....,t — 1, computes f;11 by making oracle
calls to f; while using a global-tape of length L and a local-tape of length l;, which also accounts for
the machine’s state. Then, fi can be computed by a standard oracle machine that makes calls to fi
and uses space L + 3121 (1; + logy ;).

Proof Sketch: We compute f; by allocating space for the emulation of the global-tape and the
local-tapes of each level in the recursion. We emulate the recursive computation by capitalizing
on the fact that all recursive levels use the same global-tape (for making queries and receiving
answers). Recall that in the actual recursion, each level may use the global-tape arbitrarily as long
as when it returns control to the invoking machine the global-tape contains the correct answer.
Thus, the emulation may do the same, and emulate each recursive call by using the space allocated
for the global-tape as well as the space designated for the local-tape of this level. The emulation
should also store the locations of the other levels of the recursion on the corresponding local-tapes,
which is accounted for by the extra Zf;% logy l; term. [l

4 Tedious details

Recall that Theorems 1 and 2 were proved by using a composition lemma akin [2, Lem. 5.10],
which implies a space bound on a procedure (in the standard model) that computes TrEv, o when
given oracle access to F. As for F, it was assigned the task for computing the fu,i’s, providing the
values of the v,’s for all u € {0, 1}€ , and computing the coefficients of the linear combination that
underlies the interpolation procedure. We stress that, while the latter v,’s and all f,;’s appear
explicitly in the input to TrEvy, 4, the ﬁm’s and the interpolation coefficients need to be computed.
We address both tasks in the more general setting of the proof of Theorem 2.

10T his means that the prior contents of the global-tape (i.e., the query gq) is lost (i.e., it is replaced by the answer
f(q)). Thus, if we wish to keep such prior contents, then we need to copy it to a local-tape. We also stress that,
according to the standard oracle invocation conventions, the head location after the oracle responds is at the left-most
cell of the global-tape.

Computing the fu,i’s. As stated in Footnote 8, for a prime field I, the low degree extension of
fui: [k]F — [K] is given by f: K* — K such that

.]/c;,i(xla---axk) = Z H Xas(:ns) 'fu,i(ab-“aak)a (4)
ai,...,a€[k] s€[k]

where yq(z) o [Toep (o (= — b)/(a — b) is a degree k — 1 univariate polynomial over K. Hence,

ﬁm can be computed by going over all possible (a1, ...,ax) € [k]* (and all s,b € [k]), which can be
done using logy (k¥ - k2) = (1 + o(1)) - £ space.

Computing the interpolation coefficients. The desired coefficients for the interpolation (of a
univariate polynomial (based on m evaluation points)) are the first row of the inverse of an m-by-m
Vandermonde matrix over . While the Vandermonde matrix has a simple explicit form (i.e., its
entries are powers of the evaluation points), its inverse has a simple explicit form only in some cases
(i.e., for some structured sequence of evaluation points). We can use such a structured sequence,
but prefer not to rely on such low level considerations. Instead, we use the fact that matrix inversion
is in NC, and hence can be computed in polylogarithmic space, whereas here we the input length
is m? - logy |K| = poly(¢f). Hence, the inverse of the relevant matrix can be computed in space

poly (log(£)) = o(0).

Conclusion. The function F' can be evaluated in space that is linear in the length of the main
part of its input (i.e., linear in |Z| + |y|, which is 2¢-log, |K| = O(¢log¢) in the proof of Theorem 1
and 2k - log, || = O({) in the proof of Theorem 2). Composing the (standard model) procedure
that computes TrEv, , (when given oracle access to F') with the algorithm for computing F', we
derive the claimed results.

Acknowledgments

I am grateful to Amnon Ta-Shma, Ben Chen, and Madhu Sudan for helpful discussions and com-
ments.

References

[1] James Cook and Ian Mertz. Tree Evaluation is in Space O(logn-loglogn). ECCC, TR23-174,
2013.

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[3] Omer Reingold. Undirected ST-Connectivity in Log-Space. In 87th ACM Symposium on the
Theory of Computing, pages 376-385, 2005.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

