
On the Cook-Mertz Tree Evaluation procedure

Oded Goldreich
Department of Computer Science

Weizmann Institute of Science, Rehovot, Israel.

December 27, 2024

Abstract

The input to the Tree Evaluation problem is a binary tree of height h in which each internal
vertex is associated with a function mapping pairs of ℓ-bit strings to ℓ-bit strings, and each leaf
is assigned an ℓ-bit string. The desired output is the value of the root, where the value of each
internal node is defined by applying the corresponding function to the value of its children.

We provide an exposition and a digest of the recent result of Cook and Mertz (ECCC, TR23-
174), which asserts that Tree Evaluation problem can be solved in space O((h + ℓ) · log ℓ). In
particular, we point out that the algebraic manipulation (using roots of unity) performed in
the original work is merely a special case of univariate polynomial interpolation. Using this
observation we provide a more transparent exposition of their main result as well as its low
order quantitative improvement (i.e., space complexity O(ℓ+ h · log ℓ)).

Our exposition refers to the “global storage” model rather than to the “catalytic storage”
model used by Cook and Mertz, which can be viewed as a special case. We believe that the
global storage model is more flexible and intuitive, but our exposition can be easily adapted to
the catalytic storage model.

Contents

1 Introduction 1

2 An Alternative Exposition of [5, Thm. 10] 1

3 Digest and Beyond 5

4 The Global Storage Model (Following [6, Sec. 5.2.4.2]) 6

5 Tedious Details 8

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 109 (2024)

1 Introduction

We provide an alternative exposition of a result of Cook and Mertz [5, Thm. 10] that asserts that
the Tree Evaluation problem can be solved in space O(log n · log log n), where n denotes the length
of the input. For the history and significance of this problem, see [5]. Here we only mention that
the Tree Evaluation problem was promoted in [2] towards separating L from P. The problem was
conjectured to require space Ω(log2 n), but this conjecture was already refuted in [3, 4], who showed
an algorithm that uses O((log2 n)/ log log n) space. The result of [5] is far more dramatic.

More precisely, the input to the Tree Evaluation problem, denoted TrEvh,ℓ, is a rooted binary tree
of height h in which internal nodes represent arbitrary gates mapping pairs of ℓ-bit strings to ℓ-bit
strings, and each leaf carries an ℓ-bit string. Specifically, nodes in the tree are labelled by strings of

length at most h such that the nodes u0 and u1 are the children of the node u ∈ U
def
=

⋃h−1
i=0 {0, 1}i.

For every u ∈ U , the internal node u is associated with a gate fu : {0, 1}ℓ+ℓ → {0, 1}ℓ, and the leaf
u ∈ {0, 1}h is assigned the value vu ∈ {0, 1}ℓ. Hence, the input is the description of all |U | = 2h− 1
gates (i.e., all fu’s) and the values assigned to the 2h leaves; that is, the length of the input is
(2h − 1) · (22ℓ · ℓ) + 2h · ℓ = exp(Θ(h + ℓ)). The desired output is vλ such that for every u ∈ U it
holds that

vu = fu(vu0, vu1). (1)

The straightforward recursive algorithm for TrEvh,ℓ (spelled out at the very beginning of Section 2)
has space complexity O(h · ℓ). In contrast, the procedure suggested by Cook and Mertz yields
a dramatic improvement: Specifically, [5, Thm. 10] asserts that TrEvh,ℓ has space complexity
O((ℓ+ h) · log ℓ), whereas [5, Thm. 15] asserts space complexity O(ℓ+ h · log ℓ).

We provide an exposition of the foregoing results. In particular, we point out that the algebraic
manipulation (relying on roots of unity) performed in [5] is merely a special case of univariate
polynomial interpolation. This observation allows for a more transparent presentation of the proof
of [5, Thm. 10] as well as of the low order quantitative improvement of [5, Thm. 15].

Another significant difference between our exposition and the one of [5] is that we work with
the “global storage” model (used by us in [6, Sec. 5.2.4.2]), whereas [5] works with the “catalytic
storage” model (introduced in [1]). We believe that the global storage model is more flexible and
intuitive, but our exposition can be easily adapted to the catalytic storage model.

Organization. Section 2 presents the core of this survey, which is an alternative exposition of
the proof of [5, Thm. 10]. The digest presented in Section 3 leads directly to an alternative proof
of [5, Thm. 15]. The global storage model is reviewed in Section 4 and some tedious details that
were avoided in Section 2 are provided in Section 5.

Follow-up work. Building on the current exposition, we were able to provide a small quantitative
improvement over the results of Cook and Mertz [5]. This is presented in [7].

2 An Alternative Exposition of [5, Thm. 10]

We start by spelling out the straightforward recursive algorithm for TrEvh,ℓ.

1

The straightforward recursive algorithm. Observing that the value at node u is determined
by the values at its two children, we compute vu by first making a recursive call for the value of vu0
and then making a recursive call for the value of vu1. Hence, before making the second recursive
call, we maintain the (ℓ-bit long) value vu0 in the local memory of the current execution (which
refers to node u). Once we obtain vu1, we compute vu and output it. The crucial point is that
each level of recursion uses a local memory that is different from the memory that is used by other
levels. Hence, the space complexity of the algorithm that unravels the recursion is O(h · ℓ).

The improved Tree Evaluation algorithm (establishing [5, Thm. 10]) uses the same recursive
strategy, but implements it in a highly sophisticated manner that avoids storing vu0 while computing
vu1. Specifically, rather than holding ℓ bits in the local memory of each recursive level, we shall
store only O(log ℓ) bits per level. This sounds miraculous, and this miracle is enabled by using a
sophisticated accounting that relies on a non-standard model.

Towards the improved (recursive) algorithm. The first step towards improving the space
complexity of TrEvh,ℓ is conceptual: It consists of abandoning the paradigm of “good programming”
under which a recursive call uses a different work space than the execution that calls it. Instead,
we shall use the same global space for both executions, whereas only a much smaller work space
will be allocated to each recursive level as its local space. The resulting global storage model and
its relation to the standard model are spelled-out in Section 4. (We mention that this model was
used by us in [6, Sec. 5.2.4.2], amd that the “catalytic space model” used by [5] is a special case.)

The key question is how to implement the foregoing recursion better (in the global storage
model). For starters, suppose that the global memory holds three ℓ-bit strings, denoted x, y and
z. Further suppose that we have a procedure that, for any u ∈ U and σ ∈ {0, 1}, when invoked
with (uσ, x, y, z) on its global storage, returns (uσ, x, y, z⊕ vuσ) on the global storage, where vuσ is
recursively defined as in Eq. (1). Then, when invoked with (u, x, y, z) on its global storage, we can
return (u, x, y, z ⊕ vu) (such that vu = fu(vu0, vu1)) by proceeding as follows:

1. Making a recursive call with (u0, y, z, x) on the global storage, we update the global storage

to (u0, y, z, x′), where x′
def
= x⊕ vu0.

(Note that we re-arranged the parts of the global storage so that the variable holding x is
updated (to a value denoted x′) and the other variables are left intact.)

2. Similarly, making a recursive call on (u1, x′, z, y), we update the global storage to (u1, x′, z, y′),

where y′
def
= y ⊕ vu1.

3. Miraculously compute z′
def
= z ⊕ fu(vu0, vu1) based on x′ = x ⊕ vu0 and y′ = y ⊕ vu1, while

preserving the values of x′ and y′.

4. Making a recursive call on (u0, y′, z′, x′), we update the global storage to (u0, y′, z′, x).

(Note that x′ ⊕ vu0 equals the original value of x.)

5. Making a recursive call on (u1, x, z′, y′), we update the global storage to (u1, x, z′, y).

6. Return (u, x, y, z′).

Indeed, the problem is with the miraculous step (i.e., Step 3): We wish to compute z⊕fu(vu0, vu1),
but we do not have vu0 and vu1, but rather versions of these values that are masked by the original

2

values of x and y, respectively. There is hope for such a miracle only if we have a few versions of
this masking. Suppose, for example, that fu were a linear (over GF(2)) function and that we have
the values of fu(x

′, y′) and fu(x, y); then, using fu(x
′, y′) ⊕ fu(x, y) = fu(x

′ ⊕ x, y′ ⊕ y), we can
obtain fu(x

′ ⊕ x, y′ ⊕ y) = fu(vu0, vu1). This ignores the problem of having to store both fu(x
′, y′)

and fu(x, y). The last problem can be overcome if we deal with the bits of these ℓ-bit values one
at a time; that is, for each i ∈ [ℓ], we first compute the ith of fu(x

′, y′) and then compute the ith of
fu(x, y), thus obtaining the ith bit of fu(vu0, vu1).

Hence, if all fu’s were linear functions, then the foregoing miracle (in Step 3) would have become
a reality. Needless to say, we do not want to assume that the fu’s are linear. The alternative of
using multi-linear extensions (of functions describing the output bits) arises naturally. Specifically,
we shall compute the value of a corresponding tree in which the input functions (i.e., the fu’s) are
replaced by their multi-linear extensions.

Multi-linear extensions and interpolation Indeed, we considering multi-linear extensions of
the corresponding functions, where these extensions are in a (prime) field K that contains at least
2ℓ+ 2 elements. Specifically, for every u ∈ U and i ∈ [ℓ], let fu,i(x, y) equal the ith bit of fu(x, y).

Next, we define f̂u,i : Kℓ×Kℓ → K to be the multi-linear extension of fu,i : {0, 1}ℓ×{0, 1}ℓ → {0, 1}.
Now, suppose that we are given the values of f̂u,i(jx̂+ v0, jŷ+ v1) for every j ∈ {1, ..., 2ℓ+1} ⊂ K,
where j · (z1, ..., zℓ) = (jz1, ..., jzℓ). Using polynomial interpolation (on the degree 2ℓ univariate
polynomial in j that arises from fixing u, i, x̂, ŷ, v0 and v1), we obtain the value f̂u,i(0x̂+v0, 0ŷ+v1) =
fu,i(v0, v1).

Note, however, that a naive implementation of this interpolation involves operating on these
2ℓ + 1 values (after storing them in memory). Fortunately, the interpolation formula is a linear
combination of these 2ℓ+1 values, and so we need not store these values but can rather operate on
them on-the-fly (while only storing the partial linear combination computed so far). Specifically,
the interpolation formula has the form

f̂u,i(0x̂+ v0, 0ŷ + v1) =
∑

j∈[2ℓ+1]

cj · f̂u,i(jx̂+ v0, jŷ + v1) (2)

where the cj ’s are fixed constants in K (which depend on [2ℓ+1] ⊂ K and K only). Hence the l.h.s
of Eq. (2) can be computed in 2ℓ+1 iterations such that we enter the jth iteration with the partial
sum of the first j − 1 terms (i.e.,

∑
j′∈[j−1] cj′ · f̂u,i(j′x̂ + v0, j

′ŷ + v1) ∈ K), compute the jth term

(i.e., cj · f̂u,i(jx̂+ v0, jŷ+ v1)), and update the partial sum accordingly. Note that the fact that the
interpolation points equal [2ℓ+ 1] is immaterial; any 2ℓ+ 1 interpolation points would do (but, of
course, the coefficients cj will chance accordingly).

Actually, as observed in [5], using specific interpolation points allows for a more explicit inter-
polation that merely sums-up the values (rather than using a more general linear combination).

Specifically, these interpolation points are powers of an mth root of unity (in K), where m > ℓ′
def
= 2ℓ

and m < |K| = O(ℓ). Denoting such a root by ω, we observe that for any multi-linear polynomial
p : Kℓ′ → K it holds that∑

j∈[m]

p(ωjr1 + s1,, ω
jrℓ′ + sℓ′) = m · p(s1,, sℓ′). (3)

3

(Eq. (3) can be proved by considering each monomial separately.)1

The improved (recursive) algorithm. For sake of simplicity, we first assume that we have
oracle access to F : U × [ℓ]×K2ℓ → K defined by

F (u, i, x̂, ŷ)
def
= f̂u,i(x̂, ŷ). (4)

The global memory that we use will hold three ℓ-long sequences over K, denoted x̂, ŷ and ẑ, as
well as a string of length at most h, denoted u. Now, suppose that we have a procedure that,
for any u ∈ U and σ, τ ∈ {0, 1}, when invoked with (uσ, τ, x̂, ŷ, ẑ) on its global memory, returns
(uσ, x̂, ŷ, ẑ+(−1)τ ·vuσ) on the global memory, where vuσ ∈ {0, 1}ℓ ⊂ Kℓ is recursively defined as in
Eq. (1).2 The procedure that we detail next will achieve an analogous effect on (u, τ, x̂, ŷ, ẑ), where
the point is that this procedure uses the same global memory as the procedure that it calls (while
using only a small abount of local memory). In fact, we describe a recursive procedure that, on
input of the form (u, ·, ·, ·, ·), makes calls regarding inputs of the form (u0, ·, ·, ·, ·) and (u1, ·, ·, ·, ·).

Algorithm 1 (the recursive procedure): Let the vu’s be recursively defined as in Eq. (1). Then, on
input (u, τ, x̂, ŷ, ẑ) ∈ U×{0, 1}×K3ℓ, placed on its global memory, the procedure returns (u, x̂, ŷ, ẑ+
(−1)τvu), on its global memory, where vu = fu(vu0, vu1). The recursive procedure does so by
proceeding in m iterations.3

(In iteration j ∈ [m], for each i ∈ [ℓ], we increment the current value of the ith element of ẑ by
(−1)τ · f̂u,i(ωj x̂ + vu0, ω

j ŷ + vu1)/m, while maintaining (u, x̂, ŷ) intact. Recall that, by Eq. (3),∑
j∈[m] f̂u,i(ω

j x̂+ vu0, ω
j ŷ + vu1)/m equals f̂u,i(vu0, vu1).)

The jth iteration proceeds as follows.

1. Making a recursive call with (u0, 0, ŷ, ẑ, ωj x̂) on the global memory, we update the global

memory to (u0, ŷ, ẑ, x̂′), where x̂′
def
= ωj x̂+ vu0.

2. Making a recursive call on (u1, 0, x̂′, ẑ, ωj ŷ), we update the global memory to (u1, x̂′, ẑ, ŷ′),

where ŷ′
def
= ωj ŷ + vu1.

1For any I ⊆ [ℓ′], it holds that

∑
j∈[m]

∏
i∈I

(ωjri + si) =
∑
j∈[m]

∑
S⊆I

(∏
i∈S

ωjri

)
·

 ∏
i∈I\S

si


=

∑
S⊆I

∑
j∈[m]

ωj·|S|

(∏
i∈S

ri

)
·

 ∏
i∈I\S

si


=

∑
S⊆I

∑
j∈[m]

ωj·|S|

 ·

(∏
i∈S

ri

)
·

 ∏
i∈I\S

si


= m ·

∏
i∈I

si,

where the last equality uses
∑

j∈[m] ω
js = 0 for s ∈ [ℓ′] ⊆ [m− 1] and

∑
j∈[m] ω

0 = m.
2The variable/parameter τ allows us to either add or subtract the value vuσ. In our recursive calls, we shall need

both options.
3The following description is for the case of u ∈ U . In case u ∈ {0, 1}h, we may just obtain vu from the input

oracle (e.g., augment F such that F (u) = vu).

4

3. For each i ∈ [ℓ], letting ẑi denote the ith element of ẑ ∈ Kℓ, we compute ẑi + (−1)τ ·
F (u, i, x̂′, ŷ′)/m by making an oracle call to F , and update the value of ẑi accordingly. Note
that in the ith sub-step only the ith element of the sequence ẑ is updated (and that division by
m compensates for the factor of m in Eq. (3)).

4. Making a recursive call on (u0, 1, ŷ′, ẑ, x̂′), we update the global memory to (u0, ŷ′, ẑ, ωj x̂).
(Note that x̂′ − vu0 = ωj x̂.)

5. Making a recursive call on (u1, 1, ωj x̂, ẑ, ŷ′), we update the global memory to (u1, ωj x̂, ẑ, ωj ŷ).

6. Re-arrange the global memory to contain (u, x̂, ŷ, ẑ), while noting that each ẑi got incremented
by (−1)τ · f̂u,i(ωj x̂+ vu0, ω

j ŷ + vu1)/m.

Using Eq. (3), we note that (after the m iterations) the value of each ẑi equals the initial value plus
(−1)τ · f̂u,i(vu0, vu1) = (−1)τ · fu,i(vu0, vu1)

The correctness of Algorithm 1 follows from Eq. (3), and when invoked on input (λ, 0, 0ℓ, 0ℓ, 0ℓ)
it returns (λ, 0ℓ, 0ℓ, vλ). Algorithm 1 uses a global memory of length h + O(1) + (3 + o(1)) ·
log2 |K|ℓ = O(h + ℓ · log ℓ), where the o(1) · log2 |K|ℓ term accounts for the space complexity of
various manipulations (including maintaining the counter i ∈ [ℓ]), and a local memory of length
log2m = O(log ℓ), which is used only for recording j ∈ [m].

Using a composition lemma akin [6, Lem. 5.10] (reproduced as Lemma 5), it follows that the Tree
Evaluation problem (with parameters h and ℓ) can be solved in space O(h+ℓ log |K|)+h·O(log ℓ) =
O((h+ ℓ) · log ℓ), when using oracle access to F . Observing that F can be evaluated in linear space
(i.e., space linear in h+O(ℓ log |K|))4 and using a naive composition (see Section 5 for details), it
follows that

Theorem 2 (Cook and Mertz [5, Thm. 10]): The space complexity of TrEvh,ℓ is O((h+ ℓ) · log ℓ).

Recalling that the length of the input to TrEvh,ℓ is exponential in h + ℓ, it follows that TrEvh,ℓ is
solved in space O(log n · log log n), where n = exp(Θ(h+ ℓ)).

3 Digest and Beyond

As stated in the introduction, we believe that the model of global storage (as outlined in [6, Def. 5.8]
and reproduced in Section 4) is more flexible and intuitive than the model of catalytic storage used
in [5], which may be viewed as a special case.5 Hence, we used the global storage model rather
than the catalytic storage model in our exposition.

As stated in Section 2, the interpolation formula given in Eq. (3), which relies on an mth root
of unity, is inessential for the proof of Theorem 2. More generally, recalling that the f̂u,i’s are

4Recall that computing F calls for computing the corresponding f̂u,i, which is a multi-linear extension of fu,i. As

for computing f̂u,i, it requires obtaining all values of fu,i (cf. Footnote 7).
5In particular, the catalytic model presumes that the memory is structured (e.g., partitioned into registers that

hold values of some semigroup) and supports specific operations (i.e., “clean computation”). To see that the catalytic
model is a special case of the global model, we note a correspondence between the catalytic (resp., ordinary) storage
of the catalytic model and the global (resp., local) memory of the model defined in Section 4. Specifically, a “clean
computation” (in the catalytic model) that results in adding a desired value to one set of registers while keeping the
other registers intact can be emulated by a corresponding transformation of the global storage.

5

polynomials of total degree 2ℓ, we can use univariate polynomial interpolation based on any 2ℓ′+1
points (on a line that passes through the desired point), while noting that such interpolation can
be represented by a linear combination of the polynomial’s values (with coefficients that depend
on the interpolation points and the desired point). This is indeed captuted by Eq. (2). The only
advantage of using Eq. (3) is that the interpolation formula is a simple sum (i.e., all coefficients
are 1).

Capitalizing on the last paragraph, we can reduce the length of global storage used by the
recursive procedure from O(h+ℓ log ℓ) to O(h+ℓ). This can be done by viewing the fu’s as functions
from [k]k × [k]k to [k]k, where kk = 2ℓ (i.e., k = Θ(ℓ/ log ℓ)), and using low degree extensions of the
corresponding fu,i’s (i.e., fu,i(x, y) ∈ [k] is the ith symbol in fu(x, y) ∈ [k]k).6 Specifically, these
extensions are 2k-variate polynomials of individual degree k − 1 over K, where K is a finite field
of size poly(k) that is greater than m = 2k2 (and [k] ⊂ K).7 Thus, f̂u,i : Kk × Kk → K has total
degree 2k · (k − 1) < m, whereas its input length (i.e., log2 |K2k|) equals log2(poly(k)

2k) = O(ℓ).
Consequently, we can obtain the value of f̂u,i(v0, v1) by univariate polynomial interpolation from

the values of f̂u,i(jx̂ + v0, jŷ + v1) for all j ∈ [m]. Hence, the revised recursive procedure uses a
global space of length O(h+ ℓ) and local space of length log2m = O(log ℓ).

Again, using a composition lemma akin [6, Lem. 5.10], it follows that TrEvh,ℓ can be solved
in space O(ℓ + h · log ℓ), when using oracle access to F : U × [ℓ] × K2k → K, which in turn can
be evaluated in linear space (i.e., space linear in O(h + ℓ)).8 Hence (see Section 5 for details), we
obtain

Theorem 3 (Cook and Mertz [5, Thm. 15]): The space complexity of TrEvh,ℓ is O(ℓ+ h · log ℓ).

In particular, for h = O(ℓ/ log ℓ), the problem can be solved in logarithmic space (because, in this
case, the input length is n = exp(Θ(ℓ)), whereas O(ℓ+ h · log ℓ) = O(ℓ) = O(log n)).

Needless to say, the question of whether TrEvh,ℓ can be solved in O(ℓ+ h) space remains open.
The stumbling block for our approach is that we use O(log ℓ) bits of local storage for indexing
poly(ℓ) different evaluations of f̂u,i.

4 The Global Storage Model (Following [6, Sec. 5.2.4.2])

(The global storage model was introduced in [6, Sec. 5.2.4] in order to facilitate a modular presen-
tation of Reingold’s UCONN algorithm [8].)

The aim of this model is to support a composition result that is beneficial in the context of recur-
sive calls. The basic idea is deviating from the paradigm that allocates separate input/output and
query devices to each level in the recursion, and combining all these devices in a single (“global”)

6More generally, we may replace {0, 1}ℓ by Sk such that k = Θ(ℓ/ log ℓ) and S ⊂ K has size 2ℓ/k.
7Indeed, for simplicity, we assume that K is of prime cardinality. In general, for S ⊂ K, the low degree extension

of f : St → S is given by f̂ : Kt → K such that

f̂(x1, ..., xt) =
∑

a1,...,at∈S

∏
i∈[t]

χai(xi)

 · f(a1, ..., at),

where χa(x)
def
=
∏

b∈S\{a}(x− b)/(a− b) is a degree |S| − 1 univariate polynomial.
8We can also assign to F the task of providing the coefficients of the linear combination used in the interpolation.

As detailed in Section 5, these coefficients can be computed in o(ℓ) space.

6

device, which will be used by all levels of the recursion. That is, rather than following the “struc-
tured programming” methodology of using locally designated space for passing information to the
subroutine, we use the “bad programming” methodology of passing information through global
variables. (As usual, this notion is formulated by referring to the model of multi-tape Turing
machine, but it can be formulated in any other reasonable model of computation.)

Definition 4 (following [6, Def. 5.8]): A global-tape oracle machine is defined as an oracle machine
(cf. [6, Def. 1.11]), except that the input, output and oracle tapes are replaced by a single global-tape.
In addition, the machine has a constant number of work tapes, called the local-tapes. The machine
obtains its input from the global-tape, writes each query on this very tape, obtains the corresponding
answer from this tape, and writes its final output on this tape. (We stress that, as a result of
invoking the oracle f , the contents of the global-tape changes from q to f(q).)9 In addition, the
machine can use the global-tape also for its internal computations. The space complexity of such
a machine is stated when referring separately to its use of the global-tape and to its use of the
local-tapes.

Note that in our presentation of Theorem 2 we also used oracle calls to a function F . This was
done for the sake of simplicity, and these oracle calls (unlike the recursive calls) can be modeled by
the usual mechanism (of oracle tapes).

Composing global-tape oracle machines. As stated above, global-tape oracle machines are
beneficial in the context of recursive composition, as indicated by Lemma 5 (which relies on this
model in a crucial way). The key observation is that all levels in the recursive composition may
re-use the same global storage, and only the local storage gets added. Consequently, we have the
following composition lemma.

Lemma 5 (recursive composition in the global-tape model [6, Lem. 5.10]): Suppose that there
exists a global-tape oracle machine that, for every i = 1, ..., t− 1, computes fi+1 by making oracle
calls to fi while using a global-tape of length L and a local-tape of length li, which also accounts for
the machine’s state. Then, ft can be computed by a standard oracle machine that makes calls to f1
and uses space L+

∑t−1
i=1(li + log2 li).

Proof Sketch: We compute ft by allocating space for the emulation of the global-tape and the
local-tapes of each level in the recursion. We emulate the recursive computation by capitalizing
on the fact that all recursive levels use the same global-tape (for making queries and receiving
answers). Recall that in the actual recursion, each level may use the global-tape arbitrarily as long
as when it returns control to the invoking machine the global-tape contains the correct answer.
Thus, the emulation may do the same, and emulate each recursive call by using the space allocated
for the global-tape as well as the space designated for the local-tape of this level. The emulation
should also store the locations of the other levels of the recursion on the corresponding local-tapes,
which is accounted for by the extra

∑t−1
i=1 log2 li term.

9This means that the prior contents of the global-tape (i.e., the query q) is lost (i.e., it is replaced by the answer
f(q)). Thus, if we wish to keep such prior contents, then we need to copy it to a local-tape. We also stress that,
according to the standard oracle invocation conventions, the head location after the oracle responds is at the left-most
cell of the global-tape.

7

5 Tedious Details

Recall that Theorems 2 and 3 were proved by using a composition lemma akin [6, Lem. 5.10],
which implies a space bound on a procedure (in the standard model) that computes TrEvh,ℓ when

given oracle access to F . As for F , it was assigned the task for computing the f̂u,i’s, providing the
values of the vu’s for all u ∈ {0, 1}ℓ, and computing the coefficients of the linear combination that
underlies the interpolation procedure.10 We stress that, while the latter vu’s and all fu,i’s appear

explicitly in the input to TrEvh,ℓ, the f̂u,i’s and the interpolation coefficients need to be computed.
We address both tasks in the more general setting of the proof of Theorem 3.

Computing the f̂u,i’s. As stated in Footnote 7, for a prime field K, the low degree extension of

fu,i : [k]
k → [k] is given by f̂u,i : Kk → K such that

f̂u,i(x1, ..., xk) =
∑

a1,...,ak∈[k]

∏
s∈[k]

χas(xs)

 · fu,i(a1, ..., ak), (5)

where χa(x)
def
=

∏
b∈[k]\{a}(x − b)/(a − b) is a degree k − 1 univariate polynomial over K. Hence,

f̂u,i can be computed by going over all possible (a1, ..., ak) ∈ [k]k (and all s, b ∈ [k]), which can be
done using log2(k

k · k2) = (1 + o(1)) · ℓ space.

Computing the interpolation coefficients. The desired coefficients for the interpolation (of a
univariate polynomial (based on m evaluation points)) are the first row of the inverse of an m-by-m
Vandermonde matrix over K. While the Vandermonde matrix has a simple explicit form (i.e., its
entries are powers of the evaluation points), its inverse has a simple explicit form only in some cases
(i.e., for some structured sequence of evaluation points). We can use such a structured sequence,
but prefer not to rely on such low level considerations. Instead, we use the fact that matrix inversion
is in NC, and hence can be computed in polylogarithmic space, whereas here we the input length
is m2 · log2 |K| = poly(ℓ). Hence, the inverse of the relevant matrix can be computed in space
poly(log(ℓ)) = o(ℓ).

Conclusion. The function F can be evaluated in space that is linear in the length of the main
part of its input (i.e., linear in |x̂|+ |ŷ|, which is 2ℓ · log2 |K| = O(ℓ log ℓ) in the proof of Theorem 2
and 2k · log2 |K| = O(ℓ) in the proof of Theorem 3). Composing the (standard model) procedure
that computes TrEvh,ℓ (when given oracle access to F) with the algorithm for computing F , we
derive the claimed results.

Acknowledgments

I am grateful to Amnon Ta-Shma, Ben Chen, and Madhu Sudan for helpful discussions and com-
ments.

10Computing the coefficients is needed either when proving Theorem 3 or when using Eq. (2) (rather than Eq. (3)).

8

References

[1] Harry Buhrman, Richard Cleve, Michal Koucky, Bruno Loff, and Florian Speelman. Comput-
ing with a full memory: catalytic space. In 46th ACM Symposium on the Theory of Computing,
pages 857–866, 2014.

[2] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam. Peb-
bles and branching programs for tree evaluation. ACM Trans. Comput. Theory, Vol. 3 (2),
Art. 4:1–4:43, 2012.

[3] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In 52nd
STOC, pages 752–760, 2020.

[4] James Cook and Ian Mertz. Encodings and the tree evaluation problem. ECCC, TR21-054,
2021.

[5] James Cook and Ian Mertz. Tree Evaluation is in Space O(log n · log log n). ECCC, TR23-174,
2023.

[6] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[7] Oded Goldreich. Solving Tree Evaluation in o(log n · log log n) Space. ECCC, TR24-124, 2024.

[8] Omer Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symposium on the
Theory of Computing, pages 376–385, 2005.

9

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

