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Abstract

Time efficient decoding algorithms for error correcting codes often require linear space. However,
locally decodable codes yield more efficient randomized decoders that run in time n1+o(1) and space
no(1). In this work we focus on deterministic decoding. Gronemeier [Gro06] showed that any non-
adaptive deterministic decoder for a good code running in time n1+δ must use space n1−δ.

In sharp contrast, we show that typical locally correctable codes have (non-uniform) time and space
efficient deterministic decoders. For instance, the constant rate, constant relative distance codes with
sub-linear query complexity of [Kop+17] have non-uniform deterministic decoders running in time n1+o(1)

and space no(1). The same is true for Reed-Muller codes and multiplicity codes. To obtain the decoders
we devise a new time-space efficient derandomization technique that works by iterative correction.

Further, we give a new construction of curve samplers that allow us to uniformly decode Reed-Muller
codes time and space efficiently. In particular, for any constant γ > 0, we give asymptotically good
Reed-Muller codes that are decodable in time n1+γ and space nγ by a uniform, deterministic decoder.
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1 Introduction

Time efficient decoding algorithms for error correcting codes often require linear space. For instance, efficient
decoders for Reed-Solomon codes, starting with [BW86; Sud97], construct and manipulate a polynomial
that represents the received word. Efficient decoders for expander codes [SS96; Spi95] iteratively update
each index of the supposed codeword. In this work we focus on time-efficient decoders that work in sub-
linear space. We believe that this is a natural problem for coding theory. Moreover, in complexity theory
error correcting codes are the basis of many important objects, such as pseduorandom generators [KU06;
STV01; Uma03], probabilistically checkable proofs [Lun+90; Bab+91; Fei+91; AS98; Aro+98] and delegation
schemes [GKR15; KRR21]. The bounded space setting is of interest for all of these objects [Nis90; BS+13;
RRR16; HR18; CM23], and therefore motivates a study of error correcting codes in bounded space.

Are there error correcting codes that can be decoded in nearly linear time and sub-linear space? The
answer is yes for randomized decoders thanks to locally decodable codes (see, e.g., the survey [Yek12]).
Given a corrupted codeword, a local decoder can decode any message symbol in sub-linear randomized time.
With O(log n) repetitions we can decrease the error probability sufficiently below 1/n, so the decoder can
recover the whole n bit message with probability at least 2/3. Meanwhile, the space used is sub-linear as
well, depending on the number of queries of the decoder. The Reed-Muller code is locally decodable, and
in recent years there have been many other constructions of locally decodable codes. In particular, there
are locally decodable codes of constant rate that use sub-linear number of queries no(1) and therefore yield
randomized (global) decoders that run in n1+o(1) time and no(1) space [KSY14; GKS13; HOW13; Kop+17].

But what about deterministic decoders? Gronemeier [Gro06] showed that non-adaptive deterministic
decoders that run in nearly linear time n1+δ must use nearly linear space n1−δ. Are general deterministic
decoders, which could be adaptive, ruled out as well? If so, this would be a remarkable demonstration of the
power of randomness. We know that randomness can speed up computation thanks to algorithms like local
decoders that only read a small portion, at most no(1), of their input, whereas any deterministic algorithm
must read most of the input Ω(n), so randomized algorithms are faster than deterministic algorithms by a
nearly linear factor in the input size. However, randomness vs. deterministic separations for problems like
(global) decoding where even the randomized algorithm requires linear time are much harder to obtain. To the
best of our knowledge, such a separation (specifically: univariate polynomial identity testing for polynomials
of degree n requires time n2−o(1) deterministically but can be solved in time Õ(n) randomly) is only known
under the strong, quite possibly false, Nondeterministic Strong Exponential Time Hypothesis [Wil16]. The
main result of our work is that even though there is a nearly linear factor randomness vs. deterministic
separation for local decoding, there is no such separation for global decoding.

1.1 Asymptotically Good Codes With Time-Space Efficient Decoders

The main result of this paper is that there exist (non-uniform1) deterministic decoders that run in nearly
linear time n1+o(1) and sub-linear space no(1) for error correcting codes with constant rate and constant
relative distance:

Theorem 1.1 (Good Codes With Time and Space Efficient Deterministic Decoders). There exists a code
C : {0, 1}n → {0, 1}m where m = O(n) and a deterministic non-uniform algorithm B that outputs a function
D : {0, 1}m → {0, 1}n such that:

Efficient: B runs in time n1+o(1) and space no(1).

Decodes: For some decoding radius d = Ω(n), for any x ∈ {0, 1}n and w ∈ {0, 1}m with ∆(w,C(x)) ≤ d
we have that

D(w) = x.

We also show that there are codes with uniform deterministic decoders that run in time n1+γ and space
nγ for any γ > 0.

1By non-uniform, we mean that the time T decoder is some non-explicit, length T program. This is a weaker model than
branching programs.
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Theorem 1.2 (Codes With Uniform Time And Space Efficient Decoders). For any constant γ > 0, there is
a constant rate code with a uniform, deterministic decoder with constant relative decoding radius which runs
in time O(n1+γ) and space O(nγ).

1.2 Time-Space Efficient Deterministic Decoders for Locally Correctable Codes

We prove Theorem 1.1 by showing that known constructions of locally correctable codes give rise to time-
space efficient deterministic decoders. A locally correctable code is similar to a locally decodable code,
except that it decodes codeword symbols and not just message symbols. Reed-Muller is locally correctable
and not just locally decodable, and so are most of the aforementioned constructions with constant rate and
sub-linear number of queries. We focus on typical locally correctable codes, which are locally correctable
codes that satisfy several basic properties: smoothness, perfect completeness, non-adaptivity and systematic
encoding (see Definitions 3.1 and 3.6). These properties are satisfied by all the constructions we mentioned
(sometimes with minor modifications). We prove that any typical locally correctable code has time and
space efficient deterministic non-uniform decoders.

Theorem 1.3 (Locally Correctable Codes Have Efficient Deterministic Decoders). Suppose some code C :
Σn

1 → Σm
2 is a typical locally correctable code with q queries and soundness 1

3 (see Definition 3.6).
Then for any integer ℓ ≥ 1, the code C has a (non-uniform) deterministic decoder with decoding radius

Ω(m) running in time
O(m1+1/ℓ(q log(m))O(ℓ))

and space
O(ℓq log(m)).

As a direct consequence of this, existing constructions of locally correctable codes are also time and
space efficiently and deterministically decodable. This includes Reed-Muller codes and multiplicity codes
(see Section 6).

Theorem 1.3 can be thought of as a derandomization result that converts a randomized (local) corrector
to a deterministic corrector. This derandomization theorem is unique in its efficiency. Most derandomization
techniques, e.g., via pseudorandom generators (see, e.g., the survey [Gol]) or via Adleman’s argument [Adl78],
result in deterministic algorithms that are slower by factor at least n (the input size) compared to the
randomized algorithm. There are very few techniques, like the method of conditional probabilities (see, e.g.,
the book [AS04]) or derandomization via sketching [GM20], that result in deterministic algorithms with
nearly the same complexity as the corresponding randomized algorithm, and those techniques can only be
applied in special cases. The proof of Theorem 1.3 gives a new efficient derandomization technique that
centers around iterative correction. We will explain this technique in Section 1.3.

1.3 Efficient Derandomization By Iterative Correction

As discussed before, one can repeat a (randomized) local corrector Θ(logm) times to ensure that for each one
of the m indices the probability the correct codeword symbol is not computed correctly is smaller than 1/3m.
In this case, the entire length-m codeword that is close to the input word is output with probability at least
2/3. This randomized corrector runs in time O(mq logm) and space O(q logm) for q the number of queries
of the local corrector. Every fixing of the randomness to the repeated local corrector defines a deterministic
corrector, which may or may not output the nearby codeword. Importantly, we can test whether the output
word is close to the input word, and whether it is a codeword, in time O(mq logm) and space O(q logm).
(In Section 3 we prove that a typical locally correctable code also gives rise to an efficient codeword tester
for words that are not too far from the code).

Therefore, we can obtain a deterministic corrector by enumerating over all the possible choices of random-
ness for the repeated local corrector and testing the outcome of each one. Since there are only 2m possible
inputs, only O(m) different randomness strings suffice by a Chernoff bound. Hence, we get a (possibly
non-uniform) deterministic corrector that runs in time O(m2q logm) and space O(q logm). Our goal is to
obtain a deterministic algorithm in near linear time, not near quadratic time, but how can we? There are
necessarily Ω(m) possible randomness strings, and testing each randomness string necessarily requires time
Ω(m).
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Figure 1: Iterative Correction. There are ℓ layers of codeword improvers built using a local corrector. The
first layer is the input with a linear amount of corruption. Each codeword improver reduces the fraction of
errors by m1/ℓ by making q logm queries (per symbol) to the layer before it. After ℓ iterations the corruption
is reduced to 0, and the final layer can be computed using (q logm)ℓ queries (per symbol) to the input.

This is where iterative correction enters the picture. In each iteration of iterative correction the corrector
decreases the distance of the word from the code by a little, until eventually the distance becomes 0.
Specifically, if the distance is d the corrector decreases it to at most d/m1/ℓ. Since initially the number
of corruptions could be Ω(m), after about ℓ iterations the distance drops below 1 and correction is complete.
The heart of the technique is a proof that in order to decrease the distance from the code by a factor of m1/ℓ

the number of randomness strings we need to check in each iteration is only O(m1/ℓ logm), few enough we
can deterministically check them all. We will discuss the proof of this claim at the end of our exposition,
and for now continue assuming it. To test whether a randomness string leads to sufficient correction of the
word, the corrector now needs to estimate the distance of the word from the code. In Section 3 we show
that this too can be done efficiently for typical locally correctable codes.

Crucially, iterative correction can be implemented in small space. The corrector will only store the
randomness strings it identified so far (at most ℓ). Whenever it needs to query the current word, it will use
at most (q logm)ℓ queries to the input word to compute the symbol on the fly. See Figure 1.

The crux of the iterative correction technique is that the total number of sequences of random strings
that may be needed to go from Ω(m) corruptions to no corruptions (over all possible corrupted codewords)
is O((m1/ℓ logm)ℓ) = O(m(logm)ℓ), not much larger than the number Θ(m) we know is necessary, however
the number of tests we need to do per corrupted codeword is only O(ℓm1/ℓ log(m)).

Finally, let us explain why in order to decrease the distance of a word from the code from d to ηd we need
only O((1/η) logm) randomness strings. First, consider the case of d = Θ(m), which is the case in the first
iteration. We will show that only O(1/η) randomness strings suffice in this case. Think of a table with rows
that are all the M = Θ(m) randomness strings we found earlier and with columns that are all the m indices
we wish to correct. Every entry in the table corresponds to a possible correction of an index by a randomness.
We know that at most (Mm)/m of the entries in this table correspond to incorrect outcomes. Thus, if there
are more than t randomness strings that fail for at least ηd indices, it must hold that t · ηd ≤M . Therefore,
t ≤ (1/η)M/d = Θ(1/η), and only O(1/η) randomness strings suffice. For general d we use the properties
of a typical local corrector to argue that we need only start with O(d logm) randomness strings and not
with O(m) randomness strings. This follows from a Chernoff bound, similarly to how we initially derived
the O(m) result. The difference is instead of union bounding over all possible 2m inputs, we union bound
over 2d logm possibilities, using that only the pattern of corruption matters for the success of correction, and
that there are only

(
m
d

)
≤ 2d logm possible corruption patterns. More details can be found in Section 5.
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1.4 Explicit Curve Samplers and Uniform Decoding

Our generic derandomization method produces non-uniform algorithms, since it requires a small family of
good randomness strings for the local corrector. Such a family exists by a probabilistic argument, and we
can hard-wire it into the algorithm when the algorithm is non-uniform.

For specific codes and local correctors it is possible to construct this pseudorandom set explicitly, and
thereby obtain a uniform decoder. We demonstrate this using the Reed-Muller code. We give explicit
constructions of curve samplers that imply a time and space efficient, uniform, deterministic decoder for
Reed-Muller codes.

It is known that the family of all degree-k curves in a space Fdim
p is a good sampler, in the sense that

for any µ fraction of points A ⊆ Fdim
p , for a random degree-k curve, c, about µ fraction of the points on the

curve falls in A with high probability. Specifically,

Pr
c

[Pr
t∈F

[c(t) ∈ A] > µ+ ϵ] ≤ µδ, (1)

where ϵ = p−Ω(1) and δ = p−Ω(k) (see, e.g., [Mos17]). We call ϵ the accuracy error and δ the strong confidence
error. By the probabilistic method, there exists a family of pdim+O(k) curves (as opposed to the number of
all curves: pdim·(k+1)) that satisfies the aforementioned sampling property. Ta-Shma and Umans [TSU06]
and Guo [Guo13] constructed explicit curve samplers, however these fall short of the parameters we stated
in three ways. First, their degree is poly(k) rather than k. Second, the number of curves is pO(dim+k) as
opposed to pdim+O(k). Third, their probability bound in Eq. (1) is δ rather than µδ. The last two issues are
crucial for an efficient uniform decoder.

We construct a new family of efficient curve samplers that overcomes all of these shortcomings.

Theorem 1.4 (Efficient Curve Sampler). For any prime p, integers dim and b ≥ 2 such that b|dim, there is
a degree b-curve sampler C for Fdim

p such that for every ϵ > 0, the sampler C has accuracy error ϵ and strong

confidence error 2b
(

2b
ϵ
√
p

)b
. The size of C is |C| = pdim+poly(b) poly(dim). Further, given the index of a curve

c ∈ C and an element x ∈ Fp we can evaluate c(x) in time poly(pbdim).

Our construction is to first sample a line in Fdim/b

pb using ε-biased sets. This line can be interpreted as a

subspace of Fdim
p . Then we sub-sample this subspace using a random degree b curve.

To explain the construction, the set of lines whose directions are taken from an ε-biased set is a sampler
with confidence error inversely proportional to the field size [BS+03]. Hence, we get a small confidence
error by working over a large field, that of Fpb instead of Fp. The large field gives a large sample, and the
sub-sampling step decreases the sample size.

The approach of increasing the field size in order to decrease the confidence error and then sub-sampling
is the basis of the Ta-Shma–Umans [TSU06] construction as well. However, their choice of the sample over
the large field is a random curve, and they have many sub-sampling iterations. Picking a random curve in
the first iteration is the cause of the large number of curves in their final construction, and we obtain our
result by picking a smaller family. The higher than 1 degree of the sample is the reason for the higher degree
in their final construction, which we eliminate by considering a degree-1 construction. Finally, we achieve a
probability bound µδ in Eq. (1) as opposed to δ by a more careful analysis of line and curve samplers.

1.5 Related Work

Known constructions of locally correctable codes are not known to be encodable in time n1+o(1) and space
no(1). Cook and Moshkovitz [CM24] constructed error correcting codes that can be encoded in time n1+o(1)

and space no(1), but it does not seem like they can be decoded with this complexity. It remains open whether
there is a code that can be both encoded and decoded in time n1+o(1) and space no(1).

Time O(n) decoders for expander codes [SS96; Spi95] iteratively correct the received word like our
iterative corrector, however they cannot be implemented in space no(1), since they need to maintain each
symbol in the current word, and cannot compute it on the fly. We use local correction to ensure low space.

Our iterative correction technique can be thought of as a more efficient version of Adleman’s derandom-
ization [Adl78], which decreases the error probability below 2−n (by repetition, increasing the time) and
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then hard-wires to the algorithm a randomness string that works for all 2n inputs. Prior work [GM20] had
a different approach for an efficient Adleman derandomization, one that focused on faster testing of possible
randomness strings (via an algorithm for finding a biased coin), and dividing the inputs to groups with
similar behavior with respect to the randomness (via sketching). The faster testing approach does not apply
to our problem, since it may yield a word that is close to a codeword instead of being a codeword.

2 Preliminaries

Our results are about decoding error correcting codes. An error correcting code is a function that maps any
two distinct messages to codewords that are far apart in hamming distance. The hamming distance of two
strings is the number of indexes where they differ.

Definition 2.1 (Hamming Distance). For any alphabet Σ and integer n, we define the hamming distance
∆ : Σn × Σn → N by

∆(x, y) = |{i ∈ [n] : xi ̸= yi}|.

Now we can define an error correcting code, often just called a code.

Definition 2.2 (Error Correcting Code). For alphabets Σ1 and Σ2, integers n,m ∈ N and distance d ∈ N,
a code is a function C : Σn

1 → Σm
2 such that for all x, y ∈ Σn

1 with x ̸= y we have that

∆(C(x), C(y)) ≥ d.

We call d the distance of C, Σ2 the alphabet of the code, and Σ1 the alphabet of the message. The codewords
of C are the set {C(x) : x ∈ Σn

1}.

A closely related concept to hamming distance is the weight of a string. The weight of a string is the
number of non-zero coordinates it has. If two strings have a binary alphabet, then the weight of their
difference is their hamming distance.

Definition 2.3 (Weight). For any Σ where 0 ∈ Σ, for any z ∈ Σn we define the weight of z by

wt(z) = |{i ∈ [n] : zi ̸= 0}|.

We will often refer to the distance of a string to a code. This is the distance from that string to the
nearest codeword of that code.

Definition 2.4 (Distance To A Set). For any set S ⊆ Σm
2 and w ∈ Σm

2 define the distance of w to S by

∆(w, S) = min
y∈S

∆(w, y).

If C : Σn
1 → Σm

2 is a code, we define the distance of w to C by

∆(w,C) = min
x∈Σn

1

∆(w,C(x)).

One of the codes we will consider is the Reed-Muller code. This is the code with codewords that are low
degree polynomials over many variables. A special case of Reed-Muller codes are Reed-Solomon codes where
the polynomials are over only one variable.

Definition 2.5 (Reed-Muller code). For prime power q, degree deg, and number of variables dim let
RMq(deg, dim) be the code with codewords that are polynomials p : Fdim

q → Fq of degree deg represented

by evaluating p at all points in Fdim
q . So the alphabet of RMq(deg, dim) is Fq and the codeword length is

m = |Fq|dim = qdim.
For a function f : Fdim → F we say that f ∈ RMq(deg, dim) if f is a degree deg polynomial.

Our non-uniform algorithms are RAM algorithms with advice. These are RAM algorithms with:

1. A read only input tape.
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2. A write only output tape.

3. A bounded space working tape.

4. A read only advice tape.

Where the algorithm has random access to the input, advice, and working tape. The space of the algorithm
is the size of the working tape, and we require the size of the advice tape to be bounded by the run time of
the algorithm. We only allow our algorithm to print to the output tape in sequential order.

Note that the output tape can be much longer than the work tape, so the algorithm can output much
larger messages than it has space to store itself. The fact that the input tape is read only and output tape
is write only is why the standard decoder for Spielman codes are not space efficient.

Another common model of non-uniform computation is the branching program model. Our model of
non-uniform computation can be efficiently simulated by branching programs, so we could also state our
results in terms of branching programs.

3 Local Code Properties And Their Relationships

Now we define the properties we need for our construction to give a time and space efficient deterministic
decoder. While Theorem 1.3 only assumes the code is a typical LCC, we will actually show that a typical
LCC has several other useful properties that we will use to give our deterministic decoder. We will first
define all the relevant properties and then show relationships between them.

3.1 Local Code Properties

The main local code property we will discuss in this paper is local correction. A locally correctable code is
a code with a local corrector. A local corrector is a randomized algorithm, D, that when given oracle access
to a string w that is a slightly corrupted version of a codeword y, the corrector D can compute any symbol
of y with high probability using few queries to w.

Definition 3.1 (Locally Correctable Codes (LCC)). For any code C : Σn
1 → Σm

2 with distance greater than
2d, we say that C is a locally correctable code (LCC) if there exists some local corrector D that takes as
input an index i ∈ [m], a randomness string r ∈ {0, 1}R, and oracle access to a string w ∈ Σm

2 and outputs
a single symbol, denoted Dw(i, r), such that

Locality: On any input string w ∈ Σm
2 , index i ∈ [m], and randomness r ∈ {0, 1}R we have that Dw(i, r)

can be computed with only q queries to w.

Soundness: There is an s < 1
2 such that for any w ∈ Σm

2 and x ∈ Σn
1 with ∆(w,C(x)) ≤ d and any i ∈ [m]

we have
Pr

r∈{0,1}R
[Dw(i, r) ̸= C(x)i] ≤ s.

We call d the correcting radius, q the number of queries, and s the soundness of D. If soundness s is not
specified, it is assumed to be 1

3 . If correcting radius d is not specified, it is assumed to be Ω(m).

While we would like time and space efficient deterministic decoders for any LCC, we are only able to show
it for typical LCCs. A typical LCC is a systematic code with a local corrector that is smooth, non-adaptive,
and has perfect completeness. We will define each of these individually.

A systematic code is a code such that any message is contained (as plain text) in the associated codeword.
We use systematic codes since it gives a straightforward way to get the message from an uncorrupted
codeword. Similar results hold for any code with an efficient way to recover the message from an uncorrupted
codeword. Systematic codes provide a simple mechanism for doing this.

Definition 3.2 (Systematic Code). We say that a code C : Σn
1 → Σm

2 is systematic if for all i ∈ [n] there
exists j ∈ [m] such that for all x ∈ Σn

1 we have that xi = C(x)j.

6



A smooth code is a code with a local corrector such that when it corrects any particular symbol, the
corrector queries every index of the input with about equal probability. In particular, no index is queried
more often then about 2q

m times in expectation.

Definition 3.3 (Smooth). We say that a code C : Σn
1 → Σm

2 with a local corrector D (where the randomness
of D is R) is β smooth if for all w ∈ Σm

2 and i, j ∈ [m]:

Pr
r∈{0,1}R

[Dw(i, r) queries index j of w] ≤ β

m
.

If β is unspecified and D is q query, we assume β = 2q.

A non-adaptive code is a code with a local corrector such that the indexes of the input which are queried
only depends on the randomness and the index of the symbol being decoded, not on the input being corrected.
Put another way, given the index to decode and a random string, the corrector can specify each of the q
locations it will query before querying them.

Definition 3.4 (Non-Adaptive). We say that a code C : Σn
1 → Σm

2 with a local corrector D (where the
randomness of D is R) is non-adaptive if for all i ∈ [n] and r ∈ Σm

2 , we have that Dw(i, r) always queries
the same indexes in w for any w ∈ Σm

2 .

Finally, a code with a local corrector is said to have perfect completeness if, when it is given a valid
codeword, it always outputs the symbols from that codeword. Put another way, local corrections of an
uncorrupted codeword always output that codeword.

Definition 3.5 (Perfect Completeness). We say that a code C : Σn
1 → Σm

2 with a local corrector D (where
the randomness of D is R) has perfect completeness if for all x ∈ Σn

1 , for any i ∈ [m] and r ∈ {0, 1}R we
have that

DC(x)(i, r) = C(x)i.

Now we define a typical LCC to be any systematic code with a corrector that is smooth, non-adaptive
and has perfect completeness. These are standard properties of locally testable codes, and all the standard
constructions of LCC are typical (with only minor changes). The only assumption on the code in Theorem 1.3
is that it is typical, so the results are very general.

Definition 3.6 (Typical Locally Correctable Codes). For any systematic code C : Σn
1 → Σm

2 we say that
C is a typical LCC if it is an LCC and has a corrector D that is smooth, non-adaptive, and has perfect
completeness.

An important subroutine in our deterministic decoder is estimating the amount of corruption in an input
string. We perform this estimate using a local testing algorithm. The natural property one would hope for
is strong local testability.

Definition 3.7 (Strong Locally Testable Codes). We say that a code C : Σn
1 → Σm

2 is a strong locally
testable code (LTC) with q queries, randomness R, and approximation factor2 α if there exists a tester V
that takes as input randomness r ∈ {0, 1}R and oracle access to a string w ∈ Σm

2 and outputs a single bit,
denoted V w(r), such that:

Locality: For any r ∈ {0, 1}R and w ∈ Σm
2 we have that V w(r) can be computed with only q queries to w.

Approximation: For any w ∈ Σm
2 we have

∆(w,C)

mα
≤ Pr

r∈{0,1}R
[V w(r)] ≤ α∆(w,C)

m
.

If the approximation factor α is not specified, it is assumed to be 2.

2A closely related property has been called testability (e.g. [KM23]) and detection probability (e.g. [Din+22]).
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Unfortunately, we don’t know how to construct strong local tests for all typical locally correctable codes.
But we can get a weaker property, a vicinity LTC (VLTC). A VLTC is a strong LTC that is only promised
to give a good estimation of the corruption for an input that is already close to a codeword [CY23].

Definition 3.8 (Vicinity Locally Testable Codes). We say that a code C : Σn
1 → Σm

2 is a vicinity locally
testable code (VLTC) with q queries, randomness R, approximation factor α, and vicinity d if there exists
a tester V that takes as input randomness r ∈ {0, 1}R and oracle access to a string w ∈ Σm

2 and outputs a
single bit, denoted V w(r), such that:

Locality: For any r ∈ {0, 1}R and w ∈ Σm
2 we have that V w(r) can be computed with only q queries to w.

Approximation: for any w ∈ Σm
2 with ∆(w,C) ≤ d we have

∆(w,C)

mα
≤ Pr

r∈{0,1}R
[V w(r)] ≤ α∆(w,C)

m
.

If the approximation factor α is not specified, it is assumed to be 2.

See that an LTC is just a VLTC with vicinity m.
The last property we will need is that our local corrector has soundness that is only dependent on

the corruption, or error pattern, and not on the message itself. We call this property “message oblivious
soundness” (MOS). The MOS property allows us to take a union bound over possible corruption patterns
instead of possible inputs, which allows us to use fewer randomness strings.

To make this formal, we need to formally define corruptions. The corruption of an input is the difference
from the nearest codeword. We emphasize that by difference of two strings, we don’t mean the number of
indexes the strings differ, we mean the actual indexes they differ on. That is, difference is not distance, but
rather the weight of the difference is the distance.

Definition 3.9 (Difference). For any strings w1, w2 ∈ Σm
2 the difference between w1 and w2 is a vector

z ∈ {0, 1}m defined by

zi =

{
1 C(x)i ̸= wi

0 C(x)i = wi.

Further, for any w1 ∈ Σm
1 and z ∈ {0, 1}m, we define the set of z differences from w1 by

Diff(w1, z) = {w2 ∈ Σm
2 : z is the difference between w1 and w2}.

Now we can define message oblivious soundness as an LCC with soundness that is only dependent on
the corruption z ∈ {0, 1}m and not on the message x ∈ Σn

1 . This is the property that is easiest to work with
for our results. Most standard constructions of locally testable codes also have message oblivious soundness,
but message oblivious soundness is a less standard property than those of typical LCCs.

Definition 3.10 (Message Oblivious Soundness Locally Correctable Codes). For any code C : Σn
1 → Σm

2 with
distance greater than 2d, we say that C is a message oblivious soundness locally correctable code (MOSLCC)
if there exists some local corrector function D that takes as input an index i ∈ [m], a randomness string
r ∈ {0, 1}R, and oracle access to a string w ∈ Σm

2 and outputs a single symbol, denoted Dw(i, r), such that

Locality: On any input i ∈ [m], r ∈ {0, 1}R and w ∈ Σm
2 we have that Dw(i, r) can be computed with only

q queries to w.

Soundness: For any z ∈ {0, 1}m with wt(z) ≤ d and any i ∈ [m] we have that

Pr
r∈{0,1}R

[∃x ∈ Σn
1 , w ∈ Diff(C(x), z) : Dw(i, r) ̸= C(x)i] ≤ s.

We call D a MOS corrector, d the MOS correcting radius, q the number of queries, and s the soundness of
D. If soundness s is not specified, it is assumed to be 1

3 .
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Intuitively, one might expect local correction to be a function of the corruption and not the underlying
codeword. If the number of corruptions is fixed and small, then most choices of randomness should miss
most corruptions, and most locally correctable codes always succeed if they don’t see any corruption. This
intuition can be made rigorous for typical LCCs, as we will see in the next section. Since the properties of
a typical LCC are well known, it may be easier to verify that an LCC is typical than it is to verify it has
message oblivious soundness.

3.2 Local Code Property Relationships

One standard fact of LCCs is that one can decrease the soundness (the probability it fails to correct) by
correcting several times and taking majority. And if the corrector is a MOS corrector, so is the amplified
corrector. These follows from Chernoff bounds and are well known so we don’t reprove them.

Lemma 3.11 (Amplification Of LCCs). Suppose that some code C : Σn
1 → Σm

2 has a local corrector D with
correcting radius d, number of queries q, and soundness s < 1/2.

Then for any odd k ≥ 1, the code C has a local corrector, D′, with correcting radius d, number of queries

kq and soundness s′ = e−
(1/2−s)2

2(1−s)
k. If D is a MOS corrector, so is D′.

In particular, if s is constant, then for any s′ < 1/2, we have that D′ has Os(q log(1/s′)) queries.

Next we show that any LCC with perfect completeness is also a VLTC. The local tests are simple: correct
a random symbol and compare it to the symbol in the input. We need the LCC to have perfect completeness
because we are not satisfied with our VLTCs only telling us when corruption is present, we want a close
estimate of that corruption. So if there are no errors, the local test should never fail.

Lemma 3.12 (LCCs with Perfect Completeness are VLTCs). Suppose some code C : Σn
1 → Σm

2 is an LCC
with perfect completeness, correcting radius d, soundness 1

10m , and q correcting queries.
Then C is also an VLTC with vicinity d, q + 1 queries, randomness 2 log(m) +O(1) and approximation

factor 2.

Proof. Let D be the corrector for C and R be the randomness of D. The VLTC first chooses k = 10m2

choices randomness for the decoders, r1, . . . , rk ∈ {0, 1}R. For notation, denote ij = ⌈jm/k⌉. Then the
tester V is defined by

V w(j) =

{
1 D′w(ij , rj) ̸= wij

0 D′w(ij , rj) = wij .
.

See that V has q + 1 queries. Now we just need to show V will estimate the error within a 2 factor with
high probability.

So consider any input w ∈ Σm
2 and any message x ∈ Σn

1 with ∆(w,C(x)) ≤ d. We want to show that
with very high probability we have

∆(w,C(x))

2m
≤ Pr

j∈[k]
[V w(j) = 1] ≤ 2∆(w,C(x))

m
.

If w = C(x), then since the corrector has perfect completeness, Prj∈[k][V
w(j) = 1] = 0, so the equation

holds. Otherwise ∆(w,C(x)) ≥ 1, so we just need to show that the number of times the corrector fails to

output the correct codeword symbol is at most k∆(w,C(x))
2m ≥ 5m. So for j ∈ [k] denote by Fj the event that

D′w(ij , rj) ̸= C(x)ij .

See that the expectation of
∑

j∈[k] Fj is µ ≤ k
10m ≤ m. Then by a Chernoff bound

Pr[
∑
j∈[k]

Fj ≥ 5m] ≤ e−16m/6 < 2−m.

So with probability at most 2−m will V w(j) not give a 2 approximation of the corruption in w. Thus by a
union bound, some choice of V must give a 2 approximation for every such w.
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All typical LCCs have perfect completeness, but some LCCs do not. It is unclear if all LCCs can be
transformed into one with perfect completeness and a similar number of queries. In contrast, all MOSLCCs
can be efficiently transformed into one with perfect completeness. This is because no corruption is a cor-
ruption pattern, so the correction failures on codewords is only a function of the index to correct and the
randomness string. If number of randomness strings that fail on any input is very small, we just update our
corrector to not use them.

Lemma 3.13 (MOSLCCs Have Perfect Completeness). Suppose some systematic code C : Σn
1 → Σm

2 is
a MOSLCC with a MOS local corrector D using randomness R, with MOS correcting radius d, soundness
s1 = 1

am for a > 1, and q correcting queries.
Then we also have that C is a MOSLCC with a MOS local corrector D′ that uses randomness R, MOS

correcting radius d, soundness s2 = 1
(a−1)m and q correcting queries.

Proof. Call a randomness string, r ∈ {0, 1}R, good for a corruption pattern, z ∈ {0, 1}m, and index i ∈ [m]
good if for all inputs, w ∈ Σm

2 , where z is difference from a codeword, C(x), we have that Dw(i, r) = C(x)i.
Then the assumption is that for any corruption pattern z with wt(z) ≤ d and i ∈ [m] that at least a 1

am
fraction of strings are good for z and i.

Notice that by a union bound at least 1
a of all randomness strings must be good for the zero corruption for

all indexes i ∈ [m]. So for any randomness string that is not good for the zero error pattern for all indexes,
we simply remove these from the possible randomness strings to get D′. The total number of randomness
strings we remove is at most 2R/a. This decreases the total possible number of randomness strings for D′

to 2R
(
a−1
a

)
, so the final randomness is R− log(a/(a− 1)) ≤ R.

Removing these randomness strings may hurt soundness for other inputs, but not too much. For any
other corruption pattern z ∈ {0, 1}m with wt(z) ≤ d and i ∈ [m] we know that at least 2R am−1

am of the
randomness strings are good for z and i. Then in worst case, all the strings removed were some of these

good strings. So after removing these strings, at least 2R (a−1)m−1
am of the good strings for this w and index

i are left. The total fraction of remaining good strings then are

2R
(a− 1)m− 1

am

1

2R
a

a− 1
=

(a− 1)m− 1

(a− 1)m

=1− 1

(a− 1)m
.

So the probability that for any x ∈ Σn
1 and any w ∈ Diff(C(x), z) that Dw(i, r) ̸= C(x)i is at most 1

(a−1)m .

Unfortunately, the vicinity local testers of Lemma 3.12 are not randomness efficient enough for us. We
would need Ω(m2) time to just enumerate through all of the tests. The problem is that we need to estimate
the number of errors, and getting a good estimate becomes more difficult as the number of errors becomes
smaller. If we only need to approximate the fraction of errors for a large fraction of errors, this can be done
randmness efficiently.

Lemma 3.14 (Test for Large Distance From LCC). Suppose that C : Σn
1 → Σm

2 is an LCC with correcting
radius d1, soundness s = 1

10m and q queries.
Then for d2 ≤ d1, there is a tester V which takes as input a w ∈ Σm

2 and r ∈ {0, 1}R and outputs a single
bit, denoted V w(r), such that:

Randomness Efficient: The randomness R is log(m2

d2
) +O(1).

Locality: For any w ∈ Σm
2 and r ∈ {0, 1}R, the function V w(r) only queries w in q + 1 places.

Completeness: For any w ∈ Σm
2 with ∆(w,C) ≤ d2

2 we have that

Pr
r∈{0,1}R

[V w(r) = 1] ≤ 3d2
4m

.

Soundness: For any w ∈ Σm
2 with ∆(w,C) > d2 and ∆(w,C) ≤ d1 we have that

Pr
r∈{0,1}R

[V w(r) = 1] >
3d2
4m

.
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Proof. Let D be the corrector for C. The VLTC just chooses k = 100m2

d2
choices randomness for the decoders,

r1, . . . , rk ∈ {0, 1}R. For notation, denote ij = ⌈jm/k⌉. Then the tester V is defined by

V w(j) =

{
1 D′w(ij , rj) ̸= wij

0 D′w(ij , rj) = wij .
.

See that V has q + 1 queries.
Now we want to bound the probability too many choices of rj have D′w(ij , rj) correct incorrectly. Choose

any w ∈ Σm
2 with an x ∈ Σn

1 such that ∆(w,C(x)) ≤ d1. Let Fj be the event that D′w(ij , rj) ̸= C(x)ij . By
the soundness of D, the expectation of

∑
j∈[k] Fj is at most

µ = ks =
10m

d2
.

Then by a Chernoff bound, the probability that
∑

j∈[k] Fj is greater than k d2

4m = 25m is at most

Pr[
∑
j∈[k]

Fj > k
d2
4m

] ≤e−
1.5

2+1.5 15m

<e−m

<2−m.

So in particular, their exists choice of r so that for every w ∈ Σm
2 with ∆(w,C) ≤ d1 we have

∑
j∈[k] Fj ≤ k d2

4m .
Choose such choices of r.

With this choice of r, the discrepancy between the failure probability of V w and the actual fraction of
corruption in V w is at most d2

4m . Thus if for some w ∈ Σm
2 we have both ∆(w,C) > d2 and ∆(w,C) ≤ d1

then

Pr
r∈{0,1}R

[V w(r) = 1] ≥ ∆(w,C)

m
− d2

4m
>

3d2
4m

.

Similarly, if for some w ∈ Σm
2 we have ∆(w,C) ≤ d2

2 , then

Pr
r∈{0,1}R

[V w(r) = 1] ≤ ∆(w,C)

m
+

d2
4m
≤ 3d2

4m
.

If one only wants a randomness efficient test that fails with high probability when the number of errors
is high (but still within the correcting radius), then one can get this for any LCC. The difficulty is only for
accurately estimating the amount of corruption when the corruption is small. But we can do this randomness
efficiently for MOSLCCs. To do this, we union bound over md patterns of corruption if our local corrector
has message oblivious soundness (MOS). This allows us to more randomness efficiently perform local testing,
at least within the correcting radius.

Theorem 3.15 (MOSLCCs are VLTCs). Suppose some systematic code C : Σn
1 → Σm

2 is a MOSLCC with
MOS correcting radius d, soundness 1

11m , and q correcting queries.
Then C is also an VLTC with vicinity d, q + 1 queries, randomness log(m) + log(log(m)) + O(1) and

approximation factor 2.

Proof. First we use Lemma 3.13 to transform our corrector to one with perfect completeness, MOS correcting
radius d, q queries, and soundness 1

10m . Let D be such a MOS corrector for C with randomness R.
The VLTC just chooses k = 10m log(m) choices randomness for the decoders, r1, . . . , rk ∈ {0, 1}R. For

notation, denote ij = ⌈jm/k⌉. Then the tester V is defined by

V w(j) =

{
1 D′w(ij , rj) ̸= wij

0 D′w(ij , rj) = wij .
.
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See that V has q + 1 queries. Now we just need to show V will estimate the error within a 2 factor with
high probability.

To show this, we first consider a fixed error pattern weight and argue V will give a good approximation for
all error patterns of that weight with probability greater than 1− 1

d . Then it won’t fail on any error pattern
with some positive probability, thus some choice of randomness will always give a good approximation.

For any w ∈ Σm
2 , we say that V succeeds on w if ∆(w,C)k

2m ≤
∑

j∈[k] V (j, w) ≤ 2∆(w,C)k
m , and V fails on w

otherwise. We say that V fails on corruption z ∈ {0, 1}m if there is any x ∈ Σn
1 and w ∈ Diff(C(x), z) that

V fails on w.
So choose a weight d′ ≤ d and take any z ∈ {0, 1}m with wt(z) = d′. All we need to show is that it is

unlikely more than d′k
m2 of the symbols will be decoded incorrectly. If this is true, than the number of tests

that fail is at least d′k
m2 , and at most 3d′k

m2 . To be more formal, for j ∈ [k] let Fj be the failure event that

∃x ∈ Σn
1 , w ∈ Diff(C(x), z) : Dw(ij , rj) ̸= C(x)ij

Then we want to show that

Pr

∑
j∈[k]

Fj ≥
d′k

2m

 < 1

m
.

To do this, we use Chernoff bounds. See that the expectation of
∑

j∈[k] Fj is at most

µ ≤ k

10m
.

Then by a Chernoff bound, we have that

Pr

∑
j∈[k]

Fj ≥
d′k

2m

 ≤e− 4
2+4

4d′k
10m

≤e−
160d′m log(m)

60m

≤m−2.5d′

<m−d′
/m.

Now if
∑

j∈[k] Fj <
d′k
2m , then for any x ∈ Σn

1 and w ∈ Diff(C(x), z), we have that
∑

j∈[k] V
w(j) ≤ 2d′k

m and∑
j∈[k][V

w(j)] ≥ d′k
2m . Thus the probability that V fails on z is less then m−d′

/m.

So by a union bound, the probability that V fails on any corruption z ∈ {0, 1}m with wt(z) = d′ is less
than 1

m . That is, the probability that V fails on any w with ∆(w,C) = d′ is less then 1
m . Then by a union

bound, the probability that V fails on any w with ∆(w,C) ≤ d is less then 1. Thus C has some VLTC with
the desired parameters.

So we have shown that message oblivious soundness allows us to perform vicinity local testing more
randomness efficiently. One may wonder whether MOSLCCs are reasonable to expect. Many LCCs already
have the MOS property and their proofs show soundness by showing that corruption is seen rarely. Here we
prove that every typical LCC is a MOSLCC.

The idea is that a typical LCC with q queries that is 2q smooth on an input with at most m
10q corruptions

won’t even see the corruption most of the time when correcting. Then since a typical LCC has perfect
completeness, if no corruption is seen, it must correct correctly.

Lemma 3.16 (Typical LCCs are MOSLCCs). Suppose C : Σn
1 → Σm

2 is a typical LCC with q queries
and smoothness β. Then for any s, there is a MOS corrector for C with MOS correcting radius d = sm

β ,
soundness s, and q queries. Alternatively, for any s, there is a MOS corrector for C with MOS correcting
radius d = m

3β , soundness s, and O(q log(1/s)) queries.
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Proof. The idea is that if there are only d = sm
β corruptions, the probability that any corruption is seen is

at most s. By perfect completeness, if no corruption is seen, it must correct correctly.
Let D be the corrector of C and assume D uses randomness R. Choose any z ∈ {0, 1}m with wt(z) ≤ d

and any i ∈ [m]. Now choose any j ∈ [m] where zj = 1. For notation, let y ∈ Σm
2 be an arbitrary string.

Then

Pr
r∈{0,1}R

[Dy(i, r) queries symbol j of y] ≤ β

m
.

So the total probability that any index that is one in z is queried is at most

β

m
d = s.

Since D is non-adaptive, if on a given choice of randomness r ∈ {0, 1}R and index i ∈ [m] we have that
Dy(i, r) only queries indexes that are 0 in z, then for any x ∈ {0, 1}. and w ∈ Diff(C(x), z) we must have
Dw(i, r) only queries symbols that agree with C(x). Since D has perfect completeness, for such i and r we
must have that Dw(i, r) = C(x)i. Thus for any i ∈ [m] the probability over r ∈ {0, 1}R that any message
x ∈ Σn

1 and corrupted codeword w ∈ Diff(C(x), z) has Dw(i, r) ̸= C(x)i is at most s.
Therefore D is also a MOS corrector with soundness s and MOS correcting radius d.
Alternatively, D is a MOS corrector with MOS correcting radius m

3β and soundness 1
3 . Then by using

the amplification of Lemma 3.11, C also has a MOS corrector with correcting radius m
3β , soundness s, and

O(q log(1/s)) queries.

Unfortunately we are only able to show typical LCCs have a MOS corrector with MOS correcting radius
O(m

q ), which can be small if the LCC uses many queries. So the fact that typical LCCs are MOSLCCs
doesn’t immediately give typical LCCs all the nice properties of the MOSLCC with the same correcting
distance. This is an issue if we want to correct Ω(m) errors. We will show how to overcome this later.

4 Deterministic Decoder Construction

In this section we explain our deterministic decoder in more detail. Our decoder centers around codeword
improvers and improving sets. In this section we define codeword improvers and improving sets and show
how to use them to deterministically decode. In Section 5 we show how to find the necessary codeword
improvers and improving sets, and provide proofs for the claims in this section.

4.1 Codeword Improvers

To decode an input w, our approach will be to iteratively decrease the number of errors in a codeword until
no errors are remaining. Our first goal will be to find a function, I : Σm

2 → Σm
2 , that will decrease the

number of errors in an input from Ω(m) to O(m1−ϵ). Since this is a less ambitious goal than full correction,
it will be easier to find randomness for a local corrector that can do this.

We say that a function I is a codeword improver for a corrupted codeword w if I(w) outputs a string
closer to that codeword. Specifically:

Definition 4.1 (Codeword Improver). Let there be a code C : Σn
1 → Σm

2 with distance greater than 2d1. Let
x ∈ Σn

1 and w ∈ Σm
2 with ∆(w,C(x)) ≤ d1. Then say that a function I : Σm

2 → Σm
2 improves w to distance

d2 ≤ d1 with respect to C if ∆(I(w), C(x)) ≤ d2.

Our codeword improvers will just be local correctors with appropriately chosen randomness strings hard
wired. We will show how to choose our codeword improvers in Section 5.1. Importantly, our codeword
improvers will use few queries, since they are just calls to a local corrector.

Definition 4.2 (A Few Query Function). For any function f : Σm
2 → Σm

2 , we say that f is q query if for
any i ∈ [m] and w ∈ Σm

2 we have that f(w)i can be computed with only q queries to w.
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Then our goal is to start with an input w ∈ Σm
2 with x ∈ Σn

1 such that ∆(w,C(x)) ≤ d. Then we will
find a q query codeword improver, I, that will improve w to distance ηd. Think of η as d−1/ℓ for a large
constant ℓ. Then we can set w′ = I(w) and find a new q codeword improver that will improve w′ to distance
η2d. Then if we repeat this process ℓ times, then we can correct w all the way to its nearest codeword. If
each codeword improver only needs q queries, the final codeword corrector only needs qℓ queries. See Fig. 1
for a figure with the number of errors at each stage versus the number of queries to that stage.

To make finding codeword improvers efficient, we need a small list of candidate codeword improvers
to search through. So we define an improving set. An improving set is a short list of candidate codeword
improvers such that for any input that is not too corrupted, in expectation, the candidate codeword improvers
will improve it.

Definition 4.3 (Improving Set). Let there be a code C : Σn
1 → Σm

2 with distance greater than 2d1. Let I be
a set of functions from Σm

2 to Σm
2 . Then we say that I is a d1 to d2 improving set for C if for all w ∈ Σm

2

such that for some x ∈ Σn
1 we have that ∆(w,C(x)) = d1, then

E
I∈I

[∆(I(w), C(x))] ≤ d2.

If every I ∈ I is a q query function, we say that I is a q query, d1 to d2 improving set for C. We say that I
is time T space S uniform if for each I ∈ I and each i ∈ [m], the function computing I(w)i is time T space
S uniform.

We say that I is a below d1, factor η improving set for C if for all d ≤ d1 we have that I is a d to ηd
improving set for C.

A straightforward consequence of having a d1 to d2 improving set for a code is that for any input w with
distance d1 from a code, one of the functions I ∈ I improves w to distance d2 with respect to C.

Lemma 4.4 (Improving Sets Contain Codeword Improvers). Let C : Σn
1 → Σm

2 be a code and I be a d1 to
d2 improving set for C. Then for any w ∈ Σm

2 with ∆(w,C) = d1, there is an I ∈ I such that I improves w
to distance d2 with respect to C.

Similarly, if I is a below d, factor η improving set for C, then for any w ∈ Σm
2 with ∆(w,C) ≤ d there

is an I ∈ I such that I improves w to distance η∆(w,C) with respect to C.

Proof. Let x ∈ Σn
1 be such that ∆(w,C(x)) = d1. Then suppose that for all I ∈ I we have that

∆(I(w), C(x)) > d2, then we would have that EI∈I [∆(I(w), C(x))] > d2. But this contradicts the defi-
nition of improving set, so some I ∈ I must have that ∆(I(w), C(x)) ≤ d2.

A similar argument holds for a below d, factor η improving set.

4.2 Finding Codeword Improvers With VLTCs

In this section we describe the deterministic decoder for a code assuming it has a small improving set and a
randomness efficient vicinity local tester.

If our code both has an improving set and is locally testable, we can find codeword improvers for a given
input. All we have to do is iterate through each candidate improver in an improving set, then use the local
tests to see if it is a good enough improver. This works because our local tests don’t just tell us if there is
corruption, it gives a close estimate of the amount of corruption. Thus if we can show that there is a short
list of candidate codeword improvers, we can efficiently search through them to find an actual codeword
improver.

Lemma 4.5 (VLTCs Can Select From Improving Sets). Let C : Σn
1 → Σm

2 be a code that has a set of
functions I that are qc query, below d1, factor η improving sets for C. Let C also be a VLTC with qt testing
queries, R testing randomness, approximation factor α and vicinity d0. Suppose that 3d1 ≤ d0.

Then there is a non-uniform algorithm that runs in time O
(
(m+ 2Rqt)qc|I|

)
and space O(R+ qt + qc +

log(m) + log(|I|)) and takes as input a w ∈ Σm
2 with ∆(w,C) ≤ d1 and outputs a O(log(|I|)) bit index of

some I ∈ I that improves w to distance α2η∆(w,C) with respect to C.
If the improving set is uniform and computable in time Tc and space Sc, and the tester is uniform and com-

putable in time Tt and space St, then the algorithm is uniform and runs in time O
(
(2RTt +mTc + 2RqtTc)|I|

)
and space O(R+ St + Sc + log(m) + log(|I|))
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So if we have a code that is both a randomness efficient VLTC and has a small, below d, factor η improving
set, then by applying Lemma 4.5 once we get can get an improver, I1, that improves a d corruption input
to distance ηd. Then applying it again we get another improver I2 such that I2 ◦ I1 improves the input
to distance η2d. After applying this many times, we get a series of improvers such that when they are all
composed together they completely correct the codeword.

Lemma 4.6 (Deterministic Correctors from Improving Sets and VLTC). Let C : Σn
1 → Σm

2 be a code that
has a set of functions I that are qc query, below d1, factor η improving sets for C. Let C also be a VLTC
with qt testing queries, R testing randomness, approximation factor α and vicinity d0. Suppose that 3d1 ≤ d0
and ηα2 < 1 and define ℓ = ⌈ log(d1+1)

log(1/(ηα2))⌉
Then the code C has a deterministic non-uniform corrector with correcting radius d1 running in time

O(ℓ(2Rqt +m)|I|qℓc)

and space
O(ℓqc + ℓ log(|I|) + qt + log(m) +R).

If the improving set and the tester are time T space S uniform, then the corrector is uniform and runs
in time at most O(ℓ(2Rqt +m)T |I|qℓc) and the space at most O(ℓmin{S, q}+ ℓ log(|I|) + log(m) +R+ S)

Many codes are randomness efficient VLTCs, in particular MOSLCCs are (see Theorem 3.15). So the
main challenge is to find an improving set. We do this in Section 5.

4.3 Deterministic Decoder Pseudocode

Now we give pseudocode for our time and space efficient deterministic decoder. We start with the algorithm
in the simple case where we are given a MOSLCC and VLTC to start with. When extending this to the
the more general case, the algorithm only changes by constructing the local tester from the local corrector.
When extending this to the uniform case, we only need to make the improving sets and local testers explicit.

4.3.1 Decoder for MOSLCCs and VLTCs

Let C : Σn
1 → Σm

2 be a code with distance 2d0 and let C be a MOSLCC with local corrector D with MOS
correcting radius d1 <

d0

3 , qc queries, soundness 1
11m and Rc bits of randomness. If D does not already have

the soundness, we may first need to amplify it with Lemma 3.11. Let C also be a VLTC with local tester
V , vicinity d0, randomness Rt, approximation factor α, and number of queries qt. Let ℓ be some integer for
the number of iterations we are willing to run.

Since our decoder is non-uniform, it will have a preprocessing step that will hardwire our advice for
our decoder, and then we will run that decoder to decode an input. We will think of the preprocessing
step as outputting a list of candidate codeword improvers. For some k = O(α2m1/ℓ log(m)), it outputs the
improving set, I = I1, . . . , Ik : Σm

2 → Σm
2 . For each of these codeword improvers, they can compute any

output symbol using only q queries to their input.

Preprocessing: For every j ∈ [k] and i ∈ [m], choose a random string, ri,j ∈ {0, 1}Rc , and define
Ij : Σm

2 → Σm
2 by

(Ij(w))i = Dw(i, ri,j).

That is, each Ij just corrects every symbol with independent uniform randomness. Such a set of can-
didate codeword improvers I1, . . . , Ik for sufficiently large k = O(α2m1/ℓ log(m)) will be an improving
set with high probability.

We emphasize that the choices of randomness ri,j ∈ {0, 1}Rc will be hard coded into the decoder advice,
so it does not need to be in the state of the decoder.

Decoder: Now our final corrector consists of 2 subroutines and a loop. The first subroutine takes a list
of candidate codeword improvers from an improving set and evaluates their composition efficiently.
This is what our final corrector is, several carefully chosen candidate codeword improvers composed
together. The second is a tester that takes composed candidate codeword improvers and checks how
much they improve an input. Finally the loop finds candidate codeword improvers to compose together.
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Query Improvers This function takes a list of candidate codeword improvers, described by their in-
dexes (j1, . . . , ja) ∈ [k]a, and an input w ∈ Σm and returns individual symbols of Ija(. . . (Ij1(w))).
This algorithm needs to compute the corrector, D, recursively. We don’t know much about D
except once the index i and randomness r is fixed, Dw(i, r) can be computed by a time q space
|Σ2|q decoder.

So in the psuedocode, we interpet D to be the program that takes as input a program f , an
index i and randomness r and outputs Df (i, r) where Df (i, r) runs D(i, r) with the oracle queries
answered by some program f . We will use the convention that a program with a small number of
the arguments filled is a program that takes as input the remaining arguments. See Algorithm 1
for pseudocode.

Algorithm 1 Query Improvers (D is the local corrector)

procedure QueryImprov((j1, . . . , ja), w, i) ▷ Computes Ija (. . . (Ij1(w)))i
if a = 0 then ▷ If we are not given any candidate codeword improvers,

return wi ▷ return w unmodified.
else

return DQueryImprov((j1,...,ja−1),w)(i, ri,j) ▷ Run D, but every time it queries the input,
end if ▷ answer it using a call to EvalImprov.

end procedure

Test Current Output This subroutine takes in a list of candidate codeword improvers, described by
their indexes (j1, . . . , ja) ∈ [k]a, and a starting word w ∈ Σm

2 such that for some x ∈ Σn
1 we have

that ∆(w,C(x)) ≤ d1. Then for y = Ija (. . . (Ij1(w))) we want to output an α approximation of
∆(y, C(x)).

This is done in two steps. First, y is compared to w. If they are too different, then we know that
y cannot be close to C(x), so we just output a large value. Otherwise we run V with every choice
of randomness. Similar to D, define V f (r) to be the program that takes as input a program f
and a choice of randomness r and runs V with oracle queries computed by f . See Algorithm 2
for pseudocode.

Algorithm 2 Approximate Corruption (V is the vicinity local tester)

procedure ApxCor(J = (j1, . . . , ja), w) ▷ Approximates ∆(y, C(x)) if ∆(y, C(x)) ≤ d1.
▷ Otherwise either outputs m or approximates ∆(y, C(x)).

b← 0
for all i ∈ [m] do

if QueryImprov(J,w, i) ̸= wi then ▷ Compute ∆(y, w)
b← b+ 1

end if
end for
if b ≥ 2d1 then ▷ If y is too far from w, return m

return m
end if
b← 0
for all r ∈ {0, 1}Rt do ▷ Run V with every choice of randomness

if V QueryImprov(J,w)(r) = 1 then
b← b+ 1 ▷ Count number of failed tests.

end if
end for
return αbm

2Rt
▷ Return approximation of distance

end procedure

Main Loop Finally our main algorithm will take as input a w ∈ Σm
2 such that for some x ∈ Σn

1

we have that ∆(w,C(x)) ≤ d1 and prints x. This algorithm builds a list of candidate codeword
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improvers, each of which improves the last by a large a factor of m1/ℓ. In the end we will have a
list of candidate codeword improvers that together correct w. Finally, we will output the symbols
in w that correspond to symbols in x. For simplicity, we assume the first n symbols of C(x) are
the symbols of x. See Algorithm 3 for pseudocode.

Algorithm 3 Time and Space Efficient Deterministic Decoding

procedure Decode(w) ▷ Decodes w with ∆(w,C) ≤ d1.
J ← () ▷ Start with no codeword improvement.
for all i = ℓ− 1, . . . , 0 do ▷ Improve ℓ times.

for all j ∈ [k] do ▷ Try all k candidate improvers.
J ′ ← J ◦ j ▷ Add candidate improver to a temporary list of improvers.
error ← ApxCor(J ′, w) ▷ Check how much it improved w.
if error < mi/ℓ/2 then ▷ If it improved w enough.

J ← J ′ ▷ Keep j on the list of improvers and continue to next i.
break

end if
end for

end for
for all i ∈ [n] do ▷ Print x using the improvers J .

Print QueryImprov(J,w, i)
end for

end procedure

4.3.2 Decoders for Typical LCCs

The algorithm for a typical LCC works in the same way. The only necessary change to the pseudocode is
that the vicinity local tester, V , is not provided to us. However, a randomness efficient vicinity local tester
always exists for a MOSLCC (see Theorem 3.15). This VLTC just corrects random symbols and compares
them to the input. Finding the appropriate random strings for the correction will take more preprocessing
time, but this can be hard coded into the decoder just like the candidate codeword improvers were.

For a typical LCC, the decoder is exactly the same as a MOSLCC, the only difference is the analysis. So
to be explicit, our only change is to add the following to the following preprocessing step.

Preprocessing: For some sufficiently large k′ = O(m log(m) + m1+1/ℓ) every j ∈ [k′], choose a random
string, r′j ∈ {0, 1}Rc , and define V w(j) by

V w(j) =

{
1 Dw(⌈jm/k′⌉, r′j) ̸= w⌈jm/k′⌉

0 otherwise
.

That is, each V w(j) just corrects a symbol with independent randomness and checks if it matches w.

We emphasize that the choices of randomness r′j ∈ {0, 1}Rc will be hard coded into the decoder itself,
thus don’t need to be in the state of the algorithm to be used.

Remark (Differences Between Our Pseudocode and Our Proof). We also note that the extra factor of
m1/ℓ in k′ is only required to handle inputs with very large corruption: higher than Ω(m/q). That is,
we only need to use the full k′ tests in the first iteration of the decode procedure (Algorithm 3). After
that, only O(m log(m)) local tests are necessary.

The protocol used in our proof uses this slightly modified algorithm because the analysis is simpler, but
both work.

4.3.3 Uniform Decoder for Reed-Solomon Codes

The uniform decoder uses the same decoding strategy except that the improving set and local tester is
given by a curve sampler. Specifically, we can test how close a function is to a low degree polynomial by
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counting how many curves in the sampler there are such that the function restricted to that curve is a low
degree polynomial. Each candidate codeword improver takes a curve in the sampler and runs Reed-Solomon
decoding on that curve composed with the function. The deterministic decoding algorithm is the same,
except that I and V are explicit and don’t need to be precomputed or given as advice.

5 Deterministic Decoder Analysis

In this section we present the analysis of our deterministic decoders. We start by constructing improving sets
for LCCs and MOSLCCs using the probabilistic method. Then we will prove that improving sets and VLTCs
give time and space efficient deterministic decoders. Then we give deterministic decoders for MOSLCCs.

Next we show that typical LCCs have deterministic decoders. We note that this does not immediately
follow from Lemma 3.16, which shows that typical LCCs are MOSLCCs, because the MOS correcting radius
may be much smaller than the original correcting radius. More details are in Section 5.4.

Finally, we show that any code with good enough improving sets have efficient deterministic decoders.
This shows that to make our construction explicit it suffices only to make the necessary improving sets.

5.1 Improving Sets For LCCs and MOSLCCs

Now we give improving sets for LCCs and MOSLCCs. The size of the improving sets is important for the
time of the decoder. In this section, we will show why improving sets that don’t completely eliminate the
corruption are smaller. This is why an iterative decoding approach makes it faster to find a good codeword
improver. The idea is that we need less randomness to reduce the number of errors by a factor m1/ℓ fraction
versus reducing it by a factor of m.

Specifically, suppose we have a local corrector which only fails to correct a symbol with probability 1/m.
Then if we run the corrector m times for each of the m symbols, we only expect it to fail to correct m times.
That is, for j ∈ [m] and i ∈ [m], if we choose an independent randomness ri,j , we expect only m of the ri,j
to fail to correct symbol i. Actually, from a Chernoff bound, the probability we fail to correct more than
100m times is less than 2−m. Since there are only 2m possible inputs, some choice of randomness must not
fail more than 100m times for any input.

Now we want to find a j ∈ [m] such that ri,j fails to correct symbol i for at most ηd choices of i ∈ [m].
If we want to remove all the errors right now, so η = 0, then it could be for some w ∈ Σm

2 that each of the
first 100m choices of j, one of the ri,j fails to correct symbol i. Thus we would need to check 100m choices
of j, and each j could take time m to check, so the time would be Ω(m2). However, if we only wish to get
the number of corruptions down to ηm for η = m−1/ℓ, then there can only be 100m

ηm = 100m1/ℓ choices of j

that have more than ηm corruptions. So only at most m1/ℓ choices of j need to be checked before we find
one that improves a given input.

Then our first codeword improver would be the local corrector with the randomness from one of these
100m1/ℓ first choices of j hard coded into it. So we only need k = O(m1/ℓ) choices of randomness to reduce
an input string with O(m) corruption to a string with O(m1−1/ℓ) corruption.

Lemma 5.1 (LCCs Give Codeword Improving Sets). Let C : Σn
1 → Σm

2 be an LCC and D be a local corrector
for C with correcting radius d1, randomness R, soundness 1

2m and q queries. Let d2 be some distance with
d2 ≤ d1.

Then for some k = O
(

m
d2

)
there exists a k element set of functions I such that for all d ≤ d1 we have

that I is a q query d to d2 improving set for C.

Proof. The idea is to just use D with random seeds for the improving set I. With high probability the
decoders fail extremely rarely, so rarely that for each not too corrupted codeword, in expectation the functions
in the improving set must fail to correct at most d2 times.

Let k = 10m
d2

. Then for each j ∈ [k] and i ∈ [m], we choose random ri,j ∈ {0, 1}R and define Ij by
(Ij(w))i = Dw(i, ri,j). Then I will be the set {Ij : j ∈ [m]}. We want to show that with positive probability,
this construction works. Specifically, we want to show that with positive probability for any x ∈ Σn

1 and
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w ∈ Σm
2 with ∆(w,C(x)) ≤ d1 we have that∑

j∈[k]

∆(Ij(w), C(x)) ≤ 10m.

We do this with a Chernoff bound. By the definition of an LCC, see that the expectation of the sum is

µ ≤ mk

2m
= k/2.

So by the Chernoff bound, the probability that sum is more than 9m if k ≤ 10m is at most

e−0.82(5m/(2+0.8) ≤ e−m < 2−m.

This is more than the total number of potential w ∈ Σm
2 . So in particular for any k ≤ 10m there exists some

choice of I1, . . . , Ik such that for all x ∈ Σn
1 and w ∈ Σm

2 with ∆(w,C(x)) ≤ d1 we have that∑
j∈[k]

∆(Ij(w), C(x)) ≤ 9m.

Now we choose such I.
For every j ∈ [k], by definition of each Ij , for any i ∈ [m], it only runs D once to calculate (Ij(w))i, thus

only every queries w at q places. Finally by choice of I for any w ∈ Σm
2 and x ∈ Σn

1 with ∆(w,C(x)) ≤ d1
we have that

E
j∈[k]

[∆(Ij(w), C(x))] ≤ 9m

k
= (9/10)d2 < d2.

The issue with this result is that it only can take an input with O(m) corruptions down to ηm corruptions
with O(1/η) candidate codeword improvers. We need to keep going to get ηm corruptions down to η2m
corruptions with only O(1/η) candidate codeword improvers in the improving set, but the prior argument
would require O(1/η2) candidate codeword improvers in the improving set.

To improve this result, we need the LCC to have a stronger property we call “message oblivious soundness”
(MOS) (see Definition 3.10). LCCs with MOS have the following stronger result. For any distances d1 and

d2 within the correcting radius, there is a list of k = O
(

d1 log(m)
d2

)
candidate codeword improvers such that

for any input w with ∆(w,C) ≤ d1 one of the candidate codeword improvers improves w to distance d2.
The analysis is similar, but instead of saying some randomness must work for every input, we say some
randomness must work for every pattern of corruption.

Lemma 5.2 (MOSLCCs Give Codeword Improvers). Let C : Σn
1 → Σm

2 be a MOSLCC and D be a local
MOS corrector for C with MOS correcting radius d1, randomness R, soundness 1

2m , and q queries. Let
η ∈ (0, 1) be some function of n.

Then for some k = O
(

log(m)
η

)
there exists a k element set of functions I that is a q query, below d1,

factor η improving set for C.

Proof. There are only O(md) error patterns z ∈ {0, 1}m with wt(z) ≤ d. The idea is to just use D with
random seeds for the candidate improvers I1, . . . , Ik in the improving set I. With high probability the
decoders fail extremely rarely, so rarely that for every error pattern, one candidate codeword improver must
fail less than ηd times. We do this argument over the space of error patterns, not corrupted codewords, since
for small d, this space is much smaller. Thus we need fewer candidate codeword improvers to cover it.

Let k = 20 log(m)
η . Then for each j ∈ [k] and i ∈ [m], we choose random ri,j ∈ {0, 1}R and define Ij by

(Ij(w))i = Dw(i, ri,j). We want to show that with positive probability, this construction works. Specifically,
we want to show that with positive probability for every w ∈ Σm

2 and x ∈ Σn
1 with ∆(w,C(x)) ≤ d1 we have

that ∑
i∈[m],j∈[k]

1Ij(w)i ̸=C(x)i ≤ 20 log(m)∆(w,C(x)).
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To do this, we choose some d ≤ d1, and then we want to show that with probability greater than 1− 1
m we

have that for every error pattern z ∈ {0, 1}m with wt(z) = d we have that

∀x ∈ Σn
1 , w ∈ Diff(C(x), z) :

∑
i∈[m],j∈[k]

1Ij(w)i ̸=C(x)i ≤ 20d log(m).

See that

max
x∈Σm

2 ,w∈Diff(C(x),z)

∑
j∈[k]

∆(Ij(w), C(x)) = max
x∈Σm

2 ,w∈Diff(C(x),z)

∑
j∈[k],i∈[m]

1Dw(i,ri,j )̸=C(x)i

≤
∑

j∈[k],i∈[m]

max
x∈Σm

2 ,w∈Diff(C(x),z)
1Dw(i,ri,j )̸=C(x)

=
∑

i∈[m],j∈[k]

1∃x∈Σm
2 ,w∈Diff(C(x),z):Dw(i,ri,j )̸=C(x)i .

So we will actually show that with good probability, for every error pattern z ∈ {0, 1}m with wt(z) = d we
have that ∑

i∈[m],j∈[k]

1∃x∈Σm
2 ,w∈Diff(C(x),z):Dw(i,ri,j) ̸=C(x)i = O(d log(m)).

We do this with a Chernoff bound. By the definition of an MOSLCC, see that the expectation of the
sum is

µ ≤ mk

2m
= k/2.

So by the Chernoff bound, the probability that sum is more than 19d log(m) if k ≤ 20d log(m) is at most

e−0.92(10d log(m))/(2+0.9) ≤ e−2d log(m) < m−d−1.

There are at most md many z ∈ {0, 1}m with wt(z) = d, so in particular for all but less than 1
m of the

choices of I1, . . . , Ik we have that for all of the corruptions z ∈ {0, 1}m with wt(z) = d we have that∑
i∈[m],j∈[k]

1∃x∈Σm
2 ,w∈Diff(C(x),z):Dw(i,ri,j )̸=C(x)i ≤ 19d log(m) < ηkd.

That is, with probability more than 1− 1
m , we have that I is a d to ηd improving set for C. Then by a union

bound, with positive probability, for all d ≤ d1, we have that I is a d to ηd improving set for C. So let I be
such a set.

For every j ∈ [k], by definition of each Ij , for any i ∈ [m], it only runs D once to calculate (Ij(w))i, thus
only ever queries w at q places. So I is a q query, below d1, factor η improving set for C.

Thus with this improvement, for any distance d, there is some choice of k = O(log(m)/η) candidate
codeword improvers that will improve any corruption d codeword to a corruption at most ηd codeword. This
gives us the small set of randomness strings we need to make the decoder deterministic. Combining this
with Lemma 4.6 gives a time and space efficient decoder for any systematic MOSLCC. In the next section
we prove Lemma 4.6.

5.2 Decoders From Improving Sets and VLTC Analysis

Now we know that MOSLCCs have small improving sets. But we still need to check the codeword improvers
to make sure we select one that actually improves the codeword. To do this, we need our code to be checkable.
We now show that if a code both has a small improving set and a vicinity local tester, then it we can find a
codeword improver efficiently.

Lemma 4.5 (VLTCs Can Select From Improving Sets). Let C : Σn
1 → Σm

2 be a code that has a set of
functions I that are qc query, below d1, factor η improving sets for C. Let C also be a VLTC with qt testing
queries, R testing randomness, approximation factor α and vicinity d0. Suppose that 3d1 ≤ d0.

20



Then there is a non-uniform algorithm that runs in time O
(
(m+ 2Rqt)qc|I|

)
and space O(R+ qt + qc +

log(m) + log(|I|)) and takes as input a w ∈ Σm
2 with ∆(w,C) ≤ d1 and outputs a O(log(|I|)) bit index of

some I ∈ I that improves w to distance α2η∆(w,C) with respect to C.
If the improving set is uniform and computable in time Tc and space Sc, and the tester is uniform and com-

putable in time Tt and space St, then the algorithm is uniform and runs in time O
(
(2RTt +mTc + 2RqtTc)|I|

)
and space O(R+ St + Sc + log(m) + log(|I|))

Proof. All we need to do is iterate through all the choices of I ∈ I and use the VLTC property to check if
I is an improver for w. There will be two tests. If I passes both tests, the algorithm outputs the index of I
in I.

1. If ∆(I(w), w) > 2d1, then reject.

2. Run every test in the VLTC on I(w). If the probability of a test failing is more than αη∆(w,C)
m , then

reject.

See that the total amount of space is just the space to hold a candidate codeword improver plus the space
to run the codeword improver plus the space to run the LTC plus the space to hold which LTC test we are
on. This is space

log(|I|) + qc + qt +O(R+ log(m)).

The total time is just the time to decode every symbol plus the time to run every local test times the time
to decode every symbol of that test all times the size of the improving set. This is time

O
(
(mqc + 2Rqtqc)|I|

)
= O

(
(m+ 2Rqt)qc|I|

)
.

The time and space in the uniform case follow in a similar time
Now we show that the protocol never outputs an invalid I. For w ∈ Σm

2 with ∆(w,C) ≤ d1, there is
some x ∈ Σn

1 with ∆(w,C(x)) ≤ d1. Then suppose that for some I ∈ I that ∆(I(w), C(x)) > 3d1. Then by
the triangle inequality, we must have that ∆(I(w), w) > 2d1, so the first test rejects I. Otherwise, we have
that ∆(I(w), C(x)) ≤ 3d1 ≤ d0. If ∆(I(w), C(x)) > α2η∆(w,C), then the probability a local tests fails is at
least

Pr
r∈{0,1}R

[V I(w)(r)] ≥ ∆(I(w), C)

mα
>
αη∆(w,C)

m

so the second test rejects I.
Finally, we show that there is some I ∈ I that is good enough the protocol outputs it. By Lemma 4.4,

there is an I ∈ I such that I improves w to distance η∆(w,C) with respect to C. That is, if for some x ∈ Σn
1

we have that ∆(w,C(x)) ≤ d1, then there is some I ∈ I such that

∆(I(w), C(x)) ≤ η∆(w,C(x)) ≤ d1.

By the triangle inequality, ∆(Ij(w), w) ≤ 2d1, so the first test passes. By the property of the VLTC, the
probability the local test fails is at most

Pr
r∈{0,1}R

[V I(w)(r)] ≤ α∆(I(w), C(x))

m
≤ αη∆(w,C(x))

m
.

So the second test passes. So the test outputs the index of some I ∈ I, and any I ∈ I it outputs improves
w to distance α2ηd.

So now we have that VLTCs can efficiently find a codeword improver from an improving set. Now we
want to apply several codeword improvers together until we get a fully corrected codeword.

Lemma 4.6 (Deterministic Correctors from Improving Sets and VLTC). Let C : Σn
1 → Σm

2 be a code that
has a set of functions I that are qc query, below d1, factor η improving sets for C. Let C also be a VLTC
with qt testing queries, R testing randomness, approximation factor α and vicinity d0. Suppose that 3d1 ≤ d0
and ηα2 < 1 and define ℓ = ⌈ log(d1+1)

log(1/(ηα2))⌉
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Then the code C has a deterministic non-uniform corrector with correcting radius d1 running in time

O(ℓ(2Rqt +m)|I|qℓc)

and space
O(ℓqc + ℓ log(|I|) + qt + log(m) +R).

If the improving set and the tester are time T space S uniform, then the corrector is uniform and runs
in time at most O(ℓ(2Rqt +m)T |I|qℓc) and the space at most O(ℓmin{S, q}+ ℓ log(|I|) + log(m) +R+ S)

Proof. We first find suitable codeword improvers so that when they are all composed, they entirely correct
the corrupted codeword. Then we run this codeword improver to decode the code. We proceed by induction.

First, by Lemma 4.5, there is an algorithm, B′
1, that takes any w1 ∈ Σm

2 that has an x ∈ Σn
1 with

∆(w1, C(x)) ≤ (ηα2)ℓ−1d1 and outputs an O(log(|I|)) bit description of a qc query code improver, I1,
that improves w1 to distance (ηα2)ℓd1 ≤ d1

d1+1 < 1. That is, I1(w1) = C(x). Further B′
1 runs in time

O
(
(m+ 2Rqt)qc|I|

)
and space O(R+ qt + qc + log(m) + log(|I|)). Then by running B′

1 and then running I1
to correct all the codeword symbols, we get an algorithm, B1, that prints C(x) in time O

(
(m+ 2Rqt)qc|I|

)
and space O(R+ qt + qc + log(m) + log(|I|)).

Suppose that for some i ∈ [ℓ − 1] we have an algorithm Bi that takes any wi ∈ Σm
2 that has an x ∈ Σn

1

with ∆(wi, C(x)) ≤ (ηα2)ℓ−id1 and prints C(x). Further suppose Bi runs in time O(i(m+ 2Rqt)q
i
c|I|) and

space O(iqc + i log(|I|) + qt + log(m) +R).
Then by Lemma 5.2, there is an algorithm, B′

i+1 that takes any wi+1 ∈ Σm
2 that has an x ∈ Σn

1 with
∆(wi+1, C(x)) ≤ (ηα2)ℓ−i+1d1 and outputs an O(log(|I|)) bit description of a qc query code improver,
Ii+1, that improves wi+1 to distance (ηα2)ℓ−id1. Further, B′

i+1 runs in time O
(
(m+ 2Rqt)qc|I|

)
and space

O(R+ qt + qc + log(m) + log(|I|)).
Now to construct Bi+1, one first runs B′

i+1 on wi+1 to get improver Ii+1. Then one runs Bi on wi =
Ii+1(wi+1) to print C(x). By assumption wi = Ii+1(wi+1) has distance (ηα2)ℓ−id1, thus Bi must print C(x).

See that the time to run Bi+1 is the time to run B′
i+1 plus the time to simulate Bi. The time to simulate

Bi is only the time to run Bi times qc since every query to the input of Bi needs to actually query qc elements
of w. Thus simulating Bi takes time

O(i(m+ 2Rqt)q
i+1
c |I|).

Adding the time to run B′
i+1 still has Bi+1 running in time

O((i+ 1)(m+ 2Rqt)q
i+1
c |I|).

For space, we only need the max of the space to run B′
i+1 and the space to simulate running Bi. The space

required to simulate running Bi is just the space to hold Ii+1 plus the space to run Bi plus the space to run
Ii+1. This only requires space

max{O(R+ qt + qc + log(m) + log(|I|)), O(iqc + i log(|I|) + qt + log(m) +R) + qc}+ log(|I|)
=O((i+ 1)qc + (i+ 1) log(|I|) + log(m) +R)

The time and space in the uniform case follows from the uniform case of Lemma 4.5 and a similar
argument.

5.3 Decoders for MOSLCCs Analysis

From Theorem 3.15 we know that MOSLCCs are also VLTCs, and from Lemma 5.2 we know that MOSLCCs
have improving sets, so we can combine these with Lemma 4.6 to get a deterministic decoder for any
systematic MOSLCC.

Theorem 5.3 (MOSLCCs have Efficient Deterministic Decoders). Suppose some systematic code C : Σn
1 →

Σm
2 is a MOSLCC with MOS correcting radius d, soundness 1

11m and q correcting queries.
Then for any integer ℓ ≥ 1, the code C has a deterministic non-uniform decoder with decoding radius d/3

running in time
O(ℓmd1/ℓ log(m)2qℓ+1)

and space
O(ℓ(q + log(m))).
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Proof. From Theorem 3.15 we know that C is also an VLTC with vicinity d, q + 1 queries, randomness
log(m) + log(log(m)) +O(1) and approximation factor α = 2.

Let η = 1
α2 (d/3 + 1)−1/ℓ. From Lemma 5.2, for some k = O

(
log(m)

η

)
there exists a k element set of

functions I that is a q query, below d/3, factor η improving set for C.
Now see that

log(d/3 + 1)

log(1/(ηα2))
=

log(d/3 + 1)

log(1/(d/3 + 1)−1/ℓ)

=ℓ.

Then by Lemma 4.6, the code C has a deterministic corrector with correcting radius d/3 running in time

O(ℓ(2Rqt +m)|I|qℓc) = O(ℓ(m log(m)(q + 1) +m)d1/ℓ log(m)qℓ) = O(ℓmd1/ℓ log(m)2qℓ+1)

and space
O(ℓqc + ℓ log(|I|) + qt + log(m) +R) = O(ℓq + log(m) + ℓ log(log(m))).

The only modification we need to do to the non-uniform algorithm from Lemma 4.6 is to make it only
print the symbols at the indexes in the codeword that correspond to the original message message. These
indexes must exist since C is systematic.

5.4 Decoders for Typical LCCs Analysis

Up till now, we have described the deterministic corrector for a MOSLCC, now we discuss correctors for
typical LCCs. You may recall that typical LCCs are also MOSLCCs from Lemma 3.16, but in performing
this transformation, the correcting distance decreases significantly, to O(m

q ). So while the reduction from
typical LCCs to MOSLCCs does give you an efficient deterministic decoder for typical LCCs, the decoding
radius is no longer Ω(m).

The solution to this is to start by correcting as a regular LCC, but instead of correcting down to zero
errors, we only correct into the MOS correcting radius. Since LCCs have randomness efficient tests for
testing a large fraction of errors from Lemma 3.14 and have small improving sets for improving to large
distances from Lemma 5.1, an LCC can efficiently correct into the MOS correction radius. Then we can use
the decoder for MOSLCCs to decode the message.

The following is a more specific formulation of Theorem 1.3.

Theorem 5.4 (Typical LCCs have Efficient Deterministic Decoders). Suppose code C : Σn
1 → Σm

2 is a
typical LCC with smoothness β, and q queries as well as an LCC with correcting radius d1 and q queries.

Then for any integer ℓ ≥ 1, the code C has a deterministic non-uniform decoder with decoding radius
d = d1/3 running in time

O(mq2(β + ℓ(m/β)1/ℓqℓ log(m)ℓ+32O(ℓ)))

and space
O(q log(mβ) + ℓq log(m)).

Proof. The idea is to use one codeword improver to get within the MOS correcting radius, then use our
efficient decoder for MOSLCCs. Specifically, we first use Lemma 5.1 to get a short list of candidate codeword
improvers that will improve our input to within distance d2 = m

10β , and find such a codeword improver for
our input using Lemma 3.14. Then using Lemma 3.16, our code is a MOSLCC and by Theorem 5.3 our
input is within the decoding radius of a time and space efficient deterministic decoder.

By Lemma 3.11, we can get a O(q log(m)) query corrector for C that has soundness 1
10m . Then by

Lemma 5.1, for some k = O
(

m
d2+1

)
= O(β) there exists a k element set of functions I such that for all

d ≤ d1 we have that I is a q query d to d2 improving set for C. Denote the elements of I as I1, . . . , Ij .
Now consider an input w ∈ Σm

2 such that there is some x ∈ Σn
1 with ∆(w,C(x)) ≤ d. Our algorithm first

checks all O(β) of these candidate codeword improvers and finds one Ij such that

1. ∆(w, Ij(w)) ≤ 2d and
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2. for the test, V , from Lemma 3.14 we require that

Pr
r∈{0,1}R

[V Ij(w)r) = 1] ≤ 3d2
4m

where R = log(m2

d2
) +O(1) = log(mβ) +O(1).

See that such a test can be run in time

O(2Rq log(m)q +m(q + 1)) = O(mβq2 log(m))

and space
O(R+ q log(m) + log(m)) = O(q log(mβ)).

We claim that any Ij passing these tests must improve w to distance d2. Suppose that ∆(Ij(w), C(x)) > d2.
If ∆(Ij(w), C(x)) > 3d, then ∆(w, Ij(w)) > 2d, so Ij wouldn’t pass. If ∆(Ij(w), C(x)) ≤ 3d = d1, then by
the soundness of Lemma 3.14

Pr
r∈{0,1}R

[V Ij(w)(r) = 1] >
3d2
4m

,

so the test fails. So any Ij passing the test must have ∆(Ij(w), C(x)) ≤ d2.
Further see that some Ij will pass the test, specifically the Ij that improves w to distance d2/2. This is

by the soundness of Lemma 3.14 and the fact that d2 ≤ d (if d2 > d, we use the identity function as our
codeword improver).

Now by Lemma 3.16, we also have that C is a MOSLCC with MOS correcting radius d′ = m
3β , soundness

s = 1
11m , and O(q log(m)) queries. So by Theorem 5.3, we have that for any integer ℓ ≥ 1, the code C has a

deterministic decoder with decoding radius d′/3 > m
10β = d2 running in time

O(ℓmd′1/ℓ log(m)2(O(q log(m)))ℓ+1)

and space
O(ℓq log(m) + ℓ log(m)).

Since ∆(Ij(w), C(x)) ≤ d′/3, we have that this decoder correctly decodes Ij(w). Then simulating this only
requires an extra q factor time overhead and an extra q additive space overhead.

So the final time of the overall decoder is

O(mβq2 log(m)) +O(ℓmd′1/ℓ log(m)2(O(q log(m)))ℓ+1q) = O(mq2(β log(m) + ℓ(m/β)1/ℓqℓ log(m)ℓ+32O(ℓ)))

and the final space of the overall decoder is

O(q log(mβ)) +O(ℓq log(m) + ℓ log(m) + q) = O(q log(mβ) + ℓq log(m)).

The local tests and local corrections for correcting the input into the MOS correcting radius are the same
as those for correcting the MOSLCC (except that we may need slightly more local tests). So the algorithm
for the typical LCC case is the same as that for MOSLLC, the only difference is the analysis.

5.5 Improving Set is All You Need

We have shown that VLTCs and improving sets together give a time and space efficient deterministic correc-
tor. We showed that all MOSLCCs have both of these properties. In this section, we show that improving
sets directly give VLTCs. This is because, on average, the functions in an improving set give a good approx-
imation of the closest codeword. So comparing the output of the improving set to the input gives a close
estimate of the corruption.

So to construct time and space efficient decoders for a code, one only needs to find improving sets for
that code. So to find uniform time and space efficient deterministic decoders for a code it suffices to just
make the improving sets uniform.
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Lemma 5.5 (Improving Sets Give VLTCs). Let C : Σn
1 → Σm

2 be a code with a set of functions I that is a
q query, below d, factor η improving set for C. Then C has a local tester that uses q+ 1 testing queries, has
log(|I|) + log(m) testing randomness, approximation factor 1

1−η and vicinity d.

If each function in I is uniform and can compute any single output symbol in time T > log(|Σ2|)+log(m),
then the local tester is uniform and can be run in time O(T ).

Proof. The VLTC just uses runs every function I ∈ I on the input w ∈ Σm
2 and compares I(w) to w. Since

I is an improving set, in expectation I ∈ I will be a good approximation of C(x) where C(x) is the closest
codeword to w. Formally, define for (j, i) ∈ [|I|]× [m] define V by

V w((j, i)) =

{
1 (Ij(w))i ̸= wi

0 (Ij(w))i = wi

where Ij is the jth element of I by some canonical ordering.
So take w ∈ Σm

2 such that for some x ∈ Σn
1 we have that ∆(w,C(x)) ≤ d. Then

Pr
I∈I,i∈[m]

[I(w)i ̸= wi] ≤ Pr
i∈[m]

[wi ̸= C(x)i] + Pr
I∈I,i∈[m]

[I(w)i ̸= C(x)i]

≤∆(w,C(x))

m
+ η

∆(w,C(x))

m

≤(1 + η)
∆(w,C(x))

m

≤ 1

1− η
∆(w,C(x))

m
.

And similarly

Pr
I∈I,i∈[m]

[I(w)i ̸= wi] ≥ Pr
i∈[m]

[wi ̸= C(x)i]− Pr
I∈I,i∈[m]

[I(w)i ̸= C(x)i]

≤∆(w,C(x))

m
− η∆(w,C(x))

m

≤(1− η)
∆(w,C(x))

m
.

So V is a strong local tester with vicinity d, q + 1 queries, randomness log(|I|m), and approximation
factor 1

1−η . And since V only ever runs I and then queries a single bit of the input, if each function in I is
efficient to compute, then so is V .

Now that we know that all uniform improving sets also give uniform VLTCs, we can combine this with
Lemma 4.6 to show that just a uniform improving set is all we need for uniform deterministic correcting.
Further if the code is systematic, correcting implies decoding.

Lemma 5.6 (Improvers Give Correctors). Let C : Σn
1 → Σm

2 be a code with a set of functions I that is a q

query, below d, factor η improving set for C. Suppose that η < (1− η)2 and define ℓ = ⌈ log(d/3+1)
log((1−η)2/η)⌉

Then the code C has a deterministic corrector with correcting radius d/3 running in time

O(mℓ|I|2qℓ+1)

and space
O(ℓq + ℓ log(|I|) + log(m)).

If the improving set and the tester are time T space S uniform, then the running time is at most
O(mℓ|I|2qℓ+1T ) and the space is at most O(ℓmin{S, q}+ ℓ log(|I|) + log(m) + S)

Proof. By Lemma 5.5, we know C has a local tester that uses q + 1 testing queries, has log(|I|) + log(m)
testing randomness, approximation factor 1

1−η and vicinity d.
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By Lemma 4.6, we have that the code C has a deterministic corrector with correcting radius d/3 running
in time

O(ℓ(2Rqt +m)|I|qℓc) = O(ℓ(m|I|q +m)|I|qℓ) = O(ℓm|I|2qℓ+1)

and space
O(ℓqc + ℓ log(|I|) + qt + log(m) +R) = O(ℓq + ℓ log(|I|) + log(m)).

And the uniform case follows similarly.

6 Proof of Theorem 1.1

We have proven that MOSLCCs, typical LCCs, and any code with small improving sets all have efficient
deterministic decoders. Now we want to show that some good code has an almost linear time, subpolynomial
space decoder. The good code we give a decoder for is the LCCs of Kopparty, Meir, Ron-Zewi, and Saraf
[Kop+17]. To do this, we only need to show that their LCC is typical.

Theorem 6.1. The codes of [Kop+17, Theorem 1.1], denoted C : {0, 1}n → {0, 1}m where m = O(n), has
a deterministic non-uniform algorithm B outputting a function D : {0, 1}m → {0, 1}n such that:

Efficient: B runs in time n2
O
(
log(n)3/4

√
log(log(n))

)
and space 2

O
(√

log(n) log(log(n))
)
.

Decodes: For some d = Ω(m), for any x ∈ {0, 1}n and w ∈ {0, 1}m with ∆(w,C(x)) ≤ d we have that

D(w) = x.

Proof. From [Kop+17, Theorem 1.1], C is an LCC with correcting radius Ω(m) and query complexity

q = 2O(
√

log(n) log(log(n))). Now we only need to show that C is also a typical LCC.
First the code is linear, so we can assume it is systematic. Now all we need to show is that it is non-

adaptive, smooth, and has perfect completeness. The local corrector as described in [Kop+17, Lemma 3.4]
makes many non-adaptive calls to the local corrector of a multiplicity code with suitable parameters. As
long as the multiplicity code’s corrector is non-adaptive, smooth, and has perfect completeness, then so does
theirs.

A codeword of the multiplicity code can be seen as a function f : Fa
p → Σ2. For our analysis, it does

not matter what Σ2 is, we only need to know the behaviour of the local corrector. The local corrector for
the multiplicity code is a variation of the corrector in [Kop13, Section 4.1.2], which chooses a set of lines
through the symbol we wish to correct and queries each symbol in those lines. This local correction has
perfect completeness and is non-adaptive.

A random one of those lines is also uniformly randomly chosen from the set of lines through the symbol
to correct. The local corrector is almost smooth, except that it always queries the symbol to be corrected.
But if one modifies this corrector to simply not query this point, the corrector still has perfect completeness
and is now β ≤ 2q smooth.

Now setting ℓ = (log(n))1/4 we can apply Theorem 5.4 to get that C has a deterministic decoder with
decoding radius d = Ω(m) running in time

O(mq2(β + ℓ(m/β)1/ℓqℓ log(m)ℓ+3))

=O(mq2(q + ℓ(O(m))1/ℓqℓ log(m)ℓ+3))

=O(mℓ(O(m))1/ℓq2+ℓ log(m)ℓ+3)

=O(mℓ2(log(m))3/42O(
√

log(m) log(log(m)) log(m)1/42O(log(m)1/4 log(log(m))))

=n2O(log(n)3/4
√

log(log(n))).

and space

O(q log(mβ) + ℓq log(m)) = 2O(
√

log(n) log(log(n))).
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7 Uniform Decoding of Reed-Muller Codes

In this section we prove Theorem 1.2 by constructing an efficient, uniform decoder for Reed-Muller codes.
As described in Section 5.5, all we need is an explicit, small improving set for that code. For Reed-Muller
codes, an improving set can be constructed from a family of curves that is a good sampler. While there were
known constructions of explicit curve samplers [TSU06; Guo13], they do not have good enough parameters
for us. In this section we construct better curve samplers that may be of independent interest.

7.1 Definitions

Now we define a sampler.

Definition 7.1 (Sampler). For any set P , set of randomness strings C, and sample size q, we say that a
function samp : C → P q is a sampler for P with accuracy error ϵ and confidence error δ if for any A ⊆ P

with µ = |A|
|P | we have that

Pr
c∈C

[ Pr
i∈[q]

[samp(c)i ∈ A] ≥ µ+ ϵ] ≤ δ.

On randomness c ∈ C, we call samp(c) a sample.
We call samp non biased if for every u ∈ P we have that

Pr
c∈C,i∈[q]

[samp(c)i = u] =
1

|P |
.

The size of samp is |C| and the randomness of samp is log(|C|).

We need a stronger property than standard confidence error. Namely, we need the confidence error to be

proportional to µ = |A|
|P | , and in particular decrease as µ decreases. We call this strengthening of confidence

error “strong confidence error”.

Definition 7.2 (Sampler With Strong Confidence Error). For any set of points P , set C, and sample size
q, let samp : C → P q be a sampler with accuracy error ϵ for P we say that samp has strong confidence error

δ if for any A ⊆ P with µ = |A|
|P |

Pr
c∈C

[ Pr
i∈[q]

[samp(c)i ∈ A] ≥ µ+ ϵ] ≤ µδ.

We will consider low degree samplers, e.g., curve samplers and subspace samplers.

Definition 7.3 (Affine Subspace). Let dim and a be integers and F be a field. Then the function s : Fa → Fdim

is an a-dimensional affine subspace of Fdim if for every 1 ≤ i ≤ dim we have that si is a degree at most 1
function.

A subspace sampler is a sampler whose samples are affine subspaces.

Definition 7.4 (Subspace Sampler). Let dim be an integer and F be a field. Let S be a set of a-dimensional
affine subspaces of Fdim. Then we say that S is an a-dimensional subspace sampler for Fdim if the function
that takes s ∈ S and outputs (s(i))i∈Fa is a sampler.

For any u ∈ Fdim we define the multiset Su such that s ∈ S is in Su with multiplicity k if there are k
elements i ∈ Fa such that s(i) = u. We say that S is time T space S uniform if, for any ordering of Su,
denoted Su1 , . . . ,Su|Su|, given i ∈ Fa and j ∈ [|Su|] we have that Suj (i) can be evaluated in time T and space
S.

If a = 1, we call the subspace sampler a line sampler.

While we will use subspace samplers in our construction, ultimately we will build a curve sampler.

Definition 7.5 (Curves). Let dim be an integer and F be a field. Then the function c : F→ Fdim is a degree
t curve if for every 1 ≤ i ≤ dim we have that c(·)i is a degree t polynomial.
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Similar to subspace samplers, curve samplers are samplers whose samples are curves. Curve samplers are
useful because they can have better confidence error with fewer queries.

Definition 7.6 (Curve Sampler). Let dim be an integer and F be a field. Let C be a set of degree t curves
through Fdim. Then we say that C is a curve sampler if the function that takes c ∈ C and outputs (c(i))i∈F is
a sampler.

For any u ∈ Fdim we define the multiset Cu such that c ∈ C is in Cu with multiplicity k if there are k
field elements i ∈ F such that c(i) = u. We say that C is time T space S uniform if, for any ordering of Cu,
denoted Cu1 , . . . , Cu|Cu|, given i ∈ F and j ∈ [|Cu|] we have that Cuj (i) can be evaluated in time T and space S.

To actually construct our subspace samplers for Fbdim
p , we will use ε-biased sets over Fdim

pb . An ε-biased
set is a set that looks close to unbiased for any test that is a character.

Definition 7.7 (Character). For any field F and dimension dim, a function χ : Fdim → C is a character if
for any x, y ∈ Fm we have that χ(x+ y) = χ(x)χ(y).

A set of points is an ε-biased set if the expectation of any character χ on that set has magnitude at most
ε.

Definition 7.8 (ε-Biased Set). For any field F and dimension dim, a set S ⊆ Fdim is called an ε-biased set
if for every character χ we have that

| E
s∈S

[χ(s)]| ≤ ϵ.

Finally, any ε-biased set for Fdim implies a straightforward line sampler construction.

Definition 7.9 (Lines Through a Point in a Direction). For any field F, dimension dim, and points u, v ∈
Fdim, we define ℓFu,v : F→ Fdim by

ℓFu,v(z) = u+ z · v.

Definition 7.10 (Lines in Directions). For any field F, dimension dim, and set of directions D ⊆ Fdim define
ℓFD by

ℓFD = {ℓu,v : u ∈ Fdim, y ∈ D}.

We include the field in the definition of ℓ because if Fpb is of order pb for prime p and constant b, then ℓ
can also be viewed as an affine subspace of Fbdim

p .

Lemma 7.11 (Lines as Subspaces). For any prime p, natural numbers b and dim, and D ⊆ Fdim
pb , if ℓ

F
pb

D is

a line sampler, then there is a b-dimensional subspace sampler s
Fp

D for Fbdim
p that is non biased with the same

size, accuracy error, confidence error, and uniformity.

Proof. This comes from identifying the elements in Fpb with Fb
p and then viewing a line ℓ

F
pb

u,v : Fpb → Fdim
pb as

a function from Fb
p to Fbdim

p .
One can identify elements Fpb with formal polynomials over Fp of degree b− 1, modulo some irreducible

degree b polynomial, ψ. This suggests an additive group isomorphism ϕ : Fb
p → Fpb that identifies the

elements of Fb
p with the coefficients of Fpb . That is, for a1, . . . , ab ∈ Fb

p, we have that

ϕ(a1, . . . , ab) =
∑
i∈[b]

aix
i−1

where the right hand side is a formal polynomial.

Then one can show that that ℓ
F
pb

u,v (a) = u+ av is a degree one function when a is viewed as a polynomial
with coefficients in Fp. The proof involves writing out the polynomial and observing that the coefficients in
a are never multiplied by each other, only by constants depending on v and added together.
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7.2 Prior Curve Samplers

The simplest curve sampler is the set of all degree t curves. This curve sampler is good, but it has too many
curves. If the space has n points, there are nt+1 such curves. We will use this curve sampler later, but
restricted to a smaller subspace so there are not too many curves. The following is from [Mos17][Proposition
4.3].

Lemma 7.12 (Naive Curve Samplers). Let F be a field and dim be a number of dimensions so thatm = |F|dim.
For any ϵ > 0 and integer t, the set of all degree t-curves through Fdim is a sampler with accuracy error

ϵ and strong confidence error (
t

ϵ
√
|F|

)t

(t+ 1).

We emphasize that there are only |F|(t+1)dim degree t curves through Fdim, this sampler is unbiased and
time tdim polylog(|F|) uniform.

For comparison, Ta-Shma and Umans constructed a more randomness efficient curve sampler [TSU06].
For confidence error δ, dimension dim, sufficiently large |F|, and n = |F|dim their curve sampler has degree

poly(log(dim/δ))log(dim)) and size poly(ndimlog(1/δ)).

Guo gives an improved curve sampler [Guo13] that has degree poly
(
dim log(1/δ)

log(|F|)

)
and size poly(n/δ).

While Guo improves on the prior construction, the size of both curve samplers are Ω(n4). We cannot even
afford size n2. Further, neither result proves the samplers have strong confidence error, they only prove
regular confidence error.

In contrast, our curve sampler (see Theorem 7.17) has degree O
(

log(1/δ)
log(|F|)

)
, size n poly(dim)(1/δ)O( log(1/δ)

log(|F|) ),

and has strong confidence error. Our curve sampler is better in three ways.

1. The dependence of our curve sampler’s size on n : the size is close to n and not n4. Our dependence
on δ is worse for small δ, but it is still polynomial in 1/δ as long as δ = 1

|F|k for some constant k. This

is the regime of parameters used in our results.

2. Our curve sampler has strong confidence error. It is possible that the prior curve samplers had strong
confidence error, but it was not shown.

3. Our curve sampler’s degree is lower: it is independent of dim and only linear in log(1/δ)
log(|F|) instead of

polynomial.

7.3 ε-Biased Sets To Subspace Samplers

We will now construct explicit subspace samplers from explicit ε-biased sets. For the ε-biased set, we use
the construction of Ta-Shma [TS17], generalized by Jalan and Moshkovitz [JM21, Theorem 1.1]. Here we
state their result for the special case of an ε-biased set for Fdim.

Lemma 7.13 (Small ε-Biased Sets Exist). There is a deterministic algorithm which takes as input the order

of a field F, an integer dim ≥ 1 and λ > 0, runs in time poly
(

dim log(|F|)
λ

)
and outputs a λ biased set D ⊆ Fdim

where |D| = O
(

dim log(|F|)O(1)

λ2+o(1)

)
.

In particular, if n = |F|dim and λ = 1
|F| , then |D| = poly(|F|dim).

As was noted by Ben-Sasson, Sudan, Vadhan, and Wigderson [BS+03, Lemma 4.3], any ε-biased set also
gives a sampler.

Lemma 7.14 (Lines In ε-Biased Directions are Samplers). Suppose D ⊆ Fdim is λ biased. Then for any set

A ⊆ Fdim of density µ = |A|
|F|dim and any ϵ > 0, we have that the set of functions ℓFD is a line sampler for Fdim

with accuracy error ϵ and strong confidence error(
1

|F|
+ λ

)
1

ϵ2
.
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As a corollary of these two lemmas, we have that small, efficiently computable strong line samplers exist
for any field and dimension.

Corollary 7.15 (Efficient Line Samplers Exist). There is a deterministic algorithm which takes as input
the order of a field F, and an integer dim ≥ 1, that runs in time poly(dim|F|) and outputs a set D ⊆ Fdim of
size poly(|F|dim) such that for any ϵ > 0, we have that ℓFD is a line sampler for Fdim with accuracy error ϵ
and strong confidence error 2

|F|ϵ2 .

Further if F has order pb for prime p and integer b we have that s
Fp

D (from Lemma 7.11) is also an
unbiased b-dimensional subspace sampler for Fbdim

p with size pb(dim+O(1)) poly(dim), with accuracy error ϵ,

and strong confidence error 2
pbϵ2

. Further sFD is time and space poly(pbdim) uniform.

Proof. The algorithm just outputs the ε-biased set from Lemma 7.13 and by Lemma 7.14 we have that ℓFD

is a sampler with the desired parameters. By Lemma 7.11 we have that s
Fb
p

D is a subspace sampler.
Notice that the size of sFD, is just the size of the space being sampled, pbdim, times |D|, which is poly(pbdim),

giving a total size of pb(dim+O(1)) poly(dim).

7.4 Curve Samplers

Unfortunately, subspace samplers alone have too large of a sample size. Instead, we use curve samplers. To
construct our curve samplers, we will first find a subspace sampler and choose a curve through that subspace.
To do this, we start by showing that we can compose subspace samplers and curve samplers to get a new
sampler.

Lemma 7.16 (Composing Subspace Sampler and Curve Sampler). Suppose that S is a time T1, space S1

uniform, unbiased, a-dimensional subspace sampler for Fdim with accuracy error ϵ1 and strong confidence
error δ1. Suppose that C′ is a time T2 space S2 uniform an unbiased degree t curve sampler for Fa with
accuracy error ϵ1 and strong confidence error δ2.

Then let C be the set of functions
C = {s ◦ c : c ∈ C′, s ∈}.

Then C is a degree t curve sampler for Fdim with accuracy error ϵ1 + ϵ2 and strong confidence error δ1 + δ2.
Further the size of C is |S||C| and C is time T1 + T2 and space max{S1, S2}+O(|F|a).

Proof. To show this, we just need to show for any set A with density µ that the probability a random curve
in C oversamples A by more than ϵ1+ϵ2 is at most δ1+δ2. To show this, we will first exclude the subspaces in
S that oversample A by more than ϵ1. This only excludes δ1µ fraction of elements in C. Then the remaining
subspaces, on average, only intersect A on at most µ fraction of points. Then since C has strong confidence,
on average the probability the C′ further oversamples another ϵ2 fraction of points is at most µδ2.

To make this more formal, take A ⊆ Fdim such that µ = |A|
|F|dim . First define S ′ to be the set of subspaces

that don’t over-sample A by more than an ϵ1 fraction. That is,

S ′ = {s ∈ S : Pr
i∈Fa

[s(i) ∈ A] ≤ µ+ ϵ1}.

Now we can rewrite the confidence error of C in terms of S ′. See that

Pr
c′∈C

[Pr
i∈F

[c′(i) ∈ A] ≥ µ+ ϵ1 + ϵ2] = Pr
c∈C′,s∈S

[Pr
i∈F

[s(c(i)) ∈ A] ≥ µ+ ϵ1 + ϵ2]

≤ Pr
s∈S

[s /∈ S ′] + Pr
s∈S′,c∈C′

[ Pr
i∈Fa

[s(c(i)) ∈ A] ≥ µ+ ϵ1 + ϵ2].

See that by the strong soundness error of S that Prs∈S [s /∈ S ′] ≤ µδ1.
Now we want to show that S ′ on average intersects A on at most µ fraction of places. See that since S
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is unbiased, we have that

µ =
|A|
|F|dim

= Pr
s∈S,i∈Fdim

[s(i) ∈ A]

= Pr
s∈S

[s ∈ S ′] Pr
s∈S′,i∈Fdim

[s(i) ∈ A] + Pr
s∈S

[s /∈ S ′] Pr
s∈S\S′,i∈Fdim

[s(i) ∈ A]

=
|S ′|
|S|

Pr
s∈S′,i∈Fdim

[s(i) ∈ A] +

(
1− |S

′|
|S|

)
Pr

s∈S\S′,i∈Fdim
[s(i) ∈ A]

≥|S
′|
|S|

Pr
s∈S′,i∈Fdim

[s(i) ∈ A] +

(
1− |S

′|
|S|

)
(µ+ ϵ1).

Now subtracting from both sides, we get that:

µ−
(

1− |S
′|
|S|

)
(µ+ ϵ1) ≥|S

′|
|S|

Pr
s∈S′,i∈Fdim

[s(i) ∈ A]

|S ′|
|S|

µ−
(

1− |S
′|
|S|

)
ϵ1 ≥

|S ′|
|S|

Pr
s∈S′,i∈Fdim

[s(i) ∈ A]

µ ≥ Pr
s∈S′,i∈Fdim

[s(i) ∈ A].

Now we can bound the probability that curves through subspaces in S ′ oversample A too much. By the
strong confidence error of C, we have that for any s ∈ S ′

Pr
c∈C′

[Pr
i∈F

[s(c(i)) ∈ A] ≥ µ+ ϵ1 + ϵ2] ≤ Pr
c∈C′

[Pr
i∈F

[s(c(i)) ∈ A] ≥ Pr
i∈Fa

[s(i) ∈ A] + ϵ2]

≤δ2 Pr
i∈Fa

[s(i) ∈ A].

Now we can show that

Pr
s∈S′,c∈C′

[ Pr
i∈Fa

[s(c(i)) ∈ A] ≥ µ+ ϵ1 + ϵ2] ≤δ2 Pr
s∈S′,i∈Fa

[s(i) ∈ A]

≤δ2µ.

Thus we conclude that

Pr
c′∈C

[Pr
i∈F

[c′(i) ∈ A] ≥ µ+ ϵ1 + ϵ2] ≤µδ1 + µδ2

= (δ1 + δ2)µ.

See that functions in C are degree t curves since it is just the composition of degree one and a degree t
polynomial. See that the time to compute an element of C is just the time to evaluate a curve in C′ plus the
time to evaluate an element of S. Similarly the space is just the space to evaluate both functions, and this
space can be reused except for the space to hold the output of the curve.

Now we can compose together the efficient subspace sampler based on ε-biased sets, Corollary 7.15, with
the naive curve sampler of all curves, Lemma 7.12, we can get an efficient curve sampler. Now we prove a
generalization of Theorem 1.4.

Theorem 7.17 (Efficient Curve Sampler). For any prime p, integer b ≥ 2, and integer dim ≥ 1, there is a
non biased, degree b-curve sampler C for Fbdim

p such that for every ϵ > 0, it has accuracy error ϵ and strong
confidence error

2b

(
2b

ϵ
√
p

)b

.

Further C has size pb(dim+b+O(1)) poly(dim) and C is time and space poly(pbdim) uniform.
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Proof. By Corollary 7.15, there is an unbiased b-dimensional subspace sampler, S, for Fbdim
p with size

pb(dim+O(1)) poly(dim), with accuracy error ϵ/2, and strong confidence error 8
pbϵ2

. Further S is time and

space poly(pbdim) uniform.
By Lemma 7.12 there is an unbiased, degree b-curve sampler, C′, for Fb with accuracy error ϵ/2 and

strong confidence error (
2b

ϵ
√
|F|

)b

(b+ 1).

Further C′ has size p(b+1)b and is time and space b2 polylog(p) uniform.
Then by Lemma 7.16, for

C = {s ◦ c : c ∈ C′, s ∈ S}

we have that C is a degree b curve sampler for Fbdim
p with accuracy error ϵ and strong confidence error(

2b

ϵ
√
p

)b

(b+ 1) +
8

pbϵ2
≤
(

2b

ϵ
√
p

)b

(b+ 1) + 8

(
1
√
p

)2b(
1

ϵ

)b

≤
(

2b

ϵ
√
p

)b

(b+ 1) +

(
2b
√
pϵ

)b

≤2b

(
2b

ϵ
√
p

)b

.

Further the size of C is

pb(dim+O(1)) poly(dim)p(b+1)b =pb(dim+b+O(1)) poly(dim)

and C is time and space

poly(pbdim) + b2 polylog(p) = poly(pbdim)

uniform.

7.5 Explicit Time and Space Efficient Decoders For Reed-Muller Codes

Curve samplers give a randomness efficient way to correct Reed-Muller codes. The codewords of Reed-Muller
codes are low degree polynomials, and low degree curves composed with low degree polynomials are also low
degree polynomials. This suggests a local decoder. This decoder chooses a random curve through the point
we want to decode. If the curve has little corruption along it, we can correct the low degree polynomial
through that curve correctly. By choosing a curve from a curve sampler , we can correct most points correctly
with high probability.

Now we show that if we have an appropriate curve sampler and an appropriate Reed-Muller code, then
that curve sampler gives codeword improvers for the Reed-Muller code.

Lemma 7.18 (Curve Samplers Give Codeword Improvers). Let F be a field and dim be a number of dimen-
sions. Suppose C is a non-biased, degree t curve sampler for Fdim with accuracy error ϵ and strong confidence
error δ.

Then for any relative corruption µ, degree deg ≤ |F|
t (1− 2(ϵ+ µ)), we have a k = |C|

|F|dim−1 element set of

functions I that is an |F| query, below d = µ|F|dim, factor δ improving set for RM |F|(deg, dim).
If C is time T space S uniform, then each I ∈ I is time |F|(T + polylog(|F|)), space S + O(|F| log(|F|))

uniform.

Proof. We start by describing the improving set. Let our input be p′ : Fdim → F such that for some degree
deg polynomial p : Fdim → F we have that ∆(p, p′) ≤ d = µ|F|dim. For j ∈ [k], we will define the jth element
of I, which we will call Ij , as the output of the following algorithm.
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1. On input u ∈ |F|dim, define the multiset Cu = {c ∈ C : ∃i ∈ F, c(i) = u} where the multiplicity is the
number of i ∈ F such that c(i) = u, as in Definition 7.6. Since C is a non-biased curve sampler, we

have that |Cu| = |C||F|
|F|dim = k. Similarly, we order Cu so that the jth element of Cu, denoted as Cuj , can

be computed in time T and space S.

Let g′ : F→ F be the function defined by g′ = p′ ◦Cuj . Similarly denote g : F→ F to be the polynomial
p ◦ Cuj . See that g is a degree deg · t polynomial.

We query p′ at every point in the range of Cuj to get g′.

2. Then we find the degree deg · t polynomial g∗ : F → F closest to g′. If Cuj doesn’t sample too much
corruption, g∗ will be g.

3. Finally, for whatever i ∈ F we have that Cuj (i) = u, we return g∗(i) as the value for Ij(p
′)u. If g∗ = g,

then Ij(p
′)u = g∗(i) = p(Cuj (i)) = p(u).

All we need to show now is that with probability at least 1 − δµ, we have that g∗ = g. This is because
Ij(p

′)u can only be different from p(u) if g∗ ̸= g.
Since degree deg · t polynomials over F are a code with distance |F| − deg · t, we can only have g∗ ̸= g if

g′ has distance at least 1
2 (|F| − deg · t) from g. Let A be the set of points that p and p′ differ. See that g′

will differ from g on at least 1
2 (|F| − deg · t) locations only if Cuj samples A more then 1

2 (|F| − deg · t) times.
Finally, see that a uniform Cuj is also a uniform element of C since C is unbiased. Thus the probability that
g ̸= g∗ is at most

Pr
u∈Fdim,j∈[k]

[∑
i∈F

1Cu
j (i)∈A ≥

1

2
(|F| − deg · t)

]
= Pr

c∈C

[
Pr
i∈F

[c(i) ∈ A] ≥ 1

2

(
1− deg · t

|F|

)]
≤ Pr

c∈C

[
Pr
i∈F

[c(i) ∈ A] ≥ 1

2
(1− 1 + 2(ϵ+ µ))

]
≤ Pr

c∈C

[
Pr
i∈F

[c(i) ∈ A] ≥ µ+ ϵ

]
≤δµ.

See the only queries made to p′ are the points in Cuj , which is only |F| points. Similarly, the time is just
the time to do decoding of the Reed-Solomon code, which is |F| polylog(|F|), plus the time to evaluate Cuj at
every point, which is |F|T . Similarly for space.

We established in Lemma 5.6 that just finding a uniform improving set is enough to give a deterministic
decoder. Now that we know explicit curve samplers give us uniform improving sets for Reed-Muller codes,
and we have improving sets, we show that Reed-Muller codes have explicit decoders.

Theorem 7.19 (Deterministic Decoders For Reed-Muller From Curve Samplers). Take any prime p, integer
b ≥ 2, and integer dim ≥ 1. Let m = pbdim.

Then for any accuracy error ϵ, relative corruption µ, and degree deg ≤ p
b (1−2(ϵ+µ)) where ϵp1/4 ≥ 2b, the

code RMp(deg, bdim) has a uniform, deterministic corrector with correcting radius d/3 = µpbdim/3 running
in time

mm
8
b poly(pb

2

dim)

and space
poly(pbdim).

Proof. From Theorem 7.17, there is an unbiased, degree b-curve sampler C for Fbdim
p with accuracy error ϵ

and strong confidence error

δ = 2b

(
2b
√
pϵ

)b

.

Further C has size pb(dim+b+O(1)) poly(dim) and C is time and space poly(pbdim) uniform.
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Now we need to simplify the expression for δ. See that

δ =2b

(
2b
√
pϵ

)b

≤p1/4 1

pb/4

≤p−b/8.

Also, since b > 2, we also have that p1/4 > 4, so p−b/8 < 1
4 and thus δ ≤ 1

4 .

From Lemma 7.18, we have a k = pb(dim+b+O(1)) poly(dim)
pbdim−1 = pb(b+O(1)) poly(dim) element set of functions I

that is a p query, below d = µpbdim, factor η = δ improving set for RMp(deg, bdim) that are all time and
space T = S = poly(pbdim) uniform.

Set ℓ = ⌈ log(d/3+1)
log((1−η)2/η)⌉. From Lemma 5.6 the code C has a deterministic corrector with correcting radius

d/3 running in time

O(mℓ|I|2qℓ+1T ) =O

(
mT

log(d/3 + 1)

log((1− η)2/η)

(
pb(b+O(1)) poly(dim)

)2
p

log(d/3+1)

log((1−η)2/η)
+2
)

≤O
(
mpoly(pb

2

dim) log(m)p
log(m)

log(1/δ)−2 log(1−δ)
+2
)

≤O
(
mpoly(pb

2

dim)m
log(p)

log(1/δ)

)
≤O

(
mpoly(pb

2

dim)m
log(p)

log(pb/8)

)
=mm

8
b poly(pb

2

dim)

and space

O(ℓmin{S, q}+ ℓ log(|I|) + log(m) + S) =O

(
S +

log(d/3 + 1)

log((1− η)2/η)
(p+ log(|C|)) + log(m)

)
≤O

(
poly(pb dim) + log(m)(p+ b(dim +b) log(p poly(dim)))

)
.

≤ poly(pb dim).

Now to turn this into a decoder, we just observe that the Reed-Muller code is linear, thus can also be
made systematic. So our decoder just runs the corrector and only outputs the symbols that are equal to the
message. Now we apply Theorem 7.19 to special cases of the Reed-Muller code to prove Theorem 1.2.

Theorem 1.2 (Codes With Uniform Time And Space Efficient Decoders). For any constant γ > 0, there is
a constant rate code with a uniform, deterministic decoder with constant relative decoding radius which runs
in time O(n1+γ) and space O(nγ).

Proof. This code is just a Reed-Muller code with carefully chosen parameters so that when we apply The-
orem 7.19 we get the desired results. For any large enough integer deg we will construct one code in this
family. The degree will be a small polynomial in the message length.

Specifically, for some constant c, we will set b = c
γ . The constant c depends on the constants in the

polynomials of Theorem 7.19. We set dim = b2, as well as ϵ = µ = 1
4 and prime p to some prime between

2bdeg and 4bdeg. Then see that for large enough deg that 2b ≤ ϵp1/4 and deg ≤ p
2b = p

b (1− 2(ϵ+ µ)).
Now I show that RMp(deg, bdim) has constant rate. See that the size of a codeword in this code is

m = pbdim ≤ (4b)bdimdegbdim

and the size of a message in this code (which is the number of monomials of degree at most deg) is at least

n ≥
(

deg

bdim

)bdim

= degbdim(bdim)−bdim.
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Since b and dim are both constants, the gap between the message length and codeword length is only a
constant factor. So the rate is constant.

We note that

m ≥n ≥
(

deg

bdim

)bdim

deg ≤bdimm1/(bdim)

≤bdimm1/b3

=O(mγ/(b2c)).

Then by Theorem 7.19, the code RMp(deg, bdim) has a uniform, deterministic corrector with relative
correcting radius µ/3 running in time

mm
8
b poly(pb

2

dim) =O(m1+ 8γ
c poly((4b)b

2

degb
2

))

=O(m1+ 8γ
c poly(mγ/c))

=O(mpoly(mγ/c))

and space

poly(pbdim) =O(poly((4b)bdegb))

=O(poly(mγ/(bc))).

As long as c is larger then the exponent of the polynomial, our claimed result holds. Just let c be such a
constant so that b is also an integer.

Then since the code has constant relative decoding radius, it has constant relative distance. Since it
also has constant rate, it is an asymptotically good code. Since n increases as deg increases, it is an infinite
family of good codes.

We also note that this code could be made binary by concatenating it with a small, efficiently encodable
and decodable asymptotically good binary code. If we need a code for some arbitrary message length n, this
can be achieved by choosing an appropriate degree. Since the number of bits in a message for a given degree
is

ndeg = Θ(degbdim log(p)) = Θ(degbdim log(deg))

we have that every n has a degree deg so that ndeg is greater than n and within a constant factor of n (for
instance, some power of 2 degree would achieve this).

8 Open Problems

In this work, we showed that there are good codes with time and space efficient deterministic decoders, but
there are still many open problems.

1. Make our decoders uniform for the codes of [Kop+17]. More generally, find asymptotically good codes
that can be decoded from Ω(n) errors in n1+o(1) time and no(1) space with a uniform deterministic
decoder.

We suspect that similar ideas to those used in our curve samplers could be used for efficiently correcting
multiplicity codes. But we have not worked through the details yet.

2. Find codes that can both be:

• encoded in n1+o(1) time and no(1) space.

• decoded in n1+o(1) time and no(1) space.
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There exist codes that can be encoded deterministically in almost n1+o(1) time and no(1) space (the
condenser codes of [CM24]), and there exists different codes that can be decoded deterministically in
n1+o(1) time and no(1) space (any typical LCC). But these are different codes. We want codes that
achieve both simultaneously.

We expect that by taking an appropriately chosen tensor code of a condenser code and a typical LCC
one can get a tradeoff between the encoder space and the decoder space. For example, we suspect
that there is a tensor code constructed in such a manner which has an encoder that runs in n1+o(1)

time and n1/2+o(1) space and has a decoder that runs in n1+o(1) time and n1/2+o(1) space. Can one do
better than this tensor construction?

3. Find a problem that can be solved by a randomized algorithm more time and space efficiently than a
deterministic algorithm.

Finding unconditional greater than linear time lower bounds for any explicit problem has been very
difficult, but we have lower bounds when space is also constrained. So we hope that showing an
advantage for randomized algorithms may be easier if we bound both time and space.

Specifically, for some constants α′ > α > 0 and β′ > β > 0 find a function computable by a randomized
algorithm in time n1+α and space nβ , but not computable by a deterministic algorithm in time n1+α′

and space nβ
′
.

We hoped that decoding locally correctable codes would be such a problem, but our results show that
locally correctable codes can be deterministically decoded time and space efficiently.

4. Find codes with deterministic decoders running in quasilinear time and polylogarithmic space.

We don’t even know of codes with randomized decoders that run in quasilinear time and polylogarithmic
space. If polylogarithmic query LCCs were discovered, this would imply a randomized decoder that
runs in quasilinear time and polylogarithmic space. But our derandomization technique would not give
a deterministic decoder that runs in quasilinear time and polylogarithmic space for such an LCC. A
fundamental limitation in our decoding strategy is that it can only ever give decoders running in time

Ω(m2
√

log(m)), even if there are typical LCCs with polylogarithmic queries. Ideally one could hope
for quasilinear time and polylogarithmic space, or perhaps even linear time and log space. But our
techniques cannot achieve this.
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