
The Rate of Interactive Codes is Bounded Away from 1

Abstract

Kol and Raz [STOC 2013] showed how to simulate any alternating two-party com-

munication protocol designed to work over the noiseless channel, by a protocol that

works over a stochastic channel that corrupts each sent symbol with probability ϵ > 0

independently, with only a 1 + O
(√

H(ϵ)
)
blowup to the communication. In partic-

ular, this implies that the maximum rate of such interactive codes approaches 1 as ϵ

goes to 0, as is also the case for the maximum rate of classical error correcting codes.

Over the past decade, followup works have strengthened and generalized this result to

other noisy channels, stressing on how fast the rate approaches 1 as ϵ goes to 0, but

retaining the assumption that the noiseless protocol is alternating.

In this paper we consider the general case, where the noiseless protocols can have

arbitrary orders of speaking. In contrast to Kol-Raz and to the followup results in

this model, we show that the maximum rate of interactive codes that encode general

protocols is upper bounded by a universal constant strictly smaller than 1. To put it

differently, we show that there is an inherent blowup in communication when protocols

with arbitrary orders of speaking are faced with any constant fraction of errors ϵ > 0.

We mention that our result assumes a large alphabet set and resolves the (non-binary

variant) of a conjecture by Haeupler [FOCS 2014].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 112 (2024)

Contents

1 Introduction 1

1.1 Our Result . 1

1.1.1 Techniques . 2

1.2 Additional Related Work . 3

2 Overview 5

2.1 Lower Bounds on Noiseless Simulations . 6

2.2 Analysis of Strong Subsequences . 7

3 Model and Preliminaries 10

3.1 Notation . 10

3.2 Embedding Strings . 10

3.3 Our Noisy Channel . 14

3.4 Pointer Chasing . 15

4 Proof of Theorem 1.1 16

5 Proof of Theorem 4.1 17

5.1 Notation . 17

5.2 Definitions . 18

5.3 Properties of Info . 21

5.4 Key Lemma . 24

5.5 Finishing the Proof . 29

6 Proof of Theorem 4.2 30

6.1 A Customized Concentration Inequality . 30

6.2 Basic Definitions . 32

6.3 Predictable Indices . 34

6.3.1 Proof of Claim 6.8 . 35

6.4 Strings With Small Predℓ(·) Exist . 37

6.5 Structure of Long Subsequences . 38

6.6 Proof of Theorem 4.2 . 39

A Information Theory Preliminaries 45

A.1 Entropy . 45

A.2 Min-Entropy . 46

A.3 KL Divergence . 47

A.4 Total Variation Distance . 48

i

1 Introduction

One of the gems in Shannon’s famous 1948 paper introducing information theory [Sha48] is

the channel capacity formula, that gives the maximum rate possible for an error correcting

code over any discrete memoryless channel. Recall that an error correcting code with rate r

allows one party to reliably communicate a message consisting of n symbols to a remote

second party, with a negligible probability of error, by sending only n · (1/r+ o(1)) symbols

over the channel. Let CΓ,ϵ be the symmetric channel with alphabet set Γ and noise rate ϵ.1

The channel capacity formula shows that the maximum rate over CΓ,ϵ approaches 1 as the

noise rate ϵ approaches 0. For instance, the maximum rate over C{0,1},ϵ is 1−H(ϵ), where H
is the binary entropy function.

Schulman’s groundbreaking work [Sch92] studied error correcting codes in the “two-

way” setting, where there are noisy channels between the two communicating parties in

both directions. Such error correcting codes are called interactive codes and they allow the

encoding of interactive protocols, which may consist of many back-and-forth messages, in a

noise-resilient way. Following Schulman’s question regarding the maximum rate of interactive

codes [Sch92], Kol and Raz [KR13] defined the notion of interactive channel capacity, which

is the analogue of channel capacity in the interactive setting. For every ϵ > 0, they designed

an interactive code with rate rϵ = 1−O(
√

H(ϵ)) over the two-way binary symmetric channel,

under the assumption that the protocol being encoded is alternating2.

It is not hard to see that the interactive coding scheme of Kol and Raz [KR13] also works

for the CΓ,ϵ channel, for every Γ. Their result, stated for such channels, is that for any ϵ > 0,

any alphabet set Γ, and any alternating protocol Π with alphabet Γ, there exists a protocol

Π′ that simulates Π over CΓ,ϵ with negligible error, and has length |Π| · (1/rϵ + o(1)), where

|Π| is the length of Π. Observe that, as in the classical setting, the maximum rate approaches

1 as ϵ approaches 0. Following [KR13], the dependence of the maximum rate on ϵ, under the

same alternating turns assumption, was further improved by [Hae14] to 1−O(
√
ϵ), and was

also studied for other two-way channels, including the adversarial channel [Hae14, CS19],

the (adversarial) feedback channel [Pan13, GH14], the adversarial erasure channel [GH14],

and the adversarial insertion-deletion channel [HSV18].

1.1 Our Result

The main result of this paper is Theorem 1.1, showing that in the general case, where the

order of speaking in the noiseless communication protocols Π may be arbitrary, the maximum

achievable rate is bounded away from 1.

Theorem 1.1. For every ϵ > 0, there exists a set Γ and a deterministic protocol Π with

alphabet Γ, such that any randomized protocol Π′ that simulates Π over CΓ,ϵ with probability

1That is, the input and output alphabets of the channel CΓ,ϵ are Γ, |Γ| ≥ 2. On a sent symbol z ∈ Γ, the
channel outputs z with probability 1− ϵ, and with probability ϵ, it outputs a random symbol in Γ.

2That is, Alice sends a message to Bob in all odd rounds, and vice versa.

1

0.99 has length at least |Π|/(1− Ω(1)).

Observe that since Theorem 1.1 holds for the CΓ,ϵ channel that has stochastic noise and

for public-coin protocols Π′, it also holds for adversarial noise and private-coin protocols.

Furthermore, our proof of Theorem 1.1 actually proves a much stronger claim (see Section 2).

For example, it implies that the maximum rate of an interactive code over the feedback

channel that randomly erases a single communicated symbol (i.e., one of the sent symbols,

selected uniformly at random, is received as ‘⊥’ and the sender is notified) is only 1−Ω(1) (cf.

the results of [KR13, Pan13, Hae14, GH14, HSV18, CS19] for such channels with maximum

rate approaching 1).

We mention that our result settles the (non-binary version) of a conjecture by Haeupler

(Conjecture 1.1 in [Hae14]), that also appears in Haeupler and Gelles (Question 3 in Section 7

of [GH14]) and in Gelles’s excellent survey (Question 2 in Section 5 of [Gel17]). While lower

bounds on the maximum rate of various two-way channels (i.e., upper bounds on the overhead

of interactive codes) are known, prior to our work, the only non-trivial upper bound was due

to [KR13] and is extremely involved (see Section 1.2).

We also mention that Theorem 1.1 uses a large alphabet set (specifically, we need |Γ| =
poly(|Π|)), as for such alphabets the single erased symbol cannot be guessed by the receiver

with high probability (in the binary |Γ| = 2 case, the erased symbol can be guessed with

probability 1
2
). Nevertheless, we believe that Theorem 1.1 still holds for the binary setting

(fixing Γ = {0, 1}), and proving it is an outstanding question we leave open. Other interesting

directions for future work include finding the maximum rate of interactive codes over CΓ,ϵ,

say when ϵ approaches 0, and characterizing the “hard” communication orders resulting in

maximum rates bounded away from 1.

Finally, we wish to point out a corollary of Theorem 1.1: Many works involving interactive

protocols (in the noisy or noiseless settings) assume an alternating order of speaking, as it is

often simpler to deal with and only incurs at most a factor 2 blowup to the communication.

Theorem 1.1 shows that this transformation of general protocols to alternating ones incurs

at least a factor c blowup, for some c > 1: Assume that the blowup is only by a 1 + o(1)

factor. By converting the hard-to-simulate protocol Π from Theorem 1.1 to a protocol

with alternating turns and then applying the [KR13] scheme, we obtain a noise-resilient

protocol Π′ that simulates Π with only 1+o(1) blowup to the communication, in contradiction

to Theorem 1.1.

1.1.1 Techniques

The proof of Theorem 1.1 is quite involved and a detailed overview can be found in Section 2.

In this section we give some of the highlights of our proof.

Theorem 1.1 is proved by combining Theorem 4.1 and Theorem 4.2. As mentioned above,

our result holds even over the very mildly noisy channel that has feedback and only randomly

erases a single communicated symbol. Theorem 4.1 considers a pointer chasing protocol with

2

order of speaking σ3 and shows that it can only be simulated over this mildly noisy channel

by a protocol with order of speaking σ′, for which σ is a strong subsequence of σ′. By a strong

subsequence, we mean that for most coordinates i′ of σ′, σ remains a subsequence of σ′ even

after coordinate i′ is removed. Observe that given Theorem 4.1, to prove Theorem 1.1, all

we have to do is exhibit a σ such that any σ′ for which σ is a strong subsequence of σ′ is a

constant factor longer than σ. This is done in Theorem 4.2.

At a high level, Theorem 4.1 is proved by proving a generalized pointer chasing lower

bound: while prior pointer chasing lower bounds assume that players alternate (e.g., [NW91]),

our proof holds for any order of speaking. To analyze cases where one of the parties speaks

in several consecutive rounds, we use a lower bound for a generalization of the well-known

Index problem, where the communication is not one-way, but the party holding the index

speaks substantially less than what it takes to convey the index. To see why this lower bound

is useful, assume for example that in the noiseless protocol Alice speaks three times and then

Bob speaks once, i.e., σ = AAAB. We think of Alice’s message in those three rounds as an

index i, and of Bob’s input as a vector v. When Bob speaks in the fourth round he gives vi
to Alice. Now consider a simulation protocol with order of speaking σ′ = BABABA. Can

Bob give vi to Alice? We show that he cannot. The reason is that Alice only speaks in two

instead of three rounds before Bob’s final round, thus she can only give partial information

about i, which is not enough for Bob to compute vi.

Theorem 4.2 is a purely combinatorial claim about strong subsequences, and is shown

using the probabilistic method. We provide a detailed overview in Section 2.2, but for the

high level idea, consider, for any T > 0 the pair of strings (σ, σ′) =
(
(AB)T , (AB)T+1

)
,

and observe that σ is a strong subsequence of σ′ and σ′ is almost the same length as σ.

Roughly speaking, our proof shows that the only reason σ is a subsequence of σ′ for such

a short σ′, is that σ is highly “predictable”, in the sense that one can “guess” the symbols

after coordinate i based on the previous symbols. We formalize this notion and show that

a uniformly random σ is not predictable, and use this to show that for most σ, no short σ′

will be such that σ is a strong subsequence of σ′.

1.2 Additional Related Work

We next survey the most relevant work on the maximum rates of interactive codes over

different channels.

The C{0,1},ϵ channel. The study of error correcting codes for interactive communication

was pioneered by Schulman [Sch92], who showed how to transform any interactive commu-

nication protocol over the (noiseless) binary channel to an equivalent noise-resilient protocol

that works over the (two-way) C{0,1},ϵ channel, with only a constant overhead in the com-

munication. This shows that for any ϵ < 1
2
, the maximum rate of an interactive code over

3We think of the order of speaking in a communication protocol as a string σ ∈ {A,B}∗, where σi = A
means that Alice speaks in round i, and σi = B means that Bob speaks in round i.

3

C{0,1},ϵ is at least some constant strictly greater than 0.

Kol and Raz [KR13] studied the maximum rate rϵ achievable by any interactive code

over C{0,1},ϵ, but as mentioned above, it is not hard to see that their results hold for every

channel CΓ,ϵ. They showed that for alternating noiseless protocols and protocols whose com-

munication order is periodic with a small period, rϵ = 1−O
(√

H(ϵ)
)
. The assumption that

the noiseless protocol is alternating (or has a small period) is crucial as their coding scheme

uses the rewind-if-error mechanism [Sch92], where the parties run the noiseless protocol over

the noisy channel, and periodically compare their received transcripts to detect errors. If an

error was detected, the parties “rewind” to the last agreed upon point and continue the exe-

cution of the noiseless protocol from that point. Since the noiseless protocol is assumed to be

alternating, by taking the order of speaking of the simulating protocol to also be alternating,

they can ensure that when rewinding, the order of speaking in the simulation matches the

assumed order of speaking in the noiseless protocol. Kol and Raz also proved a matching

upper bound of 1− Ω
(√

H(ϵ)
)
for some carefully chosen communication orders4.

We mention that the Kol-Raz result gives the first separation between the maximum rate

of classical error correcting codes and that of interactive codes, and observe that Theorem 1.1

gives a substantially stronger separation.

Building on [KR13] and also assuming an alternating order of speaking, [GHK+16] pre-

sented a deterministic coding scheme that achieves a rate of rϵ (the [KR13] scheme is ran-

domized), and [BKOS21] gave a coding scheme that handles larger ϵ’s (observe that the

[KR13] scheme is only meaningful for small ϵ’s). Specifically, [BKOS21] showed that the

maximum rate of interactive codes over C{0,1},ϵ is at least 0.0302 times the maximum rate of

classical error correcting codes over C{0,1},ϵ.

Other (non-adaptive) channels. The maximum rates of interactive codes over other

two-way channels, that are well studied in the context of classical codes, were also considered

with the alternating communication order assumption. Pankratov [Pan13] studied the rate

of interactive codes over channels with random errors and feedback, and gave a scheme with

rate 1−O(
√
ϵ). Haeupler and Gelles [GH14] improved his result and gave a scheme with rate

1− Θ(H(ϵ)) that works for the adversarial feedback channel. A scheme with the same rate

was also given by [GH14] for the adversarial erasure channel. The adversarial channel with

corruption errors (bit flips) was considered in [Sch93, BR11, Hae14, CS19], and an interactive

code with rate rϵ for this model was presented in [CS19]. The adversarial binary insertion-

deletion channel was considered by [HSV18], who demonstrated an interactive coding scheme

with rate rϵ for it.

4Specifically, the upper and lower bounds match when the communication order is periodic with a period k

that satisfies ϵ = Θ
(

log k
k2

)
. Indeed, Hauepler and Velingker [HV17] showed that if the parties alternate in

sending k = Ω(poly(1/ϵ)) consecutive symbols, then the maximum rate is 1−Θ(H(ϵ)), violating the upper
bound of [KR13].

4

Adaptive channels. In this paper as well as in most of the prior works on interactive

coding, including all the paper surveyed so far, the assumption is that the protocols Π

and Π′ have a non-adaptive (a.k.a, oblivious or static) communication order, meaning that

the order of communication in the protocol is fixed in advance. Haeupler [Hae14] considered

the adaptive setting, where at any round, each party decides whether to send a bit or listen

for one based on its input and received transcript (which, in turn, depends on the channel’s

noise). Observe, however, that protocols in these models may have several parties attempting

to send a symbol in the same round, or even no senders at all, and the received bits in these

cases need to be specified.

Haeupler [Hae14] constructed interactive codes that encode non-adaptive protocols Π

(with any communication order) by adaptive protocols over the C{0,1},ϵ channel with rate

1−O(
√
ϵ), bypassing the upper bound of [KR13]. Put together, [KR13] and [Hae14] imply a

separation between the maximum rates obtained via adaptive and non-adaptive encodings.

[Hae14] conjectured that this separation can be strengthened, even for a single erasure error,

and our Theorem 1.1 proves his conjecture. We mention that other adaptive models were

studied in the literature, see e.g., [AGS16, EHK20].

Acknowledgements

We thank Sepehr Assadi for Lemma A.7 (and a clean proof of it).

2 Overview

Our main result (Theorem 1.1) says that regardless of how small the noise parameter ϵ is,

the overhead required to simulate a noiseless channel over a noisy channel that corrupts each

symbol with probability ϵ independently, is a constant strictly larger than 1. As mentioned

in Section 1.1, we will actually prove a much stronger version of this, showing that it holds

even if the channel corrupts exactly one (uniformly chosen) round, and the parties know

in advance which round it is (and therefore, can change the simulation protocol they use

arbitrarily based on this round, as long as this change does not affect the order in which the

parties speak in the other rounds).

Showing a lower bound for a simulation protocol in a noise model that allows the protocol

to change in response to the noise essentially means that we have to show a lower bound

for a noiseless protocol, where all we know about the noiseless protocol is that its order of

speaking is the same regardless of which round is corrupted by noise. Thus, a big part of

our proof (Section 5) is, given two orders of speaking σ, σ′, understanding when can noiseless

protocols with order of speaking σ′ simulate noiseless protocols with order of speaking σ.

This part subsumes and generalizes famous “pointer-chasing” and “round-complexity” lower

bounds in communication complexity [NW91, e.g.] and is overviewed in Section 2.1. The

5

answer turns out to be quite elegant: σ′ can simulate σ if and only if σ is a subsequence

of σ′.

We now look back at our original problem of designing a noiseless protocol Π that cannot

be simulated by any (short) protocol over a noisy channel, even when the noise corrupts

only one random symbol in the simulation protocol that is known to the parties as soon as

they fix the order of speaking in the simulation protocol. Having shown that an order σ′

can simulate σ if and only if σ is a subsequence of σ′, this means that we have to construct

an order of speaking σ (which will be the order in which the parties speak in Π) such that

any short order of speaking σ′ satisfies the property that σ is not a “strong” subsequence

of σ′. By that we mean that removing one uniformly chosen coordinate from σ′ ensures

that, with high probability, σ is not a subsequence of σ′ with that coordinate removed (see

Definition 3.7). This is the second main part of our proof and is described in Section 6 and

overviewed in Section 2.2.

2.1 Lower Bounds on Noiseless Simulations

Recall that the order of speaking for a protocol Π of length T is a string σ ∈ {A,B}T that

captures the order in which Alice and Bob speak in Π, in the sense that, for all i ∈ [T],

party σi is the party speaking in round i of Π. The goal of this section is to show that, given

any two orders of speaking σ and σ′, all (noiseless) protocols with order of speaking σ can be

simulated by (noiseless) protocols with order of speaking σ′ if and only if σ is a subsequence

of σ′. The “if” direction is straightforward and we shall focus on showing the “only if”

direction.

We argue this in the contrapositive. Suppose that two orders σ and σ′ are given such

that σ is not a subsequence of σ′. We first note that if σ is alternating, i.e., σ is of the

form ABABA . . . , then the desired result follows from (an easy extension of) the pointer

chasing lower bounds in [NW91] and subsequent work. However, a lower bound only for

alternating σ is not good enough for us, as we want the lower bound for a string σ such that

any short σ′ satisfies the property that σ is not a strong subsequence of σ′. This is provably

not the case for alternating σ as for any alternating σ, the string σ′ = AB||σ satisfies the

property that σ is a strong subsequence of σ′, where || denotes concatenation.
However, as our lower bound must subsume these lower bounds, it is important to un-

derstand them. For this, consider the case when σ = AB so that σ′ (as σ cannot be a

subsequence of σ′) is of the form BB . . . AAAA . . . , say σ′ = BBBAAA. Consider now the

well-known Index problem, where Bob has a large array and Alice has an index for the array,

and the goal of the parties is to output the element at Alice’s index in Bob’s array. There is

a simple protocol with order of speaking σ that solves this problem, where Alice first sends

her index and then Bob sends the element at that index. However, if the order of speaking

is restricted to be σ′ there is no way for Bob to send the right element to Alice, as all his

messages are before he acquires any knowledge of Alice’s index (unless of course, he sends

to Alice the entire array, but this is impossible if Alice’s alphabet is large enough).

6

For our more general result, we first extend the above lower bound to a more general

class of σ that has many Alice messages before the last Bob message, say, σ = AAAB. The

hard protocol for these σ is also the protocol for the Index problem except that this time,

Alice’s index is so large that it will not fit in one message (and requires three messages).

For all σ′ where all Bob’s messages precede all Alice’s messages, the argument is the same

as before, but this time there are additional σ′ that are not of the form above and satisfy

that σ is not a subsequence of σ′, for example σ′ = BABABA.

When σ′ = BABABA, as a protocol with order of speaking σ′ proceeds, Bob does get

some messages from Alice (in rounds 2 and 4) but these messages are not long enough to

contain her entire index. Thus, to show a lower bound for such σ′, we need to extend

the aforementioned lower bound for Index to work for protocols where Bob has partial

information about Alice’s index. This is exactly what we do, showing that such partial

information from Alice cannot help Bob in guessing the right index a whole lot, and he still

cannot send her the right index without sending a huge portion of his array. However, Bob

cannot send a huge portion without having high communication, which is impossible if σ′ is

not much longer than σ.

To extend this argument to general σ and σ′ such that σ is not a subsequence of σ′, we

break the string σ into “intervals”, where an interval is defined a set of consecutive rounds

where the same party is speaking, e.g., the first three Alice rounds in σ = AAAB. For each

such interval starting from the first, we treat it like the Index problem above, and show

that the interval cannot be simulated unless the party speaking in that interval has spoken

enough times in the simulation. Once the party has spoken enough times, we remove the

interval from σ and the corresponding rounds from σ′ and arrive at a smaller problem with

a fewer number of intervals. As σ is not a subsequence of σ′, we will run out of rounds

in σ′ before we run out of intervals in σ, giving us a trivial protocol for a non-trivial task, a

contradiction.

2.2 Analysis of Strong Subsequences

In this part, our goal is to show that there exists an order of speaking σ ∈ {A,B}∗, such that

for any σ′ ∈ {A,B}∗ for which σ is a strong subsequence of σ′, it holds that σ′ is a constant

factor longer than σ. Recall that σ is a strong subsequence of σ′ if, for most coordinates

i of σ′, it holds that σ is a subsequence of σ′ with coordinate i removed. Throughout this

section, we will disregard the connection of σ and σ′ to communication protocols, and look

at them simply as strings in {A,B}∗. Also, we let T be the length of σ and assume that the

length of σ′ is T ′ = (1 + δ)T , where δ > 0 is a small constant.

Patterns. We will show this using the probabilistic method, categorizing the relevant pairs

(σ, σ′) into various “patterns”, where for each pattern ρ and each σ, there is exactly one σ′

such that the pair (σ, σ′) is in the pattern ρ. We then show that, for every fixed pattern, and

a randomly chosen pair (σ, σ′) in the pattern, the probability that σ is a strong subsequence

7

of σ′ is extremely small, small enough to union bound over all the patterns, and our result

follows.

Specifically, a pattern for us will be defined by a string ρ ∈ {A,B, •}T
′
such that the

number of coordinates of ρ that are equal to the “bullet” symbol • is T . We say that a

pair (σ, σ′) is in the pattern ρ if it holds that upon “inserting” the string σ in the bullet

coordinates of ρ, we get the string σ′. Note that we can indeed restrict attention to the pairs

(σ, σ′) that are in some pattern, as if a pair is not in any pattern, then it must be the case

that σ is not a subsequence of σ′, and therefore, it cannot be a strong subsequence of σ′

either. Moreover, the number of patterns ρ is at most
(
(1+δ)T

T

)
· 2δT ≤ 2O(δ log

1
δ)·T and we

will ensure that, assuming δ is a small enough constant, the relevant probabilities are small

enough for a union bound over all the patterns.

Analyzing a toy pattern. Following the above framework, we now fix a pattern ρ and

show that for a random pair (σ, σ′) in ρ, we have that σ is not a strong subsequence of σ′ with

high probability. The high level idea here is best understood by taking ρ = •T , the T -length
string each of whose coordinates are •, even though this is not a valid pattern according to

the definition above. However, picking ρ = •T also means that the only way a pair (σ, σ′)

can be in this pattern is if σ = σ′, implying that σ is trivially not a strong subsequence of

σ′ = σ. Thus, to make the argument non-trivial, we will show that, for a uniformly random

σ ∈ {A,B}T , even a prefix of σ of length 0.9T is not a strong subsequence of σ.

For this, consider what happens if we erase the first coordinate of σ to get a string σ−1,

and try to estimate the length of the longest prefix of σ that is a subsequence of σ−1 (the case

when a different coordinate is erased is similar). To estimate the length of the longest prefix,

we consider the greedy algorithm “matching” the string σ to the string σ−1: Namely, match

each coordinate of σ to the earliest coordinate possible5 in σ−1. To analyze this algorithm,

for all i ∈ [T], define lagi to be the difference between i and the coordinate in σ corresponding

to the coordinate in σ−1 that i is matched to. For example, if coordinate 1 of σ is matched

to the first coordinate in σ−1 (equivalently, the second coordinate in σ), then, lag1 = 1.

As σ is uniformly random in {A,B}T , each coordinate of σ is uniformly and independently

random in {A,B}, and thus each coordinate in σ will take (in expectation) two coordinates

of σ−1 to find a match. This means that, in expectation6, we have lagi ≥ lagi−1 + 1. Using

concentration bounds, we can conclude that, except with probability exponentially small

in T , at most a 0.9 fraction of the coordinates will end up being matched, implying that the

length of the longest prefix of σ that is a subsequence of the resulting string σ−1 is at most

0.9T , as desired.

Towards actual patterns. The argument above does not extend to actual patterns ρ ∈
{A,B, •}T

′
, but for a very specific reason: To understand the reason, note that the argument

5For example, to match AABA in the string ABABAB, the matching will look like the following (matched
characters underlined) ABABAB.

6Note that if a match is found after l coordinates, the lag increases by l − 1.

8

above crucially relied on the fact that lag is non-zero throughout (in fact, it starts from 1

and never decreases). This means that we are always trying to compare a coordinate in σ to

another “fresh” coordinate, which is independently and uniformly random, and this allowed

us to say that lag increases by 1 in expectation. In fact, if the lag were to have been 0,

then we would be comparing every coordinate in σ to itself, which means that it will aways

match, and we will therefore be able to match all of σ.

Now, observe that the presence of non-bullet coordinates in ρ can actually decrease the

lag and make it 0, ruining our argument above. For an example, consider the case T ′ = T+2,

and the pattern ρ = •, A,B, •T−1. Specifically, consider the case where the first coordinate

is erased, creating a lag of 1. However, as the two coordinates A,B immediately follow the

erased coordinate, one can always match the first coordinate of σ to one of these coordinates,

bringing the lag back down to 0, and allowing the rest of σ to be matched as is.

To get around this, we use the observation that any non-bullet symbol in ρ can decrease

the lag by at most 1. Thus, as the number of non-bullet symbols in σ is δT , if we could

somehow magically start with lag = δT , then, lag will never vanish for any fixed pattern ρ

and we can apply exactly the same analysis as in the toy pattern above to get that σ will

not be a subsequence except with probability exponentially small in T . This probability is

small enough for us to union bound over all possible ρ and get that except with probability

exponentially small in T , a uniformly random σ will not have any σ′ such that σ is a strong

subsequence of σ′.

Starting with a small lag. All we need to do now is to apply the argument above for

large initial lag to the case at hand where the initial lag is 1. For this, observe from our

example above (and also in the toy example ρ = •T) that lag will actually increase as i

increases, in the sense that the final lag is at least Ω(T) more than the initial lag, except

with exponentially small probability in T . This holds despite the fact that we have a small

number (= δT) of non-bullet symbols, as each such symbol can decrease lag by at most 1, but

the much larger number (= T) of bullet symbols, each increasing lag by 1 in expectation (as

the small number of non-bullet symbols are not enough to make lag vanish), will eventually

override the effect of the non-bullet symbols.

The fact that the lag increases can be used as follows: Suppose we are currently con-

sidering an i such that lagi is some value L > 0. Consider the pattern starting from the

coordinate where i is matched and look at the segment consisting of the next, say, L/
√
δ

coordinates. As only a δ fraction of the coordinates are non-bullet, this segment is expected

to have
√
δ · L < L of non-bullet symbols. As the number of non-bullet symbols is smaller

than the initial lag, we can conclude that (even after union bounding over all possible ways

to place the non-bullet coordinates) except for a “bad” event that happens with probability

exponentially small in L, this segment is expected to increase the lag to L′ = Ω
(
L/

√
δ
)
.

Now, we can consider the next segment of length L′/
√
δ, and show that except with

probability exponentially small in L′, this segment is expected to increase lag even more. The

9

increasing length of these segments allows us to show that the sum of the bad probabilities

converges to a constant, implying that for any erased coordinate i, one of the following holds:

(1) The fraction of non-bullet symbols in one of the segments that are generated is much

larger than δ. (2) There exists a segment generated from i for which the bad event occurs.

(3) When i is erased, the final lag increases to be Ω(T).

By Markov’s inequality, both Items 1 and 2 will happen for at most a small constant

fraction of i. Thus, there exists a σ such that for most i, Item 3 will occur, implying that, for

any σ′ such that σ is a subsequence of σ′, we have that σ is not a subsequence of σ′
−i. It follows

that there exists a σ such that for no σ′ is it the case that σ is a strong subsequence of σ′, as

desired. In terms of organization, the definition of i in Item 2 is formalized in Definition 6.6

and the proof that there is a small number of such i is in Lemmas 6.7 and 6.10. Analogous

statements about Item 1 can be found in Lemma 6.12 while the proof of Item 3 can be found

in Section 6.6 (specifically, Lemma 6.15).

3 Model and Preliminaries

3.1 Notation

For n > 0, we use [n] to denote the set {1, 2, . . . , n}. For a, b > 0, we use [a, b] to denote

the set {a, a+ 1, . . . , b}. Additionally, we use (a, b] to denote the set {a+ 1, . . . , b}. The

notations [a, b) and (a, b) are defined analogously.

Let Σ be an alphabet set and n > 0 be an integer. For a string s ∈ Σn and a set I ⊂ [n],

we use sI to denote the |I|-length string obtained by taking only those coordinates of s that

are in I, e.g., we have (ABAAB){1,3,4} = AAA. For i ∈ [n], we sometimes abbreviate s{i} to

si, s[i] to s≤i, and s[n]\{i} to s−i. We also use the notations s<i, s>i and s≥i that are defined

analogously. Whenever we have C ∈ {A,B}, we use C to denote the unique element of

{A,B} not equal to C.

Throughout this paper, we use sans-serif letters to denote random variables.

3.2 Embedding Strings

Let σ, σ′ ∈ {A,B}∗ and T = |σ| and T ′ = |σ′|. For i ∈ {0} ∪ [T], we define the function

Emb(σ, σ′, i) inductively as follows:

Emb(σ, σ′, i) =

{
0, if i = 0

min({Emb(σ, σ′, i− 1) < i′ ≤ T ′ | σ′
i′ = σi} ∪ {T ′ + i}), if i > 0

. (1)

Note that the min above is taken over a finite non-empty set, and is therefore well-defined.

We also define the set:

E(σ, σ′) = {i′ ∈ [T ′] | ∃i ∈ [T] : Emb(σ, σ′, i) = i′}. (2)

10

We say that σ is a subsequence of σ′ if |E(σ, σ′)| = T .

Observation 3.1. Let σ, σ′ ∈ {A,B}∗ and T = |σ|. For all i1 ≤ i2 ∈ {0} ∪ [T], we have:

Emb(σ, σ′, i1) + i2 − i1 ≤ Emb(σ, σ′, i2).

Lemma 3.2. Let σ, σ′ ∈ {A,B}∗ be given. Additionally, let i ∈ [|σ|], i′ ∈ {0}∪ [|σ′|] be such

that Emb(σ, σ′, i− 1) ≤ i′. For all i′′ ≥ i′ ∈ [|σ′|], we have:

Emb(σ, σ′, i− 1 + |E(σ, σ′) ∩ (i′, i′′]|) ≤ i′′ − |(i′, i′′] \ E(σ, σ′)|.

Proof. We have by Observation 3.1 that:

Emb(σ, σ′, i− 1 + |E(σ, σ′) ∩ (i′, i′′]|) ≤ Emb(σ, σ′, i− 1) + |E(σ, σ′) ∩ (i′, i′′]|
≤ i′ + |E(σ, σ′) ∩ (i′, i′′]|
≤ i′′ − |(i′, i′′] \ E(σ, σ′)|.

Lemma 3.3. Let σ, σ′ ∈ {A,B}∗ be given. Additionally, let i ∈ [|σ|], i′ ∈ {0}∪ [|σ′|] be such

that Emb(σ, σ′, i) > i′. For all i′′ ≥ i′ ∈ [|σ′|], we have:

Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′]|) > i′′.

Proof. Proof by induction on i′′. The base case i′ = i′′ is trivial. We show the result for

i′′ > i′ assuming it holds for i′′ − 1. By the induction hypothesis, we have:

Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′)|) > i′′ − 1.

Assume first that i′′ /∈ E(σ, σ′). In this case, by Eq. (2), Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′)|) = i′′

is not possible so we must have that Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′)|) > i′′. We get:

Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′]|) ≥ Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′)|) > i′′.

Now, assume that i′′ ∈ E(σ, σ′). In this case, we have by Observation 3.1 that:

Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′]|) = Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′)|+ 1)

≥ Emb(σ, σ′, i+ |E(σ, σ′) ∩ (i′, i′′)|) + 1

> i′′.

Lemma 3.4. Let σ, τ, σ′, τ ′ ∈ {A,B}∗ be given. For all i′ ∈ {0} ∪ [min(|σ′|, |τ ′|)] such that

11

σ′
≤i′ = τ ′≤i′ and all i ∈ {0} ∪ [min(|σ|, |τ |)] such that σ≤i = τ≤i, we have:

Emb(σ, σ′, i) ≤ i′ =⇒ Emb(τ, τ ′, i) = Emb(σ, σ′, i).

Moreover, we also have:

Emb(σ, σ′, i) > i′ =⇒ Emb(τ, τ ′, i) > i′.

Proof. Fix σ, τ, σ′, τ ′ and i′ as in the lemma statement. For convenience, define S = |σ|,
T = |τ |, S ′ = |σ′|, and T ′ = |τ ′|. As one can simply switch the roles of σ, τ and σ′, τ ′, the

lemma follows if we show that, for all i ∈ {0} ∪ [min(S, T)] such that σ≤i = τ≤i, we have:

Emb(σ, σ′, i) ≤ i′ =⇒ Emb(τ, τ ′, i) ≤ Emb(σ, σ′, i).

We prove this by induction on i. The base case i = 0 is straightforward. We prove the

result for i > 0 assuming it holds for i − 1. Assume that Emb(σ, σ′, i) ≤ i′ implying that

Emb(σ, σ′, i− 1) ≤ i′ by Observation 3.1. We have:

Emb(τ, τ ′, i) = min({Emb(τ, τ ′, i− 1) < i′′ ≤ T ′ | τ ′i′′ = τi} ∪ {T ′ + i}) (Eq. (1))

≤ min{Emb(τ, τ ′, i− 1) < i′′ ≤ i′ | τ ′i′′ = τi}
≤ min{Emb(τ, τ ′, i− 1) < i′′ ≤ i′ | τ ′i′′ = σi} (As σ≤i = τ≤i)

≤ min{Emb(τ, τ ′, i− 1) < i′′ ≤ i′ | σ′
i′′ = σi}. (As σ′

≤i′ = τ ′≤i′)

To finish the proof, we show that Emb(σ, σ′, i) ∈ {Emb(τ, τ ′, i− 1) < i′′ ≤ i′ | σ′
i′′ = σi}. In-

deed, we have Emb(τ, τ ′, i− 1) ≤ Emb(σ, σ′, i− 1) by the induction hypothesis implying that

Emb(τ, τ ′, i − 1) ≤ Emb(σ, σ′, i − 1) < Emb(σ, σ′, i) by Observation 3.1. By assumption, we

also have Emb(σ, σ′, i) ≤ i′ which together with i′ ≤ S ′ and Eq. (1) gives σ′
Emb(σ,σ′,i) = σi as

desired.

Lemma 3.5. Let σ, σ′ ∈ {A,B}∗ be given. Additionally, let i ∈ [|σ|], i′ ∈ {0} ∪ [|σ′|] be
such that Emb(σ, σ′, i− 1) ≤ i′ < Emb(σ, σ′, i). For all i′′ ≥ i′ ∈ [|σ′|] and all 0 ≤ b ≤
|E(σ, σ′) ∩ (i′, i′′]|, we have:

max(i′,Emb(σ, σ′, b+ i− 1)) = Emb
(
σ≥i, σ

′
(i′,i′′], b

)
+ i′ ≤ i′′.

Proof. Proof by induction on b. The base case b = 0 is trivial. We show the lemma for b > 0

assuming it holds for b− 1. For this, note first that Lemma 3.2 and Observation 3.1 implies

that

i′ < Emb(σ, σ′, i) ≤ Emb(σ, σ′, b+ i− 1) ≤ Emb(σ, σ′, i− 1 + |E(σ, σ′) ∩ (i′, i′′]|) ≤ i′′ ≤ |σ′|.

12

Using this, we derive:

max(i′,Emb(σ, σ′, b+ i− 1))

= Emb(σ, σ′, b+ i− 1)

= min
{
Emb(σ, σ′, b+ i− 2) < j′ ≤ |σ′| | σ′

j′ = σb+i−1

}
(Eq. (1) and Emb(σ, σ′, b+ i− 1) ≤ |σ′|)

= min
{
max(i′,Emb(σ, σ′, b+ i− 2)) < j′ ≤ i′′ | σ′

j′ = σb+i−1

}
(As i′ < Emb(σ, σ′, b+ i− 1) ≤ i′′)

= min
{
Emb

(
σ≥i, σ

′
(i′,i′′], b− 1

)
+ i′ < j′ ≤ i′′ | σ′

j′ = σb+i−1

}
(Induction hypothesis)

= min
{
Emb

(
σ≥i, σ

′
(i′,i′′], b− 1

)
< j′ ≤ i′′ − i′ | σ′

i′+j′ = σb+i−1

}
+ i′

= min
{
Emb

(
σ≥i, σ

′
(i′,i′′], b− 1

)
< j′ ≤ i′′ − i′ |

(
σ′
(i′,i′′]

)
j′
= (σ≥i)b

}
+ i′

= Emb
(
σ≥i, σ

′
(i′,i′′], b

)
+ i′. (Eq. (1) and i′ < Emb(σ, σ′, b+ i− 1) ≤ i′′)

Lemma 3.6. Let σ, σ′ ∈ {A,B}∗ be given. Additionally, let i ∈ [|σ|], i′ ∈ {0} ∪ [|σ′|] be
such that Emb(σ, σ′, i− 1) ≤ i′ < Emb(σ, σ′, i). For all i′′ ≥ i′ ∈ [|σ′|] and all 0 ≤ a ≤ b ≤
|E(σ, σ′) ∩ (i′, i′′]|, we have:

Emb
(
σ≥i+a, σ

′
(i′,i′′], b− a

)
≤ Emb

(
σ≥i, σ

′
(i′,i′′], b

)
≤ i′′ − i′.

Proof. The second inequality follows from Lemma 3.5. We prove the first by induction on

b − a. The base case b = a is trivial. We show the lemma for b > a assuming it holds for

b− 1. For this, we derive:

Emb
(
σ≥i+a, σ

′
(i′,i′′], b− a

)
= min

({
Emb

(
σ≥i+a, σ

′
(i′,i′′], b− a− 1

)
< j′ ≤ i′′ − i′ | σ′

i′+j′ = σb+i−1

}
∪ {i′′ − i′ + b− a}

)
(Eq. (1))

≤ min
({

Emb
(
σ≥i, σ

′
(i′,i′′], b− 1

)
< j′ ≤ i′′ − i′ | σ′

i′+j′ = σb+i−1

}
∪ {i′′ − i′ + b− a}

)
(Induction hypothesis)

≤ min
{
Emb

(
σ≥i, σ

′
(i′,i′′], b− 1

)
< j′ ≤ i′′ − i′ | σ′

i′+j′ = σb+i−1

}
= Emb

(
σ≥i, σ

′
(i′,i′′], b

)
. (As Emb

(
σ≥i, σ

′
(i′,i′′], b

)
≤ i′′ − i′ by Lemma 3.5)

Definition 3.7 (Strong Subsequences). For σ, σ′ ∈ {A,B}∗, we say that σ is a strong

subsequence of σ′ if there exists a set I ⊆ [|σ′|] such that |I| ≥ |σ′|
10

and for all i ∈ I we have

that σ is a subsequence of σ′
−i.

13

Observation 3.8. For any strings σ, σ′ ∈ {A,B}∗, if σ is a strong subsequence of σ′, then σ

is a subsequence of σ′.

3.3 Our Noisy Channel

Let Γ be a set with |Γ| ≥ 2. A (deterministic) protocol with the alphabet set Γ is defined

by a tuple:

Π =
(
T, σ,XA,XB,Y ,M1, . . . ,MT , out

A, outB
)
, (3)

where: (1) T > 0 is a parameter denoting the length of the protocol, (2) σ ∈ {A,B}T is a

string that determines which party speaks when (i.e., for all i ∈ [T], party σi is the unique

party speaking in round j), (3) XC for C ∈ {A,B} is the input set of party C, (4) Y is the set

of possible outputs of the protocol, (5) For all i ∈ [T], Mi : X σi ×Γi−1 → Γ is a function that

computes the message sent in round i based on the input of the party σi speaking in round i

and the transcript ∈ Γi−1 received by party σi in the first i−1 rounds, (6) outC : ΓT → Y for

C ∈ {A,B} are functions that each player uses to compute the output from the transcript

of the protocol. We suppress items on the right hand side of Eq. (3) when they are clear

from context. We use the notation spkrs(Π) = σ and |Π| = T . We define a randomized

protocol Π to be a distribution over deterministic protocols Π that all have the same value

of
(
T, σ,XA,XB,Y

)
. We define spkrs(Π) and |Π| to be the common value of spkrs(Π) and

|Π| respectively.

Execution of a protocol. Let Π be a protocol as above and ϵ ≥ 0. We now describe

how Π is executed over the channel CΓ,ϵ that corrupts each sent symbol (independently) to

a uniformly random symbol in Γ with probability ϵ. To describe this execution, we let ⋆ be

a special symbol not in Γ indicating “no noise” and N ∈ (Γ ∪ {⋆})T be a noise vector such

that for all i ∈ [T], the symbol Ni = ⋆ with probability 1−ϵ and a uniformly random symbol

from Γ with probability ϵ (independently for all i), so that N captures the noise inserted

by the aforementioned channel. We shall abuse notation and use CΓ,ϵ to denote both the

channel and the above distribution over noise vectors.

The execution begins with both parties C ∈ {A,B} having input xC ∈ XC and proceeds

in T rounds, maintaining the invariant that before round i ∈ [T], both parties C ∈ {A,B}
have a partial transcript ΠC

<i ∈ Γi−1. In round i, party σi computes the symbol γi =

Mi(x
σi ,Πσi

<i), appends it to its own partial transcript, and sends it over the channel to the

other party σi.

The noise N then acts on the symbol as follows: If Ni = ⋆, then the symbol is sent

uncorrupted and party σi receives the symbol γi. Otherwise, we have Ni ∈ Γ and party σi

receives the symbol Ni. In either case, party σi appends the received symbol to its partial

transcript and the execution proceeds to the next round.

After T rounds are over, each party C ∈ {A,B} outputs outC
(
ΠC

≤T

)
∈ Y . Note that

this execution is entirely determined by the triple
(
xA, xB, N

)
, which we shall often write

14

as (X,N) using X to denote the pair of inputs
(
xA, xB

)
. This fact allows us to write

ΠC
i (X,N), ΠC

≤i(X,N), etc. to denote the corresponding value in the execution of Π in

the presence of noise N when the inputs are X. For C ∈ {A,B}, we also define the

notation resCΠ(X,N) to denote the output of party C in the above execution and resΠ(X,N) =(
resAΠ(X,N), resBΠ(X,N)

)
. We omitN from the above notations when ϵ = 0 and the execution

is noiseless, as in this case, N is always the vector with all coordinates equal to ⋆. Note that,

in this case, the transcripts for Alice and Bob are the same and we can omit the superscript

C in the notation.

Simulations and hole simulations. Let Γ be an alphabet set as above. Let Π and Π′ be

two randomized protocols with alphabet Γ and with the same input sets XA,XB for Alice

and Bob. For p ∈ [0, 1] and ϵ ≥ 0, we say the protocol Π′ simulates the protocol Π over the

channel CΓ,ϵ with probability p if for all xA ∈ XA, xB ∈ XB, it holds that

Pr
N∼CΓ,ϵ,Π∼Π,Π′∼Π′

(resΠ′(X,N) = resΠ(X)) ≥ p.

Throughout this text, the protocol Π being simulated will be deterministic and we shall

omit it from the subscript above. As our main result in a lower bound, the fact that Π is

deterministic only makes our result stronger. As Γ is determined by Π, we shall sometimes

omit writing “over the channel CΓ,ϵ” when ϵ = 0.

For our proof of Theorem 1.1, we actually work with a different (and weaker7) notion of

simulation that we call “hole simulation” and is defined as follows: Let σ′ ∈ {A,B}∗ and Π

be a protocol as above. For p ∈ [0, 1], we say that σ′ hole-simulates Π with probability p if

there exists a set I ′ ⊆ [|σ′|], |I ′| ≥ |σ′|
10

such that for all i′ ∈ I ′, there exists a randomized

protocol Π′
i′ with alphabet Γ and the same input sets as Π that simulates the protocol Π

(over the channel CΓ,0) with probability p and satisfies spkrs(Π′
i′) = σ′

−i′ .

3.4 Pointer Chasing

Let m,T ∈ N. We inductively define the function PCm,T that takes as input functions

(fi)i∈[T] where fi : [m]i−1 → [m] for all i ∈ [T] and outputs a value in [m]T as follows:

For the case T = 1, we simply define PCm,1(f1) = f1. For T > 1 and functions (fi)i∈[T],

let z = PCm,T−1((fi)i<T) be the value defined by the induction hypothesis, and define

PCm,T ((fi)i∈[T]) = z||fT (z). We omit the parameters m,T when they are clear from context.

It is clear from the above definition that for all T ′ ∈ [T], the value of PC((fi)i∈[T]) is inde-

pendent of (fi)i∈[T ′] as long as PC((fi)i∈[T ′]) is the same. Correspondingly, for z ∈ [m]T
′
, we

sometimes write PC(z, (fi)i∈(T ′,T]) to denote the value of PC((fi)i∈[T]) when PC((fi)i∈[T ′]) = z.

7The fact that we work with a weaker notion makes are proof stronger, and in particular, would also work
for the erasure channel. To see the formal sense in which this is weaker, see Section 4.

15

Pointer chasing protocols. Let T ∈ N and σ ∈ {A,B}T . Define m = (200T)200 and

the protocol PCσ to be the T -round communication protocol with alphabet [m] where Alice’s

input are functions (fi : [m]i−1 → [m])i:σi=A and Bob’s input are functions (fi : [m]i−1 →
[m])i:σi=B, and the message sent in round t, for t ∈ [T] is coordinate t of PCm,T ((fi)i∈[T]).

After T rounds, the parties output all of PCm,T ((fi)i∈[T]).

4 Proof of Theorem 1.1

The goal is section is to prove Theorem 1.1 assuming two other theorems that we shall prove

in the following sections. We start by stating these two theorems.

Theorem 4.1. Let σ, σ′ ∈ {A,B}∗ be given. Assume that |σ′| ≤ 5 · |σ|. If σ′ hole simulates

PCσ with probability 1
5
, then σ is a strong subsequence of σ′.

Theorem 4.2. For all T > 0, there exists σ ∈ {A,B}T such that for all σ′ ∈ {A,B}∗ such

that σ is a strong subsequence of σ′, we have |σ′| ≥ (1 + 10−100) · |σ|.

We are now ready to prove Theorem 1.1 (assuming Theorems 4.1 and 4.2).

Proof of Theorem 1.1. Fix ϵ > 0 and assume that ϵ < 0.001 without loss of generality. Define

T = 1
ϵ2

and let σ be as promised by Theorem 4.2. Define Γ =
[
(200T)200

]
and Π = PCσ. Let

Π′ be a randomized protocol that simulates Π with over the channel CΓ,ϵ with probability

0.99 and σ′ = spkrs(Π). As the proof is trivial otherwise, assume that |σ′| = |Π′| ≤ 5T . We

claim that σ′ hole simulates PCσ with probability 0.5. This finishes the proof as it implies

using Theorem 4.1 that σ is a strong subsequence of σ′ which using Theorem 4.2 means that

|σ′| ≥ (1 + 10−100) · T , as desired.
It remains to show the claim. To this end, let T ′ = |σ′| and for i′ ∈ [T ′], define the

protocol Π′
i′ with spkrs(Π′

i′) = σ′
−i′ as follows: For t ∈ {0} ∪ [T ′], let pt =

(
T ′

t

)
· ϵt(1− ϵ)T

′−t

be the probability that the channel CΓ,ϵ corrupts exactly t symbols in Π′. This means that
pt

1−p0
is the probability the channel CΓ,ϵ corrupts exactly t symbols in Π′ conditioned on it

corrupting at least one symbol. Then, the protocol Π′
i′ is exactly the same as Π′ except that

it (1) It does not have round i′ and the party supposed to receive in this round assumes

it got a uniformly random symbol in Γ. Observe that this can equivalently be seen as the

channel always corrupting round i′ in Π′. (2) Samples t′ ∈ [T ′] with probability
pt′

1−p0
, and

then artificially corrupts t′−1 rounds, ignoring the bit actually received in these rounds and

using a uniformly random symbol in Γ instead.

Observe that picking i′ ∈ [T ′] uniformly at random and running Π′
i′ over the noiseless

channel CΓ,0 is the same as running Π′ over CΓ,ϵ and conditioning on the fact that the channel

corrupts at least one symbol. As Π′ simulates Π with over the channel CΓ,ϵ with probability

0.99, we get:

1

T ′ ·
T ′∑
i′=1

Pr
Π′

i′∼Π′
i′

(
resΠ′

i′
(X) = resΠ(X)

)
= Pr

N∼CΓ,ϵ,Π′∼Π′

(
resΠ′(X,N) = resΠ(X) | N ̸= ⋆T

)
16

≥ Pr
N∼CΓ,ϵ,Π′∼Π′

(resΠ′(X,N) = resΠ(X))

− Pr
N∼CΓ,ϵ

(
N = ⋆T

)
≥ 0.9.

It follows that PrΠ′
i′∼Π′

i′

(
resΠ′

i′
(X) = resΠ(X)

)
≥ 0.5 for at least T ′

10
values of i′, as desired.

5 Proof of Theorem 4.1

The goal of this section is to show Theorem 4.1. Owing to the definition of hole simulations

and Definition 3.7, it suffices to show the following lemma:

Lemma 5.1. Let τ ∈ {A,B}∗, m = (200 · |τ |)200, and Π be a randomized protocol with

alphabet [m]. Assume that |Π| ≤ 5 · |τ |. If Π simulates PCτ with probability 1
|τ | , then τ is a

subsequence of spkrs(Π).

We prove Lemma 5.1 in the rest of this section. Fix τ,Π and define n = |τ |, T = |Π|,
and σ = spkrs(Π). We shall show the lemma in the contrapositive, assuming that τ is a not

subsequence of σ and showing that Π does not simulate PCτ with probability 1
n
. As τ, σ are

fixed we shall often omit them from our notation and write Emb(·) instead of Emb(τ, σ, ·)
and E instead of E(τ, σ).

Let XA and XB be input sets of Alice and Bob respectively in PCτ (and therefore also in

Π). Recall from Section 3.3 that we have to show that there exist xA ∈ XA, xB ∈ XB such

that:

Pr
Π∼Π

(resΠ(X) = resPCτ (X)) <
1

n
.

Let F be the uniform distribution over all inputs of PCτ , defined as in Section 3.4. To show

the foregoing equation, we fix an arbitrary deterministic protocol Π in the support of Π and

show that (noting that resPCτ (F) = PC(F)):

Pr
F∼F

(resΠ(F) = PC(F)) <
1

n
. (4)

5.1 Notation

For a finite non-empty set S, we shall use U(S) to denote the uniform distribution over S.

We omit S from the notation when it is clear from the context. All probabilities and random

variables will be defined over the randomness in F , and we will often abbreviate PrF∼F to

Pr for brevity of notation. Throughout, if X is a random variable and x is a value that X can

take, we sometimes abbreviate the event X = x as simply x when it is clear from context.

Thus, we may write Pr(x) instead of Pr(X = x) and Pr(· | x) instead of Pr(· | X = x). We

use dist(X) to denote the distribution of a random variable X.

17

We will use F to denote the random variable corresponding to a sample from F and F to

denote a given value of F. Observe that F is an n-tuple (f1, f2, · · · , fn). For a set S ⊆ [n],

we define fS = (fi)i∈S. For i ∈ [n], we may write f≤i instead of f[i] and f<i instead of f[i−1].

We also define fA = f{i∈[n]|τi=A} and fB = f{i∈[n]|τi=B}. We may combine these notations and

use fA
≤i = f{i′∈[i]|τi′=A}, etc.. We will use f≤i to denote the random variable corresponding to

f≤i. The notations fS, f<i, f
A, etc. are defined similarly.

Recall the functions Πt(·) and Π≤t(·) from Section 3.3. In this section, we extend this

notation to sets S ⊆ [T] by defining ΠS(·) = (Πt(·))t∈S. For t ∈ [T], we will use Πt = Πt(F)

to denote the random variable obtained by sampling F and outputting Πt(F), and use Πt to

denote a value Πt can take. The notations Π≤t, ΠS are defined analogously.

5.2 Definitions

Recall that we fixed τ ∈ {A,B}n as the order in which the parties speak in the protocol

PCτ being simulated. We also fixed a deterministic protocol Π and defined T = |Π| and
σ = spkrs(Π) ∈ {A,B}T .

The set L. We consider the set of indices i ∈ [n] where the value of τi is different from

τi+1. Define the set:

L = {n} ∪ {i ∈ [n− 1] | τi ̸= τi+1}. (5)

Informally, L is the rounds where τ “switches” from A to B or B to A. Equivalently,

we partition τ into consecutive intervals consisting of the same player and L is the set of

endpoints of these intervals. The element n is added to L for convenience. For i ∈ [n], we

define ℓ≥i to be smallest value ℓ ∈ L satisfying ℓ ≥ i. This is well defined as n ∈ L is one

such value. Similarly, define ℓ<i to be largest value ℓ ∈ {0}∪L satisfying ℓ < i. Observe that

for all i ∈ [n], we have τi = τ
ℓ≥i

and ℓ<i > 0 implies τi ̸= τℓ<i (so τi = τ ℓ<i).

Defining Good and Rem. For t ∈ {0} ∪ [T], define the set

Good(t) =
{
i ∈ [n] : Emb(ℓ<i) ≤ t < Emb

(
ℓ≥i
)}

. (6)

Informally, Good gets a round t of the protocol Π and outputs the first interval of τ that

we do not expect to have fully simulated after round t. Observe that Good(t) ̸= ∅ for all

t ∈ {0} ∪ [T]. Let t ∈ {0} ∪ [T] and i ∈ Good(t). Define:

Remi(t) =

{
(i− ℓ<i − 0.1) · logm, if Emb(ℓ<i) = t

(i− ℓ<i − 0.3− |E ∩ (Emb(ℓ<i), t]|) · logm, if Emb(ℓ<i) < t
. (7)

Roughly speaking, Remi(t) is the amount of (min-)entropy remaining in the random variable

PC>ℓ<i
(f≤i) before round t of the protocol.

18

“Revealing” information. To make our analysis cleaner, we reveal some information to

the players at various points in the protocol. More precisely, let t′ ∈ [3T] be given and F in

the support8 of F be arbitrary. Let t ∈ [T] be the unique value satisfying 3(t− 1) < t′ ≤ 3t.

We shall define values Φt′(F) inductively. If t′ = 3t− 2, define:

Φt′(F) = Πt(F). (8)

If t′ = 3t− 1, define:

Φt′(F) =

PC>ℓ<i

(
f≤ℓ≥i

)
, if ∃i ∈ [n] : t = Emb

(
ℓ≥i
)

0, otherwise
. (9)

Informally, this definition amounts to revealing the correct transcript for any interval at the

end of the interval. Finally, t′ = 3t, define:

Φt′(F) = 1
(
∃i ∈ [n] : t = Emb(ℓ<i),Pr

(
PC>ℓ<i

(f≤i) = PC>ℓ<i
(f≤i) | Φ<t′(F)

)
> 2−1−Remi(t)

)
.

(10)

Informally, this definition amounts to revealing, at the end of an interval, whether the right

answer for the next interval can be guessed with probability much better than what Rem

would indicate. We will later show that, this answer is no (= 0) with high probability.

Henceforth, we treat Φ the same way as Π in our notation, i.e., we let Φt′ = Φt′(F) denote

the random variable obtained by sampling F and outputting Φt′(F), use Φt′ to denote a value

Φt′ can take, and define Φ≤t′ , ΦS etc. analogously to Π≤t, ΠS, etc.

We claim that Φ provides all the necessary information in order to reconstruct PC(f), as

claimed below.

Claim 5.2. For any ℓ ∈ L satisfying Emb(ℓ) ≤ T , the value of Φ≤3Emb(ℓ)−1 fixes the value of

PC(f≤ℓ).

Proof. Let u = Emb(ℓ). We prove this by an inductive argument on elements of L.
To begin with, let ℓ be the smallest element of L. Note that ℓ<ℓ = 0. By Eq. (9), fixing

Φ≤3u−1 fixes Φ3u−1, which fixes thus fixes

PC>ℓ<ℓ

(
f≤ℓ≥ℓ

)
= PC(f≤ℓ).

Otherwise, suppose that this claim holds for all ℓ′ ∈ L such that ℓ′ < ℓ. Therefore, in

particular, it holds for ℓ′ = ℓ<ℓ , the largest element of L smaller than ℓ. Note that ℓ′ < ℓ,

so Emb(ℓ′) < Emb(ℓ) by Observation 3.1. Thus, fixing Φ≤3u−1 = Φ≤3Emb(ℓ)−1 also fixes

Φ≤3Emb(ℓ′)−1. Thus, by our inductive hypothesis, we get that PC(f≤ℓ′) = PC≤ℓ′(f≤ℓ) is fixed.

Now, note that as ℓ = ℓ≥ℓ , that means that fixing Φ≤3u−1 in particular fixes Φ3u−1, which

in turn fixes PC>ℓ<ℓ
(f≤ℓ) = PC>ℓ′(f≤ℓ) by Eq. (9). Combining this with the above thus fixes

8Henceforth, we omit writing “in the support of” when the random variable is clear from context.

19

all of PC(f≤ℓ).

We also claim that Φ is a transcript of a protocol. By this, we mean that each coordinate

of Φ can be computed fully by just one player using only their input and the transcript Φ

so far. Formally:

Lemma 5.3. For t′ ∈ [3T], there exists σ′
t′ ∈ {A,B} and a function M ′

t′ such that for any

F ,

Φt′(F) = M ′
t′

(
fσ′

t′ ,Φ<t′(F)
)
.

Furthermore, for t ∈ [T], we have that:

σ′
3t−2 = σt

σ′
3t−1 = σt

σ′
3t = σt.

Proof. When t′ = 3t − 2, as Φt′(F) = Πt(F), the result follows directly from the definition

of Πt(F), with σ′
t′ = σt.

When t′ = 3t− 1, if there does not exist i ∈ [n] such that t = Emb
(
ℓ≥i
)
, then Φt′(F) = 0

is constant and independent of both fA and fB, so σ′
t′ can be arbitrary and M ′

t′ can be the

constant 0 function. Otherwise, suppose that there exists such an i, and let σ′
t′ = σt. Note

that Φt′(F) = PC>ℓ<i

(
f≤ℓ≥i

)
= PC>ℓ<i

(
PC
(
f≤ℓ<i

)
, (fi′)i′∈(ℓ<i ,ℓ≥i]

)
. By Claim 5.2, PC

(
f≤ℓ<i

)
is

determined by Φ<t′(F). Furthermore, for all i′ ∈ (ℓ<i , ℓ
≥
i], τi′ = τ

ℓ≥i
= σt = σ′

t′ , so (fi′)i′∈(ℓ<i ,ℓ≥i]

is determined by the input fσ′
t′ . The result follows.

When t′ = 3t, if there does not exist i ∈ [n] such that t = Emb(ℓ<i), then Φt′(F) = 0 is

constant and independent of both fA and fB, so σ′
t′ can be arbitrary and M ′

t′ can be the

constant 0 function. Otherwise, suppose that there exists such an i and let σ′
t′ = σt. Note that

Φt′(F) can be computed from Φ<t′(F) and PC>ℓ<i
(f≤i), so it suffices to show that the latter can

be computed from Φ<t′(F) and fσ′
t′ . Note that PC>ℓ<i

(f≤i) = PC>ℓ<i

(
PC
(
f≤ℓ<i

)
, (fi′)i′∈(ℓ<i ,i]

)
.

By Claim 5.2, PC
(
f≤ℓ<i

)
is determined by Φ<t′(F). Furthermore, for all i ∈ [n] such that

t = Emb(ℓ<i), τi = τ ℓ<i = σt = σ′
t′ , so (fi′)i′∈(ℓ<i ,i] is determinted by the input fσ′

t′ .

The sets Guess and Info. We are now ready to define the sets Guess and Info, the primary

focus of our analysis. For t ∈ {0} ∪ [T] and i ∈ Good(t), we define:

Guessi(t) =
{
Φ≤3t | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t

)
< Remi(t)

}
. (11)

Informally, this is the set of transcripts that allow us to guess the edges in the current

interval (until i) with probability better than that indicated by Rem. For t ∈ {0} ∪ [T] and

20

C ∈ {A,B}, define:

InfoC(t) =
{
Φ≤3t | D

(
dist
(
fC | Φ≤3t

)
|| U

)
> m0.01

}
. (12)

Informally, this is the set of transcripts that give a lot of information about party C’s input.

5.3 Properties of Info

This section is dedicated to proving Lemma 5.4, which will be key to proving our main result.

Roughly, Lemma 5.4 says that transcripts are unlikely to be informative enough to be in the

set Info as that requires information ≥ m0.01 which is much more than the communication

(as m is larger than the communication to the power of 200).

Lemma 5.4. For all t ∈ {0} ∪ [T] and C ∈ {A,B},

Pr
(
Φ≤3t ∈ InfoC(t)

)
≤ 1

m0.5
.

For all t′ ∈ [3T], let σ′
t′ and M ′

t′ be as in Lemma 5.3. We define for all C ∈ {A,B}, for
all t′ ∈ {0} ∪ [3T], for all Φ≤t′ , the set:

RecC(Φ≤t′) =
{
fC | ∀t′′ ∈ [t′] s.t. σ′

t′′ = C, we have Φt′′ = M ′
t′′

(
fC ,Φ<t′′

)}
. (13)

Roughly, our definition of Φ ensures that the pairs of inputs that lead to the transcript Φ≤t′

form a combinatorial rectangle (Rec denotes rectangle), and RecC denotes the projection of

this rectangle on party C’s inputs. In other words, RecC is the set of all inputs of party C

that may lead to the transcript Φ≤t′ .

Observation 5.5. For all t′ ∈ [3T], for all Φ≤t′, for all C ∈ {A,B}, if σ′
t′ ̸= C, RecC(Φ≤t′) =

RecC(Φ<t′).

We now show several properties of RecC .

Lemma 5.6. For all t′ ∈ {0}∪ [3T], for all Φ≤t′, the event
(
∀C ∈ {A,B} : fC ∈ RecC(Φ≤t′)

)
and the event Φ≤t′ are equivalent.

Proof. We prove this by induction on t′. The result is obvious for t′ = 0. As such, we will

show that it holds for some t′ > 0 given that it holds for t′ − 1. We have that the following

events are equivalent:

Φ≤t′ ≡ (Φ<t′ ,Φt′)

≡
(
Φ<t′ ,M

′
t′

(
fσ

′
t′ ,Φ<t′

)
= Φt′

)
(Lemma 5.3)

≡
(
∀C ∈ {A,B} : fC ∈ RecC(Φ<t′),M

′
t′

(
fσ

′
t′ ,Φ<t′

)
= Φt′

)
(Induction Hypothesis)

≡
(
∀C ∈ {A,B} : fC ∈ RecC(Φ≤t′)

)
. (Eq. (13) and Observation 5.5)

21

Lemma 5.7. For all t′ ∈ {0} ∪ [3T], for all Φ≤t′,

Pr(Φt′ | Φ<t′) =

∣∣∣Recσ′
t′ (Φ≤t′)

∣∣∣∣∣∣Recσ′
t′ (Φ<t′)

∣∣∣ .
Proof. We have that:

Pr(Φt′ | Φ<t′) =
Pr(Φ≤t′)

Pr(Φ<t′)

=
Pr
(
∀C ∈ {A,B}, fC ∈ RecC(Φ≤t′)

)
Pr
(
∀C ∈ {A,B}, fC ∈ RecC(Φ<t′)

) (Lemma 5.6)

=

∏
C∈{A,B} Pr

(
fC ∈ RecC(Φ≤t′)

)∏
C∈{A,B} Pr

(
fC ∈ RecC(Φ<t′)

) (Independence of fA and fB)

=
Pr
(
fσ

′
t′ ∈ Recσ

′
t′ (Φ≤t′)

)
Pr
(
fσ

′
t′ ∈ Recσ

′
t′ (Φ<t′)

)
=

∣∣∣Recσ′
t′ (Φ≤t′)

∣∣∣∣∣∣Recσ′
t′ (Φ<t′)

∣∣∣ . (fσ
′
t′ is uniform)

Lemma 5.8. For all t′ ∈ {0} ∪ [3T], C ∈ {A,B},

Pr

(∣∣RecC(Φ≤t′)
∣∣

|supp(fC)|
<

1

m2t′

)
≤ t′

m0.6
.

Proof. We will prove this by proving the following stronger bound. Let

P(t′) =
{
i ∈ Good

(⌈
t′−1
3

⌉)
| Emb(i) ≤

⌈
t′−1
3

⌉}
.

Then, we claim that:

Pr

(∣∣RecC(Φ≤t′)
∣∣

|supp(fC)|
<

1

m2(t′−|P(t′)|)

)
≤ t′

m0.6
.

We will prove this by induction over t′. For t′ = 0, this holds since RecC(Φ≤t′) = supp
(
fC
)

22

by Eq. (13). We show the result holds for t′ > 0, assuming it holds for t′ − 1. We have that:

Pr

(∣∣RecC(Φ≤t′)
∣∣

|supp(fC)|
<

1

m2(t′−|P(t′)|)

)

≤ Pr

(∣∣RecC(Φ<t′)
∣∣

|supp(fC)|
<

1

m2(t′−1−|P(t′−1)|)

)
+ Pr

(∣∣RecC(Φ≤t′)
∣∣∣∣RecC(Φ<t′)
∣∣ < 1

m2(1+|P(t′−1)|−|P(t′)|)

)
(Union Bound, as ab < αβ implies a < α or b < β for positive values)

≤ (t′ − 1)

m0.6
+ Pr

(∣∣RecC(Φ≤t′)
∣∣∣∣RecC(Φ<t′)
∣∣ < 1

m2(1+|P(t′−1)|−|P(t′)|)

)
. (Inductive Hypothesis)

We now have to consider several cases. First, suppose that t′ ̸= 3t − 1 for any t ∈ [T].

Then, note that P(t′ − 1) = P(t′), so it suffices to show the bound Pr

(
|RecC(Φ≤t′)|
|RecC(Φ<t′)| <

1
m2

)
≤

1
m0.6 . If C ̸= σ′

t′ , then the result holds by Observation 5.5. As such, it just suffices to show

the case where C = σ′
t′ . We will show this conditioned on an arbitrary Φ<t′ . We have:

Pr

(∣∣RecC(Φ≤t′)
∣∣∣∣RecC(Φ<t′)
∣∣ < 1

m2
| Φ<t′

)
=
∑
Φt′

Pr(Φt′ | Φ<t′) · 1

(∣∣RecC(Φ≤t′)
∣∣∣∣RecC(Φ<t′)
∣∣ < 1

m2

)

=
∑
Φt′

Pr(Φt′ | Φ<t′) · 1
(
Pr(Φt′ | Φ<t′) <

1

m2

)
(Lemma 5.7)

≤ 1

m0.6
.

Now, let us consider the case where t′ = 3t−1 for some t ∈ [T]. This means that t =
⌈
t′−1
3

⌉
and t − 1 =

⌈
t′−2
3

⌉
. Once again, if C ̸= σ′

t′ , then the result holds by Observation 5.5.

Furthermore, if t ̸= Emb
(
ℓ≥i
)
for any i ∈ [n], then RecC(Φ≤t′) = RecC(Φ<t′) by Eqs. (9)

and (13), and the result holds. As such, it just suffices to show the case where C = σ′
t′ and t =

Emb
(
ℓ≥i
)
for some i ∈ [n]. Note that in this case, for all i′ ∈ Good(t), Emb(i′) > t, so P(t′) =

∅. Furthermore, P(t′ − 1) = {i′ ∈ Good(t− 1) | Emb(i′) ≤ t− 1} =
{
ℓ<i + 1, . . . , ℓ≥i − 1

}
.

Thus, |P(t′ − 1)| = ℓ≥i − ℓ<i − 1.

We will show that the result holds even when conditioned on an arbitrary Φ<t′ . We have:

Pr

(∣∣RecC(Φ≤t′)
∣∣∣∣RecC(Φ<t′)
∣∣ < 1

m2(1+|P(t′−1)|) | Φ<t′

)
=
∑
Φ′

t

Pr(Φt′ | Φ<t′)1

(∣∣RecC(Φ≤t′)
∣∣∣∣RecC(Φ<t′)
∣∣ < 1

m2(ℓ≥i −ℓ<i)

)

=
∑
Φ′

t

Pr(Φt′ | Φ<t′)1

(
Pr(Φt′ | Φ<t′) <

1

m2(ℓ≥i −ℓ<i)

)
(Lemma 5.7)

23

≤ mℓ≥i −ℓ<i

m2(ℓ≥i −ℓ<i)

≤ 1

m0.6
.

We now have the tools necessary to finish the proof of Lemma 5.4.

Proof of Lemma 5.4. For all Φ≤3t ∈ InfoC(t) we have:

D
(
dist
(
fC | Φ≤3t

)
|| U

)
> m0.01 (Eq. (12))

=⇒ D
(
dist
(
fC | ∀C ′ ∈ {A,B} : fC

′ ∈ RecC
′
(Φ≤3t)

)
|| U

)
> m0.01 (Lemma 5.6)

=⇒ D
(
dist
(
fC | fC ∈ RecC(Φ≤3t)

)
|| U

)
> m0.01 (Independence of fA and fB)

=⇒
∣∣RecC(Φ≤3t)

∣∣
|supp(fC)|

<
1

2m0.01 . (Lemma A.9)

=⇒
∣∣RecC(Φ≤3t)

∣∣
|supp(fC)|

<
1

m6t
.

Thus, we get that Pr
(
Φ≤3t ∈ InfoC(t)

)
≤ Pr

(
|RecC(Φ≤3t)|

|supp(fC)| < 1
m6t

)
. The result follows from

Lemma 5.8.

5.4 Key Lemma

We now show our key lemma.

Lemma 5.9. Let t ∈ {0} ∪ [T] and i ∈ Good(t). We have:

Pr
(
Φ≤3t ∈ Guessi(t)

)
≤ t

m0.1
.

Proof. Proof by induction on t. The base t = 0 is straightforward as we get Emb(ℓ<i) = 0

which means that ℓ<i = 0 implying that Guessi(t) = ∅. We show the result for t > 0 assuming

it holds for smaller values of t. We consider the following cases:

� When Emb(ℓ<i) < t: At a high level, this case amounts to analyzing a variant of

the well-known Index problem, where the party holding the index can communicate a

small number of bits but not enough to send the entire index. Let u = Emb(ℓ<i) for

convenience. Note that i ∈ Good(u). Applying the induction hypothesis on u, we get:

Pr
(
Φ≤3u ∈ Guessi(u)

)
≤ u

m0.1
.

24

It is therefore sufficient to show that

Pr
(
Φ≤3t ∈ Guessi(t) | Φ≤3u /∈ Guessi(u)

)
≤ 1

m0.1
.

We assume τi = A as the argument for τi = B is analogous. For this, we shall fix an

arbitrary Φ≤3u /∈ Guessi(u), and an arbitrary fB and show that

Pr
(
Φ≤3t ∈ Guessi(t) | Φ≤3u, f

B
)
≤ 1

m0.1
.

By Eq. (11), it suffices to show that:

Pr
(
Φ(3u,3t] ∈

{
Φ(3u,3t] | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t

)
≤ Remi(t)

}
| Φ≤3u, f

B
)
≤ 1

m0.1
. (14)

We now focus on showing Eq. (14). Define z = (0.2 + |E ∩ (u, t]|)·logm for convenience.

For this, we will apply Lemma A.7 with X = fA, f(X) = PC>ℓ<i
(f≤i), g(X) = Φ(3u,3t],

E =
(
Φ≤3u, f

B
)
, and t = z. Note that as conditioning on Φ≤3u fixes the value of

PC
(
f≤ℓ<i

)
(Claim 5.2), PC>ℓ<i

(f≤i) is indeed a function of fA. Similarly, as we condition

on fB, Φ(3u,3t] is indeed a function of fA. Finally, observe from Eqs. (9) and (10) that

for all u′ ∈ (u, t], we have Φ3u′−1 = Φ3u′ = 0 and thus g(·) takes at most m|E∩(u,t]| many

values.9

From Lemma A.7, we get:

Pr
(
Φ(3u,3t] ∈ G∗ | Φ≤3u, f

B
)
≤ 1

m0.1
, (15)

where:

G∗ =
{
Φ(3u,3t] | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t, f
B
)
≤ H∞

(
PC>ℓ<i

(f≤i) | Φ≤3u, f
B
)
− z
}
.

Next, we claim that we can “drop” the conditioning on fB. For this, recall from

Lemma 5.6 that the events Φ≤3t and
(
∀C ∈ {A,B} : fC ∈ RecC(Φ≤3t)

)
are equivalent.

As the latter event is a combinatorial rectangle (it is of the form
(
fA ∈ A

)
∧
(
fB ∈ B

)
for some sets A,B) and the random variables fA and fB are independent, we get that

the random variables fA and fB are also independent conditioned on Φ≤3t. Next, recall

that PC>ℓ<i
(f≤i) is a function of fA conditioned on Φ≤3u, and conclude that PC>ℓ<i

(f≤i)

and fB are also independent conditioned on Φ≤3t allowing us to drop fB. A similar

9For t′ ∈ (u, t] where τt′ = B, conditioning on fB makes each message Φ3t′−2 a deterministic function

of the transcript so far. As such, there are at most m|{t′∈(u,t]:τt′=A}| possible transcripts, as there are m
possible values of Φ3t′−2 for each t′ ∈ (u, t] where τt′ = A. Finally, by the definition of ℓ≥i and Eqs. (1)
and (2), we get that {t ∈ (u, t] : τt′ = A} = E ∩ (u, t].

25

argument allows us to drop fB from the other min-entropy term and we get:

G∗ =
{
Φ(3u,3t] | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t

)
≤ H∞

(
PC>ℓ<i

(f≤i) | Φ≤3u

)
− z
}
.

By Eq. (11) and our choice of Φ≤3u /∈ Guessi(u), we have:

G∗ ⊇
{
Φ(3u,3t] | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t

)
≤ Remi(u)− z

}
.

Using Eq. (7) and the definition of z, we get:

G∗ ⊇
{
Φ(3u,3t] | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t

)
≤ Remi(t)

}
.

This together with Eq. (15) shows Eq. (14).

� When Emb(ℓ<i) = t: At a high level, the analysis in this case follows the popular

pointer chasing lower bound of [NW91]. We assume τi = A as the argument for τi = B

is analogous. As t > 0, we have ℓ<i > 0 and we get τℓ<i = B. It follows that σt = B.

Let u = t− 1. Applying the induction hypothesis on u and ℓ<i , we get:

Pr
(
Φ≤3u ∈ Guessℓ

<
i (u)

)
≤ u

m0.1
.

By Lemma 5.4, we also have:

Pr
(
Φ≤3u ∈ InfoA(u)

)
≤ 1

m0.5
.

Thus, it suffices to show that:

Pr
(
Φ≤3t ∈ Guessi(t) | Φ≤3u /∈ Guessℓ

<
i (u) ∪ InfoA(u)

)
≤ 1

m0.15
.

For this, we shall fix an arbitrary Φ≤3u /∈ Guessℓ
<
i (u) ∪ InfoA(u) and show that:

Pr
(
Φ≤3t ∈ Guessi(t) | Φ≤3u

)
≤ 1

m0.15
. (16)

For all i′ ∈
(
ℓ<i , ℓ

≥
i

]
, define the set:

Si′ =

{
z ∈ [m]ℓ

<
i | D

(
dist
(
PC>ℓ<i

(
z, f(ℓ<i ,i′]

)
| Φ≤3u

)
|| U

)
≥ 1

m0.42

}
. (17)

Also, define S =
⋃

i′∈(ℓ<i ,ℓ≥i]
Si′ . Roughly speaking, S is the set of prefixes z that allow

the parties to guess the transcript in the next interval. Recall that Emb(ℓ<i) = t means

that we are currently at the end of an interval. We now show that the probability of

26

landing in S is small, as formalized in Eq. (18) below. Next, use the fact that τi = A

and the definition of ℓ<i and ℓ≥i to conclude that τi′ = A for all i′ ∈
(
ℓ<i , ℓ

≥
i

]
. It follows

that for all i′ ∈
(
ℓ<i , ℓ

≥
i

]
, fA determines f(ℓ<i ,i′]. This, together with Lemma A.11 and

the fact that D
(
dist
(
fA | Φ≤3u

)
|| U

)
≤ m0.01 (which follows as Φ≤3u /∈ InfoA(u)) implies

that D
(
dist
(
f(ℓ<i ,i′] | Φ≤3u

)
|| U

)
≤ m0.01. We get, for all i′ ∈

(
ℓ<i , ℓ

≥
i

]
, that:

m0.01 ≥ D
(
dist
(
f(ℓ<i ,i′] | Φ≤3u

)
|| U

)
≥

∑
z∈[m]ℓ

<
i

D
(
dist
(
PC>ℓ<i

(
z, f(ℓ<i ,i′]

)
| Φ≤3u

)
|| U

)
(Lemma A.11)

≥
∑
z∈Si′

D
(
dist
(
PC>ℓ<i

(
z, f(ℓ<i ,i′]

)
| Φ≤3u

)
|| U

)
≥ |Si′ | ·

1

m0.42
. (Eq. (17))

As such, we get that for all i′ ∈
(
ℓ<i , ℓ

≥
i

]
, we have |Si′| ≤ m0.44 implying that |S| ≤ m0.45.

Next, note that as Φ≤3u /∈ Guessℓ
<
i (u), we also have by Eq. (11) that H∞(PC>ℓ<

ℓ<
i

(f≤ℓ<i
) |

Φ≤3u) ≥ Remℓ<i (u). Observe from Claim 5.2 that conditioning on Φ≤3u fixes the value

of PC(f≤ℓ<
ℓ<
i

) = PC≤ℓ<
ℓ<
i

(f≤ℓ<i
). Thus, we get H∞(PC(f≤ℓ<i

) | Φ≤3u) ≥ Remℓ<i (u). It follows

from Eq. (7) and Definition A.5 that

Pr
(
PC
(
f≤ℓ<i

)
∈ S | Φ≤3u

)
≤ m0.45 · 2−Remℓ<

i (u) ≤ 1

m0.25
. (18)

As a consequence, Eq. (16) follows if we show that:

Pr
(
Φ≤3t ∈ Guessi(t) | Φ≤3u, PC

(
f≤ℓ<i

)
/∈ S
)
≤ 1

m0.2
.

Next, note from Claim 5.2 that the value of Φ<3t fixes the value of PC(f≤ℓ<i
) (and also

of Φ≤3u). Thus, it suffices to fix an arbitrary Φ<3t that agrees with Φ≤3u and for which

the corresponding value of PC(f≤ℓ<i
) /∈ S, and show that

Pr
(
Φ≤3t ∈ Guessi(t) | Φ<3t

)
≤ 1

m0.2
.

By Eq. (11), this is the same as:

Pr
(
Φ3t ∈

{
Φ3t | H∞

(
PC>ℓ<i

(f≤i) | Φ≤3t

)
< Remi(t)

}
| Φ<3t

)
≤ 1

m0.2
.

Fixing such a Φ<3t, this is because of the following two claims, that we show later.

27

Claim 5.10. It holds that:

Pr(Φ3t = 1 | Φ<3t) ≤
1

m0.2
.

Claim 5.11. It holds that:

H∞

(
PC>ℓ<i

(f≤i) | Φ<3t,Φ3t = 0
)
≥ Remi(t).

We now show Claims 5.10 and 5.11.

Proof of Claim 5.10. For all i′ ∈
(
ℓ<i , ℓ

≥
i

]
, define the set:

Wi′ =
{
w ∈ [m]i

′−ℓ<i : Pr
(
PC>ℓ<i

(f≤i′) = w | Φ<3t

)
> 2−1−Remi′ (t)

}
. (19)

With this definition and a union bound, we get:

Pr(Φ3t = 1 | Φ<3t) ≤
∑

i′∈(ℓ<i ,ℓ≥i]

Pr
(
PC>ℓ<i

(f≤i′) ∈ Wi′ | Φ<3t

)
(Eq. (10))

≤
∑

i′∈(ℓ<i ,ℓ≥i]

∑
w∈Wi′

Pr
(
PC>ℓ<i

(f≤i′) = w | Φ<3t

)
≤

√
2 ·

∑
i′∈(ℓ<i ,ℓ≥i]

∑
w∈Wi′

(
Pr
(
PC>ℓ<i

(f≤i′) = w | Φ<3t

)
− 2−(i

′−ℓ<i)·logm
)

(Eqs. (7) and (19) imply that Pr
(
PC>ℓ<i

(f≤i′) = w | Φ<3t

)
> 10 · 2−(i′−ℓ<i)·logm)

≤
√
2 ·

∑
i′∈(ℓ<i ,ℓ≥i]

∥∥∥dist(PC>ℓ<i
(f≤i′) | Φ<3t

)
− U

∥∥∥
TV

(Definition A.12)

≤
∑

i′∈(ℓ<i ,ℓ≥i]

√
D
(
dist
(
PC>ℓ<i

(f≤i′) | Φ<3t

)
|| U

)
(Fact A.13)

=
∑

i′∈(ℓ<i ,ℓ≥i]

√
D
(
dist
(
PC>ℓ<i

(
PC
(
f≤ℓ<i

)
, f(ℓ<i ,i′]

)
| Φ<3t

)
|| U

)

=
∑

i′∈(ℓ<i ,ℓ≥i]

√
D
(
dist
(
PC>ℓ<i

(
PC
(
f≤ℓ<i

)
, f(ℓ<i ,i′]

)
| Φ<3t

)
|| U

)
,

(Claim 5.2 implies Φ<3t fixes PC
(
f≤ℓ<i

)
)

where PC
(
f≤ℓ<i

)
/∈ S is the value determined by our choice of Φ(3u,3t). Now, recall that

u = t− 1. Thus, Φ(3u,3t) = (Φ3t−2,Φ3t−1). We now argue that we can remove (Φ3t−2,Φ3t−1)

28

from the conditioning. For this, recall from Lemma 5.6 that the event Φ≤3u and the event(
∀C ∈ {A,B} : fC ∈ RecC(Φ≤3u)

)
are equivalent. As the latter event is a combinatorial

rectangle (it is of the form
(
fA ∈ A

)
∧
(
fB ∈ B

)
for some sets A,B) and the random variables

fA and fB are independent, we get that the random variables fA and fB are also independent

conditioned on Φ≤3u.

Next, recall that f(ℓ<i ,i′] is determined by fA, and conclude that the random variables f(ℓ<i ,i′]
and fB are also independent conditioned on Φ≤3u. Finally, as σ

′
3t−2 = σ′

3t−1 = σt = τℓ<i = B

using t = Emb(ℓ<i) and Lemma 5.3, conclude from Lemma 5.3 that Φ<3t is determined by fB

conditioned on Φ≤3u. Thus, we get that the random variable f(ℓ<i ,i′], and therefore also the

random variable PC>ℓ<i
(PC(f≤ℓ<i

), f(ℓ<i ,i′]), is independent of the random variable (Φ3t−2,Φ3t−1)

conditioned on Φ≤3u. Plugging in, we get:

Pr(Φ3t = 1 | Φ<3t) ≤
∑

i′∈(ℓ<i ,ℓ≥i]

√
D
(
dist
(
PC>ℓ<i

(
PC
(
f≤ℓ<i

)
, f(ℓ<i ,i′]

)
| Φ≤3u

)
|| U

)
.

The proof is complete by the fact that PC(f≤ℓ<i
) /∈ S and Eq. (17).

Proof of Claim 5.11. From Definition A.5, the claim is equivalent to showing that for all

z ∈ [m]i−ℓ<i , we have:

Pr
(
PC>ℓ<i

(f≤i) = z | Φ<3t,Φ3t = 0
)
≤ 2−Remi(t).

Owing to Claim 5.10, it suffices to show that for all z ∈ [m]i−ℓ<i , we have:

Pr
(
PC>ℓ<i

(f≤i) = z,Φ3t = 0 | Φ<3t

)
≤ 2−1−Remi(t).

The foregoing equation is trivial if Pr
(
PC>ℓ<i

(f≤i) = z | Φ<3t

)
≤ 2−1−Remi(t), so it suffices to

consider z ∈ [m]i−ℓ<i such that Pr
(
PC>ℓ<i

(f≤i) = z | Φ<3t

)
> 2−1−Remi(t). Fix such a z. By

Eq. (10) and our choice of z, we get that the event PC>ℓ<i
(f≤i) = z implies the event Φ3t = 1.

This means that:

Pr
(
PC>ℓ<i

(f≤i) = z,Φ3t = 0 | Φ<3t

)
= 0,

and we are done.

5.5 Finishing the Proof

We are now ready to prove Lemma 5.1

Proof of Lemma 5.1. Recall that we are showing the lemma in the contrapositive, assuming

that τ is a not subsequence of σ. This means that Emb(n) > T implying by Eq. (6) that

29

there exists i ∈ [n] such that i ∈ Good(T). Fix such an i and apply Lemma 5.9 to conclude

that Pr(E) < 1
n2 , where E is the event Φ≤3T ∈ Guessi(T). We now derive Eq. (4) as follows:

Pr(resΠ(F) = PC(F)) ≤ Pr(E) + Pr
(
resΠ(F) = PC(F) | E

)
(Union bound)

<
1

n2
+ Pr

(
resΠ(F) = PC(F) | E

)
.

Thus, it suffices to show that Pr
(
resΠ(F) = PC(F) | E

)
≤ 1

n2 . We show this holds under a

stronger conditioning by conditioning on an arbitrary Φ≤3T such that Φ≤3T /∈ Guessi(T).

Fixing such a Φ≤3T and noting that fixing Φ≤3T also fixes resΠ(F) to some value res we get:

Pr(resΠ(F) = PC(F) | Φ≤3T) ≤ Pr(PC(F) = res | Φ≤3T)

≤ Pr
(
PC>ℓ<i

(f≤i) = res>ℓ<i
| Φ≤3T

)
≤ 2−Remi(T) (Eq. (11) as Φ≤3T /∈ Guessi(T))

≤ m−0.5 (Eq. (7))

≤ 1

n2
.

6 Proof of Theorem 4.2

In this section, we prove Theorem 4.2. For notational convenience, we define the constant

η = 10−5.

6.1 A Customized Concentration Inequality

Fact 6.1. For all integers 1 ≤ k ≤ n, we have:

(n
k

)k
≤
(
n

k

)
≤
(
3n

k

)k

.

Lemma 6.2. Let Z ⊆ N and n > 0 be an integer. Also, let p > 0 and X1,X2, · · · ,Xn be

random variables taking values in N. Then, if δ > 0 is such that for all i ∈ [n] and all

x1, x2, · · · , xi−1 ∈ N, we have:

Pr(Xi = 1 | ∀i′ ∈ [i− 1] : Xi′ = xi′) ≤ 1− p · 1

(
i−1∑
i′=1

xi′ /∈ Z

)
· 1

(
i−1∑
i′=1

xi′ ≤ (1 + δ) · n− 1

)
.

30

Then, it holds that:

Pr

(
n∑

i=1

Xi ≤ (1 + δ) · n

)
≤ 2−pn+δn·log 12

δ
+|Z|.

Proof. Define the set:

S =

{
(x1, x2, · · · , xn) ∈ Nn |

n∑
i=1

xi ≤ (1 + δ) · n

}
,

to be the set of all n-tuples of positive integers that sum to at most (1 + δ) · n. From a

standard argument10, it follows that |S| =
(
n(1+δ)

δn

)
. Using this bound, we have:

Pr

(
n∑

i=1

Xi ≤ (1 + δ) · n

)
=

∑
(x1,x2,··· ,xn)∈S

Pr(∀i ∈ [n] : Xi = xi)

≤
(
n(1 + δ)

δn

)
· max
(x1,x2,··· ,xn)∈S

Pr(∀i ∈ [n] : Xi = xi).

(20)

We now consider an arbitrary n-tuple (x1, x2, · · · , xn) ∈ S and upper bound the proba-

bility term corresponding to this n-tuple. We have:

Pr(∀i ∈ [n] : Xi = xi) =
∏
i∈[n]

Pr(Xi = xi | ∀i′ ∈ [i− 1] : Xi′ = xi′)

≤
∏

i∈[n]:xi=1

Pr(Xi = 1 | ∀i′ ∈ [i− 1] : Xi′ = xi′)

≤
∏

i∈[n]:xi=1

(
1− p · 1

(
i−1∑
i′=1

xi′ /∈ Z

))
(Assumption in the lemma and the definition of S)

≤
∏

i∈[n]:xi=1

2−p·1(
∑i−1

i′=1
xi′ /∈Z) (As 1− x ≤ 2−x for all x ≥ 0)

≤ 2−p·
∑

i∈[n]:xi=1 1(
∑i−1

i′=1
xi′ /∈Z).

To continue, let K be the number of i such that xi = 1 and note that the definition of S

10We provide the argument here for completeness. The claim is that, for integers n, r > 0, the number of
non-negative integer solutions of

∑
i∈[n] zi ≤ r is equal to

(
n+r
r

)
. Indeed, every bit string of length n+ r that

has n zeros can be interpreted as a solution, where for all i ∈ [n], the number of 1s between the (i− 1)th and
the ith zero is the value of zi (the 0

th zero is assumed to be at location 0), and any solution can be written as
such a bit string with the 1s after the nth corresponding to the “slack” in

∑
i∈[n] zi ≤ r. Thus, the number

of solutions is equal to the number of strings, which is equal to
(
n+r
r

)
.

31

requires that K ≥ (1− δ) · n. We have:

Pr(∀i ∈ [n] : Xi = xi) ≤ 2−pK+
∑

i∈[n]:xi=1 1(
∑i−1

i′=1
xi′∈Z)

≤ 2−pn+δn+
∑

i∈[n]:xi=1 1(
∑i−1

i′=1
xi′∈Z).

Next, note that the values
∑i−1

i′=1 xi′ are distinct for all i ∈ [n] and non-negative. Thus, we

get the bound:

Pr(∀i ∈ [n] : Xi = xi) ≤ 2−pn+δn+|Z|.

As this bound was shown for an arbitrary n-tuple (x1, x2, · · · , xn) ∈ S, we can plug it into

Eq. (20) and get:

Pr

(
n∑

i=1

Xi ≤ (1 + δ) · n

)
≤
(
n(1 + δ)

δn

)
· 2−pn+δn+|Z|

≤
(
3(1 + δ)

δ

)δn

· 2−pn+δn+|Z| (Fact 6.1)

≤ 2−pn+δn·log 12
δ
+|Z|. (As δ ∈ (0, 1))

6.2 Basic Definitions

Recall that η = 10−5. Also recall from Section 2.2 that we consider segments of geometrically

increasing lengths. These segments will be parameterized by an integer ℓ > 0. We will use Lℓ

to denote the length of segment ℓ, Dℓ to denote the “delay” or the “lag” before the segment

starts, and Cℓ to denote the non-bullet symbols in the pattern for this segment. We set these

parameters as follows:

Lℓ = η−2ℓ−2 Cℓ =
⌊
η6Lℓ

⌋
Dℓ = η4Lℓ. (21)

We also define L≤ℓ =
∑ℓ

ℓ′=1 Lℓ′ and L<ℓ =
∑ℓ−1

ℓ′=1 Lℓ′ . We adopt the convention that L≤0 = 0

and observe that all these parameters integers. Next, we define the set {A,B}• to denote

the set {A,B}• = {A,B} ∪ {•}. For ρ ∈ {A,B}∗•, we use bull(ρ) to denote the number

of coordinates in the string ρ that are equal to the “bullet” symbol •. Formally, we have

bull(ρ) = |{i ∈ [|ρ|] | ρi = •}|. The following simple lemma counts the number of strings ρ

with a given value of bull(ρ).

Lemma 6.3. For all 0 ≤ T ′ ≤ T , we have:∣∣∣{ρ ∈ {A,B}T• | bull(ρ) = T ′
}∣∣∣ = 2T−T ′ ·

(
T

T − T ′

)
.

32

Proof. There are exactly
(
T
T ′

)
=
(

T
T−T ′

)
of choosing the T ′ “bullet” coordinates and for each

such choice, there are 2T−T ′
way of choosing the other coordinates.

For strings ρ ∈ {A,B}∗• and σ ∈ {A,B}bull(ρ), we can insert the coordinates of σ into the

bullet coordinates of ρ to get a string ins(σ, ρ) ∈ {A,B}|ρ|, whose ith coordinate, for i ∈ [|ρ|],
is denoted by insi(σ, ρ) and defined as:

insi(σ, ρ) =

{
ρi, if ρi ̸= •
σbull(ρ≤i), if ρi = •

. (22)

The function ins(·) satisfies the following:

Lemma 6.4. Let σ, σ′ ∈ {A,B}∗ and define T = |σ| and T ′ = |σ′|. For all (possibly empty11)

sets S ⊆ [T] such that Emb(σ, σ′,max(S)) ≤ T ′, there exists a string ρ ∈ {A,B}T
′

• such that

bull(ρ) = |S| and ins(σS, ρ) = σ′.

Proof. We start by defining the string ρ. For i′ ∈ [T ′], define:

ρi′ =

{
•, if ∃i ∈ S : Emb(σ, σ′, i) = i′

σ′
i′ , otherwise

(23)

As Observation 3.1 implies that the values of Emb(σ, σ′, i) are distinct for all i ∈ S, we have

bull(ρ) = |S| finishing the first part of the proof. For the second part, let s1 < · · · < s|S| be

the elements of S, and note that Observation 3.1 also implies that for all i′ ∈ [T ′] such that

ρi′ = •, we have i′ = Emb
(
σ, σ′, sbull(ρ≤i′)

)
. We get that, for all i′ ∈ [T ′],

insi′(σS, ρ) =

ρi′ , if ρi′ ̸= •
σsbull(ρ≤i′)

, if ρi′ = •

=

{
ρi′ , if ρi′ ̸= •
σ′
i′ , if ρi′ = •

(As i′ = Emb
(
σ, σ′, sbull(ρ≤i′)

)
≤ T ′)

= σ′
i′ . (Eq. (23))

Lemma 6.5. Let σ, σ′ ∈ {A,B}∗ and define T = |σ| and T ′ = |σ′|. Let i ∈ [T], i′ ∈ {0}∪[T ′]

be such that Emb(σ, σ′, i− 1) ≤ i′ < Emb(σ, σ′, i). For all i′′ ≥ i′ ∈ [T ′] and all 0 ≤ b ≤
|E(σ, σ′) ∩ (i′, i′′]|, there is a string ρ ∈ {A,B}i

′′−i′

• such that bull(ρ) = b and:

ins
(
σ[i,i+b), ρ

)
= σ′

(i′,i′′].

11We adopt the convention that max(∅) = 0.

33

Proof. To start, use Lemmas 3.2 and 3.5 to get:

Emb
(
σ≥i, σ

′
(i′,i′′], b

)
+ i′ = max(i′,Emb(σ, σ′, b+ i− 1)) ≤ i′′.

It follows that Emb
(
σ≥i, σ

′
(i′,i′′], b

)
≤ i′′ − i′. This, together with the fact that b ≤ T − i+ 1

(which follows from Emb(σ, σ′, i− 1) ≤ i′) implies due to Lemma 6.4 that there exists a

string ρ ∈ {A,B}i
′′−i′

• such that bull(ρ) = b and ins
(
σ[i,i+b), ρ

)
= σ′

(i′,i′′], as desired.

6.3 Predictable Indices

We are now ready to define the notion of predictable indices.

Definition 6.6 (Predictable indices). Let ℓ > 0 and σ ∈ {A,B}∗ be given. Let i be an

integer satisfying Dℓ ≤ i ≤ |σ| − 2Lℓ. For all integers 0 ≤ j ≤ Lℓ and ρ ∈ {A,B}Lℓ

•
satisfying bull(ρ) = Lℓ − Cℓ, define the function12:

Delay(ℓ, σ, i, j, ρ) = Emb
(
σ>i−Dℓ

, ins
(
σ(i+j,i+j+Lℓ−Cℓ], ρ

)
, (1− η) · Lℓ

)
.

We say that i is ℓ-predictable in σ if there exist ρ, j as above for which Delay(ℓ, σ, i, j, ρ) ≤ Lℓ

and use Predℓ(σ) to denote the set of all indices Dℓ ≤ i ≤ T −2Lℓ that are ℓ-predictable in σ.

Lemma 6.7. Let integers T, ℓ > 0 and Dℓ ≤ i ≤ T − 2Lℓ be given. We have:

Pr
σ∼{A,B}T

(i ∈ Predℓ(σ)) ≤ 2−
Lℓ
4 .

Proof. For brevity of notation, we omit writing σ ∼ {A,B}T . Using Definition 6.6 and a

union bound, we have:

Pr(i ∈ Predℓ(σ))

≤ Pr
(
∃0 ≤ j ≤ Lℓ, ρ ∈ {A,B}Lℓ

• : bull(ρ) = Lℓ − Cℓ ∧ Delay(ℓ,σ, i, j, ρ) ≤ Lℓ

)
≤

Lℓ∑
j=0

∑
ρ∈{A,B}Lℓ

•
bull(ρ)=Lℓ−Cℓ

Pr(Delay(ℓ,σ, i, j, ρ) ≤ Lℓ)

≤ 2Lℓ ·
(
Lℓ

Cℓ

)
· 2Cℓ · max

0≤j≤Lℓ

max
ρ∈{A,B}Lℓ

•
bull(ρ)=Lℓ−Cℓ

Pr(Delay(ℓ,σ, i, j, ρ) ≤ Lℓ). (Lemma 6.3)

To continue, note that if ℓ = 1 =⇒ Cℓ = 0, we have
(
Lℓ

Cℓ

)
· 2Cℓ ≤ 1. Otherwise, we get

12Note that Eq. (21) implies that (1− η) · Lℓ is an integer.

34

from Fact 6.1 and Eq. (21) that (
Lℓ

Cℓ

)
· 2Cℓ ≤ 272Cℓ .

Thus, in either case, we have:

Pr(i ∈ Predℓ(σ)) ≤ 2Lℓ · 272Cℓ · max
0≤j≤Lℓ

max
ρ∈{A,B}Lℓ

•
bull(ρ)=Lℓ−Cℓ

Pr(Delay(ℓ,σ, i, j, ρ) ≤ Lℓ). (24)

We now fix an arbitrary 0 ≤ j ≤ Lℓ and ρ ∈ {A,B}Lℓ

• such that bull(ρ) = Lℓ − Cℓ

and upper bound the probability term on the right. To this end, we define the set Z =

{0 ≤ i < Lℓ | ρi+1 ̸= •} and observe that |Z| = Cℓ. We additionally, define, for t ∈ [(1− η) · Lℓ],

the random variable:

Xt = Emb
(
σ>i−Dℓ

, ins
(
σ(i+j,i+j+Lℓ−Cℓ], ρ

)
, t
)
− Emb

(
σ>i−Dℓ

, ins
(
σ(i+j,i+j+Lℓ−Cℓ], ρ

)
, t− 1

)
.

(25)

Observe from Observation 3.1 that for all t ∈ [(1− η) · Lℓ], the random variable Xt only

takes values in N. We claim that:

Claim 6.8. For all t ∈ [(1− η) · Lℓ] and all x1, x2, · · · , xt−1 ∈ N, we have:

Pr(Xt = 1 | ∀t′ ∈ [t− 1] : Xt′ = xt′) ≤ 1− 1

2
· 1

(
t−1∑
t′=1

xt′ /∈ Z

)
· 1

(
t−1∑
t′=1

xt′ ≤ Lℓ − 1

)
.

We prove Claim 6.8 later in Section 6.3.1 but assuming it for now, we can continue

Eq. (24) as:

Pr(i ∈ Predℓ(σ)) ≤ 2Lℓ · 272Cℓ · max
0≤j≤Lℓ

max
ρ∈{A,B}Lℓ

•
bull(ρ)=Lℓ−Cℓ

Pr

(1−η)·Lℓ∑
t=1

Xt ≤ Lℓ


≤ 2Lℓ · 272Cℓ · 2−

2Lℓ
5

+η·Lℓ·log 12
η
+|Z| (Lemma 6.2 with δ = η

1−η
)

≤ 2Lℓ · 272Cℓ · 2−
Lℓ
3
+Cℓ (As η = 10−5 and |Z| = Cℓ)

≤ 2−
Lℓ
4 . (Eq. (21))

6.3.1 Proof of Claim 6.8

We now prove Claim 6.8 that was used in the proof of Lemma 6.7.

Proof of Claim 6.8. For convenience, we define x<t =
∑t−1

t′=1 xt′ . As the claim is trivial

otherwise, we can assume that x<t /∈ Z and x<t ≤ Lℓ− 1. By the definition of Z, this means

that ρx<t+1 = •, which implies that bull(ρ≤x<t+1) = bull(ρ≤x<t) + 1.

35

Define the value z = i+ j + bull(ρ≤x<t). Observe that:

Claim 6.9. It holds that i+ t−Dℓ ≤ z.

Proof. We have:

i+ t−Dℓ ≤ i+ j + t−Dℓ (As j ≥ 0)

≤ i+ j + t− Cℓ − 1 (Eq. (21))

≤ i+ j − Cℓ + x<t (As xt′ ∈ N)
≤ i+ j + bull(ρ)− Lℓ + x<t (As bull(ρ) = Lℓ − Cℓ)

≤ i+ j + bull(ρ)− |ρ>x<t| (As x<t ≤ Lℓ − 1)

≤ i+ j + bull(ρ)− bull(ρ>x<t)

≤ i+ j + bull(ρ≤x<t)

≤ z.

Next, note that whether or not the event ∀t′ ∈ [t − 1] : Xt′ = xt′ is determined by the

value of σ≤z. Indeed, for any two strings σ(1) and σ(2) that agree on the first z coordinates,

say σ
(1)
≤z = σ

(2)
≤z = τ , we can apply Lemma 3.4 and Claim 6.9 with σ = σ

(1)
>i−Dℓ

, τ = σ
(2)
>i−Dℓ

,

σ′ = τ ′ = ins(τ>i+j, ρ≤x<t) to get that for all t′ ∈ {0} ∪ [t− 1], we have:

Emb
(
σ
(1)
>i−Dℓ

, ins(τ>i+j, ρ≤x<t), t
′
)
≤ x<t ⇐⇒ Emb

(
σ
(2)
>i−Dℓ

, ins(τ>i+j, ρ≤x<t), t
′
)
≤ x<t.

By the definition of ins, this gives:

Emb
(
σ
(1)
>i−Dℓ

, ins≤x<t

(
σ
(1)
(i+j,i+j+Lℓ−Cℓ]

, ρ
)
, t′
)
≤ x<t

⇐⇒ Emb
(
σ
(2)
>i−Dℓ

, ins≤x<t

(
σ
(2)
(i+j,i+j+Lℓ−Cℓ]

, ρ
)
, t′
)
≤ x<t.

Again applying Lemma 3.4, we get for all t′ ∈ {0} ∪ [t− 1]:

Emb
(
σ
(1)
>i−Dℓ

, ins
(
σ
(1)
(i+j,i+j+Lℓ−Cℓ]

, ρ
)
, t′
)
≤ x<t

⇐⇒ Emb
(
σ
(2)
>i−Dℓ

, ins
(
σ
(2)
(i+j,i+j+Lℓ−Cℓ]

, ρ
)
, t′
)
≤ x<t.

By Eq. (25), this means that:

∀t′ ∈ [t− 1] : Xt′ = xt′ | σ = σ(1) ⇐⇒ ∀t′ ∈ [t− 1] : Xt′ = xt′ | σ = σ(2),

as claimed. As we showed that whether or not the event ∀t′ ∈ [t−1] : Xt′ = xt′ is determined

by the value of σ≤z, the claim follows if we show that for all τ ∈ {A,B}z that ∀t′ ∈ [t− 1] :

36

Xt′ = xt′ happens when σ≤z = τ , we have:

Pr(Xt = 1 | σ≤z = τ) ≤ 1

2
.

However, this is because

Pr(Xt = 1 | σ≤z = τ) ≤ Pr
(
Emb

(
σ>i−Dℓ

, ins
(
σ(i+j,i+j+Lℓ−Cℓ], ρ

)
, t
)
= x<t + 1 | σ≤z = τ

)
(Eq. (25) and choice of τ)

≤ Pr
(
insx<t+1

(
σ(i+j,i+j+Lℓ−Cℓ], ρ

)
= σi+t−Dℓ

| σ≤z = τ
)

(As x<t ≤ Lℓ − 1)

≤ Pr
(
σi+j+bull(ρ≤x<t+1) = σi+t−Dℓ

| σ≤z = τ
)

(Eq. (22) and ρx<t+1 = •)
≤ Pr(σz+1 = σi+t−Dℓ

| σ≤z = τ)

(As bull(ρ≤x<t+1) = bull(ρ≤x<t) + 1 and z = i+ j + bull(ρ≤x<t))

≤ 1

2
. (Claim 6.9)

6.4 Strings With Small Predℓ(·) Exist

Lemma 6.10. For all integers T > 0, there exists σ ∈ {A,B}T such that for all ℓ > 0, we

have:

|Predℓ(σ)| ≤ 2−
Lℓ
8 · T.

Proof. It suffices to show that:

Pr
σ∼{A,B}T

(
∃ℓ > 0 : |Predℓ(σ)| > 2−

Lℓ
8 · T

)
< 1.

This is because:

Pr
σ∼{A,B}T

(
∃ℓ > 0 : |Predℓ(σ)| > 2−

Lℓ
8 · T

)
≤
∑
ℓ>0

Pr
σ∼{A,B}T

(
|Predℓ(σ)| > 2−

Lℓ
8 · T

)
(Union bound)

≤
∑
ℓ>0

Pr
σ∼{A,B}T

(
T∑
i=1

1(i ∈ Predℓ(σ)) > 2−
Lℓ
8 · T

)

≤
∑
ℓ>0

T∑
i=1

Prσ∼{A,B}T (i ∈ Predℓ(σ))

2−
Lℓ
8 · T

(Markov inequality)

37

≤
∑
ℓ>0

2−
Lℓ
8 (Lemma 6.7)

≤ 1

2
.

6.5 Structure of Long Subsequences

For the remainder of this section, readers may like to recall the definition of the set Eσ,σ′ in

Eq. (2). We borrow the following lemma from [Sch93].

Lemma 6.11 ([Sch93], Lemma 6). Let T ′ > 0 be an integer. Also, let I be an indexing set

and a collection of pairs {t′i, ti}i∈I be given. Assume that 0 ≤ t′i < ti ≤ T ′ for all i ∈ I.
There exists a set I ′ ⊆ I such that the intervals {(t′i, ti]}i∈I′ are mutually disjoint and satisfy:∣∣∣∣∣⋃

i∈I

(t′i, ti]

∣∣∣∣∣ ≤ 2 ·

∣∣∣∣∣⋃
i∈I′

(t′i, ti]

∣∣∣∣∣.
Lemma 6.12. Let σ, σ′ ∈ {A,B}∗ be such that σ is a subsequence of σ′. If |σ′| ≤ (1 + η20) ·
|σ|, then:∣∣∣{i′ ∈ [|σ′|] | ∃0 < k ≤ |σ′| − i′ : |Eσ,σ′ ∩ (i′, i′ + k]| ≤

(
1− η8

)
· k
}∣∣∣ ≤ η8 · |σ′|.

Proof. For convenience, let S be the set in the lemma statement and define T = |σ′|, T ′ = |σ′|.
Also, define the set of pairs:

I =
{
(l, r) | 0 ≤ l < r ≤ T ′ ∧ |Eσ,σ′ ∩ (l, r]| ≤

(
1− η8

)
· |(l, r]|

}
.

Observe that, if i′ ∈ S, then i′ + 1 ∈
⋃

(l,r)∈I(l, r]. This implies that |S| ≤
∣∣∣⋃(l,r)∈I(l, r]

∣∣∣.
Now, use Lemma 6.11 to get a I ′ ⊆ I such that the intervals (l, r], for (l, r) ∈ I ′ are pairwise

disjoint and satisfy |S| ≤ 2 ·
∣∣∣⋃(l,r)∈I′(l, r]

∣∣∣. We get:

η19 · T ′ ≥ T ′ − T (As T ′ ≤ (1 + η20) · T)
≥ |[T ′] \ Eσ,σ′| (As σ is a subsequence of σ′)

≥
∑

(l,r)∈I′

|(l, r] \ Eσ,σ′ | (As the intervals (l, r], for (l, r) ∈ I ′ are pairwise disjoint)

≥
∑

(l,r)∈I′

η8 · |(l, r]| (As I ′ ⊆ I)

≥ η8 ·

∣∣∣∣∣∣
⋃

(l,r)∈I′

(l, r]

∣∣∣∣∣∣ (As the intervals (l, r], for (l, r) ∈ I ′ are pairwise disjoint)

38

≥ η9 · |S|.

6.6 Proof of Theorem 4.2

Proof of Theorem 4.2. We define σ to be the string promised by Lemma 6.10. Thus, for all

ℓ > 0, we have:

|Predℓ(σ)| ≤ 2−
Lℓ
8 · T. (26)

Fix an arbitrary σ′ ∈ {A,B}∗ such that σ is a strong subsequence of σ′ and let T ′ = |σ′|.
Assume for the sake of contradiction that T ′ < (1 + η20) · T . As σ is a strong subsequence

of σ′, we must have T ′ ≥ T + 1 and |Eσ,σ′ | = T . From these, we conclude that 2T ≥ T ′ ≥
T ≥ η−20 and |Eσ,σ′ | ≥ (1− η10) · T ′.

Next, we use Definition 3.7 to get a set I ⊆ [T ′] such that |I| ≥ T ′

10
and for all i′ ∈ I we

have that σ is a subsequence of σ′
−i′ . Define the following sets:

I1 = [T ′] \ [⌊0.999T ′⌋]
I2 = [T ′] \ Eσ,σ′

I3 =
{
i′ ∈ [T ′] | 0 < k ≤ T ′ − i′ : |Eσ,σ′ ∩ (i′, i′ + k]| ≤

(
1− η8

)
· k
} (27)

Also, define, for ℓ > 0, the set:

I3+ℓ = {i′ ∈ [T ′] | boundℓ(i′) ∈ Predℓ(σ)}, (28)

where, for i′ ∈ [T ′], we define

boundℓ(i
′) = max{i ∈ {0} ∪ [T] | Emb(σ, σ′, i) ≤ i′}+ (1− η) · L<ℓ +Dℓ − ℓ. (29)

We claim that:

Claim 6.13. For all ℓ > 0, it holds that:

|I3+ℓ \ I2| ≤ 2−
Lℓ
8 · T.

Proof. Due to Eq. (26), it is sufficient to show that boundℓ(·) is a one to one function from

the set I3+ℓ \ I2 to the set Predℓ(σ). By Eq. (28), the function boundℓ(·) indeed maps the set

I3+ℓ \ I2 to the set Predℓ(σ). This function is also one-to-one, as if there exists i′1 < i′2 such

that boundℓ(i
′
1) = boundℓ(i

′
2), then, we have:

max{i ∈ {0} ∪ [T] | Emb(σ, σ′, i) ≤ i′1} = max{i ∈ {0} ∪ [T] | Emb(σ, σ′, i) ≤ i′2},

then in particular, there is no i ∈ {0} ∪ [T] such that Emb(σ, σ′, i) = i′2, a contradiction to

39

the fact that i′2 /∈ I2.

Claim 6.14. We have: ∣∣∣∣∣⋃
j>0

Ij

∣∣∣∣∣ ≤ T ′

100
.

Proof. We have:∣∣∣∣∣⋃
j>0

Ij

∣∣∣∣∣ ≤ |I1|+ |I2|+ |I3|+
∑
ℓ>0

|I3+ℓ \ I2|

≤ T ′

100
+ |I2|+ |I3|+

∑
ℓ>0

|I3+ℓ \ I2| (Eq. (27) and T ≥ η−20)

≤ 2T ′

500
+ |I3|+

∑
ℓ>0

|I3+ℓ \ I2| (Eq. (27) and |Eσ,σ′| ≥ (1− η10) · T ′)

≤ 3T ′

500
+
∑
ℓ>0

|I3+ℓ \ I2| (Eq. (27) and Lemma 6.12)

≤ 3T ′

500
+
∑
ℓ>0

2−
Lℓ
8 · T (Claim 6.13)

≤ 4T ′

500
. (Eq. (21) and 2T ≥ T ′)

Conclude from Claim 6.14 and the fact that |I| ≥ T ′

10
that there exists an index z′ ∈

I \
⋃

j>0 Ij. We show that this leads to a contradiction. As z′ ∈ I, we have that σ is

a subsequence of σ′
−z′ . Recall that this implies that

∣∣E(σ, σ′
−z′

)∣∣ = T or, equivalently,

Emb
(
σ, σ′

−z′ , T
)
≤ T ′ − 1 < T ′. Henceforth, for notational convenience, we abbreviate

Emb
(
σ, σ′

−z′ , ·
)
to Emb∗(·) and E

(
σ, σ′

−z′

)
to E∗. We also abbreviate Emb(σ, σ′, ·) to Emb(·)

and E(σ, σ′) to E.

We now use the fact that z′ /∈
⋃

j>0 Ij to get more information about z′. From Eq. (27),

we get that z′ ≤ 0.999T ′ and z′ ∈ E. Due to Eq. (2), this implies that there exists z ∈ [T]

such that Emb(z) = z′. We claim that:

z ≤ (1− η) · T. (30)

Indeed, if not, we have from Observation 3.1 that 0.999T ′ ≥ z′ ≥ z ≥ (1− η) · T , a contra-

diction to T ′ < (1 + η20) · T . Next, Eq. (27) also says that for all 0 < k ≤ T ′ − z′, we have

(as the left hand side is an integer):

|E ∩ (z′, z′ + k]| ≥
⌈(
1− η8

)
· k
⌉
. (31)

40

Finally, use Eq. (28) and Observation 3.1 and Emb(z) = z′ to get that, for all ℓ > 0:

boundℓ(z
′) = z + (1− η) · L<ℓ +Dℓ − ℓ /∈ Predℓ(σ). (32)

To derive a contradiction, we shall show that:

Lemma 6.15. For all ℓ ≥ 0 such that z ≤ T − 3L≤ℓ, we have:

Emb∗(z + (1− η) · L≤ℓ − ℓ) ≥ z′ + L≤ℓ.

Before showing Lemma 6.15, we finish the proof of Theorem 4.2 by showing that it implies

a contradiction. For this, define ℓ∗ = ⌊log1010(η4T ′)⌋ and note that T ′ ≥ η−20 implies that

ℓ∗ ≥ 5. We get from Eq. (21) that

L≤ℓ∗ ≤ 2Lℓ∗ ≤ 2η2T ′ L≤ℓ∗ ≥ Lℓ∗ ≥ η4T ′. (33)

Due to Eqs. (30) and (33), we can use Lemma 6.15 with ℓ∗ to get:

Emb∗(T) ≥ Emb∗(z + (1− η) · L≤ℓ∗ − ℓ∗) + T − z − (1− η) · L≤ℓ∗ + ℓ∗ (Observation 3.1)

≥ z′ + η · L≤ℓ∗ + T − z

≥ η · L≤ℓ∗ + T (As Observation 3.1 implies z′ ≥ z)

≥ η5T ′ + T. (As L≤ℓ∗ ≥ η4T ′)

As we know that Emb∗(T) < T ′, this contradicts T ′ < (1 + η20) · T .

It remains to show Lemma 6.15.

Proof of Lemma 6.15. We prove the lemma by induction on ℓ. For the base case ℓ = 0, we

have Emb∗(z) > z′ − 1 by Lemma 3.4, and the result follows. For the inductive step, we

show the result for ℓ > 0 by assuming it holds for ℓ− 1. By our assumption, we have:

Emb∗(z + (1− η) · L≤ℓ − ℓ+ 1) ≥ z′ + L<ℓ. (34)

We now claim that:

Claim 6.16. We have z′ + 2L≤ℓ ≤ T ′.

Proof. If not, we have:

Emb∗(T) ≥ Emb∗(z + (1− η) · L≤ℓ − ℓ+ 1) + T − z − (1− η) · L<ℓ + ℓ− 1

(Observation 3.1)

≥ z′ + η · L<ℓ + T − z (Eq. (34) and ℓ > 0)

≥ z′ + η · L<ℓ + 2L≤ℓ (Assumption in the lemma)

≥ T ′ + η · L<ℓ.

41

As we know that Emb∗(T) < T ′, this is a contradiction.

Claim 6.17. It holds that Dℓ ≤ boundℓ(z
′) ≤ T − 2L≤ℓ.

Proof. For the first inequality, note that boundℓ(z
′) ≥ 1 + 1

2
· L<ℓ − ℓ ≥ 0. For the second,

note that boundℓ(z
′) ≤ z + L<ℓ +Dℓ ≤ z + L≤ℓ ≤ T − 2L≤ℓ.

Claim 6.18. There exists 0 ≤ j ≤ Lℓ and ρ ∈ {A,B}Lℓ

• satisfying bull(ρ) = Lℓ − Cℓ and:

ins
(
σ(boundℓ(z′)+j,boundℓ(z′)+j+Lℓ−Cℓ], ρ

)
= σ′

(z′+L<ℓ,z′+L≤ℓ]
.

Proof. We start by using Eq. (31) to derive the following inequalities (the condition in

Eq. (31) is satisfied due to Claim 6.16):⌈(
1− η8

)
· L≤ℓ

⌉
≤ |E ∩ (z′, z′ + L≤ℓ]|,⌈(

1− η8
)
· L<ℓ

⌉
≤ |E ∩ (z′, z′ + L<ℓ]| ≤ L<ℓ,

This implies that:

|E ∩ (z′ + L<ℓ, z
′ + L≤ℓ]| ≥

⌈(
1− η8

)
· L≤ℓ − L<ℓ

⌉
≥
⌈(
1− η8

)
· Lℓ − η8 · L<ℓ

⌉
≥
⌈(
1− 2η8

)
· Lℓ

⌉
≥ Lℓ −

⌊
2η8 · Lℓ

⌋
(As for all x, we have ⌊−x⌋ = −⌈x⌉)

≥ Lℓ − Cℓ. (Eq. (21))

We define j to be:

j = |E ∩ (z′, z′ + L<ℓ]| − (1− η) · L<ℓ −Dℓ + ℓ. (35)

We now show that 0 ≤ j ≤ Lℓ. For the first inequality, note using Eq. (21) that

j ≥
⌈(
1− η8

)
· L<ℓ

⌉
− (1− η) · L<ℓ −Dℓ + 1 ≥

⌈η
2
· L<ℓ

⌉
−Dℓ + 1 ≥ 0.

For the second inequality, note that j ≤ L<ℓ+ℓ ≤ Lℓ. Next, observe that due to Lemmas 3.2

and 3.3, we have that:

Emb(z + |E ∩ (z′, z′ + L<ℓ]|) ≤ z′ + L<ℓ < Emb(z + 1 + |E ∩ (z′, z′ + L<ℓ]|).

Equivalently, by Eqs. (32) and (35), we have:

Emb(boundℓ(z
′) + j) ≤ z′ + L<ℓ < Emb(boundℓ(z

′) + j + 1).

42

Thus, we can apply Lemma 6.5 to get a string ρ ∈ {A,B}Lℓ

• such that bull(ρ) = Lℓ−Cℓ and:

ins
(
σ(boundℓ(z′)+j,boundℓ(z′)+j+Lℓ−Cℓ], ρ

)
= σ′

(z′+L<ℓ,z′+L≤ℓ]
,

as claimed.

We continue our proof of Lemma 6.15. Due to Eq. (32), we have boundℓ(z
′) /∈ Predℓ(σ).

Due to Definition 6.6 and Claim 6.18 (recall that Dℓ ≤ boundℓ(z
′) ≤ T − 2L≤ℓ due to

Claim 6.17), this means that:

Emb
(
σ>boundℓ(z′)−Dℓ

, σ′
(z′+L<ℓ,z′+L≤ℓ]

, (1− η) · Lℓ

)
> Lℓ.

By definition of σ′
−z′ and Eq. (32), we then get:

Emb
(
σ≥z+(1−η)·L<ℓ−ℓ+1,

(
σ′
−z′

)
[z′+L<ℓ,z′+L≤ℓ)

, (1− η) · Lℓ

)
> Lℓ. (36)

To continue, we recall Eq. (34) which says that Emb∗(z + (1− η) · L<ℓ − ℓ+ 1) ≥ z′ + L<ℓ.

As Emb∗(0) = 0 and we have Observation 3.1, this means that there exists a unique c ∈
[z + (1− η) · L<ℓ − ℓ+ 1] such that:

Emb∗(c− 1) ≤ z′ + L<ℓ − 1 < Emb∗(c). (37)

Now, assume for the sake of contradiction that Emb∗(z + (1− η) · L≤ℓ − ℓ) < z′ + L≤ℓ.

Together with Eq. (37) and Observation 3.1, this means that

|E∗ ∩ [z′ + L<ℓ, z
′ + L≤ℓ)| ≥ z + (1− η) · L≤ℓ − ℓ+ 1− c.

Applying Lemma 3.6 with a = z+(1− η) ·L<ℓ−ℓ+1−c and b = z+(1− η) ·L≤ℓ−ℓ+1−c,

we get:

Emb
(
σ≥z+(1−η)·L<ℓ−ℓ+1,

(
σ′
−z′

)
[z′+L<ℓ,z′+L≤ℓ)

, (1− η) · Lℓ

)
≤ Lℓ,

a contradiction to Eq. (36).

References

[AGS16] Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interac-

tive communication. In International Symposium on Information Theory (ISIT),

pages 595–599, 2016. 5

[BKOS21] Assaf Ben-Yishai, Young-Han Kim, Or Ordentlich, and Ofer Shayevitz. A lower

bound on the essential interactive capacity of binary memoryless symmetric chan-

nels. IEEE Transactions on Information Theory, 67(12):7639–7658, 2021. 4

43

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in inter-

active communication. In Symposium on Theory of computing (STOC), pages

159–166, 2011. 4

[CS19] Gil Cohen and Shahar Samocha. Capacity-approaching deterministic interactive

coding schemes against adversarial errors. Electronic Colloquium on Computa-

tional Complexity: ECCC, page 147, 2019. 1, 2, 4

[EHK20] Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai. Interactive coding

with constant round and communication blowup. In Thomas Vidick, editor,

Innovations in Theoretical Computer Science Conference (ITCS), volume 151,

pages 7:1–7:34, 2020. 5

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Foundations and

Trends® in Theoretical Computer Science, 13(1–2):1–157, 2017. 2

[GH14] Ran Gelles and Bernhard Haeupler. Capacity of interactive communication over

erasure channels and channels with feedback. In Symposium on Discrete Algo-

rithms (SODA), pages 1296–1311, 2014. 1, 2, 4

[GHK+16] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.

Towards optimal deterministic coding for interactive communication. In Sym-

posium on Discrete Algorithms (SODA), pages 1922–1936. Society for Industrial

and Applied Mathematics, 2016. 4

[Hae14] Bernhard Haeupler. Interactive channel capacity revisited. In Foundations of

Computer Science (FOCS), pages 226–235, 2014. 1, 2, 4, 5

[HSV18] Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchroniza-

tion strings: Channel simulations and interactive coding for insertions and dele-

tions. In International Colloquium on Automata, Languages, and Programming

(ICALP), volume 107, pages 75:1–75:14, 2018. 1, 2, 4

[HV17] Bernhard Haeupler and Ameya Velingker. Bridging the capacity gap between

interactive and one-way communication. In Symposium on Discrete Algorithms

(SODA), pages 2123–2142, 2017. 4

[KR13] Gillat Kol and Ran Raz. Interactive channel capacity. In Symposium on Theory

of computing (STOC), pages 715–724, 2013. 1, 2, 4, 5

[NW91] Noam Nisan and Avi Widgerson. Rounds in communication complexity revis-

ited. In Proceedings of the twenty-third annual ACM symposium on Theory of

computing, pages 419–429, 1991. 3, 5, 6, 26

44

[Pan13] Denis Pankratov. On the power of feedback in interactive channels. Manuscript,

2013. 1, 2, 4

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem for

computation. In Foundations of Computer Science (FOCS), pages 724–733, 1992.

1, 3, 4

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756, 1993. 4, 38

[Sha48] Claude E. Shannon. A mathematical theory of communication. ACM SIGMO-

BILE Mobile Computing and Communications Review, 5(1):3–55, 2001. Origi-

nally appeared in Bell System Tech. J. 27:379–423, 623–656, 1948. 1

A Information Theory Preliminaries

Recall that we use sans-serif letters to denote random variables. We reserve E to denote an

arbitrary event. All random variables will be assumed to be discrete and we shall adopt the

convention 0 log 1
0
= 0. All logarithms are taken with base 2.

A.1 Entropy

Definition A.1 (Entropy). The (binary) entropy of X is defined as:

H(X) =
∑

x∈supp(X)

Pr(x) · log 1

Pr(x)
.

The entropy of X conditioned on E is defined as:

H(X | E) =
∑

x∈supp(X)

Pr(x | E) · log 1

Pr(x | E)
.

Definition A.2 (Conditional Entropy). We define the conditional entropy of X given Y and

E as:

H(X | Y, E) =
∑

y∈supp(Y)

Pr(y | E) ·H(X | Y = y, E).

Henceforth, we shall omit writing the supp(·) when it is clear from context.

Lemma A.3 (Chain Rule for Entropy). It holds for all X, Y, Z and E that:

H(XY | Z, E) = H(X | Z, E) +H(Y | X,Z, E).

45

Proof. We have:

H(XY | Z, E) =
∑
z

Pr(z | E) ·H(XY | z, E)

=
∑
z

Pr(z | E) ·
∑
x,y

Pr(x, y | z, E) · log 1

Pr(x, y | z, E)

=
∑
z

Pr(z | E) ·
∑
x,y

Pr(x, y | z, E) ·
(
log

1

Pr(x | z, E)
+ log

1

Pr(y | x, z, E)

)
= H(X | Z, E) +

∑
x,z

Pr(x, z | E) ·
∑
y

Pr(y | x, z, E) · log 1

Pr(y | x, z, E)

= H(X | Z, E) +H(Y | X,Z, E).

Lemma A.4 (Conditioning reduces Entropy). It holds for all X, Y, Z and E that:

H(X | Y,Z, E) ≤ H(X | Z, E).

Equality holds if and only if X and Y are independent conditioned on Z, E.

Proof. We have:

H(X | Y,Z, E) =
∑
y,z

Pr(y, z | E) ·H(X | Y = y,Z = z, E)

=
∑
x,y,z

Pr(y, z | E) · Pr(x | y, z, E) · log 1

Pr(x | y, z, E)

=
∑
x,y,z

Pr(x, z | E) · Pr(y | x, z, E) · log Pr(y, z | E)

Pr(x, z | E) · Pr(y | x, z, E)

≤
∑
x,z

Pr(x, z | E) · log Pr(z | E)

Pr(x, z | E)
(Concavity of log(·))

=
∑
z

Pr(z | E) ·
∑
x

Pr(x | z, E) · log 1

Pr(x | z, E)

=
∑
z

Pr(z | E) ·H(X | Z = z, E)

= H(X | Z, E).

A.2 Min-Entropy

Definition A.5 (Min-Entropy). The min-entropy of a discrete random variable X is

H∞(X) = min
x:Pr(x)>0

log
1

Pr(x)
.

46

Fact A.6. If the random variable X takes values in the set Ω, it holds that

0 ≤ H∞(X) ≤ H(X) ≤ log|Ω|

Lemma A.7. Let Ω, A,B be (finite) sets and X be a random variable that takes values in

the set Ω. Let f : Ω → A and g : Ω → B be functions. For an event E and t > 0, define the

set:

B′ = {b ∈ B | H∞(f(X) | E, g(X) = b) ≤ H∞(f(X) | E)− t}.

It holds that:

Pr(g(X) ∈ B′ | E) ≤ |B| · 2−t.

Proof. For all a ∈ A, b ∈ B, we have by the chain rule that:

Pr(g(X) = b | E) · Pr(f(X) = a | E, g(X) = b) ≤ Pr(f(X) = a | E).

Maximizing over all a and using Definition A.5, we have:

Pr(g(X) = b | E) · 2−H∞(f(X)|E,g(X)=b) ≤ 2−H∞(f(X)|E).

This means that for all b ∈ B′, we have:

Pr(g(X) = b | E) ≤ 2−t.

We get:

Pr(g(X) ∈ B′ | E) =
∑
b∈B′

Pr(g(X) = b | E) ≤ |B′| · 2−t ≤ |B| · 2−t.

A.3 KL Divergence

Definition A.8 (KL Divergence). If µ, ν are two distributions over the same (finite) set Ω,

the Kullback-Leibler (KL) Divergence between µ and ν is defined as:

D(µ || ν) =
∑
ω∈Ω

µ(ω) · log µ(ω)

ν(ω)
.

For a finite non-empty set S, we shall use U(S) to denote the uniform distribution over

S. We omit S from the notation when it is clear from the context. We use dist(X | E) to

denote the distribution of the random variable X conditioned on the event E.

Lemma A.9. Let X be a random variable uniformly distributed over a set Ω and S ⊆ Ω be

given:

D(dist(X | X ∈ S) || U) = log
|Ω|
|S|

.

47

Proof. As X is distributed uniformly, we have:

D(dist(X | X ∈ S) || U) =
∑
x∈S

1

|S|
· log |Ω|

|S|
= log

|Ω|
|S|

.

Lemma A.10. It holds for all X and E that:

D(dist(X | E) || U) = log(|supp(X)|)−H(X | E).

Proof. We have:

D(dist(X | E) || U) =
∑

x∈supp(X)

Pr(x | E) · log(Pr(x | E) · |supp(X)|)

=
∑

x∈supp(X)

Pr(x | E) · log Pr(x | E) +
∑

x∈supp(X)

Pr(x | E) · log(|supp(X)|)

= log(|supp(X)|)−H(X | E).

Lemma A.11. It holds for all X,Y and E that:

D(dist(XY | E) || U) ≥ D(dist(X | E) || U) + D(dist(Y | E) || U).

Proof. We have:

D(dist(XY | E) || U) = log(|supp(X)|) + log(|supp(Y)|)−H(XY | E) (Lemma A.10)

≥ log(|supp(X)|) + log(|supp(Y)|)−H(X | E)−H(Y | E)

(Lemma A.3 and Lemma A.4)

≥ D(dist(X | E) || U) + D(dist(Y | E) || U). (Lemma A.10)

A.4 Total Variation Distance

Definition A.12 (Total variation distance). Let µ, ν be two distributions over the same

(finite) set Ω. The total variation distance between µ and ν is defined as:

∥µ− ν∥TV = max
Ω′⊆Ω

∑
ω∈Ω′

µ(ω)− ν(ω).

Fact A.13 (Pinsker’s inequality). Let µ, ν be two distributions over the same set Ω. It holds

that:

∥µ− ν∥TV ≤
√

1

2
· D(µ || ν).

48
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

