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Abstract

This paper studies the interaction of oracles with algorithmic approaches to proving circuit
complexity lower bounds, establishing new results on two different kinds of questions.

1. We revisit some prominent open questions in circuit lower bounds, and provide a clean
way of viewing them as circuit upper bound questions. Let MISSING-STRING be the (total)
search problem of producing a string that does not appear in a given list L containing M bit-
strings of length N, where M < 2™. We show in a generic way how algorithms and uniform
circuits (from restricted classes) for MISSING-STRING imply complexity lower bounds (and in
some cases, the converse holds as well).

e We give a local algorithm for MISSING-STRING, which can compute any desired output bit
making very few probes into the input, when the number of strings M is small enough. We
apply this to prove a new nearly-optimal (up to oracles) time hierarchy theorem with advice.

e We show that the problem of constructing restricted uniform circuits for MISSING-STRING is
essentially equivalent to constructing functions without small non-uniform circuits, in a relativiz-
ing way. For example, we prove that small uniform depth-3 circuits for MISSING-STRING would
imply exponential circuit lower bounds for 39EXP, and depth-3 lower bounds for MISSING-
STRING would imply non-trivial circuits (relative to an oracle) for 33EXP problems. Both
conclusions are longstanding open problems in circuit complexity.

2. We construct an oracle relative to which SAT can be solved in “half-exponential” time,
yet exponential time (EXP) has polynomial-size circuits. Improving EXP to NEXP would give
an oracle relative to which ¥9E has “half-exponential” size circuits, which is open. (Recall it
is known that ¥3E is not in “sub-half-exponential” size, and the proof relativizes.) Moreover,
the running time of the SAT algorithm cannot be improved: relative to all oracles, if SAT is in
“sub-half-exponential” time then EXP does not have polynomial-size circuits.

The conference version of this paper had an incorrect theorem (Theorem 1.10),
pointed out to us by Jiatu Li. We have attached an erratum (coauthored with Jiatu
Li) to the end of this paper, which includes a proof of the negation of Theorem 1.10.

1 Introduction

Which complexity classes have small-size non-uniform circuit families, and which do not? While
this question dates back to the 1970s [22, 13, 21], our known answers are astoundingly incomplete.
We believe that NP does not have polynomial-size circuit families, but our best-known results have
to replace the class NP with considerably larger complexity classes. Kannan [13] proved that YoEXP
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(the exponential-time version of ¥5P) does not have polynomial-size circuits, and his proof extends
to “sub-half-exponential” size circuits, i.e., for size functions H(n) where H(H (n)¢)¢ < o(2"/n) for
a fixed constant ¢ > 1 [18]. Buhrman, Fortnow, and Theirauf [7] proved that the exponential-time
version of Merlin-Arthur (MAEXP) does not have polynomial-size circuits. However, it remains
open whether NEXP (nondeterministic exponential time) has polynomial-size circuits, in spite of
research attempting to attack the problem via faster circuit-analysis algorithms [11, 12, 26]. Perhaps
even more embarrassingly, there could be infinitely many input lengths for which even ¥9EXP and
MAEXP problems have polynomial-size circuits on just those input lengths. Furthermore, there
is no known barrier to establishing stronger lower bounds for »sEXP—mnot even a relativization
barrier. For example, according to current knowledge, there could be a relativizing proof (one that
holds with respect to all oracles) that ¥9EXP requires mazimum (©(2"/n)) circuit complexity, or
there could be an oracle under which ¥5EXP has at most 2" circuit complexity, for all € > 0.
(Note that we could not have both.)

We propose a clean way of studying such lower bound questions, as circuit upper bound ques-
tions. We begin by defining a simple search problem over binary strings.

MISSING-STRING: Let N, M be such that M < 2. Given a list L of M strings which
are N-bits long, output an N-bit string y that is not in L.

We call such a string y a missing string for L. MISSING-STRING is a natural and classic
problem arising (for example) whenever one wishes to assign a “name” to a new resource in a
network.” Note that MISSING-STRING is a total search problem; since M < 2V, every instance
has a solution.” Building on long-known connections showing how circuit lower bounds lead to
oracles separating complexity classes [10], we show that the above circuit lower bound questions
(and more) can be viewed as questions about how efficiently MISSING-STRING can be solved, giving
equivalences between algorithms for MISSING-STRING and circuit lower bounds. In particular, the
depth-3 circuit complexity of MISSING-STRING is innately tied to the question of whether 39EXP
has functions with exponential circuit complexity.

1.1 Local Algorithms for Missing-String and New Time Hierarchies

First, we study how well MISSING-STRING can be solved by algorithms which only probe a few bits
of the list in order to determine an output bit, and use our results to derive new time hierarchy
theorems with advice that are very close to tight (relative to oracles).

As a starting point, observe that when M < N (the number of strings is at most the length of
the strings) Cantor’s diagonal argument shows that one can make only 1 probe to determine each
output bit of a missing string. We consider natural generalizations of this fundamental algorithm.
Let K > 1 be a small parameter. How many probes are needed to compute a missing string, when

1Using the oracle that makes P = NP, there is an oracle relative to which X2EXP requires maximum circuit
complexity. However, we don’t know any oracles relative to which 32EXP has smaller circuit complexity.

In the literature, the representation is often a list of integers, and the problem is called the “missing integer”
problem. There is a well-known linear time algorithm (see for example Chapter 1 of [6]) which is apparently a common
tech interview problem.

30ne may view MISSING-STRING as an “exponential-sized” version of the EMPTY problem, studied in [16, 17, 19]:
given a circuit C': {0,1}™ — {0,1}" where N > m, find an N-bit string y such that no = has C(z) = y. In EmpTY,
one is given a (small) circuit with m outputs whose truth table is the list of strings, and the task is to find a missing
string in the list.



M < KN7?7 In Section 3, we give an algorithm for MISSING-STRING that is local in that each
output bit of the missing string can be computed separately in about O(K log® K) time, making
only O(K log K') probes into the list L, provided that M < KN. (It is easy to show that Q(K)
probes are required; see Appendix A.) It is an interesting open problem to close the gap between
our O(K log K') upper bound and the Q(K) lower bound.

Applying our MISSING-STRING algorithm directly, we prove a new relativizing time hierarchy
theorem against super-linear advice. The most generic form of our hierarchy is the following.

Theorem 1.1. For all (time-constructible) a(n) > 0, t(n) > n?, unbounded B(n), and every oracle
A,
TIMEA[t(n) logt(n) - (a(n) + B(n)) - 290 7 4.0 - TIMEA[t(n)]/(n + a(n)).

That is, there are functions in time O(t(n) log t(n)-(a(n)+B(n))-24+8M) that cannot be simulated
in time t(n) even with n + a(n) non-uniform advice, for all but finitely many input lengths n.

The above theorem holds for “reasonable” models of computation such as multitape Turing
machines, random access Turing machines, random access machines, and so on. Previously, it
was known that TIME(t(n)log?t(n)) ¢ i.0-TIME(t(n))/(n — w(1)) for appropriate time bounds
t(n) [23, 9]. The basic idea in such proofs is to use the input itself as potential advice in the
hard function; however, this strategy can only possibly diagonalize against advice of length less
than n, whereas the lower bound in Theorem 1.1 holds for machines with advice longer than n.
It was also well-known that by running for at least Q(2%(")) time, one could enumerate all a(n)-
bit advice strings, and diagonalize against «(n)-bit advice machines (see e.g.,Theorem 3 of [11]).
Our Theorem 1.1 adds a factor of n to the advice length of such time hierarchies. In contrast,
Theorem 1.1 is interesting in that it is not proved by directly diagonalizing over algorithms with
n + a(n) advice: on any given input, the hard function in Theorem 1.1 has to simulate multiple
algorithms on multiple advice strings and inputs, in order to determine its output.

Theorem 1.1 has several interesting corollaries, illustrating tradeoffs between running time and
advice. As time hierarchies are so fundamental to complexity lower bounds, we believe these new
hierarchies may be useful in future separations.

Corollary 1.2. For all ¢ > 1, TIME[2" - n°"3] ¢ i.0.-TIME[2"]/(n + clogn).
Corollary 1.3. For all ¢ > 0, TIME[n? - 22"] ¢ i.0.-TIME[2°"]/((1 + €)n).
Corollary 1.4. For every ¢, TIME[n*log3 n] ¢ i.0.-TIME[n]/(n + clogn).

For example, Corollary 1.3 says there are problems solvable in about 22" time which cannot be
solved in 2" time with (1 + €)n advice: we can compute a hard function in significantly less time
than the number of possible advice strings (2"1") that we must diagonalize against.

The lower bound of Theorem 1.1 is essentially tight, in that there are oracles relative to which
the containment actually holds if the running time of the hard function is slightly decreased [27]
(see also Appendix A).

Good Circuits for Missing-String Are Equivalent to Circuit Lower Bounds. Next, we
show that the problem of constructing good uniform circuits for MISSING-STRING is equivalent
to constructing relativizing circuit lower bounds for uniform complexity classes. First, we give
an equivalence between almost-everywhere circuit lower bounds and circuits for MISSING-STRING.



To keep the presentation clean, we start with stating our results for £,E = %, TIME[29(")], but
our connection holds for any exponential-time complexity class, with appropriate modifications
for MISSING-STRING circuits (See Theorem 1.7). Recall that SIZE#(s(n)) is the class of functions
with an A-oracle circuit family of size O(s(n)), and i.0.-SIZE?(s(n)) is the class of functions having
A-oracle circuits of size O(s(n)) on infinitely many input lengths n.

Theorem 1.5 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds). For all
k, the following are equivalent:

e For every oracle A, LxEA ¢ i.0.-SIZEA(O(s(O(n)))).

e For alln, MISSING-STRING has a poly(N)-time uniform depth-(k+1) circuit family of 2roly(N)
size and poly(N) bottom fan-in, on all lists of length M = 200U N)) yyip N = o *

According to current knowledge, Theorem 1.5 only refers to an open problem in the case of
k = 2. The other values of k are already settled, and Theorem 1.5 implies interesting results about
the MISSING-STRING problem in those cases:

e For k = 1, it is known ([27]) that there is an oracle A such that NE4 = NTIMEA[20(")]
SIZEA(O(n)). Theorem 1.6 implies that MISSING-STRING cannot be solved by depth-2 circuits
of quasi-polynomial size, even for M < 9log™ 1 (N)

e For k > 3, recall it is known ([13, 18]) that for all oracles A, ¥3E4 has mazimum A-oracle
circuit complexity almost everywhere (that is, ¥3E4 ¢ 1.0.-SIZE(H (n) — 1), where H(n) =
(1 4+ 0(1))2™/n denotes the maximum circuit complexity of n-bit Boolean functions). This
directly corresponds to the existence of uniform depth-4 circuits solving MISSING-STRING for
all M < 2V,

Recall it is open whether ¥9E C i.0.-SIZE(O(n)) (even relative to some oracle). Theorem 1.5
shows that the problem of proving “almost-everywhere” (relativizing) lower bounds for ¥3E is
equivalent to constructing uniform depth-3 circuits for MISSING-STRING over lists of length M =
20(IOgN)'

Similarly to Theorem 1.5, we can show that constructing uniform circuits for MISSING-STRING
that succeed on only infinitely many bit-string lengths N = 2" would still imply circuit lower
bounds.

Theorem 1.6 (Circuits for Missing-String Imply Circuit Lower Bounds). Let k > 1. If for infinitely
many n, MISSING-STRING has a poly(log N)-time uniform depth-(k + 1) circuit family of 2PN
size and poly(N) bottom fan-in, on all lists of length M := 20(s(og N)) yith strings of length N = 27,
then SLEA ¢ SIZEA(s(n)) for all oracles A.

As mentioned above, the proofs of Theorems 1.5 and 1.6 easily generalize to other exponential-
time complexity classes (and correspondingly, other circuit types for MISSING-STRING). Let us
briefly describe what the generalization looks like. For ¢ > 0, let Y1,..., Y5 be the list of all ¢-bit
strings in lexicographical order. For an arbitrary G : {0,1}* — {0,1}, we define the complexity

*Our notion of uniformity is the typical “direct connect” uniformity; see the Preliminaries (Section 2) for more
details.



class G-E, where a decision problem f is in GE if and only if there is a constant ¢ > 0 and Turing
machine M (z,y) running in 2¢* time when || = n and |y| = 2", such that for all z,

flz)=1 <= G(M(z,Y1),...,M(x,Yyen)) = 1.

That is, the value of f(z) is determined by computing G on a doubly-exponential length input, and
this input is computed by evaluating M (z,-) on all possible strings of length 2. It is easy to see
that OR-E = NE, AN D-E = co-NE, >»E is equivalent to a case where G is an OR of AND, and so
on.

Theorem 1.7 (Generic Equivalence). The following are equivalent:

e For every oracle A, G-EA ¢ i.0.-SIZEA(O(s5(0O(n)))).

e For all n, MISSING-STRING has a poly(N)-time uniform circuit family of 2Pol(N) size on all

lists of length M = 20(s(0(og N))) yyith N = 2" where the output gate of each circuit is a
copy of G, and the inputs to G are decision trees of depth poly(N).

Non-Relativizing Circuit Lower Bounds as Circuits for Missing-String on “Easy” In-
puts. Although no relativization barriers are known against circuit lower bounds for Y5EXP, it
would be natural for a complexity theorist to be unsettled by the relativizing nature of the previous
theorems. Our perspective also yields insight into the precise difference between non-relativizing
circuit lower bounds (e.g. NEXP ¢ SIZE(n®(1)), MAEXP ¢ SIZE(n®M) [7]) and relativizing ones,
by viewing these questions in terms of low-depth circuits for MISSING-STRING.

Let L be an ordered list of M = 2¢ bit strings, each of length N = 2. We say that L is S(n)-
compressible if there is a circuit C' of at most S(n) size, with ¢ + n inputs, such that the 2!7"-bit
truth table of C' corresponds exactly to L. In other words, L is S(n)-compressible if there is an
S(n)-size circuit encoding it. We observe that constructing low-depth circuits for MISSING-STRING
on S(n)-compressible inputs corresponds directly to (non-relativizing) circuit lower bounds. We
illustrate the idea with the case of NE := NTIME[20(")].

Theorem 1.8. Let S(n) > n. NE ¢ SIZE(S(n)) if and only if there is a poly(N)-time uniform
depth-two circuit family of size 2P°W(N) for MISSING-STRING that succeeds for infinitely many N =
2" when M = 2080 S() gnd the list L is S(n)-compressible.

As noted above, since there is an oracle relative to which NE C SIZE(O(n)), Theorem 1.6 shows
that MISSING-STRING on M = 2P°(0gN) gtrings cannot be solved on general inputs with depth-
two circuits of 2P°W(N) size. Theorem 1.8 says that, if we believe NE ¢ SIZE(n®™) is true (and
we do!), then we should believe that MISSING-STRING can be solved with small uniform depth-
two circuits on n®M-compressible inputs. The fact that compressible inputs make the problem
easier is counterintuitive; many complexity theorists believe that separations like EXP # NEXP are
just as likely as separations like P # NP, but the EXP vs NEXP problem is exactly the P versus
NP problem restricted to highly compressible inputs. In our setting, the difference between non-
relativizing circuit lower bounds versus relativizing ones is precisely the difference between solving
MISSING-STRING on highly-compressible inputs versus general, arbitrary inputs (oracles).



1.2 A Non-Relativizing Aspect of the Algorithmic Method

The second result in this paper concerns proving circuit complexity lower bounds via the design of
faster SAT algorithms. Are there oracles relative to which SAT can be solved more efficiently, yet
no circuit lower bounds follow? It is known (e.g., [26], Proposition 2) that if SAT is in O(H (n))
time then EXP ¢ P/poly, for any “sub-half-exponential” H(n) satisfying H(H(n*)?) < 2" for all
k, and that proof relativizes.” Could one conclude EXP lower bounds from a SAT algorithm that
runs just slightly slower? We give an oracle relative to which this is not true:

Theorem 1.9. There is an oracle A and a function H such that TIMEA[2?] c SIZEA[O(n)],
SATA can be solved in poly(H (poly(n))) time with an A-oracle, H(H(n)) < 2" and H is monotone
1mncreasing.

Could a slower SAT algorithm imply NEXP circuit lower bounds instead? If we could re-
place EXP with NEXP in Theorem 1.9, that would yield an oracle relative to which 3sE has
“half-exponential” size circuits, which is open. (Recall it is known that 39E is not in “sub-half-
exponential” size, and the proof relativizes.) That is, our oracle stops just short of showing that
non-relativizing methods are necessary for proving stronger >oE circuit lower bounds. While
half-exponential functions have been known to pop up naturally in circuit complexity for over
20 years [18], Theorem 1.9 is the first oracle result (to our knowledge) that “explains” the half-
exponential barrier. We leave it as interesting open problems to show an algebrization barrier for
similar settings.

The previous version of the paper stated the following incorrect theorem. We have attached
the proof of negation of Theorem 1.10 to the end of this paper.

Theorem 1.10. There is an oracle A such that CAPP (for A-oracle circuits) is in P4 but EXPNP”
has polynomial-size A-oracle circuits.

2 Preliminaries

We assume familiarity with complexity theory, especially notions such as the polynomial hierarchy
and non-uniform circuit families [4]. Here, we recall some particularly important notions for this
work.

We use h : N — N to denote a “half-exponential” function, i.e., for all n, h(n) is a strictly
monotone increasing function satisfying h(h(n)) = 27.° It is widely believed (and sometimes
claimed) that there exist h(n) which are time constructible [18, 2, 1].” For a function f : {0, 1}* —
{0,1}, we let f,, : {0,1}" — {0, 1} denote the n-th slice of f, i.e., the function f restricted to n-bit
inputs.

We say that a function s : N — N is nice if it satisfies s(n 4 log(n)) < O(s(n)) = s(n) -
poly(log s(n)). We note that most commonly studied functions such as cn, nk, nlogk("), 2n° 28T are
all nice. Unless otherwise specified, we will assume all functions s are nice.

5See Appendix B for a proof outline.

5Note that such a function must be one-to-one, and therefore strictly increasing: if h(n) = h(m) = z for some
n # m, then h(z) = h(h(n) = 2™ and h(z) = h(h(m)) = 2™, a contradiction.

"We have not yet found a rigorous proof in the literature, but we have no reason to doubt its existence, given the
vast literature on computing half-exponential functions.



Uniform Circuits. In Theorems 1.6 and 1.5, we consider poly(/N)-time constant-depth uniform
circuits of 2P°W(N) gize for the MISSING-STRING problem, and relate their existence directly to
functions in XixE that have high circuit complexity. Here we give a few more details about the
kind of uniformity we require. These circuit families are “direct connect” uniform (in the sense
of Ruzzo [20, 14]), in that local gate information about the n-th circuit C), of size 2P°Y(M) can be
computed in poly(N) time. In particular, there is a language in P of strings of the form (N, g,y)
where g and y are bit strings labelling gates in C), (taking poly(NN) bits to describe) and the output
of y is an input to g in C,,, along with strings of the form (IV, g,t) where t is the type of gate g
(taking poly (V) bits to describe). This set of triples is often called the connection language of the
underlying circuit. We stipulate that for circuits with 2™ outputs, each output gate has a label
of the form z01" where z € {0,1}" is the label of the z-th output. This makes it convenient to
construct the label of any particular output gate.

Characterizations of NP and ;P in general in terms of exponential-size “direct-connect” uni-
form circuits of constant depth are well-known [24, 25]. We will use relativized versions of these
results. In our results regarding ¥xE and circuit lower bounds, the inputs to our uniform circuits
for MISSING-STRING will already be of length N = 2" (where n is the input length to the ¥;E ma-
chine). In particular, we only need the following relativized equivalence between uniform circuits
and the exponential hierarchy, which follows readily from the literature on circuits representing
PH [10, 3].

Theorem 2.1. For all oracles A, the following classes are equivalent:
o NLEA = 3, TIMEA[20M),

e The class of decision problems computed by poly(2™)-time uniform depth-(k + 1) circuits with
output gate OR, size 2P°"(2")  and bottom fan-in poly(2™). The n-th circuit takes as input an
n-bit string x as well as all values of the oracle A up to length poly(2"™).

e The class of decision problems computed by poly(2™)-time uniform depth-(k+ 1) circuits with
output gate OR, size 2Poly(2") pottom fan-in poly(2™), and 2" output gates. The n-th circuit
takes as input all values of the oracle A up to length poly(2™), and outputs the truth table of
the function on all n-bit inputs.

Relativized Circuit Complexity. We recall notions of relativized circuit complexity, as orig-
inally defined by Wilson [27]. In a nutshell, relativized circuit complexity studies Boolean logic
circuits with the usual AND, OR, NOT gates, along with extra oracle gates. In particular, for
A:{0,1}* — {0,1}, an A-oracle circuit C' is a Boolean circuit over the basis of ORs and ANDs of
fan-in two, NOTs, and gates computing Ay, : {0,1}* — {0, 1} where Ay, is the k-th slice of A. The
size of such a circuit C' is defined to be the sum of all fan-ins over all gates (in other words, we
are counting the number of wires). Note that each copy of Ay contributes k to the circuit size. We
define SIZE?[(S(n))] to be the class of decision problems f : {0,1}* — {0, 1} such that for every n,
there is an A-oracle circuit C), of O(S(n)) size that computes the n-th slice of f.

In the following, we consider a binary encoding of A-oracle circuits which is paddable: if a
circuit C' has an encoding of length ¢, then for all ¢ > ¢, C' has an encoding of length ¢'. In our
encoding of an A-oracle circuit, we do not give a full description of Ay if it appears in the circuit;
rather, we assume that the oracle A is known implicitly to the encoder/decoder. We can define a
relativized version of the P-complete Circuit Evaluation problem:



Definition 2.2. Let A : {0,1}* — {0,1} be an oracle. In the CIRC-EVAL* problem, we are given
an input 1"0zx, and the task is to return the evaluation of x € {0,1}" on the A-oracle circuit
encoded by z.

Observe that by standard arguments, CIRC-EVALA e TIMEA[O(n)], i.e., A-oracle circuits can
be evaluated in quasi-linear time with an A-oracle.

2.1 A Normal Form for Relativized Circuits

The results of this subsection may be known, but we have not found a reference. We show that
relativized circuit complexity can be radically simplified for the problems we wish to study. For the
oracles A in the literature placing a complexity class C* in SIZEA[s(n)] for small s(n) (e.g., [27, 8]),
the actual circuits used in such simulations is always extremely simple: they consist of one A-oracle
gate with some of its O(s(n)) inputs hard-coded with zeroes and ones.

It turns out that considering such simple circuits is without loss of generality. We will show
that for the purposes of simulating complexity classes with relativized circuits, we may freely
assume that the A-oracle circuits we consider consist of one A-oracle gate. In the following, let
A:{0,1}* — {0,1} be an oracle.

Definition 2.3. For nice s(n) > n, Als(n)] is the class of decision problems f : {0,1}* — {0,1}
such that there is an infinite sequence of strings {z,} such that for all n, |z,| < s(n), and for all
x€{0,1}", f(z) =1 <= A(zyx) =1.

In other words, A[s(n)] is the class of problems solvable by circuits consisting of exactly one
gate, an A-oracle gate, along with an “advice” string z, plugged into that oracle gate. Observe
that from our definitions we have A[s(n)] C SIZEA[O(s(n))], as the “fan-in” of the single A gate is
n+ s(n).

The following basic lemma shows that for most interesting complexity classes C, if there is
an oracle A relative to which C has O(s(n))-size A-oracle circuits, then there is another oracle B
relative to which C has circuits comprised of exactly one B-oracle gate of O(s(n)logs(n)) fan-in.
This “normal form” greatly simplifies the problem of finding an oracle relative to which a complexity
class C has small circuits, and will be very useful in our results relating circuits for MISSING-STRING
to circuit complexity lower bounds (Theorems 1.6 and 1.5).

Lemma 2.4. Let C be a complexity class (defined by machines) such that for all A, CTMEAO(m)]
cA.

e There is an oracle A such that C* C SIZEA[s(n) - poly(log s(n))] if and only if there is an
oracle B such that CB C B[s(n) - poly(log s(n))].

e Similarly, there is an oracle A such that C* C i.0.-SIZEA[s(n) - poly(log s(n))] if and only if
there is an oracle B such that CP C i.0.-B[s(n) - poly(log s(n))].

Proof. For both statements, one direction of the equivalence is trivial. In the following, we
prove that an oracle A satisfying C* C SIZEA[O(s(n))] implies an oracle B satisfying C® C
B[O(s(n)log s(n))].

The idea is to simply define B to be CIRC-EVALA. Let M be an arbitrary machine computing
a function in C. Since CIRC-EVAL# € TIMEA[O(n)], using the assumption that CTIMEA[O(n)] C cA



we may infer that M5B = M CIRC-EVALA computes some function f' € CA. Let N4 be a C4-machine

computing f’, so N4 is equivalent to ME. Applying the assumption C* C SIZE4 [s(n)], there is an
A-oracle circuit family { DA} of size O(s(n)) simulating N4. Let z, be a description of D, such that
|zn] < O(s(n)logs(n)). We have DA(x) = MB(z) on all n-bit inputs 2, and D/} (x) = B(1"0z,z),
since B = CIRC-EVAL#. Therefore the function computed by M7 is in B[O(s(n)log s(n))]. As
this containment holds for every M, we conclude that C® C B[O(s(n))]. An analogous argument
proves the same result for infinitely-often inclusions. O

2.2 Efficient Methods for Finding a Missing String

Multiple linear-time algorithms are known for MISSING-STRING; see Chapter 1 of [6] for one of them.
In fact, MISSING-STRING can be solved very efficiently using a “voting” strategy. The strategy is
well-known in computational learning theory; the first reference we are aware of that uses the
strategy to find a missing string is Lemma 3 of [13] (a paper on circuit lower bounds), although
as a method for mistake-bounded learning (a.k.a. the “Halving Algorithm”) it was apparently first
observed by Barzdins and Freivalds [5].

Theorem 2.5. The MISSING STRING problem on M strings (each of length N ) can be solved by
an algorithm using O(M + N) time, or an algorithm using simultaneously O(M log M + N) time
and O(log(M) +1og(N)) space, assuming constant-time random access to the input. In particular,
to compute any bit of the missing string, both algorithms only have to probe at most 2M distinct
bits of the input.

Proof. We generalize the proof of Lemma 3 in [13]. Compute the bit b; that occurs least among
the first bits of all strings, taking b7 = 0 if both bits occur equally often. Thus the number of
strings with first bit equal to by is at most M /2. Among those strings with their first bit equal to
b1, compute the bit bs that occurs least in the second bit of those strings. Repeating this process
for at most t < [logy(M)] times on the i-th bit, for ¢ = 1,...,¢, we obtain a prefix b; - - - b; that is
not a prefix of any string in the list. Filling the rest of the string with zeroes (which takes at most
O(N) time), we obtain a missing string.

Let us first analyze the number of probes needed. To compute b1, we have to make M probes.
For ¢ > 1, to compute b; given the bits b1,...,b;_1, the aforementioned procedure only has to
make at most M /2! probes into the list. This is because in the previous iteration, we probed
the (i — 1)th bit of ¢;_; < M/2'~2 strings, and to compute b; we only have to probe those i-th bits
for which the (i — 1)th bit of those ¢;_; strings equals the least occurring bit b;—;. Hence the total
number of probes to compute b; (and any other bits) is at most

t—1
> M2 <2M.
=0

We can use an O(log M)-bit counter to determine each bit b;. Recalling that incrementing a counter
takes only constant amortized time, the above procedure can be implemented in O(M) time by
maintaining a data structure that is initially filled with all M strings, such that after the i-th
iteration we can remove the strings whose i-bit prefix disagrees with by - - - b; in O(|S;|) time, where
|S;| is the cardinality of the list in the i-th iteration. (A modified linked list suffices.)

To get a space-efficient algorithm, observe that we only need O(log M) extra space to store
a counter and to store the bits by,...,b;. However, in the i-th iteration, to compute b; given



bi,...,bi_1, we will apparently need to re-compute all Zj;% M/2) = 2M (1 — 1/2%) bits probed so
far, in order to count the “minority bit” over those strings which have not yet been eliminated; this
makes the running time O(M log M). Note that any extra zeroes printed at the end of the missing
string (to make it have length N) do not count as part of the space usage; they are part of the
output, and they can be handled with an O(log N)-bit counter that counts up to N — ¢. ]

Theorem 2.5 will be useful in our MISSING-STRING algorithms which use a smaller number of
probes.

3 Local Algorithms for Missing-String and New Non-Uniform Hi-
erarchies

In this section, we consider algorithms computing MISSING-STRING in a local fashion, probing very
few bits to determine any particular output bit of the missing string. As a consequence, we will
conclude a new non-uniform time hierarchy theorem.

Recall that in MISSING-STRING, we are given a list L of M < 2" strings each of N bits, and
wish to output an N-bit string (a missing string) that is not in L. We say an algorithm A for
MISSING-STRING is b-probe if for all i = 1,..., N, A can determine the i-th bit of its missing string
by only probing b bits in the input list L.

In order to have a small value for b, it is required that the list length M is fairly small. As
an example, consider the special case where M < N: the number of strings in L is at most the
string length. The classical diagonal argument immediately gives a 1-probe algorithm for MI1SSING-
STRING: the i-th bit of our missing string will flip the i-th bit of the i-th string in L. For integer
k> 1, when M > k- N, it is easy to prove that there is no k-probe MISSING-STRING algorithm
at all (we give a proof in Appendix A for completeness). We provide an algorithm that nearly
matches this simple lower bound:

Theorem 3.1 (Local Algorithm for MISSING-STRING). For all positive t, set k := [(2' —1)/(2t)].
For all positive integers N and M > 2t such that M < kN, there is an algorithm for MISSING-
STRING on all M -size lists of N-bit strings which uses only O((log N)? + klog? k) time and 2(2¢ —
1) < O(klogk) probes to compute any desired output bit.

Proof. The idea is to reduce the case of M < kN to the case where we have 2! — 1 strings of length
t for small ¢, by breaking the N-bit strings into substrings.

Let L be a list of M < kN strings of length N, and let i € {1,...,n} be the index of the desired
output bit. For simplicity let us assume M is a multiple of 28 — 1 (but the result does not require
it). Our algorithm A conceptually partitions the list of M strings into £ := M/(2! — 1) sublists
Li,..., Ly of at most 28 — 1 strings each.” (We say “conceptually”, because the algorithm does
not actually have to partition the list in order to determine the i-th output bit.) We say that the
sublist L; is responsible for the i-th output bit if and only if

1+t-(j—1)<i<t-j.

8If M is not a multiple of 2° — 1, then we need to set £ := [M/(2" — 1)]. To accommodate that increase in the
calculations, we may set k := [(2¢ — 1)/(2t)].
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For example, the sublist L; is responsible for output bits 1, ..., ¢, sublist Lo is responsible for output
bits ¢t +1,...,2t, and so on. From our assumption that M < kN, it follows that ¢t - M /(2! — 1) =
t- £ < N, so it may be that not all output bits are “covered” by some sublist.

Given ¢, our MISSING-STRING algorithm A first determines the j € {1,...,¢} such that L; is
responsible for the i-th output bit, by simply dividing i by ¢, taking at most O((log N)?) time. (If
there is no such sublist, then A outputs 0 for the i-th output bit.) Next, the algorithm A considers
an instance of MISSING STRING on a set of substrings, defined as follows: over all ¢ < 2t — 1
strings in L, strings y1,...,y, € {0,1}" are defined by taking each string € L; and truncating
x to the t-bit substring z[1 +¢- (j — 1)]---z[t - j]. Then, A uses the algorithm of Theorem 2.5 to
determine a missing string z € {0,1}" that is not among yi,...,y, € {0,1}, by probing at most
2¢ < 2(2t — 1) < O(klogk) bits and (conservatively) using O(t2¢) < O(klog? k) time.” Finally, A
outputs the bit z;x, where i* =i —t(j — 1).

We claim that the string output by A (over all i = 1,..., N) avoids every string in L. For each
j=1,...,¢, over those t bit positions ¢ that L; is responsible for, we are constructing a substring
z of length ¢ which avoids all strings in L;, in the corresponding ¢ bit positions of the strings in
L;. Since N >t -/, there are enough bit positions so that for all £ sublists L;, we can construct a
substring z of length ¢ avoiding the strings in L;, each time using a disjoint set of ¢ bit positions
from all other sublists. The string output by A is a concatenation of all such z, avoiding all sublists
L; and thus avoiding the entire list L. O

What is the minimum number of probes needed to compute bits of a MISSING-STRING, when
M < EN? We leave it as an interesting open problem to close the gap between the simple lower
bound of k probes (Theorem A.1) and our upper bound of O(klog k) probes (Theorem 3.1).

Remark 1. Instead of measuring the worst-case number of probes needed to compute one bit of
the missing string, suppose we consider the problem of simply constructing a missing string with
the minimum number of total bit probes. In this case, the algorithm of Theorem 2.5 is essentially
optimal: it constructs a missing string over M < 2N —1 strings of length N with at most 2M total
probes into the input, and it is easy to see that at least M total probes are required (each string must
be probed in at least one bit position). Therefore, with respect to this measure of probe complezity,
we know the optimal number of probes within a factor of 2.

Remark 2. For at least one interesting case, we can determine the exact number of probes required.
Suppose we are given exactly 2t — 1 strings of length t, so that the missing string is unique. In
this case, the i-th bit of the missing string can be determined by taking the XOR of the i-th bits of
all strings in the list. (The missing string equals the bit-wise XOR of all 2t — 1 other strings.) Thus
we can use only 28 — 1 probes for each output bit. In this scenario, there is an algorithm making
M = 2! — 1 probes per output bit, and the number of probes cannot be made smaller than M.

3.1 Non-Uniform Time Hierarchies

While Theorem 3.1 is interesting in its own right, we are interested in complexity-theoretic appli-
cations. Let us first prove Theorem 1.1, which is the most general form we will consider.

9We add a log-factor to the running time here, just to ensure that the time bound of Theorem 2.5 also holds for
models such as multitape Turing machines.
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Reminder of Theorem 1.1. For all (time-constructible) a(n) > 0, unbounded 5(n), t(n) > n?,
and every oracle A,

TIMEA[t(n) logt(n) - (a(n) + B(n)) - 22BN 7 4o TIMEA[t(n)]/(n + a(n)).

That is, there are functions in time O(t(n)log t(n)-(a(n)+pB(n))-22M+BM) that cannot be simulated
in time t(n) even with n + a(n) non-uniform advice, for all but finitely many input lengths n.

Proof. Let A be an arbitrary oracle. We will construct a function f that is computable in time
O(t(n)logt(n) - (a(n) + B(n)) - 22M+A(M)) with an A-oracle, which cannot be computed in O(t(n))
time with an A-oracle, even with n + «a(n) bits of non-uniform advice, on all but finitely many
input lengths n.

To compute f, we will (implicitly) define a very large instance of MISSING-STRING, such that
the list L contains the 2™-bit truth tables of all machines we would like to diagonalize against, and
we will define the function f, (f restricted to n-bit inputs) to have our missing string as its truth
table. Each bit of the truth table of f,, will be computable in the desired running time, by applying
Theorem 3.1 appropriately.

Set m := n + a(n) + B(n). Associate all m-bit strings with pairs of the form (y,%), where y
is a possible advice string of length n + a(n), and ¢ is a beta(n)-bit string encoding a possible
Turing machine/algorithm M; running in ¢(n) time with an A-oracle. (Since §(n) is unbounded,
eventually every machine is encoded.) Make a list L of M = 2™ strings of length N = 2" where
each string encodes the truth table obtained by running some M; with some advice y on all n-bit
inputs. Provided we can solve MISSING-STRING for the list L, on every possible n, this will produce
the truth table of a function that cannot be computed on all but finitely many input lengths n by
all such algorithms with n + a(n) advice.

We can use our algorithm from Theorem 3.1 provided that 2™ < k2", ie., k > 2c(n)+5(n)
Setting k to be 2¢(M+8(") e can make a number of probes which is at most

O(klogk) < O((a(n) + B(n)) - 22IH50),

For our particular list L, every probe into L corresponds to simulating some algorithm M; on some
advice y of length n + a(n) and some input 2z’ of length n, for O(¢t(n)logt(n)) time. (We allow
an extra logt(n) factor for a universal simulator.) Thus the running time required to compute all
probes is

O(t(n)logt(n) - (a(n) + B(n)) - 220IHF),
Besides computing all the probes, the additional runtime cost of the local algorithm for MiSSING-
STRING is negligible:

O((log N)? + klog® k) < O(n? + t(n)logt(n) - (a(n) + B(n)) - 22 THM),
This completes the proof. ]

Theorem 1.1 has several interesting corollaries, illustrating tradeoffs between the running time
and advice.

Corollary 3.2. 1. For all ¢ > 1, TIME[2" - n°t3] ¢ TIME[2"]/(n + clogn).
2. For all e > 0, TIME[n? - 22" ¢ TIME[2°"]/((1 + &)n).
3. For every ¢, TIME[n*¢log3n] ¢ TIME[n]/(n + clogn).
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Proof. 1. Set t(n) = 2", f(n) = logn, and a(n) = clogn in Theorem 1.1.
2. Set a(n) = en, B(n) = logn, t(n) = 2°™.
3. Set a = clogn, f(n) =loglogn, t(n) = n°. O

In the above corollaries, note that in all cases the hard function actually does not have enough
time to directly “try all possible advice strings” and run the algorithms it must diagonalize against.
Furthermore, as mentioned earlier, the theorem is essentially tight for relativizing lower bounds,
because there is an oracle B such that TIME? (0(2¢7)) ¢ TIMEZ(O(n))/((c4+1)n). (See Appendix A
for a sketch of this result, in terms of MISSING-STRING.)

4 Circuits for Missing-String And Circuit Lower Bounds

In this section, we prove relations and equivalences between the existence of uniform circuits for
MISSING-STRING and relativizing circuit lower bounds for functions in the exponential hierarchy.
We will focus on the case of 3sE as it is the most relevant “frontier” class for exponential-size
circuit lower bounds.

Definition 4.1. We say that an oracle A : {0,1}* — {0,1} is supported on m-bit strings if

A(z) =0 for all x satisfying |x| # m. We will view an A supported on m-bit strings as a string of
length 2™ .

In the following, think of f(n) as a very slow-growing function (e.g., f(n) = log(n)).

Definition 4.2. Fiz an n € N. Let U be a XoE Turing machine such that |{U| < f(n). Define
the function Dy, : {0, 1}25(")+n — {0,1}™ such that for every oracle A supported on (s(n)+ n)-bit
strings,

Dyn(A) = {U(2)}aegony-
We define {Dy} to be the corresponding family of functions.

Definition 4.3. Let {G,} be a multi-output circuit family with 251 inputs and 2™ outputs. We
say that {G,} is a good circuit family if it is a poly(2")-time uniform depth-3 family of the form

ORgpoty(zny © ANDypoty2ny © ORpgpyan)y,
as defined in Section 2.

Lemma 4.4. Let {G,} be a good circuit family. Then there exists a XoE Turing machine U such
that for all n and all inputs A € {0, 1}23(n)+n, Gn(A) = Dyn(A). That is, G,(A) outputs the values
of UA(x) over all z of length n.

Proof. Follows from Theorem 2.1. O

Here we will prove Theorem 1.6 for the case of k = 2; the case of arbitrary k is straightforward.

Theorem 4.5 (Circuits for Missing-String Imply Circuit Lower Bounds, Theorem 1.6 for X9E). If
for infinitely many n, MISSING-STRING can be solved by a good circuit family, on all lists of length
M = 200600 N)) with strings of length N = 2", then Y9EA ¢ SIZEA(O(s(n))) for all oracles A.

Similarly, if for all n, MISSING-STRING can be solved by a good circuit family, on all lists of
length M := 20608 N) with strings of length N = 27, then S9E? ¢ i.0.-SIZEA(O(s(n))) for all
oracles A.
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Proof. We will prove the first implication; the modification to the second implication is straightfor-
ward. By Lemma 4.4, the hypothesis implies that there exists a >3E Turing machine U such that
the good circuit family solving MISSING-STRING computes the same function as {Dy,,}. Let V be
a YoE-machine simulating U, so that whenever U asks a query to the oracle of length log(M)+n, V
uses the actual oracle result, and for all queries of other lengths V' pretends the query answer is 0.
Let A be any oracle and let A,, be its restriction to (log(M) + n)-bit strings; that is, A, (z) = A(z)
if |z| = (log(M) + n), and A,(z) = 0 otherwise. Observe that A, restricted to strings of length
(log(M) + n) can be viewed as an instance of the MISSING-STRING problem with a list of length
M and each string of length N = 2". From these definitions, we infer that for all z € {0,1}",
VA(x) = UA(z) and hence

{VA(x)}mE{O,l}" = {UAn (x)}me{(),l}" = DU,n(An)'

As Dy, can solve the MISSING-STRING problem with a list of length M and each string of length

N = 2" for infinitely many n, we have that for infinitely many n, for all A, and for all z €
{0, 1}los(M)

{(VA(@)}ocqoy = Dun(An) # {An(2,2) }acioyn = {A(2,2) bacqo,1yn-
In turn, this implies that for infinitely many n, for all A, and for z € {0, 1}1°g(M ),

{VA($)}IE{O,1}" # {A(Z7 m)}ze{o,l}" .

As this condition holds for infinitely many n, we conclude that for all A, V4 does not have A-oracle
circuits consisting of one query of length log(M) to A, i.e., VA & Aflog(M)].'” For every constant
d, assigning M := 2s(ogMlog"(s(0e N) implies that for all A, VA & Als(n)log?(s(n)]. Hence,
VA & AlO(s(n))]. Since VA4 is a Z3E# machine, this implies that for all A, S5E4 ¢ A[O(s(n))].
Finally, by Lemma 2.4, this implies that for all B, X,EP ¢ SIZE[O(s(n))]?. O

Now, we want to go in the opposite direction: we want to show that if MISSING-STRING does not
have good uniform circuits, then $9E4 C i.0.-SIZEA[O(s(n))] for some oracle A. (Contrapositively,
we will show that relativizing circuit lower bounds for >5E imply good uniform circuits for MI1SSING-
STRING.) This direction will take more work. To this end, we define a property P which will be
sufficient to imply ¥E4 C 1.0.-SIZEA[O(s(n))]. Property P asks for something stronger than a
typical lower bound: a single input to the MISSING-STRING problem on which all uniform circuits
(algorithms) fail. We will later see (Lemma 4.9) how MISSING-STRING lower bounds can be used
to derive property P, by allowing a little loss in the parameters.

Definition 4.6. Let P(s, f,n) be the following property:

There is an oracle Q supported on (s + n)-bit strings such that, for every Lo TIME[2"] Turing
machine of description length |U| < f, the function Dy, cannot solve the MISSING-STRING problem
on the input Q, with list of length M = 2° and strings of length N = 2".

Roughly speaking, property P says “there is a bad input @) that breaks every machine U (of
length at most f) trying to solve MISSING-STRING.”

Lemma 4.7. Let f(n) be unbounded. If there are infinitely many n such that P(s(n), f(n),n)
holds, then there exists a constant p and an oracle A such that o TIME[2")A C 4.0.-SIZEA[ps(n))].

198ee Section 2 for a definition of the A[s(n)] notation.
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Proof. The oracle will be constructed in stages.

Stage 1: Start with the first n for which P(s(n), f(n),n) holds. Then there exists an oracle
B supported on (s(n) + n) bit strings, so that for all X5 TIME[2"] Turing machines U where |U| <
f(n)/2, there exists a z € {0,1}*™ such that that UP(z) = B(z, ) for all z of length n. That is,
UPB has a “trivial” B-oracle circuit of size s(n)+n on inputs of length n. Set A := B. We will view
A as a set defined by the inputs on which the oracle A is 1.

Stage i for ¢ > 1: Let us now extend the previous statement for infinitely many n. Let m
upper bound the length of the binary encoding of the set A. Let n; refer to the integer n chosen
in stage 7, where 1 < j < 1.

In stage i, we choose n such that three properties hold.

1. f(n)>2-m
2. P(s(n), f(n),n) holds.
3. n is large enough to satisfy 27i-1/("i-1) < s(n) + n.

We want to add a set B,, of strings of length s(n) + n to our existing oracle A, yielding a new
oracle A := AU B,,. We can argue by induction that all existing entries in the set A have length
at most 2"-1/("i-1) hence by Property 3, AN B, = §. Note that any machine of the form UAY5»
can be thought of as another machine U™ where in Uy we hard-code A, where |[Us| < |U| + m.
By Property 1, if |U| < f(n)/2, then |Uz| < f(n). As in stage 1, property P(s(n), f(n),n) implies
there exists an oracle B,, supported on (s(n)-+n) bit strings such that for all 33 TIME[2"] machines
U, satistying |Us| < f(n), there is a string z of length s(n) such that Uy (x) = By (z,x) for all
z € {0,1}". That is, UP" has a “trivial” By,-oracle circuit on inputs of length n.

Therefore, for all 33 TIME[2"] machines U satisfying |U| < f(n)/2, there is a string 2’ of length
s(n) such that for all n-bit z, UAYBr () = U, (z) = B,(2',z). Note that since 2’ is of length
s(n), and A only contains strings of length less than s(n) 4+ n, we have B, (z',z) = (AU B,) (', ).
Therefore UAYPn () = (AU B,,)(2/, z) for all . That is, U4YBr also has a “trivial” (AU B, )-oracle
circuit.

Now, we set A to be AU B,,. By Property 3, we chose n to be large enough that all previous
machines considered do not query strings of length s(n) 4+ n. Hence for this new setting of A, we
still have that for all X, TIME[2"] Turing machines U with |U| < f(n;)/2, and for all j < i, there
is an z; of length s(n;) such that for all z of length nj, U4(z) = A(z;,z).

Let A denote the final oracle after all stages. For infinitely many n, for all X5 TIME[2"] machines
U with |U| < f(n)/2, we have a string z, of length s(n) such that for all 2, U4(z) = A(2,,x). As
f(n) is unbounded, this is sufficient to imply that S5 TIME[2"]4 C i.0.-A[s(n)].'' Taking i to be a
constant satisfying A[s(n)] C SIZE?[us(n)], we conclude that $o TIME[2"]4 C i.0.-SIZEA [us(n)]. O

We next define a property R, which intuitively corresponds to the existence of lower bounds for
the MISSING-STRING problem.

Definition 4.8. Let R(s, f,n) denote the following property:

For all functions Dy, (where U is a Yo TIME[2"] Turing machine, and the description length
|U| < f), there exists an oracle Q supported on (s +n) bit strings such that Dy, cannot solve the
MISSING-STRING problem on lists of length M = 2° and strings of length N = 2" on input Q.

'See Section 2 for a definition of the A[s(n)] notation.
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Roughly speaking, property R says “for all machines U, there is a bad input @ on which U
does not solve MISSING-STRING”, while property P said “there is a single bad input ¢ such that
no machine U solves MISSING-STRING on @Q.” In Lemma 4.9 we will show how property R actually
implies the stronger property P, with a little loss in the parameters.

Let f(n) < s(n),n < s(n) and let f(n) be poly(n)-time constructible (eventually we will choose
f(n) = logn). Define n' := n + f(n) and define s’ such that s'(n') := s(n) — f(n). Note that
s(n) +n = s'(n') + n’. We now show that property R implies property P, with a mild loss in the
parameters.

Lemma 4.9. There exists a constant ¢ such that R(s'(n),c,n’) = P(s(n), f(n),n). Therefore,
if there are infinitely many m such that R(s'(m),c, m) holds, then there are infinitely many m such
that P(s(m), f(m), m) holds.

Proof. We will prove the contrapositive. If P(s(n), f(n),n) is false, then for every possible input @
of length 27" to the MISSING-STRING problem with M = 25" and N = 2", at least one function
of the form Dy, (where U is a X3 TIME[2"] machine, |U| < f) correctly solves MISSING-STRING
on Q.

We will now show that there is a single function which solves the MISSING-STRING problem
over all lists of length M = 25()=F(") and strings of length N = 27+f(") Later we will argue that
this function can be computed in X3 TIME[2"].

Note that M - N = 275(") We may think of each string T of length 2"+f(") in the list as
being divided into 2/ sub-strings, each of length 2". Creating a list of all these sub-strings gives
us an instance I of the MISSING-STRING problem with list of length 25()—f(") . 2f(n) — 9s(n) and
strings of length 2”. Similarly we will think of the output of length 2"+/(") as being divided into
2/(") sub-outputs, each of length 2. Let U, be the Yo TIME[2"] machine with description z, where
|z| < f(n). To obtain the z** sub-output, we evaluate the function Dy, ,, on I, obtaining a string of
length 2. Note that all the sub-functions are being run on the same instance of MISSING-STRING
with list of length M = 25(") and strings of length N = 2", generated by treating the sub-strings as
strings. Since P(s(n), f(n),n) is false, some machine U, solves MISSING-STRING correctly: there
exists a string w of length at most f(n) such that Dy, , is correct on the instance I. This means
that the w!” sub-output is distinct from all sub-strings in the input. Hence the entire output string
of length 2"+f(™) must be distinct from all strings in the input. Therefore this function correctly
solves MISSING-STRING on lists of length M = 25(")=/(") and strings of length N = 2n+/(),

We observe that this function is of the form Dy, where U’ is a X5 TIME[2"] machine and
|U'| = O(1). In fact, U’ is the machine which on input zz (where |z| = f(n), |z| = n, |zz| =
n+ f(n) = n’) simply returns the output of the 35 TIME[2"] machine with description z on input x.
It is now easy to verify that the constructed function is equivalent to Dy ,. Note that U’ runs in
time O(2") < O(2"). As f(n) is polynomial-time constructible, we get that |U’| < O(1). Taking
c = |U'|, we see that R(s'(n),c,n’) is false. O

Corollary 4.10. Let f(n) = log(n) and let s’ be a nice function. There exists constants c,d such
that if there are infinitely many n' such that R(s'(n),c,n’) holds, then there are infinitely many n
such that P(s'(n)log?(s'(n)), f(n),n) holds.

Proof. Choose ¢ to be the constant from Lemma 4.9. Choose d to be a constant such that s'(n +
log(n)) + log(2n) < s'(n)log?(s'(n)), existence of d is guaranteed because s’ is a nice function
(see Section 2 for a definition). Let R(s'(n),c,n’) be true. Define n,s(n) to be the solutions of
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n+ f(n) =n' and s(n) = f(n)+ s'(n’). By Lemma 4.9 we have that P(s(n), f(n),n) is true. Note
that s(n) = f(n)+s'(n') < f(n')+s'(n') = log(n+log(n))+s' (n+log(n)) < log(2n)+s'(n+log(n)) <
s'(n)log?(s'(n)). Hence P(s'(n )logd(s’( ), f(n),n) holds. O

Theorem 4.11 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds, Theo-
rem 1.5 for 39E). For all nice functions s(n), the following are equivalent:

1. For every oracle A, Y9E? ¢ i.0.-SIZEA(O(s(0(n)))).

2. MISSING-STRING can be solved by a good circuit family on all lists of length M and strings
of length N = 2™ where M satisfies M = 20(s(0(log N)))

Proof. By Theorem 4.5 we have that 2 = 1.

Let us now prove =2 = —1. By Lemma 4.4, for a good circuit family {G,} there exists
a YoE Turing machine U such that the output of G, is the same as that of {Dy,}. Hence by
-2 we have that for all circuit families {Dy,,} such that U is a ¥3E machine, there are infinitely

many n such that Dy, cannot solve the MISSING-STRING problem for some M = 20(s(0(m)) and
N = 2™ This implies that for all constants ¢, there are infinitely many n such that property
R(O(s(0O(n))), ¢,n) holds. Taking f(n) = log(n) and applying Corollary 4.10, it follows that there
are infinitely many n such that P(O(s(O(n))), f(n),n) holds. Applying Lemma 4.7, there exists
an oracle B such that Yo TIME[2"]? € 1.0.-SIZEP[O(s5(O(n)))]?. Finally, by padding we conclude
that Y2EP € 1.0.-SIZEB[O(s(O(n)))], which is equivalent to —1. O

4.1 A Perspective on Non-Relativizing Lower Bounds

In this section, we observe that non-relativizing lower bounds are equivalent to uniform circuits for
MISSING-STRING on low-complexity inputs.

Reminder of Theorem 1.8. Let S(n) > n. NE ¢ SIZE(S(n)) if and only if there is a poly(N)-
time uniform depth-two circuit family of size 2P°W(N) and poly(N) bottom fan-in for MISSING-
STRING that succeeds for infinitely many N = 2", when the list L is S(n)-compressible.

The proof follows easily from the framework given earlier in this section.

Proof. (Sketch) First, assume NE ¢ SIZE(S(n)), and let M be an NE machine without S(n)-size
circuits for infinitely many n. Applying the standard translation between NP and DC-uniform
circuits (see 2) we can define a poly(2")-uniform depth-two circuit family {C,} which takes no
inputs, and whose 2" output gates print the truth table of M on n-bit inputs. For infinitely many
n, this family {C),} is printing a string which is not S(n)-compressible; therefore it cannot be on
any S(n)-compressible list.

For the other direction, suppose there is a poly(V)-time uniform depth-two circuit family {C),}
of size 2P°W(N) for MISSING-STRING that succeeds for infinitely many N = 27, when the list L
is S(n)-compressible. So there is an infinite set {n;} where for all ¢, the circuit C,,, given the
list Ly, of all possible 2™-bit truth tables of circuit complexity at most S(n;), outputs an 2™-bit
truth table T" which does not appear in L,,. This T" therefore has circuit complexity greater than
S(n). Note that either there are infinitely many ¢ such that the depth-two circuit Cy, is an OR of
AND (of poly(V) fan-in), or there are infinitely many 4 such that it is an AND of OR (of poly(N)
fan-in). In the first case, we have an NE machine computing a function not in SIZE(S(n)); in the

17



second case, we have a coNE machine computing a function not in SIZE(S(n)) (which implies an
NE machine as well; the class SIZE(S(n)) is closed under complement). In more detail, in the first
case, our NE machine on an input = (of length n) will first check the gate type of the output gate
of C),. If the type is OR, then the NE machine evaluates C,, on the list L,,, obtaining a truth table
T, and the machine outputs the appropriate bit of 7', corresponding to x. (If the type is AND, the
NE machine just reports 0.) O

5 Oracles Breaking The Algorithmic Method for Circuit Lower
Bounds

Reminder of Theorem 1.9. There is an oracle A and a function H such that TIMEA[2”] C
SIZEA[O(n)], SATA can be solved in poly(H (poly(n))) time with an A-oracle, H(H(n)) < 2" and
H is monotone increasing.

In the following, we let h denote a half-exponential function, i.e., a strictly monotone increasing
h:N — N where h(h(n)) = 2".

Proof. Let N A(x) be a nondeterministic machine accepting a linear-time complete language for
the class NTIMEA[O(n)]. In particular, let N4 run in time < pn. For a sufficiently large constant
¢ > 1, setting s(n) := h(n)¢, we will construct an oracle A such that for all n and for all x € {0,1}",
NA(z) = A(1*™0z). Then the language L(N*) can be decided in time poly(h(n)) with the oracle
A, by simply constructing s(n) ones, and querying A on 15(M0z. By padding, it follows that SAT
will be computable in poly(h(poly(n))) relative to the oracle A.

All queries to A will have one of three types: fixed, unfixed, and derived. Initially all queries of
the form 15(M0z where & € {0,1}" are derived. Throughout the construction of the oracle, we will
never set the value of A on derived queries; rather, we will assume that on derived queries the oracle
satisfies A(150z) :== N4 (x) for all z € {0, 1}". This means that whenever the oracle A is changed,
we assume that the value of A on derived queries is also changed to satisfy A(15("0x) :== N4(z).
This can always be done, since 15(0z is too long to be queried directly by N A(x). Over the course
of the oracle construction, some unfixed and derived queries will become fixed queries. Whenever
a derived query of the form 150z with |z| = n into a fixed query, we will ensure that the output
of N4(z) does not change after that. This will ensure that the condition N4 (z) = A(1*™0z) is
maintained.

Let M4 be a EA machine which accepts a linear-time complete set for E4. We wish to construct
A so that M has small A-oracle circuits. Let M4 run in time at most 2" for a large enough
constant c. (Note that this fixes s(n) = h(n)°).

We will proceed in stages. In stage 0, we begin with A(y) = 0 for all y, and all queries other
than derived queries to A are unfixed. We will inductively prove that after stage n:

1. At most 261 queries of A have been fixed.

2. All derived queries have length at least s(n + 1).

These properties are clearly true after stage 0.
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Stage n: Our aim is to modify A such that there is a string 2, of length O(n) such that M4 (x) =
A(zpx) for all 2 € {0,1}". As M4 is a E4 machine, we may view its computation on n-bit input as
a decision tree of depth at most 2™ where each node of the tree queries A on some input. We can
simplify the tree by substituting the values of all fixed queries to A. We are left with two kinds of
queries: derived and unfixed. Note that the oracle value of each derived query A(15(¥D0y) is the
same as N4(y). Because N runs in nondeterministic pn time, each query A(15(¥D0y) can in turn
be replaced with a DNF D,, of at most 2#/%! terms, of width at most uly| (each term has at most
pl|y| literals). By substituting the values for the fixed queries, D, can be simplified so that each
literal of D, corresponds to the value of A on an unfixed or derived query. We next prove that,
because we took s(|y|) to be sufficiently large, the following stronger condition holds: every literal
in every DNF D, must correspond to an unfixed query, i.e., not a derived query.

Claim 5.1. For every derived query A(15(|y|)0y) by M4 on any input x of length n,

e [yl <h(n).
e FEach literal of the DNF D, corresponds to an unfized (not derived) query to the oracle A.

Proof. Let 158Dy be a derived query of M4 (z). As M4(z) runs in at most 2°" time, we have that
s(ly]) < 2. Since s(|y|) = h(|y|)¢, this implies that h(|y|) < 2™. Since h(h(n)) = 2™ and h is
monotone increasing, we must have |y| < h(n). Furthermore,

lyl < h(n) = s(n)"/* < s(n)/n,

where the last inequality holds for all large enough n. As N4(y) runs in time at most plyl, it
follows that all queries by N“(y) are of length at most pu|y| < s(n). The literals of the DNF D,
correspond to the oracle queries of N4 (y), therefore hence all literals in D,, correspond to queries
to A of length less than s(n). As our induction hypothesis says that derived queries are of length
greater than s(n), each literal of D, corresponds to an unfixed query. O

Given the claim, our E4 machine M# can be viewed as a decision tree where each node of the
tree is labelled by a DNF over the unfized queries to A. We have now reached the same situation
that arose in Theorem 1.10, which also arises in Wilson’s [27] construction of an oracle B such that
ENPY SIZE[O(n)]B. We will use the same proof technique to embed M4 in SIZEA[O(n)].

We will handle each € {0,1}" one by one. For each z, the output of M*(x) can be viewed as
a decision tree of depth 2¢ where each node of the decision tree is a DNF with at most 2#h(®) < 22"
terms and each term has width at most ph(n) < 2". Each literal in each DNF corresponds to an
unfixed (but not derived) value of A. We start from the DNF corresponding to the top node of the
decision tree. We just set an arbitrary term of this DNF to true by setting values of A on unfixed
queries and fixing them. As each term has width at most 27, this fixes at most 2™ values of A.
As long as we only change unfixed queries, the DNF will not change its output. Next, we move to
the next active node in the decision tree and repeat the procedure, until we reach a leaf node of
the tree. Since the tree has depth at most 2", the number of queries to A that were fixed is at
most 2¢" . 2" = 2(ctDn - Ag Jong as we change only unfixed queries from now on, M4 (z) will not
change its output. Repeating the above for all n-bit x, in total we fix at most oetl)n  gn — g(et2)n
queries of A. Finally, we convert all inputs of the form 15(™ 0z from derived to fixed, proving the
second inductive hypothesis for stage n. Combining this with the induction hypothesis from stage
n — 1, the total number of fixed inputs is 2¢ + 2(c+2n 4 on  o(ctn fo1 4 large enough constant
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c. Hence there exists a string z, of length O(n) such that no string of the form z, ... is fixed. We
set A[z,z] == MA(x) for all 2 € {0,1}", and declare z,z to be fixed. This is a valid assignment,
as doing so does not change the values of M“(z) (we have only changed the value of A on unfixed
inputs). This completes stage n.

Note that the total number of queries that are fixed is at most 2(ctHn 97 < 2¢(+1) for g large
enough constant c. This proves the first inductive hypothesis for stage n.

Finally, we note that M“ has low circuit complexity. For all z of length n, we have M A(a:) =
A(zpx). Since |z,| < O(n), the query to A can be implemented as a linear sized circuit on n-bit
inputs. Since M recognizes a linear time complete set for E4, we also have ENP* ¢ SIZE4 [O(n)].
We also showed that for all z € {0,1}", N4(z) = A(1°(™0z), hence the language L(N4) is in
TIME[O(s(n)]. It follows that SAT is computable in time s(n®) < h(n°)¢ for a constant ¢ > 1.
(Indeed, all of NP is in TIME[h(n®(1))0M)]) O
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A Simple Lower Bound for Local Algorithms Solving Missing-
String

Recall M is the number of bit strings in our input list to MISSING-STRING, and N is the length of
the bit strings. Recall that an algorithm is k-probe if for all ¢ = 1,..., N, the i-th output bit of the
missing string can be determined by only probing k bits of the input list.

Theorem A.1l. Every k-probe algorithm for MISSING-STRING can only be correct when M < kN.

Proof. First, we prove that any procedure for MISSING-STRING must make at least M probes
overall into the list. In particular, the procedure must probe each of the M strings in at least one
bit. Otherwise, the procedure did not probe some string x at all; then, given whatever string y the
procedure produces, the string x could be set equal to y, contradicting the assumption that the
procedure computes MISSING-STRING.

Therefore, since any k-probe MISSING-STRING algorithm makes kN overall probes into the list,
we must have M < kN, ie. k> M/N. O

The above simple theorem can be applied to show that our (relativizing) time hierarchy with
advice (Theorem 1.1) is extremely close to optimal for some parameters. For example, by setting
a(n) = cn, B(n) =logn, t(n) = 10n in Theorem 1.1, we have for all ¢ > 0:

TIME[(n®logn) - 2] ¢ i.0.-TIME[O(n)]/(cn + n).

Using the simple lower bound of Theorem A.l, one can argue that there is an oracle A such
that for all ¢ > 0, and all unbounded functions a(n),

TIMEA[2°" /a(n)] € TIMEA[O(n)]/(en + n),

showing that the generic argument of Theorem 1.1 cannot be improved significantly.

Let us sketch the idea of how this works, from the perspective of the MISSING-STRING problem.
We build up the oracle A in stages, starting from n = 1 and increasing n after each stage. On a
given input length n, consider a list L of all M = 0(2(C+1)”) truth tables of length N = O(2"),
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one truth table for every possible query to the A oracle of type (i,x,y), where i is the index of
a machine M (a string of length at most log(a(n))/2), = is an input string of length at most n,
and y is of length at most (¢ + 1)n — log(a(n))/2. (Some of the values of the bits in L have been
determined in previous stages, but some have not.) Consider an algorithm B that on input (i,z’)
attempts to simulate an algorithm MZ»A on 2’ of length n, making k < 2" /a(n) queries to the list
L to determine its output. If a probe into L is a value of the oracle A that was already determined
in previous stages, we answer consistently; otherwise, we output that the value of A on the new
query is 0.

Following the proof of Theorem A.1, for every fixed choice of i, the total number of queries into
the list L (across all inputs of length up to n) is at most ©(2" - 2 /a(n)) < 2(ct)n—logla(n)/2 —
M/+/a(n). Therefore there is always at least one truth table corresponding to strings of the form
(,+,y) in L that was not queried by M; over the n-bit strings, even in previous stages. The oracle A
can therefore be assigned such that this completely-unqueried truth table equals the truth table of
M; on n-bit inputs. Thus the algorithm B (and M; for all i) on n-bit inputs can always be simulated
by an A-oracle circuit of one gate of the form A(i, z,y), where y has length (c+ 1)n —log(a(n))/2,
and z is an input of length n. Thus B can be simulated in O(n) time with oracle A and (¢ + 1)n
advice.

B Fast-enough SAT Implies EXP Lower Bounds

Here we recall a proposition showing that if SAT is solvable in “sub-half-exponential” time, then
circuit lower bounds for EXP follow. The proof relativizes.

Proposition B.1 ([26]). If SAT is in O(H(n)) time then EXP ¢ P/poly, for any function H(n)
satisfying H(H(n¥)?) < 2" for all k.

Proof. Recall EXP C P/poly implies EXP = X3P [15], and recall that ¥5P = 3-V-P, where the 3 and
V denote existential and universal alternations over n®() bits. Assuming SAT is in O(H(n)) time,
we have XoP C 3- TIME[H (n®M)]. Then, an 3- TIME[H (n°(")] computation can be expressed as
a SAT instance of length at most H (no(l))z. Applying the SAT algorithm once again implies

EXP = 5P C TIME[H (H (n°M)?)] C TIME[2" - n®W)],

contradicting the time hierarchy theorem. O
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Erratum: On Oracles and Algorithmic Methods for Proving
Lower Bounds

Jiatu Li Nikhil Vyas Ryan Williams

We report an error in a theorem of Vyas and Williams from ITCS 2023 [VW23]. Their goal was to show
that the “algorithmic method” for proving circuit lower bounds from CAPP algorithms does not relativize.

Reminder (Theorem 11 of [VW23]). There is an oracle A such that CAPP (for A-oracle circuits) is in P4

but EXPNP” has polynomial-size A-oracle circuits.

First of all, not only is there a flaw in the proof of the above theorem, but we can show that the negation
of the theorem is true. We prove unconditionally that such an oracle does not exist. In other words, there
is a “relativizing” version of the algorithmic method for circuit lower bounds.

Theorem 1. For every oracle A such that CAPP (for A-oracle circuits) is in P4, ENP* cannot be computable
by polynomial-size A-oracle circuits.

Proof. Towards a contradiction, we assume that ENP? has polynomial-size A-oracle circuits for an oracle A
such that CAPP is in PA. Chakaravarthy and Roy [CROS| proved that if NP has polynomial-size circuits,
then there is a promise language L € prMA such that PH collapses to P, and their proof relativizes. In
particular, there is a promise language L € prMA# such that PH? collapses to PX under the assumption.
Moreover, since CAPP for A-oracle circuits is in P4, it follows that prMA? = prNP*, as we can deran-
domize the verifier using CAPP. This further implies that PH# collapses to PNP* and thus ¥EA = ENPY,
Since ¥,E4 requires maximum A-oracle circuit complexity by direct diagonalization, we conclude that ENP”
also requires maximum A-oracle circuit complexity, contradicting our assumption. O

The flaw in the proof. We briefly explain the flaw in the proof of Theorem 11 of [VW23]. The proof
attempts to follow an oracle construction by Fortnow [For(1] that works for EXPA.

Theorem 2 ([For01]). There is an oracle A such that CAPP (for A-oracle circuits) is in P4 but EA has
linear-size A-oracle circuits.

Fortnow [ForOI] constructed the oracle A in stages. We start with an all-zero oracle Ag. In the j-th
stage, we will find some fixed string z; of length 5j, choose some queries of form [j, z;,...], and set the
answers to the chosen queries to be 1. By cleverly selecting the queries to update, we can hardcode whether
K4(z) =1 for a E*-complete machine K* at A([|z|, 24, 2, 1]) and hardcode whether C* accepts at least
2/3 of its input for every A-oracle circuit C4.

At a high level, we will choose a string z; (called the key) in stage j such that the updates to the
queries [4, zj, ...] do not affect the behavior of K 4 on inputs of length at most j. The existence of such Zj
follows from a counting argument, which does not work in [VW23] due to the existence of the NP oracle. A
trick is proposed in [VW23] to resolve this issue by introducing additional updates to the queries to “force”
undetermined NP oracle calls to output 1, which may not be of form [j, 2;,...]. However, the correctness of
the oracle construction relies on the fact that the updates must be of form [4, z;,...]. Concretely speaking:

e In the paragraph “Our Gap-SAT algorithm works as follows”, page 22:21, we need to deal with the
case where C4* is satisfiable and C* is unsatisfiable. The proof claims that C4*(x) must query some
string of form [j, z;,...] for j > k. This is true in [For0I], since the only updates to the oracle are of
form [4, 27, . ..]. However, in [VW23], the additional updates may also change the satisfiability of C4.



e In the paragraph “If no z in S has the property”, page 22:21, we consider the case where C4* is
unsatisfiable and no z € S is a “key”. It is claimed that C4* and C* differ on at most one half of the
inputs. This relies on the observation that C4* (z) # C4(x) only if C4* makes a query with key z; for
some j > k, which is true in [ForOl]. However, given the existence of the additional updates, it is also
possible that some of the queries made by C4*(z) are changed by the additional updates.
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