
Fiat-Shamir in the Plain Model from Derandomization
Or: Do Efficient Algorithms Believe that NP = PSPACE?

Lijie Chen* Ron D. Rothblum† Roei Tell ‡

July 6, 2024

Abstract

A classical challenge in complexity theory and cryptography is to simulate interactive
proof systems by non-interactive proof systems. In this work we leverage approaches from
recent works in derandomization to address this challenge, focusing on non-interactive simu-
lations that are sound against uniform adversarial algorithms.

Our results concern fundamental questions in complexity theory, such as the NP vs
PSPACE question, and also in cryptography, such as the question of constructing non-
interactive zero-knowledge arguments for NP from unstructured assumptions. Relying on
strong complexity-theoretic hardness assumptions (that will be described below):

1. Complexity theory. We prove that PSPACE is contained in the “computationally
sound” version of NP . Specifically, for every L ∈ PSPACE , membership in L can
be verified by an NP-type (deterministic, polynomial-time) verifier V with the follow-
ing guarantee: The verifier accepts every x ∈ L when given a proof π from an honest
prover that runs in fixed exponential time TP; and every uniform adversary running in
probabilistic time poly(TP) cannot find x /∈ L and π such that V(x, π) = 1, except with
negligible probability in TP. As a corollary in the area of bounded arithmetic, under the
same assumptions, we deduce that NP ̸= PSPACE is not provable in the theory APC1.
This is a strong theory, which captures many of the major results in complexity.

2. Cryptography. We construct new cryptographic protocols, including succinct non-interactive
arguments (SNARGs) forNC in the plain model, as well as non-interactive zero-knowledge
and witness indistinguishable (NIZK and NIWI) proof systems for NP , all with compu-
tational soundness against uniform adversaries. The SNARG relies solely on the afore-
mentioned complexity-theoretic assumption, whereas the NIZK and NIWI require also a
sub-exponentially secure one-way function (which should be injective in the case of the
NIWI). These are the first constructions of the above protocols that do not rely on highly
structured cryptographic primitives.

Roughly speaking, following Chen and Tell (FOCS 2021, STOC 2023), the complexity-
theoretic hardness assumptions throughout our paper assert the existence of functions f : {0, 1}n →
{0, 1}k that are computable in polynomial time and hard for bounded-space machines (say,
linear space) in a strong average-case sense: No efficient algorithm can find an input x on
which the bounded-space machine computes f , except with negligible probability.

*Miller Institute for Basic Research in Science, University of California, Berkeley. Email: wjmzmbr@gmail.com
†Technion, Taub Faculty of Computer Science. Email: rothblum@cs.technion.ac.il
‡The University of Toronto, Department of Computer Science. Email: roei@cs.toronto.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 116 (2024)

Contents

1 Introduction 1
1.1 Technical setup: The uniform setting, assumptions, and key observation 2
1.2 Do efficient algorithms believe that NP = PSPACE? 4
1.3 Zero-knowledge from hardness over efficiently samplable distributions 7
1.4 The connection between Fiat-Shamir and derandomization is inherent 9
1.5 More on the hardness assumptions . 10

2 Technical overview 11
2.1 Non-interactive zero-knowledge . 11
2.2 Simulating PSPACE in cs-NP . 12
2.3 Targeted HSGs/list-CIHFs suffice for all of our results 14

3 Preliminaries 19

4 Fiat-Shamir for GKR from complexity-theoretic assumptions 27
4.1 Simulating PSPACE in cs-NP and NC in cs-NT IME [n1+ϵ] 28
4.2 Refuters: How constructive is NP ̸= PSPACE? . 36
4.3 Bounded arithmetic: How provable is NP ̸= PSPACE? 39

5 Zaps, NIWI and NIZK 42
5.1 Proof of Theorem 1.8 . 42
5.2 Prior work on zaps, NIWI and NIZK . 48

6 Correlation intractability vs derandomization 49
6.1 Targeted generators . 50
6.2 List-correlation-intractable hash functions . 50
6.3 The equivalence and its implications . 51

7 List-CIHFs (equiv., targeted HSGs) suffice for Fiat-Shamir 52
7.1 List-CIHFs suffice for Fiat-Shamir of GKR . 53
7.2 List-CIHFs suffice for NIZK . 68
7.3 List-CIHFs from non-batch-computability . 74

A Derandomizing the [HVW22] zkPCP 85

B The FLS Trick for Uniform Adversaries: Proof of Lemma 3.7 86

i

1 Introduction

In this work we leverage approaches from recent works in derandomization [CT21; CT23] to
address the classical challenge of simulating interactive proof systems by procedures in which
there is less interaction. This challenge has been studied for decades in complexity theory and in
cryptography, and indeed the current work lies in the intersection of the two areas.

In complexity theory, the focus has been on proof systems with constantly many rounds of
interaction. Unconditional simulations of such systems by proof systems with just one round of
interaction (aka AM[2]), at a cost of a polynomial time overhead, have been known since the
1980s (see [BM88; GS89], and also see the related [Les22]). Moreover, full derandomizations of
constant-round proof systems (into NP proof systems) have been deduced from various hard-
ness assumptions, in a rich and ongoing line of work (see, e.g., [KM02; MV05; SU05; SU07; CT23;
MS23a; MS23b]). Indeed, recall that derandomization is a stronger result than round reduction,
since eliminating the randomness removes the need for interaction (i.e., the prover can send the
entire interaction, which is fully predictable, in advance).

In cryptography, the Fiat-Shamir heuristic [FS86] simulates certain classes of public-coin
proof systems with arbitrarily many rounds by protocols that use just a single round of in-
teraction, which in cryptography is called the CRS model.1 In a nutshell, the idea is to apply a
cryptographic hash function to the transcript at each round, and use the result as random coins
for the verifier. A recent exciting line of work has shown how to instantiate this heuristic securely
from a variety of cryptographic assumptions (e.g., under Learning With Errors (LWE)), compiling
rich classes of proof systems into protocols that are secure against computationally bounded
adversaries (aka argument systems; see below) and that are sometimes also zero knowledge; see,
e.g. [KRR17; CCR+18; CCH+19; PS19; JKK+21; CJJ21]. Compared to the complexity-theoretic re-
sults, the classes of proof systems that can be simulated are richer (e.g., they contain systems with
super-constantly many rounds). However, the assumptions are cryptographic, the simulation has
both randomness and (a mild form of) interaction, and soundness is only computational.

A complexity-theoretic variant of Fiat-Shamir. Chen and Tell [CT23] recently showed that, un-
der complexity-theoretic assumptions, constant-round proof systems can be derandomized into
deterministic argument systems (see Definition 1.1 below). Their focus was on the classical setting
for derandomization (i.e., of constant-round proof systems), and their goal was to minimize (in
fact, eliminate) the computational overhead incurred by derandomization.

As noted in [CT23, Section 1.2.4], their derandomization techniques can be considered as a
complexity-theoretic variant of the Fiat-Shamir heuristic. In a gist, instead of applying a cryptographic
hash function to the transcript at each round to obtain coins for the verifier, they applied a
targeted hitting-set generator (targeted HSG) to the transcript at each round to obtain a list of
candidate choices for the verifier’s random coins (and the non-interactive protocol was obtained
by enumerating over all candidates, across all rounds). However, unlike works in cryptography
studying the heuristic, their assumptions are complexity-theoretic (e.g., they are not known to
imply one-way functions), and they derandomize proof systems into the plain model (rather than
the CRS model), obtaining protocols that are sound against uniform probabilistic adversaries.

1In this model, a common random string (CRS) is chosen before the interaction, and provided to the prover and to
the verifier. In complexity-theoretic terms, this is a one-round public-coin protocol in which the verifier speaks first.

1

Our contributions. The work of [CT23] naturally raises the following questions: Inspired by
the reach of the Fiat-Shamir heuristic in cryptography, can we extend the complexity-theoretic
approach of [CT23] so that it applies to richer classes of proof systems (in particular, to systems
with super-constantly many rounds)? And can we use their techniques to simulate proof systems
by non-interactive protocols that are zero knowledge (in the CRS model)?

The current work provides a surprisingly strong positive answer to both questions, and de-
duces significant consequences. Under complexity-theoretic assumptions that are similar in form
to the ones introduced in [CT23], we simulate rich classes of interactive proofs (including ones
with polynomially many rounds) by argument systems that are deterministic (in particular, non-
interactive), or that are in the CRS model and are zero knowledge (when assuming also mild
cryptographic assumptions). Our results have implications to the NP vs PSPACE question,
to the challenge of constructing non-interactive zero-knowledge arguments for NP , and to the
question of which fragment of bounded arithmetic is needed to prove NP ̸= PSPACE .

Furthermore, we show that the connection between derandomization-based techniques and
the Fiat-Shamir heuristic is inherent, rather than an artifact of specific proofs. Specifically, we
prove an equivalence between a natural relaxed version of correlation intractable hash functions

(CIHFs), which are the objects commonly used to instantiate the Fiat-Shamir heuristic; and tar-

geted hitting-set generators (targeted HSGs), which are the objects built in [CT21; CT23] (following
Goldreich [Gol11]) for non-black-box derandomization of proof systems. The aforementioned
natural relaxation of CIHFs allows the function to output a list of candidates, and we prove that
this relaxation still suffices for applying the Fiat-Shamir heuristic in several prominent settings.

1.1 Technical setup: The uniform setting, assumptions, and key observation

Recall that argument systems, first defined by Brassard et al. [BCC88], are proof systems in which
soundness is not information-theoretic, but rather computational: No efficient adversary can mis-
lead the verifier. We will be interested in argument systems in which the verifier is a deterministic
NP-type procedure, and the adversary is a uniform (probabilistic) Turing machine.2

Definition 1.1 (computationally sound NT IME). We say that a function f : {0, 1}∗ → {0, 1}∗ is
in computationally sound non-deterministic time TV with a time-TP prover, denoted

f ∈ cs-NT IME [TV , TP] ,

if there exist a uniform verifier V and a uniform honest prover P such that:

1. Completeness. For every x ∈ {0, 1}∗ it holds that V(x, P(x)) = f (x).

2. Soundness. For every sufficiently large n ∈ N and every uniform probabilistic adversary P̃
running in time polynomial in TP, the probability that P̃(1n) prints (x, π) such that |x| = n and
V(x, π) /∈ { f (x),⊥} is negligible in TP(n).

3. Efficiency. On input x ∈ {0, 1}∗ the honest prover P runs in deterministic time TP(|x|). On input
(x, π), the verifier runs in deterministic time TV(|x|).

2This notion coincides with what was defined in [CT23] as “deterministic effective argument systems”. The more
natural name “computationally sound NP” was later suggested by Oded Goldreich. Also note that our notion
is related to Micali’s [Mic00] “computationally sound proofs”, but we emphasize that we focus on the plain model,
whereas Micali’s notion is in the random oracle model.

2

The definition extends to partial functions in the natural way. For Boolean functions, represented as
promise-problems Π = (Y,N), we require completeness to hold only with respect to x ∈ Y and soundness
to hold only with respect to finding (x, π) such that x ∈ N and V(x, π) = 1.

Note that Definition 1.1 is fully uniform. In particular, the adversary P̃ is a uniform algorithm,
and hence soundness is guaranteed only on inputs that can be efficiently sampled.3 Definition 1.1
bounds the adversary’s runtime to be polynomial in the honest prover’s runtime, but a more
general definition (allowing the adversary more resources) would also be reasonable.

Hardness assumptions. We will show how to simulate interactive proof systems in cs-NT IME ,
based on assumptions of the following form: There is a function f with multiple output bits that
is computable in polynomial time but hard to compute in smaller space (say, space nϵ), where the
crucial point is that the hardness holds when the input x comes from any efficiently samplable
distribution. This is a strong form of average-case hardness, which can be equivalently thought
of as asserting that: it is hard to find an input x on which f is easy. For example:

Assumption 1.2 (hardness over all samplable distributions, an illustrative assumption). There
exists f : {0, 1}∗ → {0, 1}∗ mapping n bits to no(1) bits such that f is computable in polynomial time and
satisfies the following. For every probabilistic algorithm Samp running in (arbitrarily large) polynomial
time, and every (deterministic) space-n.01 algorithm A, and every sufficiently large n ∈N it holds that

Pr
x←Samp(1n)

[A(x) = f (x)] ≤ negl(n) .

We will refer to hardness as in Assumption 1.2 as hardness over all e�ciently samplable distri-

butions. Assumptions of hardness over all efficiently samplable distributions have been used in
recent years to deduce “free lunch” derandomization (i.e., derandomization with essentially no
time overhead) of probabilistic algorithms [CT21] and of constant-round proof systems [CT23].

Indeed, a random function attains the hardness conjectured in Assumption 1.2 (with high
probability), and this will be true for all of our assumptions in the paper. Hence, it is plausible
to assume that an explicit function also has the required hardness. (For concrete instantiations
in practical applications it seems possible to consider, e.g., the SHA-256 function.) For further
discussions of the assumption see the discussion after Theorem 1.3, and also Sections 1.5 and 2.2.

The motivating technical observation. From a technical perspective, the motivating observa-
tion underlying this work is:

A function as in Assumption 1.2 already suffices to instantiate the Fiat-Shamir heuristic
(equivalently, for non-black-box derandomization of proof systems), when working
against uniform computationally-bounded adversaries.

To elaborate, in works studying the Fiat-Shamir heuristic, a cryptographically hard function
(say, LWE as in [CJJ21]) is used to construct a CIHF, and the latter is used to instantiate the Fiat-
Shamir heuristic. In works studying non-black-box derandomization, a function hard over all

3The restriction that P̃ will be uniform is crucial. For example, if NP ̸= PSPACE , then for every NP-verifier V
and L ∈ PSPACE there is either (1) Some x ∈ L that the verifier rejects regardless of π, or (2) Some x /∈ L and π that
the verifier accepts. A non-uniform adversary may simply have these hard-wired. Also recall that in any argument
system (i.e., more generally than just for cs-NT IME), to get a non-trivial definition we must allow the adversary P̃
to use strictly more resources than the honest prover P (see Section 3.4).

3

efficiently samplable distributions (say, a non-batch-computable function as in [CT23]) is used to
construct a targeted HSG, and the latter is used for derandomization.

In contrast, in this work, the function f from Assumption 1.2 will be used as-is for non-black-
box-derandomization (equivalently, for Fiat-Shamir), without a need for an additional construc-
tion of a CIHF or a targeted HSG from f .

The function f can be thought of as a CIHF for searchable relations (in the sense of Canetti et
al. [CCH+19]) computable in small space, with soundness against uniform adversaries; we elabo-
rate on this in Section 2. Indeed, one may view the key technical observation as follows: When
working in the uniform setting, a CIHF for searchable relations that suffices for Fiat-Shamir is,
essentially, a complexity-theoretic hardness assumption of the type introduced in [CT21; CT23].4

Moreover, as mentioned above, this turns out not to be a coincidence, and we show that the con-
nection between Fiat-Shamir and derandomization-based techniques is inherent (see Section 1.4).

1.2 Do efficient algorithms believe that NP = PSPACE?

Our first result is that under an assumption of the form similar to that of Assumption 1.2, we
have (loosely speaking) that PSPACE ⊆ cs-NP ; that is, every problem in PSPACE can be
decided by an NP-verifier that cannot be misled by any efficient adversary.

In fact, we show a full equivalence between the latter conclusion and a corresponding hard-
ness assumption. Specifically, consider a relaxation of the upper bound in Assumption 1.2, where
instead of assuming that the hard function f is computable in polynomial time (i.e., in FP), we
only assume that f is computable in cs-NT IME [poly(n), 2n]. We show that this assumption is
sufficient and necessary for PSPACE ⊆ cs-NP ; that is:

Theorem 1.3 (PSPACE ⊆ cs-NP ; see Theorem 4.3). The following two statements are equivalent:

1. For some sufficiently small ϵ > 0, and for some δ > 0, there is f : {0, 1}n → {0, 1}nϵ
in

cs-NT IME [poly(n), 2nδ
] that is hard for space nc·ϵ over all 2O(nδ)-time samplable distributions,

where c > 1 is a universal constant.

2. For every L ∈ PSPACE there are C > c > 1 such that L ∈ cs-NT IME [nC, 2nc
].

The hardness in Item (1) of Theorem 1.3 is attained by a random function {0, 1}n 7→ {0, 1}nϵ
,

with high probability, when δ < ϵ (i.e., such a function is indeed hard for bounded-space ma-
chines over all distributions samplable in uniform time 2O(nδ)). In particular, it seems plausible
that a function with such parameters exists even in FP or FNP , rather than only in cs-NP .

The second item in Theorem 1.3 suggests an additional perspective on the widely believed
conjecture that NP ̸= PSPACE : Even if the conjecture is true, the effective restriction that it
places on NP verifiers is limited in its extent. This is because any L ∈ PSPACE can be decided
by an NP-verifier VL that, from the perspective of algorithms running in fixed exponential time
2nc

, works correctly.5 To illustrate this, consider the perspective of VL: It gets x and a proof π,

4The potential of uniform assumptions to yield a Fiat-Shamir heuristic secure only against uniform adversaries, on
inputs that can be efficiently generated, was pointed out by Halevi, Myers, and Rackoff [HMR08, Section 5.3].

5The running time 2nc
of the honest prover is not coincidental. Under reasonable assumptions, it cannot be

significantly improved (see Section 3.4). On the other hand, allowing the prover to run in sufficiently large exponential
time (i.e., larger than 2O(TV) where TV is the verifier’s running time) means that the adversary can perform a brute-
force search over all witnesses; a system resilient against such adversaries is just a standard NP-system.

4

and decides L correctly as far as any algorithm running in time comparable to that of VL can tell.
Also consider the perspective of the honest prover, which runs in time N = 2nc

: It can convince
an extremely quick deterministic VL (i.e., running in time poly(n) = polylog(N)) that x ∈ {0, 1}n

belongs in L, without worrying that poly(N)-time adversaries might mislead VL.
We emphasize that this statement should not appear unbelievable. Indeed, Kilian’s [Kil92]

classical result, when scaled up, implies that under cryptographic assumptions every problem
in NEXP can be decided by a four-message interactive argument system in which the verifier
runs in polynomial time (and has computational soundness).6 The recent remarkable result of
Choudhuri et al. [CJJ21] implies that, under standard cryptographic assumptions, every problem
in EXP can be decided by a two-message polynomial-time argument system. A useful intuition
is that if we could completely derandomize these argument systems, then we would obtain
conclusions that are even stronger than the one in Theorem 1.3 (e.g., deduce EXP ⊆ cs-NP).
Alas, the challenge of derandomizing these argument systems, which in the case of [Kil92] is
decades old (see also [BBH+19] and references therein), remains open.7

We take a different route: In a gist, we “derandomize IP = PSPACE”, with computational
soundness. That is, we decide any L ∈ PSPACE by an interactive proof system, and the crux of
our proof is simulating this system in cs-NT IME [poly(n), 2nc

]. (We use the system of [GKR15],
which suffices for the IP = PSPACE theorem [LFK+92; Sha92].) See Section 2.2 for details.

Remark 1.4. The cs-NT IME system in Theorem 1.3 satisfies a soundness condition that is even
stronger than stated, and holds for all inputs: For every adversary P̃ running in time 2O(nc), and ev-
ery (sufficiently long) input x /∈ L, the probability that P̃ finds π such that V(x, π) = 1 is negligible (in
2nc

). This is because the system is sound against adversaries running in time larger than 2O(n), which
means that it is sound even against adversaries doing an exhaustive search over the inputs.

1.2.1 Bounded arithmetic: How provable is NP ̸= PSPACE?

What does it mean that efficient algorithms “believe that NP = PSPACE”? Under the assump-
tions of Theorem 1.3, there is an NP-verifier that looks correct to all algorithms running in a
certain fixed exponential time. However, there could still be a short proof of NP ̸= PSPACE
that theoretical computer scientists (or their computers) could quickly read and verify.

Nevertheless, as pointed out to us by Ján Pich, a corollary of Theorem 1.3 is that under the
same hardness assumption, any such proof will have to be “inherently complicated”. That is, it
will have to use a broad fragment of Peano arithmetic – seemingly broader than what has been
used for most major results in complexity theory so far:

Theorem 1.5 (APC1 ̸⊢ NP ̸= PSPACE ; see Theorem 4.8). Under the hardness assumption of
Item (1) in Theorem 1.3, NP ̸= PSPACE is not provable in APC1.

We will not attempt to define the theory APC1 here; see, e.g., [Kra19, Section 12.6] for an excel-
lent reference. However, we comment that this is a strong theory: Many major results in complex-
ity theory are provable using only APC1, including the PCP theorem [ALM+98] (see [Pic15b]),

6We compare our result to Kilian’s argument system, rather than to Micali’s [Mic00] computationally sound proofs,
since – as mentioned in Footnote 2 – our cs-NT IME verifiers do not rely on a random oracle (indeed, they are just
NP-type machines, i.e. work in the plain model).

7We note that one could simply conjecture that, say, the [CJJ21] argument system is secure (against uniform ad-
versaries) if the common random string is instantiated using a fixed string (e.g., the digits of π). Here we refer to
constructions with meaningful security reductions.

5

hardness amplification for Boolean functions [STV01] (see [Jeř05, Section 4.3.5]), the connec-
tion between circuit lower bounds and pseudorandom generators [NW94; IW97] (see [Jeř07]),
and classical lower bounds for constant-depth circuits and for monotone circuits [Raz85; Hås87;
Raz87; Smo87] (see [Raz95; MP20]). A notable exception was provided in [CLO24], who showed
that known lower bounds for very restricted computational models (i.e., one-way communication
and single-tape Turing machines) are not provable in APC1, under cryptographic assumptions.
Lower bounds for general models that may be true and are known to be beyond the reach of APC1
include strong lower bounds for non-uniform Σ3-circuits (see [LO23], and also the related [Pic15a;
PS21]). Indeed, Theorem 1.5 yields the first widely believed conjecture about general computa-
tional models that (under plausible assumptions) is not provable in APC1.

1.2.2 Refuters: How constructive is NP ̸= PSPACE?

For a language L and a class Cweak of computational procedures, we say that a lower bound
L /∈ Cweak is constructive if given Mweak ∈ Cweak, we can efficiently find inputs on which Mweak errs
in deciding L. An algorithm that finds such inputs is called a refuter for L against Mweak.

Refuters have been studied since (at least) the work of Kabanets [Kab01] (see also [LY94;
Gut06; BTW10; Ver13; OS18; GSTS07; Ats06; DFG13; CTW23]). One of the main discoveries is
that classical conjectured lower bounds for P and BPP , such as P ̸= NP or BPP ̸= NEXP ,
are inherently constructive: If the lower bound is true, then any Mweak (in P or BPP , respectively)
has a polynomial-time refuter (see [CJS+21, Theorem 1.2], following [GSTS07; BTW10]).

The meaning of Theorem 1.3 is that, under our assumptions, NP ̸= PSPACE (if true)
is inherently non-constructive: For any L ∈ PSPACE , there is an NP-verifier that cannot be
efficiently refuted, even in (fixed) exponential time. This naturally raises the question: What is
the minimal complexity for refuting NP ̸= PSPACE? Following [CJS+21], we prove:

Theorem 1.6 (constructivity ofNP ̸= PSPACE ; see Theorem 4.5). Assume thatNP ̸= PSPACE .
Then, for every NP-machine M there exists a PNP machine RefM such that for infinitely many n ∈ N

it holds that RefM(1n) prints an n-bit input x such that M does not decide TQBF correctly on x.

The complexity of Ref can be reduced further to FNP , at the cost of providing Ref with
O(log n) bits of non-uniform advice (see Theorem 4.5). Thus, under the assumptions of Theo-
rem 1.3: If TQBF /∈ NP , then there is an NP-machine M that we cannot refute in (some) fixed
exponential time, but we can do it in PNP or in FNP/O(log n).

1.2.3 Fast computationally-sound NP-verifiers for NC

The proof approach underlying Theorem 1.3 (i.e., derandomizing the proof system of [GKR15]
with computational soundness) can be applied to obtain more conclusions. As one applica-
tion, we show that under an assumption of a similar flavor, uniform NC can be decided by
cs-NT IME verifiers running in near-linear time:

Theorem 1.7 (uniform-NC ⊆ cs-NT IME [n1+o(1)]; see Corollary 4.4). Let L be a problem in
logspace-uniformNC. Suppose that there is f : {0, 1}n → {0, 1}polylog(n) in cs-NT IME [n1+o(1), poly(n)]
such that f is hard for polylogarithmic space over all polynomial-time samplable distributions. Then, for
every ϵ > 0 it holds that L ∈ cs-NT IME [n1+ϵ, poly(n)].

6

Compared to Theorem 1.3, in Theorem 1.7, we assume that the hard function is verifiable
in near-linear time (rather than polynomial time), but the hardness is only for algorithms using
space polylog(n) (rather than linear space). The running time of the verifier is optimal, up to the
constant ϵ > 0, since we cannot decide all NC problems without reading the entire input.

Similarly to Theorem 1.3, the conclusion of Theorem 1.7 was not previously known to follow
from natural hardness assumptions. Interactive proof systems (i.e., with interaction and statistical
soundness) for logspace-uniform NC in which the verifier runs in time Õ(n) were constructed
by Goldwasser, Kalai, and Rothblum [GKR15], and SNARGs in the CRS model (for all of P) were
constructed from cryptographic assumptions in [KPY19; CCH+19; JKK+21; CJJ21; CGJ+23].8

However, the only known non-interactive argument system in the plain model for a subclass of
BPP was constructed for DTISP[poly(n), nδ], which is incomparable to uniformNC (see [CT23]).

1.3 Zero-knowledge from hardness over efficiently samplable distributions

Finding the minimal sufficient assumptions for cryptographic primitives and protocols is one of
the holy grails of cryptography. Even for central notions, such as non-interactive zero knowledge
(NIZK), we still have a relatively poor understanding of what form of assumptions is required:
most notably, whether the existence of one-way functions suffices.

As our second family of applications, we show that uniform versions of several central notions
can be based on very mild cryptographic assumptions (e.g., one way functions) combined with a
complexity-theoretic hardness assumption as in Assumption 1.2 (i.e., hardness over all efficiently
samplable distributions). Specifically, under such assumptions, for everyNP language, we build:

• Zaps and NIWI: A two-message, and under a slightly stronger cryptographic assumption,
even single-message, witness-indistinguishable (WI) argument system. The two-message
variant is often called a zap [DN07] and the single-message variant is called a NIWI.

• NIZK: As a corollary, a non-interactive zero-knowledge (NIZK) argument system in the
common random string (CRS) model.

Crucially, the protocols that we construct are secure against uniform adversaries (analogously
to Definition 1.1). We define the relevant notions carefully and discuss them in Section 3.1, and
throughout the current section, whenever we refer to NIZK, NIWI, or zap, we mean this model.

Results statements. Let us recall the definitions of the objects we construct, at a high level
(formal definitions appear in Section 3.1). A NIWI is an NP-style protocol that is witness in-
distinguishable (WI): For any input x and two NP-witnesses w1, w2, the proof generated using
w1 is computationally indistinguishable from one generated using w2. We emphasize that in
contrast to standard interactive zero-knowledge proofs, a NIWI is fully non-interactive and does
not require any form of setup (i.e., it is in the plain model rather than CRS model).9 A zap is a
2-message public-coin WI argument system, where we emphasize that the WI property should

8Amit and Rothblum [AR23] showed that even assuming just one-way functions suffices to obtain argument sys-
tems for NC with a near-linear time verifier, although these systems use constantly many rounds of interaction.

9Indeed, as shown by Goldreich and Oren [GO94], interaction is inherently required for zero-knowledge. In
contrast, for the weaker notion of WI, our work (as well as prior works which are discussed in Section 5.2) construct
a NIWI consisting of a single message sent from the (probabilistic) prover to the (deterministic) verifier.

7

hold even wrt a malicious verifier. Lastly, NIZKs are non-interactive protocols with the full guar-
antee of zero-knowledge (i.e., the verifier’s view can be simulated), but require a trusted setup –
namely, a common random string (CRS) that is shared between the prover and verifier.

Prior constructions of such protocols all relied on highly structured cryptographic assumptions.
Among the ones that have been used are (doubly-enhanced) trapdoor permutations, learning
with errors (LWE), indistinguishability obfuscation (IO), and bilinear maps; see Section 5.2 for a
detailed discussion and references. Our main result in this section is the following:

Theorem 1.8 (zaps and NIWI arguments for NP). Assume that there are subexponentially secure one
way functions. For ϵ > 0 and a sufficiently small δ > 0, assume that there is f : {0, 1}n → {0, 1}nδ

in
FP that is hard for linear-time algorithms with oracle access to NT IME [nϵ] over all polynomial-time
samplable distributions. Then, every NP relation R has a zap argument system.

Assuming in addition a sub-exponentially secure non-interactive commitment scheme (i.e., statistically
binding and computationally hiding), every NP relation R has a NIWI argument system.

Indeed, the main novelty of Theorem 1.8 is that it relies only on weak cryptographic assump-
tions (i.e., on one-way functions), and replaces the need for structured cryptographic hardness
with the existence of an unstructured function f that is hard over all efficiently samplable distribu-
tions. The non-interactive commitment scheme in Theorem 1.8 (required for the NIWI result) can
be instantiated using (sub-exponentially secure) injective one-way functions [Blu82], or assuming
an additional NW-style derandomization assumption [OV07].

The closest related work is that of Barak et al. [OV07], who constructed NIWI assuming the
existence of statistically sound zaps (in the uniform CRS model) and a complexity-theoretic as-
sumption. Such zaps, however, are only known to exist under highly structured assumptions
(e.g., doubly-enhanced trapdoor permutations). We discuss more prior works in Section 5.2.

Remark 1.9. The linear-time algorithm with an NT IME oracle used in Theorem 1.8 is weaker than
the DSPACE algorithm used in Theorem 1.3. Moreover, the oracle is only used in order to break a
cryptographic commitment scheme, and can be replaced with a one-way function inverter.

In fact, if we rely on a commitment scheme that can be broken by a quantum machine (e.g., one based
on factoring), then we can omit the NT IME oracle altogether and replace it by hardness for a quantum
machine trying to compute the function (on any classical polynomial-time samplable distribution).

Remark 1.10. The complexity-theoretic assumption underlying Theorem 1.8 is not falsifiable (in the sense
of Naor [Nao03]) because of the NT IME oracle, but the quantum variant mentioned in Remark 1.9 is
falsifiable by a quantum machine.

Obtaining a NIZK. Using the celebrated “FLS Trick” [FLS99] we can convert the protocols of
Theorem 1.8 into a full-fledged non-interactive zero-knowledge (NIZK) argument system, in the
CRS model (see Definition 3.3 for a careful definition of NIZK in the uniform setting).

Corollary 1.11 (NIZK). Assuming subexponentially secure one way functions and a function f as in The-
orem 1.8, every NP relation R has a NIZK argument system in the CRS model.

As mentioned above, constructing a NIZK from a “minicrypt” type of assumption is a major
open problem. Corollary 1.11 makes progress towards this important goal by relying, in addition
to the one-way function, on a (strong) complexity-theoretic hardness assumption.

8

1.4 The connection between Fiat-Shamir and derandomization is inherent

Recall that our assumptions of hardness over all efficiently samplable distributions arise from
recent research into non-black-box derandomization (see [CT21; CT23]).

We show that the connection between the complexity-theoretic study of non-black-box deran-
domization and the cryptographic study of the Fiat-Shamir heuristic is inherent. To see this, let
us recall the assumptions and the constructed algorithmic objects in both lines of work:

1. In the cryptographic works (e.g., [CCR16; KRR17; HL18; CCR+18; BKM20; JJ21; JKK+21;
HLR21; CJJ21; HJK+22; CGJ+23]), cryptographic assumptions are used to construct correlation-
intractable hash functions (CIHFs). These objects, first defined by Canneti, Goldreich, and
Halevi [CGH04], are functions h such that for any sparse relation R from a certain class R
of relations, it is infeasible to find an input x for which (x, h(x)) ∈ R.

2. In works studying non-black-box derandomization [CT21; CT23], hardness over all effi-
ciently samplable distributions is used to construct targeted hitting-set generators (targeted

HSGs) that are pseudorandom over efficiently samplable distributions. These are algorithms
that get an input x coming from an efficiently samplable distribution, and produce a list of
strings that “hits” every dense set S from a collection Sx of sets (see Definition 6.2).

In both lines of work, the object that is constructed (i.e., targeted HSG or CIHF) is used in a
very similar way: it is applied to the transcript in each round to obtain the verifier’s next message
(or several candidate messages, in the case of targeted HSGs).

This is indeed not a coincidence: When modelling adversaries as uniform algorithms, targeted
HSGs are completely identical to a natural relaxation of CIHFs, in which h is allowed to output
a list of strings.10 To illustrate this with a concrete setting, consider targeted HSGs that are
pseudorandom for space S (i.e., on input x, the generator hits all dense sets from the collection
Sx of sets decidable by uniform space-S algorithms with access to x); analogously, for CIHFs,
consider the class R of all relations recognizable in uniform space S. Then:

Theorem 1.12 (informal; see Theorem 6.7). A function G is a targeted HSG that is pseudorandom for
uniform space-S algorithms over a distribution x of inputs if and only if G is list-correlation-intractable
over x for sparse relations recognizable by uniform space-S algorithms.

One may wonder if the relaxation of CIHFs to list-CIHFs (which is needed for the equivalence)
is significant in this context. Crucially, we prove that list-CIHFs suffice for the target application of
Fiat-Shamir in important settings. In particular, we show that all of the results in the current paper
can be deduced from list-CIHFs avoiding suitable relations, rather than only from assumptions
a-la Assumption 1.2. (See Corollary 7.6 for a technical statement that list-CIHFs suffices for
PSPACE ⊆ cs-NP and Theorem 7.8 for a technical statement that list-CIHFs suffice to get NIZK
for NP .) While allowing a list is a natural relaxation, the fact that it suffices for the results is
surprising; we elaborate on this in Section 2.1, and also explain which list size the results support.

The key takeaway is that when considering uniform adversaries, the algorithmic objects that
have been considered in both lines of work are, essentially, the same object.

10In more detail, we can compare targeted HSGs to “keyless” list-CIHFs, and we can also compare a “keyed” version
of targeted HSGs to standard (“keyed”) list-CIHFs, and both comparisons yield an equivalence. To alleviate concerns,
we note that “keyless” CIHFs may exist for the classes of relations we are interested in, despite the impossibility
result of [CGH04] (because we are interested in CIHFs computable by algorithms that are allowed more time than the
procedures that recognize the sparse set the CIHF needs to avoid; see Section 6).

9

Constructions of list-CIHFs from hardness on all efficiently samplable distributions. List-
CIHFs that suffice for our results can be constructed from hardness on all efficiently samplable
distributions, using a targeted PRG from [CT21; CT23]. Loosely speaking, suitable list-CIHFs
follow from the existence of a function in FP that is non-batch-computable (in the sense of [CT21;
CT23]) by algorithms with a non-trivial oracle (e.g., a linear-space oracle) over all polynomial-
time samplable distributions. For details see Section 7.3 and Corollaries 7.15 and 7.16.

Indeed, this allows to deduce the consequences of Theorems 1.3 and 1.8 from different as-
sumptions, i.e. from non-batch-computability over all efficiently samplable distributions. The
latter assumptions seem somewhat less clean than the ones stated in Theorems 1.3 and 1.8.

Why was the equivalence not discovered before? The Fiat-Shamir heuristic has been widely
influential in practice and extensively studied theoretically since its introduction in the 1980’s.
Similarly, derandomization is a central area in theoretical computer science, studied extensively
since (at least) the late 1970’s. The equivalence in Theorem 1.12 is thus important, and despite
being almost immediate given the proper definitions, it was not known before.

The culprit is that in this work we consider the uniform setting. In contrast, both lines of
research traditionally focused on non-uniform adversaries, in which case the two objects seem
very different from each other. For example, classical PRGs for non-uniform circuits have seed
length that is too large for typical Fiat-Shamir applications: The PRG can only derandomize
proof systems with constantly many rounds (without super-polynomial overheads), and it is not
compatible with constructions of NIZK for NP (because the list size of the corresponding list-
CIHF is too large; see Section 2.1). And if we want a CIHF secure against non-uniform adversaries,
we need a keyed function, and thus can only work in the CRS model (indeed, the corresponding
derandomization object would be quite unnatural: a keyed targeted HSG with seed length zero).

1.5 More on the hardness assumptions

The non-standard part in Assumption 1.2 (and in all of our assumptions of this flavor) is the
strong average-case hardness: the function f is hard not only over (say) the uniform distribution,
but over any efficiently samplable distribution.

While this is a strong notion, we believe that it is quite plausible, and it is of independent
interest. As mentioned after Assumption 1.2 and Theorem 1.3, such hardness is attained by a
random function. Moreover, such average-case hardness is far from unprecedented in complexity
theory, let alone in cryptography. For example, a function hard for probabilistic algorithms
over all efficiently samplable distributions was recently used in [CT21; CT23] for “free lunch”
derandomization of probabilistic algorithms and of constant-round proof systems, and hardness
for probabilistic algorithms over all efficiently samplable distributions is in fact necessary for their
derandomization conclusion (as is the assumption in Theorem 1.3 for the conclusion PSPACE ⊆
cs-NP). In fact, there are even, unconditionally, explicit functions that are hard on all inputs
(except finitely many) for certain classes; see examples in [CT21].11

We pose the study of this type of average-case hardness assumption as a major open problem.
Indeed, a natural suspicion is that such strong average-case hardness might imply other strong

11We comment, though, that known functions that are hard on all but finitely many inputs are obtained by di-
agonalization, and may have parameters that are different than the ones attained by random functions. In particu-
lar, while we expect functions hard for (say) linear space on all inputs to exist in cs-NP (since these follow from
PSPACE ⊆ cs-NP), we do not expect such functions to exist in FP or in FNP . See discussion in Section 2.2.

10

notions of hardness (e.g., one-way functions, or circuit lower bounds). However, one obstacle for
deducing such conclusions is the possibility that P = PSPACE . To see this, note that a natural
attempt at defining a hard problem is to consider the search problem “find an input x on which
a given linear-space machine correctly computes f ” (since the assumption is that no efficient
algorithm can do so). Unfortunately, the foregoing problem is only non-trivial if such inputs
exist (i.e., f must be computable in linear space on some inputs for the problem to be non-trivial).
If f is hard on all inputs, then the search problem is trivial; and in particular, if P = PSPACE
then there is indeed a function in FP that is hard for linear space on all inputs.

Additional directions for studying the assumption. Note that if NP ̸= PSPACE , then the
hardness assumption in Theorem 1.3 yields a problem in PNP that is hard for fixed probabilis-
tic exponential time (i.e., there is c > 1 such that the problem is hard for probabilistic time
2nc

); specifically, this problem is obtained by combining the cs-NP verifier for TQBF deduced
in Theorem 1.3 with the refuter of Theorem 1.6. We pose the question of whether one can de-
duce stronger notions of hardness by combining our assumption with P ̸= PSPACE or with
NP ̸= PSPACE . Another useful direction would be finding consequences of Assumption 1.2
in cryptography or in complexity other than non-interactive simulations of proof systems.

2 Technical overview

Many of the proofs in this paper are remarkably simple. We start with the simplest one, which
is the construction of zaps and NIWIs in the uniform model (i.e., Theorem 1.8). Then we describe
the simulation of PSPACE in cs-NP from a sufficient and necessary assumption. Finally, we
explain the more technically involved parts of this work, which prove that targeted HSGs suffice
for non-black-box derandomization (equivalently, list-CIHFs suffice for Fiat-Shamir) of certain
proof systems with super-constantly many rounds, and also suffice for obtaining NIZK.

2.1 Non-interactive zero-knowledge

The gist of the argument is as follows. The hard function f assumed in Theorem 1.8 can be
thought of as a keyless, uniformly secure CIHF for a certain class of searchable relations (as defined
in [CCH+19]). Such an f suffices for applying Fiat-Shamir to standard zero-knowledge protocols
for NP , and it yields a zap/NIWI (and a NIZK, using a uniform version of the FLS trick [FLS99]).
The only complications, which are minor, arise from working in the uniform setting.

Let us explain this more slowly. Consider Blum’s [Blu86] classical zero-knowledge protocol
for the NP-complete problem of Hamiltonicity. On input graph G, the honest prover chooses a
random permutation π and sends a commitment to π and to the graph π(G). The verifier tosses
a coin b. If b = 0 the verifier asks the prover to decommit entirely (and thus catches the prover in
case the graph to which it committed is not π(G)), and if b = 1 it asks the prover to decommit to
a Hamiltonian cycle in the graph sent (and thus catches the prover in case the graph is π(G) but
G is not Hamiltonian). Indeed, the verifier’s view can be easily simulated, since when b = 0 it
receives a random isomorphic copy of G, and when b = 1 it just receives a random cycle graph.
This base protocol is repeated in parallel, to obtain negligible soundness error.12

12Parallel repetition of this protocol is unlikely to preserve zero-knowledge (see [CCH+19; HLR21]), but it does
preserve WI (and honest-verifier zero-knowledge), which suffice for our target applications.

11

As observed by Canetti et al. [CCH+19], in the base protocol, for every non-Hamiltonian
graph G and every commitment sent by the prover, there is at most one verifier challenge that
still allows the prover to convince the verifier. (If the prover committed to a permutation π but
to a graph that is not π(G), then with challenge b = 0 the verifier will reject no matter how the
prover responds; and if the prover committed to a permutation π and to π(G), then π(G) is
not Hamiltonian, so choosing b = 1 will cause the verifier to reject.) This fact relies on using a
statistically binding commitment, and remains true when repeating the protocol in parallel.

Thus, given G and commitments c⃗ = (c1, . . . , ct) (for a t-fold parallel repetition), there is at
most one bad challenge B(G, c⃗) that allows to mislead the verifier. Moreover, the mapping of
(G, c⃗) to B(G, c⃗) can be computed by breaking the commitment scheme (to see if the graph sent
is π(G)), and this can be done using an NT IME [nΩ(1)] oracle. (See further discussion of the
parameters in Section 2.2.)

Now, consider a verifier that chooses its challenge deterministically by computing f (G, c⃗).
The key observation is that if f (G, c⃗) = B(G, c⃗) (i.e., if the function “hits” the bad challenge), then
the algorithm for B computes f at input (G, c⃗). However, we assumed that f is hard to compute
with an NT IME [nΩ(1)] oracle over all efficiently samplable distributions! Hence, no malicious
adversary can find input G and commitments c⃗ such that f (G, c⃗) is a bad challenge for the verifier,
except with negligible probability. This guarantees soundness against uniform adversaries when
choosing the challenges deterministically. At this point, instead of a deterministic protocol, the
prover can just send in advance c⃗, the challenge f (G, c⃗), and its final response.

A minor complication in the uniform setting. Recall that we repeat the base protocol in par-
allel, say for t = nΘ(1) times (to achieve negligible soundness error). The standard security
reduction for proving zero knowledge (or WI) uses an adversary that distinguishes the simulator
from the actual protocol in order to break the commitment scheme, and the underlying proof
of that relies on a standard hybrid argument. However, hybrid arguments do not work as-is in
the uniform setting, since we cannot just non-uniformly hard-wire values for the “non-critical”
blocks in a way that maintains the advantage (for a closely related open problem, see the ques-
tion of “computational mergers” in [CT21]). In our case, computing certain blocks of the hybrid
distribution requires access to the witness w (i.e., to a Hamiltonian cycle in G).

Fortunately, we can bypass this obstacle, because we are only interested in uniformly secure
zero-knowledge, where the simulator is indistinguishable from the actual protocol only over effi-
ciently generateable pairs (G, w) (see Definitions 3.3 to 3.5). Thus, in our security reduction we
start from an adversary that produces both G and a witness w, and we can use w to efficiently
generate the needed blocks in the hybrid distribution. Details appear in Section 5.1.

2.2 Simulating PSPACE in cs-NP
Let us now explain why the hardness assumption in Theorem 1.3 is sufficient and necessary for
PSPACE ⊆ cs-NP . As mentioned in Section 1.2, our proof strategy for simulating PSPACE
in cs-NP is to “derandomize IP = PSPACE”, with computational soundness; that is, we
simulate the underlying interactive proof system by a cs-NP protocol.

Specifically, we will show that assumptions as in Theorems 1.3 and 1.7 suffice to simulate a
suitable version of the interactive proof system of Goldwasser, Kalai, and Rothblum [GKR15].13

13As noted already in their original work, their proof system can indeed be used to decide PSPACE , and this is

12

As in Section 2.1, our high-level approach will be to define a notion of bad verifier challenges, and
argue that the set of bad challenges at each round is a singleton that can be computed relatively
efficiently (i.e., by a low-space machine). At each round, the derandomized protocol applies f to
the transcript up to that round, instead of having the verifier choose a challenge randomly. By our
assumption, no efficient adversary can find a transcript Π (i.e., an input and prover responses)
such that f (Π) equals the single bad challenge, except with negligible probability.

The notion of a bad challenge in this context follows from the observation of Canetti et
al. [CCH+19] that the proof system of [GKR15] has round-by-round soundness. We will elabo-
rate on this notion below when we define a subclass of such systems (see Section 2.3.2), but the
crucial point for now is that on input x /∈ L, in each round i the following holds. There is a set
Bi of challenges of small density ϵ > 0 (i.e., the bad ones) such that, if the verifier accidentially
chooses a challenge in Bi, then the prover can mislead it into thinking that x ∈ L; but if the
verifier avoids Bi, then in the next round the challenges are again partitioned into bad ones Bi+1
and non-bad ones, where the density of Bi+1 is exactly the same, i.e. ϵ > 0. (And in the last
round, if the verifier consistently avoided bad challenges, it rejects.) In other words, as long as
the verifier avoids a set of small fixed density ϵ > 0 at each round, the prover cannot mislead it.

The missing piece is arguing that a suitable version of the protocol of [GKR15] has one bad
challenge in each round (i.e., |Bi| = 1). A version with a sufficiently close property was pre-
sented by Kalai, Lombardi, and Vaikunatanatan [KLV23], following previous variations in [Gol18;
KPY19; JKK+21]: they showed a protocol where the number of bad challenges at each round is
constant (i.e., |Bi| = O(1)). Accordingly, we will argue that there are O(1) low-space machines,
each computing one of the bad challenges. If there is an adversary (i.e., a malicious prover) that
samples Π such that the resulting protocol is insecure, with noticeable probability, on infinitely
many input lengths, then at least one of these machines will succeed in computing f (Π) with
noticeable probability on infinitely many input lengths. This contradicts the hardness of f .

We defer the full description of the proof system itself (i.e., of the version with O(1) bad chal-
lenges at each round) to Section 4, since it relies on many details of the proof system of [GKR15],
and since the key observations already appeared in previous work (i.e., [KLV23]).

As for the other direction, assuming PSPACE ⊆ cs-NP we want a function that is hard for
(say) linear space on all efficiently samplable distributions. To do so, we first construct a function
in PSPACE with such hardness, by straightforward diagonalization; in fact, we construct a
function that is hard for each linear-space machine on all inputs (except at most finitely many).
Using the hypothesis on each output bit, this function is also in cs-NP .

On the parameters of the two hard functions. In the proof above, in one direction we relied on
a function in cs-NP that is hard for small space on all efficiently samplable distributions, and in
the reverse direction we deduced a function in cs-NP that is hard for small space on all inputs.
(Indeed, the former and more relaxed assumption suffices for PSPACE ⊆ cs-NP .)

We stress, though, that the two aforementioned hard functions may be quite different in some
of their parameters. In particular, the function that we use to deduce that PSPACE ⊆ cs-NP
must shrink its input, i.e. it maps N = |Π| bits to at most Nϵ bits, similarly to a hash function.14

This seeming technicality is important: At the technical level, the proof does not carry through

true also for the modified version we use.
14Another difference is the running time of the efficient cs-NT IME prover (and corresponding adversaries) for

the hard function; see discussion after Theorem 4.3.

13

with a function that is not shrinking (and neither does the zap/NIWI construction); and a more
fundamental reason for this is that under plausible assumptions, a proof that carries through with
a non-shrinking f would imply that PSPACE = NP , rather than just PSPACE ⊆ cs-NP .15

Similarly, our alternative proofs that rely on targeted HSGs (equivalently, on list-CIHFs) which are
constructed from hard functions also crucially need a hard function that is shrinking, to obtain a
sufficiently short seed / small list. (Further details appear in the next section.)

2.3 Targeted HSGs/list-CIHFs suffice for all of our results

Recall that CIHFs output a string that, with high probability, avoids any sparse relation from a
certain class of relations. In the relaxation of list-CIHFs, we allow the function to output a list,
and require that at least one element in the list avoids the sparse relation (see Definition 6.6).

The proofs described so far, in Sections 2.1 and 2.2, crucially rely on a function f that has
a single output. However, as mentioned in Section 1.4, all results in the current paper also
hold when using a function that outputs a list of candidates (i.e., a targeted HSG / list-CIHF).
Specifically, we can tolerate a list of size nϵ, when ϵ > 0 is a sufficiently small constant.16 For
PSPACE ⊆ cs-NP we require that at least one element will “hit” any dense set recognizable in
small space (see Theorem 7.4), and to get NIWI/zaps/NIZK for NP the dense set need only be
recognizable in linear time with an NT IME [nΩ(1)] oracle (see Theorem 7.8).

The fact that list-CIHFs suffice for all of our results is surprising, and the proofs of this fact
are very different than the simple ones above. As one illustration for the challenge, recall that
when derandomizing proof systems with R rounds, if we use a pseudorandom list of L verifier
challenges in each round, the total number of challenge-sequences is LR; thus, when R = poly(n)
we get exponentially many challenge-sequences (even with L = 2).17 This is usually perceived
as a “dead end” for derandomizing such systems, and it is the reason that derandomization
traditionally focused on systems with constantly many rounds. The key point in this context is
that this obstacle can be overcome for certain proof systems, even ones with polynomially many
rounds, when aiming only for computational soundness.

2.3.1 Zero-knowledge from list-CIHFs

Let us consider Blum’s Hamiltonicity protocol again, as in Section 2.1. Recall that on input graph
G, the prover commits to a permutation π and to a graph π(G), the verifier sends a bit b ∈ {0, 1},
and the following holds: If b = 0 the prover decommits to (π, π(G)), and otherwise the prover

15To see this, recall that a random function mapping N bits to Nϵ bits is hard for bounded-space machines on all
efficiently samplable distributions; even if such function exists in FP or in FNP , it still yields the same conclusion
PSPACE ⊆ cs-NP . However, a random function mapping N bits to N + O(1) bits is hard for linear space on all
inputs. Assuming that such a function f exists in FP or FNP , if the proof above would work with f , we could use
this function and deduce soundness for all transcripts (yielding an NP system rather than a cs-NP system).

16Similarly to Section 2.2, this does not seem to be a coincidence or an artifact of techniques. Recall that a random
non-shrinking function f : {0, 1}N → {0, 1}N+O(1) is hard for linear space on all inputs (except finitely many). If such
f exists in FP , we can use it to construct a targeted HSG that is secure on all but finitely many inputs, albeit with
large list size poly(N). If our proof would support such list size, then we could use the targeted HSG to deduce
NP = PSPACE . In contrast, our proof supports list size Nϵ, which we only know how to obtain from shrinking
functions N 7→ NΘ(ϵ) (and a random shrinking function does not seem to be hard on all but finitely many inputs).

17An alternative and more standard view is that the seed length is additive across rounds, so with seed length
ℓ = log(L) per round, the total seed length is R · ℓ. Enumerating would require time 2R·ℓ.

14

decommits to a Hamiltonian cycle in π(G). When performing a t-fold parallel repetition of
the protocol, the prover chooses t permutations and commits accordingly, the verifier sends a
sequence b⃗ ∈ {0, 1}t, and the prover responds with t decommitments.

Now, assume that b⃗ is not chosen at random, but using a list-CIHF, denoted f . That is, on
input G and commitments c⃗, the prover and verifier both compute f (G, c⃗) to obtain a list b⃗1, ..., b⃗L

of possible challenges, and the prover responds with decommitments to each of the L challenges.
Working with a statistically binding commitment as in Section 2.1, and assuming that f avoids a
suitable relation (see next), this protocol is sound. But is it zero-knowledge, or at least WI?

Unfortunately, the construction fails miserably on that front. For example, when the first bit
in b⃗1 is 0 and the first bit in b⃗2 is 1, the prover has to simply reveal a Hamiltonian cycle in G.

This problem is somewhat reminiscent of resettable zero-knowledge [CGG+00]. Indeed, similarly
to our situation, in resettable zero-knowledge the verifier is allowed to continue the execution of
the protocol using different choices. Unfortunately, constructions of resettable zero-knowledge
use private randomness, which we do not know how to derandomize. Fortunately, resettable
zero-knowledge seem like an overkill, since it allows the verifier to continue the execution of the
prover for any polynomial number of times (where the polynomial is not a priori bounded). This
is in contrast to our setting, in which the number of resets is relatively small (i.e., L).

Zero-knowledge PCPs to the rescue. The key observation is that, when working with an ab-
straction of the above protocol – namely, instantiating the “commit-and-open” approach with
zero-knowledge PCPs (zkPCP), introduced by Kilian, Petrank, and Tardos [KPT97], as is implicit
in [IKO+09] – we can ensure that the protocol remains zero-knowledge even when the verifier
sends more queries. This is since zkPCPs are purposefully designed to be zero-knowledge for a
malicious verifier that sends more queries than the honest verifier.

While there are several variants of zkPCPs, we focus on the relatively simple notion of non-
adaptive zero-knowledge, which means that for every sufficiently small, but otherwise arbitrary,
set of queries Q, the restriction of the PCP to coordinates in Q can be generated by a ppt simulator
which only sees the main input. Specifically, our construction uses the following ingredients:

• A statistically binding (and computationally hiding) non-interactive commitment scheme.
For now, let us assume for simplicity that the commitment scheme is in the plain model.

• A q-query zkPCP that is resilient (i.e., zero-knowledge) for up to qmax ≫ q queries. Denote
the length of the PCP by ℓ.

• A targeted HSG G that gets as input an instance x and commitments c1, . . . , cℓ to ℓ PCP
symbols, and prints a list S of candidate random strings for the zkPCP verifier. We set up
the parameters so that qmax ≥ |S| · q.

In the “commit-and-open” protocol, on input x the prover sends a commitment c⃗ to the sym-
bols of a zkPCP witness for x, the verifier sends challenge queries Q, and the prover decommits
to the locations specified in Q. In our derandomized version, the prover and verifier compute the
targeted HSG G(x, c⃗), which yields a set S of random strings for the verifier; each ρ ∈ S specifies
queries Qρ, and the prover answers all queries in Q = ∪ρ∈SQρ.

Completeness and soundness rely on the perfect completeness of the underlying commitment
and zkPCP procotols and on the fact that the commitment is statistically binding. Specifically, the

15

key point for soundness is that an adversary with anNP oracle, trying to distinguish the outputs
of the targeted HSG from random strings, can break the commitments c⃗ and reveal the zkPCP
witness. Therefore, if x is a “no” input but G(x, c⃗) chooses queries Q that all avoid the dense
set of bad queries, the adversary can recognize that and distinguish these queries from random
ones. (Recall that G is guaranteed to be pseudorandom for such adversaries over inputs (x, c⃗)
coming from any polynomial-time samplable distribution; thus, no uniform ppt adversary can
find x and c⃗ that allow misleading the derandomized verifier, except with negligible probability.)

Let us now turn to prove witness-indistinguishability (recall that we’re aiming for a zap/NIWI,
and a NIZK will follow using the FLS trick [FLS99]). Intuitively at least, since the prover reveals at
most |S| · q coordinates of the PCP, as long as the zkPCP is resilient to this number of queries (i.e.,
qmax > |S| · q) we should be in good shape. Examining things in more detail however, we observe
that the choice Q of coordinates to be opened depends on the commitments themselves. This
well-known problem (usually called “selective opening”) can be handled with known techniques,
and yet these techniques force us to instantiate our protocol with strong ingredients (i.e., strong
zkPCP and commitment scheme; see below). Specifically, to handle the problem we construct a
simulator that guesses in advance a similarly sized set Qsim and generates a PCP that is correct
on these coordinates (using the zkPCP simulator). In case the simulator’s prediction is correct
(i.e., the set of queries Q generated via the targeted PRG is equal to Qsim) then it can complete the
simulation, and it is not hard to show that it is indeed correct with probability roughly ℓ−|Q|.18

Thus, we can repeat the entire process ℓO(|Q|) times so that the simulator guesses correctly in one
of the iterations with high probability, in which case we can finish the simulation.

An improved zkPCP, and the required commitment scheme. The analysis above crucially re-
lies on a zkPCP with perfect zero-knowledge (or very close to that).19 Most known zkPCPs (includ-
ing the original construction in [KPT97]) do not offer perfect security, and so we cannot use them
in our analysis. Instead, our starting point is a recent perfect zkPCP construction due to Hazay et
al. [HVW22] (improving upon a zkPCP implicit in [IKO+09]). The randomness complexity of
the construction of [HVW22] is too high for our purposes, and so we present a derandomized
construction, which uses an optimal number of random coins (one reason that we are able to do
so is that in our setting we can settle for constant soundness error, in contrast to [HVW22]). A
result statement and technical details appear in Theorem 3.10 and Appendix A.

In addition, the super-polynomial number of iterations of the simulator means that the com-
mitment scheme has to be resilient against adversaries with super-polynomial running time
(roughly speaking, because the security reduction needs to run the simulator). This is the reason
for our assumption that the commitment scheme has sub-exponential security.

18Loosely speaking, the choice of the set Qsim depends only on the “encrypted” PCP string. The hiding property
of the commitment lets us then argue that the distribution of Q does not depend (noticeably) on Qsim. Thus, we can
think of Qsim as being chosen at random after Q is generated.

19In a nutshell, this is because the security reduction introduces an ℓ|O(|Q|) multiplicative loss in the the advantage
of a potential adversary for the system (roughly speaking, this is due to a hybrid argument over the ℓO(|Q|) iterations
of the simulator). This means that we cannot afford an additive loss of even 2−|Q| when switching between a real vs.
simulated PCP.

16

2.3.2 Derandomizing [GKR15], and batchable proof systems

The proof system of [GKR15] has R = poly(n) rounds. Recall that if we use a targeted HSG with
L challenges in each round, then the standard approach of enumerating over all pseudorandom
choices yields an exponential running time (i.e., at least LR).

However, let us examine the enumeration construction from a different perspective. This
construction can be viewed as specifying a deterministic interactive protocol with R rounds, in
which the verifier uses all of the pseudorandom challenges in each round. In the first round, the
verifier prepares L challenges r(1)1 , ..., r(L)

1 and sends them to the prover; then, for each response
π
(i)
1 from the prover, the verifier and the prover “branch” to execute an independent continuation

of the protocol with partial transcript
〈

x, r(i)1 , π
(i)
1

〉
. Indeed, the number of branches (i.e., number

of leaves in the corresponding tree) grows exponentially in the number of rounds.
Can we get a proof system that supports verifying several challenges in each round “in

a batch”, without branching exponentially across rounds? We show that the proof system
of [GKR15] can indeed be modified to support this, and prove that in general, any system that
supports this can be derandomized (with computational soundness) using a targeted HSG.

At a high level, we say that a proof system is L-batchable if it allows the verifier to send L
challenges in each round without branching into L independent executions in subsequent rounds,
and without (prohibitively) increasing the verification time. As far as we are aware, this notion
was not introduced formally before, but it is implicit in prior works (e.g., in [GKR15; CHK+19;
RRR21], and see the related [ACY22]). We first demonstrate our idea by explaining how the sum-
check protocol can be modified to handle several challenges in each round without branching,
using the well-known “2-to-1” idea of [GKR15]. Then we describe the general notion of batchable
proof systems, and explain why targeted HSGs suffice for derandomizing such systems.

A simple illustration: The sumcheck protocol. Consider the sumcheck protocol of Lund et
al. [LFK+92] for the claim ∑x1,...,xn∈{0,1} P(x1, ..., xn) = K, where P : Fn → F is a low-degree poly-
nomial and K ∈N. Think of an |F|-ary tree in which the root is labeled by ∑x1,...,xn∈{0,1} P(x1, ..., xn),
each edge corresponds to a field element, and each node reached by path a1, ..., ai ∈ F is
labeled by ∑xi+1,...,xn∈{0,1} P(a1, ..., ai, xi+1, ..., xn). At round i, the previous verifier challenges
a1, ..., ai−1 ∈ F specify a node, and the prover sends a univariate qi : F → F that represents the
labels of the |F| children of this node; that is, qi is supposed to be the univariate pa1,...,ai−1(r) =

∑xi+1,...,xn∈{0,1} P(a1, ..., ai−1, r, xi+1, ..., xn). The verifier checks that qi−1(ai−1) = qi(0) + qi(1) (i.e.,
that the claimed label of the node a1, ..., ai−1 matches the claimed labels of its children corre-
sponding to 0 and to 1), chooses a random edge ai ∈ F, and continues to the next round.

Now assume that in each round the verifier sends L challenges instead of a single chal-
lenge. We enter round i with each previous challenge specifying a node at distance i − 1
from the root; that is, the L challenges specify the nodes

{⃗
a(t)i−1 = (a(t)1 , ..., a(t)i−1)

}
t∈[L]

, and the

verifier wants to verify the labels claimed by qi−1 to all of these nodes. Instead of branch-
ing to L independent executions in round i, the verifier and prover interpolate a manifold
C(i) : F → Fi of degree L− 1 that passes through the 2L children of these L nodes correspond-
ing to edges 0 and 1. Specifically, denoting the first 2L elements in F by {σt,b}t∈[L],b∈{0,1} , we

define C(i)(σt,b) = (a(t)1 , ..., a(t)i−1, b), and the verifier expects the prover to send the univariate

17

p′
⃗ai−1

(1),...,,
⃗

a(L)
i−1

(σ) = ∑xi+1,...,xn∈{0,1} P(C(i)(σ), xi+1, ..., xn).

The point is that if L is small, then p′
⃗ai−1

(1),...,,
⃗

a(L)
i−1

is still of low degree (i.e., it is of individual

degree deg(P) · (2L− 1)), and thus the standard analysis of the sumcheck protocol can be repli-
cated. Specifically, the verifier first checkes that the labels claimed by qi−1 to the L nodes match
the labels claimed by qi to their children, then chooses L random challenges σ

(1)
i , ..., σ

(L)
i ∈ F, and

continues to the next round with the L nodes
{⃗

a(t)i = C(i)(t)
}

t∈[L]
at distance i from the root.20

If the label claimed by qi to some node (a(t)1 , ..., a(t)i−1, b) is false, then with high probability the
prover will be forced to send a qi+1 that also claims a false label for some node (since qi is low
degree and the verifier will perform subsequent consistency checks of qi with qi+1).

Round-by-round soundness. To set up the stage for the definition of batchable proof sys-
tems, let us first consider proof systems with round-by-round soundness, as defined by Canetti
et al. [CCH+19]. Loosely speaking, in such systems, the challenge-response interaction at each
round can be thought of as a game with a binary “yes/no” outcome. That is, the probabilities of
the game can only be of two predetermined types, depending on the transcript entering the round:
Either probability 1 for “yes”, or probability at least 1 − ϵ for “no”, where ϵ = ϵ(n) > 0 is
predetermined (i.e., it does not depend on the previous interaction). More accurately:

1. There are notions of “good” partial transcripts and of “doomed” partial transcripts, where
in particular x ∈ L is a good initial transcript and x /∈ L is a doomed one.

2. At each round i, if the partial transcript π≤i−1 entering the round is doomed, then with
probability 1− ϵ over the verifier’s challenge, any response by the prover will yield a tran-
script that is still doomed. On the other hand, if π≤i−1 is good, then the honest prover can
always respond in a way that preserves goodness.

3. When the interaction concludes, the verifier accepts good transcripts, and with probability
1− ϵ rejects doomed transcripts.

The crucial point is that the probability bound of 1− ϵ is fixed in advance, for all rounds, as long
as the transcript entering the round is either good or doomed. For details, see Definition 7.1.

Batchable proof systems. Batchable proof systems are a special case of proof systems with
round-by-round soundness. A proof system is L-batchable if at each round, the verifier can send
L challenges and receive L responses (instead of just a single challenge and response), and we
think of each round as the AND of L games. Specifically:

1. At each round i, we conduct a mental experiment of what would happen if the verifier
would send just a single challenge, answered with a single response. We extend the notions
of good and doomed partial transcripts to include transcripts in which L challenge-response
pairs were exchanged in previous rounds, whereas in the last (i.e., current) round only a
single challenge-response pair was exchanged.

20In more detail, the consistency check between qi−1 and qi is as follows. Denoting the challenges sent in the

previous round by σ
(1)
i−1, ..., σ

(L)
i−1 ∈ F, the verifier checks that qi−1(σ

(t)
i−1) = qi(σt,0) + qi(σt,1) for all t ∈ [L].

18

2. Fix a partial transcript π≤i−1 going into round i. We say that round i is a “yes” round if for
any (single) challenge sent by the verifier, the prover has a response such that the transcript
will be good. We say that this is a “no” round if with probability 1 − ϵ over a (single)
challenge by the verifier, any response will yield a doomed transcript.

3. If we enter round i when at least one of the L challenge-response pairs in round i− 1 yielded
a doomed transcript,21 then round i is a “no” round. If all L challenge-response pairs in
round i yielded a good transcript, then round i is a “yes” round.

The point is that exchanging L challenge-response pairs in round i − 1 still allows round i to
be conducted similarly to the case of round-by-round soundness (i.e., with a single challenge-
response pair, rather than branching into L games that correspond to the previous L responses).
And again, every round will be either a “yes” round or a “no” round (in particular, with a fixed
and predetermined probability bound of 1− ϵ), as long as the following invariant is maintained:
Either all challenge-response pairs sent in the last round yielded a good transcript, or at least one
of them yielded a doomed transcript. For the formal definition, see Definition 7.2.

The modified version of sumcheck above (i.e., with the manifolds C(i)) is a poly(n)-batchable
proof system for #SAT with a polynomial-time verifier. More generally, applying the same idea
albeit in a more involved way, the proof system of [GKR15] can be transformed into a poly(n)-
batchable proof system for TQBF with a polynomial-time verifier, and to an no(1)-batchable proof
system for logspace-uniform NC with a near-linear time verifier. The precise details are quite
cumbersome (with subtle parameters), and therefore we defer explanations to Section 7.1.4.

Targeted HSGs suffice for derandomization of batchable proof systems. To wrap things up,
note that a targeted HSG with list size L that is secure over all efficiently samplable distributions
indeed suffices to derandomize L-batchable proof systems with computational soundness.

Specifically, consider a deterministic choice of L challenges in each round i that is obtained by
applying the targeted HSG to the partial transcript π≤i−1. Since the targeted HSG is pseudoran-
dom on all efficiently samplable distributions, we can assume that it is pseudorandom on input
π≤i−1 arising from the choice of responses by the efficient uniform prover (with all but negligible
probability). Now, if π≤i−1 is such that round i is a “no” round, then a random choice of a single
challenge by the verifier in round i yields a doomed transcript. By the pseudorandomness of
the targeted HSG on input π≤i−1, at least one of the L challenges will yield a transcript π≤i that
makes i a “no” round too (no matter how the prover responds). In other words, when choos-
ing the challenges using the targeted HSG, with all but negligible probability over the prover’s
responses, if x /∈ L then all rounds are “no” rounds and the verifier rejects.

For more details, including the precise class of algorithms that the targeted HSG needs to be
pseudorandom for in order to derandomize the batchable proof system, see Section 7.1.3.

3 Preliminaries

The machine model throughout this paper is the RAM model, and the specific choice is not crucial
for our results. We say that a function ϵ : N → [0, 1] is negligible if for every polynomial p there
exists n0 such that ϵ(n) < 1/p(n), for every n > n0.

21That is, when considering the partial transcript up to round i− 1, and in round i− 1 including only that single
challenge and response, the resulting partial transcript is doomed.

19

Let us recall the standard definition of a distinguisher for a distribution:

Definition 3.1 (distinguishers). We say that D : {0, 1}n → {0, 1} is an ϵ-distinguisher for a distribu-
tion wn over n-bit strings if ∣∣∣ Pr

r∼wn
[D(r) = 1]− Pr

r∼un
[D(r) = 1]

∣∣∣ ≥ ϵ .

We say that D is an ϵ-distinguisher for a multiset S ⊆ {0, 1}n if D is an ϵ-distinguisher for the uniform
distribution over S.

In our results, the distinguisher D = Dx will frequently be modeled as a uniform machine M
with access to an auxiliary input x; that is, Dx(r) = M(x, r).

3.1 Non-interactive zero-knowledge in the uniform setting

In this section we define variants of non-interactive zero-knowledge proofs that are secure against
uniform adversaries: NIZK, zaps, and NIWIs. Towards doing so, we first define non-interactive
arguments for NP-relations in the CRS model, extending the definition of cs-NT IME .

Non-interactive arguments for NP-relations in the CRS model. We extend the definition of
cs-NT IME (i.e., Definition 1.1) in two ways. First, in this section we are interested in construct-
ing argument systems for non-deterministic computation. In this context, it is natural to give the
honest prover access to the NP witness. Second, we further extend the definition by giving both
parties access to a common random string (CRS).

For a relation R, we denote by L(R) = {x : ∃w, (x, w) ∈ R}.

Definition 3.2 (non-interactive argument). A non-interactive argument system in the CRS model for

an NP relation R is a pair of algorithms (P, V), where P is ppt and V is deterministic polynomial-time,
that satisfy the following requirements:

• (Perfect completeness:) For every (x, w) ∈ R it holds that

Pr
crs←{0,1}|x|

π←P(crs,x,w)

[V(crs, x, π) = 1] = 1.

• (Adaptive soundness:) For every ppt algorithm P̃ it holds that

Pr
crs←{0,1}n

(x,π)←P̃(crs)

[(
x /∈ L(R)

)
and

(
V(crs, x, π) = 1

)]

is a negligible function (in n).

A non-interactive argument system is said to be in the plain model if the crs is omitted in the
above definition. We note that non-interactive arguments in the plain model are almost identical
to the notion of cs-NT IME [TV , TP] (with TV and TP being arbitrary polynomials). The key
difference is that here we give the honest prover access to the witness.

20

3.1.1 Non-interactive zero-knowledge

We next define uniform non-interactive zero-knowledge (NIZK). The textbook definition of
zero-knowledge usually refers to non-uniform adversaries - that is, both soundness and zero-
knowledge hold wrt polynomial-size circuits. In contrast, our derandomization technique yields
soundness against uniform algorithms (i.e., bounded-time Turing machines). For symmetry we
also define the zero-knowledge property wrt uniform algorithms, but remark that this is not
inherent to our technique; we could also achieve non-uniform zero-knowledge if we rely on
cryptographic primitives (namely, one-way functions) that have non-uniform security.

Our definitions for uniform security generally follow those in [BLV06], which refine prior
definitions due to Goldreich [Gol93].

Definition 3.3 (NIZK). A non-interactive zero-knowledge (NIZK) argument system in the CRS model

for an NP relation R is a non-interactive argument system (P, V) for R in the CRS model that also
satisfies the following condition. There exists a pair of ppt algorithms (S1, S2) such that for every pair of
ppt algorithms (A1, A2) it holds that:∣∣∣∣∣∣∣∣∣∣

Pr
crs∈{0,1}n

(x,w,z)←A1(crs)
π←P(crs,x,w)

A2(crs, x, π, z) = 1
∧

(x, w) ∈ R

− Pr
(crs,τ)∈S1(1n)
(x,w,z)←A1(crs)

π←S2(x,τ)

A2(crs, x, π, z) = 1
∧

(x, w) ∈ R

∣∣∣∣∣∣∣∣∣∣

is a negligible function (in n).

Throughout this work, unless stated otherwise, whenever we say NIZK we mean NIZK argument
system (the same is also applicable to zaps and NIWI that are defined below).

Note that the simulator in Definition 3.3 is split into two parts. The first part S1 generates a
simulated CRS and potentially a corresponding trapdoor. The second part, which is given the
input x and the trapdoor needs to generate a simulated proof. We require zero-knowledge also
against adaptive adversaries. Namely, we require that any 2-part ppt adversary that first, given
the CRS, generates an instance/witness pair (as well as some potential auxiliary input z) and
later tries to distinguish a real vs. simulated proof, can only do so with a negligible advantage.

Discussion: Definitional choices for NIZK in the uniform setting. To the best of our knowl-
edge, non-interactive zero-knowledge has not been defined previously in the uniform setting (in
contrast to uniform interactive zero-knowledge [Gol93; BLV06]) and there are several non-trivial
choices that we made in Definition 3.3. We elaborate on these next while noting these issues could
have been avoided by using the standard non-uniform definition of NIZK (which our results can
achieve if we rely on non-uniformly secure cryptographic primitives).

First, we note that the zero-knowledge property in Definition 3.3 is only required to hold for
instance/witness pairs that are generated by an efficient algorithm (namely, A1). This means for
example, that zero-knowledge is not guaranteed when using some “hard-to-find” witness. We
find this choice natural and consistent with the typical cryptographic perspective that all parties
are efficient, and so the hard-to-find witnesses will simply never appear. This choice is also in
line with definitions of adaptive zero-knowledge in the literature, in both the uniform [Gol93]
and non-uniform settings [Gol93, Section 4.10.3.2].

21

Next, we point out two definitional choices that make our notion of zero-knowledge stronger
(and hence also make our results stronger), but might seem non-obvious. Specifically:

• In Definition 3.3 we require the existence of a single universal simulator that works for all
adversaries, whereas a relaxed definition could require that for every adversary A1 there
exists a corresponding simulator (that works for all distinguishers A2).

• The instance generator A1 is allowed to generate some auxiliary information z that is passed
on to A2, but not to the simulator. At first glance it may seem natural that the auxiliary
information be provided also to the simulator.

Beyond simply making the notion stronger, the two definitional choices above follow a per-
spective that is inspired by interactive zero-knowledge proof in the uniform setting [Gol93]. In
such interactive zero-knowledge proofs the verifier actually consists of three different personas:
the first generates the solved instance/witness pairs (this is A1 in our terminology), the second
is V∗ which participates in the interaction and tries to extract as much information as possible
from the prover, and the third is the distinguisher (i.e., A2) whose goal is to distinguish the real
interaction from the simulated one. In the interactive setting the typical requirement, which we
find natural, is that for every V∗ there exists a simulator that works for every choice of A1 and
A2. In the non-interactive case V∗ is vacuous (as there is no interaction) and so restricting the
definition of the interactive case to this setting means that the simulator is universal.

As for the auxiliary information z generated by A1. In the interactive setting, this z is passed
both to the verifier V∗, the simulator and the distinguisher. However, as highlighted in [Gol01,
Section 4.3.3], the definition of computational zero-knowledge allows the auxiliary information to
include a portion that is readable only by the distinguisher.22 In our non-interactive setting, since
V∗ does not exist, by symmetry there is no need to pass auxiliary information to the simulator.
In contrast, and in line with the interactive setting, we do wish to allow auxiliary information to
be passed to the distinguisher, and this is the reason for our choice.

3.1.2 Zaps Arguments and NIWIs

Zaps, introduced by Dwork and Naor [DN07], are 2-message public-coin witness indistinguishi-
ble (WI) proof systems. Loosely speaking, witness indistinguishibility [FS90] means that the view
of the verifier should be computationally indistinguishible no matter which witness the prover
uses. We emphasize that the WI property should hold even wrt a malicious ppt verifier. In this
work we focus on zap arguments [BFJ+20], in which the soundness condition is computational
(in contrast to [DN07] who require statistical soundness).23 For ease of notation, throughout this
work we use the term zap to refer to zap arguments.

In the standard cryptographic setting of non-uniform security WI is equivalent to having a
computationally unbounded simulator. In contrast, in the uniform setting the connection appears
to be only in one direction - unbounded simulation implies witness indistinguishability (see

22Technically, this is done using the fact that the distinguisher’s running time may be larger than both the verifier
and simulator and additional portion is placed in an area of the machine’s tape that only the distinguisher can access.

23We note that the focus of [BFJ+20] is achieving statistical WI, whereas our definition only requires the WI property
to be computational.

22

Lemma 3.6 below).24 Hence, we define these two notions separately.

Definition 3.4 (unbounded simulator zap). An unbounded simulator zap for an NP relation R is a
non-interactive argument system (P, V) for R in the CRS model that also satisfies the following condition.
There exists a computationally unbounded algorithm S such that for every pair of ppt algorithms (A1, A2)
it holds that:∣∣∣∣∣∣∣ Pr

(crs,x,w,z)←A1(1n)
π←P(crs,x,w)

A2(crs, x, π, z) = 1
∧

(x, w) ∈ R

− Pr
(crs,x,w,z)←A1(1n)

π←S(crs,x)

A2(crs, x, π, z) = 1
∧

(x, w) ∈ R

∣∣∣∣∣∣∣

is a negligible function (in n).

Next, we define the WI variant of zaps (see also the related [BKP+23, Definition 2.16]).

Definition 3.5 (WI zap). A WI Zap for an NP relation R is a non-interactive argument system (P, V)
for R in the CRS model, that also satisfies the following condition. For every pair of ppt algorithms
(A1, A2) it holds that:∣∣∣∣∣∣∣ Pr

(crs,x,w1,w2,z)←A1(1n)
π←P(crs,x,w1)

A2(crs, x, π, z) = 1
∧

(x, w1), (x, w2) ∈ R

− Pr
(crs,x,w1,w2,z)←A1(1n)

π←P(crs,x,w2)

A2(crs, x, π, z) = 1
∧

(x, w1), (x, w2) ∈ R

∣∣∣∣∣∣∣ (3.1)

is a negligible function (in n).

A non-interactive witness indistinguishable argument system in the plain model (NIWI) is defined
identically to a WI zap except that the CRS is fixed to 1n. Let us now spell out the argument that
an unbounded simulator implies WI for the uniform notion of zaps.

Lemma 3.6. An unbounded simulator zap is also a WI zap.

Proof. Let (P, V) be an unbounded simulator zap. We show that it is also a WI zap.
Let S be the unbounded simulator that exists according to Definition 3.4 and let (A1, A2) be a

pair of ppt algorithms that attempt to violate Definition 3.5. Without loss of generality we assume
that with all but negligible probability, A1 generates (x, w1, w2) such that (x, w1), (x, w2) ∈ R since
otherwise it can simply abort (without decreasing its advantage in violating Eq. (3.1).25

From Definition 3.4 we have that:∣∣∣∣∣∣∣ Pr
(crs,x,w1,w2,z)←A1(1n)

π←P(crs,x,w1)

[
A2(crs, x, π, z) = 1

]
− Pr

(crs,x,w1,w2,z)←A1(1n)
π←S(crs,x)

[
A2(crs, x, π, z) = 1

]∣∣∣∣∣∣∣ (1)

24The converse direction (witness indistinguishability implies unbounded simulation) is easy to show in the non-
uniform setting since the simulator can simply use, say, the lexicographically first witness. This type of argument
seems to fail in the uniform setting since there the WI property only holds for “easy to find” witnesses.

25In more detail, suppose (A1, A2) violate the WI zap condition with advantage 1/p(n) for some polynomial p
(and infinitely many n). We can now construct A′1 that repeatedly invokes A1, at most p(n) · n times, or until it
generates (x, w1), (x, w2) ∈ R (since R ∈ NP it can check this condition). With all but 2−Ω(n) probability, A1 indeed
generates (x, w1), (x, w2) ∈ R. Also, observe that conditioned on (x, w1), (x, w2) ∈ R, the statistical distance between
the distribution generated by A1 is the same as generated by A′1.

23

is negligible. Similarly, we have that∣∣∣∣∣∣∣ Pr
(crs,x,w1,w2,z)←A1(1n)

π←P(crs,x,w2)

[
A2(crs, x, π, z) = 1

]
− Pr

(crs,x,w1,w2,z)←A1(1n)
π←S(crs,x)

[
A2(crs, x, π, z) = 1

]∣∣∣∣∣∣∣ (2)

is negligible. The lemma follows by combining Eqs. (1) and (2) via the triangle inequality.

From NIWI to NIZK. Feige et al. [FLS99] showed how to transform a NIWI into a NIZK. In
fact it suffices that the NIWI be in the CRS model. As we did not define such NIWIs, we state
a weaker result, which relies on WI zaps (i.e., 2-message NIWI where the WI property is for
malicious verifiers) and suffices for our purposes.

Lemma 3.7 ([FLS99]). Assume that one-way functions exist and that every R ∈ NP has a WI zap.
Then, every R ∈ NP has a NIZK argument system.

Feige et al. [FLS99] established Lemma 3.7 in the non-uniform setting. For completeness, we
include a straightforward adaptation of their proof to the uniform setting in Appendix B.

3.2 Non-interactive commitments

Next, we define non-interactive bit-commitments. We focus on statistical binding commitments in
the CRS model, and require the hiding property to hold even wrt a maliciously chosen CRS.

Definition 3.8 (non-interactive bit-commitment). A non-interactive bit-commitment scheme in the

CRS model is a ppt algorithm commit which gets as input a common random string crs ∈ {0, 1}λ (where
λ denotes a security parameter) and a bit b ∈ {0, 1}, and outputs a commitment string. We require:

• (Computational hiding:) For every pair of ppt adversaries (A1, A2) there exists a negligible
function δ such that∣∣∣∣ Pr

crs←A1(1λ)
[A2(crs, commit(crs, 0)) = 1]− Pr

crs←A1(1λ)
[A2(crs, commit(crs, 1)) = 1]

∣∣∣∣
is less than δ(λ), where the probability is over the coins of A1, A2 and commit (and A1 always
outputs a crs of length λ).

• (Statistical binding:) With all but negligible probability in λ over crs ∈ {0, 1}λ, the distributions
commit(crs, 0) and commit(crs, 1) are disjoint.

We emphasize that the hiding property holds wrt an adversarial choice of crs, whereas the
binding property only holds whp over the choice of the crs. If S : N→N is a function, we define
an S-secure non-interactive commitment scheme as one in which every time S adversary (A1, A2)
attempting to violate the hiding property, can only do so with advantage at most negligible in S
(note that the definition of binding is unchanged). A scheme that is 2λη

-secure for some η > 0, is
called sub-exponentially secure.

We extend Definition 3.8 (as well as the sub-exponential variant) to an analogous definition
in the plain model, by requiring that the common random string is fixed to 1λ in both the hiding
and binding conditions (and in particular, binding should hold with probability 1).

24

Finally we note that non-interactive commitments in the CRS model exist assuming the
existence of one-way functions [HIL+99; Nao91]. Non-interactive commitments in the plain
model exist assuming injective one-way functions [Blu82] (which follow from the hardness of
factoring or discrete log) or assuming one-way functions and a hitting-set generator against co-
nondeterministic circuits [OV07].

3.3 Zero-knowledge PCPs

We next define zero-knowledge PCPs [DFK+92; KPT97] (see [Wei22] for a recent survey). We
focus on a non-adaptive definition and restrict our attention to perfect zero-knowledge.

Definition 3.9 (zkPCP). Let q, qmax, r, ℓ : N → N, let Σ = (Σn)n∈N be an ensemble of sets, and
let R be an NP-relation. A (δS, q, qmax, r, ℓ, TP, TV)-zero-knowledge probabilistically checkable proof

((δS, q, qmax, r, ℓ, TP, TV)-zkPCP) for R over an alphabet Σ is a triplet of ppt algorithms (P, V, S) so that
the prover P is given as input x ∈ {0, 1}n and a witness w and in time TP outputs a proof string π ∈ Σℓ,
and the verifier V is given as input the same string x and also has oracle access to the symbols of π. The
verifier uses at most r random bits and non-adaptively queries q symbols of π and in time TV either accepts
or rejects. We require that:

1. (Completeness:) If (x, w) ∈ R then V always accepts given x and oracle access to π = P(x, w).

2. (Soundness:) For every x /∈ L(R) and proof-string π∗ ∈ Σℓ it holds that V rejects given input x
and oracle access to π∗ with all but δS(|x|) probability.

3. (Zero-Knowledge:) For every (x, w) ∈ R and set Q ⊆ [ℓ] of size at most qmax(|x|), it holds that
S(x, Q) is identically distributed to π|Q, where π ← P(x, w).

We remark that the original zkPCP construction of [KPT97] (as well as follow-ups such
as [IWY16]) only construct statistical zero-knowledge PCPs (i.e., the statistical distance between
S(x, Q) and π↾Q is small). Unfortunately we cannot rely on such PCPs as we are only able to
prove the security of our construction using (near-)perfect zero-knowledge PCPs. Thankfully, a
recent construction26 of Hazay et al. [HVW22] (building on the celebrated “MPC in the head”
technique of [IKO+09]) constructs such perfect zero-knowledge PCPs. We remark that qmax in
their construction depends polynomially on the honest-verifier’s query complexity q (in contrast
to, say, [KPT97], in which the dependence is exponential), but this suffices for our construction.

Theorem 3.10 (a derandomized version of [HVW22, Theorem 4]). Let T(n) ≥ n be a time com-
putable function and let R be a relation for an NT IME [T] language. Then, for any parameter qmax =
qmax(T) = ω(log T) the relation R has a (δS, q, qmax, r, ℓ, TV , TP)-zkPCP over an alphabet Σ, where
δS = 1/2, q = Õ(

√
qmax), r = O(log ℓ), ℓ = O(qmax), log(|Σ|) ≤ poly(T, qmax), the prover runs in

time TP = poly(T, qmax) , and the verifier runs in time TV = poly(T, qmax).

Note that the number qmax of allowed queries is nearly-maximal – it is a constant fraction
of the proof length. Hazay et al. [HVW22] do not precisely prove Theorem 3.10 since their ran-
domness complexity is much larger (i.e., it is Õ(

√
ℓ) rather than the O(log ℓ) stated above). In

Appendix A we show a simple derandomization of their construction that achieves the parame-
ters stated in Theorem 3.10.

26Actually, [HVW22] give several constructions. Here we use a relatively simple construction which utilizes a rather
large alphabet and do not need the more involved constructions over smaller alphabets.

25

3.4 On the honest prover in cs-NT IME
In this section we prove that two standard observations regarding the power of the honest prover
in argument systems extend to cs-NT IME . We first show that the honest prover for L ∈
cs-NT IME must be able to solve L by itself, at least on average. Then, we observe that if we
allow the honest prover to be stronger than the adversaries, then the definition trivializes (i.e.,
such systems are unreasonably strong, and for trivial reasons).

3.4.1 Simulating cs-NT IME in BPT IME

We observe that if a problem is solvable in cs-NT IME with a TP-time prover, then it is also
contained in BPT IME [TP] on average. Specifically, for a distribution ensemble x = {xn}n∈N

over inputs, we say that L ∈ heurxBPT IME [T] if there is a probabilistic T-time algorithm A
such that for every sufficiently large n ∈ N, with all but negligible probability over x ∼ xn it
holds that Pr[A(x) = L(x)] ≥ 2/3. Then:

Proposition 3.11 (simulating cs-NT IME in BPT IME). For any time bounds TV < TP, and every
poly(TP)-time samplable distribution x, we have that

cs-NT IME [TV , TP] ⊆ heurx-BPT IME [O(TP)] ,

Proof. Let L ∈ cs-NT IME [TV , TP]. On input x, a probabilistic algorithm AL for L simulates
the honest prover and the verifier, and accepts iff the verifier accepts. Indeed, x ∈ L will always
be accepted. Assume towards a contradiction that there is a poly(TP)-time distribution x = {xn}
such that with noticeable probability over x ∼ xn it holds that x /∈ L and AL accepts x. Then,
there is an adversary that breaks the soundness of the cs-NT IME system, by choosing x ∼ xn
and simulating the honest prover.

A corollary of Proposition 3.11 is that, loosely speaking, if a class C supports worst-case to
average-case reduction, and C ̸⊆ BPT IME [T], then in any cs-NT IME system for C, the
honest prover will need to run in time at least ≈ T (where the only loss is due to the worst-case
to average-case reduction). For example:

Corollary 3.12. Assume that DSPACE [O(n)] ̸⊆ BPT IME [2ϵ·n], for some ϵ > 0. Then,
DSPACE [O(n)] ̸⊆ cs-NT IME [2o(n), 2o(n)].

Proof. Using our assumption and a worst-case to average-case reduction (see [CRT22, Theorem
1.2], following [TV07]), we deduce that there is L′ ∈ DSPACE [O(n)] such that any probabilistic
algorithm running in time 2δ·n (for some δ > 0) computes L′ correctly on no more than a 0.51-
fraction of the inputs. By Proposition 3.11, L′ cannot have a cs-NT IME [TV , 2δ′·n] system, for
any δ′ < δ and TV < 2δ′·n.

Note that Corollary 3.12 explains why the running time of the honest prover in Theorem 1.3
is exponential.

26

3.4.2 Argument systems in which the honest prover is stronger than adversaries are unrea-
sonably strong

We prove the well-known fact that, under reasonable hardness hypotheses, every language L ⊆
{0, 1}∗ (e.g., the halting problem) can be decided in argument systems in which the honest prover
has more computational resources than the adversary. The point is to demonstrate the triviality
of this definition, and explain why Definition 1.1 allows the adversary to have strictly more
computational resources than the honest prover.

Definition 3.13 (extending Definition 1.1 to allow for excessively strong honest provers). We say
that L ∈ cs-NT IME [TV , TP, TA] if there exists a verifier V and a prover P that meet the same conditions
as in Definition 1.1, except that the soundness condition now holds only against adversaries P̃ running in
time TA (instead of poly(TP)).

Proposition 3.14 (deterministic argument systems with an excessively strong honest prover are
trivial). Assume that there is a unary function f mapping 1n to n bits such that:

1. f is computable in time T(n).

2. For every probabilistic algorithm A running in time T0(n) < T(n), we have Pr[A(1n) = f (1n)] ≤
T0(n)−ω(1).

3. There is a linear-time algorithm deciding the language L f = {(1n, f (1n))}n∈N.

Then, every L ⊆ {0, 1}∗ satisfies L ∈ cs-NT IME [O(n), T, T0].

Proof. On any input x ∈ {0, 1}n (regardless of membership in L), the honest prover sends f (1n)
to the verifier, and the verifier accepts iff (1n, f (1n)) ∈ L f . Note that the completeness condition
holds, and that no T0-time algorithm can find y such that (1n, y) ∈ L f , except with negligible
probability.

The triviality in Proposition 3.14 is not just due to the fact that any language can be decided
in the model (i.e., the model is unreasonably strong). The proof system itself is also trivial: It has
nothing to do with the language, and the algorithms do not even examine their input. (Thus, it
satisfies a stronger soundness condition that holds for every fixed input, as in Remark 1.4.)

The specific assumption in Proposition 3.14 is intended to illustrate the main point, which
is robust to various forms of hardness assumptions. For example, the same type of argument
shows that, under cryptographic assumptions, every L ⊆ {0, 1}∗ has an argument system in the
CRS model with a prover that has more resources than the adversary. The verifier can use the
CRS to choose a cryptographic puzzle that requires time T to solve (see, e.g., [DN93; RSW96]),
and ask the prover to solve it; the honest prover will succeed in doing so, but time-T0 adversaries
will fail. Again, in such a proof systems the parties do not even examine the input x.

4 Fiat-Shamir for GKR from complexity-theoretic assumptions

In this section we prove results that are obtained by using a hard function f (i.e., a function f hard
for small space over all efficiently samplable distributions) to derandomize the proof system of

27

Goldwasser, Kalai, and Rothblum [GKR15] (equivalently, we instantiate the Fiat-Shamir heuristic
for this proof system with f), and show implications of these results.

In Section 4.1 we show how to use a hard function f as above to derandomize the proof
system of [GKR15], and deduce Theorems 1.3 and 1.7 as corollaries. In Section 4.2 we show that
if a suitable hard function f exists then NP ̸= PSPACE , if true, is inherently non-constructive;
and in Section 4.3 we show that if a suitable hard function f exists then NP ̸= PSPACE , if true,
is not provable in APC1.

4.1 Simulating PSPACE in cs-NP and NC in cs-NT IME [n1+ϵ]

We first prove a general and parameterized result. Specifically, the following assumption is
parameterized by time bounds TP (for the honest prover) and TV (for the verifier), by the output
length m(n) of the hard function, and by a space bound S(n) for the hardness assumption.

Assumption 4.1. There exists f : {0, 1}∗ → {0, 1}∗ mapping n bits to m(n) bits and a deterministic
TV-time machine M such that:

• Upper bound. There is an algorithm W running in time TP such that for every x it holds that
M(x, W(x)) = f (x), where |W(x)| ≤ TV(|x|).

• Lower bound 1. For every algorithm W̃ running in time poly(TP) (the polynomial poly may be
arbitrarily large) and every sufficiently large n ∈N it holds that

Pr
(x,w)←W̃(1n)

[M(x, w) /∈ { f (x),⊥}] ≤ negl(TP) .

• Lower bound 2. For every probabilistic algorithm Samp running in time poly(TP) (again,
the polynomial may be arbitrarily large) and every space-S (deterministic) algorithm A and every
sufficiently large n ∈N it holds that

Pr
x←Samp(1n)

[A(x) = f (x)] ≤ negl(TP) .

Indeed, a natural special case of Assumption 4.1 is a function f ∈ FP (i.e., f (x) is efficiently
computable without a witness W(x), in which case there is no need to lower bound the adver-
sarial W̃’s), and this special case also makes for an appealing assumption. We consider the more
relaxed version in Assumption 4.1 since it will be equivalent to PSPACE ⊆ cs-NP .

We now show how a function as in Assumption 4.1 can be used to derandomize the proof
system of [GKR15] (equivalently, to instantiate the Fiat-Shamir heuristic for this proof system).
We state a general and parameterized result, and later deduce special cases as corollaries. When
parsing the parameters below, note that D̄ is the (maximal) length of the partial transcripts on
which we will apply the hard function f ; in fact, to relax the hardness assumption we will use
padding, so D̄ is the length of the padded partial transcript, where the constant c > 1 controls
the amount of padding. Also, think of the constant ϵ > 0 as arbitrarily small.

Theorem 4.2 (Fiat-Shamir for GKR in the plain model from complexity-theoretic assumptions).
Let L ⊆ {0, 1}∗ be decidable by logspace-uniform circuits of size T and depth d, let ϵ ∈ (0, 1) and c ≥ 1

28

be constants, and let D̄ = ((n · d)1+ϵ · log(T)3)c. Suppose that Assumption 4.1 holds with TP, TV , S, m
such that

poly(T) ≤ TP(D̄)

log(n) ≤ m(n) ≤ nϵ/c′

S(D̄) = Θ(log(T) · (m(D̄) + d)) ,

where c′ > 1 is a large enough universal constant. Then,

L ∈ cs-NT IME
[
n1+ϵ + d · polylog(T) · nϵ · TV(D̄), poly(TP(D̄))

]
.

Proof. Let {Cn}n∈N be a logspace-uniform circuit family of size T and depth d deciding L. Let
{C′n}n∈N be the modification of {Cn} by Goldreich [Gol18], which is of size T′ = 2O(log T) and
depth d′ = O(d · log(T)). We will later use the fact that the family {C′n} computes the same
function as {Cn} but is more uniform than {Cn}; specifically, the circuit-structure function of
{C′n} (i.e., the Boolean function that gets input (w, u, v) and outputs 1 if and only if u and v are
the two children of w) is computable by Boolean formulas of size O(log T) that can be printed in
time polylog(T) and space O(log T) (see [KLV23, Fact 5.4] and [CRT22, Proof of Claim 4.2.2]).

The GKR protocol for {C′n}. On input x ∈ {0, 1}n, let αi : [T′] → {0, 1} be the function rep-
resenting the gate-values of C′n(x) at layer i, where i = 1 is the output layer and i = d′ + 1
represents the input layer.27

For ℓ = log(T′) and i ∈ [d′], let Φi : {0, 1}3ℓ → {0, 1} be the circuit-structure function of the
ith layer of {C′n} (i.e., Φi(w⃗, u⃗, v⃗) = 1 if and only if the gate indexed by w⃗ in layer i is fed by
gates u⃗, v⃗ in layer i + 1). Kalai, Lombardi, and Vaikuntanathan [KLV23, Lemma 5.3] defined the
“variable-extended formulation” Φ′i : {0, 1}3ℓ+c·log(T) of Φi (where c > 1 is constant), which has
the following properties:

Fact 4.2.1. The set {Φ′i}i∈[d′] has the following properties.

1. For every (w⃗, u⃗, v⃗) ∈ {0, 1}3ℓ such that Φi(w⃗, u⃗, v⃗) = 1 there is a unique z⃗ ∈ {0, 1}c·log(T) such
that Φ′i(w⃗, u⃗, v⃗, z⃗) = 1.

2. There is an algorithm that gets input n ∈ N and i ∈ [d′], runs in time polylog(T) and space
O(log T), and prints an arithmetic circuit over F2 of size O(log T) and individual degree two
computing Φ′i.

Proof. The only property that is not explicitly stated in [KLV23] is that the algorithm printing an
arithmetic circuit for Φ′i runs in space O(log T). This follows immediately from the construction
of the circuit in [KLV23, Lemma 5.3], while relying on the fact (mentioned above) that the circuit
for Φi from Goldreich’s construction of {C′n} is printable in time polylog(T) and space O(log T).
□

27That is, for the input layer we have αd′+1(j) = xj for j ∈ [n] and αd′+1(j) = 0 for j ∈ [T′] \ [n]; and for the output
layer we have α1(1) = C′n(x) = L(x) and α1(j) = 0 for j ∈ [T′] \ {1}.

29

Relying on Fact 4.2.1, for every w⃗ ∈ {0, 1}ℓ we have

αi(w⃗) = ∑
u⃗,⃗v∈{0,1}ℓ

Φi(w⃗, u⃗, v⃗) · (1− α̂i+1(u⃗) · α̂i+1(⃗v))

= ∑
u⃗,⃗v∈{0,1}ℓ

z⃗∈{0,1}c·log(T)

Φ′i(w⃗, u⃗, v⃗, z⃗) · (1− α̂i+1(u⃗) · α̂i+1(⃗v)) .

Let F be a field of size 2m(D̄). Let Φ̂i : F3ℓ+c·log(T) → F be the extension of Φ′i of individual
degree 2 that is computed by the arithmetic formula for Φ′i. (Recall that the arithmetic for-
mula is over F2 ⊆ F.) Let α̂d′+1 : Fℓ → F be the unique multilinear extension of the function
x : {0, 1}log(n) → {0, 1} defined by the input x.28 For i ∈ [d′], we define α̂i : Fℓ → F by

α̂i(w⃗) = ∑
u⃗,⃗v∈{0,1}ℓ

z⃗∈{0,1}c·log(T)

Φ̂i(w⃗, u⃗, v⃗, z⃗) · (1− α̂i+1(u⃗) · α̂i+1(⃗v)) , (4.1)

and observe that α̂i is an extension of αi of individual degree at most two.
The protocol is divided into d′ phases, where each phase reduces a claim about two values in

the ith layer to a claim about two values in the (i + 1)th layer.

The ith phase: For i = 1, ..., d′ − 1, we enter the ith phase with two claims of the form “α̂i(w⃗
(i)
σ) =

v(i)σ ”, where σ ∈ {1, 2}. In the first phase i = 1, the claims refer to the value of the output,
i.e. to C′n(x); that is, the protocol opens with the prover sending the claim “α̂i(0ℓ) = b”, where
b ∈ {0, 1} ⊆ F and 0ℓ represents the index of the output gate. (And to be consistent with
subsequent phases, we consider this to be two identical claims.)

Let Pi : F3ℓ+c·log(T) → F be defined by

Pi(w⃗, u⃗, v⃗, z⃗) = Φ̂i(w⃗, u⃗, v⃗, z⃗) · (1− α̂i+1(u⃗) · α̂i+1(⃗v)) , (4.2)

and note that the claim “α̂i(w⃗
(i)
σ) = v(i)σ ” is equivalent to the claim

∑
(u⃗,⃗v,⃗z)∈{0,1}2ℓ+c·log(T)

Pi(w⃗
(i)
σ , u⃗, v⃗, z⃗) = v(i)σ . (4.3)

In the ith phase, the verifier and prover use two sumcheck protocols to reduce the two claims
in Eq. (4.3) (i.e., for σ = 1, 2) to two claims of the form Pi(w⃗

(i)
σ , a⃗, b⃗, c⃗) = rσ, for some fixed

(⃗a, b⃗, c⃗) ∈ F2ℓ+c·log(T) chosen by the verifier and r1, r2 ∈ F. Crucially, the verifier uses the same
random choices for both sumcheck protocols, and thus both protocols yield the same choices of
a⃗, b⃗, c⃗.

Thus, at the end of the phase we have the two claims

Φ̂i(w⃗
(i)
σ , a⃗, b⃗, c⃗) · (1− α̂i+1(⃗a) · α̂i+1(⃗b)) = rσ , (4.4)

28In more detail, we consider the function x′ : {0, 1}ℓ → {0, 1} such that x′(i) = xi for i ∈ [n] and x′(i) = 0 for
i ∈ {n + 1, ..., T′}, and α̂d′+1 is the unique multilinear extension of x′.

30

for σ = 1, 2. The prover sends values v(i+1)
1 , v(i+1)

2 ∈ F such that, supposedly, α̂i+1(⃗a) = v(i+1)
1

and α̂i+1(⃗b) = v(i+1)
2 . The verifier checks that Eq. (4.4) holds for σ = 1, 2, and if so, it proceeds to

the (i + 1)th phase with w⃗(i+1)
1 = a⃗ and w⃗(i+1)

2 = b⃗.

The dth (last) phase. This phase is identical to a generic phase, except that after the sumcheck
protocol, the verifier remains with the two claims

Φ̂i(w⃗
(d′)
σ , a⃗, b⃗, c⃗) · (1− α̂d′+1(⃗a) · α̂d′+1(⃗b)) = rσ ,

and it can check the two claims directly by computing the multilinear extension α̂d′+1 of the input
x at a⃗ and b⃗.

Analysis. The analysis follows [KLV23, Section 5]. At a high level, the only differences between
this analysis and the original analysis of Goldwasser, Kalai, and Rothblum [GKR15] (as simplified
by Goldreich [Gol18]) are that each univariate sent by the prover is of constant degree (rather
than a fixed polynomial degree as in [GKR15]), and that in each phase there are two sumcheck
protocols reducing two claims to two claims (replacing the 2-to-1 trick of [GKR15]).

For a phase i ∈ [d′], and a round j ∈ [2ℓ + c · log(T)] of sumcheck, let a1, ..., aj−1 ∈ F be
the elements sent in the previous j − 1 rounds during phase i. For σ = 1, 2, we denote by
pcorrecti,j,σ : F→ F the correct sumcheck polynomial; that is,

pcorrecti,j,σ (aj) = ∑
aj+1,...,a2ℓ+c·log(T)∈{0,1}

Pi(w⃗
(i)
σ , a1, ..., a2ℓ+c·log(T)) , (4.5)

where Pi(w⃗, u⃗, v⃗, z⃗) is as in Eq. (4.2).

We now highlight the key facts of the analysis that we will need later:

Fact 4.2.2. The protocol has d′ phases, and each phase consists of 2ℓ + c · log(T) rounds, for a total of
R = d′ · (2ℓ+ c · log(T)) rounds. In each round, the prover sends two univariate polynomials of degree
four, corresponding to the two sumcheck protocols, and the verifier responds with a (single) random field
element.

Proof. The only non-trivial part is that the univariates sent by the prover are of degree at most
four. To see this, observe that for i ∈ [d′] the polynomial α̂i is of individual degree two (since it
only feeds its input into Φ̂i), and that α̂d′+1 is multilinear; and note that each sumcheck polyno-
mial feeds its input into Φ̂i and into α̂i+1 (see Eq. (4.2)). □

Fact 4.2.3. The total length of the transcript is at most D def
==

(
(d · n)1+ϵ/2 · log(T)2+ϵ

)c.

Proof. In each of the R rounds, the verifier and prover send constantly many field elements. Thus,
the transcript length (also accounting for the input x) is at most

R ·O(log(|F|)) ≤ O(n · d′ · log(T)) ·m
(
((n · d)1+ϵ log(T)3)c

)
≤ O(n · d · log(T)2) · ((n · d)1+ϵ log(T)3)ϵ·c/c′

< O(n · d · log(T)2 · (n · d)(1+ϵ)·(ϵ/c′) log(T)3ϵ/c′)c

≤ ((d · n)1+ϵ/2 · log(T)2+ϵ)c ,

31

where we relied on the fact that m(D̄) ≤ D̄ϵ/c′ , on the fact that ϵ < 1, and on c′ > 1 being
sufficiently large. □

Fact 4.2.4. For i ∈ [d′ − 1], if we enter a phase i with an incorrect claim, and the verifier does not reject
at the end of the phase, then at least one of two things happened:

1. We enter the next phase i + 1 with an incorrect claim.

2. At some round j of sumcheck during the phase, the verifier chose a field element that for some
σ ∈ {1, 2} is one of the roots of the univariate polynomial pi,j,σ − pcorrecti,j,σ of degree at most four,
where pi,j,σ : F→ F is the polynomial sent by the prover.

For i = d′, if we enter phase d′ with an incorrect claim and the verifier does not reject, then Item (2)
happened.

Proof. This follows from a standard analysis of the sumcheck protocol. □

Fact 4.2.5. For each fixed (i, j, σ), the probability that the verifier chooses one of the roots of pi,j,σ− pcorrecti,j,σ

is at most 4
(d·n)1+ϵ·log(T)3 .

Proof. This follows since pcorrecti,j,σ and pi,j,σ are of degree four, and since

4/|F| = 4 · 2−m(D̄) ≤ 4
((d · n)1+ϵ · log(T)3)c ≤

4
(d · n)1+ϵ · log(T)3 ,

where we relied on the facts m(D̄) ≥ log(D̄) and c ≥ 1. □

Note that the error probability in Fact 4.2.5 is small enough for a union-bound over the
2R = O(d · log(T)2) choices of field elements in the protocol (each choice corresponding to some
(i, j, σ)).

A derandomized version. Let us define a derandomized verifier V for the protocol above.
Recall that D̄ = ((n · d)1+ϵ · log(T)3)c and observe that D̄ > D and that on inputs of length
D̄, the output length of f is m(D̄) = log(|F|).

In each phase i = 1, ..., d′, and for each round j = 1, ..., 2ℓ+ c · log(T) of sumcheck, instead of
choosing a field element at random, the verifier V acts as follows. Let πi,j be the description of
the polynomials and field elements sent up to that point, and pad πi,j with zeroes to obtain π̄i,j
of length D̄. The verifier expects to receive wi,j from the prover, and computes ri,j = M(π̄i,j, wi,j),
where M is the machine that computes f . If ri,j =⊥ or |ri,j| ̸= log(|F|) the verifier rejects, and
otherwise it treats ri,j as a field element, and sends it to the prover. We stress that the string πi,j
does not include the witnesses sent from the prover to the verifier in previous rounds; the string
πi,j is the non-contiguous substring of the partial transcript that includes only the univariate
polynomials sent by the prover and the field elements sent by the verifier (i.e., πi,j excludes the
witnesses wi,j sent by the prover for the computation of f).

Note that the prover can compute the transcript for the entire interaction in advance, and
send it as a single message to the verifier. This yields a deterministic one-message protocol (i.e.,
an NP-type machine), with a verifier running in time

polylog(|F|) ·
(
Õ(n) + R · TV(D̄)

)
≤ poly(m(D̄)) ·

(
Õ(n) + d′ · log(T) · TV(D̄)

)
< (n + d · polylog(T) · TV(D̄)) · (n · d · log(T))ϵ ,

32

where the polylog(|F|) term comes from performing field operations, and the Õ(n) factor is the
time required to compute the multilinear extension of the input x.

Completeness. The honest prover has two tasks in each round. The first task is to compute
a representation of the correct sumcheck polynomials pcorrecti,j,σ as in Eq. (4.5). Since pcorrecti,j,σ is of
constant degree, it suffices to interpolate it using constantly many points, and this task reduces
to computing Pi at poly(T) points. This can be done in time poly(T). The second task of the
honest prover in each round is to compute a witness wi,j for M(π̄i,j, ·), which can be done in time
TP(|π̄i,j|) (using the machine W from Assumption 4.1). This yields an honest prover that runs in
total time

R · poly(T(n))︸ ︷︷ ︸
GKR prover

· TP(D̄)︸ ︷︷ ︸
the machine W

≤ poly(TP(D̄)) .

When interacting with this honest prover, the verifier always accepts.

Soundness. Assume towards a contradiction that there is a probabilistic algorithm P running
in time poly(TP(D̄)) and an infinite set N ⊆ N of input lengths such that for every n ∈ N, with
noticeable probability TP(D̄)−O(1) over (x, π)← P(1n) it holds that V(x, π) /∈ {⊥, Cn(x)}.

Fix any pair (x, π) such that V(x, π) /∈ {⊥, Cn(x)}. Recall that π consists of a sequence of
2R univariate polynomials

{
pi,j,σ

}
of degree four, and a sequence of R witnesses

{
wi,j

}
for the

computations of M. Since we enter the first phase with an incorrect claim, and the verifier does
not reject after the last phase, by Fact 4.2.4 there exists a minimal i ∈ [d′] such that we enter the
ith phase with an incorrect claim but enter the (i + 1)th phase with a correct claim. For this i,
by Fact 4.2.4 again, there is some j and σ such that ri,j is a root of pi,j,σ − pcorrecti,j,σ .

Fact 4.2.6. Fix any (x, π) such that V(x, π) /∈ {⊥, Cn(x)}, and let (i, j, σ) be defined as above. Then,
one of the following two cases holds:

1. ri,j = f (π̄i,j). In this case, f (π̄i,j) is a root of pi,j,σ − pcorrecti,j,σ . Since this polynomial has degree at
most four, we know that one of these four roots must equal f (π̄i).

2. ri,j /∈
{
⊥, f (π̄i,j)

}
. In this case wi,j is such that M(π̄i,j, wi,j) /∈

{
⊥, f (π̄i,j)

}
.

Since N is infinite, for some σ′ ∈ {1, 2} there exists an infinite set N′ ⊆ N such that for
every n ∈ N′, with noticeable probability TP(D̄)−O(1) over (x, π) ← P(1n), the case in Item σ′

of Fact 4.2.6 holds.

Case 1: σ′ = 2. Then, there is an efficient algorithm that, when given 1n for n ∈ N′, with no-
ticeable probability finds inputs π̄i,j and witnesses wi,j such that M(π̄i,j, wi,j) /∈

{
⊥, f (π̄i,j)

}
.

Specifically, the algorithm simulates P, chooses i, j uniformly at random, pads πi,j to π̄i,j, and
prints (π̄i,j, wi,j). This algorithm runs in time poly(TP(D̄)), contradicting Assumption 4.1.

Case 2: σ′ = 1. We will define eight linear-space machines, and claim that for one of these ma-
chines the following holds: There is an efficient algorithm that for infinitely many values of
n, when the algorithm gets input 1n, with noticeable probability it finds input π̄i,j such that
the linear-space machine successfully computes f (π̄i,j). Specifically, the algorithm simulates P,
chooses (i, j) uniformly at random, and outputs π̄i,j; this algorithm also runs in time poly(TP(D̄)).

33

Turning to the linear-space machines, for each (k, σ) ∈ [4] × [2], let Mk,σ be the following
procedure. Given input π̄i,j, it finds the correct sumcheck polynomial pcorrecti,j,σ , enumerates over F

to find the roots of pcorrecti,j,σ − pi,j,σ, and outputs the kth root (if it exists). Note that whenever (x, π)

is such that V(x, π) /∈ {⊥, Cn(x)}, and i, j, k, σ are correct,29 the procedure Mk,σ correctly maps
π̄i,j to f (π̄i,j). We implement these procedure in low space:

Fact 4.2.7. Each Mk,σ can be implemented by a machine running in space O(log T) · (m(D̄) + d) on
inputs of length D̄.

Proof. We first argue that, given the transcript, we can evaluate pcorrecti,j,σ at any given point using
space

O((d + log(|F|)) · log(T)) .

To see this, note that evaluating pcorrecti,j,σ reduces to computing Φ̂i and α̂i+1 at poly(T) points
(see Eq. (4.5) and Eq. (4.2)). Then:

• Computing Φ̂i: Since the arithmetic circuit for Φ′i can be constructed in space O(log T) and
is of size O(log T) (see Fact 4.2.1), it can be evaluated over F2 in space O(log T) (using the
standard DFS-style simulation). By evaluating the same circuit over F, we can compute Φ̂i
in space O(log(T) · log(|F|)).

• Computing α̂i+1: When i = d′, we can compute α̂d′+1 (i.e., the multilinear extension of x)
in space O(log T). For i < d′, computing α̂i+1 reduces in space O(log T) to computing Φ̂i
and to computing α̂i+2 on points in {0, 1}ℓ (see Eq. (4.1)). Since α̂i+2 is an extension of αi+2,
computing it on points in {0, 1}ℓ reduces to computing a gate in C′n(x); using the standard
DFS-style simulation of C′n, this can be done in space O(d′ + log(T)).

Thus, computing Φ̂i and α̂i+1 at any given point can be done in space O((d + log(|F|)) · log(T)),
and the space complexity of computing pcorrecti,j,σ follows.

Enumerating over F and evaluating pcorrecti,j,σ − pi,j,σ can thus be done in space

O(log(T) · (log(|F|) + d) + log(D̄)) = O(log T) · (m(D̄) + d) ,

as we wanted. □

Finally, since N′ is infinite, for some (k, σ) ∈ [4]× [2] there is an infinite set N′′ ⊆ N′ such
that for every n ∈ N′′, with noticeable probability over (x, π) ← P(1n) it holds that f (π̄i,j) is
the kth root of pi,j,σ − pcorrecti,j,σ . Thus, on infinitely many input lengths n ∈ N′′, the algorithm we
defined above finds, with noticeable probability, inputs on which the machine for Mk,σ correctly
computes f .

Let us now state Theorem 1.3 formally and prove it. In fact, we state a more general technical
result, which asserts an additional equivalence of PSPACE ⊆ cs-NP to hardness in cs-NP for
small space on all but finitely many inputs. One direction of the proof (i.e., assuming a hard
function and deducing PSPACE ⊆ cs-NP) follows as a special case of Theorem 4.2, and the
proof below focuses on showing that PSPACE ⊆ cs-NP implies a hard function.

29That is, i and j are the ones defined in the paragraph before Fact 4.2.6, and ri,j is the kth root of pi,j,σ − pcorrecti,j,σ .

34

Theorem 4.3 (PSPACE ⊆ cs-NP ; Theorem 1.3, restated). There is a universal constant c′ > 1 such
that the following statements are equivalent:

1. There are C > 1 and ϵ ∈ (0, 1/c′) and δ > 0 such that Assumption 4.1 holds with m(n) = nϵ and
TP(n) = 2nδ

and TV = nC and S(n) = nc′·ϵ.

2. For every L ∈ PSPACE there are constants C > c > 1 such that L ∈ cs-NT IME [nC, 2nc
].

3. For any ϵ > 0 there are δ > 0 and C > 1 such that there is a function f ∈ cs-NT IME [nC, 2nδ
]

mapping n bits to nϵ bits that is hard for space nc′·ϵ on all but finitely many inputs.

As explained after the statement of Theorem 1.3, the most appealing setting of parameters
for the hardness assumption in Item (1) of Theorem 4.3 is δ < ϵ, since such hardness is attained
by a random function. To get an equivalence, in Theorem 4.3 we also allow for other values of
δ > 0, and in particular we also allow taking δ > 1. Indeed, assuming PSPACE ⊆ cs-NP , we
will show a function in cs-NT IME [poly(n), 2nδ

] for δ > 1 that is hard for small space on all
but finitely many inputs; this function will be obtained by diagonalization, and it is thus quite
different from a random function (i.e., both in its parameters and in its properties).

In other words, we show that a function in cs-NP with hardness that is attained by a random
function (i.e., Item (1) with δ < ϵ) implies that PSPACE ⊆ cs-NP , and we show that the
latter containment implies a function in cs-NP with diagonalization-type hardness (i.e., Item (3),
which implies Item (1) with δ > 1 > ϵ).

Proof of Theorem 4.3. To see that Item (1) implies Item (2), recall that every language in PSPACE
can be decided by a logspace-uniform circuit of size T(n) = 2na

and depth d(n) = nb, for some
constants a = aL > 1 and b = bL > 1. We use Theorem 4.2 with c = O((a + b)/ϵ + a/δ) and with
the parameter (c′ · ϵ) ∈ (0, 1), and observe that the required hardness is for space

S(D̄) = Θ(log(T) · (m(D̄) + d)) ≤ O(na · D̄ϵ + na+b) ≤ D̄c′·ϵ ,

where D̄ = ((n · d)1+c′·ϵ · log(T)3)c is as specified in the statement of Theorem 4.2 (recall that D̄
is the padded transcript length on which the hard function is applied). The hypothesis in The-
orem 4.2 requires that poly(T) ≤ TP(D̄), which with our choices of T, TP, D̄ is equivalent to
2Θ(na) ≤ 2D̄δ

; this is satisfied because D̄δ > n2a.
Item (3) trivially implies Item (1), so we just need to show that Item (2) implies Item (3).

Let ϵ > 0, and consider the language L that consists of pairs (x, i) ∈ [n] × [nϵ] such that the
following holds. Let Mi be the ith Turing machine according to some predetermined enumeration,
modified so that it runs in space S = nϵ·c′ . Then, (x, i) ∈ L if and only if Mi(x) halts after
2O(S) steps, prints at least i bits, and its ith output bit is 1. Note that L ∈ PSPACE , and thus
L ∈ cs-NT IME [nC0 , 2nδ

] for some constants C0 > δ > 1.
Consider the function f that maps n bits to m(n) = nϵ bits such that f (x)i = 1 if and only

if (x, i) /∈ L. Let W be the algorithm that, given x, simulates the 2nδ
-time algorithm for L on

inputs (x, 1), ..., (x, m(n)) and produces a concatenated witness w̄ = w1, ..., wm(n) ∈ {0, 1}nC0 ·m(n);
note that W runs in time O(2nδ · m(n)) < 2O(nδ). Let M be the algorithm that gets input x and
a concatenated witness w̄, simulates the nC0-time machine for L on inputs {(xi, wi)}i∈[m(n)], and
prints the concatenation of the outputs of the latter machine (or ⊥, if the latter machine outputs
⊥ on some (xi, wi)).

35

Observe that the algorithm W runs in time at most TP = 2O(nδ) and the machine M runs in
time TV = O(nC0 · m(n)). By the properties of the cs-NT IME system for L, the function f
satisfies the completeness requirement of cs-NT IME [TP, TV]. Next, we argue soundness:

Fact 4.3.1. For every algorithm W̃ running in time poly(TP) and every sufficiently large n, the probability
over (x, w)← W̃(1n) that M(x, w) /∈ { f (x),⊥} is negligible in TP.

Proof. Assume towards a contradiction that there is W̃ running in time poly(TP) such that
Pr(x,w)←W̃(1n) [M(x, w) /∈ { f (x),⊥}] ≥ 1/poly(TP). Note that for every (x, w) such that M(x, w) /∈
{ f (x),⊥} there exists i = ix,w such that the machine ML for L is incorrect when given input (x, i)
and the ith part of the witness w (recall that ML parses its witness as m(n) concatenated witnesses
w(1), ..., w(m(n))).

Consider the algorithm F that simulates W̃ to get (x, w), chooses i ∈ [m(n)] uniformly at
random, and outputs the input (x, i) for L and the ith part of w. With probability at least
1/poly(TP) · m(n)−1 = 1/poly(TP) this algorithm yields an input (x, i) for L′ and a witness
w(i) such that ML((x, i), w(i)) /∈ {L(x, i),⊥}. □

To conclude the proof we argue that for every space-(nc′·ϵ) machine A and sufficiently large
input length n, for every input x ∈ {0, 1}n it holds that A(x) ̸= f (x). Let i be the index of A
in the enumeration of machines, consider a sufficiently large input length n such that m(n) ≥ i,
and fix any x ∈ {0, 1}n. Then, either A(x) does not print m(n) bits, or A(x)i ̸= f (x)i by the
definitions of f and of L.

Lastly, we present the simulation of logspace-uniform NC circuits by cs-NT IME verifiers
running in near-linear time (i.e., Theorem 1.7). Our assumption is a function computable in
near-linear time that is hard for polylogarithmic space over all polynomial-time samplable dis-
tributions. As in Theorem 4.3, we can also relax the upper bound, and only require that the
function is verifiable in near-linear time with computational soundness; that is:

Corollary 4.4 (NC ⊆ cs-NT IME [n1+ϵ] from hardness for small space algorithms). Let d(n) =
polylog(n) and let ϵ ∈ (0, 1) . Suppose that Assumption 4.1 holds with TP = poly(n) and TV =
n1+ϵ and m(n) = polylog(n) and S(n) = Θ(log(n) · (d(n) + m(n))). Then, for every problem L ⊆
{0, 1}∗ decidable by logspace-uniform NC circuits of size poly(n) and depth d(n) it holds that L ∈
cs-NT IME [n1+3ϵ, poly(n)].

Proof. Let L be a problem decidable by logspace-uniformNC circuits of size T(n) = poly(n) and
depth d(n). We use Theorem 4.2 with T(n) = nk and d(n) = polylog(n) and c = 1 and ϵ > 0, in
which case the cs-NT IME verifier’s running time is at most n1+3ϵ. Note that S(n) = Θ(log(T) ·
(m(D̄) + d)), and without loss of generality TP is large enough so that poly(T) ≤ TP(D̄); thus,
the hypotheses of Theorem 4.2 are satisfied.

4.2 Refuters: How constructive is NP ̸= PSPACE?

In this section we prove Theorem 1.6. Towards doing so, recall that L ∈ PSPACE is PSPACE -
complete, if for every L1 ∈ PSPACE there is a polynomial-time computable reduction R : {0, 1}∗ →
{0, 1}∗ such that L1(x) = L(R(x)). Also recall that a language L is paddable if there is a
polynomial-time computable function W such that for every x ∈ {0, 1}∗ and ℓ ∈ N such that

36

ℓ ≥ |x|, we have L(x) = L(W(x, ℓ)) and |W(x, ℓ)| = ℓ. We remark that the standard PSPACE -
complete language TQBF is paddable.

We now prove that if NP ̸= PSPACE , then there any paddable PSPACE -complete lan-
guage (in particular, TQBF) has a refuter in PNP , and a refuter in FNP with O(log(n)) bit of
advice. The proof is an adaption of [CJS+21, Theorem 5.3].

Theorem 4.5. Let L be a paddable PSPACE -complete language. If NP ̸= PSPACE , the following
statements hold:

1. For every NP Turing machine M, there is an PNP algorithm RM such that for infinitely many
n ∈N, RM(1n) outputs a string xn ∈ {0, 1}n such that M(x) ̸= L(x).

2. For every NP Turing machine M, there is an FNP algorithm RM with O(log n) bits of advice such
that for infinitely many n ∈N, RM(1n) outputs a string xn ∈ {0, 1}n such that M(x) ̸= L(x).

Proof. Let M be a polynomial-time non-deterministic Turing machine. Since NP ̸= PSPACE ,
there are infinitely many input lengths n such that M does not correctly solve L on all n-bit
inputs.

We define the language GM as the set of (1n, x) such that |x| ≤ n and both of the following
two statements hold:

1. There exists y ∈ {0, 1}n with prefix x such that L(y) ̸= M(y).

2. If |x| ≥ 1 and x ends with bit 1, then for all y ∈ {0, 1}n with prefix x′, L(y) = M(y), where
x′ is the string obtained by flipping the last bit of x.

Note that GM ∈ PSPACE . We observe the following fact:

Fact 4.6. For every |x| < n, either (1n, x ◦ 0) /∈ GM or (1n, x ◦ 1) /∈ GM.

Since L is PSPACE -complete, there is a polynomial-time reduction R : {0, 1}∗ → {0, 1}∗ such
that for all n ∈N and |x| ≤ n, we have GM(1n, x) = L(R(1n, x)). Also since L is paddable, we can
further assume that for every |x| ≤ n, |R(1n, x)| = ℓ(n), for some strictly increasing polynomial
ℓ : N→N such that ℓ(n) ≥ n.

We will first construct a PNP algorithm AM that, given 1n, outputs 3 strings x1, x2, x3 with
length being either n or ℓ(n), such that for some i ∈ [3] we have L(xi) ̸= M(xi). We call such an
algorithm a list-refuter, since it outputs a list that containing at least one bad input.30

From list-refuter to refuter. Before constructing such a list-refuter below, we first show that
such a list-refuter AM implies a refuter RM, as follows: For each i ∈ [3], we can define a refuter
R(i)

M by letting it outputs the i-th string from the list outputted by AM. From our assumption
on AM, we know that there exists i ∈ [3] such that R(i)

M (1n) outputs a bad input xn for infinitely
many n ∈N.

As for the output length (i.e., n vs ℓ(n)), there are two cases: (1) There are infinitely many
n ∈N, R(i)

M (1n) outputs a bad input xn and |xn| = n, then R(i)
M is the desired refuter; (2) There are

infinitely many n ∈ N, R(i)
M (1n) outputs a bad input xn and |xn| = ℓ(n), then we define RM(1m)

so that it simulates R(i)
M (1n) where ℓ(n) = m (if no such n exists, RM(1m) simply outputs 0m).

One can see that in both cases we have a standard refuter.
30The actual algorithm sometimes returns less than 3 strings, but we can always add dummy outputs.

37

• Initialize x as an empty string
• For i← 1, 2, . . . , n:

– If M(R(1n, x ◦ 0)) = 1 AND M(R(1n, x ◦ 1)) = 1:
* Return the list R(1n, x ◦ 0) and R(1n, x ◦ 1)

– If M(R(1n, x ◦ 0)) = 1:
* x ← x ◦ 0

– Else if M(R(1n, x ◦ 1)) = 1:
* x ← x ◦ 1

– Else:
* Return the list R(1n, x), R(1n, x ◦ 0), and R(1n, x ◦ 1)

• Return x and R(1n, x).

Figure 1: The pseudocode of the list-refuter AM on input 1n.

A PNP list-refuter. Our list-refuter AM for M performs a search-to-decision reduction that
extends the prefix x one bit at a time, calling R(1n, x) in each iteration. It either eventually finds a
string y ∈ {0, 1}n such that L(y) ̸= M(y), or detects the inconsistency of M’s answers. See Fig. 1
for a pseudocode description of AM.

To prove the correctness of this list-refuter, let n be an input length on which M fails to decide
L. Consider four cases, according to the conditions on x when AM terminates:

(1) |x| < n, M(R(1n, x ◦ 0)) = 1, and M(R(1n, x ◦ 0)) = 1. Since (1n, x ◦ 0) and (1n, x ◦ 1) cannot
both belong to GM by Fact 4.6, and hence either R(1n, x ◦ 0) /∈ L or R(1n, x ◦ 1) /∈ L. Thus,
M errs in deciding L on one of these ℓ(n)-bit strings.

(In the rest, we assume M(R(1n, x ◦ 0)) = 0 or M(R(1n, x ◦ 0)) = 0.)

(2) |x| = 0. If M correctly decides L on both R(1n, 0) and R(1n, 1), then both (1n, 1) and (1n, 0)
are not in GM. This contradicts the assumption that M does not solve L correctly on all
n-bit inputs.

(3) 1 ≤ |x| < n. This happens when M(R(1n, x)) = 1 (from the previous iteration), but for both
b ∈ {0, 1} it holds that M(R(1n, x ◦ b)) = 0. Then, it cannot be that M decides L correctly
on all the outputs in the list, as that would mean that (1n, x) ∈ GM but (1n, x ◦ b) /∈ GM for
both b ∈ {0, 1}.

(4) |x| = n. This happens when M(R(1n, x)) = 1 (from the previous iteration). If M is correct
on R(1n, x), it means that (1n, x) ∈ GM, or equivalently L(x) ̸= M(x). Thus, M errs in
deciding L on the output x.

Hence, M answers incorrectly on at least one string in the list returned by AM.

FNP refuter. Next we show that the PNP list-refuter above can be simulated in FNP with
O(log n) bits of advice on input 1n. Applying the transformation of list-refuters to refuters, we
can then get the desired FNP-refuter.

Consider the execution of AM(1n). We first describe the advice. We use an integer i ∈ [n + 1]
to indicate when in the loop the algorithm returns a list (i = n + 1 means it returns at the end of
the algorithm, after finishing the loop). We then use a Boolean bit b ∈ {0, 1} to indicate whether

38

it returns at the start of the loop (b = 0) or the end of the loop (b = 1). (If i = n + 1, then b does
not matter.)

Then the FNP algorithm works as follows:

• It takes a string x ∈ {0, 1}i−1, together with i − 1 proofs w1, . . . , wi−1 such that wj is sup-
posed to witness M(R(1n, x≤j)) = 1, for each j ∈ [i− 1].

• If i = n + 1, returns the list x and R(1n, x).

• If b = 0, returns the list R(1n, x ◦ 0) and R(1n, x ◦ 1).

• If b = 1, returns the list R(1n, x), R(1n, x ◦ 0), and R(1n, x ◦ 1).

Given the correct advice i, it means during the execution of AM(1n), for every j ∈ [i− 1], it
holds that in the j-th stage of the loop, exactly one of M(R(1n, x ◦ 0)) = 1 and M(R(1n, x ◦ 1)) = 1
holds. This in particular implies exactly one string x ∈ {0, 1}i−1 admits proofs w1, . . . , wi−1. The
correctness of the simulation then follows from the definition of advice b.

4.3 Bounded arithmetic: How provable is NP ̸= PSPACE?

In this section we prove Theorem 1.5. For this purpose, we will assume basic familiarity with the
main notions in the area of bounded arithmetic. Detailed definition can be found in textbooks
such as the ones by Krajíček [Kra95; Kra19] and by Cook and Nguyen [CN10], and a recent gentle
introduction for theorists who are not familiar with the area can be found in [LO23]. (The latter
work focuses, in particular, on the main theory that we refer to, which is Jeřábek’s APC1.)

Formulation. Let M be an O(n)-space Turing machine, and V(x, y) be a polynomial-time veri-
fier that takes input x ∈ {0, 1}n and y ∈ {0, 1}p(n) for some polynomial p : N→N. The following
formula ΦM,V asserts that V is an NP-verifier for the language decided by M:

ΦM,V := ∃n0 ∈ LogLog ∀n ∈ LogLog s.t. n > n0 ∀x ∈ {0, 1}n

(M(x) = 1 =⇒ ∃y ∈ {0, 1}p(n)V(x, y) = 1)

∧(M(x) = 0 =⇒ ∀y ∈ {0, 1}p(n)V(x, y) = 0).

The n ∈ LogLog notation means that ∃N∃n = ||N||, where | · | denotes the length of the binary
string corresponding to an integer. In particular, since the formula is actually defined with respect
to input length N, it allows the inside formula to reason about 2O(n)-time computation. Since
M(x) can be evaluated in time 2O(n), the formula ΦM,V can be formulated as a PV1 sentence.31

We remark that (M(x) = 1 =⇒ ∃y ∈ {0, 1}p(n)V(x, y) = 1) states the completeness of the
proof system V, and (M(x) = 0 =⇒ ∀y ∈ {0, 1}p(n)V(x, y) = 0) states the soundness of the
proof system V. The whole formula ΦM,V says that for all sufficiently long input x, M(x) = 1 if
and only if there is a proof y ∈ {0, 1}p(n) such that V(x, y) = 1.

31Let us provide more detail on how we construct ΦM,V as a PV1 sentence. We define a PV1 function U(M, x, 1s, 1t)
that simulates a Turing machine M using at most s bits of space and t steps, on a given input x; if the simulation
requires more than s bits of space or t steps of time, U outputs ⊥. In the formula ΦM,V , the symbol M(x) is just an
abbreviation for U(M, x, cMn, 2cMn), where cM ∈N is a constant depending on M.

39

We first recall the KPT witnessing theorem for APC1, from [CKK+21]. Loosely speaking, the re-
sult asserts that if the theory APC1 proves that for every n ∈N there exists x such that ∀z, φn(x, z),
then given n we can efficiently find x such that ∀z, φn(x, z). In the statement below, the notation
∀n ∈ Log means ∀N∀n = |N|.

Theorem 4.7 (KPT witnessing for APC1; see [CKK+21, Theorem 4.7]). Let φ be a ΣB
0 (PV1) formula

such that

APC1 ⊢ ∀n ∈ Log ∃C ∀Z : φ(n, C, Z) .

Then there is a constant number ℓ of poly(n)-time computable functions

A1(n, R1), A2(n, R1, Z1, R2), . . . , Aℓ(n, R1, Z1, . . . , Rℓ−1, Zℓ−1, Rℓ)

and a constant c ≥ 1 such that, for every n ≥ 1, the following holds.

1. With probability at least 1/nc over uniform randomness R1, for C1 = A1(n, R1), either it holds that
∀Z1 φ(n, C1, Z1), or for any Z1 such that ¬φ(n, C1, Z1) holds, the following holds.

2. With probability at least 1/nc over uniform randomness R2, for C2 = A1(n, R1, Z1, R2), either it
holds that ∀Z2φ(n, C2, Z2), or for any Z2 such that ¬φ(n, C2, Z2) holds, the following holds.

...

3. With probability at least 1/nc over uniform randomness Rℓ, for Cℓ = Aℓ(n, R1, Z1, . . . , Rℓ−1, Zℓ−1, Rℓ),
we have ∀Zℓφ(n, Cℓ, Zℓ).

We now state Theorem 1.5 formally and prove it, relying on Theorems 1.3 and 4.7. This
consequence of Theorem 1.3, as well as the proof approach below, were suggested by Ján Pich.

Theorem 4.8 (APC1 ̸⊢ NP ̸= PSPACE). Suppose that the assumptions of Theorem 1.3 hold. Let M be
a O(n)-space Turing machine deciding a language L = LM, let V be the polynomial-time cs-NT IME
verifier for L from Theorem 1.3, and let p be a polynomial bounding the proof length of V. Then,

APC1 ̸⊢ ¬ΦM,V ;

in other words, there is a model of APC1 in which ΦM,V holds.

Proof. For the sake of contradiction, assume that

APC1 ⊢ ¬ΦM,V .

Equivalently, we have that

APC1 ⊢ ∀n0 ∈ LogLog ∃n ∈ LogLog s.t. n > n0

∃x ∈ {0, 1}n∃y ∈ {0, 1}p(n)∀z ∈ {0, 1}p(n)

(M(x) = 0∧V(x, y) = 1) ∨ (M(x) = 1∧V(x, z) = 0).

40

Recall that, as explained in the beginning of this section, ΦM,V is actually defined using ∃N ∈
Log, n0 = |N| (i.e., we used ∃n0 ∈ LogLog in the definition of ΦM,V only as shorthand). Thus, we
can apply Theorem 4.7 to ¬ΦM,V , resulting in algorithms with running time poly(N) = 2O(n0):

A1(n0, R1), A2(n0, R1, Z1, R2), . . . , Aℓ(n0, R1, Z1, . . . , Rℓ−1, Zℓ−1, Rℓ).

Also note that, denoting by φ the ΣB
0 part of ¬ΦM,V , we have

φ(n0, C, Z) = φ(n0, (n, x, y), z) := (M(x) = 0∧V(x, y) = 1) ∨ (M(x) = 1∧V(x, z) = 0).

We then describe how to convert the algorithms A1, ..., Aℓ into a cheating prover A for V that
contradicts the soundness guaranteed by Theorem 1.3.

The prover A works in ℓ stages. For i = 1, ..., ℓ, the ith stage is conducted as follows.

The input to the ith stage of A is (ni−1, z1, ..., zi−1) (in the first stage i = 1 the in-
put is just n0). Drawing Ri uniformly at random, A computes Ci = (ni, xi, yi) =
Ai(n0, R1, z1, . . . , Ri−1, zi−1, Ri) (when i = 1, A just computes A1(n0, R1)).

If i = ℓ, then A outputs (xℓ, yℓ).

If M(xi) = 0 and V(xi, yi) = 1, then A outputs (xi, yi) and halts.

Otherwise, the goal of A is to find a zi such that ¬φ(ni−1, (ni, xi, yi), zi) holds (to feed into
Ai+1 in the next stage). By the definition of φ, we have

¬φ(ni−1, (ni, xi, yi), z) = (M(xi) = 1∨V(xi, yi) = 0) ∧ (M(xi) = 0∨V(xi, z) = 1)
= (M(xi) = 0 =⇒ V(xi, yi) = 0) ∧ (M(xi) = 1 =⇒ V(xi, z) = 1)

There are two cases:

• If M(xi) = 0, then by our assumption V(xi, yi) = 0. Hence, any z = zi works.

• Otherwise M(xi) = 1. Let c = cL be the constant when applying Theorem 1.3 to the
language L. By the existence of an honest prover for L with running time 2nc

, we can
compute zi such that V(xi, zi) = 1 in time 2O(nc

i), and we continue with this zi (note
that here we do not need the completeness to be formalized in APC1).

We claim that, with noticeable probability, A produces (x, y) such that M(x) = 0 but V(x, y) =
1. In more detail:

Fact 4.8.1. For all n0 ∈ N, given 1n0 as input, A outputs an integer n ≥ n0, x ∈ {0, 1}n, and
y ∈ {0, 1}p(n) such that M(x) = 0 and V(x, y) = 1 with probability at least 2−O(n0), in time 2O(nc).

Proof. Note that A either outputs (xi, yi) such that M(xi) = 0 and V(xi, yi) = 1, or outputs
(xℓ, yℓ). By Theorem 4.7, in the latter case, with probability at least 2−Oℓ(n0), for all z we have that

(M(xℓ) = 0∧V(xℓ, yℓ) = 1) ∨ (M(xℓ) = 1∧V(xℓ, z) = 0) .

However, since for every xℓ such that M(xℓ) = 1 there is z such that V(xℓ, z) = 1 (we know this
since the honest prover produces such a z), it must be that M(xℓ) = 0 and V(xℓ, yℓ) = 1. □

41

We say that an integer n ∈ N is good if there exists n0 ∈ [n] such that A(1n0) outputs n,
x ∈ {0, 1}n, and y ∈ {0, 1}p(n) satisfying the properties above with probability at least 2−O(n0).
From the properties of A, we know that every n0 ∈ N contributes to at least one good n ≥ n0,
hence there are infinitely many good n. Also note that 2−O(n0) ≥ 2−O(n) since n0 ≤ n.

Let κ0 be the constant in the big-O of 2O(nc) from Fact 4.8.1. We can then construct a cheating
prover P from A as follows: Given input 1n, try all n0 ∈ [n] (from 1 to n) and see if running A(1n0)
for 2κ0·nc

steps outputs a pair x ∈ {0, 1}n and y ∈ {0, 1}p(n) such that M(x) = 0 and V(x, y) = 1;
if so, it outputs x and y. Now, for those infinitely many good n ∈N, it holds that P(1n), in 2O(nc)

time, outputs a pair x ∈ {0, 1}n and y ∈ {0, 1}p(n) such that M(x) = 0 and V(x, y) = 1 with
probability at least 2−O(n); this contradicts Theorem 1.3.

5 Zaps, NIWI and NIZK

In Section 5.1 we prove the results that were stated in Section 1.3; that is, Theorem 1.8 and Corol-
lary 1.11. In Section 5.2 we expand on the exposition in Section 1.3 by surveying prior works in
more detail.

5.1 Proof of Theorem 1.8

Let us restate Theorem 1.8 and prove it.

Theorem 5.1. Assume that there are subexponentially secure one way functions. Let δ > 0 be a suf-
ficiently small constant,32 and let ϵ > 0 be an arbitrary constant. Assume that there is f : {0, 1}n →
{0, 1}nδ

in FP that is hard for linear-time algorithms with oracle access to NT IME [nϵ] over all
polynomial-time samplable distributions. Then, every NP relation R has a zap argument system.

Assuming in addition a sub-exponentially secure non-interactive commitment scheme (i.e., statistically
binding and computationally hiding), every NP relation R has a NIWI argument system.

Recall that, combining the concluded zap in Theorem 5.1 with Lemma 3.7, we obtain NIZK
arguments for NP ; thus, Corollary 1.11 follows from Theorem 5.1. The rest of this section is thus
devoted to the proof of Theorem 5.1.

We focus on building an argument system for the NP-complete problem of Hamiltonicity.
In the following, we will refer to a commitment scheme that is statistically binding and com-
putationally hiding. In case the assumption is a one-way function, this commitment scheme
is Naor’s [Nao91] construction, which uses a CRS; in case the assumption is a non-interactive
commitment scheme, that will be the scheme we are referring to. For simplicity of presentation,
we will describe the constructions of the zap and of the NIWI together, since the only difference
between them is that in the former a CRS used to instantiate the commitment scheme.

Blum’s classical protocol for Hamiltonicity. Both parties are given a graph G over n vertices,
represented by its adjacency matrix; when G is Hamiltonian, the honest prover gets a a Hamilto-
nian cycle w in G. The parties repeat the following interaction t = poly(n) times in parallel:

1. The prover commits to a permutation π of [n] and to the edges of π(G).33

32Specifically, we need δ > 0 to be smaller than a constant that is determined by the subexponential security of the
one-way function.

33That is, for each u, v ∈ [n], the prover commits to a bit eu,v indicating whether or not u and v are neighbors.

42

2. The verifier sends a random bit b ∈ {0, 1}.

3. If b = 0 the prover decommits to π and to π(G), and the verifier checks that the permutation
sent indeed maps the original graph G to the graph sent.

If b = 1, the prover decommits to the edges of the Hamiltonian cycle in π(G), and the
verifier checks that these edges indeed yield a Hamiltonian cycle.

We assume that t is a sufficiently large polynomial, depending on ϵ > 0. The commitment is
instantiated with security parameter λ = poly(n) such that it is secure against time 2O(t) = 2λΩ(1)

.
We denote the t initial commitments by c⃗ = c1, ..., ct and the t response bits by b⃗ = b1, ..., bt. Note
that |⃗c| = O(t · n2 · poly(λ)) = poly(n) and |⃗b| = t.

The derandomized protocol. On a given G, the honest prover computes c⃗ identically to Blum’s
protocol, and then its goal is to compute b⃗ by applying f to input (G, c⃗) (see below). Then, it
computes its final response m⃗ as in Blum’s protocol and sends (⃗c, b⃗, m⃗) to the verifier. The verifier
checks that b⃗ is the result of applying f to (G, c⃗), and then performs the same verification as in
Blum’s protocol with respect to the fixed choice b⃗.

We denote the resulting prover and verifier by P and V. Since f ∈ FP , the verifier V runs in
polynomial time, and the honest prover P runs in polynomial time given the witness w.

A minor technical issue is that the length of (G, c⃗) needs to be such that f applied to it yields
exactly t bits. To handle this, observe that

| f (G, c⃗)| ≤ tδ · n2δ · λO(δ) < t2δ/ζ · n2δ ,

where ζ > 0 is a constant that comes from the quality of the commitment scheme.34 Since we
assumed that δ > 0 is sufficiently small, it follows that |(G, c⃗)|δ < t. The prover and verifier pad
(G, c⃗) with zeroes to be of length t1/δ and apply f to the padded version to obtain b⃗ ∈ {0, 1}t.

Completeness and soundness. Completeness follows since Blum’s protocol has perfect com-
pleteness. For soundness, we analyze the protocol conditioned on the event that the commitment
is perfectly binding. (This is always true in the case of a non-interactive commitment scheme,
and is true with all but negligible probability over choice of CRS when using [Nao91].)

Given a non-Hamiltonian G and any fixed c⃗, let B = B(G, c⃗) ⊆ {0, 1}t be the set of messages b⃗
such that there exists a final message m⃗ by the prover causing the verifier to accept.35 As observed
in [CCH+19], the set B is actually a singleton:

Fact 5.2. For every non-Hamiltonian G and fixed c⃗, there is at most one b⃗ such that there exists m⃗
causing the verifier to accept. Furthermore, the function mapping (G, c⃗) to the unique b⃗ (whenever b⃗
exists) is computable in linear time with oracle access to NT IME [poly(λ)] = NT IME [Nϵ], where
N = |(G, c⃗)| is the input length to this function.

Proof. Fix i ∈ [t], let G′ be the graph that the prover committed to in ci, and let π′ be the
permutation that the prover committed to in ci. (Recall that ci is statistically binding, and so π′

is uniquely determined by ci.)

34Recall that we set λ to be such that the scheme is secure against time 2O(t) = 2λζ
.

35That is, the verifier accepts the transcript (G, c⃗, b⃗, m⃗).

43

• If G′ = π′(G), then the verifier can accept only if bi = 0 (because G′ doesn’t have a Hamil-
tonian cycle, so the verifier will never accept with bi = 1).

• If G′ ̸= π′(G), the verifier can accept only if bi = 1 and G′ is Hamiltonian.

Since the above holds for every i ∈ [t], we deduce that B has at most one element. To see that
B is computable as claimed, note that it suffices to check, for every i, if the prover committed in
ci to G′ and π′ such that G′ = π′(G) (if so, then we set bi = 0, and otherwise we set bi = 1). This
can be done by breaking the commitment ci, which can be done using the NT IME [λk] oracle,
where k > 1 is a constant that depends on the commitment scheme.

Relying on t being a sufficiently large polynomial (as a function of ϵ and of k), we have that
|(G, c⃗)| = O(t · n2 · poly(λ)) ≥ λk/ϵ, and hence the oracle is computable in non-deterministic
time |(G, c⃗)|ϵ. □

Now, assume towards a contradiction that there is a ppt algorithm P̃ such that with noticeable
probability over (G, π) ← P̃(1n) the verifier accepts G with proof π but G is not Hamiltonian.
We say that (G, π) is bad in such a case, and denote π = (⃗c, b⃗, m⃗).

By Fact 5.2, for every bad (G, π) it holds that b⃗ = f (G, c⃗) is the unique string such that the
verifier accepts the transcript. Hence, whenever (G, π) is bad the linear-time algorithm with
NT IME [nϵ] oracle that computes this string (from Fact 5.2) succeeds in computing f on input
(G, c⃗). This contradicts the hardness of f .

Zero knowledge. Our goal now is to prove that the construction is an unbounded simulator
zap; that is, we show a computationally unbounded simulator S satisfying the condition in Defi-
nition 3.4. Note that the WI zap property will follow from this fact, using Lemma 3.6.

On input (G, crs), the simulator S repeats the following procedure at most r = 2O(t) times.

1. Select a random b⃗sim = (b1, ..., bt) ∈ {0, 1}t.

2. Generate c⃗ as follows. For every i ∈ [t], if bi = 0 then ci is a commitment to a random
permutation πi and to the graph πi(G); and if bi = 1 then commit to the all-zero
permutation πi and to a graph that is a random cycle on n vertices.

3. Compute f on the padded version of (G, c⃗).

If the result is different from b⃗sim, continue to the next attempt.

Otherwise, compute the following decommitments m⃗: For each i ∈ [t], if bi = 0
decommit to πi and to πi(G); and if bi = 1 decommit to the edges in the cycle.
Output the transcript (⃗c, b⃗sim, m⃗).

In case all r iterations fail, output ⊥.

Notation and basic facts. Let crs be a common random string, G an input graph, w a Hamiltonian
path in G, and z an auxiliary input (jumping ahead, we will be considering (crs, G, w, z) generated
by an adversary as in Definition 3.4 but for the moment we view them as fixed). For these fixed
(crs, G, w, z), we define a sequence of random variables that will be useful for our analysis.

44

• ξreal(crs, G, w, z). Select a random b⃗ ∈ {0, 1}t. For each i ∈ [t] independently, generate
a random permutation πi and commit to (πi, πi(G)) (the commitment uses fresh random
coins for each i). Let c⃗ be the sequence of t commitments. Compute f on the padded
version of (G, c⃗); if the result is not b⃗ then output ⊥, otherwise output (crs, G, (⃗c, b⃗, m⃗), z)
where m⃗ is the honest prover’s decommitments.

• ξmid(crs, G, w, z): The only difference between this RV and ξreal is c⃗. For every i ∈ [t], if
bi = 0 then ci is without change; but if bi = 1 then ci is a commitment to the identity
permutation and to a graph that only has the cycle πi(w) (and the rest of the edges are
removed). For convenience, we assume that the identity permutation is represented by the
all-zero string.36

• ξsim(crs, G, w, z): Again, the only difference between this RV and ξmid is c⃗ in blocks i where
bi = 1. Now ci is a commitment to the identity permutation and to a random cycle on n
vertices.

• ρreal(crs, G, w, z): Take r independent copies of ξreal(crs, G, w, z) and output the first output
that is not ⊥. In case all copies are ⊥ then output ⊥.

• ρmid(crs, G, w, z): Is defined similarly to ρreal(crs, G, w, z) relative to ξmid.

• ρsim(crs, G, w, z): Is defined similarly to ρreal(crs, G, w, z) relative to ξsim.

We now observe that ρreal is (up to a small error) the real distribution that the verifier sees,
whereas ρsim is the distribution simulated by S. We also observe that ξmid and ξsim are identically
distributed. Jumping ahead, we will later use these facts to show that an adversary distinguishing
the real interaction ρreal from the simulated one ρsim also distinguishes ξreal from ξmid; since the
latter two only differ in parts of the commitment that are never exposed in the interaction, such
an adversary breaks the commitment.

Claim 5.3. For any (crs, G, w, z), the RV ρreal(crs, G, w, z) is 2−ω(t)-close (in statistical distance) to the
RV P(crs, G, w) (i.e., to the view of the verifier on input G and CRS crs, when the prover gets the cycle
w).

Proof. Conditioned on not being equal to ⊥, the RV ξreal(crs, G, w, z) is distributed identically to
the view of the verifier. The claim now follows by noting that the probability that ξreal(crs, G, w, z) ̸=
⊥ is 2−t (since this is the probability that a random b⃗ equals the output of f on (G, c⃗), and the
random coins used to generate the commitments c⃗ are independent of the random coins used to
generate b⃗), and the experiment underlying ρreal is repeated r = 2O(t) times. □

Claim 5.4. For any (crs, G, w, z), the RV ρsim(crs, G, w, z) is distributed identically to the RV (crs, G, S(G, crs)).

Proof. Follows immediately from the definitions of ρsim and of S. □

Claim 5.5. For any (crs, G, w, z), the RV ξsim(crs, G, w, z) is distributed identically to the RV ξmid(crs, G, w, z).

Proof. The only difference between the definitions of the RVs is that in ξmid the commitment is to
a random permutation of a fixed cycle and in ξsim the commitment is to a random cycle. □

36A natural representation in which this happens is when permutations are represented by specifying, for each
i ∈ [n], the shift of the bits of i that the permutation induces.

45

The security reduction. Let (A1, A2) be a pair of ppt adversaries for the unbounded simulator
property. Recall that A1 on input 1n outputs (crs, G, w, z), and A2 on input (crs, G, α, z) attempts
to decide whether α is generated by the prover or by the simulator. We assume without loss of
generality that for any (G, w) generated by A1 it holds that (G, w) ∈ R (since otherwise A1 can
just abort without changing the overall advantage of (A1, A2)). We also assume without loss of
generality that z (which is passed from A1 to A2) incorporates the witness w.37

In what follows, we use (crs, G, w, z) to denote the distribution generated by A1(1n). We
stress this because in the definitions and claims above, (crs, G, w, z) was fixed, whereas from now
on it will be distributed according to A1(1n).

Assume toward a contradiction that there exists a polynomial p such that∣∣Pr
[
A2

(
crs, G, P(crs, G, w), z

)
= 1

]
− Pr

[
A2

(
crs, G, S(crs, G), z

)
= 1

]∣∣ ≥ 1/p(n) , (5.1)

for infinitely many n. We first argue that there is an efficient adversary distinguishing ξreal from
ξsim; the claim amounts to a hybrid argument, but when working in the uniform setting this
argument needs to be carried out more carefully.

Claim 5.6. There exists a poly(r)-time algorithm D′ such that:∣∣Pr
[
D′

(
crs, G, ξreal(crs, G, w, z), z

)
= 1

]
− Pr

[
D′

(
crs, G, ξsim(crs, G, w, z), z

)
= 1

]∣∣ ≥ 1
2r · p(n) ,

for infinitely many n.

Proof. Combining Eq. (5.1) with Claims 5.3 and 5.4 (which hold point-wise for every fixed
(crs, G, w, z)), we have that∣∣Pr

[
A2

(
crs, G, ρreal(crs, G, w, z), z

)
= 1

]
− Pr

[
A2

(
crs, G, ρsim(crs, G, w, z), z

)
= 1

]∣∣ ≥ 1/2p(n) .
(5.2)

For any fixed (crs, G, w, z) we define a sequence of hybrid distributions H0, ..., Hr. The dis-
tribution H0 is sampled by independently sampling r instances of ξsim, and outputting the first
instance that is not ⊥ (or outputting ⊥ if there is no such instance). For i ∈ [r] the distribution Hi
is sampled by sampling i independent instances of ξreal and r− i independent instances of ξsim,
and outputting the first instance among the r that is not ⊥ (or ⊥ if there is no such instance).

Note that H0 is precisely ρsim and Hr is precisely ρreal . Thus, Eq. (5.2) can be presented as∣∣Pr
[
A2

(
crs, G, Hr, z

)
= 1

]
− Pr

[
A2

(
crs, G, H0, z

)
= 1

]∣∣ ≥ 1/2p(n) ,

and hence there is σ ∈ {0, 1} such that for infinitely many n,

Ei∈[r] [Pr[A2(crs, G, Hi, z) = σ]− Pr[A2(crs, G, Hi−1, z) = σ]] ≥ 1
2r · p(n) ,

where the internal probability is also over choice of (crs, G, w, z) by A1.

37We will indeed use this assumption in the proof below: The distinguisher that breaks the commitment scheme will
have access to the generated auxiliary information z, which incorporates w. We comment, though, that incorporating
w into z is not crucial for this purpose, since the distinguisher can also have access to w itself. The only crucial point
is that the distinguisher can generate (G, w) efficiently (i.e., using A1) when trying to break the commitment.

46

The algorithm D′σ gets (crs, G, z, α) and creates a string β as follows. It chooses i ∈ [r] uni-
formly at random, then generates i− 1 independent instances of ξreal and r− (i− 1) independent
instances of ξsim. Note that to generate ξreal it needs a witness w, which it gets from z (recall
that we assumed wlog that A1 includes w in z, and thus for our purposes we can define D′σ that
expects w in z). The string β is the first component among the r that is not ⊥ (or ⊥ if all are ⊥).

Observe that for any fixed choice of (crs, G, w, z) by A1, if D′σ gets the corresponding RV
(crs, G, z, ξsim) then the distribution of β is identical to Hi−1, and if D′σ gets the RV (crs, G, z, ξreal)
then β is distributed identically to Hi.

The algorithm D′σ feeds (crs, G, β, z) into A2, and outputs A2(crs, G, β, z)⊕ σ. By the above,
for some σ this algorithm has distinguishing advantage of at least 1/(2r · p(n)). □

Combining Claim 5.6 with Claim 5.5, we deduce that D′ distinguishes between ξreal and ξmid
(i.e., rather than just between ξreal and ξsim); that is:

∣∣Pr
[
D′

(
crs, G, ξreal(crs, G, w, z), z

)
= 1

]
− Pr

[
D′

(
crs, G, ξmid(crs, G, w, z), z

)
= 1

]∣∣ ≥ 1
2r · p(n) ,

for infinitely many n.
We now define an adversary D′′ that distinguishes u commitments to zeroes from u com-

mitments to ones, where u is the number of bits the honest prover commits to in c⃗; that is,
u = O(t · (n · log n + n2)) = O(t · n2). The adversary D′′ uses A1 to generate (crs, G, w, z). It
then chooses t random permutations π1, ..., πt and a random b⃗ ∈ {0, 1}t, and for each i ∈ [t] it
generates a “commitment” ci to (πi, πi(G)) in the following way.

1. If bi = 0, then it uses crs and fresh random coins to generate a (true) commitment to
(πi, πi(G)).

2. If bi = 1, then for each bit of (πi, πi(G)), if the bit is zero then it uses crs and fresh
random coins to generate a true commitment to that bit, and if the bit is one then it uses a
commitment that it received as input.38 However, one exception is that for the bits of the
cycle πi(w), it uses crs and random coins to generate true commitments.

Denote the commitments above by c̃. If the value of f on the padded version of (G, c̃) is not
b⃗, then D′′ outputs ⊥. Otherwise, it outputs (crs, G, (⃗b, c̃, m⃗), z) where m⃗ is the honest prover’s
response when choosing permutation π and receiving challenge b⃗ from the verifier. Observe that:

Claim 5.7. When the input to D′′ is commitments to one, the output distribution of D′′ is identical to
(crs, G, ξreal , z). When the input is commitments to zero, the output distribution of D′′ is identical to
(crs, G, ξmid, z).

Proof. Recall that the only difference between ξreal and ξmid is in commitments ci for indices i ∈ [t]
where bi = 1: In ξreal the commitments in ci are for the bits of (πi, πi(G)), whereas in ξmid these
are commitments to a string that has zeroes everywhere except the cycle πi(w) (and in these
locations it indeed has commitments to the bits of πi(w)).

Fix a choice of b⃗ ∈ [t], and fix i ∈ [t]. If bi = 0 then D′′ generates ci identically to the way
ci is generated in ξreal and in ξmid (conditioned on the fixed choice of b⃗, i). If bi = 1, then the

38Each input commitment is used at most once, for some i ∈ [t] and for some bit of (πi, πi(G)).

47

following holds: When the input to D′′ is commitments to zero, the output is a commitment to
the all-zero string except for the locations in πi(w), which is identical to ξmid; and when the input
is commitments to one, the output is a commitment to (πi, πi(G)), which is identical to ξreal . □

By combining D′′ with D′ from Claim 5.6, we get an algorithm D that distinguishes between
the two cases in time poly(r) = 2O(t) with advantage 1

2r·p(n) , for infinitely many n.
The last step is another hybrid argument. Consider u + 1 hybrid distributions H0, ..., Hu,

where Hi consists of i commitments to zero and u− i commitments to one. Since |Pr[D(H0) =
1]− Pr[D(Hu) = 1]| ≥ 1

2r·p(n) , for some σ it holds that

Ei∈[u] [Pr[D(Hi) = σ]− Pr[D(Hi−1) = σ]] ≥ 1
r · u · p(n)

for infinitely many n.
The final adversary distinguishes between a commitment to zero and a commitment to one

as follows. It chooses i ∈ [u] uniformly at random, creates u commitments by placing its received
commitment at location i and generating the other commitments accordingly,39 and calling D
on the generated commitments. This algorithm runs in time poly(r) and achieves advantage
1/poly(r), contradicting the security of the commitment scheme.

Having established the completeness, soundness and unbounded simulator property, we de-
duce that the proof system is a zap, and also a NIWI in case the commitment is in the plain model.
This concludes the proof of Theorem 5.1.

5.2 Prior work on zaps, NIWI and NIZK

Prior to our work there were only three main constructions of NIWIs, all from highly structured
assumptions, as we describe next.

• Barak, Ong and Vadhan [OV07] gave the first construction of a NIWI. Their construction
relies on a combination of two assumptions: (1) statistically-sound zaps (in the uniform
common random string model) and (2) a NW-style derandomization assumption. Statically
sound zaps are known from (1) (doubly-efficient) trapdoor permutations [DN07] (which
in turn are only known based on factoring [RSA78; Rab79] or from indistinguishability
obfuscation (IO) [BPW16], which is discussed below), (2) the decisional linear assumption
on groups equipped with a bilinear map [GOS06] or (3) directly from IO [BP15].

• Groth, Ostrovsky and Sahai [GOS06] directly constructed NIWI based on the decisional
linear assumption on groups equipped with a bilinear map.

• Bitansky and Paneth [BP15] construct NIWI from IO and one-way permutations. While
by now IO is known to exist based on fairly standard assumptions [JLS21; JLS22], the
assumptions are still very specific and highly structured.

Needless to say, the above constructions of NIWI are all also zaps. In addition to these, we
mention the works of [BFJ+20; LVW19; LVW20; GJJ+20; CKS+21] who construct statistical zap

39That is, the first i− 1 commitments are commitments to zero and the last u− i commitments are commitments to
one.

48

arguments (some of which are only privately-verifiable), from problems such as learning with
errors or problems related to discrete log.

As for NIZKs, for a long time the only known constructions relied on factoring [FLS90] or
hardness assumptions on bilinear groups [GOS06]. Recently however, the aforementioned thread
on secure instantiations of Fiat-Shamir have led to constructions relying on LWE [CCH+19; PS19],
Diffie-Hellman style-assumptions [JJ21; CJJ+23] or certain combinations of LPN with other as-
sumptions [BKM20].

6 Correlation intractability vs derandomization

Our goal in this section is to prove an equivalence between certain targeted hitting-set generators
(targeted HSGs), and a relaxed variant of correlation intractable hash functions (CIHFs). This
equivalence sheds new light on both objects, and more generally on the connection between
correlation intractability, Fiat-Shamir, and derandomization.

Working in the uniform setting. The focus of this work is the setting of uniform algorithms.
Thus, we will consider targeted generators that are pseudorandom for uniform algorithms, and
CIHFs that are secure against relations recognizable by uniform algorithms.

We stress that we do not know how to securely instantiate the Fiat-Shamir heuristic for in-
teresting classes of proof systems when the class of relations is (say) all relations recognizable
by uniform algorithms running in some fixed polynomial time. (As an illustrative example, note
that the relation underlying the proof of [HL18] is recognizable only by non-uniform circuits.)
Nevertheless, one may view the current work as demonstrating that Fiat-Shamir can be securely
instantiated for the GKR proof system with CIHFs that avoid relations recognizable by uniform
small-space algorithms (as in Theorem 1.3 and Corollary 7.6).

Comparing “apples-to-apples”. Recall that a standard CIHFs is a keyed collection of functions
{hα : {0, 1}n → {0, 1}m}α. Using standard CIHFs that avoid relations from a sufficiently strong
class, we can simulate corresponding classes of proof systems by non-interactive protocols in the
CRS model (i.e., by a two-message public-coin protocol).

The assumptions in this work (cf., Theorems 1.3 and 1.7) refer to a single function, rather
than to a keyed collection of functions. This is also the case in previous works that constructed
targeted hitting-set generators (targeted HSGs) and targeted pseudorandom generators (targeted
PRGs), which are a single function rather than a keyed collection [CT23]. Indeed, we can use
targeted HSGs to simulate corresponding classes of proof systems by non-interactive protocols
in the plain model (i.e., by cs-NT IME verifiers).

To fairly compare the two objects, we need to compare either “keyed” targeted PRGs to
standard CIHFs, or standard targeted HSGs to “keyless” CIHFs.40 In the current section we
take the latter route, but it will be clear from our proofs that the two “keyed” versions are also
equivalent. Moreover, “keyed” versions of all our assumptions in this paper allow simulating the
corresponding proof systems in the CRS model, as one would expect.

40It is well-known that when considering CIHFs against a class of relations R ⊇ P/poly, efficiently computable
keyless CIHFs do not exist (see [CGH04]). However, as we explain below, we consider CIHFs h for relations whose
complexity is lower than that of h itself. In fact, in Theorem 6.8 we provide evidence that in this setting, keyless CIHFs
(of a relaxed type) do exist.

49

6.1 Targeted generators

Targeted PRGs were first defined by Goldreich [Gol11], who showed that they are sufficient and
necessary for derandomization. Specifically, he considered targeted PRGs that are pseudorandom
for uniform bounded-time algorithms on all inputs, and showed an equivalence between such
objects (running in fixed polynomial time) and the assumption prBPP = prP .

Following [CT21; CT23], we consider a more general notion. First, we consider targeted
HSGs rather than targeted PRGs. Secondly, we allow classes of uniform algorithms other than
just bounded-time algorithms. And thirdly, we do not necessarily require pseudorandomness on
all inputs, but also allow pseudorandomness only over certain distributions. That is:

Definition 6.1 (ϵ-avoiding). We say that a function D : {0, 1}m → {0, 1} is an (1− ϵ)-dense avoider

for a set S ⊆ {0, 1}m if

Pr
r∈{0,1}m

[D(r) = 1] ≥ 1− ϵ ∧ ∀s ∈ S, D(s) = 0 .

Definition 6.2 (targeted HSGs). Let G be an algorithm that gets input x ∈ {0, 1}n and outputs p =
p(n) strings of length m = m(n), and let x = {xn}n∈N be an ensemble of distributions (where xn is
over {0, 1}n). We say that G is a targeted hitting-set generator that is (ϵ, δ)-pseudorandom over x for a

class C of uniform algorithms (or (ϵ, δ)-targeted HSG over x for C, in short) if for every Turing machine
M ∈ C, and every sufficiently large n ∈N,

Pr
x∼xn

[M(x, ·) is a (1− ϵ)-dense avoider for G(x)] ≤ δ(n) , (6.1)

where M(x, ·) is the function that gets input r and outputs A(x, r).

6.2 List-correlation-intractable hash functions

Our goal now is to define a relaxed type of (keyless) correlation-intractable hash functions. Since
we will be dealing with keyless CIHFs (which, by themselves, are not commonly studied), let us
first define the natural keyless variant of CIHFs, before presenting its relaxation.

Definition 6.3 (sparse relations). We say that a relation Rn ⊆ {0, 1}n × {0, 1}m is ϵ-sparse if for every
x ∈ {0, 1}n we have that Prr∈{0,1}m [(x, r) ∈ Rn] ≤ ϵ. When R = {Rn ⊆ {0, 1}n × {0, 1}m}n∈N is a
sequence of relations, we require that Rn is ϵ(n)-sparse for every sufficiently large n ∈N.

Definition 6.4 (recognizable relations). Let C be a class of uniform algorithms. We say that a relation
R = {Rn ⊆ {0, 1}n × {0, 1}m}n∈N is recognizable in C if there is a Turing machine M ∈ C that gets
input (x, r) ∈ {0, 1}n × {0, 1}m and accepts if and only if (x, r) ∈ Rn.

When C is a class of bounded-time or bounded-space machines, we will measure the ma-
chine’s complexity as a function of x, rather than of (x, r). This choice is useful for our equiva-
lence result, but it also fits well with applications of CIHFs: Typically there is a “main input” x,
or a security parameter λ, and complexity/security is measured with respect to x or to λ.

Definition 6.5 (keyless CIHFs). Let h be a function that maps n bits to m = m(n) bits, and let
x = {xn}n∈N be an ensemble of distributions (where xn is over {0, 1}n). We say that h is δ-correlation-
intractable over x for ϵ-sparse relations recognizable in C if for every ϵ-sparse relation
R = {Rn ⊆ {0, 1}n × {0, 1}m}n∈N recognizable in C, and every sufficiently large n ∈N,

Pr
x∼xn

[(x, h(x)) ∈ Rn] ≤ δ(n) . (6.2)

50

Definition 6.5 refers to CIHFs that are secure over a fixed distribution x. This also allows us to
consider CIHFs that are secure over every x coming from a class X of distributions. For example,
the standard notion of CIHFs considers X as the class of all efficiently samplable distributions.

Recall that Canneti, Goldreich, and Halevi [CGH04] showed that there is no polynomial-time
computable keyless CIHF secure against all relations in P/poly. However, their result does not
preclude a keyless CIHF computable in time (say) T2 that is correlation-intractable for relations
recognizable in time T. (In fact, in Theorem 6.8 below we present strong evidence for the existence
of (our relaxed variant of) keyless CIHFs.) Note that CIHFs whose complexity is larger than that
of recognizing R, as is allowed in Definition 6.5, suffice for the key application of Fiat-Shamir.

The relaxed variant: List-CIHFs. We now present the relaxed variant of keyless CIHFs. In this
relaxation, we allow h to output multiple strings h(x)1, ..., h(x)p, and only ask that for any sparse
and efficiently recognizable relation R, at least one of the output strings h(x)s is such that (x, h(x)s)
avoids R. This natural relaxation has not been considered in the literature before.

Definition 6.6 (list-CIHFs). Let h be a function that gets input x ∈ {0, 1}n and outputs p = p(n)
strings of length m = m(n), and let x = {xn}n∈N be an ensemble of distributions. We say that h is
δ-list-correlation-intractable over x for ϵ-sparse relations recognizable in C if for every ϵ-sparse relation
R = {Rn ⊆ {0, 1}n × {0, 1}m}n∈N recognizable in C, and every sufficiently large n ∈N,

Pr
x∼xn

[∀s ∈ [p(n)] : (x, h(x)s) ∈ Rn] ≤ δ(n) . (6.3)

We will consider efficiently computable list-CIHFs, in which case the list size p = p(n) is also
bounded (by the runtime of h). Note that a “keyed” version of Definition 6.6 can be obtained in
the natural way: Allowing hα to depend on a random key α, and requiring that for every R and
sufficiently large n ∈N, with high probability over α Eq. (6.3) holds.

6.3 The equivalence and its implications

We now show that the two notions in Definitions 6.2 and 6.6, one notion from complexity theory
and the other notion from cryptography (respectively), are precisely identical.

Theorem 6.7 (targeted HSGs vs list-CIHFs). Let C be a class of algorithms running in time T. A
function G is a targeted HSG (ϵ, δ)-pseudorandom over x for C if and only if G is δ-list-correlation-
intractable over x for ϵ-sparse relations recognizable in C.

For simplicity, we stated Theorem 6.7 with respect to the class C of algorithms running in
time T, but the proof applies essentially as-is to many other classes (e.g., to algorithms running
in linear space, or to classes of oracle machines).

Proof of Theorem 6.7. We first prove that a targeted HSG implies a list-CIHF. Let G be a targeted
HSG (ϵ, δ)-pseudorandom over x for C, let h = G and let R = {Rn} be an ϵ-sparse relation
recognizable in C. We define a probabilistic algorithm A that gets input x and randomness r,
and accepts iff (x, r) /∈ R. Note that A runs in time T(|x|). Also, for each x we have that
Prr[A(x, r) = 1] ≥ 1 − ϵ, because R is sparse. In particular, if {(x, h(x)s)}s∈[p(n)] ⊆ Rn, then
A(x, ·) is a (1− ϵ)-dense avoider for G(x). Thus, if Eq. (6.3) is violated for R, then Eq. (6.1) is
violated for A.

51

In the other direction, let h be list-correlation-intractable for ϵ-sparse relations recognizable
in C, let G = h, and let A be a Turing machine that gets input (x, r), runs in time T(|x|), and
outputs a bit. We say that an input x is valid if Prr[A(x, r) = 1] ≥ 1− ϵ. We define a relation
R that includes all pairs (x, r) such that x is valid and A(x, r) = 0. By definition, we have that
R is ϵ-sparse and recognizable in time T. Now, for every x such that A(x, ·) is a (1− ϵ)-dense
avoider for G(x), we know that x is valid and that for all s ∈ [p(n)] it holds that A(x, h(x)s) = 0;
in particular, {(x, h(x)s)}s∈[p(n)] ⊆ Rn. Thus, if Eq. (6.1) is violated for A, then Eq. (6.3) is violated
for R.

List-CIHFs for weaker relations are equivalent to prBPP = prP . The list-CIHFs (equiv., tar-
geted HSGs) that suffice for the applications in this work and in [CT23] need to avoid relations
decidable by bounded-space machines, or by algorithms with access to a non-trivial oracle.41

List-CIHFs that avoid weaker classes of relations turn out to be equivalent to standard deran-
domization: For example, list-CIHFs avoiding relations recognizable in fixed polynomial time
that are secure on all inputs exist if and only if prBPP = prP .

In more detail, we say that a targeted HSG is ϵ-pseudorandom for C on almost all inputs if it
is (ϵ, 0)-pseudorandom for C over every possible ensemble x. Similarly, we say that a list-CIHF
is list-correlation-intractable for C on almost all inputs if it is 0-list-correlation-intractable for C over
every possible ensemble x. Then:

Theorem 6.8 (list-CIHFs vs derandomization). The following three statements are equivalent:

1. prBPP = prP .

2. For every time bound T(n) ≥ n, there exists a targeted HSG computable in time poly(T) that is
(1/2, 0)-pseudorandom for time T on almost all inputs.

3. For every time bound T(n) ≥ n, there exists h computable in time poly(T) that is list-correlation-
intractable for (1/2)-sparse relations recognizable in time T on almost all inputs.

Proof. The equivalence of Items (2) and (3) follows from Theorem 6.7. The implication (2) ⇒
(1) follows because Item (2) implies that prRP = prP , and using the well-known fact that
prBPP = prRP prRP (see [Lau83; Sip83; BF99; GZ11]). The implication (1) ⇒ (2) follows using
Goldreich’s [Gol11] search-to-decision reduction.

We stress again that list-CIHFs as in Theorem 6.8 are not known to suffice for securely instan-
tiating Fiat-Shamir.

7 List-CIHFs (equiv., targeted HSGs) suffice for Fiat-Shamir

The purpose of this section is to argue that the relaxation of CIHFs to list-CIHFs (as defined
in Section 6.2) suffices for the application of Fiat-Shamir in several important settings.

In particular, we show that list-CIHFs with sufficiently small list size suffice for all of our
results. We first prove that list-CIHFs suffice for applying the Fiat-Shamir heuristic to the proof

41In [CT23, Theorem 7.8] the relation is decidable by a bounded-time algorithm with oracle to a doubly-efficient
interactive proof. In this work, the relation is decidable in bounded space (cf., Theorem 1.3) or in bounded-time with
oracle access to bounded non-deterministic time (cf., Theorem 1.8).

52

system of [GKR15] (see Section 7.1), and we then prove that list-CIHFs suffice for applying the
Fiat-Shamir heuristic to zero-knowledge PCPs, obtaining NIZK for NP (see Section 7.2).

7.1 List-CIHFs suffice for Fiat-Shamir of GKR

We define a class of proof systems called batchable proof systems, and show that list-CIHFs suffice
for Fiat-Shamir of such systems. We then show that the proof system of [GKR15] is batchable,
and deduce that list-CIHFs suffice for applying Fiat-Shamir to it.

Since the definition of batchable proof systems is quite cumbersome, we first recall in Sec-
tion 7.1.1 the definition of proof systems with round-by-round soundness (introduced in [CCH+19]),
which are a superclass of batchable proof systems. Then, in Section 7.1.2 we explain how to refine
this definition to obtain the definition of batchable proof systems. In Section 7.1.3 we prove that
list-CIHFs suffice for Fiat-Shamir of batchable proof systems. Lastly, in Section 7.1.4 we prove
that the proof system of [GKR15] is batchable.

Notation. Throughout this section we will refer to promise problems that represent proof systems.
This notion will be formally defined below, but at a high level, a promise problem Π = (Y,N) can
represent a proof system by including in Y partial transcripts that are “good” (e.g., likely to be
accepted by the verifier when communicating with an honest prover) and including in N partial
transcripts that are “bad” (e.g., likely to be rejected by the verifier, regardless of the prover).

7.1.1 Round-by-round soundness

For illustration, and to set up the stage towards defining batchable proof systems, let us recall
the more relaxed notion of proof systems with round-by-round soundness, which was introduced
by Canetti et al. [CCH+19].

Definition 7.1 (round-by-round soundness). Let Π0 = (Y0,N0) be a promise problem, and let Π =
(Y,N) be another promise problem. We say that Π represents a proof system with R rounds and round-

by-round soundness for Π0 if it satisfies the following three conditions:

1. (First round.) For every x ∈ {0, 1}∗ it holds that:42

x ∈ Y0 =⇒ ∃π1 : Pr
r1
[∃π2 : ⟨x, π1, r1, π2⟩ ∈ Y] = 1 ,

x ∈ N0 =⇒ ∀π2 : Pr
r1
[∀π2 : ⟨x, π1, r1, π2⟩ ∈ N] ≥ 1− 1/3R .

2. (Generic round.) For every i ∈ {2, ..., R− 1}:

⟨x, π1, r1, ..., ri−1, πi⟩ ∈ Y =⇒ Pr
ri
[∃πi+1 : ⟨x, π1, r1, ..., ri, πi+1⟩ ∈ Y] = 1

⟨x, π1, r1, ..., ri−1, πi⟩ ∈ N =⇒ Pr
ri
[∀πi+1 : ⟨x, π1, r1, ..., ri, πi+1⟩ ∈ N] ≥ 1− 1/3R

42We separate the first round from subsequent rounds because the first round refers to the initial promise-problem
Π0, and because in the proof systems considered in this paper, the prover speaks first. We could also use an alternative
definition that forces consistency between Π0 and Π (i.e., x ∈ Y0 ⇐⇒ x ∈ Y and x ∈ N0 ⇐⇒ x ∈ N) and allows the
verifier to speak first.

53

3. (Verifiability.) There is a ppt verifier V such that

⟨x, π1, r1, ..., rR−1, πR⟩ ∈ Y =⇒ Pr [V(x, π1, r1, ..., rR−1, πR) = 1] = 1
⟨x, π1, r1, ..., rR−1, πR⟩ ∈ N =⇒ Pr [V(x, π1, r1, ..., rR−1, πR) = 1] ≤ 1/3

Canetti et al. [CCH+19] proved that the sumcheck protocol of Lund et al. [LFK+92] and the
proof system of Goldwasser, Kalai, and Rothblum [GKR15] have round-by-round soundness.
Since the proof system of [GKR15] can be used to show that IP = PSPACE , it follows that
PSPACE has a proof system with round-by-round soundness.

7.1.2 Batchable proof systems

We now define K-batchable proof systems, where K = K(n) is a parameter. It is instructive to
think of the value K(n) = poly(n). To aid in parsing the definition, we first explain our intention
behind the various notions and notations in the definition.

The notions and notations underlying the definition. Let Π0 = (Y,N), and assume that there
is Πrbr = (Yrbr,Nrbr) representing a proof system with round-by-round soundness for Π0. Loosely
speaking, a promise-problem Π represents a K-batchable proof system if there is another proof
system in which the following happens.

Both parties get a common input x, and the prover sends an initial message π1. Then, in each
round i = 2, ..., R− 1, instead of sending a single challenge ri−1 and expecting to receive a good
response πi (i.e., as in the proof system represented by Πrbr), the verifier sends a tuple of K chal-
lenges r(1)i−1, ..., r(K)i−1, and the honest prover will respond with the K corresponding good responses

π
(1)
i , ..., π

(K)
i . That is, instead of sending ri−1 and expecting πi such that the transcript with

(ri−1, πi) appended is in Yrbr, the verifier sends r(1)i−1, ..., r(K)i−1 and expects to receive π
(1)
i , ..., π

(K)
i

such that for every k ∈ [K], the transcript with (r(k)i−1, π
(k)
i) appended is in Yrbr. In addition, in

every round the prover will send another message π′i that aids batch-verification of the K mes-
sages simultaneously. The point is that in each subsequent round the verifier continues to send
K challenges and receive K + 1 responses (rather than branch to Ki challenges after i rounds). At
the end of the interaction, the verifier tests the final transcript and outputs a decision.

Recall that in the proof system represented by Πrbr, there are Yrbr-transcripts, which remain
in Yrbr with high probability over the verifier’s challenge (given an appropriate response from
the honest prover) and Nrbr-transcripts, which remain in Nrbr with high probability (for any
response by any prover). For K-batchable proof systems, we will define analogous notions of
good transcripts and of doomed transcripts, referring to partial transcripts with K challenges and
K + 1 responses in each round, and in a similar way, require that (with high probability) good
transcripts remain good, and doomed transcripts remain doomed.

To do so, we think of Π = (Y,N) as representing a mental experiment of what would happen
if the verifier would have sent a single challenge and received a single response in the latest round
of partial interaction. Specifically, fix a partial transcript with K challenges and K + 1 responses in
each round, and consider the mental experiment of conducting next round with a single challenge
and response. We define good transcripts as ones where, with high probability over the verifier’s
challenge in the next round, the transcript will be in Y (given an appropriate response from the

54

honest prover); and we define doomed transcripts as ones where, with high probability over the
verifier’s challenge, the transcript will be in N (for any response by any prover).

When analyzing a round in actual the proof system, with K challenges and K + 1 responses,
we think of each challenge-response pair (r(k)i−1, π

(k)
i) (for k ∈ [K]) as yielding a separate partial

transcript π
(k)
≤i for the mental experiment of Π, and require the following: If all K partial tran-

scripts π
(1)
≤i , ..., π

(K)
≤i are in Y, then the actual transcript π≤i (which is obtained when the verifier

sends all K challenges and receives K + 1 responses) is good; and if at least one of the K partial
transcripts π

(k)
≤i−1 is in N, then the actual transcript π≤i is doomed. This ensures that, with high

probability, good transcripts remain good, and doomed transcripts remain doomed.

The full definition. For convenience, given a partial transcript π≤i−1 = ⟨x, π1, ...⟩ and strings
ri−1 and πi, we denote by ⟨π≤i−1, ri−1, πi⟩ the partial transcript that is obtained by appending
ri−1 and πi at the end of π≤i−1.

Definition 7.2 (batchability). Let Π0 = (Y0,N0) be a promise problem, and let Π = (Y,N) be another
promise problem. We say that Π represents a K-batchable proof system with R rounds for Π0 if the
following holds.

Let π≤i =
〈

x, π1, (r(1)1 , ..., r(K)1), (π(1)
2 , ..., π

(K)
2 , π′2), ..., (π(1)

i , ..., π
(K)
i , π′i)

〉
be a partial transcript.

(For i = 1, we consider π≤1 = ⟨x, π1⟩.) We say that

π≤i is good if Pr
ri
[∃πi+1 : ⟨π≤i, ri, πi+1⟩ ∈ Y] = 1

π≤i is doomed if Pr
ri
[∃πi+1 : ⟨π≤i, ri, πi+1⟩ ∈ N] ≥ 1− 1/3R .

Then, we require that:

1. (First round.) (Intuitively, in the first round, the parties hold common input x and the prover sends
a message π1 to the verifier.) We require that for every x ∈ {0, 1}∗,

x ∈ Y0 =⇒ ∃π1 : ⟨x, π1⟩ is good ,
x ∈ N0 =⇒ ∀π1 : ⟨x, π1⟩ is doomed .

2. (Generic round.) Let i ∈ {2, ..., R− 1}, and fix a partial transcript
π≤i−1 =

〈
x, π1, (r(1)1 , ..., r(K)1), (π(1)

2 , ..., π
(K)
2 , π′2), ..., (π(1)

i−1, ..., π
(K)
i−1, π′i−1)

〉
.43

(Intuitively: The verifier sends K challenges r(1)i−1, ..., r(K)i−1, and the prover answers with K responses

π
(1)
i , ..., π

(K)
i along with an additional response π′i . The transcript at the end of this round is

π≤i =
〈

π≤i−1,
(

r(1)i−1, ..., r(K)i−1

)
,
(

π
(1)
i , ..., π

(K)
i , π′i

)〉
.)

We require that for every K challenges r(1)i−1, ..., r(K)i−1 and K responses π
(1)
i , ..., π

(K)
i ,

∀k ∈ [K],
〈

π≤i−1, r(k)i−1, π
(k)
i

〉
∈ Y =⇒ ∃π′i : π≤i is good ,

∃k ∈ [K],
〈

π≤i−1, r(k)i−1, π
(k)
i

〉
∈ N =⇒ ∀π′i : π≤i is doomed .

43In case i = 2, we will have π≤1 = ⟨x, π1⟩.

55

3. (Final round.) Consider the last round i = R, and let π≤R−1 be a partial transcript going into this
round.

(Intuitively: The verifier sends K challenges r(1)R−1, ..., r(K)R−1, the prover answers with K responses

π
(1)
R , ..., π

(K)
R along with an additional response π′R, and the transcript at the end of the interaction

is π≤R =
〈

π≤R−1,
(

r(1)R−1, ..., r(K)R−1

)
,
(

π
(1)
R , ..., π

(K)
R , π′R

)〉
.)

Then, there is a probabilistic verification procedure V running in time poly(n) such that for every
K challenges and K responses,

∀k ∈ [K],
〈

π≤R−1, r(k)R−1, π
(k)
R

〉
∈ Y =⇒ ∃π′R : Pr[V(π≤R) = 1] = 1 ,

∃k ∈ [K],
〈

π≤R−1, r(k)R−1, π
(k)
R

〉
∈ N =⇒ ∀π′R : Pr[V(π≤R) = 1] ≤ 1/3 .

The randomness complexity of V is the maximum, over all i ∈ [R] and partial transcripts π≤i up to
round i, of the length of ri. We assume, for simplicity, that this value also upper-bounds the number of
random coins that V uses in the final verification procedure. The next-prover-message complexity is the
complexity of deciding, given a partial transcript π≤i = ⟨x, π1, r̂1, ..., π̂i, ri⟩, whether or not there exists
πi+1 such that ⟨π≤i, πi+1⟩ /∈ N.

Remark 7.3. Batchable proof systems are a special case of proof systems with round-by-round soundness.
To see this, observe that if a proof system is K-batchable, then it is K′-batchable for any K′ < K (i.e.,
the verifier can simply repeat some challenges to get precisely K challenges); and note that when K =
1, Definition 7.2 is essentially identical to Definition 7.1.44 Thus, if a proof system is K-batchable, in
particular it has round-by-round soundness.

7.1.3 List-CIHFs suffice for Fiat-Shamir of batchable proof systems

We now present a general result asserting that targeted hitting-set generators suffice for de-
randomization of batchable proof systems. Since targeted HSGs are equivalent to list-CIHFs
(see Theorem 6.7), this can be equivalently thought of as showing that list-CIHFs suffice for ap-
plying Fiat-Shamir to batchable proof systems. Indeed, we arbitrarily chose to use the former
terminology in the statement and proof rather than the latter.

Theorem 7.4 (targeted HSGs suffice for derandomization of batchable proof systems). Let K, TV , TG, TP
be time bounds such that K, TV , TG ≤ 2o(n).

• Let Π = (Y,N) be a promise problem that has a K-batchable proof system such that the verifier runs
in time TV and has randomness complexity r = r(n), the next-prover-message space complexity is
linear, the honest prover runs in time TP, the number of rounds is R = R(n) ≤ TP(n), and the
total communication complexity is cc = cc(n). Also assume that the verification in the final round
is deterministic.45

44The only difference between the definitions when K = 1 is that batchable proof systems allow the prover to send
an auxiliary message π′i at each round; however, this auxiliary message is redundant when K = 1.

45Alternatively, we may assume that the space complexity of verifying the final transcript is linear (i.e., space
complexity O(cc(n))). The point is that if the last verification step is probabilistic, we need the targeted HSG to be
pseudorandom for it.

56

• For T′P = O(K · TP) and N = N(n) ≥ cc(n), assume that there is a targeted HSG G that
is (1/2, T′P(n)

−ω(1))-pseudorandom for space O(cc(n)) over all distributions samplable in time
poly(T′P(n)) such that on inputs of length N, the targeted HSG runs in time TG(N) and prints
K(n) strings of length r(n). (We think of the targeted HSG as instantiated on inputs z of length
N(n) ≥ n, so all occurrences of n in the foregoing statement mean N−1(|z|).)

Then, Π ∈ cs-NT IME [poly(TV , R · TG(N)), T′P].

A useful setting of parameters to keep in mind is the following. For K(n) = poly(n), the
K-batchable proof system has R(n) = O(n) rounds, with a verifier running in polynomial time
TV(n) = poly(n) and sending r(n) = O(n) bits in each challenge. The targeted HSG gets input
of length N = poly(n), runs in polynomial time, and outputs K(n) = no(1) strings of length r.

The proof system of [GKR15] can be used to decide TQBF with such parameters (see Sec-
tion 7.1.4), and a targeted HSG with the parameters above was constructed in [CT21; CT23] from
hardness over all efficiently samplable distributions (see Corollary 7.6).

Proof of Theorem 7.4. We define a deterministic verifier V that interacts with the prover in
rounds. The existence of such a verifier implies the existence of an NP-verifier for the same
problem, since the honest prover can send all messages in advance to the NP-verifier.

The deterministic verifier. At each round i ∈ [R − 1], let
π≤i =

〈
x, π1, (r(1)1 , ..., r(K)1), ..., (π(1)

i , ..., π
(K)
i , π′i)

〉
be the transcript going into round i. The verifier

pads π≤i by zeroes to be of N bits, and computes G on the padded string, to obtain the pseu-
dorandom strings r(1)i , ..., r(K)i . In the last round, the verifier accepts if and only if the original
verifier accepts the transcript.

The only overhead of V on top of the original verifier is in computing G in each of the R
rounds. Thus, the verifier V runs in time TV · R · TG(N) ≤ poly(TV , TG, R), and the NP-verifier
runs in the same time.

Completeness. Note that V chooses a pseudorandom subset of K challenges in each round, and
uses a final verification procedure identical to that of the original verifier. Thus, completeness is
trivially maintained, using essentially the same honest prover as in the original proof system.

In more detail, in each round in the new protocol, and given each of the K challenges, the
honest prover needs to compute the same response that the honest prover in the original system
would have sent. Thus, the honest prover’s time complexity is at most T′P = O(K · TP).

Soundness. To prove soundness, consider any efficient adversary P̃ as a distribution over de-
terministic efficient strategies, and denote by P ∼ P̃ a choice of deterministic efficient strategy.
We will prove that the following holds:

Claim 7.4.1 (round-by-round soundness is maintained). For any fixed i ∈ [R− 1] and fixed P ∼ P̃,
let π≤i = πP

≤i =
〈

x, π1, (r(1)1 , ..., r(K)1), (π(1)
2 , ..., π

(K)
2 , π′2), ..., (π(1)

i , ..., π
(K)
i , π′i)

〉
be the transcript of

interaction between V and P up to round i, and let r(1)i , ..., r(K)i be the challenges that V chooses. We say
that a veri�cation mistake occurred if π≤i is doomed and

∀k ∈ [K] ∃π
(k)
i+1 :

〈
x, π1, ..., (π(1)

i , ..., π
(K)
i , π′i), r(k)i , π

(k)
i+1

〉
/∈ N . (7.1)

57

Then, the probability over P ∼ P̃ that a verification mistake occurred is negl(T′P(n)).

Proof. For i ∈ [R − 1], we say that π≤i is bad if π≤i is doomed and Eq. (7.1) holds (i.e., if a
verification mistake occurred). Assume towards a contradiction that there exists a probabilistic
T′P-time adversary P̃ such that for infinitely many n ∈ N, with probability at least poly(1/T′P)
over P ∼ P̃, there exists i ∈ [R] such that π≤i is bad.

Let zN be the distribution over N-bit inputs obtained by randomly choosing P ∼ P̃ and
i ∈ [R], simulating the interaction between V and P up to round i to obtain π≤i, and padding π≤i
by zeroes to obtain an N-bit string τi. Note that z = {zN}N is samplable in time poly(T′P(n)).

For every τi in the support of z, let Dτi be the function that gets input ri and outputs “yes” if
and only if for all πi+1 it holds that (π≤i, ri, πi+1) ∈ N. Note that if π≤i is bad, then Prri [Dτi(ri) =

1] ≥ 1− 1/3R, but Prk∈[K]

[
Dτi(r

(k)
i) = 1

]
= 0. Hence, whenever π≤i is bad, Dτi is a (1/2)-avoider

for G f (τi). Also, since the next-prover-message space complexity in the proof system is linear,
the function Next(τi, ri) = Dτi(ri) is also computable in space O(cc(n)).

Since the probability over zN ∼ zN that τi corresponds to a bad π≤i is at least poly(1/T′P(n)) ·
(1/R) = poly(1/T′P(n)), the probability over zN ∼ zN that Next is a (1/2)-avoider for G(zN) is
at least poly(1/T′P(n)), a contradiction. □

By a union-bound over the R rounds, with probability at least 1− negl(T′P) that there was no
verification mistake in any of the rounds. In particular, if x ∈ N then with probability at least
1− negl(T′P) the final transcript π≤R is such that the verifier rejects.

7.1.4 The GKR protocol is batchable

We now argue that the proof system of Goldwasser, Kalai, and Rothblum [GKR15] is batchable,
in the sense of Definition 7.2. Since our goal is to demonstrate that list-CIHFs suffice to instantiate
the Fiat-Shamir heuristic with this proof system (i.e., apply Theorem 7.4 to this proof system),
we will also state the various complexity parameters of this proof system (e.g., the next-prover-
complexity, the honest prover complexity, and so on).

Proposition 7.5 (the GKR protocol is batchable). There exist two universal constants c, c′ such that
the following holds. Let {Cn}n∈N be a logspace-uniform family of circuits of size T(n) and depth d(n),
and let γ : N → (0, 1) be a logspace-computable function such that T(n)γ(n) ≥ log(T(n)) and d(n) ≤
T(n)c·γ(n).

Let Π0 = (Y0,N0) where (x0, b) ∈ Y0 if C|x0|(x0) = b and (x0, b) ∈ N0 if C|x0|(x0) = ¬b. Then,
for any K(n) ≤ T(n)c·γ/d(n), there is a promise problem Π representing a proof system for Π0 with the
following properties:

1. The proof system is K-batchable.

2. There are R = O((d/γ) · log(T)) rounds. The first message by the prover is of length Tγ ·
polylog(T). In each subsequent round, each of the K messages of the verifier is of length O(γ ·
log(T)), and the prover sends K + 1 messages, each of length at most K · Tγ · polylog(T).

3. The final verification procedure runs in time K3 · Tc′·γ · n · d · polylog(T).

58

4. The honest prover’s strategy in each round is computable in time T(1+γ)·c′ · K3 · d · polylog(T).
In addition, if the mapping of (x, g) ∈ {0, 1}n × [T(n)] to the value of the gth gate in Cn(x) is
computable in space S, then the next-prover-message space complexity is O((d/γ) · log(T · K)2 +
S).

Let us explain how the useful setting of parameters, which was suggested after the state-
ment of Theorem 7.4, can be obtained from Proposition 7.5. Recall that the PSPACE -complete
problem TQBF has logspace-uniform circuits of size T(n) = 2O(n) and depth d(n) = poly(n), in
which the value of each gate in circuit (on a given input x) can be computed in linear space. Let
K(n) = nc for some constant c, and let γ(n) = O(loglog(T)/ log(T)) (such that Tc·γ = poly(d)).
The proof system in Proposition 7.5 has R(n) = poly(n) rounds, with a verifier running in poly-
nomial time and sending r(n) = O(loglog(T)) = O(log n) bits in each challenge, and with a
next-prover-message space complexity poly(n). For an appropriately padded version of TQBF
(which is still PSPACE -complete), we get a proof system with linearly many rounds and with
linear next-prover-message space complexity.

By combining the logspace-uniform circuits for the padded version of TQBF, the batchable
proof system of Proposition 7.5, and the cs-NT IME simulation from Theorem 7.4, we obtain
the following corollary:

Corollary 7.6. Assume that there is a targeted HSG computable in polynomial time that is (1/2, 2−O(n))-
pseudorandom for linear space over all distributions samplable in time 2O(n), such that on inputs of length
N the targeted HSG outputs at most Nϵ strings of length Θ(log N), where ϵ > 0 is a sufficiently small
constant. Then, there is a PSPACE -complete problem decidable in cs-NT IME [poly(n), 2O(n)].

Indeed, the running time 2O(n) of the adversary in the assumption and of the prover in the
conclusion can be improved to 2nϵ

(for any constant ϵ > 0), using sufficient padding.

7.1.4.1 Polynomial decomposition of a circuit

For the proof of Proposition 7.5, we will need the following result, which is a variant of a result
from the previous work [CRT22, Proposition 4.2], following [GKR15; CT21].

Proposition 7.7 (polynomial decomposition of a circuit). There exist two universal constants c0, c′0 ∈
N such that the following holds. Let {Cn}n∈N be a logspace-uniform family of circuits of size T(n) and
depth d(n), and let γ : N → (0, 1) be a logspace-computable function such that T(n)γ(n) ≥ log(T(n)).
Then, for T′(n) = O(T(n)c0) and d′(n) = O(d(n) · log(T(n))) there is a circuit family {C′n}n∈N of
size T′ and depth d′ computing the same function as {Cn}, such that for every x ∈ {0, 1}n there exists a
sequence of polynomials {α̂i : Fm → F}i∈{0,...,d′·m} satisfying the following:

1. (Arithmetic setting.) The polynomials are defined over Fp, where p is the smallest prime in the
interval [Tγ·c0 , 2Tγ·c0]. Let H = [h] ⊆ F, where h is the smallest power of two of magnitude at least
Tγ/6, and let m be the minimal integer multiple of 3 such that hm/3 ≥ 2Tc0 . The total degree of each
α̂i is at most ∆ = h · polylog(T).

2. (Faithful representation.) For every i ∈ [d′(n)] and w⃗ ∈ Hm representing a gate in the ith layer
of C′n it holds that α̂(d′−i)·m(w⃗) is the value of the corresponding gate in C′n(x).

3. (Base layer.) There is an algorithm BASE that gets input x ∈ {0, 1}n and w⃗ ∈ Fm, runs in time
n · hc′0 , and outputs α̂d′·m(w⃗).

59

4. (Upwards self-reducibility.) There is an algorithm USR that gets input 1n and i ∈ {0, ..., d′ ·m− 1}
and w⃗ ∈ Fm, runs in time hc′0 while making h non-adaptive queries to α̂i+1, and outputs α̂i(w⃗).
There is another implementation of USR that uses space O(log T) (instead of time hc′0).

Furthermore, the mapping (i, w⃗) 7→ α̂i(w⃗) is computable in time T(n)c′0 ; and if the mapping of
(x, g) ∈ {0, 1}n× [T(n)] to the value of the gth gate in Cn(x) is computable in space S, then the mapping
(i, w⃗) 7→ α̂i(w⃗) can be computed in space O(S + log(T))

Proposition 7.7 was essentially already proved in [CRT22, Proposition 4.2]. However, since
we use different notation, and since some of the properties were demonstrated in their proof but
not explicitly stated in their result statement, we now explain how to obtain Proposition 7.7.

Proof sketch for Proposition 7.7. Our starting point is [CRT22, Proposition 4.2], which uses an
identical arithmetic setting except that they use the parameter value m′ = m/3 (i.e., they denote
by m the value that we denote m/3). For d′ = O(d · log T), they define polynomials{

β̂i,j : Fm′+j → F
}

i∈[d′],j∈[2m′]
,{

β̂i : Fm′ → F
}

i∈{0,...,d′}
,

and they also define β̂i ≡ β̂i,0 for i ≥ 1. (They denote the polynomials as α̂i and α̂i,j, but since we
will use a different indexing, we denote their polynomials as β̂i and β̂i,j.)

By adding dummy variables, we can think of all polynomials as mapping Fm → F. We also
reindex the polynomials in the following order:

β̂d′,0︸︷︷︸
α̂0

, β̂d′,1︸︷︷︸
α̂1

, ..., β̂d′,2m′︸ ︷︷ ︸
α̂2m′

, β̂d′−1,0, ..., β̂d′−1,2m′ , ..., β̂1,0, ..., β̂1,2m′ , β̂0︸︷︷︸
α̂(2m′+1)·d′

,

which yields a sequence of (2m′ + 1) · d′ < m · d′ + 1 polynomials. We add dummy polynomials
to make the sequence of length exactly m · d′+ 1. The faithful representation follows immediately
from the faithful representation in [CRT22] and our re-indexing.

In [CRT22] they prove that for every i ∈ [d′] and j ∈ [2m′], computing β̂i,j−1 reduces to
computing β̂i,j; and that for every i ∈ [d′], computing β̂i,2m′ reduces to computing β̂i−1 = β̂i−1,0.
Their reduction is stated as a logspace-uniform oracle circuit of size hc′0 and bounded depth,
and the construction readily gives a non-adaptive oracle machine USR with running time hc′0 .
Similarly, they show a logspace-uniform circuit of size max {n, h} · hc′0 (and bounded depth)
computing β̂0 = α̂m·d+1, and their construction readily gives an algorithm BASE with running
time max {n, h} · hc′0 .

To see that the polynomials can be computed in time poly(T), note that in such time we can
evaluate the entire circuit C′n at input x, and then compute the polynomial extension of each layer
that is defined in [CRT22, Definition 4.1 and Claim 4.2.2]. The fact that USR can be computed in
space O(log T) is proved in [CRT22, Claim 4.2.2].

Finally, for the space complexity, in [CRT22, Proof of Claim 4.2.1.1] it is shown that the
mapping of (x, i) ∈ {0, 1}n × {0, 1}T′ to the value of the ith gate in C′n(x) is computable in space
O(S + log(T)).46 And from [CRT22, Claim 4.2.2] it follows that computing α̂i reduces in space
O(log T) to computing the foregoing mapping.

46The original statement in [CRT22] is only for the special case S = O(log T), but the proof already shows the
general case.

60

Given input x = (x0, b) where |x0| = n, we consider the polynomial decomposition of Cn from
Proposition 7.7, with the parameters c0, c′0, d′, h, |F|, ∆, m specified in the proposition’s statement.
Observe that m = O(1/γ), and denote R = d′ ·m− 1 = O(d · log(T)/γ).

7.1.4.2 The promise problem: Definition

Our first goal is to define the promise problem. Towards doing so, we start by describing the
format of messages in the promise problem, and defining some preliminary notions and objects.
We urge the reader to remind themselves of the notation in Definition 7.2.

The format of messages in the proof system. The interaction in the proof system is conducted
as follows:

1. The first round. On common input x, the prover sends a univariate π1 of degree ∆ · h,
yielding a transcript π≤1 = ⟨x, π1⟩.

2. A generic round i ∈ {2, ..., R}. Let π≤i−1 be the transcript going into round i. The verifier
sends K elements r(1)i−1, ..., r(K)i−1 ∈ F, and receives K univariates π

(1)
i , ..., π

(K)
i of degree ∆ · h

along with an additional univariate π′i of degree ∆ · K · h. This yields a transcript π≤i =〈
π≤i−1,

(
r(1)i−1, ..., r(K)i−1

)
,
(

π
(1)
i ,, π

(K)
i , π′i

)〉
.

3. Partial transcripts ending with a single challenge and response. As a mental experiment,
we also consider partial transcripts where in round i ∈ {2, ..., R} the verifier sends a single
element ri−1 and the prover answers by a single univarite πi of degree ∆ · h. (This will be
done to define Π = (Y,N) as in Definition 7.2.)

To simplify notation, we will frequently denote tuples of challenges and responses by r̂i−1 =(
r(1)i−1, ..., r(K)i−1

)
and π̂i =

(
π
(1)
i , ..., π

(K)
i , π′i

)
, respectively. For example, we denote a complete

transcript by

π≤R = ⟨x, π1, r̂1, π̂2, ..., r̂R−1, π̂R⟩ ,

and we denote partial transcripts ending with a single challenge and response by

π≤i = ⟨x, π1, r̂1, π̂2, ..., π̂i−1, ri−1, πi⟩ .

The notation π≤i does not indicate whether the partial transcript ended with a single challenge
and response or with K challenges and K + 1 responses, but our intention will be clear from
context whenever we use the notation.

Intuition. To motivate the definitions that come next, let us give intuition to how the proof
system works; this part may be safely skipped.

The goal of the verifier is to check that α̂0(w⃗) = 1, where w⃗ = 0m represents the index of
the output gate of C′n(x). The verifier reduces this task to testing the values of α̂1 at h points:
Specifically, it runs USR, which queries α̂1 at points (q0,w⃗,a)a∈[h] ⊆ Fm. The verifier sends these

61

points to the prover,47 and both the verifier and the prover interpolate a degree-h curve Γ1 : F→
Fm that passes through Next(0, w⃗). The prover sends a univariate π1 : F → F that is supposed
to be the correct polynomial, defined as p1(r) = α̂1(Γ1(r)), and the verifier checks that when the
queries of USR are answered according to π1, it indeed outputs 1.

In the next round, the verifier chooses random r(1)1 , ..., r(K)1 ∈ F, and wants to verify that for
all k ∈ [K] it holds that p1(r

(k)
1) = p1(Γ1(r

(k)
1)) = v(k)1 , where v(k)1 = π1(r

(k)
1). For each k ∈ [K], the

prover and verifier act similarly to the first round: They interpolate Γ(k)
2 that passes through the h

points that USR queries on input (1, Γ1(r
(k)
1)) (i.e., through (q

1,Γ1(r
(k)
1),a

)a∈[h]), and the prover sends

π
(k)
2 that is supposed to be p(k)2 (r) = α̂2(Γ

r(k)1
2 (r)); the verifier checks that USR indeed answers

with v(k)1 .
To batch-verify all the π

(k)
i ’s together, the prover and verifier also interpolate a polynomial Γ2

that passes through all the K · h points (i.e., through (q
1,Γ1(r

(k)
1),a

)k∈[K],a∈[h]). The prover sends π′2

that is supposed to be p2(r) = α̂2(Γ2(r)), and the verifier checkes that π′2 is consistent with π
(k)
2

on all the K · h points. At the next round, the verifier will choose random r(1)2 , ..., r(K)2 ∈ F, and
wants to verify that π′2(r

(k)
2) = p2(Γ2(r

(k)
2)) for all k ∈ [K].

Since K and h are small compared to F, all polynomials are of low-degree. Thus, if πi ̸= pi
for some i, then with high probability over ri will disagree on ri. The prover will then have to lie
about the value of points in the next round, so that when USR queries these points, it outputs the
(incorrect) value πi(ri). At the next round, the final task is checking the univariate polynomial
α̂d′·m ◦ Γd′·m, which can be done efficiently by the verifier (using the algorithm BASE). Details
follow.

Preliminary definitions. Towards defining the promise problem Π, we will need to define a
number of objects that will be part of the proof.

• The first elements of F. For (k, a, b) ∈ [K]× [h]× [∆ + 1], let σk,a,b be the (k, a, b)th element
in F by lexicographic ordering of the tuples (k, a, b). For (k, a) ∈ [K]× [h], let σk,a = σk,a,1.

• The USR queries. For every i ∈ {0, ..., R− 1} and w⃗ ∈ Fm, let (qi,w⃗,a)a∈[h] be the list of h
queries issued by USR on input (i, w⃗).

• The USR curves. Fix i ∈ {2, ..., R}, let π≤i−1 = ⟨x, π1, ..., π̂i−1⟩ be a partial transcript, and
let r̂i−1 = r(1)i−1, ..., r(K)i−1.

We define Γ1 : F → Fm be the degree-h polynomial such that for all a ∈ [h] it holds that
Γ1(σ1,a) = q0,0m,a.48 Now, for j = 2, ..., i, we define Γj : F→ Fm as follows.

– For every rj−1 ∈ F, let Γ
(rj−1)

j : F → Fm be the degree-h polynomial such that for all

a ∈ [h] it holds that Γ
(rj−1)

j (σ1,a) = qj−1,Γj−1(rj−1),a.

47Actually, in the first round the prover knows the points in advance, but it is instructive (for further rounds) to
think of the verifier as sending these points to the prover.

48We think of 0m as the index of the output gate of Cn(x) in the topmost layer.

62

– Let Γj : F → Fm be the polynomial of degree K · h such that for all (k, a) ∈ [K]× [h] it

holds that Γj(σk,a) = Γ
(r(k)j−1)

j (σ1,a).

• The correct polynomial. For i = 1, the correct polynomial is p1 : F → F such that p1(r) =
α̂1(Γ1(r)). For i ∈ {2, ..., R}, and any partial transcript of the form π≤i−1 = (x, π1, ..., π̂i−1),
and ri−1 ∈ F, the correct polynomial for ri−1 is pi : F → F such that pi(r) = α̂i(Γ

(ri−1)
i (r)).

Note that deg(pi) ≤ ∆ · h.

• Consistency. Consider a partial transcript π≤1 = (x, π1). We say that π1 is consistent with

x = (x0, b) if b = USRπ1(σ1,1),...,π1(σ1,h)(0, 0m), where the oracle notation means that the h
queries of USR are answered by π1(σ1,1), ..., π1(σ1,h), in order.

Now, consider a message π̂i = (π
(1)
i , ..., π

(K)
i , π′i).

1. We say that π̂i is self-consistent if for all k ∈ [K] and a ∈ [h] it holds that π′i(σk,a) =

π
(k)
i (σ1,a).

2. Fix any subsequent single challenge ri ∈ F and single response πi+1. We say that πi+1

is consistent with π̂i at ri if π′i(ri) = USRπi+1(σ1,1),...,πi+1(σ1,h)(i, Γi(ri)).49

3. Fix K challenges r̂i =
(

r(1)i , ..., r(K)i

)
and K + 1 responses π̂i+1 =

(
π
(1)
i+1, ..., π

(K)
i+1, π′i+1

)
.

We say that π̂i+1 is consistent with π̂i at r̂i if for all k ∈ [K] it holds that π
(k)
i+1 is consistent

with π̂i at r(k)i .

For i ∈ {2, ..., R} and any partial transcript π≤i = ⟨x, π1, ..., π̂i−1, ri−1, πi⟩, we say that π≤i
is a consistent transcript if π1 is consistent with x, and for all j ∈ {2, ..., i− 1} it holds that
π̂j is self-consistent and is consistent with π̂j−1 at r̂j−1 (for j = 2 we require consistency
with π1 at r̂1), and also πi is consistent with π̂i−1 at ri−1. We say that a complete transcript
π≤R = ⟨x, π1, r̂1,, r̂R−1, π̂R⟩ is a consistent transcript if if π1 is consistent with x, and for all
j ∈ {2, ..., R} it holds that π̂j is self-consistent and is consistent with π̂j−1 at r̂j−1.

Defining the promise problem. The promise problem consists of transcripts of valid form, i.e.
messages are of the format defined above. We separately define the cases of i = 1 and of partial
transcripts with i ∈ {2, ..., R}.

1. The first round. Let π≤1 = ⟨x, π1⟩. We say that π≤1 ∈ Y if Cn(x0) = b and π1 is consistent
with x; and we say that π≤1 ∈ N otherwise.

2. A generic round. For i ∈ {2, ..., R}, let π≤i = ⟨x, π1, r̂1, ..., ri−1, πi⟩ be a partial transcript.
We say that π≤i ∈ Y if πi is the correct polynomial for ri−1 and the transcript is consistent.
We say that π≤i ∈ N if πi disagrees with the correct polynomial for ri−1 on an element in
{σ1,a}a∈[h] or if the transcript is inconsistent.

49When i = 1, the message π1 is a single polynomial rather than a tuple. We extend the definition to this case in
the obvious way: π2 is consistent with π1 if π1(r1) = USRπ2(σ1,1),...,π2(σ1,h)(1, Γ1(r1)).

63

7.1.4.3 Analysis: Completeness and soundness

We now argue completeness and soundness of Π, meeting the specifications in Definition 7.2.
We do so separately for the first round, for a generic round, and for the last round and final
verification procedure.

For convenience, let us recall part of Definition 7.2, referring to a partial transcript π≤i =〈
x, π1, (r(1)1 , ..., r(K)1), (π(1)

2 , ..., π
(K)
2 , π′2), ..., (π(1)

i , ..., π
(K)
i , π′i)

〉
. We say that:

π≤i is good if Pr
ri
[∃πi+1 : ⟨π≤i, ri, πi+1⟩ ∈ Y] = 1

π≤i is doomed if Pr
ri
[∃πi+1 : ⟨π≤i, ri, πi+1⟩ ∈ N] ≥ 1− 1/3R .

The first round i = 1. For completeness, assume that x ∈ Y0. The honest prover sends the
polynomial π1 : F→ F such that π1(r) = α̂1(Γ1(r)). To see that ⟨x, π1⟩ is good, note that for any
r1 ∈ F sent by the verifier, the honest prover can send the correct polynomial π2 for r1, in which
case ⟨x, π1, r1, π2⟩ ∈ Y.50

For soundness, we want to show that if x ∈ N0, then for every π1 sent by the prover it holds
that ⟨x, π1⟩ is doomed. To see this, note that if π1 isn’t consistent with x then any continuation
of the transcript won’t be consistent (i.e., regardless of r1, π2); thus, we can assume that Cn(x0) ̸=
b = USRπ1(σ1,1),...,π1(σ1,h)(0, 0m). Hence, there is a ∈ [h] such that π1 disagrees with the correct
polynomial p1 at σ1,a. Since π1 and p1 are of degree at most ∆ · h = h2 · polylog(T) = Õ(Tγ/3)
and |F| = p = Θ(Tc0·γ), we have that

Pr
r1∈F

[p1(r1) ̸= π1(r1)] > 1− T−(c0−1/3−o(1))·γ > 1− 1/3R ,

where we relied on the fact that R = (d/γ) · log(T) < d · log2(T) and on our hypothesis that
d ≤ Tc·γ, for c < c0 − 1/3− o(1).

Condition on any such choice of r1, and consider any answer π2 by the prover. If π2 dis-
agrees with the correct polynomial for r1 on σ1,a for some a ∈ [h], then by definition π≤2 =

⟨x, π1, r1, π2⟩ ∈ N. Otherwise, relying on the facts that p1(r1) = USRπ2(σ1,1),...,π2(σ1,h)(1, Γ1(r1))
and p1(r1) ̸= π1(r1), we have that π2 is not consistent with π1 at r1, and hence again we have
π≤2 ∈ N.

A generic round i ∈ {2, ..., R− 1}: Completeness. Let π≤i−1 = ⟨x, π1, r̂1, ..., π̂i−1⟩ be a par-
tial transcript, and let r(1)i−1, ..., r(K)i−1 and π

(1)
i , ..., π

(K)
i be such that for all k ∈ [K] it holds that

(π≤i−1, r(k)i−1, π
(k)
i) ∈ Y. Our goal is to show that the honest prover can send π′i such that for any

ri ∈ F there is πi+1 satisfying (π≤i−1, π̂i, ri, πi+1) ∈ Y.
The honest prover sends the polynomial π′i(r) = α̂i(Γi(r)), and given any challenge ri ∈ F,

the prover sends the correct polynomial πi+1 for ri. Note that:

1. π̂i is consistent with π̂i−1 at r̂i−1, which follows from the fact that (π≤i−1, r(k)i−1, π
(k)
i) ∈ Y for

all k ∈ [K].

50Recall that r1 and π2 are a mental experiment, from the definition of good transcripts. In the actual proof system,
the verifier will send K challenges in the next round.

64

2. πi+1 is consistent with π̂i at ri, by the definitions of πi+1 and of π′i .

3. π̂i is self-consistent. This follows from the definitions of π′i and Γi and from the fact that
(π≤i−1, r(k)i−1, π

(k)
i) ∈ Y for all k ∈ [K].

A generic round i ∈ {2, ..., R− 1}: Soundness. Let π≤i−1 = ⟨x, π1, r̂1, ..., π̂i−1⟩ and r(1)i−1, ..., r(K)i−1

and π
(1)
i , ..., π

(K)
i , and fix k ∈ [K] such that π

(k)
≤i =

〈
π≤i−1, r(k)i−1, π

(k)
i

〉
∈ N. Our goal is to show that

for any π′i sent by the prover, the partial transcript π≤i =
〈

π≤i−1,
(

r(1)i−1, ..., r(K)i−1

)
,
(

π
(1)
i , ..., π

(K)
i , π′i

)〉
will be doomed.

If consistency is violated in π
(k)
≤i , then consistency is also violated in π≤i and in any sub-

sequent transcript. Thus, we only need to handle the case where π
(k)
≤i is consistent and π

(k)
i

disagrees with the correct polynomial on σ1,a for some a ∈ [h].
Fix any message π′i from the prover. If π̂i is not self-consistent, we are done. Otherwise, we

have π′i(σk,a) = π
(k)
i (σ1,a) for all a ∈ [h].

Denote the correct polynomial for r(k)i by p(k)i , and let p′i(r) = α̂i(Γi(r)). Observe that for every

a ∈ [h] it holds that p′i(σk,a) = p(k)i (σ1,a). Hence, there exists a ∈ [h] such that π′i(σk,a) ̸= p′i(σk,a).51

And since p′i and π′i are distinct polynomials of degree ∆ · K · h ≤ Õ(Tγ/3) · K, we have

Pr
ri∈F

[
p′i(ri) ̸= π′i(ri)

]
≥ 1− K · T−(c0−1/3−o(1))·γ ≥ 1− 1/3R ,

where we relied on the fact that R < d · log2(T) and on our hypothesis that K ≤ Tc·γ/d, for
c < c0 − 1/3− o(1).

Fixing any choice of ri such that p′i(ri) ̸= π′i(ri), we show that for all πi+1 it holds ⟨π≤i, ri, πi+1⟩ ∈
N. If πi+1 disagrees with the correct polynomial on {σ1,a}a∈[h], we are done. Otherwise, p′i(ri) =

USRπi+1(σ1,1),...,πi+1(σ1,h)(i, Γi(ri)). But since p′i(ri) ̸= π′i(ri), by the definition of consistency we have
that πi+1 is inconsistent with π̂i at ri. Hence, in this case also ⟨π≤i, ri, πi+1⟩ ∈ N.

The final round i = R. Let π≤R−1 be the transcript going into the final round R, and consider
K challenges r(1)R−1, ..., r(K)R−1 and K responses π

(1)
R , ..., π

(K)
R . Replicating the analysis for a generic

round,

• If
〈

π≤R−1, r(k)R−1, π
(k)
R

〉
∈ Y for all k ∈ [K], then the prover can send π′R(r) = α̂R(ΓR(r)), in

which case the complete transcript is consistent.

• If
〈

π≤R−1, r(k)R−1, π
(k)
R

〉
∈ N for some k ∈ [K], then either consistency is violated, or π

(k)
R

disagrees with the correct polynomial on σ1,a for some a ∈ [h].

Now, let π≤R = ⟨x, π1, r̂1, ..., π̂R⟩ be a complete transcript. The verifier first checks that π≤R
is consistent, rejecting if it finds inconsistencies. Then, the verifier accepts if and only if for all
k ∈ [K] and all a ∈ [h] it holds that π

(k)
R (σ1,a) = p(k)R (σ1,a), where p(k)R is the correct polynomial

51This is because for all a ∈ [h] we have that π′i(σk,a) = π
(k)
i (σ1,a) and p′i(σk,a) = p(k)i (σ1,a), but by our assumption

π
(k)
i and p(k)i disagree on σ1,a for some a ∈ [h].

65

for r(k)R−1. (In the next section we will analyze the verifier’s complexity, including the complexity

of computing p(k)R .) Thus, when
〈

π≤R−1, r(k)R−1, π
(k)
R

〉
∈ Y for all k ∈ [K] and the prover sends the

correct π′R, the verifier accepts with probability one; and when
〈

π≤R−1, r(k)R−1, π
(k)
R

〉
∈ N for some

k ∈ [K], the verifier rejects with probability one (regardless of the π′R that the prover sends).

7.1.4.4 Analysis: Prover and verifier complexity

Lastly, we bound the complexity of the honest prover, of the next-prover-message function (as
defined in Definition 7.2), and of the verifier. Our analysis will rely on the following claim, which
refers to computing the curves Γ1, ..., ΓR.

Claim 7.7.1. For each i = 1, . . . , R, given π≤i =
〈

x, π1, ..., (r(1)i−1, ..., r(K)i−1)
〉

, the polynomial Γi can be

constructed in time R · h2c′0 · K2 · m · polylog(|F|). The same claim holds for the polynomial Γ
(r(k)i−1)

i for
any k ∈ [K].

Proof. We iteratively construct Γj for j = 1, ..., i. For the base case j = 1, we simulate USR(0, 0m)
in order to compute its queries {q0,0m,a}a∈[h]. (Recall that USR is non-adaptive.) Then, for each
of the output coordinates u ∈ [m] of Γ1, we use fast interpolation to find the coefficients of the
degree-h polynomial r 7→ Γ1(r)u.52

Now, let j > 1, and assume that we have a representation of Γj−1. We first run USR(j −
1, Γj−1(r

(k)
j−1)) for every k ∈ [K], to obtain the query locations

{
qj−1,Γj−1(rj−1),a

}
k∈[K],a∈[h]

, and then

for each u ∈ [m] use fast interpolation to find the coefficients of the degree-(K · h) polynomial
r 7→ Γj(r)u (where Γj is such that Γj(σk,a) = q

j−1,Γj−1(r
(k)
j−1),a

for all k ∈ [K], a ∈ [h]).

The overall time complexity is

R ·

K · hc′0︸ ︷︷ ︸
USR

+ (K · h)2︸ ︷︷ ︸
evaluating Γj at K · h inputs

+m · Õ(K · h)︸ ︷︷ ︸
FFT

 · polylog(|F|) ,

which is bounded by R · h2c′0 · K2 · m · polylog(|F|). The proof of the claim about constructing

Γ
(r(k)i−1)

i is essentially identical. □

Time complexity of the honest prover. To compute π1, the honest prover constructs Γ1 using
Claim 7.7.1, evaluates α̂1 at points S1 = {Γ1(σ1,a,b)}a∈[h],b∈[∆] ∪ {Γ1(σ1,1,∆+1)}, and lets π1 : F→ F

be the unique degree-(∆ · h) polynomial that evaluates to α̂1(s) for every s ∈ S. Since α̂1 ◦ Γ1 is of
degree ∆ · h, we have that π1 ≡ α̂1(Γ1(r)).

Now, in each round i ∈ [R− 1], given π̄i = (x, π1, ..., π̂i) and r(1)i , ..., r(K)i , the honest prover

constructs Γ
(r(1)i−1)

i , ..., Γ
(r(K)i−1)

i , Γi using Claim 7.7.1. Then, for every k ∈ [K] it evaluates α̂i at points

S(k)
i =

{
Γ
(r(k)i−1)

i (σ1,a,b)

}
a∈[h],b∈[∆]

∪
{

Γ
(r(k)i−1)

i (σ1,1,∆+1)

}
, and uses fast interpolation to construct the

52Recall that Γ1 is the unique polynomial of degree h that for every a ∈ [h] satisfies Γ1(σ1,a) = q0,0m ,a.

66

unique degree-(∆ · h) polynomial π
(k)
i : F→ F that agrees with α̂i on S(k)

i . Similarly, it constructs
the unique degree-(∆ · h ·K) polynomial π′i : F→ F that agrees with α̂i on {Γi(σk,a,b)}k∈[K],a∈[h],b∈[∆]∪
{Γi(σ1,1,∆+1)}.

The time complexity of a generic step is higher than that of computing π1, and it is bounded
by (omitting a multiplicative polylog(|F|) factor for readability)

K · R · h2c′0 · K2 ·m︸ ︷︷ ︸
Claim 7.7.1

+ Õ(K · ∆ · h)︸ ︷︷ ︸
FFTs

+ Tc′0 · K · ∆ · h︸ ︷︷ ︸
computing α̂i

,

which is at most Tc′0 · K3 · ∆ · h2c′0 · d′ ·m2 · polylog(|F|). In the first round, the prover’s message
is of length O(∆ · h · log(|F|)), and in subsequent rounds it sends K + 1 messages of total length
at most O(K · h · ∆) · log(|F|).

Next-prover-message space complexity. Given a partial transcript π≤i = ⟨x, π1, ..., π̂i, ri⟩, we
want to decide whether or not there exists πi+1 such that ⟨π≤i, πi+1⟩ /∈ N. Recall that π≤i+1 =
⟨π≤i, πi+1⟩ /∈ N if π≤i+1 is consistent and agrees with the correct polynomial pi+1 for ri on all
elements in {σ1,a}a∈[h].

To do so, we first check for consistency of π≤i (if it is not consistent, we reject). When π≤i is
consistent, the question reduces to checking whether there exists πi+1 that is consistent with π̂i
at ri and that agrees with pi+1 on (σ1,a)a∈[h].

Claim 7.7.2. There exists πi+1 such that π≤i+1 /∈ N if and only if

π′i(ri) = USRpi+1(σ1,1),...,pi+1(σ1,h)(i, Γi(ri)) . (7.2)

Proof. If such πi+1 exists, then by the consistency requirement it satisfies

π′i(ri) = USRπi+1(σ1,1),...,πi+1(σ1,h)(i, Γi(ri)) .

Also, since πi+1 agrees with pi+1 on (σ1,a)a∈[h], Eq. (7.2) should hold. Thus, if Eq. (7.2) does not
hold, there is no suitable πi+1.

On the other hand, if Eq. (7.2) holds, then any πi+1 that agrees with pi+1 on {σ1,a}a∈[h] is
consistent with π′i on ri. □

Recall that USR is computable in space O(log T), and we assume that the (x, g) to the value of
the gth gate in Cn(x) can be done in space S. By the “furthermore” part of Proposition 7.7, we can
compute (i, w⃗) 7→ α̂i(w⃗) in space O(S + log T). We will also rely on the following space-efficient
way of computing each coordinate of Γi(ri):

Claim 7.7.3. Each output coordinate of Γi(ri) can be computed in space O(d′ ·m · log(T · K)).

Proof. For each u ∈ [m], we compute the uth coordinate of Γi(ri) as

∑
(k,h)∈[K]×H

δk,a(ri) · (qi−1,Γi−1(ri−1),a)u (7.3)

where δk,h(r) = ∏(k′,h′)∈([K]×H)\{k,h}
σk′ ,h′−r

σk′ ,h′−σk,h
. (Note that the polynomial in Eq. (7.3) is of degree

K · h− 1 and it agrees with the uth coordinate of Γi on the K · h points σk,h.)

67

To compute Eq. (7.3) we compute Γi−1(ri−1), then iterate over the pairs (k, h), and for each
pair we simulate USR on input (i− 1, Γi−1(ri−1)) to obtain the uth coordinate of the ath query. The
size of Γi−1(ri−1) is m · log(|F|) ≤ O(log T), and USR runs in space O(log T); hence, computing
Γi(ri)u reduces in space O(log T + log(K · h)) ≤ O(log(T · K)) to computing Γi−1(ri−1).

Using space-efficient composition with R levels of recursion, the space complexity of com-
puting each output coordinate is O(R · log(T · K)) □

To check whether Eq. (7.2) holds we compute Γi(ri), simulate USR on input (i, Γi(ri)), and
compare the result to π′i(ri) (recall that π′i and ri are part of our input, so computing π′i(ri) is
straightforward). The only missing thing is answering the queries of USR. We store a counter of
a ∈ [h], and whenever USR makes an oracle query we answer with pi+1(σ1,a) and increment a,
where pi+1 is the correct polynomial for ri.

Recall that pi+1(σ1,a) = α̂i+1(Γ
(ri)
i+1(σ1,a)), and that we can compute α̂i+1 in space O(S + log T).

Thus, it is just left to bound the space-complexity of computing Γ(ri)
i+1(σ1,a) = qi,Γi(ri),a. This can be

done by simulating USR and giving it virtual access to the input (i, Γi(ri)), relying on Claim 7.7.3.
The overall space complexity of the procedure is dominated by S and by the space complexity

of computing Γi(ri), so it is overall bounded by

O(d′ ·m · log(T · K) + S) .

(Recall that the input is of length |π≤i| ≤ O(R · K · ∆ · h · log(|F|)), and thus log(|π≤i|) is smaller
than the expression above.)

Complexity of the verifier. Recall that, given a complete transcript, the verifier checks its consis-
tency, then accepts if and only if for all k ∈ [K] and all a ∈ [h] it holds that π

(k)
R (σ1,a) = p(k)R (σ1,a),

where p(k)R is the correct polynomial for r(k)R−1.
Self-consistency of each of the prover messages can be checked in time K · h · ∆, so checking

all of them can be done in time K · h2 · d′ ·m · polylog(T). Consistency between each subsequent
pair of messages can be checked in time K · hc′0 + h · ∆, and thus testing all subsequent pairs can
be done in time K · h2c′0 d′ ·m · polylog(T).

Finally, the verifier enumerates over k ∈ [K] and a ∈ [h]. Recall that p(k)R (σ1,a) = α̂R(Γ
(r(k)R−1)

R (σ1,a)).

The verifier constructs the curve Γ
(r(k)R−1)

R using Claim 7.7.1, and computes w⃗a,k = Γ
(r(k)R−1)

R (σ1,a) ∈ Fm.
To evaluate α̂R at w⃗a,k the verifier simulates USR, answering its queries to the bottom layer using
its input x and the base layer algorithm. The time complexity of this step is

K · h ·
(

R · h2c′0 · K2 ·m · polylog(|F|) + h2c′0 ·max {n, h}
)

,

which is at most K3 · h3c′0 ·max {n, h} · d′ ·m2 · polylog(T).

7.2 List-CIHFs suffice for NIZK

In this section we prove that, assuming sub-exponentially secure one-way functions, targeted
HSGs that fool appropriate distinguishers (equivalently, list-CIHFs that avoid appropriate rela-
tions) suffice to construct zaps, NIWI and NIZK protocols. That is:

68

Theorem 7.8 (list-CIHFs suffice for zaps and NIWI). Assume that:

1. There are sub-exponentially secure one-way functions.

2. For a sufficiently small ϵ > 0, there is a (1/2, n−ω(1))-targeted HSG for DT IME [n]SAT over all
distributions samplable in polynomial time such that on inputs of length n, the targeted HSG runs
in time poly(n) and prints poly(k) strings of length k = k(n) = nϵ.53

Then, every NP relation R has a zap argument system. Assuming in addition a sub-exponentially
secure non-interactive commitment scheme, every NP relation R has a NIWI argument system.

Recall that, combining the concluded zap in Theorem 7.8 with Lemma 3.7, the former also
yields NIZK arguments.

Similarly to Theorem 7.4, the choice of parameters for the targeted HSG in Theorem 7.8
is motivated by known constructions. Specifically, a targeted HSG with such parameters was
constructed in [CT21; CT23] from hardness over all efficiently samplable distributions.

The rest of this section is devoted to the proof of Theorem 7.8. Let R ∈ NP . We assume wlog
that membership in R can be verified in quasi-linear time. (To see that this is wlog, recall that
the NP-complete problem circuit satisfiability has this feature, and a zap/NIWI for it implies a
zap/NIWI for all of NP .) Throughout this proof we use n to denote the length of instances for R
and, jumping ahead, we will denote by N the input length to the targeted HSG.

Technical ingredients and parameter setting. We first instantiate the ingredients that are used
in the construction:

1. (Commitment scheme.) Let commit be a 2λζ
-secure non-interactive commitment scheme

in the CRS model, for ζ > 0. Let c0 > 1 be such that commit runs in time at most nc0 ,
when instantiated with security parameter λ = n (note in particular that this means that
the commitments have length at most nc0).

2. (Targeted HSG.) Let c1 > 1 be such that the targeted HSG, when instantiated with input
length N and output length k, prints kc1 strings.

3. (ZK PCP.) Let c2 > 1 be a constant such that when instantiating Theorem 3.10 with any
parameter qmax, the alphabet size is at most 2(n·qmax)c2 and the running-time of the verifier is
at most (n · qmax)c2 . We instantiate Theorem 3.10 with parameter qmax = nµ, where µ < ζ/2.
By our choice, we have

2nζ
> O(qmax)

qmax . (7.4)

Note that the PCP has soundness error δS ≤ 1/2, proof length ℓ = O(qmax), query com-
plexity q = O(

√
qmax), randomness complexity r = O(log ℓ), verifier time TV = (n · qmax)c2

and prover time poly(n, qmax).

53The meaning of “DT IME [n]SAT” here is that for every algorithm D that gets input z ∈ {0, 1}n and random coins
r ∈ {0, 1}k and runs in linear time O(n) while making oracle queries to SAT, and every polynomial-time samplable
distribution z = {zn}n∈N, the algorithm D(z, ·) does not distinguish between a uniformly random choice of r and a
pseudorandom choice of r from the output-list of the generator on z (except with negligible probability over z ∼ zn).

69

4. (Input and output lengths for the targeted HSG.) Jumping ahead, we will be instantiating
the targeted HSG on inputs of length N = nc3 , where c3 ≥ 1 is chosen such that N ≥
Ω(qmax · log(|Σ|) · nc0) and c3 ≥ max(c0 + 2, 2µ · c0 · c2, 2(1 + µ) · c2). For ϵ < µ/(2c1 · c3),
the output length of the targeted HSG will be k = k(N) = Nϵ bits. Note that

qmax ≥ kc1 · q (7.5)

and54

k ≥ r . (7.6)

The construction. We denote by VzkPCP(x, a; ρ), the output of the PCP verifier VzkPCP given
x ∈ {0, 1}n as its main input, using random coins ρ ∈ {0, 1}r and when given a ∈ Σq as the
answers to its queries. We denote by pcp ← PzkPCP(x, w) the proof string generated by the PCP
prover given the instance x and corresponding witness w; recall that the prover is randomized,
and thus pcp is a random variable.

Construction 7.9. Consider the non-interactive protocol (P, V), given a fixed input x, witness w (for the
prover), and crs ∈ {0, 1}n:

The prover P(crs, x, w) :

1. Generate a zkPCP proof-string pcp← PzkPCP(x, w).

2. For i ∈ [ℓ], draw a random ri ∈ {0, 1}poly(n) and generate ci = commit(crs, pcpi; ri) (i.e., the
commit algorithm uses ri as a random string), where pcpi ∈ Σ denotes the i-th symbol of pcp.55

3. Generate the list S of strings that the targeted HSG prints given on input (crs, x, c1, . . . , cℓ). (Indeed,
the targeted HSG expects an input of length N; by our setting of parameters N ≥ |crs| + |x| +
∑i |ci|, and we pad the input with zeros in case it is shorter than N.) Note that S is of size |S| = kc1 ;
also, each string in S has length k, but we will be using only their r-bit prefixes (note that r ≤ k by
Eq. (7.6)) and so we refer to the elements of S as having length r.

4. For every ρ ∈ S, let Qρ ⊆ [ℓ] denote the PCP queries that VzkPCP makes given input x and random
string ρ.

5. The proof-string is defined as
(
(ci)i∈[ℓ], Q, (pcpj, rj)j∈Q

)
, where Q = ∪ρ∈SQρ and we additionally

pad Q so that |Q| = qmax (note that by Eq. (7.5), it holds that qmax ≥ kc1 · q = |S| · q ≥ |∪ρ∈S Qρ|).

The verifier V
(

crs, x,
(
(ci)i∈[ℓ], Q, (pcpj, rj)j∈Q

))
:

1. Generate the list S of strings that the targetd HSG prints on input (crs, x, c1, . . . , cℓ), and confirm
that Q ⊇ ∪ρ∈SQρ and |Q| = qmax.

2. For every j ∈ Q, check that cj = commit(crs, pcpj; rj).

3. For every ρ ∈ S, check that VzkPCP(x, aρ; ρ) accepts when given as answers aρ = (pcpj)j∈Qρ
.

4. Accept if and only if all of the above tests pass.
54Indeed, this is the reason that we needed to derandomize the [HVW22] construction (see Appendix A).
55We remark that commit was defined as a bit-commitment scheme and so the actual implementation does a bit-by-

bit to the log(|Σ|) bits of each pcpi.

70

Analysis. The completeness of Construction 7.9 follows from the perfect completeness of the
zkPCP. In more detail, for every (x, w) and crs, the prover can generate pcp such that VzkPCP(x)
with oracle access to pcp always accepts, commit correctly to the symbols of pcp, and decommit
to the requested queries.

We now argue that Construction 7.9 is sound against efficient adversaries. In fact, we prove
adaptive soundness: the construction is sound even when the adversary is allowed to see the
crs. The proof relies on the pseudorandomness of the targeted HSG as well as on the binding
property of the commitment.

Proposition 7.10 (adaptive soundness). For every ppt algorithm P∗ and every sufficiently large n ∈N

it holds that

Pr
crs←{0,1}n

(x,α)←P∗(crs)

[(
x /∈ L(R)

)
and

(
V(crs, x, α) = 1

)]
≤ negl(n) .

Proof. Assume there exists a ppt cheating prover P∗ such that for infinitely many n ∈ N, with
noticeable probability over crs← {0, 1}n and (x, α)← P∗(crs) it holds that(

x /∈ L
)

and
(
V(crs, x, α) = 1

)
. (7.7)

Fix an input length n ∈ N, an x ∈ {0, 1}n\L, a crs ∈ {0, 1}n for which the binding condition
(of Definition 3.8) is satisfied, and (x, α) in the support of P∗(crs) such that V(crs, x, α) = 1. We
say that (x, α, crs) as above are good.

Interpret α as α =
(
(ci)i∈[ℓ], Q, (pcpj, rj)j∈Q

)
. Let S be the list of strings that the targeted HSG

prints on input (crs, x, c1, . . . , cℓ). Since V(crs, x, α) = 1, by construction Q ⊇ ∪ρ∈SQρ. (Recall that
Qρ denotes the PCP query locations generated by VzkPCP given input x and randomness ρ.)

By the binding condition of the commitment scheme, for every i ∈ [ℓ] there exists at most
one value pcpi ∈ Σ such that ci is in the support of commit(crs, pcpi). For those cases in which
ci is not in the support of any of the distributions, we set a default value pcpi = 0. Overall,
this defines a candidate PCP proof-string pcp = (pcp1, . . . , pcpℓ). Also, since V(crs, x, α) = 1, by
construction it also holds that cj = commit(crs, pcpj; rj), for every j ∈ Q.

Since V explicitly checks that VzkPCP accepts for all ρ ∈ S, the fact that V accepts means that
for all ρ ∈ S it holds that VzkPCP(x, pcp|Qρ

; ρ) = 1. On the other hand, by the soundness of
the PCP, since x /∈ L and pcp ∈ Σℓ is a fixed string, it holds that VzkPCP(x, pcp|Qρ

; ρ) = 1 with
probability at most δS ≤ 1/2 (over ρ ∈ {0, 1}r).

Consider a distinguisher D(z, ρ), where z =
(
crs, x, (c1, . . . , cℓ)

)
, that distinguishes whether

ρ is sampled uniformly from S or uniformly at random in {0, 1}r. Assume momentarily that
D(z, ρ) has access to the pcp string as described above. The distinguisher D(z, ρ) outputs the
negation of VzkPCP(crs, x, pcp|Qρ

). By the above discussion, D(z, ρ) is a (1/2)-dense avoider for
the output list of the targeted generator on z. Assuming access to the pcp string, we get that D
runs in time O(TV) = O(n · qmax)c2 .

To get rid of the assumption that D has access to the pcp string hidden inside (c1, . . . , cℓ), we
have D first open the commitments using an NP oracle, as follows. Let O : {0, 1}n × {0, 1}nc0 →
{0, 1} be an oracle for the language {(crs, c) : c ∈ commit(crs, 1, ·)}. Note that on inputs (crs, c)
of length n1+c0 < k1/3ϵ the oracle O is computable in non-deterministic linear time O(n1+c0); in
particular, queries to O can be resolved by making queries of length less than k1/2ϵ to SAT. Using

71

O we can find the symbols underlying c1, . . . , cℓ using ℓ · log(|Σ|) queries to O (i.e., one per bit
of the PCP string). Overall, the running time of D is

ℓ · log(|Σ|) · Õ
(

n1+c0
)
+ O(n · qmax)

c2 ≤ nc0+2+2c2(1+µ)) ≤ N ,

while making ℓ · log(Σ) oracle queries to SAT.
By our assumption and the binding of the commitment scheme, z =

(
crs, x, (c1, . . . , cℓ)

)
, sam-

pled as crs← {0, 1}n and
(
(ci)i∈[ℓ], Q, (pcpj, rj)j∈Q

)
← P∗(crs) is good with noticeable probability.

Hence, with noticeable probability over z sampled as above, the algorithm D is a (1/2)-dense
avoider for the outputs of the targeted HSG, a contradiction.

Finally, we claim that Construction 7.9 satisfies the zero-knowledge condition, i.e. the inter-
action can be simulated (by an unbounded simulator) without access to the witness.

Proposition 7.11 (Unbounded Simulator Zap). Construction 7.9 satisfies the unbounded simulator
zap condition of Definition 3.4.

Note that the WI zap property follows from Proposition 7.11 via Lemma 3.6. Since Proposi-
tion 7.11 is the last missing piece towards establishing of Theorem 7.8, the rest of the section is
devoted to the proof of Proposition 7.11.

The proof is very similar in structure to the proof of zero-knowledge for the construction
in Theorem 5.1. Specifically, the unbounded simulator S acts as follows:

Given input x ∈ L ∩ {0, 1}n and crs ∈ {0, 1}n, the simulator repeats the following proce-
dure at most t = ℓc·qmax times, where c > 0 is a constant that will be set below:

1. Select a random set Qsim ⊆ [ℓ] of size |Qsim| = qmax.

2. Run the zkPCP simulator to generate pcp ∈ Σℓ, such that pcp|Qsim is distributed
identically to an honestly-generated PCP, and for indices i /∈ Qsim we set pcpi = 0.

3. For every i ∈ [ℓ], choose a random ri ∈ {0, 1}poly(n) and generate the commitment
ci = commit(crs, pcpi; ri).

4. Compute the list S of outputs of the targeted generator on input (crs, x, c1, . . . , cℓ),
and let Q = ∪ρ∈SQρ (recall that Qρ are the queries that the zkPCP verifier makes
given input x and random string ρ). Similarly to the verification procedure we use
(the same) padding to ensure that |Q| = qmax)

5. If Q ̸= Qsim then proceed to the next iteration. Otherwise (i.e., Qsim = Q), output
αsim =

(
(ci)i∈[ℓ], Q, (pcpj, rj)j∈Q

)
and abort.

In case all t iterations fail, the simulator outputs ⊥.

Notation and basic facts. Similarly to the proof of Theorem 1.8, we fix an input x, a witness w, an
auxiliary input z, and a crs, and define a sequence of random variables (with respect to the fixed
(crs, x, w, z)) that will be useful for the analysis.

72

• ξreal(crs, x, w, z): Select a random set Qsim ⊆ [ℓ] of size |Qsim| = qmax. Generate the
zkPCP pcp at random using (x, w). For every i ∈ [ℓ], generate the commitment ci =
commit(crs, pcpi; ri), using uniformly random coins ri. Let S be the output of the targeted
HSG on input (crs, x, c1, . . . , cℓ) and let Q = ∪ρ∈SQρ (with padding as above). If Q ̸= Qsim

output ⊥, otherwise output
(

crs, x, z,
(
(ci)i∈[ℓ], Q, (pcpj, rj)j∈Q

))
.

• ξmid(crs, x, w, z): Same as ξreal(crs, x, w, z), except that rather than committing to the sym-
bols of pcp, the commitments are to the symbols of pcpmid which is identical to pcp on
coordinates in Qsim and 0 everywhere else.

• ξsim(crs, x, w, z): Same as ξreal(crs, x, w, z), except that rather than committing to the symbols
of pcp, the commitments are to the symbols of pcpsim which is generated by the simulator
of the zkPCP with input x and coordinate set Qsim (note that pcpsim is 0 in all coordinates
outside of Qsim).

• ρreal(crs, x, w, z): take t independent copies of ξreal(crs, x, w, z) and output the first output
that is not ⊥. In case all copies are ⊥ then output ⊥.

• ρmid(crs, x, w, z): is defined similarly to ρreal(crs, x, w, z) relative to ξmid.

• ρsim(crs, x, w, z): is defined similarly to ρreal(crs, x, w, z) relative to ξsim.

We argue that ρreal is (up to a small error) the real distribution that the verifier sees with
the fixed (x, w, crs), that ρsim is the simulated distribution, and that ξmid and ξsim are identically
distributed. The proofs are essentially identical to the ones of Claims 5.3 to 5.5, respectively.

Claim 7.12. For any fixed (crs, x, w, z) such that (x, w) ∈ R, the following pairs of RVs are distributed
identically:

1. ρsim(crs, x, w, z) and
(
crs, x, z, S(crs, x)

)
.

2. ξsim(crs, x, w, z) and ξmid(crs, x, w, z).

3. ρreal(crs, x, w, z) and P(crs, x, w),56 up to error 2−n (i.e., the statistical distance between the RVs is
at most 2−n).

Proof. The proof that ρreal(crs, x, w, z) and P(crs, x, w) are close is essentially identical to that
of Claim 5.3, relying on a sufficiently large choice of constant c > 1 (in the definition of t) so that
the probability that Qsim ̸= Q in all t iterations of the simulator is at most (ℓ−qmax)t ≥ 2−n.

The equivalence of ξsim(crs, x, w, z) and ξmid(crs, x, w, z) follows by the zero-knowledge prop-
erty of the PCP, which asserts that for any fixed choice of Q = Qsim ⊆ [ℓ] of size |Q| ≤ qmax, the
distribution of the simulated PCP on coordinates Q is identical to the distribution of the actual
PCP (corresponding to w) on coordinates Q. We can rely on this property of the zkPCP since
(x, w) ∈ R and since, by Eq. (7.5), it holds that |Q| ≤ |S| · q ≤ kc1 · q ≤ qmax.

The equivalence of ρsim(crs, x, w, z) and (crs, x, z, S(crs, x)) follows directly from the defini-
tions of ρsim and of the simulator S. □

56Recall that P(crs, x, w) is the view of the verifier in the real interaction with input x, CRS crs, and when the prover
gets witness w.

73

The security reduction. Let (A1, A2) be a pair of ppt adversaries for the unbounded simulator
property. As in the proof of Theorem 5.1, we assume without loss of generality that for any (x, w)
generated by A1 it holds that (x, w) ∈ R, and that w is included in the auxiliary information z.

We now denote by (crs, x, w, z) the distribution generated by A1(1n). Assume toward a con-
tradiction that there exists a polynomial p such that∣∣Pr

[
A2

(
crs, x, P(crs, x, w), z

)
= 1

]
− Pr

[
A2

(
crs, x, Sim(crs, x), z

)
= 1

]∣∣ ≥ 1/p(n) , (7.8)

for infinitely many n. Then:

Claim 7.13. There exists a poly(t)-time algorithm D′ such that:∣∣Pr
[
D′

(
crs, x, z, ξreal(crs, x, w, z)

)
= 1

]
− Pr

[
D′

(
crs, x, z, ξmid(crs, x, w, z)

)
= 1

]∣∣ ≥ 1
2 · t · p(n) ,

for infinitely many n.

Proof. We first argue that there is a poly(t)-time algorithm D′ such that∣∣Pr
[
D′

(
crs, x, z, ξreal(crs, x, w, z)

)
= 1

]
− Pr

[
D′

(
crs, x, z, ξsim(crs, x, w, z)

)
= 1

]∣∣ ≥ 1
2 · t · p(n) ,

for infinitely many n. The proof of this fact is essentially identical to the proof of Claim 5.6: We
use a uniform hybrid argument, and rely on the fact that D′ can generate the RV ξreal using the
witness w. The claim follows since ξmid and ξsim are distributed identically (by Claim 7.12.) □

Consider an adversary D′′ that gets either 2ℓ · log(|Σ|) bit commitments to 0 or ℓ · log(|Σ|) bit
commitments to 0 followed by ℓ · log(|Σ|) commitments to 1.

The algorithm D′′ generates (crs, x, w, z) using A1. It then generates the proof-string α as in
the real interaction (using (crs, x, w)), where for coordinates outside of Qsim it attempts to recon-
struct the symbols of pcp as follows. For coordinates within Qsim it generates the commitments
to the corresponding symbols of pcp on its own, and for the rest, it uses the bit commitments that
it was given as input (working on the assumption that the first batch consists of commitments to
0 and the second to commitments to 1). The algorithm D′′ then outputs D′(crs, x, w, z, α), where
D′ is the distinguisher of Claim 7.13.

Observe that in the first case (all commitments are 0), the distribution that D′′ feeds into D′ is(
crs, x, w, z, ξmid(crs, x, w, z)

)
whereas in the second case (second half are commitments to 1) the

distribution is
(
crs, x, w, z, ξreal(crs, x, w, z)

)
. Thus, by Claim 7.13 the algorithm D′′ distinguishes

these two cases with advantage 1/(2 · t · p(n)) advantage on infinitely many input lengths n ∈N.
By another uniform hybrid argument (i.e., over the 2ℓ · log(|Σ|) commitments, identically to

the proof of Theorem 5.1), there is a poly(t)-time adversary that distinguishes a (single) commit-
ment to zero from a commitment to one with advantage 1

4·t·p(n)·ℓ·log(|Σ|) ≥ 1/poly(t) on infinitely
many input lengths. This contradicts the hiding property of the commitment scheme.

7.3 List-CIHFs from non-batch-computability

In Sections 7.1 and 7.2 we showed that list-CIHFs (for suitable relations) suffice for applying Fiat-
Shamir to the proof system of [GKR15], and to obtain NIZK for NP . In this section we show that
these list-CIHFs can be constructed from hardness assumptions, which can serve as alternative
assumptions to the ones in Theorems 1.3 and 1.8.

74

A targeted generator. We will use the following reconstructive targeted PRG from [CT21]. This
targeted PRG translates the non-batch-computability (see below) of a function f at input x into
pseudorandomness at the same input x. The crucial point is that the trade-off between hardness
and randomness is instance-wise; that is, the trade-off holds for every fixed input x.

The notion of non-batch-computability here means the following. Let f : {0, 1}n → {0, 1}k,
and assume each output bit of f can be computed in time T; that is, there is a T-time machine
computing the mapping (x, i) 7→ f (x)i. It is trivial to compute the k-bit output f (x) in time k · T,
and we will assume that it is impossible to compute f (x) in time kϵ · T, for some small ϵ > 0.
In fact, we will assume that it is impossible to even approximate f (x) in time kϵ · T (i.e., to print
f̃ (x) that agrees with f (x) on 0.99 · k coordinates).

Theorem 7.14 ([CT21, Proposition 6.2],[CT23, Theorem 7.1]). For every α, β > 0 and sufficiently
small η = ηα,β > 0 the following holds. Let T, k : N → N be time-computable functions such that
T(n) ≥ n, and let f : {0, 1}N → {0, 1}k (where k = k(n)) such that the mapping of (x, i) ∈ {0, 1}n× [k]
to f (x)i is computable in time T(n). Then, there is a deterministic algorithm G f and a probabilistic
algorithm Rec that for every x ∈ {0, 1}n:

1. Generator. When G f gets input x, it runs in time k · T(n) + poly(k) and outputs a list of poly(k)
strings in {0, 1}kη

.

2. Reconstruction. When Rec gets input x and oracle access to a (1/kη)-distinguisher Dx : {0, 1}kη →
{0, 1} for the output-list of G f (x), it runs in time Õ(k1+β) + kβ · T, makes Õ(k1+β) queries to Dx,
and with probability at least 1− 2−kη

prints a string that agrees with f (x) on at least 1− α of the
bits.

In our applications we will assume that non-batch-computability of f holds when x is sam-
pled from any efficiently samplable distribution, and deduce that the targeted PRG is pseudoran-
dom for inputs coming from any efficiently samplable distribution. As explained in [CT21; CT23],
the weaker notion of average-case non-batch-computability over the uniform distribution follows
from standard assumptions, using the direct product construction of Impagliazzo et al. [IJK+10].

Deducing PSPACE ⊆ cs-NP from non-batch-computability. By combining Theorem 7.14
and Corollary 7.6, we can deduce the conclusion of Theorem 1.3 from an alternative assumption.
Specifically, we show that non-batch-computability (with a linear-space oracle) over all efficiently
samplable distributions implies that PSPACE ⊆ cs-NP .

Corollary 7.15 (non-batch-computability implies PSPACE ⊆ cs-NP). For a sufficiently small
ϵ > 0, assume that there is f : {0, 1}n → {0, 1}k=nϵ

such that each output bit of f is computable in time
T(n) = poly(n), but the following holds. For every algorithm Rec running in time T · k.01 and making
queries to a linear-space oracle O, and every 2O(n)-time samplable distribution x = {xn}n∈N, and every
large enough n ∈N, there is at most 2−ω(n) probability over x ∼ xn that

Pr[RecO(x)i = f (x)i] ≥ 0.99 ,

where the probability above is over the random coins of Rec and over i ∈ [k].
Then, there is a (1/2, 2−O(n))-targeted HSG running in polynomial time that is pseudorandom for

linear space over all 2O(n)-time samplable distributions, and on inputs of length N outputs NO(ϵ) strings
of length Nδ (where δ = δϵ > 0 is a small constant). Consequently, using Corollary 7.6, there is a
PSPACE -complete problem decidable in cs-NT IME [poly(n), 2O(n)].

75

Indeed, the constants .01 and 0.99 are arbitrary (corresponding to values of α = .99 + o(1)
and β = .01 in Theorem 7.14) and can be replaced with any pair of constants in (0, 1). Also,
as explained after Corollary 7.6, the running time 2O(n) in the hardness assumption and of the
honest prover can be relaxed to 2nϵ

for any constant ϵ > 0.

Deducing NIZK for NP from non-batch-computability. In similar fashion, we can deduce the
conclusion of Theorem 1.8 from non-batch-computability (with anNP oracle) over all polynomial-
time samplable distributions. Specifically, by combining Theorem 7.14 and Theorem 7.8, we get:

Corollary 7.16 (non-batch-computability implies NIZK for NP). For a sufficiently small ϵ > 0,
assume that there is f : {0, 1}n → {0, 1}k=nϵ

such that each output bit of f is computable in time T(n) =
poly(n), but the following holds. For every algorithm Rec running in time T · k.01 and making queries to
a SAT oracle O, and every polynomial-time samplable distribution x = {xn}n∈N, and every large enough
n ∈N, there is at most negligible probability over x ∼ xn that

Pr[RecO(x)i = f (x)i] ≥ 0.99 ,

where the probability above is over the random coins of Rec and over i ∈ [k].
Then, there is a (1/2, n−ω(1))-targeted HSG running in polynomial time that is pseudorandom for

DT IME [n]SAT over all polynomial-time samplable distributions, and on inputs of length N outputs
nO(ϵ) strings of length Nϵ. If we also assume subexponentially secure one-way functions, then every NP
relation has a NIZK argument system.

Acknowledgements

We are very grateful to an anonymous reviewer for pointing out that the function in Assump-
tion 1.2 can be used as-is to obtain zaps and NIWIs.

We thank Alex Lombardi and Vinod Vaikuntanathan for an insightful discussion, and in
particular for suggesting the possibility of improving the running time of the verifier in [CT23]
to be polynomial. We also thank Ján Pich for pointing out Theorem 1.5 to us, and for suggesting
a more elegant proof for it than our original one; in fact, Ján pointed out this potential corollary
to us before we obtained our results. We are grateful Yuval Ishai and Mor Weiss for invaluable
discussions on zero-knowledge PCPs and beyond. We thank Avi Wigderson for an insightful
discussion, and Oded Goldreich for coining the term “computationally sound NP”.

This paper started at the “Minimal Complexity Assumptions for Cryptography Workshop”
as part of the Meta Complexity program at the Simons Institute. We thank the organizers of the
workshop and of the program for inviting us and the Simons Institute for hosting us.

Lijie Chen is supported by a Miller Research Fellowship. Ron Rothblum is funded by the
European Union (ERC, FASTPROOF, 101041208). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

76

References

[ACY22] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “Hardness of approximation for
stochastic problems via interactive oracle proofs”. In: Proc. 37th Annual IEEE Confer-
ence on Computational Complexity (CCC). 2022, Art. No. 24, 16.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Verification and the Hardness of Approximation Problems”. In: J. ACM 45.3
(1998), pp. 501–555.

[AR23] Noga Amit and Guy N. Rothblum. “Constant-Round Arguments from One-Way
Functions”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023. Ed. by Barna Saha and Rocco A.
Servedio. ACM, 2023, pp. 1537–1544. doi: 10.1145/3564246.3585244. url: https:
//doi.org/10.1145/3564246.3585244.

[Ats06] Albert Atserias. “Distinguishing SAT from polynomial-size circuits, through black-
box queries”. In: Proc. 21st Annual IEEE Conference on Computational Complexity (CCC).
2006, 8 pp.–95.

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum.
“On the (In)security of Kilian-Based SNARGs”. In: Proc. 17th Theory of Cryptography
Conference (TCC). 2019, pp. 522–551.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum disclosure proofs
of knowledge”. In: vol. 37. 2. 1988, pp. 156–189.

[BF99] Harry Buhrman and Lance Fortnow. “One-Sided Versus Two-Sided Error in Prob-
abilistic Computation”. In: Proc. 16th Symposium on Theoretical Aspects of Computer
Science (STACS). 1999, pp. 100–109.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and
Amit Sahai. “Statistical ZAP Arguments”. In: Advances in Cryptology - EUROCRYPT
2020 - 39th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III. Ed. by Anne
Canteaut and Yuval Ishai. Vol. 12107. Lecture Notes in Computer Science. Springer,
2020, pp. 642–667.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. “NIZK from LPN and Trap-
door Hash via Correlation Intractability for Approximable Relations”. In: Proc. 40th
Advances in Cryptology - CRYPTO. 2020, pp. 738–767.

[BKP+23] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini
Vasudevan. “Batch Proofs are Statistically Hiding”. In: Electron. Colloquium Comput.
Complex. TR23-077 (2023). ECCC: TR23-077. url: https://eccc.weizmann.ac.il/
report/2023/077.

[Blu82] Manuel Blum. “Coin Flipping by Telephone - A Protocol for Solving Impossible
Problems”. In: Proc. 24th Computer Society International Conference COMPCON. 1982,
pp. 133–137.

[Blu86] Manuel Blum. “How to prove a theorem so no one else can claim it”. In: Proceedings
of the International Congress of Mathematicians. Vol. 1. Citeseer. 1986, p. 2.

77

https://doi.org/10.1145/3564246.3585244
https://doi.org/10.1145/3564246.3585244
https://doi.org/10.1145/3564246.3585244
TR23-077
https://eccc.weizmann.ac.il/report/2023/077
https://eccc.weizmann.ac.il/report/2023/077

[BLV06] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. “Lower bounds for non-black-box
zero knowledge”. In: J. Comput. Syst. Sci. 72.2 (2006), pp. 321–391.

[BM88] László Babai and Shlomo Moran. “Arthur-Merlin games: a randomized proof sys-
tem, and a hierarchy of complexity classes”. In: Journal of Computer and System Sci-
ences 36.2 (1988), pp. 254–276.

[BP15] Nir Bitansky and Omer Paneth. “ZAPs and Non-Interactive Witness Indistinguisha-
bility from Indistinguishability Obfuscation”. In: Proc. 12th Theory of Cryptography
Conference (TCC). 2015, pp. 401–427.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. “Perfect Structure on the Edge of
Chaos - Trapdoor Permutations from Indistinguishability Obfuscation”. In: Proc. 13th
Theory of Cryptography Conference (TCC). 2016, pp. 474–502.

[BTW10] Andrej Bogdanov, Kunal Talwar, and Andrew Wan. “Hard Instances for Satisfiability
and Quasi-one-way Functions”. In: Proc. 1st Conference on Innovations in Theoretical
Computer Science (ITCS). 2010.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. “Fiat-Shamir: from practice to theory”. In: Proc. 51st
Annual ACM Symposium on Theory of Computing (STOC). 2019, pp. 1082–1090.

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. “On the correlation intractability of
obfuscated pseudorandom functions”. In: Proc. 19th Theory of Cryptography Conference
(TCC). 2016, pp. 389–415.

[CCR+18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. “Fiat-Shamir and cor-
relation intractability from strong KDM-secure encryption”. In: Advances in cryptology—
EUROCRYPT. 2018, pp. 91–122.

[CGG+00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “Resettable zero-
knowledge (extended abstract)”. In: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA. Ed. by F.
Frances Yao and Eugene M. Luks. ACM, 2000, pp. 235–244.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology,
revisited”. In: Journal of the ACM 51.4 (2004), pp. 557–594.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. “Correlation Intractability and SNARGs from Sub-exponential DDH”. In:
Proc. 43rd Advances in Cryptology - CRYPTO. 2023, pp. 635–668.

[CHK+19] Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. “Finding a Nash equilibrium is no easier than break-
ing Fiat-Shamir”. In: Proc. 51st Annual ACM Symposium on Theory of Computing (STOC).
2019, pp. 1103–1114.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “SNARGs for $\math-
cal{P}$ from LWE”. In: Proc. 62nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 2021, pp. 68–79.

[CJJ+23] Geoffroy Couteau, Abhishek Jain, Zhengzhong Jin, and Willy Quach. “A Note on
Non-interactive Zero-Knowledge from CDH”. In: Proc. 43rd Advances in Cryptology -
CRYPTO. 2023, pp. 731–764.

78

[CJS+21] Lijie Chen, Ce Jin, Rahul Santhanam, and Ryan Williams. “Constructive Separations
and Their Consequences”. In: Proc. 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2021, pp. 646–657.

[CKK+21] Marco Carmosino, Valentine Kabanets, Antonina Kolokolova, and Igor C. Oliveira.
“LEARN-Uniform Circuit Lower Bounds and Provability in Bounded Arithmetic”.
In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Den-
ver, CO, USA, February 7-10, 2022. 2021, pp. 770–780.

[CKS+21] Geoffroy Couteau, Shuichi Katsumata, Elahe Sadeghi, and Bogdan Ursu. “Statistical
ZAPs from Group-Based Assumptions”. In: Proc. 19th Theory of Cryptography Confer-
ence (TCC). 2021, pp. 466–498.

[CLO24] Lijie Chen, Jiatu Li, and Igor C. Oliveira. “Reverse mathematics of complexity lower
bounds”. In: Proc. 65th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 2024.

[CN10] Stephen Cook and Phuong Nguyen. Logical foundations of proof complexity. Vol. 11.
Cambridge University Press Cambridge, 2010.

[CRT22] Lijie Chen, Ron D. Rothblum, and Roei Tell. “Unstructured Hardness to Average-
Case Randomness”. In: Proc. 63rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 2022.

[CT21] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform, Non-Black-
Box, and Instance-Wise”. In: Proc. 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2021, pp. 125–136.

[CT23] Lijie Chen and Roei Tell. “When Arthur has Neither Random Coins nor Time to
Spare: Superfast Derandomization of Proof Systems”. In: Proc. 55th Annual ACM
Symposium on Theory of Computing (STOC). 2023.

[CTW23] Lijie Chen, Roei Tell, and R. Ryan Williams. “Derandomization vs Refutation: A
Unified Framework for Characterizing Derandomization”. In: Proc. 64th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2023, pp. 1008–1047.

[DFG13] Shlomi Dolev, Nova Fandina, and Dan Gutfreund. “Succinct permanent is NEXP-
hard with many hard instances”. In: International Conference on Algorithms and Com-
plexity. Vol. 7878. Lecture Notes in Comput. Sci. 2013, pp. 183–196.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. “Low Com-
munication 2-Prover Zero-Knowledge Proofs for NP”. In: Proc. 12th Advances in Cryp-
tology - CRYPTO. 1992, pp. 215–227.

[DN07] Cynthia Dwork and Moni Naor. “Zaps and Their Applications”. In: SIAM J. Comput.
36.6 (2007), pp. 1513–1543.

[DN93] Cynthia Dwork and Moni Naor. “Pricing via Processing or Combatting Junk Mail”.
In: Proc. 13th Advances in cryptology—CRYPTO. 1993, pp. 139–147.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-Interactive Zero Knowl-
edge Proofs Based on a Single Random String (Extended Abstract)”. In: Proc. 31st
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1990, pp. 308–
317.

79

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple NonInteractive Zero Knowl-
edge Proofs Under General Assumptions”. In: SIAM Journal of Computing 29.1 (1999),
pp. 1–28.

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions to identifi-
cation and signature problems”. In: Advances in cryptology—CRYPTO. 1986, pp. 186–
194.

[FS90] Uriel Feige and Adi Shamir. “Witness Indistinguishable and Witness Hiding Proto-
cols”. In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC). 1990,
pp. 416–426.

[GJJ+20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. “Statistical Zaps
and New Oblivious Transfer Protocols”. In: Proc. 39th Advances in Cryptology - EU-
ROCRYPT. 2020, pp. 668–699.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating computa-
tion: interactive proofs for muggles”. In: Journal of the ACM 62.4 (2015), 27:1–27:64.

[GO94] Oded Goldreich and Yair Oren. “Definitions and Properties of Zero-Knowledge
Proof Systems”. In: J. Cryptol. 7.1 (1994), pp. 1–32.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, 2001. isbn: 0-521-79172-3.

[Gol11] Oded Goldreich. “Two Comments on Targeted Canonical Derandomizers”. In: Elec-
tronic Colloquium on Computational Complexity: ECCC 18 (2011), p. 47.

[Gol18] Oded Goldreich. “On doubly-efficient interactive proof systems”. In: Foundations and
Trends® in Theoretical Computer Science 13.3 (2018), front matter, 1–89.

[Gol93] Oded Goldreich. “A Uniform-Complexity Treatment of Encryption and Zero-Knowledge”.
In: J. Cryptol. 6.1 (1993), pp. 21–53.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and New Tech-
niques for NIZK”. In: Proc. 26th Advances in Cryptology - CRYPTO. 2006, pp. 97–111.

[GS89] Yuri Gurevich and Saharon Shelah. “Nearly linear time”. In: Logic at Botik, Symposium
on Logical Foundations of Computer Science. Lecture Notes in Computer Science. 1989,
pp. 108–118.

[GSTS07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “If NP languages are hard
on the worst-case, then it is easy to find their hard instances”. In: Computational
Complexity 16.4 (2007), pp. 412–441.

[Gut06] Dan Gutfreund. “Worst-case vs. algorithmic average-case complexity in the polynomial-
time hierarchy”. In: Approximation, randomization and combinatorial optimization. Vol. 4110.
Lecture Notes in Comput. Sci. 2006, pp. 386–397.

[GZ11] Oded Goldreich and David Zuckerman. “Another Proof That BPP ⊆ PH (and
More)”. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation. Ed. by Oded Goldreich. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 40–53.

[Hås87] Johan Håstad. Computational Limitations of Small-depth Circuits. MIT Press, 1987.

80

[HIL+99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A Pseu-
dorandom Generator from any One-way Function”. In: SIAM Journal of Computing
28.4 (1999), pp. 1364–1396.

[HJK+22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. “SNARGs
for P from Sub-exponential DDH and QR”. In: Proc. 41st Advances in Cryptology - EU-
ROCRYPT. 2022, pp. 520–549.

[HL18] Justin Holmgren and Alex Lombardi. “Cryptographic hashing from strong one-way
functions”. In: Proc. 59th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 2018, pp. 850–858.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. “Fiat-Shamir via list-recoverable
codes (or: parallel repetition of GMW is not zero-knowledge)”. In: Proc. 53rd Annual
ACM Symposium on Theory of Computing (STOC). 2021, pp. 750–760.

[HMR08] Shai Halevi, Steven Myers, and Charles Rackoff. “On seed-incompressible func-
tions”. In: Proc. 5th Theory of Cryptography Conference (TCC). 2008, pp. 19–36.

[HVW22] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. “ZK-
PCPs from Leakage-Resilient Secret Sharing”. In: J. Cryptol. 35.4 (2022), p. 23.

[IJK+10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. “Uni-
form direct product theorems: simplified, optimized, and derandomized”. In: SIAM
Journal of Computing 39.4 (2010), pp. 1637–1665.

[IKO+09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-Knowledge
Proofs from Secure Multiparty Computation”. In: SIAM J. Comput. 39.3 (2009), pp. 1121–
1152.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponential circuits:
derandomizing the XOR lemma”. In: Proc. 29th Annual ACM Symposium on Theory of
Computing (STOC). 1997, pp. 220–229.

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. “Making the Best of a Leaky Situation:
Zero-Knowledge PCPs from Leakage-Resilient Circuits”. In: Proc. 13th Theory of Cryp-
tography Conference (TCC). 2016, pp. 3–32.

[Jeř05] Emil Jeřábek. “Weak Pigeonhole Principle, and Randomized Computation”. Avail-
able at https://eccc.weizmann.ac.il/resources/pdf/jerabek.pdf. PhD thesis.
Charles University in Prague, 2005.

[Jeř07] Emil Jeřábek. “Approximate counting in bounded arithmetic”. In: The Journal of Sym-
bolic Logic 72.3 (2007), pp. 959–993.

[JJ21] Abhishek Jain and Zhengzhong Jin. “Non-interactive Zero Knowledge from Sub-
exponential DDH”. In: Proc. 40th Advances in Cryptology - EUROCRYPT. 2021, pp. 3–
32.

[JKK+21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. “SNARGs
for bounded depth computations and PPAD hardness from sub-exponential LWE”.
In: Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC). 2021, pp. 708–
721.

81

https://eccc.weizmann.ac.il/resources/pdf/jerabek.pdf

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation from
well-founded assumptions”. In: Proc. 53rd Annual ACM Symposium on Theory of Com-
puting (STOC). 2021, pp. 60–73.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability Obfuscation from
LPN over Fp, DLIN, and PRGs in NC0”. In: Proc. 41st Advances in Cryptology - EU-
ROCRYPT. 2022, pp. 670–699.

[Kab01] Valentine Kabanets. “Easiness assumptions and hardness tests: trading time for zero
error”. In: Journal of Computer and System Sciences 63.2 (2001), pp. 236–252.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proc. 24th
Annual ACM Symposium on Theory of Computing (STOC). 1992, pp. 723–732.

[KLV23] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. “SNARGs and PPAD
hardness from the decisional Diffie-Hellman assumption”. In: Proc. Advances in cryp-
tology (EUROCRYPT). 2023, pp. 470–498.

[KM02] Adam R. Klivans and Dieter van Melkebeek. “Graph Nonisomorphism Has Subex-
ponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses”. In: SIAM J.
Comput. 31.5 (2002), pp. 1501–1526.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. “Probabilistically Checkable Proofs with
Zero Knowledge”. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. Ed. by Frank Thomson
Leighton and Peter W. Shor. ACM, 1997, pp. 496–505.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. “How to delegate computations
publicly”. In: Proc. 51st Annual ACM Symposium on Theory of Computing (STOC). 2019,
pp. 1115–1124.

[Kra19] Jan Krajíček. Proof complexity. Vol. 170. Cambridge University Press, 2019.

[Kra95] Jan Krajíček. Bounded arithmetic, propositional logic, and complexity theory. Vol. 60. En-
cyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 1995, pp. xiv+343. isbn: 0-521-45205-8.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. “From obfuscation to
the security of Fiat-Shamir for proofs”. In: Advances in cryptology—CRYPTO. 2017,
pp. 224–251.

[Lau83] Clemens Lautemann. “BPP and the polynomial hierarchy”. In: Information Processing
Letters 17.4 (1983), pp. 215–217.

[Les22] Maya Leshkowitz. “Round complexity versus randomness complexity in interactive
proofs”. In: Theory of Computing 18 (2022), Paper No. 13, 65.

[LFK+92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic meth-
ods for interactive proof systems”. In: Journal of the Association for Computing Machin-
ery 39.4 (1992), pp. 859–868.

[LO23] Jiatu Li and Igor C. Oliveira. “Unprovability of strong complexity lower bounds in
bounded arithmetic”. In: Proc. 55th Annual ACM Symposium on Theory of Computing
(STOC). 2023, pp. 1051–1057.

82

[LVW19] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. “2-Message Publicly Ver-
ifiable WI from (Subexponential) LWE”. In: IACR Cryptol. ePrint Arch. (2019), p. 808.

[LVW20] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. “Statistical ZAPR Argu-
ments from Bilinear Maps”. In: Proc. 39th Advances in Cryptology - EUROCRYPT.
2020, pp. 620–641.

[LY94] Richard J. Lipton and Neal E. Young. “Simple Strategies for Large Zero-Sum Games
with Applications to Complexity Theory”. In: Proc. 26th Annual ACM Symposium on
Theory of Computing (STOC). 1994, 734–740.

[Mic00] Silvio Micali. “Computationally sound proofs”. In: SIAM Journal of Computing 30.4
(2000), pp. 1253–1298.

[MP20] Moritz Müller and Ján Pich. “Feasibly constructive proofs of succinct weak circuit
lower bounds”. In: Annals of Pure and Applied Logic 171.2 (2020), pp. 102735, 45.

[MS23a] Dieter van Melkebeek and Nicollas Sdroievski. “Instance-wise hardness versus ran-
domness tradeoffs for Arthur-Merlin protocols”. In: Proc. 38th Annual IEEE Confer-
ence on Computational Complexity (CCC). 2023, Art. No. 17, 36.

[MS23b] Dieter van Melkebeek and Nicollas Sdroievski. “Leakage resilience, targeted pseu-
dorandom generators, and mild derandomization of Arthur-Merlin protocols”. In:
Proc. 43rd IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS). 2023, Art. No. 29, 22.

[MV05] Peter Bro Miltersen and N. V. Vinodchandran. “Derandomizing Arthur-Merlin games
using hitting sets”. In: Computational Complexity 14.3 (2005), pp. 256–279.

[Nao03] Moni Naor. “On Cryptographic Assumptions and Challenges”. In: Proc. 23rd Ad-
vances in cryptology—CRYPTO. Ed. by Dan Boneh. Springer, 2003.

[Nao91] Moni Naor. “Bit Commitment Using Pseudorandomness”. In: J. Cryptol. 4.2 (1991),
pp. 151–158.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal of Computer
and System Sciences 49.2 (1994), pp. 149–167.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. “Hardness Magnification for Natural
Problems”. In: Electronic Colloquium on Computational Complexity: ECCC 25 (2018),
p. 139.

[OV07] Boaz Barakand Shien Jin Ong and Salil P. Vadhan. “Derandomization in Cryptogra-
phy”. In: SIAM J. Comput. 37.2 (2007), pp. 380–400.

[Pic15a] Ján Pich. “Circuit lower bounds in bounded arithmetics”. In: Annals of Pure and Ap-
plied Logic 166.1 (2015), pp. 29–45.

[Pic15b] Ján Pich. “Logical strength of complexity theory and a formalization of the PCP
theorem in bounded arithmetic”. In: Logical Methods in Computer Science 11.2 (2015),
2:8, 38.

[PS19] Chris Peikert and Sina Shiehian. “Noninteractive Zero Knowledge for NP from
(Plain) Learning with Errors”. In: Advances in Cryptology - CRYPTO. 2019, pp. 89–
114.

83

[PS21] Ján Pich and Rahul Santhanam. “Strong co-nondeterministic lower bounds for NP
cannot be proved feasibly”. In: Proc. 53rd Annual ACM Symposium on Theory of Com-
puting (STOC). 2021, pp. 223–233.

[Rab79] Michael O Rabin. “Digitalized signatures and public-key functions as intractable as
factorization”. In: (1979).

[Raz85] A. A. Razborov. “Lower bounds on the monotone complexity of some Boolean func-
tions”. In: Doklady Akademii Nauk SSSR 281.4 (1985), pp. 798–801.

[Raz87] Alexander A. Razborov. “Lower bounds on the size of constant-depth networks over
a complete basis with logical addition”. In: Mathematical Notes of the Academy of Sci-
ence of the USSR 41.4 (1987), pp. 333–338.

[Raz95] Alexander A. Razborov. “Bounded arithmetic and lower bounds in Boolean com-
plexity”. In: Feasible mathematics, II (Ithaca, NY, 1992). Vol. 13. Progr. Comput. Sci.
Appl. Logic. 1995, pp. 344–386.

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-round interac-
tive proofs for delegating computation”. In: SIAM Journal of Computing 50.3 (2021),
STOC16–255–STOC16–340.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: Communications of the Associ-
ation for Computing Machinery 21.2 (1978), pp. 120–126.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-Lock Puzzles and Timed-Release Crypto.
Tech. rep. USA, 1996.

[Sha92] Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869–877.

[Sip83] Michael Sipser. “A complexity theoretic approach to randomness”. In: Proc. 15th
Annual ACM Symposium on Theory of Computing (STOC). 1983, pp. 330–335.

[Smo87] Roman Smolensky. “Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity”. In: Proc. 19th Annual ACM Symposium on Theory of Computing
(STOC). 1987, pp. 77–82.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom generators without
the XOR lemma”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 236–266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies and
a new pseudorandom generator”. In: Journal of the ACM 52.2 (2005), pp. 172–216.

[SU07] Ronen Shaltiel and Christopher Umans. “Low-end uniform hardness vs. random-
ness tradeoffs for AM”. In: Proc. 39th Annual ACM Symposium on Theory of Computing
(STOC). 2007, pp. 430–439.

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case Com-
plexity Via Uniform Reductions”. In: Computational Complexity 16.4 (2007), pp. 331–
364.

[Ver13] Nikolay Vereshchagin. “Improving on Gutfreund, Shaltiel, and Ta-Shma’s paper “If
NP languages are hard on the worst-case, then it is easy to find their hard in-
stances””. In: Computer science—theory and applications. Vol. 7913. Lecture Notes in
Comput. Sci. 2013, pp. 203–211.

84

[Wei22] Mor Weiss. “Shielding Probabilistically Checkable Proofs: Zero-Knowledge PCPs
from Leakage Resilience”. In: Entropy 24.7 (2022), p. 970.

A Derandomizing the [HVW22] zkPCP

The zkPCP of [HVW22] that we use is based on the “MPC in the head” technique of [IKO+09].
For a givenNP relation R and parameter qmax, the PCP is constructed as follows. Let t = O(qmax)
and ℓ = 2t, the prover runs a maliciously secure ℓ-player MPC protocol, with perfect security, wrt
the functionality f (x, w1, . . . , xℓ) = R(x,⊕iwi), where the input to the i-th player is (x, wi) and
the output is 1 if and only if (x,⊕iwi) ∈ R. The PCP proof-string is constructed by having each
PCP symbol include the entire view of one of the ℓ players.

The PCP verifier chooses at random a set S ⊆ [ℓ] of size q = Õ(
√
ℓ) of the players and checks

that their views are (1) consistent with each other (i.e., the outgoing message from any player
i ∈ S to player j ∈ S is consistent with message received by player j, and (2) that all the of selected
players output 1.

The analysis of [HVW22] chooses the set S entirely at random which requires randomness
complexity Õ(

√
qmax), which is too large for our purposes. Next, we describe how to reduce the

randomness complexity to O(log ℓ) = O(log(qmax)). We remark that in contrast to [HVW22] we
only aim to achieve a constant soundness error.

Our derandomization of the PCP will only use uses a subset of the query sets that the verifier
of [HVW22] makes, and the prover remains unchanged. This means that we automatically inherit
the (perfect) completeness and zero-knowledge from [HVW22].

For soundness, the key point in the analysis of [HVW22] (following [IKO+09]) is to show that
with all but negligible probability, when S is chosen at random, then either a player who’s view
is not corrupted was selected (in which case the verifier will reject due to the malicious security
of the MPC protocol), or alternatively, the views of two of the selected players are inconsistent
with each other.

Establishing soundness boils therefore to the following combinatorial problem - given a
graph57 G on ℓ vertices

• If the graph has a small vertex cover B then with high probability S ∩ B̄ ̸= ∅ (i.e., a vertex
outside the vertex cover is selected).

• If the graph does not have a small vertex cover, then with high probability, the two end-
points of one of its edges are selected.

We show that the same properties hold if we sample the vertices from a 4-wise independent
distribution. In more detail, we sample the set S as follows. Let X = (Xv)v∈V be a 4-wise
independent distribution where each Xv is a Bernoulli random variable with mean q/t, where
q = Θ(

√
t). We let S = {v : Xv = 1}.58

Our analysis uses the following fact that follows immediately from Chebyshev’s inqequality.

57This graph, called the inconsistency graph [IKO+09], has ℓ vertices, one per player, and an edge (u, v) whenever the
views of u and v are inconsistent, see [IKO+09; HVW22] for details.

58To have a worst-case bound on the size of S, in case |S| > 2ℓq/t the verifier immediately accepts. By Chebyshev’s
inequality this increases the soundness error by at most O(1/q2).

85

Fact A.1. Let X1, . . . , Xn be pairwise independent Bernoulli random variables with the same mean p ∈
(0, 1]. Then,

Pr [X1 = · · · = Xn = 0] ≤ 1
np

.

We consider now the two cases:

• Case I: the graph contains a vertex cover B of size at most t. Observe that (Xv)v/∈B is a
sequence of at least ℓ− t ≥ t pairwise independent Bernoulli random variables with mean
q/t. Thus, by Fact A.1, it holds that they are all 0 (i.e., none of them are selected) with
probability at most 1/q.

• Case II: the graph does not contain a vertex cover of size at most t. Then, following
[IKO+09], the graph must contain a matching M of size at least t/2. For every edge
e = (u, v) ∈ M, let Ye = Xu · Xv. That is, Ye is an indicator for the event that u, v ∈ S.
Observe that since M is a matching, and the (Xv) variables are 4-wise independent, the
variables (Ye)e∈M are pairwise independent. Thus, (Ye)e∈M is a sequence of at least t/2 pair-
wise independent Bernoulli random variables with mean E[Ye] = E[Xu] ·E[Xv] = (q/t)2.
Hence, by Fact A.1 the probability that Y = 0 is at most 2t

q2 .

Taking q = Θ(
√

t), we get that at least one of the above events happens with constant proba-
bility.

Lastly, we remark that the above 4-wise independent sequence can be generated using a 4-
wise independent hash function from [ℓ] to [t/q], and selecting all inputs that are mapped, say,
to 0.

B The FLS Trick for Uniform Adversaries: Proof of Lemma 3.7

Let R be an NP relation and let G be a length-doubling cryptographic pseudorandom gener-

ator (such exists since we assumed one-way functions [HIL+99]). Let R′ =
{(

(x, r), w
)

: r =

2|x| and
((

(x, w) ∈ R
)

or (G(w) = r)
)}

. That is, the relation R′ consists of all inputs (x, r) such

that either x is YES instance of R or r is in the image of the PRG. Note that R′ ∈ NP and so by
our hypothesis it has a zap.

For a given input length n, the NIZK CRS consists of a CRS crs for a Zap for L′ (on input of
length n + 2n), as well as a uniformly random string r ∈ {0, 1}2n. Given input x, the prover P
and verifier V run the zap on the statement

(
(x, r), w)

)
∈ R′, where w is the NP witness given

to the prover.
Completeness follows from the completeness of the zap, while observing that (x, w) ∈ R and

and so
(
(x, r), w

)
∈ R′.

For soundness, let P∗ be a ppt cheating prover. Suppose that P∗, given input (crs, r) outputs
(x, α) such that V((crs, r), x, α) = 1 and x ∈ {0, 1}n\L(R), with probability at least ϵ. We use
P∗ to violate the soundness of the zap as follows - given as input a CRS crs the prover chooses
r ∈ {0, 1}2n uniformly at random and then uses P∗(crs, r) to obtain (x, α) and supplies α as the
proof, relative to the input (x, r). Observe that this proof convinces the zap verifier with the same
probability ϵ, and that will all but 2−n probability, it holds that r /∈ Im(G) and so (x, r) /∈ L(R′).
Overall we obtain a violation of the soundness of the zap with advantage ϵ− 2−n.

86

To show the zero-knowledge property, we construct a simulator (S1, S2) as follows. The first
algorithm S1, on input 1n, first generates s ∈ {0, 1}n and crs uniformly at random. The CRS is
then set to be (crs, r), where r = G(s), and the auxiliary input (aka trapdoor) is τ = (crs, s). The
second algorithm S2, given (x, τ), interprets τ as (crs, s), sets r = G(s), and outputs the NIZK
proof α← PR′(crs, (x, r), s) (indeed s is used as the witness for the fact that (x, r) ∈ L′).

Assume toward a contradiction that (S1, S2) do not satisfy the zero-knowledge property.
Thus, there exist a pair of ppt algorithms (A1, A2) such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr
crs

r∈{0,1}2n

(x,w,z)←A1(crs,r)
α←PR′ (crs,(x,r),w)

A2((crs, r), x, α, z) = 1
∧

(x, w) ∈ R

− Pr
crs

s∈{0,1}n

(x,w,z)←A1(crs,G(s))
α←PR′ (crs,(x,G(s)),s)

A2((crs, G(s)), x, α, z) = 1
∧

(x, w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣

is non-negligible. By the security of the PRG, since PR′ and (A1, A2) are ppt, we have that:∣∣∣∣∣∣∣∣∣∣∣∣
Pr
crs

r∈{0,1}2n

(x,w,z)←A1(crs,r)
α←PR′ (crs,(x,r),w)

A2((crs, r), x, α, z) = 1
∧

(x, w) ∈ R

− Pr
crs

s∈{0,1}n

(x,w,z)←A1(crs,G(s))
α←PR′ (crs,(x,G(s)),w)

A2((crs, G(s)), x, α, z) = 1
∧

(x, w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣

is negligible. By the triangle inequality, this implies that:∣∣∣∣∣∣∣∣∣∣∣
Pr
crs

s∈{0,1}n

(x,w,z)←A1(crs,G(s))
α←PR′ (crs,(x,G(s)),w)

A2((crs, G(s)), x, α, z) = 1

∧
((x, G(s)), w) ∈ R′

∧
((x, G(s)), s) ∈ R′

− Pr
crs

s∈{0,1}n

(x,w,z)←A1(crs,G(s))
α←PR′ (crs,(x,G(s)),s))

A2((crs, G(s)), x, α, z) = 1

∧
((x, G(s)), w) ∈ R′

∧
((x, G(s)), s) ∈ R′

∣∣∣∣∣∣∣∣∣∣∣

,

is non-negligible, which contradicts the witness indistinguishibilty property.

87

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

