
Partial Minimum Branching Program Size Problem

is ETH-hard

Ludmila Glinskih
Boston University

lglinskih@gmail.com

Artur Riazanov
EPFL

tunyash@gmail.com

Abstract

We show that assuming the Exponential Time Hypothesis, the Partial Minimum Branching
Program Size Problem (MBPSP∗) requires superpolynomial time. This result also applies to the
partial minimization problems for many interesting subclasses of branching programs, such as read-k
branching programs and OBDDs.

Combining these results with our recent result (Glinskih and Riazanov, LATIN 2022) we obtain
an unconditional superpolynomial lower bound on the size of Read-Once Nondeterministic Branching
Programs (1-NBP) computing the total versions of the minimum BP, read-k-BP, and OBDD size
problems.

Additionally we show that it is NP-hard to check whether a given BP computing a partial
Boolean function can be compressed to a BP of a given size.

1 Introduction

The Minimum Circuit Size Problem (MCSP) has been a central problem of study in computa-
tional complexity in recent years. Given the truth-table of a Boolean function, and a size parameter s,
MCSP asks one to determine whether the function can be computed by a Boolean circuit of size s. As the
input length of MCSP is exponential in the input length of the function defined by the given truth table,
it is clear that MCSP is contained in NP. Although it is not known whether MCSP is NP-complete, it
is widely believed to be hard to compute. Starting from the work of Kabanets and Cai [KC00] there has
been mounting evidence that MCSP 6∈ P [RR97]. For example, MCSP ∈ P implies that widely believed
cryptographic assumptions do not hold. On the other hand, there are complexity-theoretic barriers to
proving NP-hardness of MCSP [MW17, SS20].

Even before the work of Kabanets and Cai [KC00], variations of MCSP were studied in the context
where the function is given not as a truth table, but represented in some computational model. One
family of models that was extensively studied in this context is branching programs. The line of work
[BW96, OCVS98, TY00, Sie02, Bol16] showed that branching program minimization is NP-hard for
the natural cases of succinct representation of a function: either the function itself is represented as a
branching program as in [BW96, Sie02, Bol16], or an input is a partial function with few fixed values as
in [TY00]. The results, however, are limited to weak models of branching programs such as OBDDs or
read-once branching programs. To our knowledge, no hardness results are known even for minimizing
read-twice branching programs.

The potential cross-pollination between these two research areas motivates us to study Minimum
Branching Program Size Problem (MBPSP): given a function represented as a truth table {0, 1}2n

and a size parameter s ∈ [2n] determine whether exists a branching program of size at most s computing
the given function.

On the meta-complexity side, one of the approaches to prove NP-hardness of MCSP is to show lower
bounds for C-MCSP problems, in which we ask whether an input Boolean function can be computed by
a circuit from the class C, where C is a weaker class than general Boolean circuits. There are already
results showing NP-hardness of DNF-MCSP [Mas79], (DNF◦XOR)-MCSP [HOS18], and the hardness
of DeMorgan Formulas-MCSP (MFSP) assuming the Exponential Time Hypothesis (ETH) [Ila21]. All
of these reductions share a common structure.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 117 (2024)

• First they show hardness of the Partial C-MCSP (C-MCSP∗) problem in which the input is the
truth table of a partial function.

• Then they show a reduction from the C-MCSP∗ problem to the C-MCSP problem.

Hardness results for Partial MCSP (MCSP∗) are already known. In [Ila20] Ilango showed that MCSP∗

requires superpolynomial time to compute1, assuming the Exponential Time Hypothesis. Recently,
Hirahara [Hir22] showed the NP-hardness of MCSP∗ under randomized reductions. So the only missing
component for showing hardness of MCSP is to show an efficient reduction from MCSP∗ to MCSP.

The study of hardness of MBPSP under the ETH continues the line of work above. Expressive
power of branching programs is situated between that of Boolean formulas and Boolean circuits [Pra75,
Gie01]. On the other hand our understanding of branching programs seems to be slightly better than
our understanding of circuits. One evidence for this is that the strongest lower bound on the BP size for
an explicit function is Ω̃(n2) [Nec66] which is much stronger than Ω(n) lower bound for Boolean circuits
[FGHK16]. Showing the ETH-hardness of MBPSP would improve the recent ETH-hardness result for
MFSP [Ila21] which is the frontier hardness result for total circuit minimization problems and move us
one step closer to the ETH-hardness of MCSP itself. Our main result is completing the first step of the
common recipe for establishing the hardness of C-MCSP by showing hardness of BP-MCSP∗ (that we
call MBPSP∗ for short).

Theorem 1. Every deterministic algorithm computing MBPSP∗ on inputs of length N requires time
NΩ(log log(N)) assuming the Exponential Time Hypothesis.

Note that the ETH-hardness of MCSP∗ or MFSP∗ does not imply the ETH-hardness of MBPSP∗.
Although on surface it seems that MBPSP (MBPSP∗) is just a special case of MCSP (MCSP∗), the
hardness of the latter does not necessarily imply the hardness of the former. For example, in some special
settings of parameters, an explicit construction of a many-one reduction between MCSP and MBPSP
yields breakthrough circuit or BP lower bounds.2 On the other hand, ruling out more natural parameter
configurations does not seem as trivial: indeed, our main result shows that the identity function is a
reduction on a certain subset of the instances.

On the branching program minimization side, the consequences are twofold. First, our result implies
that all partial branching program minimization problems require time NΩ(log logN) under ETH for any
representation of a function that is at least as efficient as truth table.3 Second, we show that our result
implies NP-hardness of minimization of a branching program computing a partial function that itself is
represented as a branching program (see Section 1.2.3 for details).

In particular, our result implies that the problem of finding the smallest OBDD (a subclass of
branching programs) that computes the given partial function is ETH-hard. But surprisingly, there is a
polynomial-time algorithm that finds the smallest OBDD computing a total function [FS90]. This means
that assuming ETH holds, the potential reduction from MBPSP∗ to MBPSP must fail on OBDDs.

1.1 Techniques

To show Theorem 1 we adapt the proof of a similar result of Ilango [Ila20] for the hardness of MCSP∗

and MFSP∗ problems.

Theorem 2. [Ila20] Every deterministic algorithm computing MCSP∗ on inputs of length N requires
time NΩ(log log(N)) assuming the Exponential Time Hypothesis holds. The same holds for MFSP∗.

Ilango’s proof of Theorem 2 is a reduction from the (n× n)-Bipartite Permutation Independent Set
Problem ((n× n)-BPIS). For now we can think of it as an independent set problem on some special set
of graphs. This is an NP-hard graph problem introduced in [LMS18], where the authors show that any
deterministic Turing machine requires 2Ω(n logn)-time4 to solve it if the Exponential Time Hypothesis

1The same hardness result holds for Partial MFSP (MFSP∗).
2Suppose that f is such a reduction from MCSPs=3n (the language of the truth-tables computable by circuits with

at most 3n gates) to MBPSPs=n2.1 . Then taking any function requiring circuits of size larger than 3n [FGHK16, LY22]
and applying f to it yields n2.1 lower bound for general branching programs superior to the current state of the art. In a
similar way, we get superlinear circuit lower bounds from any reduction from MBPSPs=n2 to MCSPs=n1+ε .

3We note that results in this area often establish NP-hardness and even hardness of size approximation for the case of
concise representation, while our result only establishes ETH-hardness of the exact version of the problem.

4The input to this problem has Θ(n4 logn) bit size.

2

holds. For an input graph G with vertices labeled by elements of [n]× [n] Ilango constructs a truth-table
of a 3n-variable partial Boolean function γG, such that

(?) G is a Yes-instance of (n×n)-BPIS iff γG can be computed by a DeMorgan formula with at most
3n− 1 gates.

The key point here is that if we constrain a circuit or a formula to have at most 3n − 1 (inner)
gates, its structure becomes simple enough for a very precise analysis. [Ila20] characterizes the structure
of such formulas that compute γG which would yield the correspondence between such formulas with
independent sets in G.

Although branching programs are situated between formulas and circuits in computational expressiv-
ity [Gie01], Theorem 2 does not apply to MBPSP∗, since with a sharp constraint on the size, branching
programs may become stronger than circuits. We observe in Proposition 7 that this is indeed the case,
showing that branching programs are stronger than circuits if we constrain the size parameter of both
models to “minimal viable” size: m− 1 inner nodes for a DeMorgan circuit and m non-sink nodes for a
BP for the case of a Boolean function on m input bits.

Nevertheless, we show that the reduction to MCSP∗ from Theorem 2 does yield ETH-hardness for
MBPSP∗. Indeed, in our proof of Theorem 1 we only change the part (?), keeping the construction of
γG. The key part of the proof is to understand what structure a branching program has if it has at most
3n (non-sink) nodes. As γG is sensitive in every input variable, we need to understand a structure of a
branching program that has unique variable labels. We call such programs once-appearance branching
programs (oaBP). We show that γG can be computed by a once-appearance branching program iff G is
a Yes-instance of (n× n)-BPIS.

1.2 Corollaries

1.2.1 Weaker Classes

BP is not the only model that collapses to oaBP when constrained to have at most n non-sink nodes.
The same also holds for OBDD, and k-BP for every positive integer k. From this we get a family of
hardness of minimization results for restricted classes of branching programs.

Corollary 3. Every deterministic algorithm computing C-MCSP∗ for C ∈ {OBDD,BP} ∪ {k-BP | k ≥
1}5 on inputs of length N requires time NΩ(log log(N)) assuming the Exponential Time Hypothesis.

1.2.2 Unconditional Results for a Weaker Model

In our recent work [GR22] we employed the framework of Ilango from [Ila20] to show an unconditional
lower bound on the size of the read-once nondeterministic branching program (1-NBP) computing the
total version of MCSP. The proof consists of three components.

1. Show that (n × n)-BPIS unconditionally cannot be computed by a 1-NBP of smaller than Ω(n!)
size.

2. Show that Ilango’s reduction from (n × n)-BPIS to MCSP∗ can be efficiently encoded using
BP. This shows that if MCSP∗ on inputs of length N could be computed by a 1-NBP of size
No(log log(N)), then (n× n)-BPIS could be computed by a 1-NBP of size o(n!).

3. Show that MCSP and MCSP∗ have the same 1-NBP complexity up to a linear multiplicative
factor. This implies that 1-NBP complexity of MCSP is at least NΩ(log log(N)).

Since the proof of Theorem 1 follows similar steps as the proof of the Theorem 2, and analogs of the
third property from [GR22] also hold for BP, k-BP, and OBDD, we get similar unconditional 1-NBP
lower bounds for total minimization problems in all these models.

Corollary 4. Every 1-NBP computing C-MCSP for C ∈ {OBDD,BP} ∪ {k-BP | k ≥ 1} on inputs of
length N requires size at least NΩ(log log(N)).

5Or any other class of branching programs that collapses to oaBP on the n-node programs.

3

1.2.3 NP-hardness of Compressing BPs

Additionally, we show that given a graph G we can construct a branching program B of polynomial
size that exactly computes the partial function γG. Namely it outputs {0, 1} values on inputs on which
γG is defined and ∗ on all other inputs. Then B can be compressed to an oaBP which agrees with γG
on its domain iff G is a Yes-instance of (n × n)-BPIS. Combining this result with a folklore result
of coNP-hardness of compressing a branching program, we get the following result on the hardness of
compressing branching programs.

Corollary 5. The language of pairs (B, s) where B is a branching program6 over the alphabet {0, 1, ∗}
and s is in integer, such that an extension of the partial function described by B can be computed by a
BP of size at most s, is NP and coNP-hard.

1.3 Organization

The structure of the paper is as follows:

• In Section 2 we give definitions of the branching programs and various versions of MCSP we are
working with.

• In Section 3 we prove our main result: the hardness of MBPSP∗ under ETH (Theorem 1).
• In Section 4 we sketch the proofs of several corollaries of Theorem 1.
• Finally, in Section 5 we explain the future directions of this work and possible barriers we see for

strengthening our results.

2 Preliminaries

Throughout this work we denote by [n] the set of n elements {1, . . . , n}. Let a and b be partial
assignments. If the supports of a and b do not intersect, denote by a ∪ b the partial assignment that
coincides with a on the support of a and with b on the support of b. For a graph G we denote its set of
vertices by V (G) and its set of edges by E(G). Throughout the paper a circuit is a DeMorgan circuit (∧,
∨ and ¬ gates) with gates of arity 2. A formula is a tree-like DeMorgan circuit. A read-once formula is
a formula such that each input bit feeds into exactly one gate. E.g. x ∨ (¬y ∧ z) is a read-once formula,
and (x∧ y)∨ (¬x∧ z) is not. Since every DeMorgan formulas can be transformed in such a way that all
¬-gates are adjacent to the inputs, we identify DeMorgan formulas with trees with literals in the leaves
and ∧/¬ in the inner nodes.

A Branching Program (BP) is a form of representation of functions. A n-ary function7 f : Dn →
{0, 1}, where |D| = d, is represented by a directed acyclic graph with exactly one source and two sinks.
Each non-sink node is labeled with a variable; every internal node has exactly d outgoing edges: labeled
with elements of D. One of the sinks is labeled with 1 and the other is labeled with 0. We say that a
node queries x if it is labeled with a variable x. The size of a branching program is a number of nodes
in it.

The value of the function for given values of the variables is evaluated as follows: we start in the
source and then follow the edge labeled with the value of the variable in the source, we repeat this process
until the current node is a sink. The label of this sink is the value of the function. We refer to a path
that terminates in a σ-labeled sink as σ-path.

A Non-deterministic Branching Program (NBP) is a Branching Program over the alphabet {0, 1}
with additional non-labeled guessing nodes with two non-labeled outgoing edges. The value computed
by a Non-deterministic Branching Program is 1 if there exists at least one 1-path that agrees with the
given assignment.

A Branching Program (deterministic or not) is called read-once (denoted as 1-BP in the deterministic
case and 1-NBP in the non-deterministic case) if any path from the source to a sink contains each variable
label at most once.

For a partial assignment α : [n] → {0, 1, ∗} and a branching program B with n input bits over the
alphabet {0, 1} we write B|α for a branching program obtained by removing every edge of form xi 6= α(i)

6The same is true for all sub-classes of branching programs that simulate 4-BP.
7We will instantiate this definition for D = {0, 1} and D = {0, 1, ∗}

4

and contracting every edge of form xi = α(i) if α(i) ∈ {0, 1}. It is easy to see that if B computes the
function f , then B|α computes the function f |α.

The Minimum Branching Program Size Problem (MBPSP(f, s)) gets as input the truth-table
of a Boolean function f : {0, 1}n → {0, 1} of length N = 2n and a size parameter s, and outputs 1 if
there exists a branching program of size at most s that computes f . We use notation MBPSPs′(n)(f) =
MBPSP(f, s′(n)).

The Partial Minimum Branching Program Size Problem (MBPSP∗(f∗, s)) gets as input the
partial truth-table of a function f∗ : {0, 1}n → {0, 1, ∗} of length N = 2n and a size parameter s, and
outputs 1 if there exists a substitution of each ∗ in the truth-table to a 0/1, transforming f∗ to a Boolean
function f , such that MBPSP(f, s) = 1. We use notation MBPSP∗s′(n)(f) = MBPSP∗(f, s′(n)).

2.1 Once-Appearance Branching Programs

A once-appearance branching program (oaBP) is a branching program with distinct node labels. It
is easy to see that for a function depending on n variables such oaBP representation contains at most n
non-sink nodes. For oaBP we identify the non-sink nodes with their labels, and identify the edges with
equalities of form x = α for a variable x and α from the alphabet.

It is easy to see, that oaBPs are strictly stronger than read-once DeMorgan formulas.

Proposition 6. If f is computable by a read-once DeMorgan formula, then it is computable by an oaBP.

Proof. We first observe that if g and h are computable by oaBPs, then so are g∧h and g∨h whenever g
and h have disjoint set of variables. Indeed oaBP for g ∧ h is constructed by redirecting all edges going
to the 1-in the oaBP computing g to the source of the oaBP computing h, and by redirecting all edges
to the 0-sink in g to the 0-sink of h. For g ∨ h we redirect all edges to the 0-sink of to the source of the
oaBP for h, and all edges to the 1-sink to the 1-sink of h. Now to finish the proof observe that all literals
{x1,¬x1, . . . , xn,¬xn} are trivially computable by an oaBP.

Proposition 7. Let g(x, y, z) := (y ∧ x) ∨ (z ∧ ¬x). Then g is computable by an oaBP but is is not
computable by a read-once DeMorgan formula.

Proof. The oaBP for g is a decision tree with the root x, the edge x = 0 going to z, the edge x = 1 going
to y, the edge y = α, z = α going to the α-sink for α ∈ {0, 1}.

Consider a read-once formula G computing g. Then G|y=0,z=1 computes a function ¬x, so G must
have a leaf ¬x. But G|y=1,z=0 computes a function x, so G must have a leaf x. That contradicts the
read-once property of G.

We note that this example can be extended to a function that is sensitive in an arbitrary number of
variables, say for g(x, y, z) ∨ t1 · · · ∨ tn.

2.2 Bipartite Permutation Independent Set Problem

In [Ila20] Ilango showed that Partial MCSP is ETH-hard. The main idea of the proof is to show a
reduction from the (n × n)-Bipartite Permutation Independent Set problem that was previously shown
to be ETH-hard in [LMS18]. In this section and later we assume that n is even.

In (n×n)-Bipartite Permutation Independent Set problem ((n×n)-BPIS) we are given the
adjacency matrix of an undirected graph G over the vertex set [n]× [n] where every edge is between the
sets of vertices J1 = [n/2]2 and J2 = {n/2 + 1, . . . , n}2. A graph G is a Yes-instance iff it contains an
independent set S ⊆ J1 ∪ J2 of size n such that the coordinates of vertices in S define a permutation of
[n], i.e. ∀i ∈ [n] ∃j, k ∈ [n] : v = (i, j), w = (k, i), v, w ∈ S.

Note that a permutation of [n] corresponding to a Yes-instance of (n × n)-BPIS can be viewed as
two permutations on disjoint n/2-element subsets. One permutation is defined by n/2 vertices from J1

(corresponding to a permutation of elements [n/2]), and another by n/2 vertices from J2 (corresponding
to a permutation of elements {n/2 + 1, . . . , n}). We use each of these interpretations interchangeably.

Theorem 8 ([LMS18]). (n×n)-BPIS cannot be solved in deterministic time 2o(n logn) unless ETH fails.

Ilango in [Ila20] gave a 2O(n)-time reduction from (n × n)-BPIS to MCSP*, hence, showing that
MCSP* cannot be solved in deterministic time 2o(n logn) unless ETH fails.

5

3 Proof of the Main Theorem

In this section we show that the reduction Ilango constructed from ETH-hard problem (n×n)-BPIS
to a formula minimization problem holds for the BP minimization problem as well. More precisely we
show:

Theorem 9. Suppose that MBPSP∗ : {0, 1, ∗}2n×[2n]→ {0, 1} is in TIME[No(log log(N)] where N = 2n,
then the Exponential Time Hypothesis is false.

Let us recall the reduction R : {0, 1}(
n×n

2) → {0, 1, ∗}23n × [23n] from [Ila20]8. Let G = ([n]× [n], E)
be an instance of (n × n)-BPIS. Then the reduction outputs the pair (t, 3n − 1) where t is the truth
table of a partial function γG : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1, ∗} defined as

γG(~x, ~y, ~z) =

∨
i∈[n](yi ∧ zi), if ~x = 0n∨
i∈[n] zi, if ~x = 1n∨
i∈[n](xi ∨ yi), if ~z = 1n

0, if ~z = 0n∨n/2
i=1 xi if ~z = 1n/20n/2 and y = 0n∨n
i=n/2+1 xi if ~z = 0n/21n/2 and y = 0n

1 if ∃((j, k), (n+ j′, n+ k′)) ∈ E : (~x, ~y, ~z) = (ekek′ , 0
n, ejej′)

∗ otherwise

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

where ~x = (x1, . . . , xn), ~y = (y1, . . . , yn), ~z = (z1, . . . , zn), and ei ∈ {0, 1}n/2 is the vector with 1 in the
ith entry and zeroes in all the others, and ei is such that ei + ei = 1n/2. In the rest of the proof, we
use ei as a vector with the ith coordinate equal to 1 and all the rest equal to zero with the appropriate
dimension.

The intuition behind this reduction is that for every read-once formula, computing this function has
to group triples of bits xi, yj , and zk such that j = k, and i → j encodes that an element i maps to
an element j in the permutation. The cases (1)-(4) ensure that the read-once formula encodes some
permutation on [n]. The cases (5) and (6) ensure that the permutation maps the first n/2 elements
into the first n/2 elements and the last n/2 elements into the last n/2 elements. And, finally, the case
(7) enforces that for every edge in the original graph, the permutation defined by the read-once formula
contains at most one endpoint of this edge. Note, that every endpoint or vertex chosen in the independent
set encodes a mapping of one element of [n] to one element of [n] in the permutation.

As was shown in [Ila20], this reduction maps Yes-instances of BPIS to Yes-instances of MCSP∗s=m−1

where m = 3n is the number of input bits of R(G):

Theorem 10 ([Ila20]). For the reduction R as above G ∈ (n× n)-BPIS iff R(G) ∈MCSP∗s=m−1.

To prove Theorem 10, Ilango shows that γG extends to a total function computable by a read-once
monotone formula iff G is a Yes-instance of (n×n)-BPIS. In our work we show that a similar statement
holds for once-appearance branching programs (oaBP).

Theorem 11. For the reduction R as above G ∈ (n× n)-BPIS iff R(G) can be computed by oaBP.

The plan of the proof is the following:

• In Section 3.1 we show that the topological order of an oaBP computing γG defines a unique
permutation π : [n]→ [n].

• In Section 3.2 we show that for π as above {(i, π(i)) | i ∈ [n]} is an independent set in G, thus
showing the “only if” direction of the equivalence.

• Since by Proposition 6 that oaBP losslessly simulates read-once formulas, we conclude that Theo-
rem 10 implies the “if” direction of the equivalence.

8We ignore all the edges except for ones between the sets [n/2]× [n/2] and {n/2+1, . . . n}×{n/2+1, . . . , n}, the second
argument is represented in binary form.

6

For the first step of our plan it is convenient to simplify the definition of γG. Let γ′n : {0, 1}3n →
{0, 1, ∗} be equal to γG whenever one of (1)-(4) is satisfied, and ∗ otherwise. Here we may choose an
arbitrary G as in this domain γG does not depend on it.

γ′n(~x, ~y, ~z) =

∨
i∈[n](yi ∧ zi), if ~x = 0n∨
i∈[n] zi, if ~x = 1n∨
i∈[n](xi ∨ yi), if ~z = 1n

0, if ~z = 0n

∗ otherwise

We usually shorthand γ′n as γ′.

3.1 Structure of oaBP Computing γ′

In this section we identify the structure of an oaBP computing γ′. Let us start by constructing an
example of such an oaBP. As we mentioned before, whenever a function is computable by a read-once
formula, it is computable by oaBP. Ilango [Ila20] shows that all read-once formulas computing γ′ have
form ∨

i∈[n]

xπ(i) ∨ (yi ∧ zi) (9)

for a permutation π ∈ Sn. One way to translate this into an oaBP is to chain together n three-node
oaBPs each of them computing one disjunct of (9). A topological order of such a oaBP is a sequence of
n triplets of {xπ(i), yi, zi} with variables in triplets permuted in some order. We claim that topological
order of every oaBP computing γ′ has this form9.

Lemma 12. Suppose B is an oaBP that computes γ′. Then let `1, `2, . . . , `3n be labels of vertices of B
in a topological order. Then for every i ∈ {0, .., n − 1} we have {`3i+1, `3i+2, `3i+3} = {xa, yb, zb} for
some a, b ∈ [n].

We then say that B defines a permutation κB mapping b 7→ a iff {xa, yb, zb} = {`3i+1, `3i+2, `3i+3} for
some i ∈ {0, . . . , n− 1}. We refer to the triplets of consecutive nodes of form {xa, yb, zb} as xyz-triplets
or xyz-blocks.

The proof of Lemma 12 is surprisingly delicate. The starting point is the characterization of the
structure of oaBPs computing the subfunctions of γ′ corresponding to the conditions (1)-(4). The main
tool in the proofs of these characterizations is the reduction to query complexity, e.g. γ′|~x=0n has
maximum possible query complexity 2n, which enforces a very tight constraint on the structure of the
oaBP computing it. A potential easy proof of Lemma 12 could have followed a similar logic as the proof
above if γ′ had maximal query complexity 3n. This, however, is not the case, query complexity10 of γ′

is at most 2n+ 2, so such a simple argument is unfortunately ruled out.

3.1.1 Structure of γ′ Conditioned on (1)-(4)

We start by characterizing the structure of oaBP that computes γ′|~x=0n .

Lemma 13. The structure of an oaBP computing the function
∨
i∈[n](yi ∧ zi) is the following: all

nodes except for the 1-sink form a single 2n-edge path (a1, b1, a2, b2, . . . , an, bn, 0-sink) where {ai, bi} =
{yπ(i), zπ(i)} for some permutation π ∈ Sn. For each i ∈ [n], the edge ai = 1 goes to bi, the edge bi = 0
goes to ai+1, the edge ai = 0 goes to ai+1 (for an it goes to the 0-sink), and the edge bi = 1 goes to the
1-sink.

9Notice that we do not show that the oaBP in question has the exact form as the one constructed according to (9).
10Query x1, x2, z1, z2, if x1 6= x2 or z1 6= z2, then we may return any value, as none of the conditions (1)-(4) hold.

Otherwise, for every possible combination of values x1, z1 we have only two possible conditions among (1)-(4) that might
hold. If x1 = z1 = α we return α right away, if x1 = 0 and z1 = 1, it suffices to query ~y and ~z to get the answer, if x1 = 1
and z1 = 0, it suffices to query ~x and ~z to get the answer.

7

Proof. The query complexity of the function
∨
i∈[n](yi ∧ zi) is 2n, hence there should exist at least one

path of length 2n in this branching program. Next, consider the first two variables queried in this path.
Assume they do not correspond to y and z with the same label. Without loss of generality assume the
first node is labeled by y1 and the second node is labeled by z2 (observe that the cases of the first two
labels being y1 and y2 or z1 and z2 are identical, since the variables in the pairs are symmetric). Now,
both edges outgoing from y1 should be parts of the paths that lead to z2. As for both values of y1 = 0
and y1 = 1 exists a 1-assignment that is zero in all variables other than z2 = y2 = 1. Hence, if after
querying y1 we do not query z2, we get a BP that incorrectly computes the function. As we consider
the first two nodes of the longest path, we get that both edges from y1 should directly go to the node
labeled by z2. But it turns the BP to be insensitive to a change in the value of y1 that contradicts the
sensitivity of

∨
i∈[n](yi∧zi) function. Hence the edge y1 = 1 must lead to the node labeled with z1. Then

it remains to observe that after applying the substitutions y1 = 0 or y1 = 1, z1 = 0 the query complexity
of the function decreases by exactly 2. Note that paths corresponding to these two substitutions must
lead to the third node in the branching program . This node then must compute

∨
i∈[n]\{1}(yi ∧ zi), so

the rest of the oaBP has the desired structure by the simple induction on n.

Next, we summarize the structures for the conditions (2)-(4).

Lemma 14. The following structural properties hold.

(2) An oaBP computing the function γ′n|~x=1n(~y, ~z) =
∨
i∈[n] zi has the following property. Every node

v of this oaBP reachable from the source computes the function
∨
i∈S(v) zi where S(v) ⊆ [n] is the

set of indices of all z-variables that do not precede v in the topological order.
(3) An oaBP computing the function γ′n|~z=1n(~x, ~y) =

∨
i∈[n](xi∨yi) is a Hamiltonian path terminating

in the 0-sink with edges of the form xi = 0, yi = 0 going to the next node in the path, and the edges
xi = 1, yi = 1 going to the 1-sink.

(4) In an oaBP computing the function γ′n|~z=0n(~x, ~y) ≡ 0 the 1-sink is not reachable from the source.

Proof. The structural property for (4) is obvious: if there is a path from the source to the 1-sink, the
function is not identically zero.

The structural property for (3) is also easy to see. The query complexity of γ′n|~z=1n is 2n, so the
oaBP must have a 2n-edge path. The edges in these path are the 0-edges and the path terminates in the
0-sink. Suppose an edge of the form yi = 1 or zi = 1 does not go to the 1-sink, say it goes from a node
u to a node v, then the path from the source to u according to the Hamiltonian path, then following the
edge uv and then continuing to the 0-sink by the Hamiltonian path contradicts the fact that the oaBP
computes the disjunction of all variables.

Now let us show the structural property for (2). The source computes the function
∨
i∈[n] zi by

definition. For any node zi computing
∨
j∈S zj for a set S ⊆ [n] we have that the edge zi = 0 goes to the

node computing
∨
j∈S\{i} zj . For any node yi that is reachable from the source its edges go to the nodes

that compute the same function since otherwise the function computed by the source depends on yi.
Then take any node zi. Since the function γ′n|~x=1n depends on all bits of ~z, this node is reachable from
the source. Hence, by the observations above, it computes a function of the form

∨
j∈S zj with i ∈ S.

Observe that every path from the source to zi must visit all nodes from {z1, . . . , zn} that precede zi in
the topological order. Indeed, if there is a path from the source to zi that does not visit zj that precedes
zi in the topological order, then the oaBP returns 0 given the assignment ej = 0j−110n−j , which is a
contradiction. Hence, if the node zi computes

∨
j∈Si

zj and the node zk computes
∨
j∈Sk

zj , where zi
precedes zk in the topological order, then Si ⊇ Sk. Moreover Si 3 i and Sk 63 i so Si 6= Sk. Therefore,
the sets S1, . . . , Sn form a chain by inclusion and are all different, which implies the property given that
Si does not contain indices of nodes that precede zi in the topological order.

3.1.2 Proof of Lemma 12

We derive Lemma 12 from the following two lemmas.

Lemma 15. Let B be an oaBP computing γ′. Then for every topological ordering of the nodes of B
there exists a mapping π : [n] → [n] such that xπ(i) neighbors yi in the topological order. Additionally,
the following property holds

8

(†) if xπ(i) precedes yi and zi in the topological order, then the edge xπ(i) = 1 does not go to 1-sink.

Lemma 16. Suppose an oaBP B computes γ′. Suppose `1, . . . , `3n are the labels of the nodes in some
topological ordering of B. Then for every i ∈ [3n−4] and every a, b, c ∈ [n] we have {`i, `i+1, . . . , `i+4} 6=
{za, ya, xb, yc, zc}.

Proof of Lemma 12. First we show that Lemma 16 guarantees that π given by Lemma 15 is a bijection
between {y1, . . . , yn} and {x1, . . . , xn}.

Let ≺ denote the topological order of the labels of the nodes in B. Consider a modified version of
π that we denote π′ such that whenever possible yi ≺ π′(yi) ≺ zi or zi ≺ π′(yi) ≺ yi. Observe that
this modification never introduces additional violations of injectivity since yj cannot neighbor a node
between yi and zi in the topological order for j 6= i.

Now suppose π′(yi) = π′(yj) for some i 6= j. WLOG assume that i = 1 and j = 2. Then, by
construction of π′ and π there exists k such that `k = y1, `k+1 = π′(y1), `k+2 = y2. Notice that π′(y1)
must be a single element of {x1, . . . , xn} that neighbors y1 and y2, thus `k−1 = z1 and `k+3 = z2. Then
we get a contradiction with the statement of Lemma 16. Hence π′ is an injective mapping. As π′ is an
injective mapping that maps each element of a set of the size n into an element of a set of the size n, we
get that π′ is a bijection.

By Lemma 13 `1, . . . , `3n has a subsequence of form a1, b1, . . . , an, bn where {ai, bi} = {yτ(i), zτ(i)} for
a permutation τ : [n]→ [n]. Observe that {`1, `2, `3} must contain xi for i ∈ [n], otherwise {`1, `2, `3} =
{a1, b1, a2}, contradicting Lemma 15 as yτ(1) does not neighbor π(yτ(1)).

If {`1, `2, `3} contains more than one element of {x1, . . . , xn} then {`1, `2, `3} 3 yτ(1) by surjectivity
of π′. Moreover, `3 = xb and either `1 = xa, `2 = yτ(1) or `1 = yτ(1), `2 = xa for some a, b ∈
[n], a 6= b. Then by Lemma 13 we get `4 ∈ {x1, . . . , xn, zτ(1)}. Thus xb does not belong to the image
of π, which is a contradiction. Therefore, {`1, `2, `3} = {π′(yτ(1)), yτ(1), zτ(1)}. Iteratively applying this
procedure to {`3k+1, . . . , `3n} and π′ restricted to {yτ(k+1), . . . , yτ(n)} for k ∈ [n] concludes the proof of
the theorem.

3.1.3 Proof of Lemma 15

Let Bα for α ∈ {0, 1} be the diagram obtained from B by contracting all edges of form xi = α and
removing all edges of form xi = 1 − α. Then the diagram B0 computes γ′|~x=0n . Then from Lemma 13
and (1) we get that B0 consists of a path of length 2n that is split into consequent blocks with two nodes
in each, where the labels of the nodes in each block are {yi, zi} for i ∈ [n].

Consider an arbitrary block in B0 and let u and v be the nodes of B corresponding to the nodes in
the block, such that u precedes v in the topological order of B.

Case 1: u and v are labeled with zi and yi respectively. u must still be present in B1 and be
reachable from the source (say, with the assignment ~x = ~y = 1n; ~z = 0n). Then consider edges in B0

labeled with zi = 1 and yi = 0: uv and vw, where w is the first node in the subsequent block of B0, these
are uniquely defined since B0 is an oaBP. We claim that at least one of these edges does not appear in
B i.e. it is present in B0 due to a contraction.

Assume towards a contradiction that both of the edges are present in B. Then let us trace a path
from the source of B to the 0-sink according to the assignment ~x = 1n; ~y = 0n; ~z = ei. This path must
contain u and w, as zi-node, corresponding to u should be queried on substitution x = 0n, and then,
after assigning zi = 1 and yi = 0 this path leads to the node w. By Lemma 14 for (2) the node w in B1

and our choice of w, computes
∨
j∈S zj . Since zi precedes w in the topological order, S 63 i. Hence, we

get B(1n, 0n, ei) = 0 which with value γ′(1n, 0n, ei) = 1 leads to a contradiction.
Now, since at least one of the edges uv and vw does not appear in B, but appears in B0, the node

v in B is adjacent to a node r labeled with an element of {x1, . . . , xn}. Since uv and vw belong to the
Hamiltonian path in B0, r must neighbor v in the topological order. Then define π(yi) = xj where xj
is the label of r. Notice that here the node xπ(i) never precedes both yi and zi, so the property (†) is
satisfied.

Case 2: u and v are labeled with yi and zi respectively. First, suppose yi and zi are the first two
nodes in B0. By Lemma 13 the edge yi = 0 in B0 goes to the first node of the next yz-pair, let us denote

9

it by w. The edge yi = 1 goes to the zi-node in B0. Now, assume, towards a contradiction, that the
yi = 0-edge in B goes to w as well. Then, a path in B corresponding to an assignment s = (1n, 0n, ei)
skips the node zi, as yi is the source of this oaBP, and w is going after zi in the topological order.
Similarly to the proof of Case 1, we get a contradiction with the fact that the subdiagram of B1 rooted
in w computes the function

∨
j∈S zj with S 63 i, which is 0 on s, hence B(s) = B1(0n, ei) = 0, whereas

γ′(s) = 1.
Now, assume there is at least one other yz-pair queried before yi and zi. Let yj and zj be the pair

that precedes yi and zi in the topological order of B. Note, that in B0 both edges yj = 0 and zj = 0 go
to yi. And yi = 0 edge in B0 goes to a node w (skipping zi), which is the first node in the next yz-block.

Claim 17. One of the edges among zj = 0 and yi = 0 differ in B0 and B (that is, the edge with this
label connects different pairs of nodes).

Proof. The proof of this claim repeats a similar argument in the Case 1. Assume these two edges in B
are the same as in B0. Consider a substitution s = (1n, 0n, ei). As B1 computes the disjunction of z, a
path p corresponding to s in B should query all bits of ~z preceding zi in the topological order. Hence, p
goes through zj , and zj = 0 to yi. Now, as yi = 0 skips zi and goes to w, which by Lemma 14 computes∨
t∈S zt in B1. Analogously to the Case 1, S 63 i, so we get that B(s) = 0, which contradicts γ′(s) = 1.

Thus, one of the edges zj = 0 or yi = 0 in B leads to a different node compared to B0.

Case 2a: the edge zj = 0 goes to yi. By Claim 17 yi = 0 does not go to w. But in this case it
goes to a node r labeled by an x-variable in B. Then as oaBP B queries all bits in ~z on the assignment
(1n, 0n, 0n), we get that r goes before zi in the topological order. So we get that yi neighbors an x-node
in the topological order.

Case 2b: the edge zj = 0 does not go to yi. Let x` be the endpoint of zj = 0 in B (notice that
zj = 0 can not go to yj since then it would go there in B0 as well). Consider the path from x` to yi in B
according to the assignment ~x = 0n, by the construction of B0 all nodes on this path are labeled with
x-variables. Let xk be the last node on this path before yi. We define π(i) = k. Now it remains to show
the following:

1. xk is the immediate predecessor of yi in the topological order.
2. The property (†): xk = 1 in B does not go to the 1-sink.

Let us first prove Item 1. Consider the program B|~z=1n . By Lemma 14 for (3), B|~z=1n consists of a
single Hamiltonian path of 0-edges. Then, consider the edge xk = 0 in B. This edge goes to yi, so xkyi
is present in B|~z=1n , so in topological order there are no x-node or y-node between xk and yi. Given
that zj precedes xk in the topological order, xk is the immediate predecessor of yi.

Now let us prove Item 2. Consider an assignment ~x = 0n, ~y = 1n and ~z = 0n. Let us trace the path
corresponding to this assignment from the root of B to zj . Notice that zj is reachable by this path since
it is reachable in B0 by the path according to ~y = 1n, ~z = 0n. After zj let us follow the edge zj = 0 to
x` and then to xk following the 0-edges. Suppose that xk = 1 goes to the 1-sink. Let p be the path from
the root to the 1-sink that we have traced. Then consider the program B|~z=0n . Let p|~z=0n be the result
of contraction of the edges of form zt = 0 in p. p|~z=0n exists in B~z=0n , hence the 1-sink is reachable in
this program. This contradicts the fact that γ′|~z=0n is identically zero.

3.1.4 Proof of Lemma 16

We are going to gradually derive the structure of the edges going out of the nodes {za, ya, xb, yc, zc}.
By (3) we have γ′|~z=1n =

∨
i∈[n] xi ∨ yi, so by Lemma 14 the edges of from xi = 0 and yi = 0 must

either go to a variable in {z1, . . . , zn} or to the next variable in {x1, . . . , xn, y1, . . . , yn} in the topological
order. Hence ya = 0 leads to xb, xb = 0 leads to yc.

By (1) we have γ′|~x=0n =
∨
i∈[n] zi ∧ yi, the diagram B|~x=0n has structure defined by Lemma 13.

Then za = 1 leads to ya and yc = 1 leads to zc and za = 0 leads either to xb or yc. Now observe that the
edge ya = 1 goes to the 1-sink by the structure of the diagram B|~z=1n . If it does go to xb the assignment
~x = 0n, ~y = 1n and ~z = ea is evaluated to 0 by B, which is a contradiction with (3). See Figure 1 for
the edges we identified so far.

10

zc

yc

1

xb

0

ya

0

1-sink
1

za

1

0

0

zc

yc

1

xb

0

1

ya

0

1-sink
1

za

1

0

Figure 1: Fixed edges between {za, ya, xb, yc, zc}.

Now consider an edge xb = 1. By Lemma 14 for (3) it must go to the 1-sink in the diagram B|~z=1n ,
so in B it goes either to {z1, . . . , zn} or to the 1-sink. Recall that by (2) we have B|~x=1n =

∨
i∈[n] zi.

Suppose xb = 1 goes to zi for i ∈ [n]. Then consider the assignment ~x = 1n, ~z = ea, ~y = 0n. A path p,
corresponding to it passes through the node za by the structure of B|~x=1n given by Lemma 14. Hence,
p then leads to xb and to zi, which computes

∨
t∈S zt for some S ⊆ [n] \ {a}. Thus B(1n, 0n, ea) = 0, yet

γ′(1n, 0n, ea) = 1. Hence xb = 1 goes to the 1-sink.
Now we can pinpoint the endpoint of the edge za = 0. Suppose it goes to xb. Then we get the

contradiction with the assignment ~x = 1n, ~y = 0n and ~z = 0n. B(1n, 0n, 0n) = 1 since we go from za to
xb and then to the 1-sink, yet γ(1n, 0n, 0n) = 0.

Then consider the edge yc = 0, we claim that it goes to zc. Otherwise consider the assignment ~x = 1n,
~y = 0n and ~z = ec, B(1n, 0n, ec) = 0 since the path of this assignment passes through za, then goes to
yc and then to a node strictly below zc that by Lemma 14 computes

∨
i∈S zi for S ⊆ [n] \ {c}. Thus we

get a contradiction with γ′(1n, 0n, ec) = 1.
Then we get the final contradiction as follows: γ′|~x=0n depends on yc, but B|~x=0n does not, in other

words B(0n, ec, ec) = B(0n, 0n, ec), yet γ′(0n, ec, ec) 6= γ′(0n, 0n, ec).

3.2 Structure of oaBP Computing γG: proof of Theorem 11

The theorem follows from the following lemmas, utilizing the properties (5)-(7) of γG.

Lemma 18. For every oaBP B computing γG, the permutation κB defined by B maps elements of [n/2]
into [n/2], and elements of {n/2 + 1, . . . , n} into elements of {n/2 + 1, . . . , n}.

Lemma 19. For every oaBP B computing γG, the permutation κB defined by B corresponds to an
independent set in G, that is {(i, κB(i)) | i ∈ [n]} is independent in G.

We start by deriving the theorem from the lemmas.

Proof of Theorem 11. From Lemma 18 and Lemma 19 we get that an oaBP computing γG defines a
permutation on [n] which maps elements of the first/second half of [n] to the elements of the first/second
half of [n] respectively, and for every edge it contains at most one of the vertices of a BPIS instance.
Hence, the permutation defined by any oaBP computing γG is a correct certificate for a (n × n)-BPIS
instance. Thus an oaBP computing γG exists iff there is a correct permutation defining independent set
in an input (n× n)-BPIS instance.

11

3.2.1 Proofs of Lemma 18 and Lemma 19

Both of the lemmas follow from a helper lemma about the structure of oaBP for γ′:

Lemma 20. Let B be an oaBP computing γ′. Then, if a path p in B goes to the 1-sink from one of the
nodes in a triplet xi, zj , yj, then p sets at least two variables among xi, zj , yj to 1.

We defer the proof of Lemma 20 to Section 3.2.2. Now we are ready to prove the lemmas.

Proof of Lemma 18. First, as γG is a restricted version of γ′, we get that κB is well-defined by Lemma 12.
Moreover, we know that the topological order of B has the form a1, b1, c1, a2, b2, c2, . . . , an, bn, cn, where
for every h ∈ [n] there exist k, ` ∈ [n], such that {ah, bh, ch} = {xk, z`, y`}, where κB(`) = k.

Let xi, zj , yj form a consequent xyz-triplet in the oaBP, with i = κB(j). Assume towards a contra-
diction that i and j are from different halves of the set [n]. WLOG let i ∈ [n/2] and j ∈ {n/2+1, . . . , n}.

Consider a substitution s, in which z = 1n/20n/2, y = 0n, xi = ei. Consider a path p consistent with
s. By property (7) it terminates in the 1-sink. Now, consider the last xyz-triplet, that p goes through
before getting to the 1-sink. This could either be xi, zj , yj-triplet, or xk, z`, y`, such that i 6= k; j 6= `. In
both cases, at most one of the variables in such xyz-triplets is set to 1. Hence, we get a contradiction
with Lemma 20. The proof for the xyz-triplets in the last n/2-elements of [n] goes similarly.

Proof of Lemma 19. Consider an edge connecting (j, k) with (j′, k′) in G. Assume towards a contradic-
tion that κB maps an element j to k, and j′ to k′. Then, there are two triplets xj , yk, zk, and xj′ , yk′ , zk′

such that within each xyz-triplet the elements are layered consequently in B. Consider a substitution
s, which sets xj = xj′ = 0, all other bits of ~x to 1, zk = zk′ = 1, all other bits of ~z to 0, and all bits
of ~y to 0. γ|s = 1, hence there is a path p in B consistent with s which goes from the source to 1-sink.
Consider a triplet xa, yb, zb, which is queried the last on the path p. Similarly to the previous case we
consider two cases, if this triplet is xj , yk, zk (or xj′ , yk′ , zk′ , proof for which is analogous) or not. In the
latter case, by our assumptions on the structure of B, all a 6= j, a 6= j′, b 6= k, and b 6= k′.

If a = j and b = k, then, by our choice of s and this triplet, we get that p goes to 1-sink after
substituting xj = 0, zk = 1, yk = 0. Which is a contradiction with Lemma 20.

Finally, assume either a 6= j and b 6= k. Then there is a path in B from the nodes xa, yb, zb directly to
1-sink which is consistent with a substitution xa = 1, zb = 0, yb = 0. Thus, again, leads to a contradiction
with Lemma 20.

3.2.2 Proof of Lemma 20

Assume the opposite: there exist paths in B, which go to the 1-sink immediately after substituting
exactly one 1-value to variables of an xyz-triplet. Consider a path p among these paths, which goes to
the 1-sink from the earliest node according to the topological order of B. Let us denote the xyz-triplet,
from which p goes to the 1-sink as xi, zj , yj , and let w be the last non-sink node in p.

Claim 21. p assigns 1 to w.

Proof. Assume the opposite: the last edge in p going to the 1-sink is w = 0.
Consider a case w = xi. We want to show that xi = 0-edge cannot lead to the 1-sink. To see this

observe that oaBP B|~z=1n is sensitive in all x-variables. Hence, in the oaBP B|~z=1n a path consistent
with setting ~x = ~y = 0n goes through xi, and goes to the 0-sink. This contradicts our assumption that
the edge xi = 0 goes to 1.

Now consider a case when w ∈ {yj , zj}. Consider a path p′ in the oaBP B|~x=0n such that for every
k ∈ [n] p′(zk) = 1 and p′(yk) = 0 if zk precedes yk in the topological order, and p′(zk) = 0 and p′(yk) = 1
otherwise. By (1) we have γ′|~x=0n =

∨
i∈[n](yi ∧ zi), so every such p′ ends in the 0-sink. This contradicts

the fact that the edge w = 0 goes to the 1-sink, since at least one of such paths p′ contains this edge.
The claim then follows.

In the remainder of the proof, we show that w = 1 cannot be the only 1-value assigned by p to the
variables in the last triplet xi, zj , yj . Consider the case when w = yj or w = zj and the value of w is
assigned to 1 by p. Consider an oaBP B′ = B|~x=0n corresponding to a partial substitution ~x = 0n. We
know the structure of B′ from Lemma 13. For each zy-block there is a path to the 1-sink iff we set

12

both zi = yi = 1. But that contradicts the existence of a path of a form xi = 0, yj = 0, zj = 1 or
xi = 0, yj = 1, zj = 0 from the xi, zj , yj triplet to the 1-sink. Hence, w could not be y or z variable.

Consider the only remaining case, when w = xi, and p sets xi = 1. In the following two claims we
show that p should ask either yj or zj prior to xi.

Claim 22. Either yj or zj precedes xi in the topological order.

Proof. Assume the opposite, xi is the first node in the triplet. By Lemma 15 yj goes either right before
or right after xi in the topological order. Hence, we get that nodes in this triplet appear in the order
xi, yj , zj in the topological order. But then, by the property (†) in Lemma 15, if xi is the first node of
the triplet then the edge xi = 1 does not go to the 1-sink, contradicting the properties of p.

Claim 23. Path p queries either a value of yj or zj before querying xi.

Proof. By Claim 22 we know xi is not the first node of the triplet xi, yj , zj in the topological order. Now
assume that p skips querying yz-nodes preceding xi in this triplet and goes directly to xi. Let w′ be
the last node prior to xi in p. By our assumption w′ belongs to an xyz-triplet {xb, ya, za} different from
{xi, yj , zj}.

First let us rule out the case w′ = za or w′ = ya. If p assigns 0 to w′, then the edge w′ = 0 in B|~x=0n

goes to the endpoint of the edge xi = 0 in B, which contradicts Lemma 13, since this edge must go to
the first variable of the subsequent zy-block, which precedes xi in the topological order of B. If p assigns
1 to w′, then in B|~x=0n the edge w′ = 1 goes to the 1-sink (as it does not go to the node in the same
zy-block), hence in B the edge xi = 1 must go to the 1-sink, which implies that the function computed
by B does not depend on xi, which is a contradiction, since γ′ does depend on xi.

Hence w′ = xb. Let us now show that p assigns 1 to xb. Assume the opposite: xb is set to 0 in
B. Let us then trace the path corresponding to the assignment ~x = 0n;~z = 1n; ~y = 0n in B until we
reach the node xb. This must happen by Lemma 14 for (3). Now by the Lemma 13 and property (1)
the edge xb = 0 must go to the first node of the subsequent zy-block, which is a contradiction with the
assumption that xb = 0 ends in xi. Therefore p assigns xb = 1.

Consider an assignment s of ~z = 1n, ~y = 0n, ~x = eb. By (3) we have γ(s) = 1. But by our
assumptions an edge xb = 1 does not go to the 1-sink immediately, it goes to xi first. A node xi should
also be reachable by a substitution s′ which assigns ~z = 1n, ~y = 0n, ~x = 0n, as γ′|~z=1n is sensitive to the
value of xi by (3). But γ(s′) = 0. Hence, we get a contradiction with the fact that paths corresponding
to assignments s and s′ meet in the node xi, and follow the same path in B, but one must end in the
0-sink, and another in the 1-sink. Therefore, either zj or yj node is not queried by p.

Now, let r be the immediate predecessor of w in p. By Claim 23 we know that either r ∈ {yj , zj}.
First, consider the case of r = zj . Consider a substitution s of ~x = 1n and ~z = 0n. We know that
the oaBP B|~x=1n queries all values of z. Hence, B|~x=1n contains a path r = 0, w = 1, which goes to
the 1-sink. But, as the assignment s does not satisfy B|~x=1n , and is consistent with the substitution
r = 0, w = 1 we get a contradiction (since the path s passes through r).

Finally, to get a contradiction with the case when r = yj we show the following two claims.

Claim 24. If r = yj, then zj goes before yj and xi in the topological order.

Proof. Assume the opposite. Let zj go right after xi in the topological order. So we get that the order
of nodes in this triplet is yj , xi, zj . First, note that yj = 0 edge goes to xi as B|~z=1n queries all ys and
xs sequentially, and every edge labeled with 0-edge in B|~z=1n goes to either the next node or to the
0-sink. We also know that xi = 1-edge goes to the 1-sink. Now note that that a path consistent with
a substitution s defined as ~x = ei, ~y = 0n, ~z = 0n should reach node yj . But then this path will follow
edge yj = 0 to xi and edge xi = 1 to 1 sink, though γ|s = 0. A contradiction.

Claim 25. If zj is the first node in a xyz-triplet then path p goes through zj.

Proof. Consider all possible edges which get to this triplet. Let xa, zb, yb be the triplet right before this
one. From the structure of B|~x=1n we know that all edges from zb and yb either go to a node within this
triplet, or the 1-sink, or to zj . We also know that xa = 0 cannot skip zj , as xa-node is reachable by a
path consistent with a substitution ~x = 0n, ~y = 0n, ~z = 1n. Hence if xa = 0 skips zj then B|~x=0n would
be insensitive to zj .

13

It now remains to show that xa = 1 cannot skip zj either. In B|~z=1n every edge xa = 1 should go to
1-sink. Hence edge xa = 1 either goes to z-node or to 1-sink. This finishes the proof.

From these two claims, we get that p should necessarily go through zj . Hence, by considering B|~x=1n

we get that a path consistent zj = yj = 0 should either go to a node in the next triplet, or go to the
0-sink, in case it is the last triplet of B. Which contradicts the fact that p after substituting zj = yj = 0
and xi = 1 goes to the 1-sink. This finishes the proof of Lemma 20.

4 Corollaries

Multiple corollaries follow from Theorem 11. For all classes of branching programs that degenerate
to an oaBP if constrained on having at most n nodes on an n-bit input, we get that the corresponding
minimization problem is ETH-hard. In particular it holds for general branching programs (BP), ordered
binary decision diagrams (OBDD) and read-k branching programs for any k ≥ 1 (k-BP). For definitions
of the latter two classes we refer the reader to [Weg00]. Formally we have

Corollary 26. Let C be a circuit class such that for every f : {0, 1}n → {0, 1} that depends on all its
variables there exists C ∈ C with |C| = n computing f if and only if there exists oaBP B computing f .

Then, assuming ETH holds we have that C-MCSP|∗s=n requires time 2Ω(n logn).

It is easy to see that for C ∈ {OBDD,BP} ∪ {k-BP | k ≥ 1} this statement holds, so in particular
Theorem 1 is implied.

Proof of Corollary 26. Let R be the reduction given by Theorem 11. Observe that every partial function
in the image of R can only be extended to a function that depends on all of its variables.

Hence by the assumption on C, R(G) ∈ C-MCSP|∗s=n iff R(G) is computable by an oaBP. Therefore,
Theorem 11 and Theorem 8 imply the statement.

Following on our previous work [GR22], in which we show that (n×n)-BPIS is unconditionally hard
for 1-NBPs by showing that reduction of Ilango is computable by a 1-NBPs, we get that similar 1-NBP
lower bound holds for all total minimization problems for branching programs.

Corollary 27. For C as in Corollary 26, the size of the smallest 1-NBP that computes C-MCSP is
NΩ(log log(N)), where N is the input size of C-MCSP.

Proof. By [GR22, Theorem 6] we have that the sizes of 1-NBPs computing C-MCSP∗ and C-MCSP
are linearly related (the theorem is only stated for vanilla MCSP, but the proof does not use this). By
[GR22, Threorem 4], the reduction R can be implemented in 1-NBP, so by Theorem 11 1-NBP size of
C-MCSP∗ with input size N = 23n is lower bounded by the 1-NBP size of (n×n)-BPIS which by [GR22,
Theorem 3] is 2Ω(n logn) = NΩ(log logN).

Another corollary follows from the fact that R always outputs a partial functions that can be encoded
as a 2-BP.

Corollary 28. It is NP-hard to check, whether any extension of a partial function expressed by a 2-BP
over the alphabet {0, 1, ∗} can be computed with an oaBP.

Proof. Since (n×n)-BPIS is an NP-complete problem, it suffices to check that for every G the function
γG can be represented as a 2-BP of polynomial size. First, notice that a 1-BP can distinguish between
the cases (1)-(6) and the case that either (7) is true or the function equals to ∗: we read variables in
the order x1, y1, z1, . . . , xn, yn, zn and for each of the patterns among (1)-(6) we maintain if the current
prefixes of ~x, ~y, and ~z coincide with the prefix of the pattern. Thus, at each level of our 1-BP we have 26

states. For each of the states at the last level, we choose one of the patterns which is satisfied arbitrary,
so we can merge the states into 7: 6 corresponding to the conditions (1)-(6) and one to the case where
none of the conditions hold. For each of the cases (1)-(6), the restricted function can easily be computed
by a 1-BP.

Now it remains to distinguish the case (7) from a star with a 1-BP. In order to do this we split the
input into 6 chunks of length n/2 and read then sequentially. For each chunk we maintain the set of
possible values among {0n/2, 1n/2} ∪ {ei | i ∈ [n/2]} ∪ {ei | i ∈ [n/2]} that the chunk might have given

14

the current prefix. Observe, that the number of potential states is linear. After we read all the chunks
we have O(n6) states at the last level, so we know the only tuple j, k, j′, k′ that may satisfy the predicate
in (7). Since the edges are fixed, we can unite each of the states at the last level with the 1-sink or the
∗-sink.

Finally, to show the coNP-hardness of compressing BPs we use the following fact.

Proposition 29. [Tov84] Let (3, 4)-SAT be a language of satisfiable 3-CNF formulas in which every
variable occurs in at most 4 clauses. (3, 4)-SAT is NP-complete.

Corollary 30. It is coNP-hard to check whether an input 4-BP for a total function can be compressed
to a BP of a constant size.

Proof. By Proposition 29 we get that (3, 4)-SAT is coNP-hard. Now, we construct a reduction from
(3, 4)-SAT to the partial 4-BP minimization as follows. For a 4-CNF formula ϕ in which every variable
appears at most 4 times we construct a branching program B by consequently adding nodes of each
clause. Denote the first clause of ϕ as C1, and let xi, xj , xk be the variables in it. We add nodes labeled
by xi, xj , and xk to B. We set the node labeled by xi as a source of B. Then, if xi was negated in C1

we direct a 1-edge from the xi-node to the node labeled by xj , otherwise we direct a 0-edge from xi to
the xj-node. Then we similarly define one of the edges of xj to xk. Finally, if xk was negated in C1 we
direct its 1-edge to the 1-sink. Then we add nodes from the next clause of ϕ, and direct all missing edges
for nodes xi, xj , and xk to the first node corresponding to the next node. We repeat this procedure for
all clauses, redirecting all unassigned edges for nodes corresponding to variables in the last clause of ϕ
to the 0-sink.

Now, for any substitution s of values of the variables B outputs 1 if ϕ was not satisfied by s, and 0
otherwise. But note, that if ϕ was an unsatisfiable formula than B would had to output 1 on all inputs.
Hence, it could be compressed to a branching program of size 0 (as we count the number of all nodes other
than sinks). On the other hand, if ϕ is satisfiable and has at least one unsatisfying assignment B has
to contain at least one node other than a sink. To account for the fact that the size of B corresponding
to ϕ that is satisfiable by any assignment is also 0 (it is just a 0-sink), we change our reduction to first
substitute all 0 assignment to ϕ. If ϕ(0) = 1 we set B to be a BP for an identity function on one bit
which has the size 1. Otherwise, construct B as described before.

Additionally, as for any 3-SAT instance in which every variable appears in at most 4 clauses we
can easily construct an equivalent 3-BP of polynomial size. we get that checking whether this BP can
compressed to a BP of size 1 allows us to check whether the formula is unsatisfiable.

5 Future Work

The main future direction is to strengthen our results to the total version of MBPSP, and to show
NP-hardness of MBPSP (or at least MBPSP∗). We discuss a couple of barriers for improving results
in both of these directions as well as additional open questions motivated by our work.

Show polynomial-time oracle reduction from MBPSP∗ to MBPSP. As noted in [Ila21] such
reductions are very ad hoc for each specific model. Indeed, the reduction that Ilango showed for the
Minimum DeMorgan Formula Size Problem in [Ila21] does not work for branching programs as it relies
on the tree-like structure of formulas. The ability of branching programs to reuse the same computation
in different branches makes it harder to come up with a suitable reduction. For now we do not even
know such a reduction for 1-BPs but the natural next step would be to reduce (1-BP)-MCSP∗ to
(1-BP)-MCSP∗.

Prove a stronger conditional lower bound. It would be interesting to find a lower bound stronger
than NΩ(log log(N)) for the time complexity of MBPSP∗ (or MFSP∗). The obstacle here is that we actu-
ally show the ETH-hardness of MBPSP∗|n, for which this time complexity is actually tight, since there
are nO(n) = NO(log logN) potential branching programs that can compute a function. Hence, in order to
have stronger lower bounds we need to consider larger size parameters. The current framework requires
us to find explicit functions that require BP-size larger than the given size parameter. Hence, the best

15

we can hope for without improving the state-of-the-art BP lower bounds is to show that MBPSP∗|n2 is

ETH-hard. Here the trivial upper bound is nO(n2) = NO(logN log logN), which while still quasipolynomial,
is significantly stronger.

Results for nondeterministic BP minimization. Currently our hardness result only holds for the
problem of minimizing deterministic branching programs. But we believe that similar ideas could be
used to show that the problem of minimizing nondeterministic branching programs for partial functions
is also ETH-hard. Nondeterministic branching programs (NBP) differ from deterministic ones by an
additional type of nodes, called nondeterministic nodes, that do not have labels. Such nodes correspond
to nondeterministic guessing of a branching program. Note, that if we consider a complexity measure
that counts all nodes in an NBP other than sinks, then our main result immediately extends to the
ETH-hardness of minimizing NBP and k-NBP for all k.

However, the standard complexity measure for NBPs is the minimal number of nodes that query a
variable (so all nodes other than sinks and nondeterministic nodes) in an NBP computing the function. So
one of the approaches to showing the ETH-hardness of the Partial Minimum Nondeterministic Branching
Program Size Problem could be in showing that existence of the oaBP with nondeterministic nodes for γG
is equivalent to the existence of the deterministic oaBP for γG. Namely by adding the nondeterministic
node we do not make it easier for an oaBP to compute γG. Could this result be obtained with an
additional careful analysis? Hirahars’s reduction seems to correctly work for the no-instances of CMMSA
even in the branching programs case.

Could we adapt the NP-hardness proof of Hirahara? Hirahara in [Hir22] showed a randomized
reduction from NP-hard problem that is a variation of Minimum Monotone Satisfying Assignment called
Collective Minimum Weight Monotone Satisfying Assignment (CMMSA) problem to MCSP∗. One of
the possible directions of strengthening our result from the ETH-hardness to NP-hardness is by adapting
this framework for branching programs. Indeed, the reduction from [Hir22] seems to be robust enough
to correctly work on all no-instances of CMMSA even for branching programs. But the same reduction
does not immediately go through for the yes-instances. The main obstacle that we see is in showing an
analogue of the Uhlig’s lemma [Uhl74, Uhl92] for branching programs. This lemma states that in order
to compute the direct product of the same function (of arbitrary circuit complexity) on subexponentially
many inputs, it is sufficient to use one circuit of size O(2n/n). Such efficient compression is an important
step for constructing a small circuit corresponding to the yes-instances of CMMSA. It is not known
whether an analogue of Uhlig’s lemma exists for branching programs. Rao and Sinha [RS16] showed a
variation of the direct-sum theorem for read-once BPs, hence disproving the analogue of Uhlig’s lemma
in 1-BP setting. We believe that showing an analogue of Uhlig’s lemma for general branching programs
in the specific setting required by the Hirahara’s proof is a promising direction for showing NP-hardness
of MBPSP∗.

Acknowledgments

The authors are grateful to Rahul Santhanam for suggesting working on connections between meta-
complexity and branching programs, and to Mark Bun and anonymous reviewers for very helpful feedback
on the preliminary versions of this paper.

Artur Riazanov was supported by the Swiss State Secretariat for Education, Research and Innovation
(SERI) under contract number MB22.00026.

Ludmila Glinskih was supported by a Sloan Research Fellowship to Mark Bun. This work was done
in part while Ludmila was visiting the Simons Institute for the Theory of Computing.

References

[Bol16] Beate Bollig. On the minimization of (complete) ordered binary decision diagrams. Theory
of Computing Systems, 59(3):532–559, 2016.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is np-complete.
IEEE Trans. Computers, 45(9):993–1002, 1996.

16

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A better-than-3n lower bound for the circuit complexity of an explicit function. In FOCS,
pages 89–98. IEEE Computer Society, 2016.

[FS90] S.J. Friedman and K.J. Supowit. Finding the optimal variable ordering for binary decision
diagrams. IEEE Transactions on Computers, 39(5):710–713, 1990.

[Gie01] Oliver Giel. Branching program size is almost linear in formula size. Journal of Computer
and System Sciences, 63:222–235, 2001.

[GR22] Ludmila Glinskih and Artur Riazanov. MCSP is hard for read-once nondeterministic branch-
ing programs. In Armando Castañeda and Francisco Rodŕıguez-Henŕıquez, editors, LATIN
2022: Theoretical Informatics - 15th Latin American Symposium, Guanajuato, Mexico,
November 7-11, 2022, Proceedings, volume 13568 of Lecture Notes in Computer Science,
pages 626–640. Springer, 2022.

[Hir22] Shuichi Hirahara. Np-hardness of learning programs and partial MCSP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October
31 - November 3, 2022, pages 968–979. IEEE, 2022.

[HOS18] Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. Np-hardness of minimum circuit
size problem for OR-AND-MOD circuits. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of
LIPIcs, pages 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Ila20] Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard. In
FOCS, pages 424–433. IEEE, 2020.

[Ila21] Rahul Ilango. The minimum formula size problem is (ETH) hard. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pages 427–432. IEEE, 2021.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In STOC, pages 73–79.
ACM, 2000.

[LMS18] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameter-
ized problems. SIAM J. Comput., 47(3):675–702, 2018.

[LY22] Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page
1180–1193, New York, NY, USA, 2022. Association for Computing Machinery.

[Mas79] William J. Masek. Some np-complete set covering problems. Unpublished Manuscript., 1979.

[MW17] Cody D. Murray and R. Ryan Williams. On the (non) np-hardness of computing circuit
complexity. Theory of Computing, 13(4):1–22, 2017.

[Nec66] Eduard I. Nechiporuk. On a boolean function. Dokl. of USSR Academy of Sciences,
169(4):765–766, 1966.

[OCVS98] Arlindo L. Oliveira, Luca P. Carloni, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli.
Exact minimization of binary decision diagrams using implicit techniques. IEEE Trans.
Computers, 47(11):1282–1296, 1998.

[Pra75] Vaughan R. Pratt. The effect of basis on size of boolean expressions. In FOCS, pages 119–121.
IEEE Computer Society, 1975.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–
35, 1997.

17

[RS16] Anup Rao and Makrand Sinha. A direct-sum theorem for read-once branching programs.
In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages
44:1–44:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[Sie02] Detlef Sieling. The complexity of minimizing and learning obdds and fbdds. Discrete Applied
Mathematics, 122(1):263–282, 2002.

[SS20] Michael E. Saks and Rahul Santhanam. Circuit lower bounds from np-hardness of MCSP
under turing reductions. In Shubhangi Saraf, editor, 35th Computational Complexity Con-
ference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Tov84] Craig A. Tovey. A simplified np-complete satisfiability problem. Discret. Appl. Math.,
8(1):85–89, 1984.

[TY00] Yasuhiko Takenaga and Shuzo Yajima. Hardness of identifying the minimum ordered binary
decision diagram. Discret. Appl. Math., 107(1-3):191–201, 2000.

[Uhl74] Dietmar Uhlig. On the synthesis of self-correcting schemes from functional elements with a
small number of reliable elements. Mathematical Notes of the Academy of Sciences of the
USSR, 15.6:558–562, 1974.

[Uhl92] Dietmar Uhlig. Networks computing boolean functions for multiple input values. Proceedings
of the London Mathematical Society Symposium on Boolean Function Complexity, pages 165–
173, 1992.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams. Society for Industrial
and Applied Mathematics, 2000.

18

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

