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Abstract

Numerous works have studied the probability that a length t − 1 random
walk on an expander is confined to a given rectangle S1 × . . . × St, providing
both upper and lower bounds for this probability. However, when the densities
of the sets Si may depend on the walk length (e.g., when all set are equal and
the density is 1 − 1/t), the currently best known upper and lower bounds are
very far from each other. We give an improved confinement lower bound that
almost matches the upper bound.

We also study the more general question, of how well random walks fool
various classes of test functions. Recently, Golowich and Vadhan proved that
random walks on λ-expanders fool Boolean, symmetric functions up to a O(λ)
error in total variation distance, with no dependence on the labeling bias. Our
techniques extend this result to cases not covered by it, e.g., to the confinement
problem to S1 × . . . × St, where all sets Si either have density ρ or 1 − ρ, for
arbitrary ρ.

Technique-wise, we extend Beck’s framework for analyzing what is often
referred to as the “flow” of linear operators, reducing it to bounding the entries
of a product of 2× 2 matrices.

1 Introduction

Fix a set of vertices V = [n] and t subsets S1, . . . , St ⊆ V . The hitting property of
expander graphs [AKS87] says that for a sufficiently good expander graph G on the
set of vertices V , the probability that for all i = 1, . . . , t the i’th step of a random
walk on G falls inside Si is small, and therefore, with a good probability, the walk
escapes the confinement S1 × . . .× St. Specifically,
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Theorem 1.1 (Expander Hitting Property). (Based on [HLW06]) Let G = (V,E)
be a λ-expander. Then, for every sequence of subsets S1, . . . , St ⊆ V such that Si is
of density ρi = |Si| / |V |,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≤
√
ρ1ρt ·

t−1∏
i=1

((1− λ)
√
ρiρi+1 + λ) . (1.1)

We remark that a slightly weaker bound of
∏t−1

i=1

(√
ρiρi+1 + λ

)
appears in [HLW06].

For the case where all densities ρi are the same ρ, a bound of ρ ((1− λ)ρ+ λ)t−1

appears in [V+12], and of ρ(ρ + λ)t−1 appears in [AFWZ95]. The bound in the
general case (Equation (1.1)) follows by a similar proof, with a slightly more careful
analysis. See Section 4.1.

However, on a conceptual level, one expects an expander random walk to mimic a
truly random walk, each time choosing a vertex uniformly at random independent of
all other choices. I.e., ideally, we would have liked a bound stating that the probability
of an expander random walk being confined to S1 × . . . × St is roughly the same as
the probability of the same event with respect to a walk on the complete graph with
self loops (which equals the product of the densities of the sets). Indeed, for the case
in which all densities are equal, the following has been proven in [AFWZ95]:

Theorem 1.2. [AFWZ95] Let G = (V,E) be a λ-expander. For every sequence of
subsets S1, . . . , St ⊆ V such that Si is of density ρ,

• If λ < ρ/6,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] > ρ · (ρ− 2λ)t−1 (1.2)

• If λ < ρ2/2,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] > ρ · (ρ− λ)t−1 (1.3)

How tight are these bounds?

To get a feeling for the upper and lower bounds, let us look at the special case where
all densities ρi are the same ρ. In this case, independent sampling gives the exact
answer ρt. The upper bound (Theorem 1.1) is ρµt−1, where µ = ρ+ (1− ρ)λ, and

|ρµt−1 − ρt| = ρ(µt−1 − ρt−1) = ρ(µ− ρ)
t−2∑
j=0

ρjµt−2−j ≤ ρ(1− ρ)λ
t−2∑
j=0

ρj ≤ ρ · λ,

where the first equality is because µ ≥ ρ and the second equality is using ak − bk =
(a− b)

∑k−1
j=0 a

jbk−1−j. We also use µ− ρ = (1− ρ)λ. In particular the error term is
at most λ, and tends to zero when λ tends to 0.
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However, for the lower bound (Theorem 1.2), for any λ we have

∣∣ρt − ρ(ρ− λ)t−1
∣∣ = ρ(ρt−1 − (ρ− λ)t−1) = ρλ

t−2∑
j=0

ρt−2−j(ρ− λ)j

≥ ρλρt−2

t−2∑
j=0

(ρ− λ)j ≈ ρt−1 λ

λ+ 1
t

.

Thus, when λ is some small constant, independent of t and ρ = 1−1/t, the difference
between independent sampling and the lower bound is ρt−1 λ

λ+1/t
=≈ 1/e. Therefore,

even for arbitrarily small λ, if we let t grow to infinity and we let the density ρ depend
on t, there is a constant gap between the independent sampling probability and the
lower bound! Thus, a natural question is: can we find a better lower bound that
matches the independent probability? In this work we prove:

Theorem 1.3. [New confinement lower-bound] Let G = (V,E) be a λ-expander, and

let S1, . . . , St ⊆ V be each of density ρ for some ρ.1 If λ ≤ ρ2

3
, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ ·
(
ρ− λ(1− ρ2)

)t−1
.

This bound is close to the independent sampling probability:∣∣ρt − ρ · (ρ − λ(1− ρ2))t−1
∣∣ = ρt − ρ · (ρ − λ(1− ρ2))t−1

= ρ · λ(1− ρ2)
t−2∑
j=0

ρj(ρ− λ(1− ρ2))t−2−j

≤ λ · ρ(1− ρ2) ·
∞∑
j=0

ρj = λ · ρ(1 + ρ) ≤ 2ρλ.

Therefore, for any λ, if we let t grow to infinity, and even if we let the density ρ
depend on t, the distance between the independent probability (ρt) and the lower
bound is at most 2λ (instead of a fixed constant before).

1.1 Further Results

Expander random walks are typically used as a randomness-efficient way of generating
a uniform-like sequence of vertices v1, . . . , vt. In most applications, the walk is used
to “fool” a test function f . For example, we may think of the confinement problem
when all sets Si are the same set S, as taking an expander with |V | vertices, which
we label with 0 or 1 according to membership in S. We set f to be the AND function.
We compare the probability that f(x1, . . . , xt) evaluates to 1 when x1, . . . , xt are the
labels obtained from a random walk on the graph (which is the quantity we want

1In fact, we prove the theorem under more general conditions, see 4
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to bound) with the probability that f evaluates to 1 when the labels are obtained
from vertices chosen uniformly at random (which is a known quantity and equals the
density S raised to the power of t). We wish to claim these two quantities are close
to each other.

More generally, we say a test function f : Zt
d′ → Zd is ε-fooled by expander random

walks if for every λ-expander graph G = (V,E) and every labeling val : V → Zd′ ,

dTV

(
f(val(RWt

G)), f(val(Ind
t
V ))
)
≤ ε.

where

• RWt
G is the distribution obtained by taking a length t − 1 random walk on

G. That is, we sample v1 ∈ V uniformly at random. Then, for i = 2, . . . , t
sample vi uniformly at random from the neighbours of vi−1. f(val(RW

t
G)) is the

distribution of f(val(v1), . . . , val(vt)) when (v1, . . . , vt) is sampled from RWt
G.

• IndtV is the distribution obtained by sampling v1, . . . , vt ∈ V uniformly at ran-
dom. Note that IndtV = RWt

J where J is the complete graph on V with self
loops. f(val(IndtV )) is the distribution of f(val(v1), . . . , val(vt)) when (v1, . . . , vt)
is sampled from IndtV .

Cohen et al. [CMP+22] proved that all Boolean symmetric functions f are fooled by
expander random walks with up to a O(λ/

√
ρmin) error in total variation distance,

where ρmin = min{ρ0, ρ1}, and ρb is the density of b, i.e., that fraction of vertices with
label b. Thus, even in the symmetric Boolean case, the error bound of [CMP+22] is
O(λ) only when ρmin is bounded from below by some constant. When ρmin is allowed
to depend on t, the error bound of [CMP+22] may weaken as t increases.

A remarkable recent result of Golowich and Vadhan [GV22] significantly strength-
ened and extended the results of [CMP+22], and using new techniques managed to
eliminate the dependence on the bias. That is, they prove that all symmetric Boolean
functions are fooled by expander random walks with up to O(λ) error in total varia-
tion distance, where the constant hidden in the Big-O notation is absolute and does
not depend on ρmin.

Notice that [GV22] implies that for confinement to a fixed set (which is a symmetric
function) the difference between independent sampling and RW sampling is bounded
by O(λ), even when the density ρmay depend on t. Thus, it implies that Theorem 1.2,
which gives constant difference for ρ = 1−1/t, is not tight. In this regard, Theorem 1.3
gives a bound that replaces the O(λ) difference guaranteed by [GV22] with a more
precise bound (that is in particular at most 2λ).

Let us now discuss whether the are functions for which the [GV22] bound does not
guarantee an O(λ) error, while our technique does.

A first candidate for such a problem is the confinement problem for S1×. . .×St, where
the sets Si might be different, and are only guaranteed to all have the same density.
Theorem 1.3 still guarantees the same bound, whereas [GV22] seems to not apply,
because the function is not symmetric anymore. However, the Golowitch-Vadhan
result might be modified to cover this case as well, by using one fixed set, and adding
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corresponding permutation operators to the expanders, making them directed (which
is still fine for [GV22]).2

However, using our techniques, we prove the following. Let 1S(i) equal 1 if i ∈ S and
0 otherwise. Then, 1S1 ⊗ · · · ⊗ 1St equals one if the input is confined to S1 × . . .× St

and zero otherwise. We prove:

Theorem 1.4. Let G = (V,E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer
. Let S1, . . . , St ⊆ V be a sequence of subsets such that the largest subset also has the
maximal variance. Then

dTV

(
1S1 ⊗ · · · ⊗ 1St(RW

t
G), 1S1 ⊗ · · · ⊗ 1St(Ind

t
V )
)
< 3ρmax · λ

where ρmax is the density of the largest subset.

In particular,

Corollary 1.1. Let G = (V,E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer.
Let S ⊆ V be a subset of density ρ, and suppose S1, . . . , St ⊆ V are subsets such that
for every i, Si = S or Si = S. Then

dTV

(
1S1 ⊗ · · · ⊗ 1St(RW

t
G), 1S1 ⊗ · · · ⊗ 1St(Ind

t
V )
)
< 3ρ · λ.

Notice that these functions are not symmetric, and therefore the results of [GV22] do
not apply to them, while our techniques still work.

We also use similar techniques to analyze the extent to which the sum function modulo
d is fooled by expander random walks on graphs with arbitrarily biased labelings, and
prove that it is fooled with an O(

√
d · λ) error in total variation distance, with no

dependence on the labeling bias. We prove:

Theorem 1.5. For integers t ≥ 1, d′ ≥ 2, and d ≥ 2 let G = (V,E) be a λ-expander
where λ ≤ 1/6. Let val : V → Zd′ be any labeling. Then,

dTV

(
Sumd

(
val(RWt

G)
)
, Sumd

(
val(IndtV )

))
≤ 5

√
d · λ

The O(
√
dλ) error term also follows from the work of [GV22] on width-d permutation

branching programs, using different techniques.

Additionally, we prove a bound on the bias of a labeling in terms of the density of
the most frequent label. This is in contrast to previous bias-dependent result (e.g
[GV22] for symmetric functions over Zd with d > 2) where the total variation bound
degrades with ρmin, rather than 1−ρmax (and notice that always ρmin ≤ 1−ρmax). This
dependence is more resilient as it can tolerate very rare labels, as long as the most
common label is not too dominant. We think that this observation could potentially
serve as an incentive to shift the bias dependence in previous works from the smallest
label weight to the largest. Specifically, we prove,

2We thank the anonymous referee for bringing this to our attention.
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Proposition 1.6. For a prime p, let val : [n] → Zp be a labeling that assigns label
a ∈ Zp to ρa fraction of the vertices, and denote ρmax = maxa ρa. Then, for every
non-trivial character χ of Zp,

biasχ(val) ≤

√
1−

(
1− cos

2π

p

)
(1− ρmax)

where biasχ(val)
def
=
∣∣Ei∈[n]χ(val(i))

∣∣.
We also point out that our proofs apply even if the graph is different for each of the t
steps, as long as it is a λ-expander at each step. The same property holds in previous
works as well, e.g [GV22].

1.2 The Technique

We extend the techniques of Gillman [Gil98], Healy [Hea08] and Beck [Bec15], that
established a framework for analyzing what is often referred to as the “flow” of linear
operators. The flow of a linear operator T from the linear subspace V2 to the linear
subspace V1 is the quantity ∥Π1TΠ2∥ where Πi is the projection operator onto Vi. In
our context, V1 and V2 will be either the line spanned by the all-ones vector (The
“parallel space”), or its orthogonal complement (The “perpendicular space”).

Let G also denote the transition matrix of a λ-expander graph, and let P denote
the projection matrix on the set S. That is, P is the diagonal matrix satisfying
P [v, v] = 1 if v ∈ S and 0 otherwise. The probability that a length t random walk on
G never escapes S can be expressed algebraically as 1T (PG)t−1P1, where we denote
1 = 1√

|V |
(1, . . . , 1)T .

One way to analyze this expression is to decompose the probability distribution at
each of the t steps to its parallel and perpendicular components. The parallel compo-
nent is identical to the independent sampling case, while the perpendicular component
is shrunk by a factor of λ after each step on G. The above approach underlies many
results in the field, and, in particular, the expander Chernoff bound [Gil98, Hea08].
Beck [Bec15] simplified the analysis by defining a 2× 2 ”flow” matrix for a linear op-
erator T . The i, j’th entry of the flow matrix is the flow of T from Vj to Vi, where Vi

and Vj are either the perpendicular space or the parallel space. This notation reduced
the problem of bounding quantities like

∣∣1TT1
∣∣ to bounding the [0, 0] entry of a 2×2

matrix with non-negative entries. In this language, the expression 1T (PG)t−1P1 is
the flow of the operator (PG)t−1P from the parallel space to itself. For more details
about the flow framework see Section 3.

[AFWZ95] proved their confinement probability lower bound by giving simultaneous
upper and lower bounds on flows between the perpendicular and parallel spaces.
However, they did it explicitly and specifically for the confinement problem with equal
density at each step, and obtained sub-optimal bounds. In this paper we analyze flows
emerging from confinement problems (and additional problems) using the 2× 2 flow
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matrix notation. As a result, we achieve simpler terms that are easier to follow and
generalize to a broader setting of confinement problems with varying densities. These
terms also indicate how to improve upon previous work (even when all densities are
equal).

1.3 Summary and Discussion

As mentioned before, several total variation bounds in previous works depend on the
labeling bias, namely on the weights ρb that are induced by a labeling. Cohen et
al. [CMP+22] proved that all Boolean symmetric functions are fooled by expander
random walks with up to a O(λ/

√
ρmin) error in total variation distance.

Recently, Golowich and Vadhan [GV22], significantly strengthened and extended
these results using new techniques, and in some cases managed to eliminate the
dependence on the bias. In particular, they prove that for the Boolean case, all sym-
metric functions are fooled by expander random walks with up to O(λ) error in total
variation distance, where the constant hidden in the Big-O notation is absolute.

For the non-Boolean case much less is known:

• For general symmetric functions defined on Zt
d, Golowich and Vadhan prove

an O(( d
ρmin

)O(d) · λ) total-variation bound where ρmin = mina ρa, and ρa is the
density of label a. Notice that in this bound there is a dependence on ρmin. It
is an intriguing open problem whether the dependence on the bias is necessary.

• Golowich and Vadhan [GV22] also show that expander random walks fool width-
w permutation branching programs up to a O(λ) error in ℓ2 distance, and a
O(

√
w · λ) error in total variation distance, a bound that does not depend on

the bias of the labeling. Notice that this bias-independent bound also holds
for non-symmetric functions, as long as they are computed by a low-width
permutation branching program.

In this work we add another example where the error bound does not depend on the
labeling bias. We show for the confinement problem, when the set of maximal density
ρ(S) is also of maximal variance (the variance is

√
ρ(S)(1− ρ(S))), the error bound

is O(λ) regardless of the densities. Note that this case is not symmetric. We also
improve the lower bound for the symmetric case, as previously discussed.

There are many open problems left.

• First, and foremost, is it possible that all symmetric functions over Σt areO|Σ|(λ)
fooled by random-walks? For Σ = {0, 1} [GV22] gave an affirmative answer,
but the general case is left open.

• What other non-symmetric functions are fooled by random-walks without a
dependence on the bias? [GV22] showed all small-width permutation branching
programs are such. We added the confinement test functions when all sets have
the same variance. What other functions have this property?

• As alluded to by Proposition 1.6, we think that for many functions the pa-
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rameter dominating the bias-dependent error is 1 − ρmax rather than ρmin. For
example, the bias-dependent bound for any confinement test function (Propo-
sition 5.1) is O( λ

1−ρmax
) where ρmax is the density of the largest set. It would

be interesting to examine previous results and see if the error terms can be
correspondingly amended.

The paper is organized as follows: In Section 3 we review Beck’s flow framework
[Bec15] and extend it. In Section 4 we prove Theorem 1.3, and prove analogous
lower bounds in the general setting of varying sets and densities. In Section 5 we
study fooling confinement test functions, and in particular prove Theorem 1.4. In
Section 2 we give some preliminaries and background, and introduce our notations.
In Section 6 we prove Theorem 1.5 using our techniques, and in Section 7 we prove
Proposition 1.6.

2 Preliminaries

Notation For any positive integer d, let Zd denote the group of integers modulo
d, and [d] = {1, . . . , d}. We define the ℓ1-norm of a vector x ∈ Fn as ∥x∥1 =∑

i |xi|, and its ℓ2-norm as ∥x∥ =
√∑

i |xi|2. For a field F = R or C, let 1n =

(1/
√
n, . . . , 1/

√
n) ∈ Fn denote the normalized all-ones vector. When n is clear from

context we simply write 1. For a matrix M ∈ Fn×n, the operator norm of M is
given by maxx∈Fn\{0} ∥Mx∥ / ∥x∥. For M ∈ Cn×n, its conjugate transpose is denoted
as M∗. For two real matrices L,M ∈ Rn×n, the notation L ≤e.w M stands for
entry-wise inequality

A symmetric matrix W ∈ [0, 1]n×n is an undirected random walk matrix on n vertices
if the columns and rows of W sum to 1, which implies that Wj,i = Wi,j represents
the transition probability between vertex i and j, or vice versa. In this context, In
denotes the n×n identity matrix, and Jn = 1n1

T
n represents a matrix with all entries

being 1/n. When the dimension is clear from the context, we use the notations I
and J respectively. Notably, Jn is the random walk matrix for a complete graph
with n vertices with self-loops. For a sequence of matrices M1, . . . ,Mt, we denote∏t

i=1Mi = Mt ·Mt−1 · . . . ·M1.

We often use the decomposition Fn = V0 ⊕V1 where V0 = Span{1} is the subspace
of Fn spanned of the all ones vector, and V1 = V⊥

0 is its orthogonal complement. We
define Π0 as the projection operator onto V0, noting that Π0 = Jn, and Π1 as the
projection on V1, noting that Π1 = In − Jn. For a vector x ∈ Fn we define x∥ = Π0x
and x⊥ = Π1x.

For two probability distributions p1 and p2 over a finite sample space Ω, their total
variation distance is

dTV (p1, p2) =
1

2
·
∑
s∈Ω

|p1(s)− p2(s)| .
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Rank-one Matrices A rank-one matrix in Fn×n is a matrix of the form xy∗ for
some non-zero x, y ∈ Fn. In this work we often need to compute the norm of such
matrices, for which the following fact is useful: ∥xy∗∥ = ∥x∥ · ∥y∥. To see this, recall
that for a matrix M ∈ Fn×n we have the following equivalent characterization of the
operator norm

∥M∥ = max{
√
λ | λ is an eigenvalue of M∗M}.

Now, write (xy∗)∗xy∗ = x∗x · yy∗ = ∥x∥2 · yy∗, and observe that ∥y∥2 is the only
non-zero eigenvalue of yy∗. The claim follows.

Fourier Analysis over Zd A character of an abelian group G is a homomorphism
χ : G → C∗ where C∗ is the multiplicative group of complex numbers. The characters
form a group under multiplication. The dual group of G, Ĝ, is defined to be the group
of all characters of G. χ0 is the trivial character, mapping all group elements to 1.
When G = Zd for some positive integer d, the characters are the maps χb(a) = ωb·a

d

for b = 0, . . . , d− 1, and where ωd = e
2πi
d .

Let CZd denote the vector space of all complex valued function on Zd, equipped
with the inner product ⟨h, g⟩ =

∑
a∈Zd

h(a)g(a). The set of normalized characters

{ 1√
d
·χb : b ∈ Zd}, denoted F , forms an orthonormal basis for CZd with respect to this

inner product. Representing functions in CZd in this basis proves to be particularly
beneficial. This includes probability distributions over Zd, which are simply functions
mapping each element of Zd to a real number in [0, 1].

The Information Theoretic XOR-Lemma The information theoretic XOR-
Lemma [Gol11] relates the total variation distance between two distributions over Zd

to the heaviest Fourier coefficient of their difference, also called the maximum bias.
Given its significance in our analysis for the sum function modulo d, we re-prove it
here for completeness.

Lemma 2.1 (Based on [Gol11]). For any two distributions p1 p2 over Zd:

dTV (p1, p2) ≤
√
d

2
·max
b∈Zd

|⟨χb, p1 − p2⟩| .

Remark 2.1. The trivial character is usually excluded from the maximum above,
which is the maximum-bias of the function p1 − p2. However, in our case, the trivial
character always satisfies ⟨χ0, p1 − p2⟩ = 0 as p1 and p2 are probability distributions.

Proof. Let F be the basis of Fourier characters defined earlier, and let S be the
standard basis, namely S = {δb : b ∈ Zd} where δb(a) = 1 if a = b and 0 otherwise.
It is straightforward to check that both are orthonormal bases with respect to the
aforementioned inner product.

Now, let ∥f∥Br denote the ℓr norm of f with respect to the basis B. That is, ∥f∥Br =

(
∑

e∈B |⟨e, f⟩|r) 1
r . Taking the limit r → ∞ we obtain ∥f∥B∞ = maxe∈B |⟨e, f⟩|.
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We see that
∥p1 − p2∥S1 =

∑
a∈Zd

|p1(a)− p2(a)| = 2 · dTV (p1, p2),

and

∥p1 − p2∥F∞ =
1√
d
·max
b∈Zd

|⟨χb, p1 − p2⟩| .

Since ℓ2-norm is preserved under orthonormal change of basis, we always have

∥p1 − p2∥S1 ≤
√
d · ∥p1 − p2∥S2 =

√
d · ∥p1 − p2∥F2 ≤ d ∥p1 − p2∥F∞ ,

using ∥f∥1 ≤
√
d ∥f∥2 for f ∈ CZd in the first inequality, and ∥f∥2 ≤

√
d ∥f∥∞ in the

last inequality. Altogether,

dTV (p1, p2) ≤
√
d

2
·max
b∈Zd

|⟨χb, p1 − p2⟩| .

Expanders For a regular, undirected graph G = (V,E) on n vertices, the random
walk matrix is the normalized adjacency matrix. The spectral expansion is defined as
the second largest eigenvalue of the graph’s random walk matrix in absolute value,
namely

λ(G) = max
x,y⊥1

|⟨x,Gy⟩|
∥x∥ · ∥y∥

= max
x⊥1

∥Gx∥
∥x∥

where the maximum is over all non-zero x, y ∈ Rn which are orthogonal to the all-ones
vector, and by abuse of notation G also denotes the random walk matrix of the graph
G. We say G is a λ-expander if λ(G) = λ.

For a λ-expander G, let A = 1
λ
(G − J). Since the all-ones vector is an eigenvector

of both G and J with eigenvalue 1, it follows that A is zero on the parallel space
Span{1}. Additionally,

∥Ax∥ =
∥∥Ax⊥ + Ax∥∥∥ =

1

λ
·
∥∥Gx⊥∥∥ ≤

∥∥x⊥∥∥ ≤ ∥x∥ .

This implies a valuable decomposition G = J + λA where the symmetric “error
matrix” A is zero on the parallel space, and ∥A∥ ≤ 1.

Another useful decomposition follows by setting E = 1
λ
(G − (1 − λ) · J). One can

easily verify that E acts like the identity on the parallel space, and that the orthogonal
space is E-invariant. Thus, for every vector x we have

∥Ex∥2 =
∥∥Ex∥∥∥2 + ∥∥Ex⊥∥∥2 ≤ ∥∥x∥∥∥2 + 1

λ

∥∥Gx⊥∥∥2 ≤ ∥x∥2 .

This gives rise to the decomposition G = (1− λ)J + λE where the symmetric “error
matrix” E satisfies ∥E∥ ≤ 1.
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3 Flow

Let F be either C or R. We decompose Fn = V0⊕V1 where V0 is the span of the all-
ones vector Span{1} (the “parallel” space) and V1 = V⊥

0 its orthogonal complement

(the “orthogonal” space). Let Π0
def
= J be the projection operator on V0, and Π1

def
=

I − J is the projection on V1.

Throughout this work we study linear operators T : Fn → Fn by examining ∥Πb1TΠb2∥
for b1, b2 ∈ {0, 1}. Intuitively, this can be understood as the “flow of mass” from Vb2

to Vb1 under the linear operator T . To study the flow of a linear operator, we extend
upon the techniques introduced by Gillman, Healy, and Beck, using the notation
and claims of Beck [Bec15]. These were used mostly in the context of the expander
Chernoff bound [Gil98, Hea08].

Definition 3.1 (The Flow Matrix). Let T : Fn → Fn be any linear operator. Then

the flow matrix of T , denoted T̃ , is the 2× 2 non-negative matrix defined by

T̃ =

(
∥Π0TΠ0∥ ∥Π0TΠ1∥
∥Π1TΠ0∥ ∥Π1TΠ1∥

)
where Π0, is the projection on Span{1} and Π1 is the projection on its orthogonal
complement.

Example 3.1. Let G be the random walk operator of a λ-expander graph. Then

G̃ ≤e.w

(
1 0
0 λ

)
where ≤e.w stands for entry-wise inequality.

To see this, apply the decomposition G = J + λA where ∥A∥ ≤ 1 and A is zero on
the parallel space. That is, AΠ0 = Π0A = 0. We then have

(i) ∥Π0GΠ0∥ = ∥Π0JΠ0∥ = ∥J∥ = 1,

(ii) ∥Π0GΠ1∥ = ∥Π0(J + λA)Π1∥ = ∥Π0JΠ1 + λΠ0AΠ1∥ = 0,

(iii) By symmetry ∥Π1GΠ0∥ = 0 .

(iv) Finally, ∥Π1GΠ1∥ = λ ∥Π1AΠ1∥ ≤ λ.

By submultiplicativity and subadditivity of the operator norm, we have the following
submultiplicativity property of the flow operator:

Claim 3.1 ([Bec15]). For every linear operators L,M : Fn → Fn, we have L̃ ·M ≤e.w

L̃ · M̃ .

Proof. Let i, j ∈ {0, 1}. Recall that Π0 = J and Π1 = I − J , and thus Π0 + Π1 = I.
We have

L̃ ·M [i, j] = ∥ΠiLMΠj∥ = ∥ΠiL(Π0 +Π1)MΠj∥ ≤ ∥ΠiLΠ0MΠj∥+ ∥ΠiLΠ1MΠj∥
≤ ∥ΠiLΠ0∥ · ∥Π0MΠj∥+ ∥ΠiLΠ1∥ · ∥Π1MΠj∥
= L̃[i, 0] · M̃ [0, j] + L̃[i, 1] · M̃ [1, j] = L̃ · M̃ [i, j].

11



Typically, the primary technical tool utilized for analyzing flow matrices consists of
the following bound, which generally hold for non-negative 2× 2 matrices.

Lemma 3.1 ([Bec15]). If A =

(
a b
c d

)
≥e.w 0 with a ≥ 1 and d < 1 then

At[0, 0] ≤ a ·
(
a+

bc

1− d

)t−1

Proof. By induction on t. The base case t = 1 is clear. Assume for 1, . . . , t − 1 and
let us prove for t. We have the following recurrence relation

At[0, 0] = At−1[0, 0] · A[0, 0] +
t−2∑
j=0

Aj[0, 0] · A[0, 1] · A[1, 1]t−2−j · A[1, 0]

where j goes over the last time the path was at vertex 0 before taking the final step.
As A[i, j] ≥ 0 and A[0, 0] ≥ 1, we see that Ak2 [0, 0] ≥ Ak1 [0, 0] for all k2 ≥ k1. Hence,

At[0, 0] = At−1[0, 0] · a+
t−2∑
j=0

Aj[0, 0] · bc · dt−2−j

≤ At−1[0, 0]

(
a+ bc

∞∑
j=0

dj

)
≤ At−1[0, 0]

(
a+

bc

1− d

)
The proof is complete by applying the induction hypothesis.

A simple way to generalize this lemma to the case where A[0, 0] > A[1, 1] but not
necessarily A[0, 0] > 1 is as follows.

Lemma 3.2. If A =

(
a b
c d

)
≥e.w 0 with a > d then At[0, 0] ≤ a ·

(
a+ bc

a−d

)t−1
.

Proof. WriteA = a·
(
1 b

a
c
a

d
a

)
. Hence by the previous lemmaAt[0, 0] ≤ at·

(
1 +

b
a
· c
a

1− d
a

)t−1

=

a ·
(
a+ bc

a−d

)t−1
.

Remark 3.2. Note that the lemma above is not tight when a is small. Indeed, At[0, 0]
decreases with a, while the bound of Lemma 3.2 blows up when a approaches d. We
do not try to optimize the bound for d close to a. Also, it would be nice to have a
generalization of this lemma for the case of possibly different A1, . . . , At.

Lemma 3.3. If A =

(
a b
c d

)
≥e.w 0 with a > d. Then for all t ≥ 2,

At[0, 0]− (A[0, 0])t ≤ abc

a− d
·
t−2∑
k=0

ak
(
a+

bc

a− d

)t−k−2

12



Proof. For every integer k ≥ 1 xk − yk = (x − y) ·
∑k−1

i=0 x
iyk−i−1. Using this and

Lemma 3.2, we see that

At[0, 0]− (A[0, 0])t ≤ a ·
(
a+

bc

a− d

)t−1

− at = a

((
a+

bc

a− d

)t−1

− at−1

)

= a · bc

a− d
·
t−2∑
k=0

ak
(
a+

bc

a− d

)t−k−2

Lemma 3.4. For an integer t ≥ 1, Let M1, . . . ,Mt be a sequence of n× n matrices.
Then ∣∣∣∣∣1T

(
t∏

i=1

Mi

)
1− 1T

(
t∏

i=1

Π0Mi

)
1

∣∣∣∣∣ ≤
(

t∏
i=1

M̃i

)
[0, 0]−

(
t∏

i=1

M̃i[0, 0]

)
.

Proof. Writing Mi = Π0Mi +Π1Mi we have

1T

(
t∏

i=1

Mi

)
1 =

∑
b∈{0,1}t

1T

t∏
i=1

(ΠbiMi)1 =
∑

b∈{0,1}t−1

1TΠ0Mt

(
t−1∏
i=1

(ΠbiMi)

)
· 1

Since 1TΠ1 = 0. To complete the proof let LHS =
∣∣1T

∏t
i=1 Mi1− 1T

(∏t
i=1(Π0Mi)

)
1
∣∣.

Then,

LHS =

∣∣∣∣∣∣∣∣
∑

b∈{0,1}t−1

b̸=0t

1TΠ0Mt

(
t−1∏
i=1

(ΠbiMi)

)
· 1

∣∣∣∣∣∣∣∣
≤

∑
b∈{0,1}t−1

b̸=0t

∣∣∣∣∣1TΠ0Mt

(
t−1∏
i=1

(ΠbiMi)

)
· Π01

∣∣∣∣∣
≤

∑
b∈{0,1}t−1

b̸=0t

∥∥∥∥∥Π0Mt

(
t−1∏
i=1

(ΠbiMi)

)
· Π0

∥∥∥∥∥
=

∑
b∈{0,1}t−1

b̸=0t

∥∥∥∥∥Π0MtΠbt−1

(
t−1∏
i=2

(
ΠbiMiΠbi−1

))
· Πb1M1Π0

∥∥∥∥∥
≤

∑
b∈{0,1}t−1

b̸=0t

∥∥Π0MtΠbt−1

∥∥ · t−1∏
i=2

∥∥ΠbiMiΠbi−1

∥∥ ∥Πb1M1Π0∥

=
∑

b∈{0,1}t−1

b̸=0t

M̃t[0, bt−1]

(
t−1∏
i=2

M̃i[bi, bi−1]

)
M̃1[b1, 0] =

(
t∏

i=1

M̃i

)
[0, 0]−

t∏
i=1

M̃i[0, 0].
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Lemma 3.5. Let A1, . . . , At be a sequence of non-negative 2 × 2 matrices such that
for all i, Ai ≤e.w A for some 2× 2 matrix A. Then(

t∏
i=1

Ai

)
[0, 0]−

t∏
i=1

(Ai[0, 0]) ≤ At[0, 0]− (A[0, 0])t.

Proof. We have(
t∏

i=1

Ai

)
[0, 0]−

t∏
i=1

(Ai[0, 0]) =
∑

b∈{0,1}t−1

b̸=0t

At[0, bt−1]

(
t−1∏
i=2

Ai[bi, bi−1]

)
A1[b1, 0]

≤
∑

b∈{0,1}t−1

b ̸=0t−1

A[0, bt−1]

(
t−1∏
i=2

A[bi+1, bi]

)
A[b1, 0]

= At[0, 0]− (A[0, 0])t.

We now proceed to establish techniques for proving flow lower bounds. While these
concepts were introduced specifically for the confinement problem with the same set
density in [AFWZ95], we extend them to general linear operators and use the flow
matrix notation.

Lemma 3.6 (Flow Progress). For linear operators T1, . . . , Tt,

t̃∏
i=1

Ti[0, 0] ≥ T̃t[0, 0] ·
t̃−1∏
i=1

Ti[0, 0]− T̃t[0, 1] ·
t̃−1∏
i=1

Ti[1, 0] (3.1)

t̃∏
i=1

Ti[1, 0] ≤ T̃t[1, 0] ·
t̃−1∏
i=1

Ti[0, 0] + T̃t[1, 1] ·
t̃−1∏
i=1

Ti[1, 0] (3.2)

Proof. We have

t̃∏
i=1

Ti[0, 0] =

∥∥∥∥∥Π0

t∏
i=1

TiΠ0

∥∥∥∥∥ =

∥∥∥∥∥Π0 (TtΠ0 + TtΠ1)
t−1∏
i=1

TiΠ0

∥∥∥∥∥
≥ ∥Π0TtΠ0∥ ·

∥∥∥∥∥Π0

t−1∏
i=1

TiΠ0

∥∥∥∥∥− ∥Π0TtΠ1∥ ·

∥∥∥∥∥Π1

t−1∏
i=1

TiΠ0

∥∥∥∥∥
= T̃t[0, 0] ·

t̃−1∏
i=1

Ti[0, 0]− T̃t[0, 1] ·
t̃−1∏
i=1

Ti[1, 0]
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and

t̃∏
i=1

Ti[1, 0] =

∥∥∥∥∥Π1

t∏
i=1

TiΠ0

∥∥∥∥∥ =

∥∥∥∥∥Π1 (TtΠ0 + TtΠ1)
t−1∏
i=1

TiΠ0

∥∥∥∥∥
≤ ∥Π1TtΠ0∥ ·

∥∥∥∥∥Π0

t−1∏
i=1

TiΠ0

∥∥∥∥∥+ ∥Π1TtΠ1∥ ·

∥∥∥∥∥Π1

t−1∏
i=1

TiΠ0

∥∥∥∥∥
= T̃t[1, 0] ·

t̃−1∏
i=1

Ti[0, 0] + T̃t[1, 1] ·
t̃−1∏
i=1

Ti[1, 0]

Definition 3.3. (Flow sequence) For a sequence of linear operators T1, . . . , Tt, the

flow sequence is defined recursively such that c1 =
T̃1[0,0]

T̃1[1,0]
and for k ≥ 1

ck+1 =
T̃k+1[0, 0] · ck − T̃k+1[0, 1]

T̃k+1[1, 0] · ck + T̃k+1[1, 1]

The constants ci emerge from recursively dividing Equation (3.1) of Lemma 3.6 by
Equation (3.2), as demonstrated by the following lemmas. Therefore, from an intu-
itive perspective, the constants ci in the definition above can be thought of as a lower
bound on the ratio between the mass preserved inside the parallel space after the i-th
step and the mass lost to its orthogonal complement.

We remark that the smaller T̃i[0, 1], T̃i[1, 1] are taken relative to T̃i[0, 0] and T̃i[1, 0],
the larger sequence elements will become. In all of our use cases, each operator Ti

includes a step on a λ-expander graph G. Thus, as we shall later see, we can make
T̃i[0, 1] and T̃i[1, 1] smaller by taking the the expansion parameter λ smaller, and hence
the sequence elements larger. Specifically, in all instances considered in this work,
the constants ci are strictly positive. Therefore, for the remainder of this section, we
proceed with the assumption that the provided linear operators T1, . . . , Tt are such
that their corresponding flow sequence elements are positive.

Lemma 3.7. Let T1, . . . , Tt be linear operators with a positive flow sequence. Then,

for all k = 1, . . . , t it holds that
∏̃k

i=1 Ti[0, 0] ≥ ck ·
∏̃k

i=1 Ti[1, 0].

Proof. By induction on k. For k = 1 the claim holds by definition. For the induction

step, assume that
∏̃k

i=1 Ti[0, 0] ≥ ck ·
∏̃k

i=1 Ti[1, 0]. Plugging the induction hypothesis
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into Equation 3.1 see that

k̃+1∏
i=1

Ti[0, 0] ≥ T̃k+1[0, 0] ·
k̃∏

i=1

Ti[0, 0]− T̃k+1[0, 1] ·
k̃∏

i=1

Ti[1, 0]

≥

(
T̃k+1[0, 0]−

T̃k+1[0, 1]

ck

)
t̃−1∏
i=1

Ti[0, 0].

Similarly, plugging the induction hypothesis into Equation 3.2,

k̃+1∏
i=1

Ti[1, 0] ≤ T̃k+1[1, 0] ·
k̃∏

i=1

Ti[0, 0] + T̃k+1[1, 1] ·
k̃∏

i=1

Ti[1, 0]

≤

(
T̃k+1[1, 0] +

T̃k+1[1, 1]

ck

)
k̃∏

i=1

Ti[0, 0].

Combining these we obtain

k̃+1∏
i=1

Ti[0, 0] ≥

(
T̃k+1[0, 0]− T̃k+1[0,1]

ck

)
(
T̃k+1[1, 0] +

T̃k+1[1,1]

ck

) k̃∏
i=1

Ti[0, 0]

=

(
T̃k+1[0, 0] · ck − T̃k+1[0, 1]

T̃k+1[1, 0] · ck + T̃k+1[1, 1]

)
k̃∏

i=1

Ti[0, 0] = ck+1 ·
k̃∏

i=1

Ti[0, 0]

Hence we have the following corollary

Corollary 3.1. For all k = 1, . . . , t we have

k̃∏
i=1

Ti[0, 0] ≥ T̃1[0, 0] ·
k∏

i=2

(
T̃i[0, 0]−

T̃i[0, 1]

ci−1

)
Proof. By induction on k. For k = 1 the product on the right hand side is empty and
the equality trivially holds. For the induction step, Using Equation 3.1, the previous
claim, and the induction hypothesis,

k̃+1∏
i=1

Ti[0, 0] ≥ T̃k+1[0, 0] ·
k̃∏

i=1

Ti[0, 0]− T̃k+1[0, 1] ·
k̃∏

i=1

Ti[1, 0]

≥

(
T̃k+1[0, 0]−

T̃k+1[0, 1]

ck

)
k̃∏

i=1

Ti[0, 0] ≥ T̃1[0, 0] ·
k+1∏
i=2

(
T̃i[0, 0]−

T̃i[0, 1]

ci−1

)
.
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4 Expander Hitting Property Revised

We use the following notations. For a set Si ⊆ [n] we define its density as ρi = |Si| /n
and its variance as σi =

√
ρi(1− ρi). We let Pi be the projection matrix on the set

Si. That is, Pi is the diagonal matrix satisfying Pi[v, v] = 1 if v ∈ Si and 0 otherwise.
G is the random walk operator of the graph G.

4.1 Confinement Probability Upper-bounds

We begin with the hitting property for sets of varying densities. In [HLW06] the
authors give the bound

∏t−1
j=1(

√
ρjρj+1+λ), which corresponds to ∥PtG . . . GP1∥ rather

than 1TPtG . . . GP11. However, we observe that this loss is not necessary.

Proposition 4.1 (Expander Hitting Property). Let G = (V,E) be a λ-expander.
Then, for every sequence of subsets S1, . . . , St ⊆ V such that Si is of density ρi,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≤
√
ρ1ρt ·

t−1∏
i=1

((1− λ)
√
ρiρi+1 + λ) .

Proof. First note that for all i, ∥PiJPi+1∥ =
√
ρiρi+1. Indeed,

∥PiJPi+1∥ =
∥∥Pi1(Pi+11)

T
∥∥ = ∥Pi1∥ · ∥Pi+11∥ =

√
ρiρi+1

Decomposing G = (1− λ)J + λE with ∥E∥ ≤ 1, we find that

∥PiGPi+1∥ = ∥(1− λ) · PiJPi+1 + λ · PiEPi+1∥
≤ (1− λ) · ∥PiJPi+1∥+ λ ≤ (1− λ)

√
ρiρi+1 + λ.

Let u = (1/n, . . . , 1/n) ∈ Rn be the uniform vector. Expressing the probability
linear-algebraically we obtain

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] = 1TPt

(
t−1∏
i=1

GPi

)
1 = 1TPt

t−1∏
i=1

(Pi+1GPi)P11

=

∥∥∥∥∥Pt

t−1∏
i=1

(Pi+1GPi)P1u

∥∥∥∥∥
1

≤ √
ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)P1u

∥∥∥∥∥
≤ √

ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)

∥∥∥∥∥ · ∥P1u∥ =
√
ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)

∥∥∥∥∥
2

·
√

ρ1
n

≤ √
ρtρ1 ·

t−1∏
i=1

∥(Pi+1GPi)∥ ≤ √
ρ1ρt ·

t−1∏
i=1

((1− λ)
√
ρiρi+1 + λ) ,

where we use P 2
i = Pi, and the first inequality is Cauchy-Schwartz, noting that after

multiplying by Pt, the resulting vector has at most ρt · n non-zero entries.
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4.2 Confinement Probability Lower-bounds

As explained in the introduction, previous lower bounds do not give an O(λ) bias-
independent bound on the error term comparing with the independent sampling case.
In this section, we give a tighter lower bound that, in particular, is O(λ)-close to the
probability of the same confinement event but with independently chosen samples.

Expressing the probability linear-algebraically we find that

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] = 1T

t∏
i=2

(PiG)P11 =

∥∥∥∥∥Π0

t∏
i=1

(PiG)Π0

∥∥∥∥∥ =

˜t∏
i=1

(PiG)[0, 0].

Therefore, we see that this quantity is applicable to bounds via the lower-bound part
of the flow framework. Consider the sequence of linear operators P1G, . . . , PtG with
corresponding flow sequence c1, . . . ct. It follows from Corollary 3.1 that

˜t∏
i=1

(PiG)[0, 0] ≥ T̃1[0, 0] ·
k+1∏
i=2

(
P̃iG[0, 0]− P̃iG[0, 1]

ci−1

)
Hence, our next objective is to bound the entries of P̃iG, and find lower bounds on
the constants c1, . . . ct.

Lemma 4.1. For all i = 1, . . . , t we have P̃iG ≤e.w

(
ρi λσi

σi λ

)
where the first column

holds with equality.

Proof. First, observe that

P̃iG[0, 0] = ∥Π0PiGΠ0∥ =
∥∥11TPiG11T

∥∥ =
∥∥11TPi11

T
∥∥ =

∣∣1TPi1
∣∣ = ρi

Following the discussion about the norm of rank-one matrices, we see that for b ∈
{0, 1},

∥ΠbPiGΠ0∥ =
∥∥ΠbPiG11T

∥∥ = ∥ΠbPi1∥ · ∥1∥ = ∥ΠbPi1∥ .

Using this , we find that

P̃iG[0, 0]2 + P̃iG[1, 0]2 = ∥Π0Pi1∥2 + ∥Π1Pi1∥2 = ∥Pi1∥2 = ρi

hence P̃iG[1, 0] =
√
ρi(1− ρi) = σi.

Now, let us write G = J + λA where ∥A∥ ≤ 1 and A is zero on the parallel space.
Then

P̃iG[0, 1] = ∥Π0PiGΠ1∥ = ∥Π0Pi (J + λA)Π1∥ = λ ∥Π0PiAΠ1∥ = λ ∥Π0PiΠ1AΠ1∥
≤ λ ∥Π0PiΠ1∥ = λσi

where we have used that Π1A = A in the last equality. In the inequality we ob-
serve that P̃iG[1, 0] = ∥Π1PiGΠ0∥ = ∥Π1PiΠ0∥ = ∥Π0PiΠ1∥ . Hence we substitute
∥Π0PiΠ1∥ = σi.

Finally, we bound P̃iG[1, 1] = ∥Π1PiGΠ1∥ = λ ∥Π1PiAΠ1∥ ≤ λ.
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By definition of flow sequence (Definition 3.3) and the previous lemma, we obtain:

Corollary 4.1 (Flow sequence lower-bound). Let G = (V,E) be a λ-expander, and
let S1, . . . , St ⊆ V be a sequence of subsets such that Si is of density ρi and variance
σi. Let c1, . . . , ct be the flow sequence of the linear operators P1G, . . . , PtG. Then
c1 =

ρ1
σ1

and:

ci+1 ≥
ci · ρi+1 − λ · σi+1

ci · σi+1 + λ
.

Corollary 4.2. Let G = (V,E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence
of subsets such that Si is of density ρi. Let c1, . . . , ct be the flow sequence of the linear
operators P1G, . . . , PtG. Suppose that λ is sufficiently small so that ci > 0 for all i.
Then,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi −

σi

ci−1

λ

)
.

Next, we demonstrate how distinct conditions imposed on λ lead to varying bounds
on the flow sequence, consequently leading to corresponding confinement probability
lower bounds.

Lemma 4.2. Let G = (V,E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence
of subsets each of density ρi. If for all i, λ < 1

6
· σiσi+1 · 1+ρi+1

1−ρi+1
, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − 2 · σi

σi−1

λ

)
.

Proof. By Corollary 4.2, it suffices to prove that under our assumption on λ, we have
ci ≥ σi/2 for all i.

For i = 1, we clearly have c1 = ρ1
σ1

= σ1

1−ρ1
> σ1. Now, assume that ci ≥ σi/2. We

have

ci+1 −
σi+1

2
≥ ciρi+1 − λσi+1

ciσi+1 + λ
− σi+1

2
(Corollary 4.1)

=
ci
(
2ρi+1 − σ2

i+1

)
− 3λσi+1

2 (ciσi+1 + λ)
=

ciρi+1 (1 + ρi+1)− 3λσi+1

2 (ciσi+1 + λ)

Therefore it suffices to show 3λσi+1 ≤ ciρi+1 (1 + ρi+1). Indeed, using our assumption
on λ and the induction hypothesis,

λ <
1

6
· σiσi+1 ·

1 + ρi+1

1− ρi+1

≤ ci
3
· σi+1

1− ρi+1

(1 + ρi+1) =
ci
3
· ρi+1

σi+1

(1 + ρi+1).
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The first part of Theorem 1.2 follows as a special case of the lemma above, in which
all sets have the same density. Indeed, in this case, our assumption on λ becomes
λ < 1

6
· σ2 · 1+ρ

1−ρ
= 1

6
ρ(1 + ρ).

Lemma 4.3. Let G = (V,E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence
of subsets each of density ρi. If for all i, λ < 1

2
· σi

σi+1
· ρ2i+1, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi −

σi

σi−1

λ

)
.

Proof. By Corollary 4.2 it suffices to prove that under our assumption on λ, we have
ci ≥ σi for all i. The proof is by induction on i. For i = 1 we clearly have

c1 =

√
ρ1

1− ρ1
=

σ1

1− ρ1
> σ1.

Assume that ci ≥ σi. We have

ci+1

σi+1

≥ ciρi+1 − λσi+1

ciσ2
i+1 + λσi+1

(Corollary 4.1)

=
ciρi+1 + ciσ

2
i+1 + λσi+1 − ciσ

2
i+1 − 2λσi+1

ciσ2
i+1 + λσi+1

= 1 +
ci
(
ρi+1 − σ2

i+1

)
− 2λσi+1

ciσ2
i+1 + λσi+1

= 1 +
ciρ

2
i+1 − 2λσi+1

ciσ2
i+1 + λσi+1

Therefore it suffices to show 2λσi+1 ≤ ciρ
2
i+1. Indeed, using our assumption on λ and

the induction hypothesis, λ < 1
2
· σi

σi+1
· ρ2i+1 ≤

ciρ
2
i+1

2σi+1
.

The second part of Theorem 1.2 follows as a special case of the lemma above, in which
all sets have the same density. In that case our assumption on λ becomes λ < ρ2

2
.

The following lemma refines the bound given in [AFWZ95] and also allows for arbi-
trary densities with decreasing variances.

Lemma 4.4. Let G = (V,E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence
of subsets, each of density ρi and variance σi. Suppose that σ1 ≥ · · · ≥ σt. If
λ ≤ σi

σi−1
· ρi−1ρi

4
for all i, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − λ(1− ρ2i−1)

)
.

Proof. Using our assumption that σi ≥ σi+1 for all i = 1, . . . , t, it suffices to prove
that σi ≤ (1− ρ2i )ci for all i. Indeed, in that case, by Corollary 4.2 we obtain

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi −

σi

ci−1

λ

)
≥ ρ1 ·

t∏
i=2

(
ρi −

σi−1

ci−1

λ

)

≥ ρ1 ·
t∏

i=2

(
ρi − (1− ρ2i−1) · λ

)
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Now, we prove by induction on i that σi ≤ (1− ρ2i )ci. For i = 1 we clearly have

(1− ρ21)c1 = (1− ρ21)

√
ρ1

1− ρ1
= (1 + ρ1)

√
ρ1(1− ρ1) > σ1.

Assume that σi−1 ≤ (1− ρ2i−1)ci−1. Then,

1− ρ2i
σi

· ci ≥
1− ρ2i
σi

· ci−1ρi − λσi

ci−1σi + λ
(Corollary 4.1)

=
ci−1σi(1 + ρi)− λ(1− ρ2i )

ci−1σi + λ

=
ci−1σi + λ+ ci−1σiρi − λ(2− ρ2i )

ci−1σ + λ
= 1 +

ci−1σiρi − λ(2− ρ2i )

ci−1σi + λ

where the second equality uses the identity ρ(1−ρ2)/σ = σ(1+ρ). Thus, it remains to
prove that ci−1σiρi ≥ λ(2−ρ2i ). Indeed, on the one hand, by our induction hypothesis

ci−1σiρi ≥
σi−1σiρi
(1− ρ2i−1)

=
σi

σi−1

· ρi−1ρi
1 + ρi−1

.

using the identity ρ/σ = σ/(1− ρ).

On the other hand, our assumption on λ implies that

λ ≤ σi

σi−1

· ρi−1ρi
4

≤ σi

σi−1

· ρi−1ρi
(1 + ρi−1)(2− ρ2i )

and the proof is complete.

When all subsets have the same density, we observe that in fact (1 + ρ)(2− ρ2) ≤ 3.
Therefore we obtain:

Theorem 1.3. [New confinement lower-bound] Let G = (V,E) be a λ-expander, and

let S1, . . . , St ⊆ V be each of density ρ for some ρ.3 If λ ≤ ρ2

3
, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ ·
(
ρ− λ(1− ρ2)

)t−1
.

5 Fooling Non-Symmetric Confinement Functions

The class of t-wise confinement functions Conf⊗t
n ⊆ {f : [n]t → {0, 1}} is defined as

Conf⊗t
n = {1S1 ⊗ · · · ⊗ 1St | S1, . . . , St ⊆ [n]}

where 1S(i) equals 1 if i ∈ S and 0 otherwise. This class of functions is sometimes
referred to as cut-tensors or cut-functions. Generally, confinement functions are not
symmetric, hence a density-independent total variation bound for this class is not

3In fact, we prove the theorem under more general conditions, see 4
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implied by the previous work of [GV22]. Nevertheless, we show that the class of
confinement functions where the sets have equal variances, is O(λ)-fooled by expander
random walks regardless of the densities.

We begin with a density-dependent bound which holds for all confinement functions.

Proposition 5.1. For t ≥ 1, let G = (V,E) be a λ-expander, and let S1, . . . , St be a
sequence of subsets such that Si is of density ρi. Let ρmax = maxi ρi. Then,

dTV

(
1S1 ⊗ · · · ⊗ 1St(RW

t
G), 1S1 ⊗ · · · ⊗ 1St(Ind

t
V )
)
≤
(
1 +

1− ρt−1
max

1− ρmax

)
· λ.

Proof. First, observe that we may assume t ≥ 2, as for t = 1 the distributions are
identical and claim trivially holds. The decomposition G = J + λA with ∥A∥ ≤ 1
implies that ∥G− J∥ ≤ λ. Also, recall that ∥JPiJ∥ = ρi. Let LHS be left-hand size
of the inequality in the proposition. Expressing LHS linear-algebraically, we see that
LHS =

∣∣1T
∏t

i=1 (PiG)1− 1T
∏t

i=1 (PiJ)1
∣∣ and

LHS ≤

∥∥∥∥∥
t∏

i=1

(PiG)−
t∏

i=1

(PiJ)

∥∥∥∥∥ ≤
t∑

k=1

∥∥∥∥∥
(

t∏
j=k+1

(PjG)

)
Pk(G− J)

(
k−1∏
j=1

(PjJ)

)∥∥∥∥∥
≤

t∑
k=1

∥(G− J)∥

∥∥∥∥∥
(

k−1∏
j=1

(PjJ)

)∥∥∥∥∥ ≤
t∑

k=1

λ ·
k−2∏
j=1

ρj ≤ λ

(
1 +

t−2∑
ℓ=0

ρℓmax

)

= λ ·
(
1 +

1− ρt−1
max

1− ρmax

)

Note that, in particular, the proof implies a tλ bound for all confinement functions.
A similar hybrid idea was used in [JST21] to derive a generalization of the expander
mixing lemma for length-t random walks.4 Proposition 5.1 shows that when the all
the sets are small, say, of density which is bounded from above by some constant α,
the corresponding confinement function is Oα(λ)-fooled.

We proceed with the main result for this section.

Theorem 1.4. Let G = (V,E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer
. Let S1, . . . , St ⊆ V be a sequence of subsets such that the largest subset also has the
maximal variance. Then

dTV

(
1S1 ⊗ · · · ⊗ 1St(RW

t
G), 1S1 ⊗ · · · ⊗ 1St(Ind

t
V )
)
< 3ρmax · λ

where ρmax is the density of the largest subset.

4In fact their result is more general, as it goes beyond random walk on expander graphs. Their
“splittable-mixing lemma” holds for what they call “λ-splittable structures”, which are subsets of
[n]t that admit certain high-dimensional expansion properties.
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Proof. First, observe that we may assume t ≥ 2, as for t = 1 the distributions are
identical and claim trivially holds. Let LHS be left-hand side of the inequality in
the proposition. Let n = |V | and identify V with [n] arbitrarily. Let us denote by
ρi the density of Si, and by σi its variance, so that ρmax = maxi ρi. Further denote
σmax = maxi σi.

We consider two cases according to the relationship between ρmax and λ. Assume first
that ρmax ≤ 2λ. Applying the upper-bound Proposition 4.1 we find that

LHS =

∣∣∣∣∣ Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si]−
t∏

i=1

ρi

∣∣∣∣∣ ≤ √
ρ1ρt ·

t−1∏
i=1

(λ+ (1− λ)
√
ρiρi+1)

≤ ρmax (λ+ ρmax(1− λ))t−1 ≤ ρmax (3λ)
t−1 ≤ 3 · ρmax · λ

For the first inequality we observe that both terms inside the absolute value are
non-negative, hence the magnitude of their difference is bounded by the maximal
one. Additionally, the upper-bound provided by the hitting property as presented in
Proposition 4.1 applies to both terms. Then, we bound λ+2λ(1− λ) ≤ 3λ. The last
inequality holds under our assumption that λ ≤ 1/3 and t ≥ 2.

Now, Assume that ρmax ≥ 2λ. For i = 1, . . . , t, let Pi be the n× n projection matrix
on the set Si. That is, Pi is the diagonal matrix satisfying Pi[v, v] = 1 if v ∈ Si and

0 otherwise. We have the following entry-wise bounds on the flow matrices P̃i:

P̃i ≤e.w

(
ρi σi

σi 1

)
where all entries except for the right bottom are equality. To see this, consider that

∥Π0PiΠ0∥ = ∥JPiJ∥ =
∥∥11TPi11

T
∥∥ =

∣∣1TPi1
∣∣ = ρi.

Using the mentioned identity for the norm of rank-one matrices, we see that for
b ∈ {0, 1},

∥ΠbPiΠ0∥ =
∥∥ΠbPi11

T
∥∥ = ∥ΠbPi1∥ · ∥1∥ = ∥ΠbPi1∥ .

Since ∥Pi1∥ =
√∑

i∈Si

1
n
=

√
ρi, we have

∥Π1PiΠ0∥ = ∥Π1Pi1∥ =

√
∥Pi1∥2 − ∥Π0Pi1∥2 =

√
ρi(1− ρi) = σi.

By symmetry we also have ∥Π1PΠ0∥ = σi . Finally, we bound

∥Π1PiΠ1∥ ≤ ∥Π1∥2 ∥Pi∥ ≤ 1.

Let σmax = maxi σi, and recall that by assumption σmax =
√

ρmax(1− ρmax). Through
utilizing the submultiplicativity of the flow operator (Claim 3.1) and Example 3.1, we

find that G̃Pi ≤e.w

(
ρi σi

λσi λ

)
≤e.w A for A

def
=

(
ρmax σmax

λσmax λ

)
. Now, expressing
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the total variation distance linear algebraically, we have

LHS =

∣∣∣∣∣ Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si]−
t∏

i=1

ρi

∣∣∣∣∣ =
∣∣∣∣∣1T

t∏
i=2

(PiG)P11− 1T

t∏
i=2

(PiJ)P11

∣∣∣∣∣
=

∣∣∣∣∣1T

t∏
i=1

(GPi)1− 1T

t∏
i=1

(JPi)1

∣∣∣∣∣ =
∣∣∣∣∣1T

t∏
i=1

(GPi)1− 1T

t∏
i=1

(Π0GPi)1

∣∣∣∣∣
≤

(
t∏

i=1

G̃Pi

)
[0, 0]−

(
t∏

i=1

G̃Pi[0, 0]

)
(Lemma 3.4)

≤ At[0, 0]− (A[0, 0])t (Lemma 3.5)

Using Lemma 3.3 we obtain the bound

At[0, 0]− (A[0, 0])t ≤ λρmaxσ
2
max

ρmax − λ
·
t−2∑
k=0

ρkmax

(
ρmax +

λσ2
max

ρmax − λ

)t−k−2

=
λρ2max(1− ρmax)

ρmax − λ
·
t−2∑
k=0

ρkmax

(
ρmax +

λρmax(1− ρmax)

ρmax − λ

)t−k−2

≤ 2ρmax · λ · (1− ρmax)
t−2∑
k=0

ρkmax (ρmax + ρmax(1− ρmax))
t−k−2

≤ 2ρmax · λ · (1− ρmax)
∞∑
k=0

ρkmax = 2ρmax · λ,

where in the second inequality we have used that ρmax/(ρmax − λ) ≤ 2 and λ/(ρmax −
λ) ≤ 1 under our assumption that ρmax ≥ 2λ.

6 Fooling The Sum Function modulo d

For integers d ≥ 2, d′ ≥ 2 and t ≥ 1, define the function Sumd′,d : Zt
d′ → Zd as

Sumd′,d(a1, . . . , at) =
t∑

i=1

ai mod d

Given the insignificance of d′ within this context, we will simplify our notation by
omitting it, using only Sumd.

In this section we employ the flow framework to prove a bias-independent O(
√
d · λ)

total variation bound for Sumd. We also prove a bias amplification result (Lemma 6.1)
from which an O(

√
d·ct) total variation bound can be derived using Lemma 2.1, where

c < 1 is a parameter that depends on the bias of the labeling and λ. [GV22] obtains
a similar bound, which they derive from their results on permutation branching pro-
grams.
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Remark 6.1. While characters of Zd are formally defined on values in Zd, through-
out this section, we simplify notation by using χ(a) for an arbitrary integer a and
character χ of Zd,to mean χ(a mod d).

6.1 Bias Amplification

We begin our discussion with the Boolean case.

Definition 6.2 (bias over Z2). The bias of a labeling val : [n] → {0, 1} is defined as

bias(val)
def
=
∣∣Ei∈[n](−1)val(i)

∣∣.
The distributions over {0, 1} obtained by sampling a uniformly random element of
[n] and computing its label is bias(val)-biased. However, the distribution obtained
by taking t uniformly random samples from [n] and computing the parity of the
corresponding labels is only bias(val)t-biased. That is, the bias decreases exponentially
with t. To see this, note that∣∣∣∣ E

(i1,...,it)∈[n]t
(−1)

∑t
j=1 val(ij)

∣∣∣∣ =
∣∣∣∣∣

t∏
j=1

E
ij∈[n]

(−1)val(ij)

∣∣∣∣∣ = bias(val)t.

It has been observed in [TS17] that this bias reducing construction can be deran-
domized by taking length-t expander random walks on [n] rather than independent
samples. In this case, it is shown that the bias of the resulting distribution is at most
(bias(val) + λ)⌊t/2⌋, where λ is the expansion parameter of the graph. In [TS17], this
property is called parity sampling, and it follows that expander random walks are
good parity samplers. This observation is a key part of the breakthrough construction
of almost optimal ε-balanced codes [TS17].

In the context of the sum function modulo d, we allow labelings with a larger alphabet
size. It is therefore natural to ask whether the bias amplification phenomenon extends
to Zd where d > 2. Observe that the bias of a labeling val : [n] → {0, 1} is simply
the inner product of the distribution induced by the labeling with the non-trivial
character of Z2. This notion extends naturally to characters of Zd as follows.

Definition 6.3 (bias over Zd). For integers d ≥ 2 and d′ ≥ 2, the bias of a label-

ing val : [n] → Zd′ with respect to a character χ of Zd is defined as biasχ(val)
def
=∣∣Ei∈[n]χ(val(i))

∣∣.
Remark 6.4. Note that this is simply ⟨χ, pval′⟩ where val′(i) = val(i) mod d, and
pval′(a) = |{i ∈ [n] : val′(i) = a}| /n.

The same argument as before shows that for any character χ of Zd, taking t inde-
pendent samples from [n] and outputting the sum of their labels modulo d yields a
distribution on Zd with bias biasχ(val)

t with respect to the character χ. Moreover,
we prove that replacing the independent samples by length t random walk on a λ-
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expander graph obtains a distribution on Zd with bias at most (biasχ(val) + λ)⌊t/2⌋

with respect to the character χ. (In fact, the bound is slightly better, as here it
may be larger than 1). In other words, expander random walks are good character
samplers. This fact has also been independently observed in [JM21].

Lemma 6.1 (Bias Amplification). For integers t ≥ 2, d ≥ 2, and d′ ≥ 2, let G =
(V,E) be a λ-expander, and let val : V → Zd′ be any labeling. Let χ be a character of
Zd. Then

∣∣∣∣∣ E
(v1,...,vt)∼RWt

G

χ

(
t∑

i=1

val(vi)

)∣∣∣∣∣ ≤ ((1− λ)2 · biasχ(val) + 2λ(1− λ) + λ2
)⌊ t

2⌋ , (6.1)

where biasχ(val) =

∣∣∣∣ Ei∈[n]χ(val(i))
∣∣∣∣ is the bias of val with respect to χ.

Proof. Let us denote n = |V | and identify V with [n] arbitrarily. Let P be the n×n di-
agonal matrix diag (χ(val(1)), . . . , χ(val(n))). Expressing the bias linear-algebraically,
one can check that the left-hand side of Equation (6.1) equals

∣∣1T (GP )t1
∣∣.

First we bound ∥GPG∥. Decomposing G = (1− λ)J + λE where ∥E∥ ≤ 1 we have

∥GPG∥ ≤ (1− λ)2 ∥JPJ∥+ (1− λ)λ ∥JPE∥+ λ(1− λ) ∥EPJ∥+ λ2 ∥EPE∥
≤ (1− λ)2 ∥JPJ∥+ 2λ(1− λ) + λ2 = (1− λ)2 · biasχ(val) + 2λ(1− λ) + λ2,

where in the equality we have used that

∥JPJ∥ =
∥∥11tP11t

∥∥ =
∣∣1TP1

∣∣ = ∣∣∣∣∣ 1n
n∑

i=1

χ(val(i))

∣∣∣∣∣ = biasχ(val).

Thus,
∣∣1T (GP )t1

∣∣ ≤ ∥(GP )t∥ ≤ ∥GPG∥⌊
t
2⌋ ≤ ((1− λ)2 · biasχ(val) + 2λ(1− λ) + λ2)⌊

t
2⌋

as desired.

6.2 Bias-independent bound using the flow framework

When the labeling is only slightly biased —such as when the bias is bounded by
some constant— the bias amplification property established in the previous section
implies that the distributions Sumd(val(Ind

t
V )) and Sumd(val(RW

t
G)) are highly unbi-

ased, with bias which is exponentially small in t. Applying the triangle inequality to
the XOR-Lemma (Lemma 2.1), we see that the total variation distance between these
distributions is bounded by the sum of the biases of each distribution with respect to
a worst-case non-trivial character. As such, it is decreasing exponentially fast with
t as well. However, this argument hinges on the assumption that the given labeling
is balanced. If we have, say, biasχ(val) = 1 − 1/t for some non-trivial character χ
of Zd, he bias amplification argument is insufficient for an effective total variation
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bound. This constitutes the primary reason why earlier works such as [CPTS21]
and [CMP+22], which rely heavily on the bias-amplification property, result in total
variation bounds that are bias-dependent.

By the results of Golowich and Vadhan [GV22] for Boolean symmetric functions, we
know that the distributions Sum2(val(RW

t
G)), Sum2(val(Ind

t
V )) are O(λ) close in total

variation distance with an error term that does not depend on the labeling bias. It
is conceivable that a similar phenomenon holds true for d > 2. That is, even when
the distributions Sumd(val(RW

t
G)), Sumd(val(Ind

t
V )) are both highly biased, one may

hope that they are still close in total variation distance, with distance decreasing
with λ. Indeed, in [GV22], Golowich and Vadhan use different techniques to derive
an O(

√
d·λ) total variation bound for width-d permutation branching programs, from

which an O(
√
d · λ) bound for Sumd with no bias dependence is implied.

In this section, we utilize the flow framework to obtain a similar O(
√
d · λ) bias

independent bound, specifically for Sumd. The proof in this case is arguably simpler
than the more general case in [GV22].

Theorem 1.5. For integers t ≥ 1, d′ ≥ 2, and d ≥ 2 let G = (V,E) be a λ-expander
where λ ≤ 1/6. Let val : V → Zd′ be any labeling. Then,

dTV

(
Sumd

(
val(RWt

G)
)
, Sumd

(
val(IndtV )

))
≤ 5

√
d · λ

Proof. First, observe that we may assume t ≥ 2, as for t = 1 the distributions are
identical, and the claim trivially holds. Let LHS be left-hand side of the inequality
in the theorem. Let n = |V | and identify V with [n] arbitrarily. Observe that in
order to obtain a total variation bound, it suffices to bound the maximum bias of the
difference between the two distributions. Indeed, by the XOR-Lemma (Lemma 2.1 )

LHS ≤
√
d

2
·max
χ∈Ẑd

∣∣〈χ, Sumd

(
val(RWt

G)
)
− Sumd

(
val(IndtV )

)〉∣∣
We fix a character χ of Zd that attains the maximum. Let µ = biasχ(val) =∣∣Ei∈[n]χ(val(i))

∣∣ be the bias of the labeling val with respect to χ. We consider two
cases according to the relation between µ and λ. To begin, let us assume that µ ≤ 3λ.
In that case,

LHS ≤
√
d

2

∣∣∣∣∣ E
v=(v1,...,vt)∼RWt

G

χ

(
t∑

i=1

val(vi)

)
− E

v∼IndtV

χ

(
t∑

i=1

val(vi)

)∣∣∣∣∣ (6.2)

≤
√
d ·
(
(1− λ)2 · µ+ 2λ(1− λ) + λ2

)⌊ t
2⌋

≤
√
d ·
(
3(1− λ)2 · λ+ 2λ(1− λ) + λ2

)⌊ t
2⌋ ≤

√
d · (5λ)⌊

t
2⌋ ≤ 5

√
d · λ,

where the second inequality is implied by the triangle inequality and the bias am-
plification property established in the previous subsection. The last inequality holds
under our assumption that t ≥ 2 and λ ≤ 1/6.
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Now, let us assume that µ ≥ 3λ. Instead of applying the triangle inequality on the
second line of Equation 6.2, we express it linear algebraically. We then give entry-wise
bounds for the flow matrices of the involved linear operators. Let P be the n × n
diagonal matrix P = diag(χ(val(1)), . . . , χ(val(n))). We have the following entry-wise

bounds on the flow matrix P̃ :

P̃ ≤e.w

(
µ

√
1− µ2√

1− µ2 1

)
where all entries except for the right bottom are equality. To see this, note that

P̃ [0, 0] = ∥Π0PΠ0∥ = ∥JPJ∥ =
∥∥11TP11T

∥∥ =
∣∣1TP1

∣∣ = µ.

Following the discussion about the norm of rank-one matrices, we see that for b ∈
{0, 1},

∥ΠbPΠ0∥ =
∥∥ΠbP11T

∥∥ = ∥ΠbP1∥ ·
∥∥1T

∥∥ = ∥ΠbP1∥ .

Now, since P is unitary,

P̃ [0, 0]2 + P̃ [1, 0]2 = ∥Π0P1∥2 + ∥Π1P1∥2 = ∥P1∥2 = ∥1∥ = 1

By symmetry we conclude that

P̃ [1, 0] = P̃ [0, 1] =
√

1− µ2.

Finally, we bound P̃ [1, 1] = ∥Π1PΠ1∥ ≤ ∥Π1∥2 ∥P∥ ≤ 1.

By submultiplicativity of the flow operator (Claim 3.1) and Example 3.1, We see that

G̃P ≤e.w A for

A
def
=

(
µ

√
1− µ2

λ
√
1− µ2 λ

)
.

Now, Let us pick up Equation 6.2 after the first inequality. Expressing the bias
linear-algebraically,∣∣∣∣∣ E

v∼RWt
G

χ

(
t∑

i=1

val(vi)

)
− E

v∼IndtV

χ

(
t∑

i=1

val(vi)

)∣∣∣∣∣ = ∣∣1T (PG)t−1P1− 1T (PJ)t−1P1
∣∣

and,∣∣1T (PG)t−1P1− 1T (PJ)t−1P1
∣∣ = ∣∣1T (GP )t1− 1T (JP )t1

∣∣
=
∣∣1T (GP )t1− 1T (Π0GP )t1

∣∣ (Π0G = J)

≤ (G̃P )t[0, 0]− (G̃P [0, 0])t (Lemma 3.4)

≤ At[0, 0]− (A[0, 0])t. (Lemma 3.5)
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Applying Lemma 3.2 we obtain the bound

At[0, 0]− (A[0, 0])t ≤ λµ(1− µ2)

µ− λ

t−2∑
k=0

µk

(
µ+

λ(1− µ2)

µ− λ

)t−k−2

≤ 3

2
· λ(1− µ2)

t−1∑
k=0

µk

(
µ+

1

2
· (1− µ2)

)t−k−1

≤ 3

2
· λ · (1 + µ)(1− µ)

∞∑
k=0

µk

≤ 3 · λ.

where the second inequality holds as our assumption µ ≥ 3λ implies that µ/(µ−λ) ≤
3/2 and λ/(µ−λ) ≤ 1/2. In the third inequality we have used that µ+ 1

2
·(1−µ2) ≤ 1.

Overall, we have dTV

(
Sumd

(
val(RWt

G)
)
, Sumd

(
val(IndtV )

))
< 5

√
d ·λ in all cases, and

the proof is complete.

As a corollary in the case of d = 2, we obtain an alternative, direct proof of a fact
that is also implied by [GV22]: the parity function is O(λ)-fooled by expander random
walks with no dependence on the labeling bias.

Corollary 6.1. For integers t ≥ 1 and n ≥ 1, let G = (V,E) be a λ-expander where
λ ≤ 1/6. Let val : V → {0, 1} be any labeling. Then,

dTV

(
Parity

(
val(RWt

G)
)
,Parity

(
val(IndtV )

))
< 5

√
2 · λ.

7 Bias bound with heaviest label weight

Lemma 7.1. Let d > 1 be an integer and let ω = ωd be a primitive d-th root of unity.
Let α = (α0, . . . , αd−1) be any probability vector such that αmax = maxi αi. Then∣∣∣∣∣

d−1∑
j=0

αjω
j

∣∣∣∣∣ ≤
√
1−

(
1− cos

2π

d

)
(1− αmax).

As a corollary we get Proposition 1.6.

Proof. Let θj = 2πj
d

for j = 0, . . . , d − 1. Writing
∑d−1

j=0 αjω
j =

∑
j αj cos(θj) + i ·
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∑
j αj sin(θj) we find that∣∣∣∣∣

d−1∑
j=0

αjω
j

∣∣∣∣∣
2

=

(∑
j

αj cos(θj)

)2

+

(∑
j

αj sin(θj)

)2

=
∑
j

α2
j cos

2(θj) +
∑
j

∑
ℓ̸=j

αjαℓ cos(θj) cos(θℓ)

+
∑
j

α2
j sin

2(θj) +
∑
j

∑
ℓ̸=j

αjαℓ sin(θj) sin(θℓ)

=
∑
j

α2
j +

∑
j

∑
ℓ̸=j

αjαℓ (cos(θj) cos(θℓ) + sin(θj) sin(θℓ))

= 1−
∑
j

∑
ℓ̸=j

αjαℓ +
∑
j

∑
ℓ̸=j

αjαℓ cos(θj − θℓ)

= 1−
∑
j

∑
ℓ̸=j

αjαℓ

(
1− cos

(
2π

d
(j − ℓ)

))
Now, let M be the d× d matrix such that

Mj,ℓ = 1− cos

(
2π

d
· (ℓ− j)

)
It follows that |z|2 = 1− αTMα.

Note that M has zeros on the diagonal, and all other entries are positive constants
which are at least 1− cos 2π

d
. Thus,

αTMα =

p−1∑
j=0

p−1∑
ℓ=0

αjαℓMjℓ =

p−1∑
j=0

∑
ℓ̸=j

αjαℓMjℓ ≥
(
1− cos

2π

d

) d−1∑
j=0

∑
ℓ̸=j

αjαℓ

=

(
1− cos

2π

d

) d−1∑
j=0

αj (1− αj) ≥
(
1− cos

2π

d

)
(1− αmax)

d−1∑
j=0

αj

=

(
1− cos

2π

d

)
(1− αmax)

Therefore, ∣∣∣∣∣
d−1∑
j=0

αjω
j

∣∣∣∣∣ ≤
√

1−
(
1− cos

2π

d

)
(1− αmax).

Given val : V → Zp for a prime p, we have that biasχ(val) is a convex combination of
roots of unity with heaviest coefficient ρmax. As a corollary we obtain Proposition 1.6
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