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Abstract

Consider the model where we can access a parity function through random uniform labeled
examples in the presence of random classification noise. In this paper, we show that approxi-
mating the number of relevant variables in the parity function is as hard as properly learning
parities.

More specifically, let γ : R+ → R+, where γ(x) ≥ x, be any strictly increasing func-
tion. In our first result, we show that from any polynomial-time algorithm that returns a
γ-approximation, D (i.e., γ−1(d(f)) ≤ D ≤ γ(d(f))), of the number of relevant variables d(f)
for any parity f , we can, in polynomial time, construct a solution to the long-standing open
problem of polynomial-time learning k(n)-sparse parities (parities with k(n) ≤ n relevant vari-
ables), where k(n) = ωn(1).

In our second result, we show that from any T (n)-time algorithm that, for any parity f ,
returns a γ-approximation of the number of relevant variables d(f) of f , we can, in polynomial
time, construct a poly(Γ(n))T (Γ(n)2)-time algorithm that properly learns parities, where Γ(x) =
γ(γ(x)).

If T (Γ(n)2) = exp(o(n/ log n)), this would resolve another long-standing open problem of
properly learning parities in the presence of random classification noise in time exp(o(n/ log n)).
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1 Introduction

The problem of PAC learning parity, with and without noise, and approximating its sparsity has
been extensively studied in the literature. See [2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 35] and references therein.

In properly learning parities under the uniform distribution, the learner can observe labeled
examples {(ai, bi)}i, where bi = f(ai), ai are drawn independently from the uniform distribution,
and f is the target parity. The goal is to return the target parity function f exactly.

In the random classification noise model with noise rate η, [1], each label bi is independently
flipped (misclassified) with probability η. The problem of learning parities with noise (LPN) is
known to be computationally challenging. Some evidence of its hardness comes from the fact that
it cannot be learned efficiently in the so-called statistical query (SQ) model [27] under the uniform
distribution [9, 12]. LPN serves as the foundation for several cryptographic constructions, largely
because its hardness in the presence of noise is assumed. See for example [10, 31].

While PAC learning of parities (and thus determining its sparsity) under the uniform distribu-
tion can be accomplished in polynomial time using Gaussian elimination, addressing this problem
in the presence of random classification noise remains one of the most long-standing challenges in
learning theory. The only known algorithm is that of Blum et al.[11], which runs in time 2O(n/ logn),
requires 2O(n/ logn) labeled examples, and handles only a constant noise rate. This algorithm holds
the record as the best-known solution for this problem. Finding a 2o(n/ logn)-time learning algorithm
for parities or proving the impossibility of such an algorithm remains a significant and unresolved
challenge.

When the number of relevant variables1 k of the parity function f is known (f is called k-sparse
parity), all the algorithms proposed in the literature run in time nck for some constant c < 1,
[5, 7, 22, 33, 36]. Finding a polynomial-time algorithm for k-sparse parities for some k = ω(1), or
proving the impossibility of such an algorithm, is another significant and unresolved challenge.

In a related vein, another challenging problem is determining or approximating the sparsity of
the parity function, i.e., the number of relevant variables in the target function. This problem was
studied in the PAC-learning model [34] under specific2 distributions [2, 3, 4, 7, 16, 17, 18, 19, 20,
30, 35].

For the problem of determining the sparsity under any distribution and without noise, Downey
et al. [18] and Bhattacharyya et al. [4] show that determining the sparsity k of parities isW [1]-hard.
Bhattacharyya et al. [7] show that the time complexity is min(2Θ(n), nΘ(k)), assuming 3-SAT has
no 2o(n)-time algorithm. For the problem of approximating the sparsity, Dumer et al. [19] showed
that if RP̸=NP, then it is hard to approximate the sparsity within some constant factor γ > 1. See
also [2, 16, 17, 30]. When the distribution is uniform, there is a polynomial-time algorithm that
uses O(n) labeled examples and learns parities using Gaussian elimination, thereby determining
their sparsity.

In this paper, we pose the question: Can we approximate the sparsity of the parity function in
polynomial time using random uniform labeled examples in the presence of random classification
noise? We show that approximating the number of relevant variables in the parity function is as
hard as properly learning parities.

1A variable is relevant in f if f depends on that variable.
2Some of the problems are introduced as follows: Given a matrix M ∈ Fm×n

2 , a vector b ∈ {0, 1}m, and an integer
k. Deciding if there exists a weight k vector x ∈ {0, 1}n such that Mx = b. This is equivalent to the decision problem
when the distribution is uniform over the rows of M .
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We first show the following.

Theorem 1. Let γ : R+ → R+ be any strictly increasing function, where γ(x) ≥ x. Consider
a polynomial-time algorithm that, for any parity f , uses random uniform labeled examples of f
in the presence of random classification noise and returns an integer D such that3 γ−1(d(f)) ≤
D ≤ γ(d(f)), where d(f) is the number of relevant variables in f . One can, in polynomial time,
construct an algorithm that runs in polynomial time, uses random uniform labeled examples in the
presence of random classification noise, and learns k(n)-sparse parities for some4 k(n) = ωn(1).

This would solve the long-standing open problem of polynomial-time learning k-sparse parities
for some k = ωn(1).

We then show that

Theorem 2. From any T (n)-time algorithm that, for any parity f : {0, 1}n → {0, 1}, uses Q(n)
random uniform labeled examples of f in the presence of random classification noise and returns
a γ-approximation of the number of relevant variables d(f) of f , one can, in polynomial time,
construct a poly(Γ(n))T (Γ(n)2)-time algorithm that uses poly(Γ(n))Q(Γ(n)2) random uniform la-
beled examples in the presence of random classification noise and properly learns parities, where
Γ(x) = γ(γ(x)).

If T (Γ(n)2) = exp(o(n/ log n)), this would resolve another long-standing open problem of proper
learning parities in the presence of random classification noise in time exp(o(n/ log n)). This is
applicable, for example, for any poly(·)-approximation and exp(n1/c)-time algorithm for some suf-
ficiently large constant c. As well as to quasi-poly(·)-approximation and exp(exp((log n)1/c))-time
algorithm for some sufficiently large constant c.

In this paper, while the above discussions and the technique section have been primarily focused
on parities, that is, linear functions over the binary field F2, the results we present in this paper
are not limited to this specific case. We generalize our result to encompass any linear function
over any finite field. This extension allows our results to be applicable to a broader range of linear
systems beyond the binary paradigm, effectively widening their relevance in coding theory and
cryptography.

1.1 Our Technique

In this section, we present the technique used in the paper to prove the results in Theorem 1 and 2.
For learning in the presence of random classification noise, when the noise rate η = 1/2, the

labels will be randomly uniform, and learning is impossible. Therefore, we must assume that the
learner knows some upper bound ηb < 1/2 for η [1].

1.2 Approximation Implies Learning k-Sparse Parities

In this section, we present two approaches that prove Theorem 1. The first is our method, and the
second was suggested by an anonymous reviewer of RANDOM.

3See Section 1.4 for the justification of why we use this definition and not the standard definition d(f) ≤ D ≤
γ(d(f)).

4Throughout this paper, we also have k = n − ω(1). For k = O(1) and k = n − O(1), there are polynomial-time
learning algorithms.
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While the approach suggested by the anonymous reviewer is truly inspiring, we believe that our
method offers significant value, is worth presenting in this paper, and may be useful for solving
other problems.

1.2.1 First Approach

In this section, we will outline the technique for the binary field, though some essential details are
omitted to provide a broader overview of the main concepts and approach. Additionally, proving
the result for any field requires more careful treatment.

Let γ : R+ → R+ be any strictly increasing function such that for every5 x > 1, γ(x) > x.
Let A be a polynomial-time randomized algorithm that γ-approximates the number of relevant

variables d(f) in a parity f , using random uniform labeled examples of f in the presence of random
classification noise with any noise rate6 η ≤ ηb. Thus, for every parity f with d(f) relevant variables,
with probability at least 1 − δ we have γ−1(d(f)) ≤ A(f) ≤ γ(d(f)). We will demonstrate how
to construct a polynomial-time learning algorithm for k(n)-sparse parities, for some k(n) = ωn(1).
First, we will show how to find k(n).

Let Lin(d) be the class of d-sparse parities. Assume for now that the noise rate is ηb. Later, we
will show how to modify the algorithm to work for any unknown noise rate η ≤ ηb.

We first use the algorithm A to construct a table that provides values which approximate

ΨA(d) = E
(f,s)∼uLin(d)×S(f)

[A(f)]

with additive error of 1/poly(n), for every d ∈ [n] and noise rate ηb. Here f is a d-sparse parity
chosen uniformly at random from Lin(d), and s is a uniformly random string in S(f) - the set of
random bits used by the algorithm (for the randomness of the algorithm and the noise) for which
the algorithm returns a correct answer, namely, returns D such that γ−1(d) ≤ D ≤ γ(d).

To approximate ΨA(d) for some d ∈ [n], we iterate a polynomial number of times. At each
iteration, we draw a random uniform f ∈ Lin(d) and run A. For each labeled example requested
by A, we draw a random uniform u ∈ {0, 1}n and compute v = f(u). We then, with probability
ηb, return

7 (u, v + 1) to A, and, with probability 1 − ηb, return (u, v). If the algorithm outputs
an integer D such that γ−1(d) ≤ D ≤ γ(d), we retain that D. Otherwise, we repeat the process.
Obviously, E[D] = ΨA(d), and therefore, using Hoeffding’s bound, such a table can be constructed
in polynomial time.

Now, using the fact that γ is strictly increasing and γ−1(d) ≤ ΨA(d) ≤ γ(d), and applying a
basic averaging argument, we show that there exists a k := k(n) = ωn(1) for which ΨA(k + 1) −
ΨA(k − 1) ≥ 1/poly(n). We now show how to learn k-sparse parities with noise rate ηb in polynomial
time and afterward for any η ≤ ηb.

Suppose that the target function f ∈ Lin(k) can be accessed through random uniform labeled
examples in the presence of random classification noise with noise rate ηb. We first show how
to approximate ΨA(d(f(x) + xi)) for any i ∈ [n] without knowing f . Recall that d(f(x) + xi)
is the number of relevant variables in f(x) + xi. The key idea here is that if (a, b) is a labeled
example of f , then for a random uniform permutation ϕ, ((aϕ−1(1), . . . , aϕ−1(n)), b+ ai) is a labeled
example of the function f(xϕ(1), . . . , xϕ(n)) + xϕ(i) which is a random and uniform drawn function

5We need this constraint to ensure that γ−1(x) < γ(x) for every x > 1.
6Here, η is not known to the algorithm, but ηb is known.
7Here, + is exclusive or.
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in Lin(d(f(x) + xi)). Therefore, using Hoeffding’s Bound, we can approximate ΨA(d(f(x) + xi))
for every i ∈ [n].

Now, xi is relevant in f(x) if and only if f(x) + xi ∈ Lin(k − 1) and then ΨA(d(f(x) + xi)) =
ΨA(k− 1). On the other hand, xi is not relevant in f(x) if and only if f(x) + xi ∈ Lin(k+ 1), and
then ΨA(d(f(x)+xi)) = ΨA(k+1). Since ΨA(k + 1)−ΨA(k − 1) ≥ 1/poly(n), these two cases are
distinguishable in polynomial time. Consequently, we can differentiate between variables in f that
are relevant and those that are not. This gives the learning algorithm to Lin(k) when the noise
rate is ηb.

This algorithm runs in time T = poly(n, 1/(1 − 2ηb)). When η is not known, we can run the
above procedure for all possible values η(j) = 1/2 − j/T c, where c is a sufficiently large constant,
and j ∈ [T c/2]∪{1}. For each j, when the algorithm receives a labeled example (u, v), we magnify
the error rate to ηb by drawing ξ ∈ {0, 1}, which is equal to 1 with probability (ηb−η(j))/(1−2η(j)),
and returning (u, v + ξ) to the algorithm. This new labeled example has noise rate ηb. We collect
all the T c/2 + 1 hypotheses generated from the outputs and then employ a standard algorithm
to select the one closest to the target [1]. The result follows because there exists a j such that8

|η(j) − η| ≤ 1/T c. Consequently, using the total variation distance, one of the hypotheses is the
target.

In this paper, we extend our result to any linear function over any finite field F. The approach
used is similar to the case of parities (the binary field F = {0, 1}) with some technical but nontrivial
modifications.

1.2.2 The Second Approach

This second approach was suggested by an anonymous reviewer of RANDOM, whose insightful
comments and suggestions significantly improved this manuscript for the case of the binary field.
For non-binary fields, this approach can identify the relevant variables of the function. We then use
the approach developed in Lemma 6 and Lemma 7 to find the coefficients of the relevant variables.

Suppose there exists a randomized algorithm A(n) that runs in time T (n) and γ-approximates
the number of relevant variables in a parity function f : {0, 1}n → {0, 1}, using random uniform
labeled examples of f in the presence of random classification noise with a noise rate η ≤ ηb. Here,
too, the algorithm needs to know an upper bound on η. We will explain the reasons for this below.

Let k1 = ωn(1) be an integer such that k2 = γ(γ(k1) + 1) = n − ωn(1). For any k1-sparse
parity f , the algorithm outputs A(f) ∈ [γ−1(k1), γ(k1)], and for any k2-sparse parity function g,
it outputs A(g) ∈ [γ(k1) + 1, γ(γ(γ(k1) + 1))]. Since the two intervals are disjoint, the algorithm
can distinguish between k1-sparse parities and k2-sparse parities in polynomial time. Let B be the
polynomial-time algorithm that distinguishes between them.

Consider the algorithm B when it runs on random uniform examples with random uniform
labels. Suppose that with probability p, the algorithm answers that the function is a k1-sparse
parity, and with probability 1 − p, it answers that it is a k2-sparse parity. If p > 1/2, then with
probability at least 1/2, B can distinguish between k2-sparse parities and random uniform examples
with random uniform labels. Otherwise, with probability at least 1/2, B can distinguish between
k1-sparse parities and random uniform examples with random uniform labels.

Suppose, without loss of generality, the latter holds. We now give an algorithm that finds
the relevant variables when the target function is a k1-parity function and, consequently, learns

8If ηj = η + ϵ then the magnified noise is ηb + λϵ where λ = (η + ηb − 1 + ϵ)/(1− 2(η + ϵ)).
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k1-sparse parities. This algorithm is from [10].
For every i ∈ [n], we run the algorithm B and change the i-th coordinate of each example to a

random uniform element in {0, 1}. If xi is not a relevant variable of f , then the labeled examples
are labeled examples of f , and the algorithm answers that it is a k1-parity function. If xi is a
relevant variable of f , then it is easy to see that the new labeled examples are random uniform
with random uniform labels, and the algorithm answers accordingly. This distinguishes between
variables in f from those that are not in f .

In this method, too, we must know some upper bound on η. Otherwise, algorithms A and B
would need to be Las Vegas algorithms, and we would not know when to stop the algorithm when
dealing with random uniform examples with random uniform labels.

For the problem of finding the relevant variables of the target in other fields, the generalization
of this to any field is straightforward.

1.3 Approximation Implies Learning Parities

In this section, we show how γ-approximation implies proper learning parities.
Let γ(x) be any strictly increasing function. Suppose there exists a randomized algorithm

A(n) that runs in time T (n) and γ-approximates the number of relevant variables in a parity
f : {0, 1}n → {0, 1}, using random uniform labeled examples of f in the presence of random
classification noise.

Let Γ(x) = γ(γ(x)). As in Section 1.2.1, using a basic averaging argument, we show that there
exists a sequence of integers k1 < k2 < · · · < kt < Γ−1(n), where for each i, ki+1 < Γ(ki) and
ΨA(ki + 1)−ΨA(ki − 1) > 1/poly(n). As before, we obtain algorithms that learn Lin(ki) for each
i.

Now, we show how to obtain a learning algorithm for d-sparse parities for every d < Γ−1(
√
n).

Given any d < Γ−1(
√
n)), there exists a j such that kj−1 < d ≤ kj where k0 = 0. To learn

d-sparse parities, we uniformly at random choose distinct i1, . . . , ikj−d ∈ [n], run the algorithm for
learning kj-sparse parities and modify each labeled example (a, b) to (a, b + ai1 + · · · + aikj−d

). If

g(x) = f(x) + xi1 + · · ·+ xikj−d
is in Lin(kj), then the algorithm w.h.p learns g(x). We then show

that because d < Γ−1(
√
n)), with high probability, the variables xi1 , . . . , xikj−d

are not relevant

variables in f . We can then conclude that, w.h.p, g ∈ Lin(kj). Therefore, w.h.p., we can learn
g(x), and consequently, we can learn f(x) = g(x) + xi1 + · · ·+ xikj−d

.

This provides a learning algorithm for d-sparse parities for any d ≤ Γ−1(
√
n). Recognizing that

this applies to every n, we can regard f as a function over N := Γ(n)2 variables by adding Γ(n)2−n
dummy variables and appending Γ(n)2 − n random uniform elements from {0, 1} to each a in the
labeled example (a, b). By applying this construction to the algorithm A(N), we obtain a learning
algorithm for d-sparse parity for any d ≤ Γ−1(

√
N) = n.

Now, the algorithm for learning parities can run all the learning algorithms for d-sparse parities
for all d ≤ n. It takes all the outputs and then employs a standard algorithm to select the one
closest to the target [1]. See also Lemma 1.
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1.4 Justification for the Use of the γ-Approximation Definition

In our approach, we define a γ-approximation of the number of relevant variables d(f) in a parity
function f such that γ−1(d(f)) ≤ D ≤ γ(d(f)), instead of using the standard definition d(f) ≤
D ≤ γ(d(f)).

The key reason for this choice is that the latter definition loses its effectiveness when d(f)
approaches n, the number of variables. Specifically, if d(f) is close to n, say O(n), the condition
d(f) ≤ D ≤ γ(d(f)), for γ(n) = ω(n), effectively reduces to d(f) ≤ D ≤ n. In this scenario, the
value of γ becomes less significant because the approximation D would naturally fall within the
trivial range of d(f) = O(n) to n.

On the other hand, our chosen definition γ−1(d(f)) ≤ D ≤ γ(d(f)) ensures that the approx-
imation D always depends on the function γ. This definition retains its utility even when d(f)
is large, as γ−1(d(f)) provides a lower bound that is influenced by γ, thereby maintaining the
approximation’s relevance and precision.

Thus, by using the γ-approximation definition γ−1(d(f)) ≤ D ≤ γ(d(f)), we ensure a meaning-
ful and consistent approximation of the number of relevant variables d(f) across the entire range
of possible values, preserving the value and impact of the function γ.

2 Definitions and Preliminaries

Let F be any finite field and Fq be the field with q elements. We define Lin(F) as the class of all
linear functions over the field F, i.e., functions a · x where a ∈ Fn and x = (x1, . . . , xn). A d-sparse
linear function over F is a function in Lin(F) with d relevant variables. The class Lin(F, d) is the
class of all d-sparse linear functions over F. When F is the binary field F2 = {0, 1}, the functions
in Lin(F2) are called parity functions, and the functions in Lin(F2, d) are called d-sparse parities.
We use the notation Linn(F) and Linn(F, d) to emphasize the number of variables.

For f ∈ Lin(F), we denote by d(f) the number of variables on which f depends. For a strictly
increasing function γ : R+ → R+ such that γ(x) > x for every x, we say that an algorithm A
γ-approximates d(f) in time T = T (n) and Q = Q(n) labeled examples if the algorithm runs in
time T , uses Q labeled examples to f , and with probability at least 2/3, returns an integer D such
that γ−1(d(f)) ≤ D ≤ γ(d(f)).

In proper learning Lin(F) under the uniform distribution, the learner can observe labeled ex-
amples (a, b) where b = f(a) and a ∈ Fn are drawn independently and uniformly distributed over
Fn, with f ∈ Lin(F) being the target linear function. The goal is to (properly) exactly return the
linear function f . In the random classification noise model with noise rate η, each label b is equal
to f(a) with probability 1− η and is a random uniform element in F\{f(a)} with probability η.

When η = 1− 1/|F|, the label is a random uniform element of F; hence, learning is impossible.
Therefore, we must assume that the learner knows some upper bound ηb < 1−1/|F| for η [1]. When
η = ηb, to distinguish between labeled examples with random uniform labels and the function
f(x) = 0, we need at least 1/(1 − ηb − 1/|F|) labeled examples. Therefore, a polynomial-time
algorithm in this model is an algorithm that runs in time poly(1/(1− ηb − 1/|F|)), n, 1/δ) [1].

The following Lemma shows how to learn when the algorithm has unlimited computational
power.
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Lemma 1. Let C ⊆ Lin(F). Then C is learnable under the uniform distribution in the random
classification noise model in time Õ(|C| log(1/δ)/(1− ηb − 1/|F|)2) from

Q =
log |C|

δ

(1− ηb − 1/|F|)2

labeled examples.

Proof. Let (a, b) be a labeled example and f be the target function. Then

Pr[f(a) = b] = ηPr[f(a) = b|b ̸= f(a)] + (1− η) Pr[f(a) = b|b = f(a)] = 1− η ≥ 1− ηb.

If g ̸= f and g ∈ Lin(F) then

Pr[g(a) = b] = ηPr[g(a) = b|b ̸= f(a)] + (1− η) Pr[g(a) = b|b = f(a)] =
1

|F|
.

The result now follows by applying Chernoff’s bound to estimate Pr[g(a) = b] for all g ∈ C with
confidence of 1− δ/|C| and an additive error of (1− ηb − 1/|F|)/4.

The following lemma shows that, in approximation algorithms, the dependency on δ is loga-
rithmic. This is a well-known result. For completeness, a sketch of the proof is provided.

Lemma 2. If there exists an algorithm A that runs in time T (n), uses Q(n) labeled examples to
f ∈ Lin(F, d) according to the uniform distribution in the presence of random classification noise
and, with probability at least 2/3, returns a γ-approximation of d(f), then there is an algorithm that
runs in time O(T (n) log(1/δ)), uses O(Q(n) log(1/δ)) labeled examples to f ∈ Lin(F, d) according
to the uniform distribution in the presence of random classification noise, and with probability at
least 1− δ, returns a γ-approximation of d(f).

Proof. We run A, O(log(1/δ)) times and take the median of the outputs. The correctness of this
algorithm follows from an application of Chernoff’s bound.

The same is true for learning.

Lemma 3. If there exists an algorithm A that runs in time T (n), uses Q(n) labeled examples to
f ∈ Lin(F, d) according to the uniform distribution in the presence of random classification noise
and, with probability at least 2/3, properly learns the target f , then there is an algorithm that runs
in time O(T (n) log(1/δ)), uses O(Q(n) log(1/δ)) labeled examples to f ∈ Lin(F, d) according to the
uniform distribution in the presence of random classification noise, and with probability at least
1− δ, learns the target f .

Proof. SinceA properly learns f , we run the algorithm O(log(1/δ)) times and output the hypothesis
that occurs most frequently in the output.
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3 Approximation vs. Learning

In this section, we prove the two results.

3.1 Approximation Implies Learning Some Lin(F, k)

In this section, we prove that approximating the number of relevant variables in the parity function
implies polynomial-time properly learning Lin(F, k(n)) for some k(n) = ωn(1).

We prove.

Theorem 3. Let γ : R+ → R+ be any strictly increasing function where γ(x) > x for every x.
Let π(n) be any function such that π(n) = ωn(1). Consider any polynomial-time algorithm A′(n)
that, for any linear function f ∈ Lin(F), uses random uniform labeled examples of f in the pres-
ence of random classification noise and, with probability at least 2/3, returns a γ-approximation of
the number of relevant variables d(f) of f . From A′(n), one can, in polynomial time, construct a
poly(n, 1/(1− ηb − 1/|F|),min(|F|, 1/(1− ηb)

π(n)))-time algorithm that properly learns Lin(F, k(n))
from a polynomial number of random uniform labeled examples in the presence of random classifi-
cation noise for some k(n) = ωn(1).

We will assume for now that the noise rate η = ηb is known. In Section 1.2.1, we showed how
to handle unknown noise rates η ≤ ηb. Recall that a polynomial-time algorithm in this model is
an algorithm that runs in time poly(1/(1 − ηb − 1/|F|)), n, 1/δ), [1]. In particular, the algorithm
constructed in Theorem 3 runs in polynomial time for either

• Any ηb and fields of size9 |F| = poly(n), or

• Any field F when ηb ≤ 1− 1/|F| − 1/ψ(n), where ψ(n) = 2o(log(n)).

Let A′(n, s, f) be any algorithm that uses random uniform labeled examples of f ∈ Linn(F)
in the presence of random classification noise and, with probability at least 2/3, returns a γ-
approximation of the number of relevant variables, d(f), of f . The new parameter s is added for
the random bits used in the algorithm for its coin flips and the noise. First, we will use Lemma 2
to make the algorithm’s success probability 1− δ′ for a fixed, sufficient small δ′ that depends on n
and |F|. For the proof of the Theorem in this section, δ′ = 1/(|F|n7) suffices. By Lemma 2, this
adds a factor of O(log n + log |F|) to the time and the number of labeled examples which will be
swallowed by the Õ(·) in the final time and sample complexity. Second, we will modify the output
of the algorithm to min(γ(Df ), n), where Df is the output of the latter algorithm. Let the resulting
algorithm be denoted as A. We will denote the algorithm’s output by A(n, s, f). Consequently, we
will have that, with probability at least 1− δ′,

d(f) ≤ A(n, s, f) ≤ ∆(d(f)) ≤ n (1)

where
∆(x) = min(γ(γ(x)), n).

Let Sf be the set of all random strings s′ for which d(f) ≤ A(n, s′, f) ≤ ∆(d(f)); that is, it
includes all the random strings that yield correct answers. Throughout this section and the next,

9This makes sense when we have a sequence of fields Fi such that Fi ⊆ Fi+1 and |Fn| = poly(n).
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we say that A ∆-approximates d(f). See (1). This should not be confused with the previous
definition of γ-approximates d(f). Here, we use the capital letter ∆ to prevent any ambiguity.

Let
ΨA(d) = E

(f,s)∼uLin(F,d)×S(f)
[A(n, s, f)]

where ∼u indicates that f is chosen uniformly at random from Lin(F, d) and s uniformly at random
from S(f). Since d ≤ A(n, s, f) ≤ ∆(d) ≤ n for s ∈ S(f) where f ∈ Lin(F, d), we have

d ≤ ΨA(d) ≤ ∆(d) ≤ n. (2)

We note here that ΨA(d) is independent of δ, as in A, we set δ = δ′ for a fixed δ′. This is crucial
for ensuring the correctness of the proof. Also, ΨA(d) depends on n. This will be essential only for
the next result in the next section.

We first prove that the values of ΨA(d) for d ∈ [n] can be approximated with high probability.

Lemma 4. Let 0 < h < 1. Let A be an algorithm that runs in time T (n), uses Q(n) labeled examples
of f ∈ Lin(F) according to the uniform distribution in the presence of random classification noise,
and, with probability at least 1−δ′, ∆-approximates d(f). A table of real values Ψ′

A(d) for 1 ≤ d ≤ n
can be constructed in time Õ(n3/h2)T (n) log(1/δ), and without using any labeled examples. This
table, with probability at least 1− δ, satisfies |Ψ′

A(d)−ΨA(d)| ≤ h for all d ∈ [n].

Proof. Define a random variable as the output D of the algorithm A, obtained from running it on a
uniformly random f from Lin(F, d), provided that the output lies within the interval [d,∆(d)]. The
labeled examples of f can be generated by choosing a random uniform u ∈ {0, 1}n and returning
(u, f(u) + e) to A where, with probability 1 − ηb, e = 0 and, with probability ηb, e is random
uniform in F\{0}. Obviously, E[D] = ΨA(d).

By Hoeffding’s bound, to compute E[D] with an additive error h and a confidence probability
of at least 1 − δ/(2n), we need to obtain t = O((n2/h2) log(n/δ)) values of D. Since the success
probability of obtaining a value of D in the interval [d,∆(d)] is 1 − δ′ > 2/3, we need to run the
algorithm O(t+ log(2n/δ)) times to acquire t values with a success probability at least 1− δ/(2n).
Therefore, the time complexity is O((t+log(2n/δ))nT (n)) = O(tnT (n)) = Õ(n3/h2)T (n) log(1/δ).

Our next result shows how to estimate ΨA(d(f)) of the target f without knowing d(f).

Lemma 5. Let 0 < h < 1 and τ = O((n2/h2) log(1/δ)). Let A be an algorithm that runs in
time T (n), uses Q(n) labeled examples of f ∈ Lin(F) according to the uniform distribution, in the
presence of random classification noise, and, with probability at least 1− δ′, ∆-approximates d(f).
There is an algorithm B(n, h) that runs in time T ′ = τT (n), uses Q′ = τQ(n) labeled examples
of f ∈ Lin(F) according to the uniform distribution in the presence of random classification noise
and, with probability at least 1− δ/2− τδ′, returns ψ that satisfies |ψ −ΨA(d(f))| ≤ h.

Proof. Suppose v ∈ (F\{0})n is chosen uniformly at random and ϕ : [n] → [n] is a uniformly
random permutation. If we run A with the target f = λ1xi1 + · · · + λdxid , and for every labeled
example (a, b) ∈ Fn × F, we modify the labeled example to ((v−1

1 aϕ−1(1), . . . , v
−1
n aϕ−1(n)), b), then

the new labeled examples remain uniform and consistent with the function g(x) = λ1vϕ(i1)xϕ(i1) +
· · ·+λdvϕ(id)xϕ(id). This function g is a uniformly random element of Lin(F, d). Using this fact, we
show how to approximate ΨA(d).
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To this end, let τ = O((n2/h2) log(1/δ)). We iterate τ times, and at each iteration, we choose
a random uniform v ∈ (F\{0})n and random uniform permutation ϕ : [n] → [n]. We request for
Q(n) labeled examples and modify each labeled example (a, b) ∈ Fn × F to ((v−1

1 aϕ−1(1), . . . , v
−1
n

aϕ−1(n)), b). We then run A on these labeled examples. Let Di be the output of the i-th iteration.
We then output ψ′ = (

∑τ
i=1Di) /τ.

We now prove that, with probability at least 1 − δ/2 − τδ′, we have |ψ′ − ΨA(d(f))| ≤ h.
Since A(n) runs τ times, with probability at least 1 − τδ′, all the seeds used by A are in S(f)
and d(f) ≤ Di ≤ ∆(d(f)). Also, since A(n) runs on a uniformly random function in Lin(F, d), we
have E[Di] = ΨA(d). By Hoeffding’s bound, along with the fact that Di ≤ ∆(d(f)) ≤ n, we can
conclude that, with probability at least 1− δ/2, we have |ψ′ −ΨA(d(f))| ≤ h.

Notice that in Lemma 5, τ also depends on h. As h eventually will be O(1/n) and δ′ = 1/(|F|n7),
the success probability 1− δ/2− τδ′ will be 1− on(1) for δ = 1/n.

We now show that in any large enough sub-interval of [0, n], there is k for which A can be used
to learn Lin(F, k).

Lemma 6. Let A(n) be an algorithm that runs in time T (n), uses Q(n) labeled examples of f ∈
Lin(F) according to the uniform distribution in the presence of random classification noise, and, with
probability at least 1−δ′, ∆-approximates d(f). For every 1 ≤ m ≤ min{j|∆(j) = n} = γ−1(γ−1(n))
there exists m ≤ k ≤ ∆(m) + 1 and

1. An algorithm that, for every f ∈ Lin(F, k), with probability at least 1−δ/8−2τnδ′, where τ =
O(n4 log(1/δ)), identifies the relevant variables of f from random uniform labeled examples in
the presence of random classification noise. This algorithm runs in time Õ(n5)T (n) log(1/δ)
and uses Õ(n4)Q(n) log(1/δ) labeled examples.

2. An algorithm that, with probability at least 1− δ/2− |F|knδ′, properly learns Lin(F, k), from
random uniform labeled examples in the presence of random classification noise. This algo-
rithm runs in time Õ(|F|kn5)T (n) log(1/δ) and uses Õ(n4)Q(n) log(|F|/δ) labeled examples.

Such k can be found in time Õ(n5)T (n) log(1/δ).

Proof. We first prove the result when the field is not the binary field. Let m be any integer such
that 1 ≤ m ≤ min{j|∆(j) = n}. Since by (2),

∆(m)∑
i=m

ΨA(i+ 1)−ΨA(i) = ΨA (∆(m) + 1)−ΨA (m)

≥ ∆(m) + 1−∆(m) = 1,

there is k such that m ≤ k ≤ ∆(m) and

ΨA(k + 1)−ΨA(k) ≥
1

∆(m)−m+ 1
≥ 1

n
.

First, we find such k. By Lemma 4, taking h = 1/(16n), with probability at least 1 − δ/4, we
can find k such that ΨA(k + 1)−ΨA(k) ≥ 7/(8n) in time Õ(n5)T (n) log(1/δ).

We now present an algorithm that learns Lin(F, k). The algorithm uses the algorithm in
Lemma 5 to approximate ΨA(d(f + xi)) and ΨA(d(f + αxi)) for some α ∈ F\{0, 1} and all i ∈ [n]
with an additive error of 1/(8n). If xi is not a relevant variable of the target function f , then
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both f + xi and f + αxi are in Lin(F, k + 1). Consequently, we obtain two values in the inteval
[ΨA(k+1)−1/(8n),ΨA(k+1)+1/(8n)]. If xi is a relevant variable in the function, then one of the
functions, either f + xi or f + αxi is in Lin(F, k), and therefore, one of the values is in the inteval
[ΨA(k) − 1/(8n),ΨA(k) + 1/(8n)]. Since ΨA(k) + 1/(8n) < ΨA(k + 1) − 1/(8n), the intervals are
disjoint, and thus we can distinguish between the two cases.

By Lemma 5, with probability 1 − δ/2 − τδ′, we can approximate each ΨA(d(f + xi)) (or
ΨA(d(f + αxi))) with an additive error h = 1/(8n) in time τT (n) and τQ(n) labeled examples,
where τ = O(n4 log(1/δ)). Taking δ/(8n) for δ, with probability 1−δ/8−2τnδ′, we can approximate
all ΨA(d(f + xi)) and ΨA(d(f + αxi)), i ∈ [n] with an additive error h = 1/(8n) in time τ ′nT (n)
and τ ′Q(n) labeled examples where τ ′ = O(n4 log(n/δ)). This completes the proof of item 1 for
the case where the field is not the binary field.

To prove item 2, suppose, without loss of generality, that x1, . . . , xk are the relevant variables
in f . We approximate ψα,i := ΨA(d(f −αxi+xk+1)) for all α ∈ F and for every i ∈ [n]. The result
follows from the fact that ψα,i = ΨA(k) if and only if the coefficient of xi is α. Otherwise, ψα,i =
ΨA(k+1). By Lemma 5, to approximate all ψα,i, with success probability of 1− δ/4− |F|knδ′, we
need time O(|F|kn5T (n) log(|F|n/δ)) and O(n4T (n) log(|F|n/δ)) labeled examples. This completes
the proof of item 2 for the case where the field is not the binary field.

Similar to the approach described above, for the binary field, we can show that there exists
a k such that ΨA(k + 1) − ΨA(k − 1) ≥ 1/n. Then, use the algorithm described in Lemma 5 to
approximate ΨA(d(f + xi)) for all i ∈ [n]. If xi is not a relevant variable of the target function f ,
then ΨA(d(f + xi)) ∈ [ΨA(k + 1) − 1/(8n),ΨA(k + 1) + 1/(8n)]. If xi is a relevant variable in f ,
then ΨA(d(f + xi)) ∈ [ΨA(k − 1)− 1/(8n),ΨA(k − 1) + 1/(8n)]. Since both intervals are disjoint,
we obtain the desired result.10

Notice that in item 2, the success probability 1−δ/2−|F|knδ′, and the time complexity depends
on |F|. We now present an alternative algorithm for finding the coefficients of the linear function,
given that the algorithm knows the relevant variables.

Lemma 7. Let A be an algorithm that, for every f ∈ Lin(F, k), runs in time T , uses Q random
uniform labeled examples in the presence of random classification noise, and identifies the relevant
variables of f . Then there is an algorithm that properly learns Lin(F, k) in time T + Õ((n3/(1 −
ηb)

k + n/(1− ηb − 1/|F|)2) log(1/δ)) and uses Q+O(((1/(1− ηb)
k + n/(1− ηb − 1/|F|)2) log(1/δ))

random uniform labeled examples in the presence of random classification noise.

Proof. We run A to find the relevant variables. The algorithm that finds the coefficients iterates
O((1/(1−ηb)k) log(1/δ)) times. At each iteration, it requests k labeled examples and uses Gaussian
elimination to find the coefficients. Then, it tests whether the output function matches the target.
If not, it proceeds to the next iteration.

Since η = ηb, the probability that all the labeled examples are correct is (1 − ηb)
k. If |F| = q,

the probability that k random entries in the examples form a non-singular matrix is(
1− 1

qk

)(
1− 1

qk−1

)
· · ·

(
1− 1

q

)
≥ 1

4
.

10Another approach is to utilize the fact that ΨA(k) − ΨA(k − 1) ≥ 1/n, and for every i, approximate ΨA(gi),
where gi = f(x1, . . . , xi−1, 0, xi+1, . . . , xn), using all labeled examples (a, b) that satisfy ai = 0.
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Therefore, after t = O((1/(1−ηb)k) log(1/δ)) iterations, with probability at least 1−δ/3, at least one
of the outputs is the target. By Lemma 1, learning the target from a set of t linear functions with
a success probability of 1− δ/3 requires Õ((1/(1− ηb − 1/q)2)(k+ log(1/δ)) labeled examples.

We are now ready to prove Theorem 3.

Proof. Let A′ be an algorithm that runs in polynomial time, uses labeled examples according to the
uniform distribution in the presence of random classification noise, and outputs γ−1(d(f)) ≤ D ≤
γ(d(f)). Modify the algorithm to output min(γ(D), n). The algorithm now is a ∆-approximation
algorithm, where ∆(x) = min(γ(γ(x)), n). Let m(n) = γ−1(γ−1(π(n))). Since γ : R+ → R+ is
strictly increasing and is defined for all R+, we have γ−1 : R+ → R+, is also strictly increasing, and
m(n) = ωn(1). Let δ′ = 1/(|F|n7) and δ = 1/n. By Lemma 6, item 1, there exists m(n) ≤ k(n) ≤
∆(m(n)) = π(n), and an algorithm that, for every f ∈ Lin(F, k(n)), with probability at least
1− on(1) > 2/3, identifies the relevant variables of f from random uniform labeled examples in the
presence of random classification noise. Also, this algorithm runs in polynomial time. Since k(n) ≤
π(n), by Lemma 7 and item 2 in Lemma 6, there is a poly(n, 1/(1−ηb−1/|F|),min(|F|, 1/(1−ηb)π(n)))
time learning algorithm for Lin(F, k). Since k(n) ≥ m(n) = ωn(1), the result follows.

3.2 Approximation Implies Learning Lin(F)

In this section, we prove.

Theorem 4. Let γ : R+ → R+ be any strictly increasing function, where γ(x) > x for every x. Let
Γ(x) := γ(γ(x)). Consider any T (n)-time algorithm A′(n) that, for any linear function f ∈ Lin(F),
uses Q(n) random uniform labeled examples of f in the presence of random classification noise and,
with probability at least 2/3, returns a γ-approximation of the number of relevant variables d(f) of
f . From A′(n), one can, in polynomial time, construct a Õ(|F|Γ(n)12)T (O(Γ(n)2)) log(1/δ)-time
algorithm that properly learns Lin(F) from Õ(Γ(n)8)Q(O(Γ(n)2)) log(|F|/δ) random uniform labeled
examples in the presence of random classification noise.

We first show that for every d satisfying 12Γ(d)2 ≤ n, there exists a learning algorithm for
Lin(F, d).

Lemma 8. Suppose that for every 1 ≤ m ≤ m′ := Γ−1(n), there exists a k such that m ≤ k ≤
Γ(m), and an algorithm that runs in time T (n) and, with probability at least 2/3, properly learns
f ∈ Lin(F, k) under the uniform distribution in the presence of random classification noise, and
uses Q(n) labeled examples. Then, for every d such that 12Γ(d)2 ≤ n, there is an algorithm that
runs in time O(T (n) log(1/δ)) and properly learns Lin(F, d) under the uniform distribution in the
presence of random classification noise, using O(Q(n) log(1/δ)) labeled examples.

Proof. Let d be an integer such that 12Γ(d)2 < n. Since Γ(d) < n, we have d ≤ m′. Consequently,
there exists k such that d ≤ k ≤ Γ(d) ≤ Γ(m′) = n, along with a proper learning algorithm B(n, k)
for Lin(F, k), that runs in time T (n) and uses Q(n) labeled examples.

We now present an algorithm for learning Lin(F, d). We uniformly at random draw k − d
variables xi1 , . . . , xik−d

and run the algorithm B(n, k). For each labeled example (a, b) of f , we feed
B with the labeled example (a, b + ai1 + · · · + aik−d

). This modified labeled example serves as a
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labeled example for the function g = f +xi1 + · · ·+xik−d
. The probability that g ∈ Lin(F, k) is the

probability that none of the variables xi1 , . . . , xik−d
are relevant in f . This probability is given by

k∏
i=d

(
1− i

n

)
≥ 1− k2

n
≥ 1− Γ(d)2

n
≥ 11

12
.

Therefore, with probability at least 1− (1/3+1/12) > 1/2, algorithm B(n, k) learns g and thus
learns f . By Lemma 3, the result follows.

We now show how to construct a learning algorithm for Lin(F, d) for every d ≤ n.

Lemma 9. Suppose that for every n and every d that satisfies 12Γ(d)2 ≤ n, there is an algorithm
A(n) that runs in time T (n) and, with probability at least 2/3, properly learns f ∈ Lin(F, d) under
the uniform distribution in the presence of random classification noise, using Q(n) labeled examples.
Let N(n) = 12Γ(n)2. Then, for every n and every d ≤ n, there is an algorithm that runs in
time T (N(n)) and, with probability at least 2/3, properly learns f ∈ Lin(F, d) under the uniform
distribution in the presence of random classification noise, using Q(N(n)) labeled examples.

Proof. Let N = N(n). Then for every d ≤ n, we have 12Γ(d)2 ≤ 12Γ(n)2 = N(n). We run A(N).
Whenever the algorithm requests a labeled example, we draw a labeled example (a, b) ∈ Fn × F,
append N − n random uniform entries to a, creating a′. We then provide (a′, b) to A(N). The
algorithm is effective for any d that satisfies 12Γ(d)2 ≤ N = 12Γ(n)2 and, thereby, covers all
d ≤ n.

Theorem 4 now follows from Lemma 6, 8 and 9.
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