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Abstract. We present a new algorithm for solving homogeneous multilinear equations,
which are high dimensional generalisations of solving homogeneous linear equations.
First, we present a linear time reduction from solving generic homogeneous multilin-
ear equations to computing hyperdeterminants, via a high dimensional Cramer’s rule.
Hyperdeterminants are generalisations of determinants, associated with tensors of for-
mats generalising square matrices. Second, we devise arithmetic circuits to compute
hyperdeterminants of boundary format tensors. Boundary format tensors are those that
generalise square matrices in the strictest sense. Consequently, we obtain arithmetic
circuits for solving generic homogeneous boundary format multilinear equations. The
complexity as a function of the input dimension varies across boundary format families,
ranging from quasi-polynomial to sub exponential. Curiously, the quasi-polynomial com-
plexity arises for families of increasing dimension, including the family of multipartite
quantum systems made of d qubits and one qudit.

1. Introduction

Homogeneous multilinear systems. The familiar problem of solving homogeneous
linear equations is to take a square matrix A and find a non zero vector x such that Ax
is the zero vector. We devise algorithms for the natural high dimensional generalisation,
which we call solving homogeneous multilinear equations. Let us rephrase what it means
to solve homogeneous linear equations, to emphasise the motif that generalises. Given a
square matrix A, find a pair of non zero vectors

(
x(0), x(1)

)
such that removing one of

the vectors from the bilinear product x(0)Ax(1) equals the zero vector. The solutions are
merely pairs of non zero vectors

(
x(0), x(1)

)
with x(0) in the left kernel of A and x(1) in

the right kernel of A. In homogeneous multilinear equations, a tensor A of dimension
r+1 will be cast as the input in place of the square matrix. Multiplying A by the vectors(
x(0), x(1), . . . , x(r)

)
in the corresponding dimensions is a multilinear map taking this tuple

of vectors to a scalar. If we remove one of the vectors from the multiplication, the result
is a vector. The solution we demand is a tuple of vectors

(
x(0), x(1), . . . , x(r)

)
such that

removing one of the vectors from the multilinear product gives the zero vector, irrespective

1 The authour was supported by the European Union’s H2020 Programme (grant agreement #ERC-
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2 CONNECTING HOMOGENEOUS MULTILINEAR EQUATIONS TO HYPERDETERMINANTS

of which one was removed. See definition 3.1 for the formal statement. We address the
problem over the field of complex numbers and describe algorithms in the formalism of
arithmetic circuits. Key to our approach is the hyperdeterminant.

Hyperdeterminants. The determinant of a square matrix is a homogeneous integer
polynomial in the matrix entries that vanishes precisely when the matrix is singular. The
hyperdeterminant is a high dimensional analogue of the determinant conceived by Cayley
[3]. The hyperdeterminant is a homogeneous integer polynomial in the coordinates of
the tensor that vanishes precisely when the tensor is singular. This notion of singularity
is geometric and defined through projective duality. Except for a foray by Schläfli, the
subject remained dormant for nearly a century and a half [12]. It was revived in the
comprehensive work of Gelfand, Kapranov and Zelevinsky [6, 7], which contains most of
the mathematical ingredients required in this paper.

Tensor formats. Just as the determinant is only defined for square matrices, the hyper-
determinant is only defined for certain formats of tensors. An (r + 1)-dimensional tensor
product of complex vector spaces of dimensions k0 + 1, k1 + 1, . . . , kr + 1 constitutes a
(k0 + 1) × (k1 + 1) × . . . × (kr + 1) format. Say k0 ≥ k1 ≥ . . . ≥ kr. The hyperdeter-
minant is defined for formats where the largest vector space dimension k0 satisfies the
convexity constraint k0 ≤ k1 + k2 + . . . + kr. Such formats generalise square matrices.
Boundary formats are those satisfying the convexity constraint with equality, that is,
k0 = k1 + k2 + . . .+ kr. The special case r = 1 corresponds to square matrices. Boundary
formats generalise square matrices to higher dimensions in the strictest sense. To quote
Gelfand, Kapranov and Zelevinsky [6], “It is instructive to think of matrices of bound-
ary format as proper high dimensional analogs of ordinary square matrices”. Formats
satisfying k0 < k1 + k2 + . . .+ kr are called interior formats.

Hardness of Hyperdeterminants. We use hyperdeterminants as a means to solve homoge-
neous multilinear equations, but they are of intrinsic interest in complexity theory. The
computational complexity of hyperdeterminants remains a mystery, either restricted to
three dimensions or in general. Unlike the determinant (the two dimensional case), com-
puting the hyperdeterminant (in three or more dimensions) is believed to be VNP-hard,
yet a proof remains elusive. Testing if a given tensor is singular (has hyperdeterminant
zero) is conjectured to be NP-hard [8]. Likewise, computing the hyperdeterminant is con-
jectured to be #P-hard in the counting model and VNP-hard in the arithmetic circuit
model [8]. Several closely related three dimensional problems (such as zero testing singu-
lar values, defined for general formats in [9]) are proven to be NP, VNP or #P hard, but
these instance are of formats where the hyperdeterminant is not defined. In particular,
known hardness reductions to tensor problems seem to fall apart in formats satisfying
the convexity constraint. Computing the combinatorial hyperdeterminant is known to be
hard [8]. But the combinatorial hyperdeterminant more closely resembles the permanent
and does not have the algebraic/geometric structure that underlies the hyperdeterminant.
Another aspect to keep in mind is that the hyperdeterminant can have degree exponen-
tial in the size of the input, even in three dimensions. For instance, to write down a
(2n+1)× (n+1)× (n+1) boundary format tensor takes only cubic in n entries. However
the degree of the hyperdeterminant is (2n+ 1)!/n!2 ≈ 2n.



Connecting homogeneous multilinear equations to hyperdeterminants 3

Hyperdeterminants and quantum information. Hyperdeterminants arise in quantum in-
formation when the amplitudes of quantum states are considered as normalised ten-
sors in a projective space. The absolute value of the hyperdeterminant of three qubits
(r = 2, k0 = k1 = k2 = 2) is known as 3-tangle, an important entanglement measure
generalising concurrence (the usual determinant) of bipartite systems [4]. A broader sig-
nificance of hyperdeterminants to quantum information was identified by Miyake and
Wadati [10], through projective duality between separability and singularity. In partic-
ular, the hyperdeterminant is invariant under stochastic local operations and classical
communication (SLOCC).

Our Contribution.

Reducing homogeneous multilinear systems to hyperdeterminants. The geometric notion
of singularity of a tensor (the hyperdeterminant vanishing) is equivalent to the algebraic
notion of degeneracy that ensures the existence of a solution to homogeneous multilinear
equations. Therefore, we may test if there is a solution to the homogeneous multilinear
equation by checking if the hyperdeterminant of the tensor is zero. This correspondence
begs the question as to if the solutions of the multilinear equation can be inferred through
computation of the hyperdeterminant. It is important to consider the model of compu-
tation for the hyperdeterminant. The minimal computational assumption is a black-box
that computes the hyperdeterminant of a given tensor. But, it is not obvious how use-
ful black-box access is. The exponential degree of the hyperdeterminant and the lack of
obvious structure (such as sparsity) make interpolating the hyperdeterminant as a poly-
nomial using black-box evaluations difficult. We instead consider white-box computation:
an arithmetic circuit that takes tensor entries as inputs and outputs the hyperdeterminant.

In § 3, we present a reduction. Given an arithmetic circuit that computes the hyper-
determinant (for a tensor format), we build an arithmetic circuit of asymptotically the
same size that solves generic multilinear equations (of the same format). The key to the
reduction is a theorem of Gelfand, Kapranov and Zelevinsky relating the Segre embedding
of solutions of multilinear equations with partial derivatives of the hyperdeterminant. It
may be thought of as a high dimensional generalisation of Cramer’s rule. We invoke the
Baur-Strassen algorithm to construct arithmetic circuits for all these partial derivatives
at once from the arithmetic circuit computing the hyperdeterminant, thereby completing
the reduction with only linear complexity.

The qualifier “generic” in generic homogeneous multilinear equations refers to there
being at most one projective solution. Geometrically, this translates to the input tensor
either being non-singular or a simple singularity. That is, the tensor cannot be a zero of the
hyperdeterminant of multiplicity greater than one. Weyman and Zelevinsky proved that
non-generic tensors (roots of the hyperdeterminant of multiplicity greater than one) form
a co-dimension one projective subvariety of singular tensors [16]. Therefore non-generic
tensors fall into a Zariski closed subspace, justifying the “generic” label. It remains an
open problem if the non generic case can be handled by methods similar to our reduction.
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Computing Hyperdeterminants of boundary formats. In § 4, we devise arithmetic circuits
to compute hyperdeterminants of boundary format tensors. There is one circuit for each
boundary format. The tensor entries are the inputs to the arithmetic circuit. The main
ingredient in the construction is a correspondence between the hyperdeterminant of bound-
ary format tensors and the determinant of a linear transformation connecting sections of
vector bundles built from the tensor [6][Theorem 4.3](see also, [5]). Concretely, the linear
transformation is between two spaces of multihomogeneous polynomials in the coordinate
ring with prescribed degrees. The square matrix of this linear transformation is of di-
mension equal to the degree (k0+1)!/(k1!k2! . . . kr!) of the hyperdeterminant, which could
range from 2k0 to (k0 + 1)!. By choosing a monomial bases for the polynomial spaces,
we ensure that the matrix entries are either zero or entries from the tensor. An arith-
metic circuit for computing the determinant for this square matrix yields an arithmetic
circuit for computing the hyperdeterminant. The circuit complexity is the degree of the
hyperdeterminant (k0+1)!/(k1!k2! . . . kr!) raised to the matrix multiplication exponent ω.

Complexity. The reduction and the algorithm for computing the hyperdeterminant in con-

cert yield O
((

(k0+1)!
k1!k2!...kr!

)ω)
sized arithmetic circuits to solve generic homogeneous bound-

ary format multilinear equations. To make sense of this complexity, consider the following
two families of boundary format tensors. For the three dimensional family (2n+1)× (n+
1)× (n+ 1), the complexity is O

((
(2n+ 1)!/n!2

)ω)
. This is roughly O (2nω), simply ex-

ponential in the dimension 4n+3 of the output. This is sub-exponential in the dimension
(2n+ 1)(n+ 1)2 of the input. For the d+ 1 dimensional family (d+ 1)× 2× 2× . . .× 2︸ ︷︷ ︸

d

,

the circuit complexity O ((d+ 1)!) is quasi polynomial in the input dimension (d + 1)2d.
It is remarkable that a natural tensor problem without structure has a quasi polynomial
time algorithm time for a family of increasing dimension. Further, this family captures
(d+1)-partite quantum system consisting of d qubits and a qudit. The hyperdeterminant
vanishing is related to the existence of a partition of the (d + 1)-partite system across
which the quantum state splits into a product [10].

In terms of algorithms to compare with, Gröbner basis methods can be deployed to
solve homogeneous multilinear equations. But applying them naively only guarantees a
solution in double exponential time (over Global fields such as C). The performance of
Gröbner basis techniques tailored to this problem warrants further investigation. For
instance, determinantal structure was exploited in Gröbner basis algorithms addressing
similar problems by Spaenlehauer [14, 15] and M. Safey El Din, and Ê. Schost [11]. Our
results hint that there are monomial orderings for which Gröbner methods tailored to
solving homogeneous multilinear equations are fast.

Towards proving hardness of hyperdeterminants. The mystery surrounding the hardness
of computing the hyperdeterminant drew us to the problems addressed in this work. A
technical difficulty in proving the hardness of the hyperdeterminants using well known
techniques (such as in [9]) is the following. When one tries to embed a hard computa-
tional problem into computing hyperdeterminants of three dimensional tensors, one of the
dimensions of blows up and we land in a tensor format for which the hyperdeterminant
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does not exist. An important consequence of our reduction is that if solving homogeneous
multilinear equations is hard for some family boundary or interior formats, then so is
computing the hyperdeterminant! Therefore, to prove the hardness of computing hyper-
determinants, it now suffices to prove the hardness of solving homogeneous multilinear
equations for some family of boundary or interior formats. Further, our work suggests it
may be fruitful to consider boundary formats such as (2n+1)× (n+1)× (n+1), for they
may accommodate more geometric methods.

2. Preliminaries: Tensor singularity and hyperdeterminants

2.1. Cayley’s hyperdeterminants. Let V0, V1, . . . , Vr be r + 1 vector spaces over the
complex numbers C of respective dimensions k0 + 1, k1 + 1, . . . , kr + 1. Fix a coordinate

system x(j) = (x
(j)
0 , x

(j)
1 , . . . , x

(j)
kj

) for the jth-vector space Vj , or equivalently an ordered

basis for the dual V ∗
j . Identify an (r+1) dimensional tensor A ∈ V ∗

0 ⊗V ∗
1 ⊗ . . .⊗V ∗

r with
an r + 1-dimensional matrix

A = (ai0,i1,...,ir , 0 ≤ i0 ≤ k0, 0 ≤ i1 ≤ k1, . . . , 0 ≤ ir ≤ kr)

of format (k0 + 1)× (k1 + 1)× . . .× (kr + 1).

Square matrices are a special case (r = 1 and k0 = k1) and come with the familiar
determinant whose vanishing characterises singularity/degeneracy. The hyperdetermi-
nant is a multidimensional generalisation of the determinant that characterises singu-
larity/degeneracy for tensors formats that generalise square matrices. We start with a
geometric definition, equivalent analytic (singularity) and algebraic (degeneracy) formu-
lations follow thereafter.

Geometric definition. Let P(Vj) ∼= Pkj be the projectivisation of Vj . We need the Cartesian
product of these projective spaces, yet desire that the product itself is projective. Let X
be the image of the Cartesian product (purely separable tensors) Pk0 × Pk1 × . . . × Pkr

under the Segre embedding

P(V0)× P(V1)× . . .× P(Vr) ↪−! P (V0 ⊗ V1 ⊗ . . .⊗ Vr) ∼= P(k0+1)(k1+1)...(kr+1)−1((
x
(0)
0 : x

(0)
1 : . . . : x

(0)
k0

)
, . . . ,

(
x
(r)
0 : x

(r)
1 : . . . : x

(r)
kr

))
7−!

(
x
(0)
0 x

(1)
0 . . . x

(r)
0 : . . . : x

(0)
k0

x
(1)
k1

. . . x
(r)
kr

)
.

The image under the embedding is a smooth projective variety called the Segre variety,
which we denote by X. Let Xˇdenote the projectively dual variety of X consisting of all
hyperplanes in the ambient projective space P (V0 ⊗ V1 ⊗ . . .⊗ Vr) tangent to X at some
point. By projective duality (hyperplanes ↔ points), Xˇis a variety in the dual projective
space P (V0 ⊗ V1 ⊗ . . .⊗ Vr)

∗. Gelfand, Kapranov and Zelevinsky characterised precisely
when Xˇis a hypersurface (that is, co-dimension one). It is when the convexity condition

∀ 0 ≤ j ≤ r, kj ≤
∑
ℓ̸=j

kℓ

holds, which we assume from here on. Being a hypersurface, the defining equation ofXˇis a
homogeneous polynomial in the coefficients ai1,i2,...,id , defined to be the hyperdeterminant
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Det(). It is an irreducible polynomial with integer coefficients. It can be made unique by
insisting that the coefficients are co-prime and choosing a sign.

Example. The first example is the r = 1 case, of the usual 2 dimensional matrices. The
convexity constraint simplifies to k0 = k1, confining to square matrices. For square ma-
trices, the hyperdeterminant coincides with the classical determinant. The following first
example in 3 dimensions goes back to Cayley [3] and the advent of hyperdeterminants.
It is synonymous with the tripartite entanglement measure 3-tangle of three qubits. The
hyperdeterminant of a 2× 2× 2 format tensor A indexed by the vertices of a cube is

a000

a001

a010

a011

a100

a101

a110

a111
Det(A) = a2000a

2
111 + a2001a

2
110 + a2010a

2
101 + a2011a

2
100

−2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111
+a001a010a101a110 + a001a011a110a100 + a010a011a101a100)

+4(a000a011a101a110 + a001a010a100a111).

The first group of monomials correspond to the four opposing vertices across the main
diagonals. The second group to the six pairs of opposing sides. The last group to the two
tetrahedrons with edges on the diagonals of the faces.

Boundary and interior formats. Without loss of generality, assume from here on that k0 ≥
k1 ≥ . . . ≥ kr. The convexity condition (which we remind, we always assume) simplifies to
k0 ≤

∑r
ℓ=1 kℓ. Boundary formats are those meeting the convexity constraint with equality,

that is k0 =
∑r

ℓ=1 kℓ. Interior formats are those satisfying the strict convexity constraint
k0 <

∑r
ℓ=1 kℓ.

3. Solving multilinear equations through hyperdeterminants

3.1. Hyperdeterminants, degeneracy of tensors and multilinear equations.

Definition 3.1. (Solving homogeneous multilinear equations) Given a tensor A, decide
if there is a w ∈ X such that in every dimension j,

∇A,j(w) :=
∑

0≤ij≤kj


∑

0≤i0≤k0
...

0≤ir≤kr

ai0,i1,...,irw
(0)
i0

w
(1)
i1

. . . w
(j−1)
ij−1

w
(j+1)
ij+1

. . . w
(r)
ir

x
(j)
ij

= 0
(
∈ V ∗

j

)
.

The inner summation is over all dimensions except j. If such a solution w exists, find one.
A tensor A is said to be degenerate if there is such a w.

Since the Segre variety X lives in the projective tensor space P (V0 ⊗ V1 ⊗ . . .⊗ Vr), it
is expensive to write down the solution w ∈ X as a tensor. Instead, we may output a
tuple of vectors in the Cartesian space Pk0 × Pk1 × . . .× Pkr whose image under the Segre
embedding is a solution w ∈ X.
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Lemma 3.2. [7, Chap 14, Prop. 1.1] A tensor A is degenerate if and only if Det(A) = 0.

Proof. We sketch the proof from [7, Chap 14, Prop. 1.1] to give an impression of the con-
nection between degeneracy and hyperdeterminants. To this end, consider the following
analytic notion of singularity to complement the geometric definition of hyperdetermi-
nants. To clarify the relation of hyperdeterminants to singularity of tensors, ask when the
hyperplane {A = 0} carved by A is in X .̌ It is precisely when there is a point x ∈ X at
which the hyperplane {A = 0} is tangent. This happens precisely when there is a point
x ∈ X such that the multilinear form (arising from the restriction of A on X)

fA(x) :=
∑

0≤i0≤k0
...

0≤ir≤kr

ai0,i1,...,irx
(0)
i0

x
(1)
i1

. . . x
(r)
ir

and all its partial derivatives
∂fA(x)

∂x
(j)
ij

, ∀j, ij

vanish. In particular, such an x is a singular point of the hyperplane {A = 0}. We may
thus identify the hyperdeterminantal variety Xˇwith singular tensors. By inspection, we
see that the condition for singularity and degeneracy are the same. □

Therefore the decision making part of solving homogeneous multilinear equations is
equivalent to testing if Det(A) = 0. Can hyperdeterminants be used to find solutions?
We prove that they can, for the generic case of the problem, which we next define.

Definition 3.3. (Solving generic homogeneous multilinear equations) Given a tensor A
with a promise that A is a non singular point of X ,̌ solve the homogeneous multilinear
equation with input A.

We next justify why this promise version captures generic instances of the problem.
As we saw before, by projective duality, there is a point w ∈ X in the Segre variety
solving the homogeneous multilinear equation corresponding to A if and only if A is in
the Hyperdeterminantal variety X .̌ Further, A could either be a singular point (that
is, a zero of multiplicity greater than one) or a non singular point on X .̌ If A is a non
singular point in X ,̌ then there is a unique solution w, which the problem demands that
we find. If A is a singular point in X ,̌ then we have to detect that this is the case. But,
we do not have to find a solution. Remarkably, for dimension at least three (that is,
r > 1), excluding the interior format 2× 2× 2, Weyman and Zelevinsky proved that the
singular points of Xˇ form a co-dimension one projective sub variety [16]. Therefore, by
dimension considerations, a generic singular tensor is indeed a non singular point on X .̌
The non-generic tensor inputs we abandon are in a Zariski closed subspace.

A high dimensional Cramer’s rule. We reduce solving generic homogeneous multilinear
equation to computing hyperdeterminants through the following characterisation of the
unique solution by Gelfand, Kapranov and Zelevinsky [6, Proposition 1.2]. Let A be the
input describing the homogeneous multilinear equation with the promise that A is a non
singular point of X .̌ If Det(A) ̸= 0, output that there is no solution. If Det(A) = 0, then
the promise ensures that there is a unique solution w. Let B be a tensor of the same format
as the input A, but with with entries bi0,i1,...,ir that are commuting indeterminates. The
hyperdeterminant Det(B) is then an integer polynomial in the indeterminates bi0,i1,...,ir .



8 CONNECTING HOMOGENEOUS MULTILINEAR EQUATIONS TO HYPERDETERMINANTS

Up to a normalisation factor, for all i0, i1, . . . , ir, the unique solution

w =
(
w

(0)
0 w

(1)
0 . . . w

(r)
0 : . . . : w

(0)
k0

w
(1)
k1

. . . w
(r)
kr

)
∈ X ⊆ P (V0 ⊗ V1 ⊗ . . .⊗ Vr)

in the Segre variety satisfies

(3.1) w
(0)
i0

w
(1)
i1

. . . w
(r)
ir

=
∂Det(B)

∂bi0,i1,...,ir

∣∣∣
B=A

.

It is too expensive to write out w as a point in the ambient tensor space P (V0 ⊗ V1 ⊗ . . .⊗ Vr).
Its pre-image((

w
(0)
0 : w

(0)
1 : . . . : w

(0)
k0

)
, . . . ,

(
w

(r)
0 : w

(r)
1 : . . . : w

(r)
kr

))
∈ P(V0)× P(V1)× . . .× P(Vr)

in the Cartesian space is a succinct representation that we can explicitly write down.
Returning a tuple of vectors as the solution is also in the spirit of the homogeneous
linear equations that we are generalising. Without loss of generality, we may set the first
coordinate of each vector as one, that is,

w
(0)
0 = w

(1)
0 = . . . = w

(r)
0 = 1.

With the first coordinates set, the ij-th coordinate of the j-th vector is given by

(3.2) w
(j)
ij

=
∂Det(B)

∂b0,...,0,ij ,0,...,0

∣∣∣
B=A

.

Given an arithmetic circuit to compute the hyperdeterminant (for the format of A), the
Baur-Strassen algorithm [1] constructs an arithmetic circuit that computes all k0k1 . . . kr
of the partial derivatives(

∂Det(B)

∂b0,...,0,ij ,0,...,0

∣∣∣
B=A

, 0 ≤ j ≤ r, 1 ≤ i0 ≤ k0, 1 ≤ i1 ≤ k1, . . . , 1 ≤ ir ≤ kr

)
sought in equation 3.2 at once. Remarkably, the size of this arithmetic circuit is only a
small constant times that of the circuit for computing the hyperdeterminant.

4. Hyperdeterminants of boundary format

In this section, we devise an algorithm that given a boundary format tensor A, computes
its hyperdeterminant. The algorithm can be realised as an arithmetic circuit. Recall that
for boundary formats, k0 = k1 + k2 + . . . + kr. Hyperdeterminants of boundary formats
have a simple interpretation as resultants of a system of multilinear forms following the
“Cayley trick”. Slices of A in the first dimension form a collection of k0 + 1 multilinear
forms

(4.1) f
(i0)
A (x) :=

∑
0≤i1≤k1

...
0≤ir≤kr

ai0,i1,...,irx
(1)
i1

x
(2)
i2

. . . x
(r)
ir

, 0 ≤ i0 ≤ k0.

The hyperdeterminant Det(A) vanishes precisely when the resultant of f
(i0)
A (x), 0 ≤ i0 ≤

k0 does.
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For positive integers s1, s2, . . . , sr, let

S(s1, s2, . . . , sr) ∼= Syms1(V1)⊗ Syms2(V2)⊗ . . .⊗ Symsr(Vr)

denote the space of polynomials that are for each j ∈ 1, 2, . . . , d homogeneous of degree

sj in the coordinates x
(j)
ij

, 0 ≤ ij ≤ kj . Set m1 := 0 and for j > 1, set mj := k1 + k2 +

. . . + kj−1. The conception of our algorithms is primarily due to the following theorem
relating boundary format hyperdeterminants to determinants of large matrices built with
the above slices.

Theorem 4.1. (Gelfand-Kapranov-Zelevinsky, [6][Theorem 4.3]) The hyperdeterminant
Det(A) of a boundary format A ∈ V ∗

0 ⊗ V ∗
1 ⊗ . . .⊗ V ∗

r equals (up to sign) the determinant
of the linear operator

δA : S(m1,m2, . . . ,mr)
k0+1 −! S(m1 + 1,m2 + 1, . . . ,mr + 1)

(g0, g1, . . . , gk0) 7−!
k0∑

i0=0

f
(i0)
A gi0 .

Proof. See [6][Theorem 4.3] or [5] for proofs. □

The matrix of δ is indeed square. We may count monomials and verify that the dimen-
sions

dim
(
S(m1,m2, . . . ,mr)

k0+1
)
=

(k0 + 1)!

k1!k2! . . . kr!

and

dim (S(m1 + 1,m2 + 1, . . . ,mr + 1)) = (k1 + k2 + . . .+ kr + 1)

(
k1 + k2 + . . .+ kr

k1, k2, . . . , kr

)
of the two spaces of polynomials are the same. By theorem 4.1, this count is also the
degree of the hyperdeterminant

(4.2) deg(Det(A)) =
(k0 + 1)!

k1!k2! . . . kr!
= (k1 + k2 + . . .+ kr + 1)

(
k1 + k2 + . . .+ kr

k1, k2, . . . , kr

)
.

Theorem 4.1 gives a determinantal identity for each choice of permutation of the vector
spaces V1, V2, . . . , Vr, which is implicit in the statement. It is not clear if there is a choice
of permutation better suited to computation than the others. We now have all the ingre-
dients to describe the hyperdeterminant computation.

Computation of the hyperdeterminant. Let A be the input tensor. Fix lexicographic or-
dered monomial bases P and Q respectively for S(m1,m2, . . . ,mr) and S(m1 + 1,m2 +
1, . . . ,mr + 1). With bases fixed, we will also denote the matrix of δA by δA. For

p ∈ P, q ∈ Q, the (p, q)-th entry δ
(p,q)
A of δA is either 0 or an ai′0,i′1,...,i′r for some i′0, i

′
1, . . . , i

′
r.

Since log(deg(Det(A))) is polynomial in k0, the encoding (p, q) 7−! 0 or i′0, i
′
1, . . . , i

′
r is easy

to compute in time polynomial in k0. This encoding transforms an arithmetic circuit for
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computing the determinant of a (k0+1)!
k1!k2!...kr!

× (k0+1)!
k1!k2!...kr!

square matrix into an arithmetic cir-

cuit to compute the hyperdeterminant. The complexity of the circuit is O
((

(k0+1)!
k1!k2!...kr!

)ω)
.

We conclude with an illustrative example of the determinantal identity underlying the
hyperdeterminant computation.

Example. LetA = (ai0,i1,i2) be a tensor of the simplest three dimensional boundary format,

namely 3×2×2. Through lexicographic monomial orderings, fix ordered bases
(
x
(2)
0 , x

(2)
1

)
of S(0, 1) and

(
x
(1)
0 x

(2)
0 x

(2)
0 , x

(1)
0 x

(2)
0 x

(2)
1 , x

(1)
0 x

(2)
1 x

(2)
1 , x

(1)
1 x

(2)
0 x

(2)
0 , x

(1)
1 x

(2)
0 x

(2)
1 , x

(1)
1 x

(2)
1 x

(2)
1

)
of S(1, 2). Then

δA : S(0, 1)3 −! S(1, 2)

corresponds to the matrix
a000 0 a100 0 a200 0
a001 0 a101 0 a201 0
a010 a000 a110 a100 a210 a200
a011 a001 a111 a101 a211 a201
0 a010 0 a110 0 a210
0 a011 0 a111 0 a211

 .
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