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Abstract. We present a new algorithm for solving homogeneous multilinear equations,
which are high dimensional generalisations of solving homogeneous linear equations.
First, we present a linear time reduction from solving generic homogeneous multilin-
ear equations to computing hyperdeterminants, via a high dimensional Cramer’s rule.
Hyperdeterminants are generalisations of determinants, associated with tensors of for-
mats generalising square matrices. Second, we devise arithmetic circuits to compute
hyperdeterminants of boundary format tensors. Boundary format tensors are those that
generalise square matrices in the strictest sense. Consequently, we obtain arithmetic
circuits for solving generic homogeneous boundary format multilinear equations. The
complexity as a function of the input dimension varies across boundary format families,
ranging from quasi-polynomial to sub exponential. Curiously, the quasi-polynomial com-
plexity arises for families of increasing dimension, including the family of multipartite
quantum systems made of d qubits and one qudit. Finally, we identify potential di-
rections to resolve the hardness the hyperdeterminants, notably modulo prime numbers
through the cryptographically significant tensor isomorphism complexity class.

1. Introduction

1.1. Homogeneous multilinear systems. The familiar problem of solving homoge-
neous linear equations is to take a square matrix A and find a non zero vector x such
that Ax is the zero vector. We devise algorithms for the natural high dimensional gener-
alisation, which we call solving homogeneous multilinear equations. Let us rephrase what
it means to solve homogeneous linear equations, to emphasise the motif that generalises.
Given a square matrix A, find a pair of non zero vectors

(
x(0), x(1)

)
such that removing one

of the vectors from the bilinear product x(0)Ax(1) equals the zero vector. The solutions
are merely pairs of non zero vectors

(
x(0), x(1)

)
with x(0) in the left kernel of A and x(1)

in the right kernel of A. In homogeneous multilinear equations, a tensor A of dimension
r+1 will be cast as the input in place of the square matrix. Multiplying A by the vectors(
x(0), x(1), . . . , x(r)

)
in the corresponding dimensions is a multilinear map taking this tuple
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2 CONNECTING HOMOGENEOUS MULTILINEAR EQUATIONS TO HYPERDETERMINANTS

of vectors to a scalar. If we remove one of the vectors from the multiplication, the result
is a vector. The solution we demand is a tuple of vectors

(
x(0), x(1), . . . , x(r)

)
such that

removing one of the vectors from the multilinear product gives the zero vector, irrespective
of which one was removed. See definition 3.1 for the formal statement. We address the
problem over the field of complex numbers and describe algorithms in the formalism of
arithmetic circuits. Key to our approach is the hyperdeterminant.

1.2. Hyperdeterminants. The determinant of a square matrix is a homogeneous integer
polynomial in the matrix entries that vanishes precisely when the matrix is singular. The
hyperdeterminant is a high dimensional analogue of the determinant conceived by Cayley
[3]. The hyperdeterminant is a homogeneous integer polynomial in the coordinates of
the tensor that vanishes precisely when the tensor is singular. This notion of singularity
is geometric and defined through projective duality. Except for a foray by Schläfli, the
subject remained dormant for nearly a century and a half [22]. It was revived in the
comprehensive work of Gelfand, Kapranov and Zelevinsky [11, 12], which contains most
of the mathematical ingredients required in this paper.

1.2.1. Tensor formats. Just as the determinant is only defined for square matrices, the
hyperdeterminant is only defined for certain formats of tensors. An (r + 1)-dimensional
tensor product of complex vector spaces of dimensions k0+1, k1+1, . . . , kr+1 constitutes
a (k0+1)× (k1+1)× . . .× (kr+1) format. Say k0 ≥ k1 ≥ . . . ≥ kr. The hyperdeterminant
is defined for formats where the largest vector space dimension k0 satisfies the convexity
constraint k0 ≤ k1 + k2 + . . . + kr. Such formats generalise square matrices. Boundary
formats are those satisfying the convexity constraint with equality, that is, k0 = k1 +
k2 + . . . + kr. The special case r = 1 corresponds to square matrices. Boundary formats
generalise square matrices to higher dimensions in the strictest sense. To quote Gelfand,
Kapranov and Zelevinsky [11], “It is instructive to think of matrices of boundary format
as proper high dimensional analogs of ordinary square matrices”. Formats satisfying k0 <
k1 + k2 + . . .+ kr are called interior formats.

1.2.2. Hardness of Hyperdeterminants. We use hyperdeterminants as a means to solve ho-
mogeneous multilinear equations, but they are of intrinsic interest in complexity theory.
The computational complexity of hyperdeterminants remains a mystery, either restricted
to three dimensions or in general. Unlike the determinant (the two dimensional case), com-
puting the hyperdeterminant (in three or more dimensions) is believed to be VNP-hard,
yet a proof remains elusive. Testing if a given tensor is singular (has hyperdeterminant
zero) is conjectured to be NP-hard [10]. Likewise, computing the hyperdeterminant is
conjectured to be #P-hard in the counting model and VNP-hard in the arithmetic cir-
cuit model [10]. Several closely related three dimensional problems (such as zero testing
singular values, defined for general formats in [16]) are proven to be NP, VNP or #P
hard, but these instance are of formats where the hyperdeterminant is not defined. In
particular, known hardness reductions to tensor problems seem to fall apart in formats
satisfying the convexity constraint. Computing the combinatorial hyperdeterminant is
known to be hard [10]. But the combinatorial hyperdeterminant more closely resembles
the permanent and does not have the algebraic/geometric structure that underlies the
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hyperdeterminant. Another aspect to keep in mind is that the hyperdeterminant can have
degree exponential in the size of the input, even in three dimensions. For instance, to
write down a (2n + 1) × (n + 1) × (n + 1) boundary format tensor takes only cubic in n
entries. However the degree of the hyperdeterminant is (2n+ 1)!/n!2 ≈ 2n.

1.2.3. Hyperdeterminants and quantum information. Hyperdeterminants arise in quan-
tum information when the amplitudes of quantum states are considered as normalised
tensors in a projective space. The absolute value of the hyperdeterminant of three qubits
(r = 2, k0 = k1 = k2 = 1) is known as 3-tangle, an important entanglement measure
generalising concurrence (the usual determinant) of bipartite systems [6]. In particular,
the hyperdeterminant is invariant under local operations and classical communication
(LOCC). Further significance of hyperdeterminants to quantum information was iden-
tified by Miyake and Wadati [18], through projective duality between separability and
singularity.

1.3. Our Contribution.

1.3.1. Reducing homogeneous multilinear systems to hyperdeterminants. The geometric
notion of singularity of a tensor (the hyperdeterminant vanishing) is equivalent to the
algebraic notion of degeneracy that ensures the existence of a solution to homogeneous
multilinear equations. Therefore, we may test if there is a solution to the homogeneous
multilinear equation by checking if the hyperdeterminant of the tensor is zero. This cor-
respondence begs the question as to if the solutions of the multilinear equation can be
inferred through computation of the hyperdeterminant. It is important to consider the
model of computation for the hyperdeterminant. The minimal computational assump-
tion is a black-box that computes the hyperdeterminant of a given tensor. But, it is not
obvious how useful black-box access is. The exponential degree of the hyperdeterminant
and the lack of obvious structure (such as sparsity) make interpolating the hyperdetermi-
nant as a polynomial using black-box evaluations difficult. We instead consider white-box
computation: an arithmetic circuit that takes tensor entries as inputs and outputs the
hyperdeterminant.

In § 3, we present a reduction. Given an arithmetic circuit that computes the hyper-
determinant (for a tensor format), we build an arithmetic circuit of asymptotically the
same size that solves generic multilinear equations (of the same format). The key to the
reduction is a theorem of Gelfand, Kapranov and Zelevinsky relating the Segre embedding
of solutions of multilinear equations with partial derivatives of the hyperdeterminant. It
may be thought of as a high dimensional generalisation of Cramer’s rule. We invoke the
Baur-Strassen algorithm to construct arithmetic circuits for all these partial derivatives
at once from the arithmetic circuit computing the hyperdeterminant, thereby completing
the reduction with only linear complexity.

The qualifier “generic” in generic homogeneous multilinear equations refers to there
being at most one projective solution. Geometrically, this translates to the input tensor
either being non-singular or a simple singularity. That is, the tensor cannot be a zero of the
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hyperdeterminant of multiplicity greater than one. Weyman and Zelevinsky proved that
non-generic tensors (roots of the hyperdeterminant of multiplicity greater than one) form
a co-dimension one projective subvariety of singular tensors [30]. Therefore non-generic
tensors fall into a Zariski closed subspace, justifying the “generic” label. It remains an
open problem if the non generic case can be handled by methods similar to our reduction.

1.3.2. Computing Hyperdeterminants of boundary formats. In § 4, we devise arithmetic
circuits to compute hyperdeterminants of boundary format tensors. There is one circuit
for each boundary format. The tensor entries are the inputs to the arithmetic circuit. The
main ingredient in the construction is a correspondence between the hyperdeterminant of
boundary format tensors and the determinant of a linear transformation connecting sec-
tions of vector bundles built from the tensor [11][Theorem 4.3](see also, [7]). Concretely,
the linear transformation is between two spaces of multihomogeneous polynomials in the
coordinate ring with prescribed degrees. The square matrix of this linear transformation
is of dimension equal to the degree (k0+1)!/(k1!k2! . . . kr!) of the hyperdeterminant, which
could range from 2k0 to (k0+1)!. By choosing a monomial bases for the polynomial spaces,
we ensure that the matrix entries are either zero or entries from the tensor. An arithmetic
circuit for computing the determinant for this square matrix yields an arithmetic circuit
for computing the hyperdeterminant. The circuit complexity is the degree of the hyper-
determinant (k0 + 1)!/(k1!k2! . . . kr!) raised to small exponent to account for determinant
computation. In many cases this exponent can be taken to be the matrix multiplication
exponent ω. At worst, the exponent is 4, for division-free circuits that accommodate com-
putation over arbitrary rings, including fields of positive characteristic dividing the degree
of the hyperdeterminant.

1.3.3. Complexity. The reduction and the algorithm for computing the hyperdetermi-

nant in concert yield O
((

(k0+1)!
k1!k2!...kr!

)ω)
sized arithmetic circuits to solve generic homo-

geneous boundary format multilinear equations. To make sense of this complexity, con-
sider the following two families of boundary format tensors. For the three dimensional
family (2n + 1) × (n + 1) × (n + 1), the complexity is O

((
(2n+ 1)!/n!2

)ω)
. This is

roughly O (2nω), simply exponential in the dimension 4n + 3 of the output. This is sub-
exponential in the dimension (2n + 1)(n + 1)2 of the input. For the d + 1 dimensional
family (d+ 1)× 2× 2× . . .× 2︸ ︷︷ ︸

d

, the circuit complexity O ((d+ 1)!) is quasi polynomial in

the input dimension (d + 1)2d. It is remarkable that a natural tensor problem without
structure has a quasi polynomial time algorithm time for a family of increasing dimension.
Further, this family captures (d + 1)-partite quantum system consisting of d qubits and
a qudit. The hyperdeterminant vanishing is related to the existence of a partition of the
(d+ 1)-partite system across which the quantum state splits into a product [18]. For the
most common d-partite setting consisting of d qubits, Schläfli’s method [22] suggests an
algorithm to compute hyperdeterminants that is recursive across the dimensions. A rigor-
ous analysis of such a recursive algorithm based on Schläfli’s method is left for future work.
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In terms of algorithms to compare with, Gröbner basis methods can be deployed to
solve homogeneous multilinear equations. But applying them naively only guarantees a
solution in double exponential time (over Global fields such as C). The performance of
Gröbner basis techniques tailored to this problem warrants further investigation. For
instance, determinantal structure was exploited in Gröbner basis algorithms addressing
similar problems by Spaenlehauer [26, 27] and M. Safey El Din, and Ê. Schost [21]. Our
results hint that there are monomial orderings for which Gröbner methods tailored to
solving homogeneous multilinear equations are fast.

1.3.4. Towards proving hardness of hyperdeterminants. The mystery surrounding the hard-
ness of computing the hyperdeterminant drew us to the problems addressed in this work.
A technical difficulty in proving the hardness of the hyperdeterminants using well known
techniques (such as in [16]) is the following. When one tries to embed a hard computa-
tional problem into computing hyperdeterminants of three dimensional tensors, one of the
dimensions of blows up and we land in a tensor format for which the hyperdeterminant
does not exist. An important consequence of our reduction is that if solving homogeneous
multilinear equations is hard for some family boundary or interior formats, then so is
computing the hyperdeterminant! Therefore, to prove the hardness of computing hyper-
determinants, it now suffices to prove the hardness of solving homogeneous multilinear
equations for some family of boundary or interior formats. To this end, an intermediate
step might be to reduce solving inhomogeneous multilinear equations to solving homoge-
neous multilinear equations, since it seems easier to encode known NP-hard problems as
the former. Further, our work suggests it may be fruitful to consider boundary formats
such as (2n+1)× (n+1)× (n+1), for they may accommodate more geometric methods.

Finally, in § 5, we investigate the possibility of proving the hardness computing hyper-
determinants modulo primes. To this end, we identify the (cryptographically significant)
complexity class (TI) of tensor isomorphism problems as candidates to reduce from. In
particular, we reduce the tensor isomorphism problem with respect to the special linear
group action to computing hyperdeterminants modulo primes. But the tensor isomorphism
complexity class is defined with isomorphisms under the general linear group action. It
is not known if the tensor isomorphism problem with the special linear group action is
TI-hard. If the answer turns out to be yes, then our reduction implies that computing
hyperdeterminants modulo primes is cryptographically hard, in the sense that the average
case TI instances are distinguished from random tensor pairs by the hyperdeterminant.
If the hyperdeterminant were easy, those cryptosystems would be broken. Over fixed field
sizes, it might be possible to prove that the tensor isomorphism problem with the spe-
cial linear group action is indeed TI-hard, following ideas similar to [24]. We thank an
anonymous referee for pointing out this possibility and leave this to future work.

2. Preliminaries: Tensor singularity and hyperdeterminants

2.1. Cayley’s hyperdeterminants. Let V0, V1, . . . , Vr be r + 1 vector spaces over the
complex numbers C of respective dimensions k0 + 1, k1 + 1, . . . , kr + 1. Fix a coordinate
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system x(j) = (x
(j)
0 , x

(j)
1 , . . . , x

(j)
kj

) for the jth-vector space Vj , or equivalently an ordered

basis for the dual V ∗
j . Identify an (r+1) dimensional tensor A ∈ V ∗

0 ⊗V ∗
1 ⊗ . . .⊗V ∗

r with
an r + 1-dimensional matrix

A = (ai0,i1,...,ir , 0 ≤ i0 ≤ k0, 0 ≤ i1 ≤ k1, . . . , 0 ≤ ir ≤ kr)

of format (k0 + 1)× (k1 + 1)× . . .× (kr + 1).

Square matrices are a special case (r = 1 and k0 = k1) and come with the familiar
determinant whose vanishing characterises singularity/degeneracy. The hyperdetermi-
nant is a multidimensional generalisation of the determinant that characterises singu-
larity/degeneracy for tensors formats that generalise square matrices. We start with a
geometric definition, equivalent analytic (singularity) and algebraic (degeneracy) formu-
lations follow thereafter.

2.1.1. Geometric definition. Let P(Vj) ∼= Pkj be the projectivisation of Vj . We need the
Cartesian product of these projective spaces, yet desire that the product itself is projective.
Let X be the image of the Cartesian product (purely separable tensors) Pk0×Pk1×. . .×Pkr

under the Segre embedding

P(V0)× P(V1)× . . .× P(Vr) ↪−! P (V0 ⊗ V1 ⊗ . . .⊗ Vr) ∼= P(k0+1)(k1+1)...(kr+1)−1((
x
(0)
0 : x

(0)
1 : . . . : x

(0)
k0

)
, . . . ,

(
x
(r)
0 : x

(r)
1 : . . . : x

(r)
kr

))
(2.1)

7−!
(
x
(0)
0 x

(1)
0 . . . x

(r)
0 : . . . : x

(0)
k0

x
(1)
k1

. . . x
(r)
kr

)
.(2.2)

The image under the embedding is a smooth projective variety called the Segre variety,
which we denote by X. Let Xˇdenote the projectively dual variety of X consisting of all
hyperplanes in the ambient projective space P (V0 ⊗ V1 ⊗ . . .⊗ Vr) tangent to X at some
point. By projective duality (hyperplanes ↔ points), Xˇis a variety in the dual projective
space P (V0 ⊗ V1 ⊗ . . .⊗ Vr)

∗. Gelfand, Kapranov and Zelevinsky characterised precisely
when Xˇis a hypersurface (that is, co-dimension one). It is when the convexity condition

∀ 0 ≤ j ≤ r, kj ≤
∑
ℓ̸=j

kℓ

holds, which we assume from here on. Being a hypersurface, the defining equation ofXˇis a
homogeneous polynomial in the coefficients ai1,i2,...,id , defined to be the hyperdeterminant
Det(). It is an irreducible polynomial with integer coefficients. It can be made unique by
insisting that the coefficients are co-prime and choosing a sign.

2.1.2. Example. The first example is the r = 1 case, of the usual 2 dimensional matrices.
The convexity constraint simplifies to k0 = k1, confining to square matrices. For square
matrices, the hyperdeterminant coincides with the classical determinant. The following
first example in 3 dimensions goes back to Cayley [3] and the advent of hyperdeterminants.
It is synonymous with the tripartite entanglement measure 3-tangle of three qubits. The
hyperdeterminant of a 2× 2× 2 format tensor A indexed by the vertices of a cube is
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a000

a001

a010

a011

a100

a101

a110

a111
Det(A) = a2000a

2
111 + a2001a

2
110 + a2010a

2
101 + a2011a

2
100

−2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111
+a001a010a101a110 + a001a011a110a100 + a010a011a101a100)

+4(a000a011a101a110 + a001a010a100a111).

The first group of monomials correspond to the four opposing vertices across the main
diagonals. The second group to the six pairs of opposing sides. The last group to the two
tetrahedrons with edges on the diagonals of the faces.

2.1.3. Boundary and interior formats. Without loss of generality, assume from here on
that k0 ≥ k1 ≥ . . . ≥ kr. The convexity condition (which we remind, we always as-
sume) simplifies to k0 ≤

∑r
ℓ=1 kℓ. Boundary formats are those meeting the convexity

constraint with equality, that is k0 =
∑r

ℓ=1 kℓ. Interior formats are those satisfying the
strict convexity constraint k0 <

∑r
ℓ=1 kℓ.

3. Solving multilinear equations through hyperdeterminants

3.1. Hyperdeterminants, degeneracy of tensors and multilinear equations.

Definition 3.1. (Solving homogeneous multilinear equations) Given a tensor A, decide
if there is a w ∈ X such that in every dimension j,

∇A,j(w) :=
∑

0≤ij≤kj


∑

0≤i0≤k0
...

0≤ir≤kr

ai0,i1,...,irw
(0)
i0

w
(1)
i1

. . . w
(j−1)
ij−1

w
(j+1)
ij+1

. . . w
(r)
ir

x
(j)
ij

= 0
(
∈ V ∗

j

)
.

The inner summation is over all dimensions except j. If such a solution w exists, find one.
A tensor A is said to be degenerate if there is such a w.

Since the Segre variety X lives in the projective tensor space P (V0 ⊗ V1 ⊗ . . .⊗ Vr), it
is expensive to write down the solution w ∈ X as a tensor. Instead, we may output a
tuple of vectors in the Cartesian space Pk0 × Pk1 × . . .× Pkr whose image under the Segre
embedding is a solution w ∈ X.

Lemma 3.2. [12, Chap 14, Prop. 1.1] A tensor A is degenerate if and only if Det(A) = 0.

Proof. We sketch the proof from [12, Chap 14, Prop. 1.1] to give an impression of the con-
nection between degeneracy and hyperdeterminants. To this end, consider the following
analytic notion of singularity to complement the geometric definition of hyperdetermi-
nants. To clarify the relation of hyperdeterminants to singularity of tensors, ask when the
hyperplane {A = 0} carved by A is in X .̌ It is precisely when there is a point x ∈ X at
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which the hyperplane {A = 0} is tangent. This happens precisely when there is a point
x ∈ X such that the multilinear form (arising from the restriction of A on X)

fA(x) :=
∑

0≤i0≤k0
...

0≤ir≤kr

ai0,i1,...,irx
(0)
i0

x
(1)
i1

. . . x
(r)
ir

and all its partial derivatives
∂fA(x)

∂x
(j)
ij

, ∀j, ij

vanish. In particular, such an x is a singular point of the hyperplane {A = 0}. We may
thus identify the hyperdeterminantal variety Xˇwith singular tensors. By inspection, we
see that the condition for singularity and degeneracy are the same. □

Therefore the decision making part of solving homogeneous multilinear equations is
equivalent to testing if Det(A) = 0. Can hyperdeterminants be used to find solutions?
We prove that they can, for the generic case of the problem, which we next define.

Definition 3.3. (Solving generic homogeneous multilinear equations) Given a tensor A
with a promise that A is either non singular or a non singular point of X ,̌ solve the
homogeneous multilinear equation with input A.

We next justify why this promise version captures generic instances of the problem.
As we saw before, by projective duality, there is a point w ∈ X in the Segre variety
solving the homogeneous multilinear equation corresponding to A if and only if A is in
the Hyperdeterminantal variety X .̌ Further, A could either be a singular point (that
is, a zero of multiplicity greater than one) or a non singular point on X .̌ If A is a non
singular point in X ,̌ then there is a unique solution w, which the problem demands that
we find. If A is a singular point in X ,̌ then we have to detect that this is the case. But,
we do not have to find a solution. Remarkably, for dimension at least three (that is,
r > 1), excluding the interior format 2× 2× 2, Weyman and Zelevinsky proved that the
singular points of Xˇ form a co-dimension one projective sub variety [30]. Therefore, by
dimension considerations, a generic singular tensor is indeed a non singular point on X .̌
The non-generic tensor inputs we abandon are in a Zariski closed subspace.

A high dimensional Cramer’s rule. We reduce solving generic homogeneous multilinear
equation to computing hyperdeterminants through the following characterisation of the
unique solution by Gelfand, Kapranov and Zelevinsky [11, Proposition 1.2]. Let A be the
input describing the homogeneous multilinear equation with the promise that A is a non
singular point of X .̌ If Det(A) ̸= 0, output that there is no solution. If Det(A) = 0, then
the promise ensures that there is a unique solution w. Let B be a tensor of the same format
as the input A, but with with entries bi0,i1,...,ir that are commuting indeterminates. The
hyperdeterminant Det(B) is then an integer polynomial in the indeterminates bi0,i1,...,ir .
Up to a normalisation factor, for all i0, i1, . . . , ir, the unique solution

w =
(
w

(0)
0 w

(1)
0 . . . w

(r)
0 : . . . : w

(0)
k0

w
(1)
k1

. . . w
(r)
kr

)
∈ X ⊆ P (V0 ⊗ V1 ⊗ . . .⊗ Vr)

in the Segre variety satisfies

(3.1) w
(0)
i0

w
(1)
i1

. . . w
(r)
ir

=
∂Det(B)

∂bi0,i1,...,ir

∣∣∣
B=A

.
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It is too expensive to write out w as a point in the ambient tensor space P (V0 ⊗ V1 ⊗ . . .⊗ Vr).
Its pre-image((

w
(0)
0 : w

(0)
1 : . . . : w

(0)
k0

)
, . . . ,

(
w

(r)
0 : w

(r)
1 : . . . : w

(r)
kr

))
∈ P(V0)× P(V1)× . . .× P(Vr)

in the Cartesian space is a succinct representation that we can explicitly write down.
Returning a tuple of vectors as the solution is also in the spirit of the homogeneous linear
equations that we are generalising. Since A is a non singular point of X ,̌ there is at least

one (î0, î1, . . . , îr) such that ∂Det(B)
∂b

î0,î1,...,îr

∣∣∣
B=A

̸= 0. By equation 3.1, w
(0)

î0
, w

(1)

î1
, . . . , w

(r)

îr
are

all non zero, which allows us to set them all to one as normalisation,

w
(0)

î0
= w

(1)

î1
= . . . , w

(r)

îr
= 1.

With one non zero coordinate in each vector set to one, the ij-th coordinate of the j-th
vector is given by

(3.2) w
(j)
ij

=
∂Det(B)

∂b
î0,...,îj−1,ij ,îj+1,...,îr

∣∣∣
B=A

.

Given an arithmetic circuit to compute the hyperdeterminant (for the format of A), the
Baur-Strassen algorithm [1] constructs an arithmetic circuit that computes all k0k1 . . . kr
of the partial derivatives(

∂Det(B)

∂bi0,i1,...,ir

∣∣∣
B=A

, 0 ≤ j ≤ r, 1 ≤ i0 ≤ k0, 1 ≤ i1 ≤ k1, . . . , 1 ≤ ir ≤ kr

)
sought (in determining non zero coordinates and in equation 3.2) at once. Remarkably,
the size of this arithmetic circuit is only a small constant times that of the circuit for
computing the hyperdeterminant.

Remark 3.4. For our reduction of solving multilinear equations to hyperdeterminants
to hold for quantum algorithms, we need a quantum version of Baur-Strassen that con-
verts a quantum circuit computing the hyperdeterminant into one computing all its partial
deivatives demanded by equation 3.2. While there is work on quantum versions of Baur-
Stassen/automatic differentiation, they are not known to work in generality. But there is
an approximate algorithm of Jordan [13] for computing the gradient that suffices if we are
only interested in solving the multilinear system up to first order errors.

4. Hyperdeterminants of boundary format

In this section, we devise an algorithm that given a boundary format tensor A, computes
its hyperdeterminant. The algorithm can be realised as an arithmetic circuit. Recall that
for boundary formats, k0 = k1 + k2 + . . . + kr. Hyperdeterminants of boundary formats
have a simple interpretation as resultants of a system of multilinear forms following the
“Cayley trick”. Slices of A in the first dimension form a collection of k0 + 1 multilinear
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forms

(4.1) f
(i0)
A (x) :=

∑
0≤i1≤k1

...
0≤ir≤kr

ai0,i1,...,irx
(1)
i1

x
(2)
i2

. . . x
(r)
ir

, 0 ≤ i0 ≤ k0.

The hyperdeterminant Det(A) vanishes precisely when the resultant of f
(i0)
A (x), 0 ≤ i0 ≤

k0 does. For positive integers s1, s2, . . . , sr, let

S(s1, s2, . . . , sr) ∼= Syms1(V1)⊗ Syms2(V2)⊗ . . .⊗ Symsr(Vr)

denote the space of polynomials that are for each j ∈ 1, 2, . . . , d homogeneous of degree

sj in the coordinates x
(j)
ij

, 0 ≤ ij ≤ kj . Set m1 := 0 and for j > 1, set mj := k1 + k2 +

. . . + kj−1. The conception of our algorithms is primarily due to the following theorem
relating boundary format hyperdeterminants to determinants of large matrices built with
the above slices.

Theorem 4.1. (Gelfand-Kapranov-Zelevinsky, [11][Theorem 4.3]) The hyperdeterminant
Det(A) of a boundary format A ∈ V ∗

0 ⊗ V ∗
1 ⊗ . . .⊗ V ∗

r equals (up to sign) the determinant
of the linear operator

δA : S(m1,m2, . . . ,mr)
k0+1 −! S(m1 + 1,m2 + 1, . . . ,mr + 1)

(g0, g1, . . . , gk0) 7−!
k0∑

i0=0

f
(i0)
A gi0 .

Proof. See [11][Theorem 4.3] or [7] for proofs. □

The matrix of δ is indeed square. We may count monomials and verify that the dimen-
sions

dim
(
S(m1,m2, . . . ,mr)

k0+1
)
=

(k0 + 1)!

k1!k2! . . . kr!

and

dim (S(m1 + 1,m2 + 1, . . . ,mr + 1)) = (k1 + k2 + . . .+ kr + 1)

(
k1 + k2 + . . .+ kr

k1, k2, . . . , kr

)
of the two spaces of polynomials are the same. By theorem 4.1, this count is also the
degree of the hyperdeterminant

(4.2) deg(Det(A)) =
(k0 + 1)!

k1!k2! . . . kr!
= (k1 + k2 + . . .+ kr + 1)

(
k1 + k2 + . . .+ kr

k1, k2, . . . , kr

)
.

Theorem 4.1 gives a determinantal identity for each choice of permutation of the vector
spaces V1, V2, . . . , Vr, which is implicit in the statement. It is not clear if there is a choice
of permutation better suited to computation than the others. We now have all the ingre-
dients to describe the hyperdeterminant computation.
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Computation of the hyperdeterminant. Let A be the input tensor. Fix lexicographic or-
dered monomial bases P and Q respectively for S(m1,m2, . . . ,mr) and S(m1 + 1,m2 +
1, . . . ,mr + 1). With bases fixed, we will also denote the matrix of δA by δA. For

p ∈ P, q ∈ Q, the (p, q)-th entry δ
(p,q)
A of δA is either 0 or an ai′0,i′1,...,i′r for some i′0, i

′
1, . . . , i

′
r.

Since log(deg(Det(A))) is polynomial in k0, the encoding (p, q) 7−! 0 or i′0, i
′
1, . . . , i

′
r is easy

to compute in time polynomial in k0. This encoding transforms an arithmetic circuit for

computing the determinant of a (k0+1)!
k1!k2!...kr!

× (k0+1)!
k1!k2!...kr!

square matrix into an arithmetic cir-

cuit to compute the hyperdeterminant. The complexity of the circuit is O

((
(k0+1)!

k1!k2!...kr!

)4)
,

using a division-free circuit for the determinant [17].
We conclude with an illustrative example of the determinantal identity underlying the
hyperdeterminant computation.

Example. LetA = (ai0,i1,i2) be a tensor of the simplest three dimensional boundary format,

namely 3×2×2. Through lexicographic monomial orderings, fix ordered bases
(
x
(2)
0 , x

(2)
1

)
of S(0, 1) and

(
x
(1)
0 x

(2)
0 x

(2)
0 , x

(1)
0 x

(2)
0 x

(2)
1 , x

(1)
0 x

(2)
1 x

(2)
1 , x

(1)
1 x

(2)
0 x

(2)
0 , x

(1)
1 x

(2)
0 x

(2)
1 , x

(1)
1 x

(2)
1 x

(2)
1

)
of S(1, 2). Then

δA : S(0, 1)3 −! S(1, 2)

corresponds to the matrix
a000 0 a100 0 a200 0
a001 0 a101 0 a201 0
a010 a000 a110 a100 a210 a200
a011 a001 a111 a101 a211 a201
0 a010 0 a110 0 a210
0 a011 0 a111 0 a211

 .

5. On the hardness of computing hyperdeterminants modulo primes

Let p denote a prime. Recall from § 2 that for valid tensor formats, Det() is a poly-
nomial with integer coefficients, that is primitive and uniquely defined by choosing a
sign. We prove that given a tensor A = (ai0,i1,i2 , 0 ≤ i0, i1, i2 ≤ n) of “cubical” format
(n+ 1)× (n+ 1)× (n+ 1) with integer coordinates (that is, ∀(i0, i1, i2), ai0,i1,i2 ∈ Z), it is
hard to compute Det(A) mod p, under certain post-quantum cryptographic assumptions.

Let Fp denote the finite field with a prime number p element. Fix an algebraic closure
F̄p of Fp. The theory of hyperdeterminants is yet to be worked out rigorously over F̄p,
unlike the theory over complex numbers developed by Gelfand, Kapranov and Zelevinsky.
The key issue is that the geometric theory of projective duality used in the very definition
of hyperdeterminants does not in general translate to positive characteristic. Thankfully,
in our particular context, the duality used to define and prove the existence of hyperdeter-
minants is proven to hold true over F̄p for all primes p by Kaji [14]. We will work under the
assumption that the basic properties of hyperdeterminants from [11] translate to F̄p. In
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particular, the hyperdeterminant over F̄p is Det(A) mod p, the hyperdeterminant over the
integers modulo p. We defer rigorous proofs to later works, focusing instead on sketching
the main ideas in the reduction.

We next state the computational problem of computing hyperdeterminants modulo
primes. To control the length of the input, without loss of generality, we may assume that
the coordinates ai0,i1,i2 ∈ Fp instead of being integers. It is therefore convenient to think
of the input as being

A = (ai0,i1,i2 , 0 ≤ i0, i1, i2 ≤ n) ∈ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ ⊗ (Fn+1
p )∗

of “cubical” format (n+1)×(n+1)×(n+1) over Fp. Let Detn+1,p() denote the polynomial
over Fp obtained by reducing Det() modulo p. In particular,

Detn+1,p() ∈ Fp[ai0,i1,i2 , 0 ≤ i0, i1, i2 ≤ n]

is a non zero polynomial in the coordinate ring of A. As a convention, we will use
Detn+1,p() to denote the polynomial and Detn+1,p(A) to denote its evaluation at a ten-
sor A. The computational problem in question is then given a tensor A to compute
Detn+1,p(A) ∈ Fp. Associated with a cubical tensor A ∈ (Fn+1

p )∗ ⊗ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ is
the trilinear form

fA(x
(0), x(1), x(2)) :=

∑
0≤i0,i1,i2≤n

ai0,i1,i2x
(0)
i0

x
(1)
i1

x
(2)
i2

.

Triples (G0, G1, G2) ∈ (GLn+1(Fp))
3 of invertible (n+ 1)× (n+ 1) matrices act on A (or

equivalently fA) in the natural way,

(G0, G1, G2) ◦ fA := fA(G0x
(0), G1x

(1), G2x
(2)).

Call two tensors A and B as isomorphic if there exists a triple (G0, G1, G2) ∈ (GLn+1(Fp))
3

such that fB = (G0, G1, G2) ◦ fA. This is indeed an equivalence relation. In particular, it
is symmetric since fB = (G0, G1, G2) ◦ fA if and only if fA = (G−1

0 , G−1
1 , G−1

2 ) ◦ fB.

The Tensor Isomorphism Problem. To decide if two cubical tensors over finite fields
are isomorphic is the tensor isomorphism problem, which is believed to be hard. Grochow
and Qiao built an intricate web of hard problems that reduce to tensor isomorphism, in-
cluding some longstanding hard problems that lay at the foundation of multivariate cryp-
tography. Complexity theoretically, the tensor isomorphism problem is NP ∩ co − AM ,
and believed to be hard on average in theory and practice [9]. The best known run

time of pO(n11/6) is through Sun’s p-group isomorphism algorithm [28] (in conjunction
with a reduction in [8]). The promise search version, given two isomorphic A,B to find
a (G0, G1, G2) ∈ (GLn+1(Fp))

3 such that fB = (G0, G1, G2) ◦ fA is also believed hard.
Spurred on by this hardness, several post-quantum digital signature schemes including
MEDS [5] and ALTEQ [2, 29] have recently been proposed and submitted to NIST call
for post-quantum signatures, all reliant on tensor isomorphism hardness assumptions, or
hardness assumptions that reduce to tensor isomorphism.
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We focus our attention on MEDS which involves the exact tensor isomorphism stated
in our context. The signature scheme is built as follows. First a zero-knowledge interac-
tive protocol is constructed based on the Goldreich-Micali-Wigderson protocol for graph
isomorphisms. Except, the graph isomorphism problem is recast with tensor isomorphism
problem. Then the interaction in the zero-knowledge protocol is removed using the Fiat-
Shamir transformation to yield a signature scheme. We identify the following hardness
assumption underlying the soundness and zero-knowledge proofs of the interactive protocol
as one that easily relates to hyperdeterminants.

Assumption 5.1. Draw a tensor A ∈ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ ⊗ (Fn+1
p )∗ uniformly at random.

Draw a triple (G0, G1, G2) ∈ (GLn+1(Fp))
3 of invertible matrices uniformly at random and

set fB := (G0, G1, G2) ◦ fA. The pair (A,B) is computationally indistinguishable from a

uniformly random pair of tensors in
(
(Fn+1

p )∗ ⊗ (Fn+1
p )∗ ⊗ (Fn+1

p )∗
)2
.

An algorithm that distinguishes such an isomorphic pair (A,B) from a uniformly ran-
dom pair of tensors can be used to either recover the key in a No-Message-Attack or forge
the signature in a Chosen-Message-Attack.

Unfortunately, we don’t quite know how to use the hyperdeterminant to build a distin-
guisher for assumption 5.1. The reason being that the hyperdeterminant is only a relative
invariant of the (GLn+1(Fp))

3 action. That is, for all A ∈ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ ⊗ (Fn+1
p )∗

and for all (G0, G1, G2) ∈ (GLn+1(Fp))
3,

Detn+1,p((G0, G1, G2) ◦ fA) = C(G0, G1, G2)Detn+1,p(fA),

where the “constant” C(G0, G1, G2) depends on the acting matrices. However, if we
restrict to (SLn+1(Fp))

3 action, then the hyperdeterminant is an invariant, that is, for all
A ∈ (Fn+1

p )∗ ⊗ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ and for all (G0, G1, G2) ∈ (SLn+1(Fp))
3,

Detn+1,p((G0, G1, G2) ◦ fA) = Detn+1,p(fA).

We observe that there is a natural hardness reduction from the tensor isomorphism prob-
lem restricted to the (SLn+1(Fp))

3 action to the hyperdeterminant. To this end, we next
write out the hardness assumption restricted to the (SLn+1(Fp))

3 action, followed by
the distinguisher with blackbox access to the hyperdeterminant that reduces the tensor
isomorphism problem with the (SLn+1(Fp))

3 action to the hyperdeterminant.

Assumption 5.2. Draw a tensor A ∈ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ ⊗ (Fn+1
p )∗ uniformly at random.

Draw a triple (G0, G1, G2) ∈ (SLn+1(Fp))
3 of determinant one matrices uniformly at ran-

dom and set fB := (G0, G1, G2)◦fA. The pair (A,B) is computationally indistinguishable

from a uniformly random pair of tensors in
(
(Fn+1

p )∗ ⊗ (Fn+1
p )∗ ⊗ (Fn+1

p )∗
)2
.

Distinguisher: Given a pair of tensors (A,B) ∈
(
(Fn+1

p )∗ ⊗ (Fn+1
p )∗ ⊗ (Fn+1

p )∗
)2
, de-

cide that the input is a pair of isomorphic tensors if and only ifDetn+1,p(A) = Detn+1,p(B).

By invariance, if A and B are isomorphic, then indeed Detn+1,p(A) = Detn+1,p(B),
meaning the distinguisher is always correct when presented with two isomorphic tensors.
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Therefore, for our distinguisher to succeed, it suffices to prove that for a uniformly random
tensor A, det(A) is not concentrated on a particular value in Fp. In the following lemma, for
large enough field size p (growing exponentially with n), we prove for uniformly random A
that Det(A) is close to uniformly distributed. For such large p, our distinguisher succeeds
with probability close to 1− 1/p. We take the lemma as strong evidence that there is no
arithmetic obstruction to equidistribution, meaning equidistribution should hold for even
for small p. The requirement on p being large is merely an artifact our proof methods and
our distinguisher should succeed with probability close to 1− 1/p for all p.

Lemma 5.3. Fix the tensor dimension n and a positive parameter c > 1. For every large

enough prime p ≥ (n/2)
c−1
c 2

(c−1)n
c (1+ 3

2
log2 n), and for every u ∈ Fp,

ProbA (Detn+1,p(A) = u) ≤ 1

p1/c
+ o

(
1

p
1
c

)
,

where the probability is taken over uniform A ∈ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ ⊗ (Fn+1
p )∗. For even

larger primes p with p ≥ 5(n/2)13/32
13n
3 (1+ 3

2
log2 n), for every u ∈ Fp,

ProbA (Detn+1,p(A) = u) ≤ 1

p
+ o

(
1

p

)
,

a tighter bound showing that the Hyperdeterminant values are nearly uniformly distributed.

Proof. Since the hyperdeterminant is a primitive polynomial with integer coefficients, re-
duction by p gives a non zero polynomial Detn+1,p() ∈ Fp[ai0,i1,i2 , 0 ≤ i0, i1, i2 ≤ n]. By
[12, Cor. 2.9], its degree is bounded by

deg(Detn+1,p()) ≤
∑

0≤j≤k/2

(j + k1)!

j!3(k − 2j)!
2k−2j ≤

∑
0≤j≤k/2

n3j2n−2j ≤ n

2
2n(1+

3
2
logn).

Further, Detn+1,p()− u is a non-zero polynomial with the same degree bound. Bounding
the number of roots of Detn+1,p()− u by Schwartz-Zippel lemma [23],

ProbA (Detn+1,p(A) = u) ≤ deg(Detn+1,p()− u)

p
.

This proves the first bound in the lemma, for every choice of c > 1. If one desires
a tighter bound towards the uniformity of the hyperdeterminant values, we can resort
to the more sophisticated Lang-Weil bound [15]. The fewer the number of components
of the variety generated by Detn+1,p() − u, the better the Lang-Weil bound. Over the
complex numbers, the hyperdeterminant is an absolutely irreducible integer polynomial.
By analogy, Detn+1,p() − u is irreducible in F̄p[ai0,i1,i2 , 0 ≤ i0, i1, i2 ≤ n]. The variety
Detn+1,p()− u defines has only one component and the Lang-Weil bound implies

ProbA (Detn+1,p(A) = u) ≤ 1

p
+Odeg(Detn+1,p()−u)

(
1

p

)
.

But the asymptotic notation Odeg(Detn+1,p()−u) () in the original Lang-Weil paper hides
terms depending on n that are too big. Therefore, we look to the effective version of
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the Lang-Weil bound, optimized for irreducible hypersurfaces in [25, Thm. 2], which for

p > 5 deg(Detn+1,p()− u)13/3 implies

ProbA (Detn+1,p(A) = u) ≤ 1

p
+
(deg(Detn+1,p()− u)− 1) (deg(Detn+1,p()− u)− 2)

p3/2
+

5

p2
.

Therefore, for p ≥ 5(n/2)13/32
13n
3 (1+ 3

2
log2 n) ≥ 5 deg(Detn+1,p()−u)13/3, the second bound

claimed in the lemma is true. □

In light of this reduction, to prove tensor isomophism hardness of computing the hy-
perdeteminant, it suffices to answer the following open question in the affirmative.

Question 5.4. Is the problem of deciding if for two given tensors A and B there ex-
ists a triple (G0, G1, G2) ∈ (SLn+1(Fp))

3 of determinant one matrices such that fB =
(G0, G1, G2) ◦ fA tensor isomorphism hard? In other words, is there a polynomial time
reduction from the tensor isomorphism problem with (GLn+1(Fp))

3 action to that with
(SLn+1(Fp))

3 action?

We suspect that the answer to the question is yes, but also advise caution. Tensor
isomorphism problems with other matrix group actions such as the orthogonal, symplectic
or unitary (over complex numbers) are in practice easier than the general linear group
actions [4].

Remark 5.5. For pairs (n, p) such that p− 1 divides deg(Detn+1,p())/(n+1), our distin-
guisher for the (SLn+1(Fp))

3 actually also works as a distinguisher for the (GLn+1(Fp))
3

action. Therefore, restricted to the pairs (n, p) satisfying p−1 divides deg(Detn+1,p())/(n+
1), the hyperdeteminant is at least as hard as the cryptographically hard problem underly-
ing MEDS.

The reason is that the relative invariance of the hyperdeterminant with respect to the
GLn+1(Fp)

3 action takes the following form (c.f. proof of theorem 4.4 in [19]). For all
A ∈ (Fn+1

p )∗ ⊗ (Fn+1
p )∗ ⊗ (Fn+1

p )∗ and for all (G0, G1, G2) ∈ (GLn+1(Fp))
3,

Detn+1,p((G0, G1, G2)◦fA) = (Det(G0)Det(G1)Det(G2))
deg(Detn+1,p())/(n+1)Detn+1,p(fA).

But for p such that p− 1 divides deg(Detn+1,p())/(n+ 1),

(Det(G0)Det(G1)Det(G2))
deg(Detn+1,p())/(n+1) = 1,

since raising a non zero element in Fp to the p− 1-th power is one. Therefore, for (n, p)
such that p − 1 divides deg(Detn+1,p())/(n + 1), the hyperdeterminant is actually an in-
variant of the GLn+1(Fp)

3 action, not merely a relative invariant.

Let us pause to understand the pairs (n, p) for which the reduction applies. By [12, Cor.
2.9], the degree of the cubical hyperdeterminant is

deg(Detn+1,p()) =
∑

0≤j≤k/2

(j + k1)!

j!3(k − 2j)!
2k−2j ≤

∑
0≤j≤k/2

n3j2n−2j ≤ n

2
2n(1+

3
2
logn).
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Further, deg(Detn+1,p()) is divisible by n+1, although it is not apparent from the expres-
sion ([19, Theorem 4.4]). For a choice of n, there are at most finitely many p satisfying the
condition p− 1 divides deg(Detn+1,p())/(n+1). Some of these primes may be exponential
in n, which is consistent with the large size of primes chosen in MEDS and ALTEQ. The
number of pairs (n, p) satisfying the condition should be infinite assuming some widely
believed conjectures on the distribution of primes in polynomial values, but is difficult to
prove unconditionally.

Remark 5.6. Recently, Ran and Samardjiska [20] identified a potential weakness in MEDS
and ALTEQ signature schemes that rely on the hardness of tensor isomorphism problems.
If the public keys chosen turn out to support a certain triple of points they call “triangles”,
then the isomorphism problem may be easier than the generic case. They further describe
Grobner basis based algorithms for detecting and finding triangles. If such triangles exist,
their algorithms can strip several bits of security off the schemes. Therefore, careful anal-
ysis of the weak key issue they identified is warranted. We observe that in the language
of hyperdeterminants these weak keys correspond to singular tensors and the triangles are
solutions to the homogeneous multilinear equations in 3.1 modulo p. Further, hyperde-
terminants play a curious role in analysing this critical weak key security issue. First,
Detn+1,p() being irreducible over F̄p means that weak keys arise with probability roughly 1

p .

Therefore, increasing p to be exponential in the security parameter is an immediate remedy
(at the cost of efficiency, needing slightly larger signature lengths etc.). If zero testing the
hyperdeterminant (that is, given a tensor A deciding if Detn+1,p(A) = 0) turns out to
be easy, then it can be used to test and weed out the weak keys. Further, any algorithm
for computing the hyperdeterminant Detn+1,p() can be turned into one for computing the
triangles through our tensor Cramer’s rule algorithm in § 3.1.
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