
Faster & Deterministic FPT Algorithm for Worst-Case Tensor
Decomposition

Vishwas Bhargava∗ Devansh Shringi†

July 22, 2024

Abstract

We present a deterministic 2kO(1)poly(n, d) time algorithm for decomposing d-dimensional,
width-n tensors of rank at most k over R and C. This improves upon the previous randomized
algorithm of Peleg, Shpilka, and Volk (ITCS ’24) that takes 2kkO(k)

poly(n, d) time and the de-
terministic nkk time algorithms of Bhargava, Saraf, and Volkovich (STOC ’21).

Our work resolves an open question asked by Peleg, Shpilka, and Volk (ITCS ’24) on
whether a deterministic FPT algorithm exists for worst-case tensor decomposition. We also
make substantial progress on the fundamental problem of how the tractability of tensor decom-
position varies as the tensor rank increases. Our result implies that we can achieve deterministic
polynomial-time decomposition as long as the rank of the tensor is at most (log n)1/C , where
C is some fixed constant independent of n and d. Further, we note that there cannot exist a
polynomial-time algorithm for k = Ω(log n), unless ETH fails. Our algorithm works for all
fields; however, the time complexity worsens to 2kkO(1)

and requires randomization for finite
fields of large characteristics. Both conditions are provably necessary unless there are improve-
ments in the state of the art for system solving over the corresponding fields.

Our approach achieves this by designing a proper learning (reconstruction) algorithm for
set-multilinear depth-3 arithmetic circuits. On a technical note, we design a “partial” clustering
algorithm for set-multilinear depth-3 arithmetic circuits that lets us isolate a cluster from any
set-multilinear depth-3 circuit while preserving the structure of the circuit.

1 Introduction

Tensors, higher-dimensional analogues of matrices, are multi-dimensional arrays with entries from
a field F. For instance, a 3-dimensional tensor can be written as T = (αi,j,k) ∈ Fn1×n2×n3 . The
notion of tensor rank and tensor decomposition is one of the most important tools in modern science.

∗David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada. Email:
vishwas1384@gmail.com.

†Department of Computer Science, University of Toronto, Toronto, Canada. Email: devansh@cs.toronto.edu .

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 123 (2024)

Tensor rank and decomposition have become fundamental tools in various branches of science, with
applications in machine learning, statistics, signal processing, computational complexity. Even,
within machine learning theory tensor decomposition algorithms are leveraged to give efficient
algorithms for phylogenetic reconstruction [MR05], topic modeling [AFH+12], community detection
[AGHK14], independent component analysis [MW18], and learning various mixture models [HK13,
JO14]. For more details on the applications of tensor decomposition and the rich theory of tensors
in general, we refer the reader to the detailed monograph by Landsberg [Lan12] and the references
therein.

We will work with general d-dimensional tensors T = (αj1,j2,...,jd
) ∈ Fn1×···×nd . The rank of

a tensor T is defined as the smallest r for which T can be written as a sum of r tensors of rank
1, where a rank-1 tensor is a tensor of the form v1 ⊗ · · · ⊗ vd with vi ∈ Fni . Here, ⊗ denotes the
Kronecker (outer) product, also known as the tensor product. The expression of T as a sum of such
rank-1 tensors over the field F is called F-tensor decomposition, or simply tensor decomposition.

Tensor decomposition is a notoriously 1 difficult problem. Håstad [Hås90] who showed that
determining the tensor rank is an NP-hard over Q and NP-complete over finite fields. The follow
up work of Schafer and Stefankovic [SS16] further improved our understanding by giving a very
tight reduction from algebraic system solving. Formally, they show that for any field F, given a
system S of algebraic equations over F, we can in polynomial time construct a 3-dimensional tensor
τS and an integer k such that S has a solution in F iff τS has rank at most k over F.

Despite the known hardness results, tensor decomposition remains widely studied due to its
broad applicability. There is a rich history of tensor decomposition algorithms in the literature.
Most of these algorithms are average-case (i.e., they work when the entries are sampled randomly
from a distribution) or heuristic. See, for instance, [LRA93, DCC07, GVX14, BCMV14, AGJ15].
This area also includes interesting active research directions, such as making these algorithms noise-
resilient and studying their smoothed analysis [BKS15, SS17, HSS19, KP20, DdL+22].
On the other hand, tensor decomposition in the worst-case scenario has only recently started to
receive attention. Firstly, the work of Bhargava, Saraf, and Volkovich [BSV21] provided an nkk time
algorithm to decompose rank k tensors, showing that an efficient algorithm exists to decompose
fixed-rank tensors.

The next natural step in furthering the understanding of this NP-hard problem is studying
its Fixed Parameter Tractability (FPT). In the FPT setting, the input instance comes with a
parameter k with specific quantities (e.g., the optimum treewidth of a graph). In our case of
tensor decomposition, this parameter is the tensor rank. This setting treats k as a parameter much
smaller than the instance size n, thus relaxing the required runtime of the algorithm from nO(1)

to f(k) · nO(1), for any computable function f . The class FPT comprises parameterized problems
that admit an algorithm with this running time.

Peleg, Shpilka, and Volk [PSV24] designed a randomized FPT algorithm for decomposing rank k

tensors. Specifically, they provided a randomized kkkO(k)

poly(n, d) time algorithm for decomposing
1The seminal work of Lim and Hiller [HL13] aptly justifies the use of this adjective.

2

rank k tensors. As a direct consequence, they demonstrated that tensors can be decomposed in
polynomial time even beyond constant tensor rank up to O(log log log n/ log log log log n).

Both these works, use a standard connection between tensor decomposition and decomposing
special depth-3 arithmetic circuits. We start by describing this connection below.
For a tensor T = (αj1,j2,...,jd

) ∈ Fn1×···×nd consider the following polynomial

fT (X)
∆
=

∑
(j1,...,jd)∈[n1]×···×[nd]

αj1,j2,...,jd
x1,j1x2,j2 · · ·xd,jd

.

Let C(X) =
k∑

i=1

d∏
j=1

ℓi,j(Xj) be a set-multilinear depth-3 circuit over F respecting the partition

⊔j∈[d]Xj (denoted by ΣΠΣ{ ⊔jXj }), and computing fT (X). Then observe that

T =
k∑

i=1
v(ℓi,1)⊗ · · · ⊗ v(ℓi,d)

where v(ℓi,j) corresponds to the linear form ℓi,j as an nj-dimensional vector over F. Indeed, it is
easy to see that a tensor T = (αj1,j2,...,jd

) ∈ Fn1×···×nd has rank at most r if and only if fT (X)

can be computed by a ΣΠΣ{ ⊔jXj }(r) circuit. Therefore, the rank of T is the smallest k for which
fT (X) can be computed by a ΣΠΣ{ ⊔jXj }(k) circuit. We say that a ΣΠΣ{ ⊔jXj } circuit has width
w, if |Xj | ≤ w for all j.

Keeping this connection in mind, we get that if we can learn the optimal representation of fτ

as an ΣΠΣ{ ⊔jXj } circuit, that will directly give an optimal tensor decomposition of τ as well.
The problem of learning a circuit representation of a polynomial from black-box (a.k.a. ora-
cle/membership query) access to the polynomial is referred to as arithmetic circuit reconstruction.
This problem is the algebraic analogue of exact learning in Boolean circuit complexity [Ang88]. In
the past few years, much attention has focused on reconstruction algorithms for various interest-
ing subclasses of arithmetic circuits, both in the worst-case setting [BBB+00, KS01, KS06, FS12a,
BSV20] as well as in the average-case setting [GKL11, GKQ14, KNST17, KNS18, KS19, GKS20a,
BGKS22]. Given the natural expressibility of polynomials (and algebraic circuits), arithmetic cir-
cuit reconstruction links and connects to many other learning problems. It is not just restricted
to tensor decomposition but also extends to other fundamental learning problems like learning
mixtures of Gaussians and subspace clustering [JLV23, GKS20b, CGK+24]. It is a very interesting
research direction to find other such connections.

Returning to the aforementioned connection, we now focus on learning these special depth-three
circuits. A set-multilinear depth-3 circuit with respect to a partition X and top fan-in k, denoted
by ΣΠΣ{ ⊔jXj }(k), computes a set-multilinear polynomial of the form:

C(X) =
k∑

i=1

d∏
j=1

ℓi,j(Xj),

3

where ℓi,j(Xj) is a linear form in F[Xj]. A polynomial P ∈ F[X] is called set-multilinear with
respect to the partition X if every monomial that appears in P is of the form xi1xi2 · · ·xid

, where
xij ∈ Xj . The relation between tensors and depth-three set-multilinear circuits is discussed in
detail in Section 4.2. We assume black-box (or oracle/membership query) access to the polynomial
f rather than access to the full tensor τ . Simply reading the entries of the tensor would require nd

time. However, in the low-rank case, we can learn the decomposition with far fewer measurements.
This approach, known as studying or decomposing tensors using evaluations of f or "measurements"
of the tensor τ , has been extensively studied in the literature [FS12b, CM20].

Non-uniqueness of tensor decomposition: One reason for the hardness of tensor decompo-
sition is its non-uniqueness. This is evident even in the average-case setting due to the limitations of
any tensor decomposition algorithm beyond Kruskal’s uniqueness bounds [LP23, Wei23]. Naturally,
in the worst-case setting, things become even more convoluted.

(
1
0

)
⊗
(

1
0

)
⊗

1
0
0

− 5
(

1
1

)
⊗
(

1
1

)
⊗

1
1
1

+ 10
(

1
2

)
⊗
(

1
2

)
⊗

1
2
4


= 10

(
1
3

)
⊗
(

1
3

)
⊗

1
3
9

− 5
(

1
4

)
⊗
(

1
4

)
⊗

 1
4
16

+

(
1
5

)
⊗
(

1
5

)
⊗

 1
5
25

 .

Figure 1: An example of non-uniqueness of tensor decomposiytion by Derksen [Der13].

Fortunately, thanks to strong structural results on polynomial identities of depth-3 circuits, we
can obtain strong almost-uniqueness results for such circuit representations. These are structural
results for identically zero ΣΠΣ(k) circuits, and essentially show that under some mild conditions,
any ΣΠΣ(k) circuit which computes the identically zero polynomial must have its linear forms
contained in a “low-dimensional” space. And, in the case of set-multilinear depth-3 circuits it
implies that the circuit is of “low-degree” after stripping the linear factors. Observe that two
different ways of writing a polynomial constitute an elaborate polynomial identity. This directly
yields that two ΣΠΣ{ ⊔jXj } decompositions of fτ will differ on only poly(k)-linear forms. For more
details into these structural results for ΣΠΣ{ ⊔jXj } decompositions, we refer the reader to check
out [BSV21, Section 3.4.2].

2 Our Results

As described in the previous section, the problem of worst-case tensor decomposition, or equiva-
lently, proper learning of ΣΠΣ{ ⊔jXj }(k) circuits, was studied in [BSV21], where the authors pre-
sented a deterministic algorithm with a running time of poly(dk3 , kkk10

, n). This algorithm runs in
polynomial time when k is a constant. This was extended beyond constant rank in the recent work
of [PSV24], where they proposed a randomized algorithm with a running time of kkkO(k)

·poly(n, d).

4

This algorithm runs in randomized polynomial time for tensor rank k = O
(

log log log n
log log log log n

)
.

In [PSV24, Section 1.4], two open problems were posed: Firstly, to understand how the tractabil-
ity of tensor decomposition changes as tensor rank increases; and secondly, whether a deterministic
fixed-parameter tractable (FPT) algorithm exists for worst-case tensor decomposition.

We make significant progress in answering the first question and completely resolve the second.
We now state our result for learning set-multilinear ΣΠΣ(k) arithmetic circuits.

Theorem 2.1 (Learning ΣΠΣ{ ⊔jXj }(k) circuits). Given blackbox access to degree d, n variate
polynomial f computable by a set-multilinear ΣΠΣ{ ⊔jXj }(k) circuit C with top fan-in k over F = R

or C, then there exists a deterministic algorithm that outputs a set-multilinear ΣΠΣ{ ⊔jXj }(k)

circuit over F with top fan-in k computing f in time F (k, n, d) = 2kO(1) · poly(n, d).

As a direct consequence of the above theorem, we get the following corollary.

Corollary 2.2 (Decomposing rank k tensors). Let T ∈ Fn1×···×nd be a d-dimensional tensor of
rank at most k with F = R or C. Let n =

∑d
i=1 ni. Given black-box access to measurements of T

(equivalently to evaluations of fT), there exists a deterministic poly(2kO(1) , d, n) time algorithm for
computing a decomposition of T as a sum of at most k rank 1 tensors.

Note that just reading the entries of the tensor will require nd time. However, the above corollary
states that in the low-rank case, we can learn the decomposition with much fewer measurements of
the tensor.

As a direct consequence of the above result, we can perform tensor decomposition for any tensor
with tensor rank k = O((log n)1/C) in poly(n, d) time for a fixed constant C. This substantially
improves the previously known tensor rank bound of k = O

(
log log log n

log log log log n

)
.

Remark 2.3. On the intractability/hardness side, using Håstad’s [Hås90] tight reduction between
tensor rank and SAT, we see that even testing tensor rank will require 2Ω(k) time assuming the
Exponential Time Hypothesis (ETH, [IP01]). This demonstrates that our time complexity is some-
what tight (with respect to the parameter k). To see this, we first note that Håstad ([Hås90, Lemma
2]) converts a 3-SAT instance with n variables and m clauses to a tensor τ ∈ F(2+n+2m)×3n×(3n+m)

of size with rank k = 4n + 2m if and only if the 3-SAT instance is satisfiable. Thus, the overall
reduction only incurs a linear blow-up, which directly implies the hardness result assuming ETH.

Comparison with previous works Two main works [BSV21, PSV24] have previously addressed
this problem using similar approaches, and below we describe why exactly the approaches in these
two works fail to achieve the required deterministic running time of 2kO(1) .

• In [BSV21], the authors develop a way of computing almost all of the linear forms in the
circuit C. After this, they have to brute-force search over all subsets of the variable partition
{⊔jXj } of size O(k) to obtain linear forms from each of the gates. This fails the required
running time for an FPT algorithm as it adds a dO(k) factor to the running time.

5

• In [PSV24], the authors focus on the reconstruction of multilinear circuits and consequently
provide a reconstruction algorithm for set-multilinear circuits. Their approach hinges on
obtaining black-box access to a cluster of multilinear gates such that the cluster representation
is unique. The benefit of this approach is that, thanks to the uniqueness, we can aim to obtain
black-box access to a cluster of gates. However, even after removing the linear factors from
these clusters, the degree can be as high as kkO(k) . To learn this linear factor-free part of the
cluster (referred to as the simple part), they have to solve a system of polynomial equations
with kkO(k) variables, which takes time kkkO(k)

over fields F = R or C. Although fixed-
parameter tractable (FPT), this leads to a very inefficient exponential tower dependence on
k. Another important distinction is that the algorithm in [PSV24] is randomized, placing
tensor rank in randomized FPT time. As observed in [PSV24, Remark 7.3], in the process
of getting black-box access to a cluster, the authors have to do polynomial identity testing
of a degree nkkO(k)

polynomial, which is well beyond current PIT techniques to do this in
T (k) · poly(n) time deterministically. Therefore, there is no easy derandomization of their
algorithm.

We summarize the comparison in the table below.

Results Algorithm Type Running Time Key Bottleneck

[BSV21] Deterministic poly(dk3 , kkk10
, n) Brute-force search in (d

O(k)) sized list

[PSV24] Randomized kkkO(k)

· poly(n, d) System solving with kkO(k) unknowns

This Work Deterministic 2kO(1) · poly(n, d) System solving with kO(1) unknowns

Table 1: Comparison of our results to previous work

Can we improve the time complexity further to 2O(k)poly(n, d)? Our approach is based
on using "uniqueness" results (or rank bounds in the algebraic complexity literature) of tensor
decomposition, which requires d = Ω(k). If we use polynomial system solving to learn this low-
degree set-multilinear circuit, it will create a system of equations in Ω(k2) variables. With these
parameters, the currently known best techniques for solving a system of polynomial equations
will require a 2kO(1) running time, making it difficult to directly improve the running time to
2O(k) · poly(n, d). An improvement to 2O(k) · poly(n, d) would either require a new approach to
learning low-degree circuits or a detailed study of these algebraic systems of equations to achieve
better time complexity in finding their solutions. However, we cannot rule out the possibility of
the decision version of this problem being solved in 2O(k) · poly(n) time. We leave this as an open
problem.

6

Over other fields: Our algorithm works for all fields; however, the time complexity worsens
to 2kkO(1)

and requires randomization for finite fields of large characteristics. Both conditions are
provably necessary, as we will discuss now. Let’s start by stating our result in generality for all
fields.

Theorem 2.4 (Learning ΣΠΣ{ ⊔jXj }(k) over general field F). Given blackbox access to a degree d,
n-variate polynomial f computable by a set-multilinear ΣΠΣ{ ⊔jXj }(k) circuit C over F, there exists
an algorithm that outputs a set-multilinear ΣΠΣ{ ⊔jXj }(k) circuit computing f over a poly(kkO(1)

)

degree extension of F in time F (k, n, d) = 2kkO(1)
· poly(n, d) · cF(2kO(1)

).

Here, cF(N) denotes the time complexity of factorizing a univariate polynomial of degree N

over F.
The reason for the different time complexity over different fields lies in the difficulty of system

solving over these fields. Our algorithm uses as a subroutine an algorithm for solving algebraic
systems with kO(1) unknowns. The above result follows directly from using the best algorithm
for algebraic system solving over any field F. This sensitivity to the underlying field is natural
in tensor decomposition, as different fields can significantly affect the computational complexity.
For example, over the rationals (Q), determining the exact tensor rank—even for constant tensor
rank—is believed to be undecidable [Shi16, SS16].

In fact, a tight reduction in [SS16] solidifies this connection, demonstrating a tight reduction
between the feasibility of algebraic systems over F and computing tensor rank over F:

Theorem 2.5 ([SS16]). For any field F, given a system of m algebraic equations S over F, we
can construct in polynomial time a 3-dimensional tensor TS of shape [3m]× [3m]× [n + 1] and an
integer k = 2m+ n such that S has a solution in F if and only if TS has rank at most 2m+ n over
F.

Even restricting ourselves to finite fields, the time complexity of Theorem 2.4 depends on the
efficiency of univariate polynomial factorization over the field. Efficient randomized algorithms
exist for this task, but derandomizing them remains a notoriously difficult problem, as noted in
[AM94, Problem 15].

Interestingly, the hardness of derandomizing univariate polynomial factorization over F directly
impacts tensor decomposition, as observed by Volkovich [Vol16]. Specifically, there is no known
way to derandomize Theorem 2.4 over finite fields unless we can derandomize the factorization of
univariate (even quadratic) polynomials over finite fields.

Theorem 2.6 ([Vol16, Theorem 5]). Let k ∈N. Suppose the class of (set)-multilinear ΣΠΣ(2) or
ΣΠΣΠ(2) circuits over the field F is exactly learnable, with hypotheses being multilinear ΣΠΣΠ(k)

circuits of polynomial size. Then, in time polynomial in log |F|, the exact learning algorithm can
be deterministically converted into a square root oracle over F.

7

3 Proof Idea

As the introduction mentions, we will use the connection between tensor rank and set multilinear
depth-3 circuits. That is for our purpose we assume that we are given black-box access to fτ .

Through some preprocessing, we can assume the following:

• We know k, the rank of the tensor or equivalently the minimum k such that fτ is computable
by a ΣΠΣ{ ⊔jXj }(k). Indeed, we can assume the value of k and output the first k for which the
learning algorithm works, since we can always test if our output is correct deterministically.
This affects the time complexity by a multiple of k.

• We can strip off fτ with any linear factors (Lin(fτ) := {ℓ : ℓ|fτ}), since any optimal decompo-
sition(with tensor rank k) of NonLin(fτ) =

fτ∏
ℓ∈Lin(fτ)

ℓ
gives an optimal decomposition for fτ

as well. This comes from a result on the factoring of ΣΠΣ{ ⊔jXj }(k) circuits from [SV10] de-
scribed in Lemma 4.13 that shows that if fτ is computable by a ΣΠΣ{ ⊔jXj }(k) circuit then
any irreducible factor NonLin(fτ) can also be computed by a product of ΣΠΣ{ ⊔jXj }(k)

circuits. It also describes how to obtain black-box access to these irreducible factors in
2O(log2 k) · poly(n, d) time which we can

• We can assume that |Xj | ≤ k. This follows from the width reduction step, see [BSV21,
Section 5.1] and Lemma 4.15. In the low-degree reconstruction in Lemma 4.16, the system
of polynomial equations has kwd variables, which go into the exponent in the running time
required to find a solution. Therefore we must be able to reduce the width to k, so we can
obtain a FPT algorithm.

• Note that there can be multiple optimal ΣΠΣ{ ⊔jXj } decompositions for fτ , but for the sake of
argument, we will fix one representation C and argue the proof using this fixed representation
C.

Low Degree Reconstruction using system solving : If d < k5, then we can simply set a
system of a kO(1)-variate algebraic system. Indeed if the degree is small, the number of monomials
appearing in f is small, and the total number of variables appearing in f is small. One can invoke
black-box reconstruction algorithms for sparse polynomials [KS01, BOT88] to learn f as a sum
of monomials. Then, keeping the coefficients of ΣΠΣ{ ⊔jXj } representation as unknowns we set
up a system of polynomial equations in poly(k) variables such that every solution to the system
corresponds to a ΣΠΣ{ ⊔jXj }(k) representation of f .

Our Computational budget : Note that for low-degree learning (of degree kO(1)), we require
at least kkO(1) time to learn the low-degree gates, as it requires solving a system of equations with
at least kO(1) variables. Our goal is to ensure that all algebraic manipulations necessary to learn
the full circuit fit within this time budget. It is unclear whether the [KS09] and [PSV24]-style
clustering as the learning approach that needs solving a system of polynomial equations in kkO(k)

8

variables and therefore kkkkO(k)

time can be performed within this time constraint. Therefore, we
combine ideas from both [BSV21] and [PSV24] to adopt partial clustering—just enough to isolate
a gate (or its corresponding cluster). Subsequently, we can subtract this cluster and reduce it to a
top ΣΠΣ{ ⊔jXj }(k− 1) circuit, which we can then learn by induction.

Learning almost all the gates of the circuit: We adopt the same approach as in [BSV21,
Sections 5.3, Section 5.4] to learn almost all the gates of the circuit. The exact result we need
is described in Lemma 6.1. The idea is to use almost-uniqueness for ΣΠΣ{ ⊔jXj } circuits twice.
Firstly, we will project the circuit to a low degree (approximately k2) and then learn this projection
using low-degree reconstruction. Note that the representation we will learn will have some linear
forms that are the same as the original representation C, by almost-uniqueness. In fact, we can
ensure to get two distinct linear forms supported on the same variable set.

In the next step, we will use these linear forms to learn most of the linear forms of C. Once we
learn ℓ1 and ℓ2 appearing in C, we try to learn more linear forms as follows. The algorithm applies
a suitable setting of the variables of ℓ1 in the polynomial f that makes ℓ1 evaluate to 0, resulting
in a circuit with fewer than k multiplication gates. Call the restricted polynomial fR1 and let CfR1

be the restricted version of Cf . By the inductive hypothesis, we can learn an ΣΠΣ{ ⊔jXj }(k − 1)
representation of fR1 , which will be close to the original representation by almost-uniqueness.
Repeating the same with ℓ2, once we have this, by iterating over all ways of matching up the
multiplication gates2 and choices of overlap, we can generate a list of k gates T ′

1, . . . , T ′
k such that

∆(Ti, T ′
i) < 2k. Here, ∆(Ti, T ′

i) := deg
(

Ti
gcd(Ti,T ′

i)

)
is a measure of how many linear forms are

different in Ti and T ′
i . We refer to ∑i∈[k] T

′
i as the almost circuit.

3.1 Using linear forms learned in Almost Circuit

Now, we have reconstructed the following almost circuit C ′ ≡
∑

i∈[k] T
′
i such that ∆(Ti, T ′

i) < 2k.
We know that at most k linear forms from each T ′

i are incorrect in the representation we learned
in C ′. Therefore, there are at most k2 incorrect linear forms, and so there are at least d− k2

variable parts for which we know all linear forms in C ′ are correct. We call this set of partitions
Consistent-VarPart(C, C ′).

Consistent-VarPart(C, C ′) := {j ∈ [d] | ∀ i ∈ [k] ℓi,j ∈ Ti ∩ T ′
i}

As discussed, |Consistent-VarPart(C, C ′)| ≥ d−k2. In [BSV21], the authors guessed this set, which
introduced dk-type dependence, but we will do something different. Note that, for any subset P ⊆
[d] such that |P | ≥ k2 + 1, there would be at least one variable part in Consistent-VarPart(C, C ′).

For any variable part j ∈ Consistent-VarPart(C, C ′), we observe that if there exists some i ∈ [k]

such that ℓi,j ̸∈ sp(ℓ1,j , . . . , ℓi−1,j , ℓi+1,j , . . . , ℓk,j), then we can reconstruct Ti exactly. To do this,
2This matching step involves a kO(k) brute-force matching, which might seem wasteful, but it fits within our

computational budget, so we don’t need to optimize this.

9

we substitute Xj = α such that ℓ1,j(α) = . . . = ℓi−1,j(α) = ℓi+1,j(α) = . . . = ℓk,j(α) = 0 and
ℓi,j(α) ̸= 0. Now using black-box factoring on C after the substitution, we can learn Ti|Xj=α as all
other terms vanish. Due to unique factorization, we can say that we learn the projection correctly
and we can find Ti simply using Ti = Ti|Xj=α ·

ℓ′
i,j

ℓ′
i,j(α)

. Once we have learned Ti exactly, we can just
subtract it from the rest of C and learn C − Ti as an set-multilinear ΣΠΣ(k− 1) circuit.

What if there is no variable part for which there is some linear form not in the span of
the other linear forms of that variable part in the circuit? That is, ∀j ∈ [d], i ∈ [k] ℓi,j ∈
sp(ℓ1,j , . . . , ℓi−1,j , ℓi+1,j , . . . , ℓk,j). One could try to use the above technique iteratively decreas-
ing the top fan-in using variable parts in Consistent-VarPart, i.e., you pick a variable part j ∈
Consistent-VarPart(C, C ′) and fix the variables to a value αj such that one linear form in C ′ (and
also in C as j ∈ Consistent-VarPart(C, C ′)) is set to zero while keeping T1 non-zero. This will
decrease the fan-in by at least one, until we are left with our target gate T1, which we can learn
using the above-mentioned technique. This approach also fails, as there may be other gates that
differ from T1 on a few variable parts, none of which are in Consistent-VarPart(C, C ′), and hence
cannot be differentiated using just C ′. To avoid this issue, we will focus on learning a cluster of
gates, that is, multiplication gates (the Ti’s in the circuit) that differ on only a few (poly(k)) linear
forms instead of learning just one multiplication gate. See Lemma 5.2 for the formal definition of
clusters.

3.2 Set-Multilinear Clustering

Karnin and Shpilka [KS09] introduced the notion of clustering multiplication gates in any depth-3
circuit. Just like clustering points in space, where close points form a cluster and distant points
form different clusters, clustering multiplication gates with ∆(Ti, Tj) as a distance metric ensures
that gates in one cluster differ on a few linear forms, while gates in different clusters differ on
substantially more linear forms. One significant benefit of studying clustered representation is
that it is unique! Furthermore, if we can get black-box access to a single low simple rank cluster,
then we can learn a circuit representation of it. Indeed, we can strip off the gcd among different
multiplication gates in the cluster, and what is left is just a low-degree circuit. In fact, this exact
approach has been used in [KS09], [BSV21], and [PSV24] for learning (multilinear) ΣΠΣ circuits.

However, one major drawback of the multilinear clustering used in [PSV24] and [KS09] is that
the rank of the simple part3 of any cluster has an upper bound of kO(k). When we try to learn
this simple part as a low-degree ΣΠΣ{ ⊔jXj } circuit, it requires solving a system of equations in
kO(k) variables. This was one of the main culprits behind the exponential tower dependence in k

in [PSV24].
We develop a partial cluster representation (Lemma 5.2) specifically designed for isolating a

single cluster from an ΣΠΣ{ ⊔jXj }(k) circuit. For instance, if we want to isolate a cluster containing
the gate T1, then our clustering algorithm will output a set A ⊆ [k], the partial cluster containing
1, such that the degree of the simple part of the cluster CA :=

∑
i∈A Ti is at most k4 + k3, while

3Resulting polynomial after stripping off the linear factors.

10

ensuring that the ’distance’ between the isolated cluster and other gates is high enough. Formally,
∆(CA, Ti) ≥ k2 + k for i /∈ A.

Note that, if we can isolate the cluster CA, that is, get black-box access to a cluster CA, we can
reconstruct it using low-degree reconstruction as the degree of the simple part of CA is less than
2k4. Our clustering mechanism ensures that ∆(CA, Ti) ≥ k2 + k for i /∈ A. This further implies
that ∆(CA, T ′

i) ≥ k.
A natural approach would be to use these k-variable parts and T ′

i to kill all the gates not in A,
while ensuring that T1 doesn’t vanish. However, we don’t have any idea what these k variable parts
are. Obviously, any brute force search for them will have a dk-type dependence. Furthermore, our
approach should also ensure that any projection doesn’t kill T1 or sim(CA).

3.3 Good T1-isolating Projections

We will now describe how to handle the above issues. Firstly, if we ensure that the variable parts
we are using are not only in Consistent-VarPart(C, C ′) but also that the linear forms depending on
these variable parts are linear factors of CA, i.e., Consistent-VarPart(C, C ′) ∩ Support(Lin(CA)).
Fixing variables using variable parts from Consistent-VarPart(C, C ′)∩Support(Lin(CA)) that give
us CA up to a few linear forms is what we call a good T1-isolating projection as defined in Defini-
tion 7.2.

And secondly, for searching for those k-variable parts that differ from Lin(CA), in Section 7.1,
we describe an algorithm to search for these in time kO(k) · poly(n, d). We design a recursive
approach that, using the structural guarantees of C ′, outputs a list of (kO(k)) candidates for these
variable parts, with a guarantee that one of them will help us project to the cluster CA. The
reduction of the search time for these k-variable parts from dk to (kO(k)) is the main technical
contribution of our work.

We now elaborate on the structural guarantees of C ′ that let us do this. Since the rank
of sim(CA) is less than 2k4, the size of Support(Lin(CA)) is at least d − 2k4 and therefore
|Consistent-VarPart(C, C ′)∩Support(Lin(CA))| ≥ d−2k4−k2. Therefore, our algorithm will pick
k5 + 1 variable parts, one of which is guaranteed to be in Consistent-VarPart(C, C ′)∩Support(Lin(CA)),
such that the linear forms in the gates not yet set to 0 depending on those parts in C ′ have a di-
mension of at least 2. Then, for each of these, we set a linear form not in the span of ℓ1,j to 0
while keeping ℓ′

1,j non-zero, decreasing the top fan-in, and then recursively call the function. The
distance condition in Lemma 5.2 ensures that if there is a gate not in A that has not yet been set
to zero, we will be able to find such a variable part. Therefore, we have kO(k) recursive calls, one
of which will be such that the gates remaining are only in A and the variable parts fixed all belong
to Consistent-VarPart(C, C ′) ∩ Support(Lin(CA)), and thus we can learn CA.

For the correct choice of these variable parts, we can ensure that the linear forms in T1 depending
on the part don’t vanish. This ensures that any other gate in A also doesn’t vanish, as it is part
of their gcd (the initial representation is such that gcd(CA) = Lin(CA)). Also, due to unique
factorization and since all the linear forms that got fixed to constant non-zero values are linear

11

factors of CA, we can simply multiply back the linear forms we learned in T ′
1 (which will be the

same as T1 as j ∈ Consistent-VarPart(C, C ′) and other gates in A as the linear forms are part of
Lin(CA)) for those variable parts.

Once we have learned CA, we subtract it from C and learn the smaller top fan-in circuit. We
use an efficient 2O(log2 k) · poly(n) FPT polynomial-time PIT at the end, which ensures that the
only circuit output is the correct one.

4 Notation and Preliminaries

In this section, we will define notations and develop the basic preliminaries in Algebraic complexity
and reconstruction required to understand this work. An experienced reader can presumably skip
to Section 5.

Notations. Let N := {0, 1, 2, . . .} and N+ := {1, 2, . . .}. Denote {1, 2, . . . , n} by [n]. The
cardinality of a set S is denoted by |S|. F is usually used to denote the underlying field. R refers
to the field of real numbers, and C refers to the field of complex numbers. Denote by log a the
logarithm of a with base two.

Throughout the paper, we use uppercase letters X, Y to denote sets of variables, lowercase xi to
denote variables, x, y to denote vectors/tuples of variables, and v to denote a vector/tuple of field
constants. We sometimes abuse notation by referring to a circuit as a collection of multiplication
“ΠΣ” gates. For any circuit ΣΠΣ{ ⊔jXj }(k), we say that the circuit is an optimal circuit computing
a particular polynomial (say f) if no circuit (in that respective class) can compute f with a smaller
fan-in.

Whenever we say linear forms divide a multiplication gate, we mean up to scalar multiples. For
a polynomial f , Lin(f) denotes the set of linear factors of f , and NonLin(f) refers to f∏

ℓ∈Lin(f)
ℓ
.

The time required to solve a system of m polynomial equations over a field F with n variables each
with degree at most d is denoted by SysF(n, m, d). We use sp(ℓ1, . . . , ℓr) to refer to the vector space
that is the span of the linear forms ∑r

i=1 αiℓi for αi ∈ F. For a vector space V, dim(V) denotes
the dimension of V.

4.1 Depth-3 Circuits

In this section, we formally introduce the general model of depth-3 circuits and the specialization
of set-multilinear depth-3 circuits, which is the focus of our paper.

Definition 4.1. A depth-3 ΣΠΣ(k) circuit C computes a polynomial of the form

C(X) =
k∑

i=1
Ti(X) =

k∑
i=1

di∏
j=1

ℓi,j(X),

where the ℓi,j-s are linear functions; ℓi,j(X) =
n∑

t=1
at

i,jxt + a0
i,j with at

i,j ∈ F.

A multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k) circuit in which each Ti is a multilinear polynomial. In

12

particular, each such Ti is a product of variable-disjoint linear functions.
Given a partition X = ⊔j∈[d]Xj of X, a set-multilinear ΣΠΣ{ ⊔jXj }(k) circuit is a further special-
ization of a multilinear circuit to the case when each ℓi,j is a linear form in F[Xj]. That is, each
ℓi,j is defined over the variables in Xj and a0

i,j = 0.

We say that C is minimal if no subset of the multiplication gates sums to zero. We define gcd(C) as
the linear product of all the non-constant linear functions that belong to all the Ti-s. I.e. gcd(C) =

gcd(T1, . . . , Tk). We say that C is simple if gcd(C) = 1. The simplification of C, denoted by
sim(C), is defined as C/ gcd(C). In other words, the circuit resulting upon the removal of all the
linear functions that appears in gcd(C). Finally, we say that a ΣΠΣ{ ⊔jXj } circuit has width w, if
|Xj | ≤ w for all j.

Throughout the paper, we will be referring to this quantity as the width of a polynomial, width
of a circuit, since our model is is ΣΠΣ{ ⊔jXj } circuits, it all essentially means the same.

Definition 4.2 (Rank of circuit). The rank of a circuit C(X) =
k∑

i=1
Ti(X) =

∑k
i=1

∏di
j=1 ℓi,j(X)

is defined as the dimension of the space spanned by all the linear forms in the circuit dim(sp({ℓi,j :
i ∈ [k], j ∈ [di]})).

Definition 4.3 (Rank of Simple part of circuit). The rank of a circuit C(X) =
k∑

i=1
Ti(X) =∑k

i=1
∏di

j=1 ℓi,j(X) is defined as the rank of the simple part(obtain after removing the gcd of Ti’s).
We will denote the simple rank of C using ∆(C) = rank(sim(C)). This also defines a distance
measure between 2 circuits C1, C2 as ∆(C1, C2) = rank(sim(C1 + C2)).

4.2 Tensors and Set-Multilinear Depth-3 Circuits

Tensors, higher dimensional analogues of matrices, are multi-dimensional arrays with entries from
some field F. For instance, a 3-dimensional tensor can be written as T = (αi,j,k) ∈ Fn1×n2×n3

and 2-dimensional tensors simply corresponds to traditional matrices. We will work with general
d-dimensional tensors T = (αj1,j2,...,jd

) ∈ Fn1×···×nd , here [n1]× · · · × [nd] refers to the shape of the
tensor and ni as length of tensor in i-th dimension. Just like any matrix has a natural definition
of rank, there is an analogue for tensors as well.

The rank of a tensor T can be defined as the smallest r for which T can be written as a sum of
r tensors of rank 1, where a rank-1 tensor is a tensor of the form v1⊗ · · ·⊗ vd with vi ∈ Fni . Here ⊗
is the Kronecker (outer) product a.k.a tensor product. The expression of T as a sum of such rank-1
tensors, over the field F is called F-tensor decomposition or just tensor decomposition, for short.
The notion of Tensor rank/decomposition has become a fundamental tool in different branches
of modern science with applications in statistics, signal processing, complexity of computation,
psychometrics, linguistics and chemometrics. We refer the reader to a monograph by Landsberg
[Lan12] and the references therein for more details on application of tensor decomposition.

13

For our application, it would be useful to think of tensors as a restricted form of multilinear
polynomials that are called set-multilinear polynomials. To this end, let us fix the following notation
throughout the paper.
Let d ∈N. We will refer to d as the dimension. For j ∈ [d] let Xj = {xj,1, xj,2, . . . , xj,nj }, where
nj = |Xj |. Finally, let X = ⊔j∈[d]Xj . That is, {Xj }{ j∈[d] } form a partition of X.

Definition 4.4 (Set-Multilinear polynomial). A polynomial P ∈ F[X] is called set-multilinear
w.r.t (the partition) X, if every monomial that appears in P is of the form xi1xi2 · · ·xid

where
xij ∈ Xj.

In other words, each monomial of a set-multilinear polynomial picks up exactly one variable
from each part in the partition. These polynomial have been well studied in the literature [Raz13,
LST24] in particular since many natural polynomials like the Determinant, the Permanent, Nisan-
Wigderson and others are set-multilinear w.r.t appropriate partitions of variables. Furthermore,
each tensor can be regraded as a set-multilinear polynomial.

Definition 4.5. For a tensor T = (αj1,j2,...,jd
) ∈ Fn1×···×nd consider the following polynomial

fT (X)
∆
=

∑
(j1,...,jd)∈[n1]×···×[nd]

αj1,j2,...,jd
x1,j1x2,j2 · · ·xd,jd

.

Observe that fT (X) is a set-multilinear polynomial w.r.t X. More interestingly, there is a direct
correspondence between tensor decomposition and computing the polynomial fT (X) in the model
of set-multilinear depth-3 circuits. We first define the model formally.

Definition 4.6 (Set-Multilinear Depth-3 Circuits). A set-multilinear depth-3 circuit w.r.t to (a
partition) X with top fan-in k, denoted by ΣΠΣ{ ⊔jXj }(k) computes a (set-multilinear) polynomial
of the form

C(X) ≡
k∑

i=1

d∏
j=1

ℓi,j(Xj)

where ℓi,j(Xj) is a linear form in F[Xj].

To gain some intuition, suppose that fT (X) = ℓi,1(X1) · ℓi,2(X2) · · · ℓi,d(Xd) for some tensor T .
We can observe that in this case T is a rank-1 tensor. Extending this observation, the following
provides a formal connection between tensor decomposition and computing the polynomial fT (X)

by set-multilinear depth-3 circuits.

Observation 4.7. Let C(X) =
k∑

i=1

d∏
j=1

ℓi,j be a set-multilinear depth-3 circuit over F computing

fT (X) for a tensor T = (αj1,j2,...,jd
) ∈ Fn1×···×nd. Then

T =
k∑

i=1
v̄(ℓi,1)⊗ · · · ⊗ v̄(ℓi,d)

where v̄(ℓi,j) corresponds to the linear form ℓi,j as an nj-dimensional vector over F.

14

Note that this connection is, in fact, a correspondence: any F-tensor decomposition of T gives
a circuit over F. This leads to the following important lemma:

Lemma 4.8. A tensor T = (αj1,j2,...,jd
) ∈ Fn1×···×nd has rank at most r if and only if fT (X) can

be computed by a ΣΠΣX(r) circuit. Therefore, rank of T is the smallest k for which fT (X) can be
computed by a ΣΠΣX(k) circuit.

Proof. The proof is straightforward. Note that, ℓi,1(X1) · ℓi,2(X2) · · · ℓi,d(Xd) exactly corresponds
to a rank-1 tensors. Thus, Cf gives a rank k F-tensor decomposition of T and any F-tensor
decomposition gives a circuit over F.

4.3 Complexity of Solving a System of Polynomial Equations

Solving a system of polynomial equations is the following problem: For a field F, we are given m

polynomials f1, f2, . . . , fm ∈ F[x1, . . . , xn], each of degree at most d. We want to test if there exist
a solution (this is the decision version) to f1 = 0, f2 = 0, . . . , fm = 0 in Fn, or find a solution if it
exists (this is the search version). A straightforward reduction from 3-SAT shows that polynomial
system solving is NP-hard in general. This is a fundamental problem in computational algebra, and
it has received lot of attention over various fields. To mention a few, system solving is NP-complete
for finite fields, in PSPACE over R [Can88] and in Polynomial Hierarchy (Σ2), assuming GRH
[Koi96].

Interestingly, for F = Q system solving is not even known to be decidable! In fact, if we restrict
the question to integral domains (like Z) then the problem is undecidable. This was the well-known
Hilbert’s tenth problem, which asks if a given Diophantine equation has an integral solution, and
was famously proved to be undecidable in the 70’s, see [MR75].

In this work, we are mainly concerned with polynomial system solving when the number of
variables involved is small (such as a o(log n)). In this case, polynomial system solving turns out
is efficient under various settings. We will use the following lemma to describe the current known
complexity of solving a system of equations under various settings.

Theorem 4.9. Let f1, f2, . . . fm ∈ F[x1, . . . , xn] be n-variate polynomials of degree at most d.
Then, the complexity of finding a single solution to the system f1(x) = 0, . . . , fm(x) = 0 (if one
exists) over various fields is as follows:

1. For all fields F, the SysF(n, m, d) = poly((nmd)3n
) · cF(d

2n
). Here, cF(N) denotes the

time complexity of factorizing a univariate polynomial of degree n over F, randomized or
deterministic. This follows from standard techniques in elimination theory, see [CLO15] for
details. For a detailed sketch of the argument and a bound on the size of the extension, see
[BSV21, Appendix A].

2. [GV88] For F = R, we have SysF(n, m, d) = poly((md)n2
) deterministic time. Here the

authors assumed that the constants appearing in the system are integers (or rationals). Note

15

that for all computational applications we can WLOG assume this by simply approximat-
ing/truncating a given real number at some number of bits.

3. [Ier89] For F = C (or any algebraically closed field) SysF(n, m, d) = (mn)O(n) · dO(n2) deter-
ministic time.

4.4 Hardness of computing Tensor rank.

The first step towards understanding the computational complexity was by Håstad [Hås90] who
showed that determining the tensor rank is an NP-hard over Q and NP-complete over finite fields.
A better way to understand hardness results for computing tensor rank is to study its connection
to solving system of polynomial equations.

Theorem 4.10 ([SS16]). For any field F, given a system of m algebraic equations S over F, we
can in polynomial time construct a 3 dimension tensor TS of shape [3m]× [3m]× [n + 1] and an
integer k = 2m + n such that S has a solution ∈ F iff T has rank atmost 2m + n over F.

This shows equivalence between system solving and computing tensor rank. This along with
complexity of system solving (discussed in the previous section) shows that computing tensor rank
is NP-complete over finite fields, over R it is in PSPACE [Can88] and is in the Polynomial Hierarchy
(Σ2), assuming the GRH [Koi96].

Similar, reductions also hold for integral domains (e.g. Z) [Shi16], thus showing that computing
Tensor rank is undecidable over Z and not known to be decidable over Q. Due to the equivalence
between tensor rank computation and learning ΣΠΣ{ ⊔jXj } circuits with optimal top fan-in, we get
the corresponding hardness consequences for ΣΠΣ{ ⊔jXj }-circuit reconstruction as well.

Such results also hold for symmetric rank computation, see [Shi16]. Concretely, for 3-dimensional
tensors of length n, Shitov showed that we can convert general tensors T to symmetric tensors Tsym

s.t. rank(T) + 4.5(n2 +n) = symmetric-rank(Tsym), thus transferring the results mentioned above
for general tensors to symmetric tensors as well. Again, these hardness results along with equiv-
alence between symmetric tensor rank computation and reconstructing optimal (w.r.t top fan-in)
Σ∧Σ circuits implies that proper learning (with optimal top-fan-in) for Σ∧Σ circuits is as hard as
polynomial system solving. In particular, it is NP-hard for most fields and maybe even undecidable
over Q.

4.5 Polynomial Identity Testing

A crucial ingredient of our deterministic FPT algorithm for tensor decomposition is the fast de-
terministic PIT algorithm for ΣΠΣ{ ⊔jXj } circuits. Although most deterministic PIT results for
subclasses of depth-3 circuits have nf (k)-type time complexity, we will instead rely on a recent
improved algorithm by Guo and Gurjar [GG20]. We would like to remark that [PSV24] also used
the same strategy to avoid nf (k)-type dependence in their running time.

16

Below we state the theorem of [GG20] specialized to the class of ΣΠΣ{ ⊔jXj } circuits. The
original statement is phrased in terms of any-order ROABP, but with standard techniques (see, for
instance, [PSV24, Corollary 2.10]), we can replace it with ΣΠΣ{ ⊔jXj } circuits.

Theorem 4.11 ([GG20, Theorem 3]). Let C be the family of set-multilinear polynomials f ∈ F[X]

computed by ΣΠΣ{ ⊔jXj } such that max |Xi| ≤ r.

1. If char(F) = 0 or char(F) > n4, then there exists an explicit hitting-set for C of size
poly(n, klog log k). In particular, the hitting-set has size poly(n) for r = 2O(log(n)/ log log(n)).

2. In arbitrary characteristic, there exists an explicit hitting-set for C of size

poly
(

klog log k, n
1+ log log k

max{1,log log(n)−log log k}

)
.

For the purpose of our application and simplicity of presentation, we will work with a weaker
statement which works for all fields and have f(k) ·poly(n, d) time complexity. The below corollary
follows immediately from above theorem after realizing that

Corollary 4.12. Over any field F, there’s a deterministic polynomial time 2O(log2 k) · poly(n) for
the class of set-multilinear polynomials computed by depth-3 set-multilinear circuits of degree d and
top fan-in k.

Proof. If char(F) = 0 or char(F) > n4, then the result follows directly.
For all other cases, note that

max{1, log log(n)− log log k} = log log(n)− log log k as long as n > k2.

Case 1 When k < 2log0.5 n, we have

n
log log k

max{1,log log(n)−log log k} = poly(n).

Case 2 When k ≥ 2log0.5 n, then,

nlog log k ≤ 2O(log2 k).

Thus, in all cases, the running time of the algorithm mentioned in Theorem 4.11 is bounded by
2O(log2 k) · poly(n).

4.6 Factoring : structural and algorithmic results

Another crucial ingredient of our learning algorithm is studying the factors of ΣΠΣ{ ⊔jXj } circuits,
and designing efficient deterministic algorithms for reconstructing arithmetic circuits for these fac-
tors.

17

In their work [SV10], showed that for any class C of multilinear polynomials, one can deran-
domize polynomial factoring using PIT algorithms for C. Using that fact directly with the PIT
algorithm in previous subsection we get that.

Lemma 4.13 ([SV10, Corollary 1.2]). There is a deterministic algorithm that given a black-box
access to a ΣΠΣ{ ⊔jXj }(k) circuit C, outputs black-boxes for the irreducible factors of C, in time
2O(log2 k) · poly(n). In addition, each such irreducible factor is computable by a ΣΠΣ{ ⊔jXj } circuit.

As a corollary, we can efficiently simulate a black-box access to sim(C) given a black-box access
to C. The main observation is that a linear function can be learnt and tested for linearity in time
2O(log2 k) · poly(n).

Corollary 4.14. There is a deterministic algorithm that given a black-box access to a ΣΠΣ{ ⊔jXj }(k)

circuit C outputs linear functions L1, . . . , Lr and black-box access to a simple set-multilinear ΣΠΣ{ ⊔jXj }(k)

circuit Ĉ such that C =
∏r

i=1 Li · Ĉ, in time 2O(log2 k) · poly(n).

4.7 Width Reduction for set-multilinear ΣΠΣ(k)

In [BSV21], the authors presented an algorithm for learning set-multilinear ΣΠΣ(k) circuits of
arbitrary width w in roughly the same amount of time it takes to learn set-multilinear ΣΠΣ(k)
circuits of width k.

The algorithm is a direct consequence of the fact that if f is computable by an set-multilinear
ΣΠΣ(k) circuit, then each variable part is just k-variate up to an invertible linear transformation.
Finding such an invertible linear transformation deterministically requires additional ideas from
PIT. The following lemma follows directly from the result of [BSV21, Corollary 5.3] and the fast
PIT algorithm of [GG20].

Lemma 4.15 ([BSV21, Corollary 5.3]). Suppose A is an algorithm that has the following behavior.
On input black-box access to degree d, n-variate polynomial f ∈ F[X] such that f is computable
by a width k ΣΠΣ{ ⊔jXj }(k) circuit Cf over the field F, runs in deterministic time A(n, d, k) and
outputs a ΣΠΣ{ ⊔jXj }(k) circuit computing f . Then there is another algorithm A′ that has the
following behavior. On input black-box access to degree d, n-variate polynomial f ∈ F[X] such
that f is computable by an arbitrary width ΣΠΣ{ ⊔jXj }(k) circuit Cf over the field F, runs in
deterministic 2O(log2 k) · poly(n, d) · A(n, d, k) time and outputs a ΣΠΣ{ ⊔jXj }(k) circuit computing
f .

We refer the reader to Section 5.1 and Section 5.6 of [BSV21] for the details.

4.8 Low Degree Reconstruction

In [BSV21], the authors gave an algorithm that reduced the reconstruction of a low-degree set-
multilinear ΣΠΣ(k) into solving a system of polynomial equations with few variables. We will be
using it mainly in the case where d ≤ 2k4. The result is as follows

18

Lemma 4.16 ([BSV21], Lemma 5.5). Given black-box access to a degree d polynomial f ∈ F[X]

such that f is computable by a width w ΣΠΣ{ ⊔jXj }(k) circuit Cf over the field F, there is a
deterministic SysF(kwd, wd, d) + poly(w, k, d) time algorithm that outputs a ΣΠΣ{ ⊔jXj }(k) circuit
computing f . Further using Lemma 4.15, we can reduce the width to k and get the running time
of SysF(k

2d, kd, d) · poly(n, d).

Remark 4.17. When F = R or C, the output circuit is over the same underlying field F. In
general the output circuit might be over a 2kO(1) degree algebraic extension of F.

5 Partial Set-Multilinear Cluster Representation

We will be clustering all gates close to the gate T1 to create a representation with a cluster of gates
containing T1, such that the remaining gates are far from the cluster. The gates clubbed together
will be represented by a set A ⊆ [k], with CA =

∑
i∈A Ti, fulfilling the properties described in

Lemma 5.2.
For any set of gates A ⊆ [k] of circuit C, we can only consider the initial representation of

C such that Lin(CA) and the gcd of the gates in A are the same, i.e., sim(CA) has no linear
factors. Such a representation will always exist for the polynomial computed by CA with a depth
3 set-multilinear circuit and the same top fan-in, which can be inferred from Lemma 4.13.

Next, we introduce the following definition of distance that we will be using to define the cluster
representation.

Definition 5.1 (Cluster Distance). For circuit C = T1 + . . . + Tk with cluster A ⊆ [k] with the
C representation such that sim(CA) has no linear factors, we define ∆A(CA, Ti) for i ̸∈ A,i.e. the
cluster distance between cluster CA and gate Ti, as the number of variable parts on which the linear
form in Lin(CA) and Ti differ. It can be represented as follows in the mathematical notation

∆A(CA, Ti) = |{j ∈ [d] : ℓ1,j ∈ Lin(CA) and ℓi,j ∤ Ti}|

We will use the cluster representation with the properties described in the following lemma.

Lemma 5.2. For a polynomial f computed by set-multilinear ΣΠΣ(k) C = T1 + . . . + Tk, there
exist a set A ⊆ [k] such that for CA =

∑
i∈A Ti and C being a representation such that sim(CA)

doesn’t have any linear factors, we have

• 1 ∈ A

• ∆(CA) ≤ k4 + k3

• For all remaining gates Ti, Lin(CA) and Ti differ on at least k2 + k variable parts, i.e.

∀i ∈ [k] \A |{j ∈ [d] : ℓ1,j ∈ Lin(CA) and ℓ1,j ∤ Ti}| ≥ k2 + k

19

i.e. ∀i ∈ [k] \A ∆A(CA, Ti) ≥ k2 + k

Proof. For any A ⊆ [k], we can write the circuit as follows

C = T1 + . . . + Tk = CA +
∑
i ̸∈A

Ti =

 d′∏
j=1

ℓ1,j

 · hA(ℓ1, . . . , ℓr) +
∑
i ̸∈A

Ti

such that hA has r essential variables with no linear factors and is computable by a ΣΠΣ(|A|)
set-multilinear circuit. This comes by using the initial representation of C following Lemma 4.13.

Now, we give a constructive way to show that such a set A exists with all properties mentioned
in Lemma 5.2. Consider the following Algorithm 1.

Algorithm 1 Computing Partial Cluster
Input: White-box access to set-multilinear ΣkΠΣ Circuit C = T1 + . . . + Tk

1: Set A := {1}
2: while ∃i ∈ [k] \A s.t. ∆A(CA, Ti) < k2 + k do
3: A← A∪ {i}
4: Output A

The algorithm outputs a set A ⊆ [k] such that 1 ∈ A as we start with A = {1}. In the algorithm,
we keep the representation C fixed and use Lin(CA) as the set of linear factors of CA. Once, A is
fixed, we ensure that the representation of C is such that for that A, we have sim(CA) has no linear
factors. As the while loop only terminates if there is no gate i ̸∈ A such that ∆A(CA, Ti) < k2 + k,
we have that for any A output by Algorithm 1 that for any i ∈ [k] \ A ∆A(CA, Ti) ≥ k2 + k.
Therefore, conditions 1 and 3 of the lemma are satisfied by every output of Algorithm 1.

In each iteration of the while loop the set [k] \A decreases by at least 1, and therefore, the
algorithm runs for at most k− 1 iterations and always terminates and outputs a set A.

We can also assume without loss of generality, that if multiple gates i satisfy the condition
i ∈ [k] \A s.t. ∆A(CA, Ti) < k2 + k, the gate added into the cluster CA is the one with the smallest
i. This ensures that every time Algorithm 1 is run, it outputs the same maximal cluster A for fixed
input representation C as it adds the first gate not satisfying the distance property to the cluster,
and so on.

So, we are left with showing that the output of Algorithm 1 will also satisfy condition 2 of the
lemma, i.e. rk(sim(CA)) ≤ k4 + k3. To show this, we observe that whenever a gate i is added
into A, the number of variable partitions that sim(CA) depends on increases by at most k2 + k.
Therefore, after adding at most k gates to A, the number of variable partitions that sim(CA)

depends on is at most k3 + k2. Since the linear forms that depend on a particular variable partition
are at most k due to set-multilinearity, the rank of the simple part is at most k4 + k3.

Therefore, the algorithm terminates and outputs an A which satisfies all the conditions of
Lemma 5.2 and so such a set A must exist.

20

Remark 5.3. Note that as described in the proof of Lemma 5.2, the output cluster A of Algorithm 1
is unique for a given representation C. We will from now on assume that we will be talking about
this A cluster containing T1 with all properties described in Lemma 5.2.

Remark 5.4. Comparing this to the syntactic clustering result in [KS09] and semantic cluster-
ing results in [PSV24], we see that the upper bound on rank of the simple part of the cluster in
Lemma 5.2 (k4 + k3) is much better than the ones obtained in previous works (kkO(k)). We can do
this as we get worse distance conditions and focus on finding 1 cluster, which is why we refer to it
as partial clustering. The distance condition in both [KS09], [PSV24] are such that for all cluster
∆(Ci) ≤ r and for i ̸= j ∆(Ci, Cj) ≥ τr for τ = kkk and r = kkO(k) . In contrast, even though our
representation has ∆(CA) ≤ k4 + k3, the distance condition is only ∆(CA, Ti) ≥ ∆(CA)+ 2(k2 + k).
Our reconstruction approach for set-multilinear circuits finds these weaker distance conditions
enough. Also, Lemma 5.2 and the definition of distance Definition 5.1 only makes sense for a
set-multilinear circuit while their clustering works for any ΣΠΣ(k) circuit.

6 Almost circuit, Learning most gates

Given a ΣΠΣ∪jXj (k) circuit C = T1 + T2 + . . . + Tk =
∑

i∈[k]
∏

j∈[d] ℓi,j computing polynomial
f , we can use the techniques in [BSV21] to learn a circuit C ′ = T ′

1 + . . . + T ′
k such that ∀ i ∈

[k] ∆(Ti, T ′
i) < 2k.

We briefly explain how such a C ′ is obtained in time kO(k) ·SysF(k
O(1)) ·poly(n, d). We will use

Lemma 4.16 to do deterministic reconstruction when the degree is d ≤ k3 in time SysF(k
2d, kd, d).

Now, similar to Lemma 5.6 in [BSV21], we set all but k2 variable parts to some random values and
reconstruct the polynomial, which will be close to C (on the variable parts that were not fixed), to
obtain 2 independent linear forms ℓ1, ℓ2 ∈ C such that they are supported on the same variable part
Xi. By setting ℓ1, ℓ2 to 0 one at a time, and recursively calling reconstruction for set-multilinear
ΣΠΣ(k− 1) circuits, we obtain representations close to C. These close representations have each
multiplication gate that is close to a multiplication gate in C due to rank bounds as the gates that
contain ℓ1 are obtained when we go mod ℓ2, and vice versa. As described in Lemma 5.7 of [BSV21],
we obtain S = {M1, . . . , M|S|} of at most 2k− 2 ΠΣ circuits such that ∀ i ∈ [k], ∃ j ∈ [2k− 2] such
that ∆(Ti, Mj) < 2k. Working with k2k−2 possibilities, we get at least one circuit C ′ = T ′

1 + . . .+T ′
k

such that ∀ i ∈ [k] ∆(Ti, T ′
i) < 2k.

Lemma 6.1. Given black-box access to an set-multilinear ΣΠΣ(k) circuit C = T1 + T2 + . . . +

Tk computing f , there exists an algorithm that runs in time 2k3 ·
(
2F (n, d, k− 1) + k2k−2

)
+

SysF(2k4, k2k2 , 2k2) + poly(k, d) · 2log2 k and outputs a list of size kO(k) set-multilinear ΣΠΣ(k) cir-
cuits such that one of the circuits C ′ = T ′

1 +T ′
2 + . . .+T ′

k has the property that ∀ i ∈ [k] ∆(Ti, T ′
i) <

2k.

Proof Sketch. The proof involves the following three steps:

21

1. Using Lemma 5.6 from [BSV21], we find 2k3 pairs, one of which is (ℓ1, ℓ2) ∈ C such that
they are supported on the same variable part Xi and are independent. This step runs in time
SysF(2k4, k2k2 , 2k2) + poly(k, d) · 2log2 k.

2. Using Lemma 5.7 from [BSV21], for each pair (ℓ1, ℓ2), we construct in time 2F (n, d, k− 1) +
poly(n, k, d) a set S = {M1, . . . , M|S|} of at most 2k− 2 ΠΣ circuits such that ∀ i ∈ [k], ∃ j ∈
[2k− 2] such that ∆(Ti, Mj) < 2k.

3. For each (ℓ1, ℓ2) pair, we consider all possibilities for each T ′
i from the set S, generating a list

of size at most k2k−2, one of which is the desired circuit C ′.

7 Finding a good Projection

The focus of this section will be on learning the cluster CA (which contains T1). Due to our
clustering algorithm 4, we know there exists a representation of C = T1 + . . .+ Tk = CA +

∑
i ̸∈A Ti

such that ∆(CA) ≤ k4 + k3 and ∆A(CA, Ti) ≥ k2 + k.
We will now define our useful variable parts by excluding from Consistent-VarPart(C, C ′) the

partitions for which the linear forms in CA are not part of Lin(CA). Therefore, we define

S(C, C ′) := Consistent-VarPart(C, C ′) ∩ Support(Lin(CA)).

As rk(sim(CA)) ≤ k4 + k3, we have |S(C, C ′)| ≥ d− k4 − k3 − k2. Our target remains to find
a set of variable parts in S, such that we can fix them to some values that vanish other gates, but
CA remains non-zero. We define any such fixing of variables Xi to αi, contained as tuples in a
set denoted by L, that keeps gates G (containing T1) alive and sets the rest to 0 as a T1-isolating
projection.

Definition 7.1 (T1-isolating Projection). A T1-isolating projection is a tuple (G,L) such that
G ⊆ [k], 1 ∈ G, and L is a set of tuples (j, αj) such that j ∈ [d] is a variable part and αj ∈ F|Xj |

is an assignment of variables in the j-th variable part. All gates except those in G vanish after the
substitution of variables according to L, i.e.,

C
∣∣∣
∀(j,αj)∈L,Xj=αj

=

(∑
i∈G

Ti

) ∣∣∣∣∣
∀(j,αj)∈L,Xj=αj

̸= 0

The goal of our computation will be getting black-box access to CA, thus we define a good
T1-isolating projection which let’s us compute the black-box access to CA.

Definition 7.2 (Good T1 isolating Projection). A T1-isolating projection (G,L) is good for circuit
C ′, C if G = A in Lemma 5.2 and for all (j, αj) ∈ L, j ∈ S(C ′, C). We refer to the unique A for
circuit C as described in Remark 5.3.

4We actually never run the clustering algorithm; it is just used for existential arguments.

22

7.1 Computing a good T1-isolating projection

This subsection will describe how we can compute a good T1-isolating projection using white-box
access to C ′. Our idea is straightforward. We know that for each i ∈ [k] \ A, T ′

i differs from
Lin(CA) on k2 + k variable parts. By the ‘closeness’ of C and C ′, we know that even in Ti we will
have at least k variable parts that differ from Lin(CA). If we know exactly what these variable
parts are for each i ∈ [k] \ A, and the fact that they are not the same (up to scalar multiple),
this means there is an assignment that kills at least one linear form of Ti (and thus Ti itself) for
i ∈ [k] \A while keeping Lin(CA) alive. However, we don’t have any idea what these k variable
parts are. Obviously, any brute force search for them will have a dk-type dependence. We design
a recursive approach that, using the structural guarantees of C ′, outputs a small (kO(k)) list of
candidates for these variable parts, with a guarantee that one of them will help us project to the
cluster CA.

We now elaborate on the structural guarantees of C ′ that let us do this. If we pick a set of
variable parts of size at most k5 (for simplicity, in Algorithm 2, we use k4 + k3 + k2 + 1) such that
for each variable part, the span of the set of linear forms in the gates of C ′ in G has a dimension of
at least 2, this means for each of the variable parts j in this set, we can pick at least one linear form
ℓ′

i,j from T ′
i such that ℓ′

i,j is not a scalar multiple of ℓ′
1,j . Since ℓ′

i,j and ℓ′
1,j are linearly independent,

we can find an assignment of variables Xj = αj such that ℓ′
i,j(αj) = 0 (and therefore T ′

i |Xj=αj = 0)
while keeping ℓ′

1,j(αj) and T ′
1|Xj=αj non-zero. Thus, we have found a projection for C ′ with the top

fan-in decreased by at least 1. This projection (j, αj) is added to L and all gates in C ′ that are set
to zero are removed from G for the execution that continues after fixing this variable part. We do
this recursively until we reach an execution level where we cannot find any variable parts for our
set, which can happen if |G| = 1 or the remaining gates in C ′ have the same linear forms (up to
scalar multiples) as T ′

1 on all the variable parts that have not been fixed to some value. After, doing
this for all variable parts in the at most k5 sized set, the algorithm adds the gates and projection
that gets to a global list GoodProjList.

23

Algorithm 2 Computing List of Candidate good Projections
Input: Black-box access to ΣΠΣ{ ⊔jXj } circuit C = T1 + . . . + Tk and white-box access to C ′ =
T ′

1 + . . . + T ′
k such that ∆(Ti, T ′

j) < 2k

1: Global GoodProjList = ϕ %Global list where all the T1-isolating projections are added
2: function CandidateGoodProjections(parts, G,L)
3: count = 0
4: for j ∈ parts and |G| ̸= 1 do
5: L′

j := {ℓ′
i,j : i ∈ G, ℓ′

i,j |T ′
i} %Linear forms in C ′ from gates in G supported on Xj

6: if dim(sp(L′
j)) = 1 then

7: parts← parts \ {j}
8: else
9: Pick a linear form ℓ′

i,j in L′
j such that ℓ′

i,j ̸∈ sp(ℓ′
1,j).

10: Find αj ∈ F|Xj | such that ℓ′
1,j(αj) ̸= 0 and ℓ′

i,j(αj) = 0.
11: G′ := G \ {i′ : ℓ′

i′,j(αj) = 0}
12: count = count + 1
13: CandidateGoodProjections(parts \ {j}, G′,L∪ {(j, αj)})
14: Break out of the loop, if count = k4 + k3 + k2 + 1.
15: Add (G,L) to GoodProjList.
16: CandidateGoodProjections(parts = [d], G = [k],L = ϕ)
17: Output: GoodProjList

Now, to see that this set has a good T1-isolating projection, we observe that since we picked
k5 variable parts or Algorithm 2 couldn’t find k5 variable parts with the required property. In the
former case, using |S(C, C ′)| ≥ d− k4 − k3 − k2, there would be at least one variable part in our
set that came from S(C, C ′). We use the distance property of the clustering to show in the proof
of Lemma 7.3 that if there is a gate i ∈ G \A, then there is a variable part j in S(C, C ′) on which
the gate Ti (and T ′

i as j ∈ S(C, C ′)) has an independent linear form from Lin(CA) and therefore
T1 (and T ′

1). Therefore, in the latter case as well, either we pick a variable part in S or G ⊆ A.
We focus our attention on the path of execution where each variable part picked was from

S(C, C ′). Since all variable parts in S(C, C ′) are also in Consistent-VarPart(C, C ′), setting T ′
i |Xj=αj =

0 using j ∈ Consistent-VarPart(C, C ′) also sets Ti|Xj=αj = 0 as the linear forms depending on the
variable part are same for C and C ′ as described in the definition of Consistent-VarPart(C, C ′),
while keeping T ′

1|Xj=αj nonzero keeps T1|Xj=αj nonzero. Also, as all variable parts in S(C, C ′) are
also in Support(Lin(CA)) and the circuit is set-multilinear, keeping T1|Xj=αj non-zero also keeps
Ti|Xj=αj for all i ∈ A. Therefore, along this execution path, at each recursive level, at least one gate
not in A gets set to zero, while keeping all the gates in A nonzero by fixing variable parts Xj with
j ∈ S(C, C ′), until G = A. In the execution call on the path with G = A, the (G,L) that is added
to GoodProjList is a good T1-isolating Projection and occurs at a depth of at most k− |A| ≤ k− 1.

This computation can be seen as a k5-arity tree with depth at most k − 1, with each node a
recursive call of the function. We start with G = [k] and make at most k5 choices of variable parts
such that at least one of them is in S(C, C ′). In the execution of the algorithm along this path, at
each step, at least one gate not in A is set to zero by fixing the chosen variable part in S(C, C ′) while

24

keeping all gates in A non-zero, until we reach G = A, which adds a good T1-isolating Projection
to the list.

Lemma 7.3. Algorithm 2 when given black-box access to a set-multilinear ΣΠΣ(k) circuit C and
white-box access to an almost circuit C ′ from Lemma 6.1 computes a list of T ′

1-isolating projections
for C ′ of size at most kO(k) such that it has at least 1 good T1-isolating projection for C, C ′ in
deterministic kO(k) · poly(n, d) time.

Proof. We break our proof into the following 3 claims:

1. There is a path of execution of Algorithm 2 such that there is a recursive call of the function
CandidateGoodProjections with G = A and all variable parts included in L are in S(C, C ′),
i.e. G = A and ∀(j, αj) ∈ L j ∈ S.

2. There is at least 1 good T1-isolating projection for C, C ′ in the output of Algorithm 2.

3. Size of the list is kO(k). Running time is kO(k) · poly(n, d).

Proof of Claim 1: Algorithm 2 in each execution of the function makes at most k4 +k3 +k2 + 1
recursive calls on Line 14 for different variable parts from variable partition {⊔jXj } which are set
to αj in their respective branches of execution. Recall, |S(C, C ′)| ≥ d− k4 − k3 − k2. Therefore, if
the algorithm stopped searching for variable parts that have at least 2 independent linear forms, i.e.
breaks out of the loop on Line 14, then there must be at least 1 recursive call from each execution
of CandidateGoodProjections that uses a variable part from S. The other case is that the local
variable parts did not have k4 + k3 + k2 + 1 variable parts such that the linear forms from the gates
in G spanned a dimension 2 subspace. We will argue later that in this case, if none of the variable
parts chosen for the next calls are from S(C, C ′) then G ⊆ A. All gates in A have the same (up
to scalar factor) linear forms on all variable parts in S. This can be seen as all variable parts in
S are also in the support of Lin(CA) and therefore in gcd of the gates in A. As a result of set-
multilinearity, there will be no linear form supported on the variable parts in S. This ensures that
when we keep ℓ1,j non-zero, we also keep all gates in A non-zero. Let us say there is a gate Ti with
i ∈ G \A. Therefore, setting a linear form different from ℓ1,j will ensure you set a gate T ′

i not in A

to zero which also sets a gate in Ti as the variables parts in S are also in Consistent-VarPart(C, C ′).
Since, we know ∆A(CA, Ti) ≥ k2 + k, we have Lin(CA) and Ti differ on at least k2 + k variable
partitions. As |Consistent-VarPart(C, C ′)| ≥ d− k2, there are at least k variable partitions in S

on which Lin(CA) and Ti differ. In each recursive call, the size of G decreases by at least 1, so the
depth of recursion could at most be k and |L| < k, which means there will be at least 1 variable
partition in S on which Lin(CA) and Ti differ. As the depth of the execution can at most be k− 1,
the number of variable parts fixed will be at most k− 1, and there will be at least 1 variable part
in S on which Lin(CA) and Ti differ. This also means that if none of the recursive calls from the
execution call are in S(C, C ′) then there is not i ∈ G \A implying G ⊆ A. Also, All the variables
parts removed in Line 7 of Algorithm 2 are such that all gates in G agree on them with Lin(CA),
so all k variable partitions will be in parts except those who have been added to L.

25

Proof of Claim 2: We will first observe that every element in GoodProjList is a T ′
1 Isolating

Projection for C ′ as we keep T ′
1 non-zero and remove all gates that get set to 0. We can guarantee

to find such an αj in Step 10 because the dimension of the span of ℓ′
1,j , ℓ′

i,j is at least 2. From Claim
1, we know there will be a path when G = A and all the variable partitions in L are in S(C, C ′).
For this to be a good T1 Isolating Projection, we only need to argue that this is a T1 Isolating
Projection for C. This is true as all variable partitions in S are also in Consistent-V arPart and
therefore when we set a gate T ′

i to 0 by setting ℓ′
(i,j)(αj) = 0, we also set Ti to 0 keeping CA

non-zero as ℓ′
1,j will also be in Lin(CA). Therefore, there is at least 1 good T1-isolating Projection

in the list GoodProjList output by Algorithm 2.
Proof of Claim 3: As the top fan-in decreases by at least 1 at each level, the recursion

depth will be at most k − 1. At each level, at most k4 + k3 + k2 + 1 recursive calls are made,
creating the recursive (k4 + k3 + k2 + 1)-ary tree with depth k − 1. As the number of leaves of a
(k4 + k3 + k2 + 1)-ary tree and k depth is bounded by (k4 + k3 + k2 + 1)k, the number of projections
in GoodProjList is also less than (k4 + k3 + k2 + 1)k. Finding αi in Step 10 of Algorithm 2 can
be done in poly(n) time as it is just solving a system of linear equations. Removing the variable
partitions in gcd also takes poly(d) time across any path as each partition is only considered
once in each computational path of the recursion tree. Therefore, each recursion call runs in
poly(n, d) time and there are (k4 + k3 + k2 + 1)k such calls, and therefore the entire running time
is (k4 + k3 + k2 + 1)k · poly(n, d) = kO(k) · poly(n, d).

8 Reconstruction using a good Projection

Now, we will describe how we can obtain a kO(k) sized list of candidate circuits for CA using the
list computed in Lemma 7.3, one of which will be computing CA.

26

Algorithm 3 Candidate Circuits using Good Partitions
Input: Black-box access to set-multilinear ΣkΠΣ Circuit C = T1 + . . . + Tk and white-box access
to C ′ = T ′

1 + . . . + T ′
k such that ∆(Ti, Mj) < 2k and a list containing a good Projection

1: function Candidate-Cluster-Circuit(C, C ′, GoodProjList)
2: Candidate-Circuits = ϕ
3: for (G,L) ∈ GoodProjList do
4: Let Φ(C) = C|∀(j,αj)∈L,Xj=αj

denote the circuit C with values in Xj set to αj for all
(j, αj) ∈ L.

5: Use Corollary 4.14 to obtain the linear factors of Φ(C)(denoted by Lin(Φ(C))) and
black-box access to NonLin(Φ(C))

6: Reconstruct the set-multilinear circuit NonLin(Φ(C)′) using low degree (degree ≤ k4 +
k3) from Lemma 4.16 black-box access to NonLin(Φ(C)) with top-fan-in set to |G|.

7: If Reconstruction fails in case deg(NonLin(Φ(C))) ≥ k4 + k3, move to next (G,L). Set
Φ(C ′) =

(∏
ℓ∈Lin(Φ(C) ℓ

)
·NonLin(Φ(C)′)

8: Obtain Φ(C ′) = Φ(C ′) ·
(∏

(j,αj)∈L
ℓ1,j

ℓ1,j(αj)

)
9: Add (Φ(C ′), |G|) to Candidate-Circuits

10: Output Candidate-Circuits

Lemma 8.1. Given a list of T1-isolating Projections from Lemma 7.3, black-box access to a set-
multilinear circuit C computing f with top fan-in k, and white-box access to circuit C ′ as in
Lemma 6.1, then Algorithm 3 computes a kO(k) sized list of depth 3 set-multilinear circuits Φ(C)′

such that at least one of them computes CA in time kO(k) · SysF(2k6, k2k4 , 2k4) · poly(n, d).

Proof. From Lemma 7.3, we have that there will be at least one good T1-isolating projection
in the list GoodProjList. We consider only this T1-isolating projection and show that when
(G,L) is a good T1-isolating projection, then Φ(C ′) at end of the algorithm is computing CA.
When (G,L) is a good T1-isolating projection, we know from Definition 7.2 that G = A and
∀(j, αj) ∈ L, j ∈ S(C ′, C). Also, Definition 7.1 of T1-isolating projection we know gates other
than G vanish when we substitute values to variable parts according to L, i.e. C|∀(j,αj)∈L,Xj=αj

=

(
∑

i∈G Tj) |∀(j,αj)∈L,Xj=αj
̸= 0. As this is a good T1- Isolating projection, we have G = A, which

means C|∀(j,αj)∈L,Xj=αj
= (

∑
i∈A Tj) |∀(j,αj)∈L,Xj=αj

and gives us (CA) |∀(j,αj)∈L,Xj=αj
= Φ(C).

From Lemma 5.2, we can see that CA can be written as CA =
(∏d′

j=1 ℓ1,j
)
· hA(ℓ1, . . . , ℓr) with

hA = sim(CA) and therefore r ≤ rk(sim(CA)) ≤ k4 + k3. From Corollary 4.14, we can get
Lin(Φ(C)) and black-box access to NonLin(Φ(C)). As we fixed the representation such that
sim(CA) has no linear factors, we have NonLin(Φ(C)) = sim(CA). From Lemma 4.13, we know
that a ΣΠΣ{ ⊔jXj } circuit can also compute hA. The rank of the polynomial acts like an up-
per bound on the degree due to set-multilinearity and therefore, we can learn it using low-degree
reconstruction for ΣΠΣ{ ⊔jXj } circuits with top fan-in |A|. As ∀(j, αj) ∈ L we have j ∈ SC,C′

and so j ∈ Support(Lin(CA)). So, when we consider (CA) |∀(j,αj)∈L,Xj=αj
, it only fixes linear

forms in Lin(CA) to their evaluations at αj which are not zero. Therefore, the circuit learned for
NonLin(Φ(C)) in the case when we are working with a good T1-isolating projection will be equal
to sim(CA) = hA. So, we have learned CA correctly except for the linear forms that were set to

27

constant nonzero values by Φ. These will be (j, αj) ∈ L, ℓ1,j which got set to ℓ1,j(αj). As the
variable parts in L are in S(C, C ′) and so also in Consistent-VarPart(C, C ′), we have ℓ1,j = ℓ′

1,j

which we already know. Therefore, we can obtain a circuit for CA by multiplying with ℓ′
1,j

ℓ′
1,j(αj)

for
all (j, αj) ∈ L.

The algorithm adds at most 1 circuit for each element of GoodProjList which we know from
Lemma 7.3 has size at most kO(k), and therefore, |Candidate-Circuits| ≤ kO(k). The size bound
of GoodProjList also means that the loop on Line 3 of Algorithm 3 will also run kO(k) times.
Factoring in Line 5 takes 2O(log2 k) · poly(n, d) time from Corollary 4.14. Line 6 which has the low
degree reconstruction with fan-in at most k and degree at most k4 + k3 ≤ 2k4, which by Lemma 4.16
can be done in SysF(k

2d, kd, d) · poly(n, d) = SysF(2k6, k2k4 , 2k4) · poly(n, d). Line 7 takes time
O(|L|) for which we showed in Lemma 7.3 that |L| ≤ k − 1. Therefore, the entire algorithm runs
in time kO(k) · SysF(2k6, k2k4 , 2k4) · poly(n, d).

9 Proof of Theorem 2.1

Algorithm 4 Reconstruction of set-multilinear ΣΠΣ(k) circuits
Input: Black-box access to set-multilinear ΣkΠΣ Circuit C = T1 + . . . + Tk

1: function TensorReconstruction(C, k)
2: if k = 0 then
3: Output 0
4: else
5: if k = 1 then
6: Factor using Corollary 4.14 to obtain all the linear factors.
7: Output the circuit that is product of all factors.
8: Use Lemma 6.1 to obtain a list of 2k2k+1 almost circuits L
9: for C ′ ∈ L do

10: Run Algorithm 2 with C and C ′ to obtain GoodProjList
11: Run Algorithm 3 with input C, C ′, GoodProjList to obtain Candidate-Circuits
12: for (CG, |G|) ∈ Candidate-Circuits do
13: C̃ = TensorReconstruction(C −CG, k− |G|)
14: Run blackbox PIT algorithm on C̃ + CG −C, if identity output C̃ + CG

15: Output Nil

Proof of Theorem 2.1. The correctness of Algorithm 4 follows from Lemma 3 that outputs at least
1 circuit computing CA which decreases the fan-in by at least 1. The blackbox PIT check ensures
that either the circuit outputs the correct circuit computing C or Nil. For the correct value of
k, it will output the correct circuit when G = A and CG = CA. We can run Algorithm 4 for
k := {1, 2, . . . , d} which will give us the minimum rank Tensor Decomposition.

Let F (n, d, k) be the running time of Algorithm 4 for an input n-variate d degree set-multilinear
polynomial computed by a ΣΠΣ{ ⊔jXj }(k) circuit. From Lemma 6.1, we know we can obtain
the list of 2k2k+1 almost circuits in time 2k3 ·

(
2F (n, d, k− 1) + k2k−2

)
+ SysF(2k4, k2k2 , 2k2) +

28

poly(k, d) · 2log2 k. From Lemma 7.3 and Lemma 8.1, we know Algorithm 2 and Algorithm 3 run
in kO(k) · poly(n, d) time and kO(k) · SysF(2k6, k2k4 , 2k4) · poly(n, d) time respectively. The loop
on Line 6 runs at most kO(k) times taking time F (n, d, k − |A|) ≤ F (n, d, k − 1) on Line 7 and
2O(log2 k) · poly(n, d) time for PIT on Line 8 due to Corollary 4.12. The base case of F (n, d,≤ 1)
takes time poly(n, d). Therefore, the total running time can be described by the following recurrence
relation

F (n, d, k) = 2k3 ·
(
2F (n, d, k− 1) + k2k−2

)
+ SysF(2k4, k2k2 , 2k2) + poly(k, d) · 2log2 k

+ kO(k) · (kO(k) · poly(n, d) + kO(k) · SysF(2k6, k2k4 , 2k4) · poly(n, d)

+ kO(k) · (F (n, d, k− 1) + 2O(log2 k) · poly(n, d)))

≤ kO(k)F (n, d, k− 1) + kO(k) · SysF(2k6, k2k4 , 2k4) · poly(n, d)

≤ kO(k2)F (n, d, 1) + kO(k) · SysF(2k6, k2k4 , 2k4) · poly(n, d)

=
(
kO(k2) + kO(k) · SysF(2k6, k2k4 , 2k4)

)
· poly(n, d)

Now, as described in Theorem 4.9, we can observe that we can substitute SysF(n, m, d) to
poly((md)n2

) when F = R or C. This gives the running time of

F (n, d, k) =
(
kO(k2) + kO(k) · poly((k2k4 · 2k4)(2k6)2

)
)
· poly(n, d) F = R or C

= 2O(k16 log k) · poly(n, d)

= 2kO(1) · poly (n, d) Deterministic, F = R or C

Proof of Theorem 2.4. For all other fields F, Theorem 4.9 gives SysF(n,m,d)poly((nmd)3n
) · cF(d

2n
)

where, cF(N) denotes the time complexity of factorizing a univariate polynomial of degree n over
F, randomized or deterministic respectively. Upon substitution into our expression, we get

F (n, d, k) =

(
kO(k2) + kO(k) · poly((2k2 · k2k4 · 2k4)(2k6)2k6

)

)
· poly(n, d) · cF(2kO(1)

)

= 2O(kk6 log k) · poly(n, d) · cF(2kO(1)
)

= 2kkO(1)
· poly (n, d) · cF(2kO(1)

)

29

References

[AFH+12] Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Yi-Kai Liu.
A spectral algorithm for latent dirichlet allocation. In Advances in Neural Information
Processing Systems, pages 917–925, 2012.

[AGHK14] Animashree Anandkumar, Rong Ge, Daniel Hsu, and Sham M Kakade. A tensor
approach to learning mixed membership community models. The Journal of Machine
Learning Research, 15(1):2239–2312, 2014.

[AGJ15] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Learning overcomplete la-
tent variable models through tensor methods. In Conference on Learning Theory, pages
36–112. PMLR, 2015.

[AM94] L. M. Adleman and K. S. McCurley. Open problems in number theoretic complexity,
II. In Algorithmic Number Theory, First International Symposium, ANTS-I, Ithaca,
NY, USA, May 6-9, 1994, Proceedings, pages 291–322, 1994.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

[BBB+00] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning
functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Smoothed analysis of tensor decompositions. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 594–603, 2014.

[BGKS22] Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning general-
ized depth three arithmetic circuits in the non-degenerate case. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.

[BKS15] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and tensor de-
composition via the sum-of-squares method. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 143–151, 2015.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynom-
inal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 301–309, 1988.

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization
of sparse polynomials with bounded individual degree. Journal of the ACM (JACM),
67(2):1–28, 2020.

30

[BSV21] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms for
low-rank tensors and depth-3 multilinear circuits. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 809–822, 2021.

[Can88] J. Canny. Some algebraic and geometric computations in pspace. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, pages 460–467, 1988.

[CGK+24] Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learn-
ing Arithmetic Formulas in the Presence of Noise: A General Framework and Applica-
tions to Unsupervised Learning. In Venkatesan Guruswami, editor, 15th Innovations
in Theoretical Computer Science Conference (ITCS 2024), volume 287 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 25:1–25:19, Dagstuhl, Germany,
2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[CLO15] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms - an introduction
to computational algebraic geometry and commutative algebra (4. ed.). Undergraduate
texts in mathematics. Springer, 2015.

[CM20] S. Chen and R. Meka. Learning polynomials in few relevant dimensions. In Jacob D.
Abernethy and Shivani Agarwal, editors, Conference on Learning Theory, COLT 2020,
9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine
Learning Research, pages 1161–1227. PMLR, 2020.

[DCC07] Lieven DeLathauwer, Josphine Castaing, and Jean-Franois Cardoso. Fourth-order
cumulant-based blind identification of underdetermined mixtures. IEEE Transactions
on Signal Processing, 55(6):2965–2973, 2007.

[DdL+22] Jingqiu Ding, Tommaso d’Orsi, Chih-Hung Liu, David Steurer, and Stefan Tiegel. Fast
algorithm for overcomplete order-3 tensor decomposition. In Conference on Learning
Theory, pages 3741–3799. PMLR, 2022.

[Der13] Harm Derksen. Kruskal’s uniqueness inequality is sharp. Linear Algebra and its Appli-
cations, 438(2):708–712, 2013.

[FS12a] M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. Electronic Col-
loquium on Computational Complexity (ECCC), 19:115, 2012.

[FS12b] Michael A Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery
and compressed sensing. In Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 163–172, 2012.

[GG20] Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2020.

31

[GKL11] A. Gupta, N. Kayal, and S. V. Lokam. Efficient reconstruction of random multilinear
formulas. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS, pages 778–787, 2011.

[GKQ14] A. Gupta, N. Kayal, and Y. Qiao. Random arithmetic formulas can be reconstructed
efficiently. Computational Complexity, 23(2):207–303, 2014.

[GKS20a] A. Garg, N. Kayal, and C. Saha. Learning sums of powers of low-degree polynomials
in the non-degenerate case. arXiv preprint arXiv:2004.06898, 2020.

[GKS20b] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 889–899. IEEE, 2020.

[GV88] D. Yu. Grigor’ev and N.N. Vorobjov. Solving systems of polynomial inequalities in
subexponential time. Journal of Symbolic Computation, 5(1):37 – 64, 1988.

[GVX14] Navin Goyal, Santosh Vempala, and Ying Xiao. Fourier pca and robust tensor de-
composition. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 584–593, 2014.

[Hås90] Johan Håstad. Tensor rank is np-complete. J. Algorithms, 11(4):644–654, 1990.

[HK13] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: moment
methods and spectral decompositions. arXiv preprint arXiv:1306.0021, 2013. Presented
at the 4th Conference on Innovations in Theoretical Computer Science (ITCS).

[HL13] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are np-hard. J. ACM,
60(6), nov 2013.

[HSS19] Samuel B Hopkins, Tselil Schramm, and Jonathan Shi. A robust spectral algorithm for
overcomplete tensor decomposition. In Conference on Learning Theory, pages 1683–
1722. PMLR, 2019.

[Ier89] D. Ierardi. Quantifier elimination in the theory of an algebraically-closed field. In Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, page 138–147, New York, NY, USA, 1989. Association for Computing Machinery.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

[JLV23] Nathaniel Johnston, Benjamin Lovitz, and Aravindan Vijayaraghavan. Computing
linear sections of varieties: quantum entanglement, tensor decompositions and beyond.
In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
pages 1316–1336. IEEE, 2023.

32

[JO14] Prateek Jain and Sewoong Oh. Learning mixtures of discrete product distributions
using spectral decompositions. arXiv preprint arXiv:1404.4604, 2014. Presented at the
Conference on Learning Theory (COLT).

[KNS18] N. Kayal, V. Nair, and C. Saha. Average-case linear matrix factorization and recon-
struction of low width algebraic branching programs. Electronic Colloquium on Com-
putational Complexity (ECCC), 25:29, 2018.

[KNST17] N. Kayal, V. Nair, C. Saha, and S. Tavenas. Reconstruction of full rank algebraic
branching programs. In 32nd Computational Complexity Conference, CCC 2017., pages
21:1–21:61, 2017.

[Koi96] P. Koiran. Hilbert’s nullstellensatz is in the polynomial hierarchy. Journal of complexity,
12(4):273–286, 1996.

[KP20] Bohdan Kivva and Aaron Potechin. Exact nuclear norm, completion and decomposition
for random overcomplete tensors via degree-4 sos. arXiv preprint arXiv:2011.09416,
2020.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

[KS06] A. Klivans and A. Shpilka. Learning restricted models of arithmetic circuits. Theory
of computing, 2(10):185–206, 2006.

[KS09] Z. S. Karnin and A. Shpilka. Reconstruction of generalized depth-3 arithmetic cir-
cuits with bounded top fan-in. In Proceedings of the 24th Annual IEEE Confer-
ence on Computational Complexity (CCC), pages 274–285, 2009. Full version at
http://www.cs.technion.ac.il/ shpilka/publications/KarninShpilka09.pdf.

[KS19] N. Kayal and C. Saha. Reconstruction of non-degenerate homogeneous depth three
circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019., pages 413–424, 2019.

[Lan12] J. Landsberg. Tensors: geometry and applications. Representation theory, 381(402):3,
2012.

[LP23] Benjamin Lovitz and Fedor Petrov. A generalization of kruskal’s theorem on tensor
decomposition. In Forum of Mathematics, Sigma, volume 11, page e27. Cambridge
University Press, 2023.

[LRA93] Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decomposition for three-way
arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993.

33

[LST24] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower
bounds against low-depth algebraic circuits. Communications of the ACM, 67(2):101–
108, 2024.

[MR75] Y. Matijasevič and J. Robinson. Reduction of an arbitrary diophantine equation to one
in 13 unknowns. Acta Arithmetica, 27(1):521–553, 1975.

[MR05] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden
markov models. arXiv preprint arXiv:1506.08512, 2005. Presented at the Thirty-
Seventh Annual ACM Symposium on Theory of Computing (STOC).

[MW18] Ankur Moitra and Alexander S Wein. Spectral methods from tensor networks. arXiv
preprint arXiv:1811.00944, 2018.

[PSV24] Shir Peleg, Amir Shpilka, and Ben Lee Volk. Tensor Reconstruction Beyond Constant
Rank. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer
Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 87:1–87:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Raz13] R. Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40:1–
40:15, 2013.

[Shi16] Y. Shitov. How hard is the tensor rank? arXiv preprint arXiv:1611.01559, 2016.

[SS16] M. Schaefer and D. Stefankovic. The complexity of tensor rank. CoRR, abs/1612.04338,
2016.

[SS17] Tselil Schramm and David Steurer. Fast and robust tensor decomposition with appli-
cations to dictionary learning. In Conference on Learning Theory, pages 1760–1793.
PMLR, 2017.

[SV10] A. Shpilka and I. Volkovich. On the relation between polynomial identity test-
ing and finding variable disjoint factors. In Automata, Languages and Program-
ming, 37th International Colloquium (ICALP), pages 408–419, 2010. Full version at
https://eccc.weizmann.ac.il/report/2010/036.

[Vol16] Ilya Volkovich. A guide to learning arithmetic circuits. In Conference on Learning
Theory, pages 1540–1561. PMLR, 2016.

[Wei23] Alexander S Wein. Average-case complexity of tensor decomposition for low-degree
polynomials. In Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, pages 1685–1698, 2023.

34
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

