
Solving Tree Evaluation in o(log n · log log n) space

Oded Goldreich
Department of Computer Science

Weizmann Institute of Science, Rehovot, Israel.

July 26, 2024

Abstract

The input to the Tree Evaluation problem is a binary tree of height h in which each internal
vertex is associated with a function mapping pairs of ℓ-bit strings to ℓ-bit strings, and each leaf
is assigned an ℓ-bit string. The desired output is the value of the root, where the value of each
internal node is defined by applying the corresponding function to the value of its children.

A recent result of Cook and Mertz (ECCC, TR23-174) asserts that the Tree Evaluation
problem can be solved in space O(ℓ+h · log ℓ), where the input length is exp(Θ(h+ℓ)). Building
on our recent exposition of their result (ECCC, TR24-109), we now obtain an o((h+ℓ)·log(h+ℓ))
space bound. Specifically, for the case of h ≥ ℓ, we shave off an Θ(log log(h+ ℓ)) factor.

The improvement is obtained by improving the procedure of Cook and Mertz for a generalized
tree evaluation problem that refers to d-ary trees. We then reduce the binary case to the d-ary
case while cutting the height of the tree by a factor of log2 d.

The main result reported in this memo was obtained by Manuel Stoeckl, a student at Dartmouth,
half a year before us. Manuel felt that this result is a minor observation and did not find the time
to write it down. He also declined our invitation to co-author this memo.

A suggested warm-up. This exponsition builds on our exposition of the Cook and Mertz theo-
rem [1], which asserts that the Tree Evaluation problem can be solved in space O(log n · log logn),
where n denotes the length of the input. Hence, our exposition [3] is a good warm-up for the
current memo; in particular, we suggest reading [3, Sec. 1], which focuses on proving [1, Thm. 10]
(and maybe also [3, Sec. 2], which yields a proof of [1, Thm. 15]). We warn that the exposition
of [3], which we shall follow, refers to a model of global storage, which is spelled-out in [3, Sec. 3]
(following [2, Sec. 5.2.4.2]).1

The generalized Tree Evaluation problem (TrEvdh,ℓ). The input to this computational prob-
lem is a rooted d-ary tree of height h in which internal nodes represent arbitrary gates mapping
d-tuples of ℓ-bit strings to ℓ-bit strings, and each leaf carries an ℓ-bit string. Specifically, nodes in
the tree are associated with d-ary sequences of length at most h such that the nodes u1, ..., ud are

the d children of the node u ∈ U
def
=

⋃h−1
i=0 [d]

i. For every u ∈ U , the internal node u is associated
with a gate fu : {0, 1}d·ℓ → {0, 1}ℓ, and the leaf u ∈ {0, 1}h is assigned the value vu ∈ {0, 1}ℓ.

1Loosey speaking, this model abandon the paradigm of “good programming” under which a recursive call uses
a different work space than the execution that calls it. Instead, it uses the same global space for both executions,
whereas only a much smaller work space will be allocated to each recursive level as its local space.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 124 (2024)

Hence, the input is the description of all |U | = dh−1
d−1 gates (i.e., all fu’s) and the values assigned to

the dh leaves; that is, the length of the input is |U | · (2dℓ · ℓ) + dh · ℓ = exp(Θ(dℓ + h log d)). The
desired output is vλ such that for every u ∈ U it holds that

vu = fu(vu1, ..., vud). (1)

The Tree Evaluation problem corresponds to the special case of d = 2; that is, TrEvh,ℓ
def
= TrEv2h,ℓ.

For the history and significance of the Tree Evaluation problem, see [1]. In particular, the gen-
eralized version (TrEvdh,ℓ) was introduced in [1, Sec. 6.1], and was shown to be solvable in space
O((h+ dℓ) · log(dℓ)) [1, Thm. 18]. Here, we slightly improve upon this bound.

Low degree extensions and interpolation. In analogy to [3, Sec. 2], we associate {0, 1}ℓ with
[dk]k (equiv., {0, 1}d·ℓ with [dk]d·k), and consider functions that desribe the individual elements in
the outputs of the fu’s. Specifically, for every u ∈ U and i ∈ [k] (and every x(1), ..., x(d) ∈ [dk]k),
let fu,i(x

(1), ..., x(d)) ∈ [dk] equal the ith symbol of fu(x
(1), ..., x(d)) ∈ [dk]k (i.e., fu(x

(1), ..., x(d)) =
(fu,i(x

(1), ..., x(d)), ..., fu,i(x
(1), ..., x(d)))). We use a finite field of size poly(dk) that is greater than

m = d · k2 (and [dk] ⊂ K), and consider low degree extensions of the fu,i’s. Specifically, for each

u ∈ U and i ∈ [k], we let f̂u,i : Kd·k → K be a d · k-variate polynomial of individual degree k − 1

over K that extends fu,i : [dk]
dk → [dk].2 Note that f̂u,i has total degree dk · (k − 1) < m, whereas

its input length (i.e., log2 |Kdk|) equals log2(poly(dk)dk) = O(dℓ). The punchline is that, for every
v1, ..., vd ∈ Kk, we can obtain the value of f̂u,i(v1, ..., vd) by univariate polynomial interpolation from

the values of f̂u,i(jx̂
(1) + v1, ..., jx̂

(d) + vd) for all j ∈ [m] ⊂ K, where j · (z1, ..., zk) ∈ Kk equals
(jz1, ..., jzk).

Note, however, that a naive implementation of the foregoing interpolation involves operating on
these m values (after storing them in memory). Fortunately, the interpolation formula is a linear
combination of these m values, and so we need not store these values but can rather operate on them
on-the-fly (while only storing the partial linear combination computed so far). Specifically, we let
cj be the coefficient of f̂u,i(jx̂

(1) + v1, ..., jx̂
(d) + vd) used to obtain f̂u,i(0x̂

(1) + v1, ..., 0x̂
(d) + vd);

that is,

f̂u,i(v1, ..., vd) =
∑
j∈[m]

cj · f̂u,i(jx̂(1) + v1, ..., jx̂
(d) + vd). (2)

Then, we shall compute the r.h.s of Eq. (2) in m iterations such that in each iteration we obtain
and add the current term to the partial sum computed so far.

Our (recursive) algorithm. For sake of simplicity, we first assume that we have oracle access
to the function F : U × [k]×Kdk → K defined by

F (u, i, x̂(1), ..., x̂(d))
def
= f̂u,i(x̂

(1), ..., x̂(d)). (3)

2Indeed, for simplicity, we assume that K is of prime cardinality. In general, for S ⊂ K, the low degree extension
of f : St → S is given by f̂ : Kt → K such that

f̂(x1, ..., xt) =
∑

a1,...,at∈S

∏
i∈[t]

χai(xi)

 · f(a1, ..., at),

where χa(x)
def
=

∏
b∈S\{a}(x− b)/(a− b) is a degree |S| − 1 univariate polynomial.

2

The global memory that we use will hold d + 1 elements of Kk (each being a k-sequence over K),
denoted x̂(1), ..., x̂(d), and ẑ, as well as a sequence (over [d]) of length at most h, denoted u. Now,
suppose that we have a procedure that, for any u ∈ U , σ ∈ [d] and τ ∈ {0, 1}, when invoked
with (uσ, τ, x̂(1), ..., x̂(d), ẑ) on the global space, returns (uσ, x̂(1), ..., x̂(d), ẑ + (−1)τ · vuσ) on the
global space, where vuσ ∈ [dk]k ⊂ Kk is recursively defined as in Eq. (1).3 Then, when invoked
with (u, τ, x̂(1), ..., x̂(d), ẑ) on the global space, we can return (u, x̂(1), ..., x̂(d), ẑ+(−1)τvu) such that
vu = fu(vu1, ..., vud), by proceeding in m iterations as follows.4

(In iteration j ∈ [m], for each i ∈ [k], we shall increment the current value of the ith ele-
ment of ẑ by (−1)τ ·cj · f̂u,i(jx̂(1)+vu1, ..., jx̂

(d)+vud), while maintaining (u, x̂(1), ..., x̂(d))
intact.)5

The jth iteration proceeds as follows.

1. Proceeding in d sub-steps (corresponding to all σ ∈ [d]), in the σth sub-step we
place jx̂(σ) in the last position and make a recursive call aimed to increament it
by vuσ. That is, for σ = 1, ..., d, making a recursive call with a global space con-
taining (uσ, 0, ŷ(1), ..., ŷ(σ−1), x̂(σ+1), ..., x̂(d), ẑ, jx̂(σ)), we update the global space

to (uσ, ŷ(1), ..., ŷ(σ−1), x̂(σ+1), ..., x̂(d), ẑ, ŷ(σ)), where ŷ(σ)
def
= jx̂(σ) + vuσ.

(Once these d sub-steps are completed, the global space contains (u, ŷ(1), ..., ŷ(d), ẑ),
where ŷ(σ) = jx̂(σ) + vuσ for every σ ∈ [d].)

2. For each i ∈ [k], letting ẑi denote the ith element of ẑ ∈ Kk, compute ẑi + (−1)τ ·
cj · F (u, i, ŷ(1),, ŷ(d)) by making an oracle call to F , and update the value of ẑi
accordingly. Note that in the ith sub-step only the ith element of the sequence ẑ is
updated (whereas multiplication by cj is performed so to fit Eq. (2)).

3. Analogously to Step 1, for σ = 1, ..., d, making a recursive call with a global space
containing (uσ, 1, x̂(1), ..., x̂(σ−1), ŷ(σ+1), ..., ŷ(d), ẑ, ŷ(σ)), we update the global space
to (uσ, x̂(1), ..., x̂(σ−1), ŷ(σ+1), ..., ŷ(d), ẑ, jx̂(σ)), since ŷ(σ) − vuσ = jx̂(σ).

4. Re-arrange the global space to contain (u, x̂(1), ..., x̂(d), ẑ), while noting that each
ẑi got incremented by (−1)τ · cj · f̂u,i(jx̂(1) + vu1, ..., jx̂

(d) + vud).

Using Eq. (2), we note that (after the m iterations) the value of each ẑi equals the initial
value plus (−1)τ · f̂u,i(vu1, ..., vud).

Letting h̃
def
= h log2 h, the foregoing recursive procedure uses a global space of length h̃+O(1)+(d+

1+o(1)) · log2 |K|k = h̃+O(dk · log(dk)) = h+O(dℓ) and a local space of length log2m = O(log dk).
(The o(1) · log2 |K|ℓ + O(log d) term accounts for the space complexity of various manipulations
(including maintaining the counters i ∈ [k] and σ ∈ [d]), whereas the local space is used only for
recording j ∈ [m].)

Using a composition lemma akin [2, Lem. 5.10], it follows that the general Tree Evaluation
problem (with parameters h, ℓ and d) can be solved in space O(dℓ+ h · log(dℓ)), when using oracle

3The variable/parameter τ allows us to either add or subtract the value vuσ. In our recursive calls, we shall need
both options.

4The following description is for the case of u ∈ U . In case u ∈ [d]h, we may just obtain vu from the input oracle
(e.g., augment F such that F (u) = vu).

5Recall that, by Eq. (2),
∑

j∈[m] cj · f̂u,i(jx̂
(1) + vu1, ..., jx̂

(d) + vud) equals f̂u,i(vu1, ..., vud).

3

access to F , which in turn can be evaluated in linear space (i.e., space linear in h+ dℓ).6 Using a
naive composition (see [3, Sec. 4] for details), it follows that

Theorem 1 (an intermediate result): The space complexity of TrEvdh,ℓ is O(dℓ+ h · log(dℓ)).

Theorem 1 improves over the O((dℓ+ h) · log(dℓ)) bound given in [1, Thm. 18].

Towards improving the bound for the binary case. The bound provided by Theorem 1

suggest that it may be worthwhile to reduce TrEvh,ℓ to TrEv2
h′

h/h′,ℓ by replacing binary subtrees

of height h′ by 2h
′
-ary functions. The point is that space complexity of TrEv2

h′

h/h′,ℓ is O(2h
′ · ℓ +

(h/h′) · log(2h′
ℓ)), which equals O(h + 2h

′ · ℓ + (h/h′) · log ℓ). Recalling that the input to TrEvh,ℓ

has length exp(Θ(h+ ℓ)), we infer that the complexity of TrEvh,ℓ is O((h+ ℓ) · (2h′
+ log ℓ

h′)), which

is O((h+ ℓ) · log ℓ
log log ℓ) (when using h′ = 0.99 log2 log ℓ).

Reducing TrEvh,ℓ to TrEv2
h′

h/h′,ℓ. The reduction maps the binary functions fu : {0, 1}2ℓ → {0, 1}ℓ

associated with all u ∈ U
def
=

⋃h−1
i=0 {0, 1}i to functions f ′

u′ : {0, 1}2
h′ℓ → {0, 1}ℓ associated with all

u′ ∈ U ′ def
=

⋃(h/h′)−1
i=0 [2h

′
]i. Specifically, for every u′ ∈ [2h

′
]i ⊂ U ′ viewed as an h′ · i-bit long string

(for some i ∈ {0, 1, ..., h− 1}), we define f ′
u′ as the result of a computation on the binary sub-tree

of height h′ that is rooted at u′ (i.e., the internal node reachable by the path u′′ from u′ uses the
function fu′u′′). The space complexity of computing each of these functions is O(ℓ + h′ · log ℓ),
which is evidently dominated by O(2h

′ · ℓ). Hence, composing this reduction with the algorithm for

TrEv2
h′

h/h′,ℓ, we obtain.

Theorem 2 (the main result): For every h′ ∈ [h], the space complexity of TrEvh,ℓ is O(h + 2h
′ ·

ℓ+ (h/h′) · log ℓ). In particular, the space complexity of TrEvh,ℓ is O((h+ ℓ) · log ℓ
log log ℓ).

Recalling that the length of the input to TrEvh,ℓ is exponential in h+ ℓ and that the upper bound
provided by [1, Thm. 15] is O(ℓ + h · log ℓ), which is optimal for h = O(ℓ/ log ℓ). Focusing on
h = ω(ℓ/ log ℓ), we observe that in this case Theorem 2 improves over [1, Thm. 15].

In general, letting n = exp(Θ(h+ ℓ)) denote the length of the input to TrEvh,ℓ, we get a space

bound of O(logn·log lognlog log logn).

Acknowledgments

I am grateful to James Cook and Ian Mertz for notifying me of the fact that Manuel Stoeckl
obtained the main result half a year before me.

6Recall that computing F calls for computing the corresponding f̂u,i, which is a multi-linear extension of fu,i. As

for computing f̂u,i, it requires obtaining all values of fu,i (cf. [3, Sec. 4]).

4

References

[1] James Cook and Ian Mertz. Tree Evaluation is in Space O(log n · log log n). ECCC, TR23-174,
2023.

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[3] Oded Goldreich. On the Cook-Mertz Tree Evaluation procedure. ECCC, TR24-109, 2024.

5

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

