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Abstract

We consider read-k determinantal representations of polynomials and
prove some non-expressibility results. A square matrix M whose entries
are variables or field elements will be called read-k, if every variable occurs
at most k times in M . It will be called a determinantal representation of
a polynomial f if f = det(M). We show that

� the n×n permanent polynomial does not have a read-k determinantal
representation for k ∈ o(

√
n/ log n) (over a field of characteristic

different from two).

We also obtain a quantitative strengthening of this result by giving a
similar non-expressibility for k ∈ o(

√
n/ log n) for an explicit n-variate

multilinear polynomial (as opposed to the permanent which is n2-variate).

1 Introduction

In algebraic complexity theory, two polynomials are of central interest: the
determinant and the permanent of a square matrix. If X is an n × n matrix
with indeterminates xi,j as entries, the polynomials are defined as

detn(X) =
∑
σ

sgn(σ)
n∏
i=1

xi,σ(i) , permn(X) =
∑
σ

n∏
i=1

xi,σ(i) ,

where σ ranges over permutations of {1, . . . , n} and sgn(σ) ∈ {1,−1} is the
sign of σ. Motivated by similarity of these expressions, Pólya [9] asked whether
there exists a simple expression of the permanent in terms of the determinant.
This question, which may look like a mere mathematical curiosity, was placed
into a deeper context by Valiant. In the seminal paper [10], he defined algebraic
analogues of complexity classes P and NP, which we now call as VP and VNP.
He showed that the permanent polynomial is complete for the class VNP (if the
underlying field is of characteristic different from two). Since the determinant
lies in VP, a ”simple expression” of perm in terms of det would entail that the
two complexity classes coincide.
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The precise version of Pólya’s problem arising in this context is the following:
if m = m(n) is the smallest m so that we can express

permn(X) = detm(M) , (1)

where M is a matrix with variables or scalars as entries, can m(n) be bounded
by a polynomial in n or does it grow super-polynomially? This question is
intimately related to the problem whether VP = VNP and is one of the major
open problems in algebraic complexity theory. It is generally believed that m
grows exponentially with n. However, the strongest lower bound known today
– due to Mignon and Ressayre1 [7], see also [4]– is quadratic in n. More on the
fascinating story of the determinant and permanent can be found in [3, 1].

The problem can be refined in many ways. In this paper, we consider read-
k representations. A matrix M whose entries are variables or field elements is
read-k, if every variable occurs at most k times in M . It will be called a determi-
nantal representation of a polynomial f if f = det(M). Read-k determinantal
representations (or read-k projections of determinant) were defined in [2] where
it was shown that for sufficiently large n, permn does not have a read-once de-
terminantal representation. Note that in this setting, the question is not about
the size of M but merely about its existence. A more general model of rank-k
projections was considered in [5]. There it was shown that permn cannot be
expressed as the determinant of a matrix of the form A+

∑
i,j Bi,jxi,j with Bi,j

matrices of rank at most 1.
Continuing this line of research, we will prove that permn does not have

a read-k determinantal representation for k ∈ o (
√
n/ log n). In fact, we will

show that any M satisfying (1) must have Ω(n2.5/ log n) entries containing a
variable.

This result is incomparable with the quadratic lower bound on the size
m(n) of a determinantal representation. Denoting s(n) the smallest number of
entries containing a variable in a determinantal representation of permn, the
two quantities are related by

m(n)/2 ≤ s(n) ≤ m(n)2

(the first inequality follows from Lemma 1 below, the latter is obvious). This
does not allow to deduce our lower bound s(n) ≥ Ω(n2.5/ log n) from the bound
m(n) ≥ Ω(n2) in [7], or vice versa. On the other hand, super-polynomial lower
bounds on s(n) and m(n) are equivalent.

On a high level, our proof follows ideas of Nechiporuk [8] which were later
adapted to the algebraic setting by Kalorkoti [6]. As a technical component,
which may be of an independent interest, we identify a specific property dif-
ferentiating the determinant and the permanent. We will show that every
multilinear polynomial f in n variables can be expressed as the permanent of a
read-once matrix (of an exponential size). This follows by inspecting Valiant’s
VNP-completeness proof in [10]. An analogous statement is false in the case
of the determinant: there exists such an f which requires read-k determinantal
representations with k exponential in n. This is proved by a non-constructive
counting argument.

1In fact, the lower bound holds even if M is allowed to have affine functions as entries.
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Notation and definitions F will denote an underlying field. Unless stated
otherwise, the field is arbitrary. X will denote a set of variables.

Given a matrix M with entries from F∪X, its variable size is the number of
entries containing a variable. It will be called read-k if every variable appears at
most k times in M . For a polynomial f ∈ F[X], M will be called a determinantal
representation of f if f = det(M).

As usual, [n] = {1, . . . , n}.

2 Some properties of determinantal representations

We first show that the size of a determinantal representation can be bounded
in terms of its variable size.

Lemma 1. Let M be a square matrix with entries from F ∪X of variable size
s ≥ 1. Then there exists a 2s×2s matrix H of variable size s with entries from
F ∪ X such that det(H) = det(M). Moreover, each variable occurs in H the
same number of times as in M and the variables appear on the main diagonal
of H only.

Proof. The lemma is proved in two steps. In the first step, we transform M
to a matrix M∗ with the same determinant such that every row and column of
M∗ contains at most one variable. In the second step, we reduce the dimension
of M∗.

Assume that M is an m × m matrix. For the first step, suppose that M
contains a variable x in the (i, j)-th position. Let M ′ be the (m+ 2)× (m+ 2)
matrix

M ′ :=

 M0 ei
1 x

etj 0 1

 ,

where M0 is obtained by setting the (i, j)-th entry to zero in M , ei is the
i-th unit column vector, etj is the j-th unit row vector, and the unspecified
entries are zero. Using cofactor expansion on the last column, we obtain
det(M) = det(M ′). The number of occurrences of variables has not changed
while the displayed variable does not share a row or column with another vari-
able. Repeating this construction s times for each variable in M , we indeed
obtain an (m + 2s) × (m + 2s) matrix M∗ with f = det(M∗) whose rows and
columns contain at most one variable each.

We now proceed with the second step. Permuting rows and columns of M∗,
we can write det(M) = ±det(N) with

N =

(
A B
C D

)
,

where A,B,C,D are of dimensions s×s, s×(s+m), (s+m)×s, (s+m)×(s+m),
respectively, and variables appear on the main diagonal of A only.

Since B has s rows, it has rank at most s. We can also assume that every
column of B is a linear combination of its first s columns. Applying suitable
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column operations to the last m + s columns of N , we can further convert N
to the form (

A B1 0
C D1 D2

)
,

with B1 being an s× s matrix. D2 is of dimension (m+ s)×m and hence has
rank at most m. Assuming that every row of D2 is a linear combination of its
last m rows, we can apply row-operations to write

det(M) = ±det

 A B1 0
C1 D′1 0
C2 D′′1 D′2

 = ±det(D′2) det

(
A B1

C1 D′1

)
,

where D′2 is an m×m scalar matrix. The matrix H =

(
A B1

C1 D′1

)
is a 2s×2s

matrix consisting of scalars except for the s variables on the diagonal of A.
Since the last column of H contains field elements only, the factor ±det(D′2)
can be moved inside H by multiplying the last column. �

This leads to the following non-constructive lower bound on variable size of
determinantal representations.

Theorem 2. For every n, there exists a multilinear polynomial f ∈ F[x1, . . . , xn]
such that every determinantal representation of f requires variable size Ω(2n/2).

Proof. Let sn be the smallest s ≥ 1 such that every multilinear polynomial
f ∈ F[x1, . . . , xn] has a determinantal representation of variable size s. Lemma
1 implies that every such f can be expressed as f = det(C+x1D1+ · · ·+xnDn)
where C is a scalar matrix and D1, . . . , Dn are diagonal matrices in F2sn×2sn .
Viewing entries of C and diagonal entries of D1, . . . , Dn as parameters, every
coefficient of f is a polynomial function of these parameters. Since f has 2n

coefficients and there are k = (2sn)2 +2snn parameters, this gives a polynomial
map G : Fk → F2n whose image contains all of F2n . This implies k ≥ 2n. For
if F is finite of size q, we must have qk ≥ q2n . If F is infinite and k < 2n, there
would exist a non-trivial polynomial vanishing on F2n , which is impossible.
Finally, k ≥ 2n implies sn ≥ (1 − ε)2n/2−1 for every ε > 0 and n sufficiently
large. �

3 A property of the permanent

We now show that Lemma 1 and Theorem 2 fail when the determinant is re-
placed with the permanent polynomial. It follows from Valiant’s completeness
results that every multilinear polynomial in F[X] can be expressed both as
permm(M) and detm(M ′) where M,M ′ are matrices over F ∪ X of an expo-
nential size. Hence, from the perspective of matrix size, the two polynomials
are indistinguishable. However, we show that in the case of the permanent, the
matrix M can be assumed to be read-once:
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Theorem 3. Let F be a field of characteristic different from two. Let f ∈
F[x1, . . . , xn] be a multilinear polynomial. Then there exists m ≤ O(2n) and a
matrix M with entries in F ∪ {x1, . . . , xn} such that f = permm(M) and each
variable xi appears in M exactly once. Moreover, every row and column of M
contains at most one variable.

We outline the proof of Theorem 3 in the rest of this section. It follows by
inspection of Valiant’s proof of VNP completeness of the permanent. We refer
to [11], [3] for a detailed exposition of Valiant’s work.

Recall that an arithmetic formula over a field F is a rooted binary tree
whose leaves are labelled with variables or field elements and other vertices are
labelled with one of the operation + or ×. As the size of a formula, we take the
number of +,× operations. Every vertex in a formula computes a polynomial
in the obvious way.

The following two lemmas are paraphrased versions of Theorem 21.27 and
21.29 from [3].

Lemma 4 ([3]). Let F be an arithmetic formula of size m computing a poly-
nomial f ∈ F[X]. Then there exists an (2m + 2) × (2m + 2) matrix M with
entries from F ∪ X such that f = perm2m+2(M) and every variable occurs in
M the same number of times it occurs in F . Moreover, every column and row
of M contains at most one variable.

Lemma 5 ( [3]). Let F be a field of characteristic different from two. Let M be
an m ×m matrix with entries from F ∪ {x1, . . . , xn, y1, . . . , yk} having in each
row and column at most one variable. Then there exists m′ ≤ 10m and an
m′×m′ matrix M ′ with entries from F∪{x1, . . . , xn} such that permm′(M ′) =∑

y1,...,yk∈{0,1} permm(M) and every variable xi occurs in M ′ the same number

of times it occurs in M . Moreover, every row and column of M ′ contains at
most one variable.

We also need the following simple fact:

Lemma 6. Every n-variate multilinear polynomial can be computed by an arith-
metic formula of size O(2n).

Proof. If f is a multilinear polynomial with n > 0 variables, we can write it as

f(x1, . . . , xn) = xnf1(x1, . . . , xn−1) + f0(x1, . . . , xn−1) ,

where f1, f0 are multilinear polynomials in n− 1 variables. Given formulas for
f0, f1 of size at most s, we obtain a formula for f of size ≤ 2s+2. By induction,
this gives a formula of size O(2n). �

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let X be the set of variables {x1, . . . , xn}. Let f ∈ F[X]
be a multilinear polynomial

f =
∑
S⊆[n]

aS
∏
i∈S

xi.
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Introduce new variables Y = {y1, . . . , yn}. Let f̂ be the polynomial

f̂(y1, . . . , yn) =
∑
S⊆[n]

aS
∏
i∈S

yi
∏

i∈[n]\S

(1− yi) .

This guarantees that for any boolean substitution y1, . . . , yn ∈ {0, 1}, f̂(y1, . . . , yn) =
aS where S = {i | yi = 1}. We can therefore write

f =
∑

y1,...,yn∈{0,1}

f̂(y1, . . . , yn)

n∏
i=1

(xiyi + (1− yi)) .

Note that in this expression, each xi appears exactly once. Let g be the polyno-
mial f̂(y1, . . . , yn)

∏n
i=1(xiyi + (1− yi)). As f̂ is multilinear, it has a formula of

size O(2n) by Lemma 6. It follows that g has a formula of size O(2n) in which
each variable from X appears exactly once. Lemma 4 gives an m′ ×m′ matrix
M ′ with m′ ≤ O(2n) with entries from F ∪X ∪ Y such that g = permm′(M ′),
each variable from X appears exactly once in M ′ and every row or column of
M ′ contains at most one variable. Since f =

∑
y1,y2,...,yn∈{0,1} g(X,Y ) we can

apply Lemma 5 to obtain the desired matrix M . �

4 Permanent versus determinant

We now prove our main result on variable size of determinantal representations
of permanent.

Theorem 7. Over a field of characteristic different from two, every determi-
nantal representation of permn requires variable size Ω(n5/2/ log n).

Proof. Let X be the set of variables {xi,j |1 ≤ i, j ≤ n} and let X̄ be the n× n
matrix with xi,j in (i, j)-th entry. Assume that permn(X̄) = det(M) where M
is a matrix with entries from F ∪X.

Let Z ⊆ X be a set of k variables xi1,j1 , . . . , xik,jk where i1, . . . , ik are distinct
and j1, . . . , jk are also distinct. If k = blog2 n−cc, where c is a suitable absolute
constant, Theorem 3 implies2 the following:

for every multilinear polynomial f ∈ F[Z], there exists a matrix X̄f obtained by
setting variables outside of Z to constants in X̄ such that f = permn(X̄f ).

Since permn(X̄) = det(M), this means that also f = det(Mf ) where Mf

is obtained by setting variables outside of Z to constants in M . On the other
hand, Theorem 2 shows that there exists a multilinear polynomial in F[Z] which
requires determinantal representation of variable size Ω(2k/2). Hence M must
contain Ω(2k/2) entries from Z. Inside X, we can find t = nbnk c such disjoint

sets Z1, . . . , Zt. For every Zi, M contains Ω(2k/2) entries from Zi. Since the
sets are disjoint, M contains Ω(t2k/2) entries from X altogether. This gives an
Ω(n5/2/ log n) lower bound on variable size of M . �

2Note that permn is invariant under permutations of rows and columns.
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If permn has a read-k determinantal representation M then M has variable
size at most n2k. This implies:

Corollary 8. Over a field of characteristic different from two, every read-k
determinantal representation of permn requires k ≥ Ω(

√
n/ log n).

5 A harder multilinear polynomial

We now present an explicit multilinear polynomial Un for which we can prove
a quantitatively stronger lower bound than the one presented in Theorem 7.
Another improvement is that the lower bound holds over any field. Further-
more, Un has a polynomial-size arithmetic formula and hence also a polynomial
determinantal representation (whereas for permn this is not known).

For an integer n ≥ 2, let r := blog2 nc−1 and ` := bn/2rc. Un has variables
xi,j , i ∈ [`], j ∈ [r], and yS , S ⊆ [r], indexed by subsets of [r]. The number of
variables is therefore r`+ 2r ≤ n. Un is defined as

Un := y∅ +
∑
i∈[`]

∑
∅6=S⊆[r]

yS
∏
j∈S

xi,j .

Theorem 9. Over any field, every determinantal representation of Un requires
variable size Ω(n1.5/ log n).

Proof sketch. Un is defined to have the following property: given i ∈ [`] and
a multilinear polynomial f ∈ F[xi,1, . . . , xi,r] of the form

∑
S⊆[r] aS

∏
j∈S xi,j ,

we can set xi′,j to zero for every i′ 6= i and yS to aS for every S to obtain
the polynomial f from Un. This is precisely the property we used in the proof
of Theorem 7, except that Un has fewer variables. The same argument as
in Theorem 7 gives that every determinantal representation of Un contains
Ω(`2r/2) variables which gives the bound Ω(n1.5/ log n). �

Let us make some comments:

(i) Every read-k determinantal representation of Un requires k ≥ Ω(
√
n/ log n).

(ii) On the other hand, Un has a read-O(n) determinantal representation of
variable size O(n2).

(i) is an immediate consequence of Theorem 9. (ii) follows by, first, observing
that Un has an arithmetic formula in which every variable appears O(n) times
and, second, that Lemma 4 holds also when perm2m+2 is replaced with det2m+2.
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