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Abstract

One of the most famous TFNP subclasses is PPP, which is the set of all search problems
whose totality is guaranteed by the pigeonhole principle. The author’s recent preprint
[Ish24] has introduced a TFNP problem related to the pigeonhole principle over a quotient
set, called Quotient Pigeon, and shown that the problem Quotient Pigeon is not only
PPP-hard but also PLS-hard. In this paper, we formulate other computational problems
related to the pigeonhole principle over a quotient set via an explicit representation of the
equivalence classes. Our new formulation introduces a non-trivial PPP∩ PPAk-complete
problem for some k ≥ 2. Furthermore, we consider the computational complexity of
a computational problem related to König’s lemma, which is a weaker variant of the
problem formulated by Pasarkar, Papadimitriou, and Yannakakis [PPY23]. We show that
our weaker variant is PPAD-hard and is in PPP∩ PPA.
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1 Introduction

Megiddo and Papadimitriou [MP91] have begun to study the computational complexity of
search problems that always have at least one solution. We call such problems total search
problems. The complexity class TFNP [MP91; Pap94] captures the computational aspects of
search problems whose existence of solutions is guaranteed, and its correctness is effortlessly
checkable. We know that many significantly important computational problems belong to
TFNP; for example, finding a Nash equilibrium [CDT09; DGP09], computing a fair division
[FG18; DFM22; GHH23], integer factoring [Bur06; Jer16], and algebraic problems related to
cryptographies [SZZ18; HV21].

A natural way to analyze the theoretical features of a complexity class is to characterize
its class by complete problems. However, it is widely believed that TFNP has no complete
problem [Pud15; Pap94]. Consequently, several TFNP subclasses with complete problems have
been introduced over the past three decades. The following four classes are the best well-known
TFNP subclasses.

PLS [JPY88] Every finite directed acyclic graph has a sink.

PPA [Pap94] Every finite undirected graph with a known odd-degree node must have another
odd-degree node. In other words, the existence of another solution is guaranteed by the
handshaking lemma.

PPAD [Pap94] Every finite directed graph with a known unbalanced node must have another
unbalanced node, where “unbalanced ” means that out-degree ̸= in-degree.

PPP [Pap94] Every function that maps N elements to N − 1 elements must have a collision.
In other words, the existence of a solution is guaranteed by the pigeonhole principle.

In this paper, we shed light on the computational complexity of the pigeonhole principle
over a quotient set, which is a generalization of the canonical PPP-complete problem Pigeon
(see Definition 1). As mentioned above, the complexity class PPP is one of Papadimitriou’s
traditional TFNP subclasses [Pap94]. Roughly, this class is formulated as the class for search
problems related to the pigeonhole principle, i.e., the class for problems whose totality is
guaranteed by the pigeonhole principle.

The formal definition of the canonical PPP-complete problem is as follows.

Definition 1. Pigeon
Input:

• A Boolean circuit C : {0, 1}n → {0, 1}n

• A special element v∗ ∈ {0, 1}n

Output: one of the following:

(1) two distinct elements x, y ∈ {0, 1}n such that C(x) = C(y)

(2) an element x ∈ {0, 1}n such that C(x) = v∗

Definition 2 (Class PPP). The complexity class PPP is the set of all search problems that are
reducible to Pigeon in polynomial time.
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There are some studies to consider the computational complexity of a generalization of the
pigeonhole principle. Pasarkar, Papadimitriou, and Yannakakis [PPY23] have introduced the
complexity class PLC (and also UPLC), which captures the computational aspects of the iterative
use of the pigeonhole principle. They have proven that the class PLC contains a computational
problem related to Ramsey’s theorem. Jain, Li, Robere, and Xun [Jai+24] have investigated
the generalization of the class PPP and its hierarchy called “Pecking Order.” The pecking order
principle, a generalized pigeonhole principle, states that for t ≥ 2, if (t− 1)N +1 pigeons map
to N holes, then there is a hole that contains t pigeons. They have introduced the new TFNP

subclasses the Pigeon Hierarchy (PiH), SAP, and PAP, and showed that the class PAP contains
UPLC. Another recent related work by Fleming, Grosser, Pitassi, and Robere [Fle+24] has
shown that, in the black-box setting, the class PPP is not closed under the Turing reduction.

The author’s recent preprint [Ish24] has introduced another generalization of Pigeon,
called Quotient Pigeon, which is PPP- and PLS-hard. In the approach shown in [Ish24], we
consider a Pigeon instance over the quotient set U/∼, where U is a finite set and ∼ is an
equivalence relation over U . Thus, we focus on the following search problem: Given a function
C : U/∼ → U/∼ and a special element v∗ in U , find two distinct elements x, y ∈ U/∼ such
that C(x) ∼ C(y) or an element x ∈ U/∼ such that C(x) ∼ v∗.

To formulate the above variant of Pigeon, we allow to obtain another function E : U×U →
{0, 1} computing an equivalence relation over U . We denote by ∼E the binary relation defined
by E; for each pair of elements x, y in U , x ∼E y if and only if E(x, y) = 1. Formally, the new
search problem called Quotient Pigeon is defined as follows.

Definition 3. Quotient Pigeon
Input:

• Two Boolean circuits C : {0, 1}n → {0, 1}n and E : {0, 1}n × {0, 1}n → {0, 1}

• An element v∗ ∈ {0, 1}n

Output: one of the following:

(1) two elements x, y ∈ {0, 1}n such that x ̸∼E y and C(x) ∼E C(y)

(2) an element x ∈ {0, 1}n such that C(x) ∼E v∗

(3) two elements x, y ∈ {0, 1}n such that x ∼E y and C(x) ̸∼E C(y)

(4) an element x ∈ {0, 1}n such that E(x, x) = 0

(5) two elements x, y ∈ {0, 1}n such that E(x, y) ̸= E(y, x).

(6) three distinct elements x, y, z ∈ {0, 1}n such that x ∼E y, y ∼E z, and x ̸∼E z

Unfortunately, we are unaware of a way of syntactically enforcing the Boolean circuit E to
compute an equivalence relation over the finite set {0, 1}n. Thus, we introduce violations as
solutions to Quotient Pigeon to ensure that this problem belongs to TFNP. More precisely,
the fourth-type solution is a violation of the reflexivity. The fifth-type solution represents a
violation of the symmetry. Finally, the sixth-type solution means a violation of the transitivity.

We now introduce a new TFNP subclass, PPP/∼, which is a set of all search problems that
are reducible to Quotient Weak Pigeon in polynomial time. Ishizuka [Ish24] has proven
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that Quotient Pigeon is not only PPP-hard but also PLS-hard.

Definition 4 (Class PPP/∼). The complexity class PPP/∼ is the set of all search problems
that are reducible to Quotient Pigeon in polynomial time.

Theorem 5 ([Ish24]). PLS∪ PPP ⊆ PPP/∼ ⊆ TFNP.

1.1 Our Contributions and Paper Organization

In this section, we summarize our contribution and sketch some proofs. We will present some
notations that are used in this paper in Section 2. In this paper, we discuss the computational
complexity of some variants of Pigeon over quotient sets. Recall that the PLS-hardness proof
of Quotient Pigeon shown in [Ish24] heavily relies on the implicit feature of equivalence
classes. In a Quotient Pigeon instance, we can efficiently verify whether given two elements
belong to the same equivalence class. However, it does not guarantee to effortlessly find another
element belonging to the same class.

In this paper, we investigate some variants of Quotient Pigeon whose equivalence classes
have an explicit feature, i.e., we can efficiently find elements in the same class with a given
element. We show that such a variant induces a PPP∩ PPAk-complete problem for some positive
integer k ≥ 2.

Explicit & Well-Balanced Variants We consider easier variants of Quotient Pigeon
in which, for a given element x, we can efficiently get another element that is equal to x. To
formulate such a variant, we obtain a Boolean circuit L : {0, 1}n → Set≤k({0, 1}n) that re-
turns all elements in the same equivalence class with the input element instead of the Boolean
circuit E that decide whether the given two elements are equivalent. For a list function
L : {0, 1}n → Set≤k({0, 1}n), we denote by ∼L the binary relation defined by L: For each pair
of elements x, y in {0, 1}n, x ∼L y if and only if x ∈ L(y) and y ∈ L(x).

Definition 6. Explicit Quotient Pigeon
Input:

• Two Boolean circuits C : {0, 1}n → {0, 1}n and L : {0, 1}n → Set≤k({0, 1}n)

• An element v∗ ∈ [2n]

Output: one of the following:

(1) two elements x, y ∈ {0, 1}n such that x ̸∼L y and C(x) ∼L C(y)

(2) an element x ∈ {0, 1}n such that C(x) ∼L v∗

(3) two elements x, y ∈ {0, 1}n such that x ∼L y and C(x) ̸∼L C(y)

(4) an element x ∈ {0, 1}n such that x ∈ L(x)

(5) two elements x, y ∈ {0, 1}n such that x ∈ L(y) and y ̸∈ L(x).

Similarly to Quotient Pigeon, we are unaware of a way of syntactically enforcing the
Boolean circuit E to compute an equivalence relation over the finite set {0, 1}n. Thus, we
introduce violations as solutions to Explicit Quotient Pigeon to ensure that this problem
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belongs to TFNP. More precisely, the fourth-type solution is a violation of the reflexivity.
The fifth-type solution represents a violation of the symmetry. Note that the transitivity is
guaranteed by the combination of fourth- and fifth-type solutions to this problem.

We prove that Explicit Quotient Pigeon is PPP-complete. The PPP-hardness of this
problem is oblivious. Hence, It suffices to show that we have a polynomial-time reduction
from Explicit Quotient Pigeon to the canonical PPP-complete problem, Pigeon.

Theorem 7. Explicit Quotient Pigeon is PPP-complete.

Proof. Let two Boolean circuits C : {0, 1}n → {0, 1}n and L : {0, 1}n → Set≤k({0, 1}n) and
an element v∗ be a Explicit Quotient Pigeon instance, where k is some positive integer.
We now construct a Pigeon instance f : {0, 1}n → {0, 1}n. Our idea is simple. Let x be any
element in {0, 1}n. We denote by ξ1, . . . , ξd the elements equivalences to x, i.e., ξj ∼L x for
each i ∈ [d]. Suppose the elements ξ1, . . . , ξd are sorted in lexicographic order: ξ1 ≺ · · · ≺ ξd.
Then, define f(ξi) := ξi+1 for each i ∈ [d− 1]. Finally, we define f(ξd) := η1, where η1 is the
element that is the lexicographically least one among the elements in the same equivalence class
as C(ξd). It is easy to see that we can obtain a solution to the original Explicit Quotient
Pigeon instance from each solution to the reduced Pigeon instance in polynomial time.

From the above observation, the explicit variant of Quotient Pigeon does not change the
computational intractability of the pigeonhole principle. Therefore, we focus on the complexity
of the variant of Quotient Pigeon that has a further restriction. Recall that, in the reduction
from Pigeon to Quotient Pigeon shown in [Ish24], we use a simple equivalence relation:
All elements are different from each other. In other words, the size of every equivalence class is
exactly one. Now, we introduce a further restricted variant of Explicit Quotient Pigeon
in which every equivalence class has the same size. Naturally, a variant that we simply added
a size violation as a solution is also PPP-complete. To formulate a more easier problem than
Pigeon, we ensure the existence of size violations.

Our new variant of Explicit Quotient Pigeon also belongs to PPAk for some posi-
tive integer k. When k = 2, the complexity class is the same as one of the traditional TFNP
subclasses, PPA, which is the set of all search problems whose totality is guaranteed by the
handshaking lemma. Consider an instance of Explicit Quotient Pigeon ⟨C : {0, 1}n →
{0, 1}n;L : {0, 1}n → Setk({0, 1}n); v∗⟩. We write m(v∗) for the number of elements such
that x ∼L v∗. We know that there is an unknown equivalence class whose size is strictly less
than k if 2n − m(v∗) ̸= 0 mod k. Hence, we consider the problem of finding a solution to
Explicit Quotient Pigeon or a violation of the size condition. We call such a variant
k-Well-Balanced Explicit Quotient Pigeon, and we prove this total search problem
is PPP∩ PPAk-complete.
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Definition 8. k-Well-Balanced Explicit Quotient Pigeon
Input:

• Two Boolean circuits C : {0, 1}n → {0, 1}n and L : {0, 1}n → Set≤k({0, 1}n)

• An element v∗ ∈ {0, 1}n

Output: one of the following:

(1) two elements x, y ∈ {0, 1}n such that x ̸∼L y and C(x) ∼L C(y)

(2) an element x ∈ {0, 1}n such that C(x) ∼L v∗

(3) two elements x, y ∈ {0, 1}n such that x ∼L y and C(x) ̸∼L C(y)

(4) an element x ∈ {0, 1}n such that x ∈ L(x)

(5) two elements x, y ∈ {0, 1}n such that x ∈ L(y) and y ̸∈ L(x).

(6) an element x ∈ {0, 1}n such that x ∼L v∗ and 2n−|L(x)| = ck for some integer c.

(7) an element x ∈ {0, 1}n such that x ̸∼L v∗ and |L(x)| < k

Theorem 9. Let k ≥ 2 be a positive integer. The problem k-Well-Balanced Explicit
Quotient Pigeon is PPP∩ PPAk-complete.

Weak Variant We also consider the quotient variant of Weak Pigeon, which is a canon-
ical PWPP-complete problem. The total search problem Weak Pigeon is defined as follows:
Given a Boolean circuit C : {0, 1}n → {0, 1}m, where m < n, find two distinct elements
x, y ∈ {0, 1}n such that C(x) = C(y).

Definition 10. Quotient Weak Pigeon
Input: Two Boolean circuits C : {0, 1}n → {0, 1}n−1 and M : {0, 1}n → {0, 1}n and a
special element v∗ ∈ {0, 1}n such that M(v∗) = v∗

Output: one of the following:

(1) two elements x, y ∈ {0, 1}n such that x ̸∼M y, and C(x) = C(y); and

(2) an element x ∈ {0, 1}n such that M(x) ̸= x and M(M(x)) ̸= x,

where we define x ∼M y if and only if x = y or M(x) = y and M(y) = x.

Interestingly, the problem Quotient Weak Pigeon is PPP-complete. The PPP-containment
of this total search problem follows from the Pecking Order Principle. Assuming that the
matching function M is an involution, there are at least 2n−1+2 pigeons. Then, we map these
pigeons to 2n−1 holes according to the hole function C. This implies that there are two pigeons
that are mapped to the same hole. Hence, the challenging part is to prove the PPP-hardness
of Weak Quotient Pigeon. To prove this fact, we introduce dummy nodes and define a
good matching function. The full proof of Theorem 11 can be found in Section 3.2

Theorem 11. Quotient Weak Pigeon is PPP-complete.

5



Next, we consider the computational complexity of the well-balanced variant of Weak
Quotient Pigeon. Recall that in the definition of Weak Quotient Pigeon we require
that the special element v∗ is an isolated node. This implies that there is another isolated
node from the handshaking lemma. Our well-balanced variant allows another isolated node
as a solution. We call this variant Well-Balanced Quotient Weak Pigeon; the formal
definition can be found in Definition 12.

Definition 12. Well-Balanced Quotient Weak Pigeon
Input:

• Two Boolean circuits C : {0, 1}n → {0, 1}n−1 and M : {0, 1}n → {0, 1}n

• A special element v∗ ∈ {0, 1}n such that M(v∗) = v∗

Output: one of the following:

(1) two elements x, y ∈ {0, 1}n such that x ̸∼M y, and C(x) = C(y);

(2) an element x ∈ {0, 1}n \ {v∗} such that M(x) = x; and

(3) an element x ∈ {0, 1}n such that M(x) ̸= x and M(M(x)) ̸= x,

where we define x ∼M y if and only if x = y or M(x) = y and M(y) = x.

By definition, the problem Well-Balanced Quotient Weak Pigeon also belongs to
the complexity class PPA. In Section 3.3, we prove that Well-Balanced Quotient Weak
Pigeon is PPAD-hard.

Theorem 13. The following two statements hold:

(i) Well-Balanced Quotient Weak Pigeon belongs to PPP∩ PPA.

(ii) The problem Well-Balanced Quotient Weak Pigeon is PPAD-hard.

Applications Finally, we present an application of the problem Pigeon over quotient sets.
Pasarkar, Papadimitriou, and Yannakakis [PPY23] have formulated a computational prob-

lem related to König’s lemma, which states that every infinite rooted tree with finite branching
has an infinite path starting at the root. They have focused on the finite version of this lemma:
Every rooted binary tree with 2n nodes contains a path of length n starting at the root. In
their problem, called König, we are given a rooted binary tree with 2n nodes via two Boolean
circuits: One returns a parent of a node, and the other indicates a node type.

Consider two Boolean circuits P : {0, 1}n → {0, 1}n and C : {0, 1}n → {0, 1}; we suppose
that these circuits define a rooted binary tree on 2n nodes, where each node is encoded by an
n-bit binary string. For each node u, P (u) is a parent of u, and the circuit C indicates whether
the node u is a left or right child of P (u). Here, we interpret the node u as a left child of P (u)
if C(u) = 0; otherwise, we interpret u as a right child of P (u). In the problem König, we are
also given a root r that satisfies P (r) = r. Then, the task of this search problem is to find
either a path of length n or a violation that two circuits P and C do not specify a connected
binary tree rooted at r.

Pasarkar, Papadimitriou, and Yannakakis [PPY23] have proven the PPP-completeness of
König. The original formulation has an implicit feature; that is, it may be hard to compute
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a sibling for a given node. This paper considers the computational complexity of an explicit
variant of König, called Weak König. In our problem, we are given two Boolean circuits
computing a parent and a sibling, respectively. Then, the goal of the problem is the same,
i.e., to find either a path of length n or a violation.

The formal definition of Weak König can be found in Definition 14. Here, the first type
of solution to Weak König is called a Long Path certificate. The second-type, third-type,
and fifth-type solutions represent a violation of the parent-sibling condition. The fourth type
of solution is a Non-Unique Root witness (i.e., P (x) = x) or a node without siblings. Finally,
the sixth type of solution is called a Far Away certificate.

In Section 3.4, we show that Weak König and Quotient Weak Pigeon are polynomial-
time reducible to each other. Hence, the total search problem Weak Pigeon is PPAD-hard
and belongs to PPP∩ PPA from Theorem 13.

Definition 14. Weak König
Input:

• Two Boolean circuits P : {0, 1}n → {0, 1}n and S : {0, 1}n → {0, 1}n

• A root node r ∈ {0, 1}n such that P (r) = r = S(r)

Output: one of the following:

(1) an element x ∈ {0, 1}n that yields the following sequence a0, . . . , an such that
a0 := x and ai := P (ai−1) for each i ∈ [n], ai ̸= aj for all 0 ≤ i < j ≤ n, and
an = r;

(2) two distinct elements x, y ∈ {0, 1}n such that P (x) = P (y) and S(x) ̸= S(y)

(3) two distinct elements x, y ∈ {0, 1}n such that P (x) ̸= P (y) and S(x) = S(y);

(4) an element x ∈ {0, 1}n \ {r} such that P (x) = x or S(x) = x;

(5) an element x ∈ {0, 1}n such that S(x) ̸= x and S(S(x)) ̸= x;

(6) an element x ∈ {0, 1}n such that Pn+1(x) ̸= r.

Theorem 15. Weak König is polynomially equivalent to Quotient Weak Pigeon.

1.2 Conclusion and Open Questions

This paper has investigated the computational complexity of the pigeonhole principle over
quotient sets when the equivalence class is explicitly represented. We have introduced a
PPP∩ PPAk-complete problem k-Well-Balanced Explicit Quotient Pigeon. To our
best knowledge, this is the first non-trivial PPP∩ PPAk-complete problem; we answer an open
question pointed out in [HKT24]. We have also studied the complexity of weak variants
of Quotient Pigeon and shown that Well-Balanced Quotient Weak Pigeon lies
between PPAD and PPP∩ PPA.

This paper has left the following open questions:

Is Well-Balanced Quotient Weak Pigeon PPAD-complete or PPP∩ PPA-
complete?
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Note that proving the PPP∩ PPA-completeness of Well-Balanced Quotient Weak Pi-
geon leads us to a natural PPP∩ PPA-complete problem Weak König from Theorem 15. On
the other hand, showing the PPAD-completeness of this problem improves the upper bound
of integer factoring under randomized reductions among Papadimitriou’s traditional TFNP

subclasses. Recall that the complexity class PWPP is the set of all search problems that are
polynomial-time reducible to Weak Pigeon. By the definition of Well-Balanced Quo-
tient Weak Pigeon, we can straightforwardly see that this search problem is PWPP∩ PPA-
hard. Finally, we know that there is a polynomial-time randomized reduction from integer
factoring to a problem in PWPP∩ PPA [Bur06; Jer16]. Hence, showing the PPAD-completeness
of Well-Balanced Quotient Weak Pigeon implies that there is a polynomial-time ran-
domized reduction from integer factoring to a problem in PPAD.

Another research direction worth considering is to study the computational complexity of
quotient variants of End of Line and End of Potential Line, which is a PPAD ∩ PLS-
complete problem [Göö+22]. By using the same approach shown in this paper or [Ish24],
we can easily introduce quotient variants of these problems. We have an interesting question
related to this research direction: Do quotient variants of End of Line and End of Poten-
tial Line help us to capture the complexity of the variants with super-polynomially many
known sources of End of Line and End of Potential Line, respectively? It is still open
whether such variants are also PPAD- and EOPL-complete, respectively [HG18; Ish21].

2 Preliminaries

We denote by Z the set of all integers. For an integer a ∈ Z, we define Z≥a := {x ∈ Z : x ≥ a}
and Z>a := {x ∈ Z : x > a}. We use [n] := {1, 2, . . . , n} and [m,n] := {m,m+1, . . . , n−1, n}
for every positive integer n in Z>0 and every non-negative integer m with m ≤ n. Let X be a
finite set. We denote by |X| the cardinality of the elements in X.

Let {0, 1}∗ denote the set of binary strings with a finite length. For every string x ∈ {0, 1}∗,
we denote by |x| the length of x. For each positive integer n, we write {0, 1}n for the set of
binary strength with the length n. Throughout this paper, we sometimes regard {0, 1}n as
the set of non-negative integers in [0, 2n − 1].

Many of the computational problems appearing in this paper involve Boolean circuits
whose output is interpreted as a set. We will use the same way of encoding set as used in
[Hol21]. We denote by C : {0, 1}n → Set≤k({0, 1}n) the Boolean circuit that takes as input
an n-bit string and outputs a set of at most k strings in {0, 1}n. More precisely, the Boolean
circuit C : {0, 1}n → Set≤k({0, 1}n) has n input bits and kn+1 output bits. Here, we use the
following encoding: Each set {ξ1, . . . , ξℓ} ⊆ {0, 1}n, where ℓ ≤ k, is represented by the string
ξ1♯ · · · ♯ξℓ♯1♯0(k−ℓ)n ∈ {0, 1}kn+1. We can effortlessly verify whether a string in {0, 1}kn+1 is a
valid representation of a set and if not, we just interpret it as an empty set.

Search Problems Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation. We say that R is polynomially
balanced if there is a polynomial p : Z≥0 → Z≥0 such that for each (x, y) ∈ R, it holds
that |y| ≤ p(|x|). We say that R is polynomial-time decidable if for each pair of strings
(x, y) ∈ {0, 1}∗ × {0, 1}∗, we can decide whether (x, y) belongs to R in polynomial time. We
say that R is total if for every string x ∈ {0, 1}∗, there always exists at least one string y such
that (x, y) ∈ R.

For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the search problem with respect to R is defined as
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follows1: Given a string x ∈ {0, 1}∗, find a string y ∈ {0, 1}∗ such that (x, y) ∈ R if such a
y exists, otherwise reports “no.” When R is also total, we call such a search problem a total
search problem. The complexity class FNP is the set of all search problems with respect to a
polynomially balanced and polynomial-time decidable relation R. The complexity class TFNP
is the set of all total search problems belonging to FNP. By definition, it holds that TFNP ⊆ FNP.

Reductions Let R,S ⊆ {0, 1}∗×{0, 1}∗ be two search problems. A polynomial-time reduc-
tion from R to S is defined by two polynomial-time computable functions f : {0, 1}∗ → {0, 1}∗
and g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ satisfying that (x, g(x, y)) ∈ R whenever (f(x), y) ∈ S. In
other words, the function f maps an instance x of R to an instance f(x) of S, and the other
function g maps a solution y to the instance f(x) to a solution g(x, y) to the instance x.

2.1 Complexity Classes

Class PPAk We now recall the definition of the class PPAk for some positive integer k ≥ 2.
Roughly, this class is a modulo-k analog of the well-known TFNP subclass PPA. There are
many ways to define the class PPAk. In this paper, we use the search problem Lonelyk (see
Definition 16) to formulate this class. The complexity class PPAk is a set of all search problems
that are reducible to Lonelyk in polynomial time [Hol21].

Definition 16. Lonelyk

Input:

• a Boolean circuit L : {0, 1}n → Set≤k({0, 1}n)

• a set Π∗ ⊆ {0, 1}n such that 2n − |Π∗| ≠ 0 mod k

Output: one of the following:

(1) an element x ∈ {0, 1}n \Π∗ such that |L(x)| < k;

(2) an element x ∈ {0, 1}n such that x ̸∈ L(x); and

(3) two elements x, y ∈ {0, 1}n such that y ∈ L(x) and x ̸∈ L(y).

Class PPAD Finally, we recall the complexity class PPAD, introduced by Papadimitriou [Pap94].
Of course, we have many ways to define the class PPAD. Here, we use the search problem End
of Line (see Definition 17), which is the canonical PPAD-complete problem. Hence, the class
PPAD is the set of all search problems that are reducible to End of Line in polynomial time.

1For simplicity, we call the search problem with respect to R the search problem R.
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Definition 17. End of Line
Input:

• a Boolean circuit S, P : {0, 1}n → {0, 1}n with S(0n) ̸= 0n = P (0n)

Output: one of the following:

(1) a sink x ∈ {0, 1}n such that P (S(x)) ̸= x; and

(2) an unkonwn source x ∈ {0, 1}n such that S(P (x)) ̸= x ̸= 0n.

3 Proofs of Our Results

3.1 PPP∩ PPAk-completeness of k-Well-Balanced Explicit Quotient Pi-
geon

This section proves Theorem 9, that is, the PPP∩ PPAk-completeness of k-Well-Balanced
Explicit Quotient Pigeon. By definition, the PPP∩ PPAk membership of this total search
problem is trivial. Hence, we show the PPP∩ PPAk-hardness of k-Well-Balanced Explicit
Quotient Pigeon. To prove the PPP∩ PPAk-hardness, we focus on the canonical PPP∩ PPAk-
complete problem, EitherSolution(Pigeon,Lonelyk): Given a pair of instances of Pi-
geon and Lonelyk, find a solution to either Pigeon or Lonelyk.

Let ⟨f : {0, 1}n → {0, 1}n; v∗⟩ and ⟨g : {0, 1}n → Set≤k({0, 1}n); Π∗⟩ be instances of
Pigeon and Lonelyk, respectively. We will construct an instance of k-Well-Balanced
Explicit Quotient Pigeon. Our idea is simple. We create k copies of the Pigeon in-
stance. Each element on the Pigeon instance forms an equivalence class with its copies; this
technique naturally induces equivalence classes that are the same size. On the other hand,
each element on the instance of Lonelyk, except for every element in Π∗, is a fixed point in
the reduced instance. We map each element in Π∗ to the special element v∗ of the Pigeon
instance. Finally, we specify the special element of the reduced k-Well-Balanced Explicit
Quotient Pigeon instance with an element in Π∗.

3.2 PPP-completeness of Quotient Weak Pigeon

In this section, we show that the PPP-completeness of Quotient Weak Pigeon. First,
we prove the PPP-hardness of Quotient Weak Pigeon. Consider the Pigeon instance
⟨C : {0, 1}n → {0, 1}n; v∗⟩. Without loss of generality, we can assume that there is no element
x ∈ {0, 1}n such that C(x) ̸= v∗. We now construct a Quotient Weak Pigeon instance
⟨f : {0, 1}1+n → {0, 1}n;M : {0, 1}1+n → {0, 1}1+n;u∗⟩.

We define the matching function M as follows: For each b ∈ {0, 1} and each x ∈ {0, 1}n,

M(b♯x) :=

{
b♯x if x = v∗,

(1− b)♯x if x ̸= v∗.
(1)

We set the special element to be u∗ = 0♯v∗ ∈ {0, 1}1+n. Finally, we define the Boolean circuit
f as follows: For each b ∈ {0, 1} and each x ∈ {0, 1}n,
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f(b♯x) :=

{
v∗ if b = 1 and x = v∗,

C(x) otherwise.
(2)

We complete the construction of the reduced instance. What remains is to show that we can
efficiently obtain an original solution from every solution to the reduced instance.

By the definition of the matching function M , there is no second-type solution to Quo-
tient Weak Pigeon. Hence, we only obtain the first-type solution, i.e., two elements
bx♯x, by♯y ∈ {0, 1}1+n such that bx♯x ̸∼M by♯y and f(bx♯x) = f(by♯y). From our assumption,
we know that f(bx♯x) ̸= v∗, and thus, we have that bx♯x ̸= 1♯v∗ and by♯y ̸= 1♯v∗. This fact
also implies that x ̸= y. By definition of the function f , it holds that C(x) = C(y). Hence,
the pair of two elements (x, y) is a solution to the original Pigeon instance.

Next, we show that there is a polynomial-time reduction from Quotient Weak Pigeon
to Pigeon. Let ⟨C : {0, 1}n → {0, 1}n−1;M : {0, 1}n → {0, 1}n; v∗⟩ be any instance of
Quotient Weak Pigeon. It is not hard to see that we can assume that there is no second-
type solution to Quotient Weak Pigeon without loss of generality. We redefine the function
M as follows: For every x ∈ {0, 1}n,

M ′(x) :=

{
x if M(x) ̸= x and M(M(x)) ̸= x,

M(x) otherwise.
(3)

Before starting the reduction to Pigeon, we observe that, without loss of generality, we
can assume the following two properties:

1. v∗ = 0n and

2. C(v∗) = 0n−1.

The first property follows the following reconstruction of the matching function M . For every
x ∈ {0, 1}n,

M ′(x) :=


0n if x = 0n,

M(0n) if x = v∗,

v∗ if M(x) = 0n,

M(x) otherwise.

(4)

The second property follows the following reconstruction of the function C. For every x ∈
{0, 1}n,

C ′(x) =


0n−1 if x = v∗ or f(x) = f(v∗),

C(v∗) if x ̸= v∗ and f(x) = 0n−1,

C(x) otherwise.
(5)

We will construct a Pigeon instance ⟨f : {0, 1}n → {0, 1}n, v∗⟩. The function f is defined
as follows: For each x ∈ {0, 1}n,
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f(x) :=


1♯C(v∗) if x = v∗,

1♯C(x) if M(x) = x,

1♯C(x) if M(x) ̸= x and x ≺ M(x),

0♯C(x) othwerwise,

(6)

where x ≺ M(x) means that x is less than M(x) under the lexicographic order.
We complete the construction of the Pigeon instance. What remains is to show that we

can efficiently obtain a solution to the original instance from every solution to the reduced
instance.

First, we consider the case where we obtain an element x ∈ {0, 1}n such that f(x) = v∗ =
0n. In this case, we know there is another element y such that M(x) = y. By definition, it
holds that C(y) = 0n−1 and y ̸∼M v∗. From our assumption, C(v∗) = 0n−1. Therefore, a pair
of two elements (M(x), v∗) is a solution to the original Quotient Weak Pigeon instance.

Next, we consider the case where we obtain two elements x, y ∈ {0, 1}n such that x ̸= y
and f(x) = f(y). We first observe x ̸∼M y. If x ∼M y, then the first bits of f(x) and f(y) are
different; this is a contradiction that a pair of elements (x, y) is a collision. By the definition
of f , it satisfies that C(x) = C(y). Hence, a pair of elements (x, y) is a solution to the original
instance of Quotient Weak Pigeon.

3.3 On the Complexity of Well-Balanced Quotient Weak Pigeon

In this section, we prove Theorem 13. It is not hard to see that the problem Well-Balanced
Quotient Weak Pigeon belongs to PPP∩ PPA. Therefore, the main part of this section is
to show the PPAD-hardness of Well-Balanced Quotient Weak Pigeon. In other words,
we prove the second part of Theorem 13.

We will construct a polynomial-time reduction from End of Line to Well-Balanced
Quotient Weak Pigeon. Let two Boolean circuits S, P : {0, 1}n → {0, 1}n with S(0n) ̸=
0n = P (0n) be any instance of End of Line. We now construct two Boolean circuits C :
{0, 1} × {0, 1}n → {0, 1} × {0, 1}n and M : {0, 1} × {0, 1}n → {0, 1} × {0, 1}n, which are a
Quotient Weak Pigeon instance.

Before starting our reduction, we outline our proof idea. We denote by G = (V,E) the
digraph defined by two Boolean circuits S, P . We create a dummy node v′ for each node v
in V . For each valid arc (v, u) in E, we replace this with two arcs (v, v′) and (v′, u). For
every sink node v ∈ V , we create a new arc (v, v′). We obtain a new digraph G′ with 2|V |
nodes such that for each sink node on G, its dummy is a sink node on G′. Then, we define
the matching M as follows: For an original node v, M(v) returns its predecessor, and for a
dummy node v′, M(v′) returns its successor. Thus, every source node and every sink node on
G′ are isolated points. Finally, we define the hole function C as follows: For each original node
v, C(v) returns itself, and for each dummy node v′, C(v′) returns its matching node if such a
node exists; otherwise C(v′) returns the distinguished source node 0n. From the construction,
it is not hard to see that we can obtain a solution to End of Line from every solution to
Quotient Weak Pigeon.

Let us move on to the formal definition of our reduction. Without loss of generality, we
can assume that two Boolean circuits S and P compute valid arcs. For each pair of b ∈ {0, 1}
and x ∈ {0, 1}n, we define the Boolean circuits M and C as follows:
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M(b, x) :=


(b, x) if either b = 1 and x is a sink or b = 0 and x is a source;
(0, S(x)) if b = 1 and x is not a sink;
(1, P (x)) if b = 0 and x is not a source.

C(b, x) :=


S(x) if b = 1 and x is not a sink;
x if b = 0;

0n otherwise.

We define the special element v∗ := (0, 0n). Then, we complete the construction of the
reduction from End of Line to Well-Balanced Quotient Weak Pigeon. We can easily
see that our reduction can be computed in polynomial time. Thus, what remains is to prove
that we can effortlessly obtain a solution to the original instance from every solution to the
reduced instance.

By definition, there is no matching violation (i.e., third-type solution). For every non-
trivial lonely node (b, x) ∈ {0, 1}×{0, 1}n \{(0, 0n)} which is a second-type solution, the node
x is a solution to the original instance of End of Line. Finally, we consider a collision-type
solution (b, x), (b′, y) ∈ {0, 1}×{0, 1}n such that (b, x) ̸∼M (b′, y) and C(b, x) = C(b′, y). Since
we suppose that S and P compute valid arcs, it holds that two nodes x and y are sink nodes.
Hence, we obtain a solution to the original instance.

3.4 On the Complexity of Weak König

To prove Theorem 15, this section constructs two polynomial-time reductions from Well-
Balanced Quotient Weak Pigeon to Weak König and the opposite direction.

Lemma 18. There is a polynomial-time reduction from Well-Balanced Quotient Weak
Pigeon to Weak König.

Proof. Let In := ⟨C : {0, 1}n → {0, 1}n−1;M : {0, 1}n → {0, 1}n⟩ be any instance of Well-
Balanced Explicit Quotient Pigeon. We now construct an instance Jn+1 := ⟨P :
{0, 1}n+1 → {0, 1}n+1;S : {0, 1}n+1 → {0, 1}n+1; r := 0n+1⟩ of Weak König.

Our reduction is inspired by the PPP-hardness proof of König shown in [PPY23]. The
function P implicitly defines a graph on 2n+1 nodes, where these nodes are labeled with non-
negative integers in the range [0, 2n+1 − 1]. Roughly speaking, the nodes are supposed to be
arranged in a binary tree with root 0. We first define the positions of nodes whose binary
encodings are in the range [0, 2n − 2]. First, the node 0 is the root, i.e., P (0) = 0. Next,
consider any node x in [2n − 2]. We define P (x) :=

⌊
x−1
2

⌋
and S(x) := x + 1 if x is odd;

otherwise, S(x) := x − 1. Note that so far, our definition of the functions P and S has
absolutely no dependence on the functions C and M .

To finish the definition of the reduced Weak König instance, i.e., the definition of the
functions P and S, it remains to consider the nodes whose binary encodings are in the interval
A := [2n, 2n+1 − 1] ∪ {α = 2n − 1}, where the node α is called an additional node. Consider
a given node x in this interval such that x := 2n + ξ for some 0 ≤ ξ ≤ 2n − 1, we let
y := C(ξ) + 2n−1 − 1 and we define P (x) = y and S(x) := M(ξ) + 2n if ξ ̸= 0; otherwise
S(x) = α. Finally, we define S(α) = 2n+0 and P (α) = P (2n+0). Thus, we match the known
lonely node with the additional node.

What remains is to prove that we can obtain a solution to the original Well-Balanced
Quotient Weak Pigeon instance In from every solution to the reduced Weak König
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instance Jn. We first observe that there are no first-type and sixth-type solutions; that is,
every node x in [0, 2n+1 − 1] is reachable to the root node 0 within length n.

Next, we focus on the nodes whose binary encodings are in A. Note that each node in A
has a node whose binary encoding is in [2n−1 − 1, 2n − 2] as a parent. Thus, every node is
reachable to the root node by applying the function P at most n+ 1 times. Furthermore, by
definition, there is no non-trivial root node.

Consider a node x in A such that S(x) = x. This returns a lonely point by the matching
function M .

Finally, we consider a collision-type solution defined by the function C. There are 2n−1

nodes in the interval [2n−1 − 1, 2n − 2]. On the other hand, there are 2n + 1 nodes in A.
Hence, we have three nodes that have the same parent from the pecking order principle. Such
a triple induces a solution to the original instance of Well-Balanced Quotient Weak
Pigeon. Thus, we complete constructing a polynomial-time reduction from Well-Balanced
Quotient Weak Pigeon to Weak König.

Lemma 19. There is a polynomial-time reduction from Weak König to Well-Balanced
Quotient Weak Pigeon.

Proof. Let In := ⟨P : {0, 1}n → {0, 1}n;S : {0, 1}n → {0, 1}n; r⟩ be any instance of Weak
König. We now construct a Well-Balanced Quotient Weak Pigeon instance Jn :=〈
C : {0, 1}n → {0, 1}n−1;M : {0, 1}n → {0, 1}n; v∗

〉
.

To show the reduction, we construct a graph G with 2n−1 nodes, which consists of a binary
tree such that the root node has only one child. First, we correspond each string x in {0, 1}n
to a node on the graph G.

The two functions P and S implicitly describe a graph on 2n nodes. We wish to reduce
it to an instance of Well-Balanced Explicit Quotient Pigeon in polynomial time. To
do this, we define the circuit C : {0, 1}n → {0, 1}n−1, where the domain of C will be the nodes
of the graph defined by P .

For each node x ∈ {0, 1}n, we consider the following sequence a0, . . . , ak of distinct nodes
in {0, 1}n such that a0 := x, P (ak) = ak, and ai := P (ai−1) for every i ∈ [k]. We say that a
node x is a bad position if it holds at least one of the following:

1. ak ̸= r; that is, the node ak is a Non-Unique Root witness;

2. k ≥ n; that is, the x node is a Long Path certificate or a Far Away certificate.

Furthermore, a node x is said to be good if x is not a bad position. For every node x in {0, 1}n,
we define the encode function Enc : {0, 1}n → Z≥0 as follows:

Enc(x) :=

{
0 if P (x) = x;

Enc(P (x)) + 2σ(x) otherwise,

where σ(x) = 1 if x is lexicographically greater than S(x); otherwise, σ(x) = 0. By definition,
it is not hard to see that if a node x is a good position, then Enc(P (x)) ≤ 2n−1 − 2.

Then, we define the hole function C : {0, 1}n → {0, 1}n−1 as follows: For each node
x ∈ {0, 1}n,

C(x) :=

{
2n−1 − 1 if x = r or x is a bad position;
Enc(P (x)) otherwise.
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The definition of the matching function M : {0, 1}n → {0, 1}n is the same as the sibling
function S. Therefore, each of the matching violations or the lonely nodes is a solution to
the original Weak König instance. To complete the reduction, we need to show that we can
obtain a solution to the original Weak König instance In from every collision-type solution
to the reduced instance Jn.

Let x and y be two nodes such that x ̸∼S y and C(x) = C(y); that is, a collision-type
solution. Then, we consider the following two sequences:

(a) a0, . . . , ak, where a0 := x, P (ak) = ak = r, ai := P (ai−1) for each i ∈ [k];

(b) b0, . . . , bk, where b0 := y, P (bk) = bk = r, bi := P (bi−1) for each i ∈ [k].

Our goal is to show that there is a solution to the original instance In in the above sequences.
The discussion is followed by induction. First, we suppose that ak−1 ̸= bk−1. In this case,
it satisfies that ak−1 ̸∼S bk−1 since σ(ak−1) = σ(bk−1). Hence, the pair of ak−1 and bk−1

is a solution to In since P (ak−1) = P (bk−1) and ak−1 ̸∼S bk−1. Next, we assume that
ak−ℓ ̸= bk−ℓ and ak−j = bk−j for every j ≤ ℓ. In this case it satisfies that ak−ℓ ̸∼S bk−ℓ since
σ(ak−ℓ) = σ(bk−ℓ). Hence, the pair of ak−ℓ and bk−ℓ is a solution to In since P (ak−ℓ) = P (bk−ℓ)
and ak−ℓ ̸∼S bk−ℓ. Finally, we know that a0 ̸∼S b0. Therefore, we obtain a solution to the
original Weak König instance In from each collision-type solution for the reduced Well-
Balanced Quotient Weak Pigeon instance Jn.
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