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Abstract

We prove a Carbery-Wright style anti-concentration inequality for the unitary Haar measure,
by showing that the probability of a polynomial in the entries of a random unitary falling into
an ε range is at most a polynomial in ε. Using it, we show that the scrambling speed of a
random quantum circuit is lower bounded: Namely, every input qubit has an influence that is
at least inverse exponential in depth, on any output qubit touched by its lightcone. Our result
on scrambling speed works with high probability over the choice of a circuit from an ensemble,
as opposed to just working in expectation.

As an application, we give the first polynomial-time algorithm for learning log-depth random
quantum circuits with Haar random gates up to polynomially small diamond distance, given
oracle access to the circuit. Other applications of this new scrambling speed lower bound include:

• An optimal Ω(log ε−1) depth lower bound for ε-approximate unitary designs on any circuit
architecture;

• A polynomial-time quantum algorithm that computes the depth of a bounded-depth cir-
cuit, given oracle access to the circuit.

Our learning and depth-testing algorithms apply to architectures defined over any geometric
dimension, and can be generalized to a wide class of architectures with good lightcone properties.
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1 Introduction

Random quantum circuits are one of the most popular paradigms of quantum computation in the
near-term era. They are well-studied, both theoretically and experimentally, in the context of
quantum advantage demonstrations: e.g., see [BIS+18; BFN+18; AAB+19; BFL+22; MVM+23;
Mov23; FGG+23]. They also have numerous applications in areas like benchmarking, like in
[DCE+09; LOB+22], in cryptography, as in e.g., [BBF+24; AH23; SHH24], and in the modeling
of physical objects like black holes, as in e.g., [HP07; PSQ20; YE23].

One reason random quantum circuits are extensively studied is because they are rapid “scram-
blers” of information. Intuitively, this means that the output state it generates has non-trivial
correlations across spatially separated qubits. The rate of scrambling depends on the depth—the
deeper the circuit is, the better it is at scrambling. However, even though previous works on scram-
bling have put upper bounds on the scrambling speed of random circuits—see, e.g., [HL09; BF13;
NVH18; HKL+21; JBS22; CBB+24; CDX+24; HLT24; MPS+24; LR72; CL21; WW22; CLY23;
ZXC+20]—lower bounds on the scrambling speed are not well studied.

In this work, we give a lower bound on the speed with which random quantum circuits can
scramble information. Our main theorem is as follows:

Theorem 1.1. Let C be a random quantum circuit with a fixed architecture, where each gate is
a k-qubit independent Haar random unitary. Let ρ and π be a pair of input and output qubits
connected by D layer of gates. Arbitrarily fix the inputs to C, except the qubit ρ, and let ΦC be the
channel that maps ρ to π.

Then for every γ > 0, with probability at least 1 − γ over C the following holds: For every two
single-qubit states ρ and ρ′, ∥∥ΦC(ρ) −ΦC(ρ′)

∥∥
F
≥

∥∥ρ− ρ′
∥∥
F
· (2−Dγ)ck (1)

where ∥·∥F denotes the Frobenius norm, and ck > 0 is a constant that depends only on k.

In particular, our main result gives a lower bound on the influence that changing an input qubit
has on a designated output qubit inside the lightcone of that input qubit and shows that it decays
at most exponentially fast with depth. We articulate some points that make Theorem 1.1 useful
for our applications:

• The bound in Theorem 1.1 is uniform, in the sense that ratio (2−Dγ)ck does not depend on
how the input qubits are chosen, and is applicable to any circuit architecture. Moreover,
the probability quantifier over the circuit C is stated before the choices of ρ and ρ′, which is
specifically important for our application on learning random quantum circuits (Theorem 1.5).

• Although we stated the theorem using Frobenius norm, the norm is only over single-qubit
states and thus is equivalent to any other matrix norm.

• To obtain the strongest bound, we can choose D to be the shortest path from ρ to π. When
π is outside the lightcone of ρ, we think of D = ∞, in which case the statement still holds.

• Our bound in Theorem 1.1 is tight, in the sense that one could prove a matching upper bound∥∥ΦC(ρ) −ΦC(ρ′)
∥∥
F
≤

∥∥ρ− ρ′
∥∥
F
· (2−Dγ)c

′
k (2)
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for various architectures with a different constant c′k < ck, by calculating the moment

E
[∥∥ΦC(ρ) −ΦC(ρ′)

∥∥2
F

]
. Such calculation can be done by analyzing the Markov chain of

Pauli operators, using the results in [HL09; BF13; NRV+17]. However, the moment method
could not yield our lower bound, which we will explain in details below.

Implications on proving typicality statements. Observe that Theorem 1.1 is a statement
that works with high probability over the choice of circuit from the ensemble C, as opposed to just
in expectation over the ensemble C. To the best of our knowledge, this is the first typicality result
regarding the scrambling behavior of random quantum circuits.

Most of the previous work studying random quantum circuits examines their properties by
computing some specific quantities of interest in expectation, such as entanglement entropy, OTOC
and collision chance, by relating the quantities with the lower moments (usually the second moment)
of the quantum circuit. For non-negative quantities the expectation already provides an upper
bound that holds with high-probability (like in (2)) by Markov’s inequality. But for proving a
strong typicality result as in (1), one also needs a corresponding lower bound, which is commonly
proved by calculating the variance of the desired quantity X. In particular, we would want that
for some appropriately small ϵ, and for some t ≥ 1,

E[X2t] ≤ (1 + ϵ)E[Xt]2. (3)

However, for most architectures a relation like (3) is largely unknown. One reason is that when X
is already a second moment of the quantum circuit, and proving (3) requires computing the fourth
or higher moments, which is extremely difficult even for standard brickwork circuits [BBC+24].
More importantly, in our case, X can be heuristically approximated by the product λ1 · · ·λD of
i.i.d random variables λ1, . . . , λD that follow some distribution Λ with constant variance; because
of this, we cannot expect (3) to hold as E[X2t] will be exponentially larger than E[Xt]2.

In this work, we overcome this barrier by performing a more fine-grained analysis. We do
not analyze the randomness present in the choice of gates all at once; Instead, we break up the
randomness of the circuit into D layers and lower bound the random variable X with a product of D
random variables that are highly correlated. We then decouple these random variables using a new
anti-concentration inequality on the unitary Haar measure, which will be stated in Theorem 1.6.
This allows us to avoid calculating higher moments of the circuit, and still retrieve information
about the distribution of X that could be lost in the moments. Our result in Theorem 1.1 directly
implies typicality guarantees on other quantities, such as the purity of a single output qubit, and
we believe the method we use can be generalized to prove typicality results for many other useful
quantities.

1.1 Applications

Intuitively, Theorem 1.1 means that the output state of random quantum circuits with logarithmic
depth carries a signal pertaining to its input state that can be extracted from the output state
using single qubit quantum state tomography. This allows us to show many applications.

1.1.1 Optimal 2-design lower bounds

First, as an immediate corollary of Theorem 1.1, we show a depth lower bound for random quantum
circuits, defined on any architecture, forming approximate unitary designs; see Section 6.1.
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Theorem 1.2. Let C be a random quantum circuit, defined on an arbitrary fixed architecture of
minimum depth D, where each gate is a k-qubit independent Haar random unitary. If C is an
ε-approximate 2-design, then

D = Ωk(log ε−1).

Here the minimum depth means the smallest number of gates that any path from input to
output goes through, resulting in a stronger requirement than the previous depth lower bounds
that uses the lightcone size property. Theorem 1.2 shows that previous works on approximate t-
design constructions, e.g. [HL09; Hun19; Haf22; CHH+24; SHH24], are optimal in ϵ, assuming the
gates are Haar random unitaries. And combined with the Ω(log n) depth lower bound in [DHB22;
SHH24], it means that the approximate t-design construction of depth O(log(n/ε) · tpolylog t) from
[SHH24] is optimal in both n and ε.

1.1.2 Testing for depth

Our second application concerns testing the depth of a random circuit when the depth is promised
to be at most logarithmic.

Theorem 1.3. Let C be a brickwork random quantum circuit on n qubits of an unknown depth D
promised to be bounded as D = O(log n), where each gate is independently Haar random. Given
oracle access to C, there is a polynomial time algorithm that outputs D with probability 1−1/poly(n).

Although Theorem 1.3 is stated with brickwork circuits for simplicity, it is applicable to many
other architectures satisfying the following: For a random circuit of depth D, the lightcone size
is strictly smaller than that of a random circuit of depth larger than D. Hence, there will be a
particular output qubit which will be insensitive to a change in a particular input qubit in the
former case and will be sensitive in the latter case. For D = O(log n) this difference is inverse
polynomially large and can be tested by state tomography. The explicit algorithm is given in
Section 6.2.

Note that our algorithm outputs the exact depth instead of obtaining an approximation, in
contrast with the recently proposed depth test algorithm in [HG24]. This is partially due to the
fact that our algorithm works with high probability with respect to the choice of a circuit from the
ensemble, as opposed to working only in expectation, unlike [HG24].

1.1.3 Learning brickwork random circuits

Third, we show that Theorem 1.1 allows us to learn brickwork random circuits of logarithmic depth.
We start by showing that the first layer of gates can be learned given oracle access to the circuit.

Theorem 1.4. Let C be a brickwork random quantum circuit on n qubits of known depth D =
O(log n), where each gate is independently Haar random. Given oracle access to C, there is a poly-
nomial time algorithm that with high probability outputs each gate in the first layer with polynomially
small error.

Furthermore, in real life scenarios we can assume the distribution over the gates is a discrete
approximation of the Haar measure (see Definition 6.7), and in this case we can actually learn the
entire circuit:
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Theorem 1.5. Let C be a brickwork random quantum circuit on n qubits of known depth D =
O(log n), where each gate is independently drawn from a discretized version of the Haar measure.
Given oracle access to C, there is a polynomial time algorithm that with high probability outputs C
with polynomially small error.

We will prove Theorem 1.4 and Theorem 1.5 in Section 6.3. Note that the learning algorithm
in Theorem 1.5 is proper, that the learnt circuit has the exact same depth and architecture as the
actual circuit C.

Before this work, the state-of-art learning algorithm for brickwork quantum circuits is due
to [HLB+24; LL24], which runs in polynomial time for circuits of k-dimensional geometry up to

O(log1/(k+1) n) depth, and is not proper (that the outputted circuit has depth larger than the input
circuit by at least a constant factor). Our algorithm works for all geometric dimensions, works up
to O(log n) depth, and still has polynomial runtime. There is evidence that the depth dependence
of our learning algorithm is optimal, because random circuits form high enough designs beyond
log n depth [SHH24], and possibly also pseudorandom unitaries, which hints at learning hardness.

Here we provide an informal description of the learner:

• For each gate in the first layer, the learner iteratively searches through the gate set for
the correct gate. There’s only polynomially many gates in the gate set because we chose an
appropriate ε-net over 2-qubit Haar random unitaries. During each round, the learner applies
the inverse of a gate chosen from the gate set at the particular location it wishes to learn.

• Select an input qubit to the gate we are trying to learn. The key observation is that, depending
on whether we applied the correct inverse, the output lightcone will consist of different qubits.
In particular, one qubit will lie outside the lightcone and be unaffected by a change in the
selected input qubit if we hit the correct inverse, as opposed to if we didn’t. As a corollary of
Theorem 1.1, in the former case, we can detect the influence of the input qubit by performing
single qubit state tomography.

𝜌
𝐺′ 𝐺

𝜋

𝐺† 𝐺
𝜌

𝜋

Figure 1: An illustration of the learning algorithm in Theorem 1.5, where we try to uncompute the
gate G by applying some two-qubit unitary G′ before it. Left: When G′ failed to uncompute G,
the lightcone of the input qubit ρ touches an output qubit π at distance D. Right: When G′ = G†,
the output qubit π falls out of the lightcone and will not be affected by the change in ρ.
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Note that the learner of [HLB+24; LL24] uses a very different strategy: it looks at each output
qubit, and then employs a brute force search over all possible lightcones of that circuit to find the
correct one. Thereafter, it stitches together all the different local lightcones of every qubit, and
then corrects for the errors in the overlapping regions of the different lightcones. The fact that we
do not do a brute force search over all possible lightcones makes our algorithm efficient for any
dimension, and not just 1-dimensional brickwork circuits.

1.2 Main Technical Tool: Anti-Concentration for Haar Measure

The intuition behind the proof of Theorem 1.1 is the following: We consider the path of D + 1
qubits ρ = ρ0, ρ1, . . . , ρD = ΦC(ρ) in the circuit C, where gate Gi has ρi as an input and ρi+1 as an
output. Let ρ′i be the corresponding qubits when the input is ρ′, and we want to bound the ratios
λi =

∥∥ρi − ρ′i
∥∥
F
/
∥∥ρi−1 − ρ′i−1

∥∥
F

and hence their product.
It turns out that we can prove the lower bound λi ≥ |F (Gi)|, where F is a polynomial function

over the entries of Gi in its matrix representation. Therefore, we only need to show that |F (Gi)|
is often not too small, when Gi is a Haar random unitary. In other words, we need to show that
the polynomial does not concentrate around zero. Our main technical contribution is the following
theorem which proves this anti-concentration phenomenon:

Theorem 1.6. Let U be a Haar random n×n unitary matrix, and let F : C2n
2

→ C be a degree-d
polynomial on the entries of U and U †. Then for every ε > 0, it holds that

Pr
[∣∣F (U,U †)

∣∣2 ≤ εE
[
|F (U,U †)|2

]]
≤ C ′(n, d) · εC(n,d)

where C(n, d) > 0 and C ′(n, d) > 0 are constants that depend only on n and d.

The anti-concentration inequality of polynomials over Gaussian random variables was famously
proved by Carbery and Wright [CW01], and their result actually applies to any log-concave dis-
tribution over Rn. However, as the Haar measure does not even have a convex support, the proof
techniques in [CW01] does not apply. The alternative inductive proof in [Lov10] also fails to apply,
as we are dealing with correlated input variables. We present a very different inductive proof in
Section 4.

Note that if we consider F (U,U †) as a complex random variable, and define the complex variance

Var[F ] = E[|F |2] − |E[F ]|2 = min
z∈C

E[|F − z|2],

then we obtain the form closer to the classical anti-concentration inequalities:

Corollary 1.7. Let U be a Haar random n×n unitary matrix, and let F be a degree-d polynomial
on the entries of U and U †. Then for every ε > 0 and every z ∈ C, it holds that

Pr
[
|F − z|2 ≤ εVar[F ]

]
≤ C ′(n, d) · εC(n,d).

However in this work we will not use the form in Corollary 1.7, as Theorem 1.6 suffices for our
applications.

Remark. Unlike the Carbery-Wright inequality which is dimension-free, meaning the right hand
side is C ′(d) · εC(d) and does not depend on n, we have C(n, d) = (4n2d)−1 and C ′(n, d) = O(n3d)
in our proof. In fact, using the concentration bounds it is not hard to show that C ′(n, d) must
depends polynomially on n. However, we conjecture that C(n, d) could be independent of n, in
which case the result would be applicable to random quantum circuits with gates of higher locality.
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1.3 Related Works

Concentration phenomenon on unitary Haar measures has been extensively studied, and the readers
can refer to [Mec19] for a comprehensive review of the results. In comparison, much less has been
shown for the reverse direction, namely the anti-concentration inequalities.

One common way to prove such inequalities is by calculating higher moments and apply the
Paley-Zygmund inequality, which was indeed used for showing the anti-concentration property
of output distributions of Haar random unitaries and random quantum circuits [AA11; HBS+18;
DHB22]. However, the inequality proved this way is not strong enough for our applications, while
calculating moments of a random quantum circuit is also non-trivial and depends highly on the
architecture [FKN+23; BBC+24]. Instead, we resort to prove a general anti-concentration inequal-
ity for polynomials, whose theory has been well developed for Gaussian distributions [CW01] and
product distributions (namely the Littlewood-Offord theory) and has found numerous applications
in computational complexity theory [MZ13; MNV16; Kan17]. Our inductive proof of Theorem 1.6
also shares a similar spirit with the elementary proof of Carbery-Wright inequality in [Lov10].

Multiple notions of scrambling property of random quantum circuits has been previously stud-
ied. In particular, [BF13] showed that in a random circuit consists of O(n log2 n) sequential ap-
plications of Haar random gates on a complete graph of n qubits, every subset of cn qubits is
polynomially close to maximally mixed with high probability for some constant c > 0. Our The-
orem 1.1 can be viewed as a result in the reverse direction which bounds the scrambling speed
of such random circuits. Specifically, at least Ω(n log n log logn) sequential gates are required, as
otherwise with high probability a pair of input and output qubits are o(log n) depth apart due to
a generalization of the coupon-collector problem [PR61]. It is also reasonable to believe that our
method of proving Theorem 1.1, via the anti-concentration inequality, is applicable to obtain lower
bounds for other measures of scrambling such as entanglement and out-of-time-ordered correlation
(OTOC) [NRV+17; NVH18; BP20; HKL+21]. Upper bounds in the above-mentioned works are
obtained by calculating moments and analyzing the averaged Markov chain on Pauli operators,
which are not sufficient to prove lower bounds in the typical case.

We also review some previous works related to our applications and clarify the connections.
For approximate unitary designs, many previous constructions, for example [HL09; BHH16; Haf22;
HM23; CHH+24], employed Haar random unitary gates and achieved the optimal O(log ε−1) de-
pendence on ε. The construction of depth O(log(n/ε) · t polylog t) in the recent work of [SHH24]
also falls into this category. Meanwhile, they also proposed a construction of approximate 3-design
with only O(log log(n/ε)) depth. This does not contradict our lower bound Theorem 1.2 as the
construction uses random Clifford unitaries, which are not independent between layers and also fail
the anti-concentration property in Theorem 1.6. It is intriguing, however, to see if our argument
can be extended to show a matching Ω(log log ε−1) depth lower bound.

The depth test algorithm in [HG24] is based on the entanglement dynamics of random circuits
and implemented with their Bell sampling framework. For brickwork circuits, as there is a constant
gap between the upper and lower bounds for the entanglement entropy in the typical case, their
algorithm gives constant approximation of the depth. For general architectures, the algorithm in
[HG24] also requires knowledge of the entanglement velocity, while our algorithm for Theorem 1.3
only relies on a specific property of the architecture that the lightcone strictly expands with depth.

The learning algorithm for shallow quantum circuits in [HLB+24] is based on the idea of brute-
force enumerating all possibilities in a light cone, and stitching the parts together. Therefore, their
algorithm works any quantum circuit in worse case, and has complexity exponential in the lightcone
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size. This means that in order to have polynomial efficiency, the depth has to be O(log1/k n) for
k-dimensional geometrically local circuits and O(log log n) for general architectures. However, the
learning algorithm is improper and the outputted circuit has a large polynomial blow-up in depth.
The blow-up factor could be reduced to constant, at the cost of lowering the depth bound to
O(log1/(k+1) n), and thus could not perform in polynomial time for log-depth circuits even for
1-dimensional geometry. In comparison, our algorithm works for random quantum circuits, on
the fixed brickwork or similar geometrically local architecture, where neighboring qubits can be
distinguished by their lightcones. The strength of our algorithm Theorem 1.5 is that it works up to
logarithmic depth in polynomial time regardless of the geometric dimension, and it learns properly
in that it outputs a circuit with the exact same architecture. This makes our result incomparable
with [HLB+24].

We also mention that, there is a different learning task where instead given oracle access to the
circuit C, the learner is only given copies of the state C|0n⟩, and needs to learn a circuit that prepares
the same state with error in trace distance. Our algorithm relies on having different inputs and
hence does not work in this case, whereas [HLB+24] gave a quasi-polynomial efficiency algorithm
for 2D and the algorithm was extended to higher dimensions in [LL24].

2 Technical Overview

In this section we provide some intuitions for the technical parts in our proofs, as our approach
significantly differs from previous techniques for proving Carbery-Wright type bounds and proving
properties of random quantum circuits.

2.1 Induction for Anti-Concentration Bound

We start with a bare-bone inductive proof for Theorem 1.6, but instead of having the input to F
being the entries of a Haar random unitary, we think of them as independent random variables
x1, . . . , xn. In this case, we can write F as

F (x1, . . . , xn) = xd1Fd(x2, . . . , xn) + xd−1
1 Fd−1(x2, . . . , xn) + · · · + F0(x2, . . . , xn), (4)

where each Fi is a polynomial of degree at most d. As a result, we can define a single-variable
polynomial P (x1) as

P (x1) = E
x2,...,xn

[F (x1, . . . , xn)]

= E[Fd] · xd1 + E[Fd−1] · x
d−1
1 + · · · + E[F0],

and prove the anti-concentration property of P (x1) using analytic methods. Notice that for each
fixed x1 such that P (x1) is not concentrated, F is also a polynomial F ′

x1
over x2, . . . , xn, and

therefore reduce the problem to proving anti-concentration for F ′
x1

, as by the union bound we have

Pr
[
F (x1, . . . , xn) ≤ εE[F ]

]
≤ Pr

[
P (x1) ≤

√
εE[P ]

]
+ Pr

[
F ′
x1

(x2, . . . , xn) ≤
√
εE[F ′

x1
]
]
.

The probability obtained via this induction will be dependent on n in the exponent of ε. In
order to obtain a dimension-free bound like in Carbery-Wright, [Lov10] first converts F into an
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equivalent polynomial that is multi-linear over a partition of input variables, and by taking x1 to
be one part of the partition instead of a single variable, F0 in (4) could be made to have degree at
most d− 1. This way it is guaranteed that the degree of F ′

x1
is strictly smaller than that of F , and

thus the induction could work on d instead of n.
Unfortunately, the conversion of polynomial in [Lov10] does not work for the case when input

variables are not independent. In fact, with correlated input we are facing a more fundamental
problem: it is not even guaranteed that P (x1) is a polynomial function, as Ex2,...,xn

[Fi] is not a
constant anymore, but a function in x1 itself. A crucial step in our proof is to show that, with
some proper grouping of the entries in the Haar random matrix, each E[Fi] is indeed a polynomial
function in x1 of degree at most d − i, and hence the induction proof goes through, albeit with
dependence on n; See Section 4.

2.2 Tracking 3-Dimensional Pauli Subspaces

The main objects we care about in Theorem 1.1 are the differences between density matrices of
states, which are linear combinations of non-identity Pauli operators. In particular, the difference
on a single qubit is spanned by {X,Y, Z} ⊗ I⊗(n−1), where the non-identity Pauli X,Y or Z acts
on the qubit where the difference is taken. In this language, Theorem 1.1 in essence claims the
following: The subspace of Pauli operators {X,Y, Z}0 ⊗ I⊗(n−1) indicating the differences in the
input qubit ρ0, when evolved by the circuit C (still under the Schrödinger picture), will have non-

negligible projection onto the subspace {X,Y, Z}D ⊗ I⊗(n−1) which indicates the differences in the
output qubit ρD.

𝐺1

𝐺𝐷

𝑋, 𝑌, 𝑍 0

𝐼

𝐼

𝐼

𝐼

𝜌0 𝜌1

𝜌𝐷

𝑋, 𝑌, 𝑍 𝐷

𝐼

𝐼

𝐼

𝐼

Figure 2: A Illustration of the claim and proof of Theorem 1.1 with an example circuit, where the
bold wires represents a path from the first input qubit to the last output qubit. The state of the
qubit on the i-th segment of the wire, between gate Gi−1 and Gi, is denoted as ρi, whose difference

is captured by the projection onto the Pauli subspace {X,Y, Z}i ⊗ I⊗(n−1).

Our proof of Theorem 1.1 keeps track of the evolution of the 3-dimensional Pauli subspace:

Si = Ci ·
(

span{X,Y, Z}0 ⊗ I⊗(n−1)
)
· C†

i ,

where Ci is the part of circuit C up until the i-th layer. Denoting the qubits on the length-D path

from the input to the output as ρ0, ρ1, . . . , ρD, the projection of Si onto {X,Y, Z}i⊗I⊗(n−1) contains
all possible differences ρi−ρ′i, and the goal is to bound the singular values of this projection. Notice
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that this projection is not affected by any unitary gates in the i-th layer, other than the one Gi on
the path that connects ρi−1 and ρi. As a result, we can lower bound the ratio∥∥ρi − ρ′i

∥∥
F∥∥ρi−1 − ρ′i−1

∥∥
F

with the smallest singular value of a linear transformation on Si−1 defined by Gi, and in turn with
a polynomial function Fi(Gi) on the entries of Gi, whose coefficients depend on Si−1.

Now, to show that each Fi(Gi) with high probability cannot be too small, we can use exactly our
anti-concentration bound Theorem 1.6 to argue that Fi(Gi) cannot be concentrated around zero
as Gi is Haar random. However, to bound their product F1(G1) · · ·FD(GD), we cannot treat them
individually as the polynomial functions themselves are correlated. Instead, we use Theorem 1.6 to
find an anti-concentrated distribution Λi that uniformly lower bounds the distribution of Fi(Gi),
regardless of the choice of Si−1. This way, we can decouple the distributions of the multipliers, and
prove a lower bound on the independent product Λ1 · · ·ΛD; See Section 5 for details.

2.3 Learning Log-Depth Random Quantum Circuits

We already presented the general idea of the learning algorithm in Section 1.1. However, that is far
from the whole story: one major problem we need to solve is that, while our soundness assurance
Theorem 1.1 is an average-case statement over the distribution of random circuits, learning each
gate correctly is a worst-case statement. In other words, Theorem 1.1 does not directly guarantee
that for every attempt that fails to uncompute the current gate, the input qubit will have an
observable influence on the output qubit.

In fact, such a worst-case statement is impossible with our approach: the lightcone property
cannot tell the difference when the gate G is perfectly uncomputed by G′ = G†, or when G′ =
(U1⊗U2) ·G

† for some non-identity single-qubit unitaries U1 and U2. Fortunately it is unnecessary

to distinguish this two cases: In the latter case, G′† · G = U †
1 ⊗ U †

2 , as the residue of the learning

process for the current layer, can be viewed as part of the next layer by composing U †
1 with one of

the next gates and U †
2 with the other. This does not affect the distribution of the remaining circuit

as each gate is still independently Haar random, which is where we actually apply Theorem 1.1 on.
Meanwhile, the actual worst-case statement for correctness is the following: when changing the

first input qubit to the composite gate G′† ·G, the second output qubit will be affected if and only
if G′ cannot be written as (U1 ⊗ U2) · G

†. This statement is not hard to prove by itself, but we
need a robust version of it in both completeness and soundness to account for learning errors, as
we could only go over an ε-net of gates and state tomography at the end also introduces error.
These two directions are handled in Lemma 6.4 and Lemma 6.5 respectively; See Section 6 for the
detailed proof, and other more straightforward applications.

3 Preliminaries

We start with some basic notations. We use U(d) to denote the unitary group of dimension d, and
use U(d) to denote the Haar measure over U(d). We use Greek letters such as ρ, π, τ to denote
density matrices of quantum states. We use ∥·∥1 and ∥·∥F for trace norm and Frobenius norm, and
d⋄(·, ·) for diamond distance between unitary channels, defined as

d⋄(Φ1,Φ2) = max
ρ

∥(Φ1 ⊗ I)ρ− (Φ2 ⊗ I)ρ∥1,
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with maximum taken over all density matrices ρ.
A circuit architecture determines the positions of gates in the circuit. We define the depth of

an architecture as follows.

Definition 3.1. In a circuit architecture, a path in space-time between two qubits ρ and ρ′ is a
sequence of qubits ρ = ρ0, ρ1, . . . , ρD = ρ′ where for each i, there is a gate in the circuit that has ρi
as an input and ρi+1 as an output.

We say the architecture has minimum depth D, if there exists a pair of input and output qubits
connected by a path of length D, and every other path from input to output has depth at least D.

A specific architecture of interest is the (1-dimensional) brickwork architecture:

Definition 3.2. A brickwork quantum circuit on n qubits of depth D consists of D layers of gates,
where on layer j, there is a two-qubit gate Gi,j = Gi+1,j acting on the i-th and (i + 1)-th qubit if
and only if i and j have the same parity.

The brickwork architecture could be generalized to higher dimensional geometry, and our results
still hold for any constant dimension. However, for simplicity we stick with the 1-dimensional
architecture in this paper.

We will need the following statements about quantum state tomography and quantum process
tomography on single qubits for our algorithms (see e.g. [NC10])

Proposition 3.3. Given access to copies of a single-qubit state ρ, one can output an estimation ρ̃
with ∥ρ− ρ̃∥F ≤ ε in poly(1/ε) time.

Proposition 3.4. Given access to copies of a single-qubit unitary U , one can output an estimation
Ũ with d⋄(U, Ũ) ≤ ε in poly(1/ε) time.

The following simple lemma is particularly useful, which bounds the difference between states
through a channel:

Lemma 3.5. Let Φ be a quantum channel that takes k qubits as the input. For every input states
ρ and ρ′, we have ∥∥Φ(ρ) −Φ(ρ′)

∥∥
F
≤ 2k/2

∥∥ρ− ρ′
∥∥
F
.

Proof. Since quantum channels do not increase trace distance, we have∥∥Φ(ρ) −Φ(ρ′)
∥∥
F
≤

∥∥Φ(ρ) −Φ(ρ′)
∥∥
1
≤

∥∥ρ− ρ′
∥∥
1
≤ 2k/2

∥∥ρ− ρ′
∥∥
F
.

As we are frequently dealing with differences between quantum states, here we present some
facts about the space of such differences. We start from the Bloch sphere presentation of a single-
qubit state:

ρ =
1

2
(I + rxX + ryY + rzZ), rx, ry, rz ∈ R, r2x + r2y + r2z ≤ 1 (5)

where

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (6)

11



Then the difference ρ− ρ′ between two single-qubit states can be written in the Pauli basis

ρ− ρ′ = rxX + ryY + rzZ, r2x + r2y + r2z =
1

2

∥∥ρ− ρ′
∥∥2
F
≤ 1. (7)

Therefore, if we view ρ − ρ′ under the coordinate system
√

2 · (rx, ry, rz), then the set ∆1 of all

possible single-qubit differences can be identified with a ball of radius
√

2 in R3. The Euclidean
space R3 is equipped with the standard trace inner product ⟨A,B⟩ = Tr[A†B], so that the norm
coincides with the Frobenius norm.

More generally, let ∆k be the set of all possible differences between two k-qubit states ρ and ρ′.
The difference ρ− ρ′ can be written as a real linear combination over the Pauli basis

{I,X, Y, Z}⊗k \ {I⊗k}

where the identity is removed as Tr[ρ − ρ′] = 0. Since the Pauli basis are orthonormal, we can

think of ∆k as a subset of the Euclidean space R4
k−1 (although the set is much more complicated

than a ball for k > 1). The Euclidean space is also equipped with the standard trace inner product
and the Frobenius norm. As a result, a quantum channel Φ with k-qubit input and n-qubit output
induces a linear map from ∆k to ∆n:

ρ− ρ′ 7→ Φ(ρ) −Φ(ρ′),

which is also a real linear map from R4
k−1 to R4

n−1.

4 Anti-concentration Bound

In this section we prove Theorem 1.6. For simplicity, we introduce the notion of semi-polynomials:
A function is a degree-d semi-polynomial in complex variables z1, . . . , zn, if it is a polynomial in
z1, . . . , zn, z1, . . . , zn of degree at most d. Now Theorem 1.6 is implied by the following more general
form:

Theorem 4.1. Let m ≤ n, and F : Cnm → C be a degree-d semi-polynomial. Suppose that F takes
as inputs the entries of the first m columns of an n× n unitary matrix, and that the value of F is
always a non-negative real number over this domain. Then for U ∼ U(n),

Pr
[
F (U1,1, . . . , Un,m) ≤ εE[F ]

]
≤ C ′(n,m, d) · εC(n,m,d)

holds for every ε > 0, where C(n,m, d) > 0 and C ′(n,m, d) > 0 are constants that depend only on
n,m and d.

To see that Theorem 4.1 implies Theorem 1.6, it suffices to take m = n and notice that
|F |2 = FF is a degree-2d semi-polynomial that is always non-negative. We prove Theorem 4.1 via
induction, and the proof is divided into four stages.
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4.1 m = 1, n = 1

We start with the simplest case when m = n = 1. In this case F : C → C is a single-variable degree-
d semi-polynomial over the unit circle {z : |z| = 1}. Since z = 1/z over this domain, assuming
F ̸= 0 we can write F as

F (z) = G(z)/zd

where G(z) = α(z − z1) · · · (z − z2d) is a degree 2d polynomial in z. Without loss of generality we
can assume that |α| = 1, and therefore

F (z) = |F (z)| = |G(z)| = |z − z1| · · · |z − z2d|. (8)

Then we can bound the expectation of F as

E[F ] ≤ sup
|z|=1

∏
|z − zi| ≤

∏
(1 + |zi|). (9)

On the other hand, if |z − zi| > δ ≥ 0 for some |z| ≤ 1, it is easy to show that

|z − zi|
1 + |zi|

>
δ

δ + 2
. (10)

Thus if |z − zi| > δ holds for all i = 1, . . . , 2d, then

F (z) =
∏

|z − zi| >
(

δ

δ + 2

)2d∏
(1 + |zi|) ≥

(
δ

δ + 2

)2d

E[F ]. (11)

That means, if we take ε =
(

δ
δ+2

)2d
, then F (z) ≤ εE[F ] only happens when z falls into one of

the δ-balls around some zi. Each δ-ball intersect with the unit circle as an arc of angle at most
4δ, and thus has measure at most 2δ/π under the Haar measure over the unit circle. Therefore we
conclude that

Pr
|z|=1

[F (z) ≤ εE[F ]] ≤ min{4dδ/π, 1}

= min

{
8d

π
· ε1/(2d)

1 − ε1/(2d)
, 1

}
≤

(
8d

π
+ 1

)
ε1/(2d), (12)

and we can take C(1, 1, d) = 1/(2d) and C ′(1, 1, d) = 8d/π + 1.

4.2 m = 1, n = 1, Alternative Distribution

For the sake of later use, we also need a version where z = u1 follows the distribution of the first
coordinate of a Haar-random unit vector (u1, . . . , un) ∈ Cn, n ≥ 2. In this case z = 1/z no longer
holds, and we need an alternative method.

For every r ∈ R, 0 ≤ r ≤ 1 we define

P (r) = E
|u1|=r

[F (u1)]
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where the expectation is over a Haar-random z ∈ C with |z| = r. Notice that a monomial uk1u1
ℓ

in F has expectation 0 unless k = ℓ, and when k = ℓ we have uk1u1
ℓ = r2k. That means P (r) is a

degree-d polynomial in r2.
Notice that r2 follows the Beta distribution Beta(1, n− 1), with the density function

f(r; 1, n− 1) = (n− 1)(1 − r)n−2,

and E[P (r)] under this distribution coincides with E[F ].
With the analysis in the previous section which also works on P (r), we can show that if we

take ε =
(

δ
δ+2

)d
, then P (r) ≤ εE[P (r)] = εE[F ] only happens when r2 falls into one of the δ-balls

around d complex roots of P , which are intervals of length at most 2δ on the real line. Since the
density function of r2 has a maximum of n− 1, we have

Pr[P (r) ≤ εE[F ]] ≤ min{2d(n− 1)δ, 1} ≤ 4dnε1/d. (13)

On the other hand, applying (12) from the previous section on F (rz) for every fixed r directly
provides

Pr
|z|=r

[F (z) ≤ εP (r)] ≤
(

8d

π
+ 1

)
ε1/(2d). (14)

Thus by a union bound we have

Pr[F (u1) ≤ εE[F ]] ≤ Pr
[
P (r) ≤

√
εE[F ]

]
+ Pr

[
F (z) ≤

√
εP (|z|)

]
≤ 4dnε1/(2d) +

(
8d

π
+ 1

)
ε1/(4d)

≤ 4d(n + 1)ε1/(4d). (15)

We note that not only this result will be used in the next stage, the technique itself will also be
reapplied multiple times in the later proofs.

4.3 m = 1, n > 1

In this stage we consider m = 1 with general n, and thus the inputs to F is a Haar-random unit
vector (u1, . . . , un) ∈ Cn. The strategy is to use induction on n, and show that with high probability
over the choice of u1,

P (u1) = E
u2,...,un

[F (u1, . . . , un)]

is not too small conditioned on the fixed u1. To handle this, we need the following lemma.

Lemma 4.2. If F : Cn → C is a degree-d semi-polynomial, and (u1, . . . , un) ∈ Cn is a Haar-random
unit vector, then P (u1) = Eu2,...,un

[F (u1, . . . , un)] is a degree-d semi-polynomial on u1.

Proof. Consider each monomial in F , and let G be the part of monomial over u2, . . . , un and their

conjugates. Since (u2, . . . , un) = r · u′, where r = (1 − |u1|
2)1/2 and u′ follows the Haar measure

over the unit sphere in Cn−1, we have:

• If G has an odd degree then E[G] = 0, by the symmetry u′ → −u′;
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• And if G has an even degree 2ℓ ≤ d then

E[G] = r2ℓE[G(u′)] = (1 − u1u1)
ℓE[G(u′)], (16)

where E[G(u′)] is a constant irrelevant to the choice of u1.

Either way E[G] is a degree-d semi-polynomial in u1, and thus so is P (u1).

Since P is an expectation over F , it is also always non-negative and has the same expectation
as E[F ]. Thus (15) from the previous section gives

Pr[P (u1) ≤ εE[F ]] ≤ 4d(n + 1)ε1/(4d). (17)

Now we fix some u1, and consider the degree-d semi-polynomial

Fu1
(u2, . . . , un) = F (u1, u2, . . . , un)

which is always non-negative. Since (u2, . . . , un) = ru′ for some r ∈ R, and u′ follows the Haar
measure over the unit sphere in Cn−1, we can apply the induction hypothesis for n− 1 on Fu1

(ru′)
to get

Pr
[
Fu1

(ru′) ≤ εEu
′ [Fu1

(ru′)]
]
≤ C ′(n− 1, 1, d) · εC(n−1,1,d). (18)

Therefore we conclude that, for every p ∈ (0, 1),

Pr[F (u1, . . . , un) ≤ εE[F ]]

≤ Pr[P (u1) ≤ εpE[F ]] + Pr
[
F (u1, . . . , un) ≤ ε1−pP (u1)

]
= Pr[P (u1) ≤ εpE[F ]] + Pr

[
Fu1

(u2, . . . , un) ≤ ε1−pE[Fu1
]
]

≤ 4d(n + 1)εp/(4d) + C ′(n− 1, 1, d) · ε(1−p)C(n−1,1,d). (19)

We can take

C(n, 1, d) = max
p

min
{ p

4d
, (1 − p)C(n− 1, 1, d)

}
=

1

4d + C(n− 1, 1, d)−1 =
1

4nd
,

and C ′(n, 1, d) = 4d(n + 1) + C ′(n− 1, 1, d) = O(n2d).

4.4 m > 1, n > 1

Now we handle the general case when the inputs to the semi-polynomial consist of m columns
of a Haar random unitary. The proof is similar to the last stage, using the fact that the input
distribution can be viewed as a unitary-invariant distribution over m orthonormal vectors in Cn.
In particular, let the vectors be v1, . . . , vm, and we consider the function

P (v1, . . . , vm−1) = E
vm

[F (v1, . . . , vm)].

Here vm is a Haar-random vector over the unit sphere in the (n − m)-dimensional orthogonal
subspace of span(v1, . . . , vm). We would like to show that P is a semi-polynomial in order to use
induction, and we first show it with vm replaced with a Gaussian distribution.
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Lemma 4.3. Let v1, . . . , vm be a set of m < n orthonormal vectors in Cn, and let g = (g1, . . . , gn) ∈
Cn distributed as a standard (n−m)-dimensional complex Gaussian in the orthogonal subspace of
span(v1, . . . , vm).

Let G : Cn → C be a degree-d semi-polynomial in (g1, . . . , gn). Then

Q(v1, . . . , vm) = E[G(g1, . . . , gn)]

is a degree-d semi-polynomial in the entries of v1, . . . , vm.

Proof. Notice that g = (g1, . . . , gn) can be obtained by taking a standard n-dimensional complex
Gaussian g′ ∈ Cn, and apply the Gram-Schmidt orthogonalization:

g = g′ −
m∑
i=1

viv
†
i g

′. (20)

Therefore the covariance matrix of g is
(
In −

∑
viv

†
i

)2
= In−

∑
viv

†
i , where each entry is a degree-

2 semi-polynomial in v1, . . . , vm. By the complex Wick’s theorem [FPR19], the expectation of a
monomial in G(g)

E
[
g
α1
1 g1

β1 · · · gαn
n gn

βn

]
is non-zero only when

∑
αi =

∑
βi, in which case it is a polynomial function over the entries of

the covariance matrix of g with degree
∑

αi. Therefore Q = E[G] is a degree-d semi-polynomial in
the entries of v1, . . . , vm.

Corollary 4.4. P (v1, . . . , vm−1) = Evm
[F (v1, . . . , vm)] is a degree-d semi-polynomial in the entries

of v1, . . . , vm−1.

Proof. Notice that vm is equidistributed as g/∥g∥2, where g = (g1, . . . , gn) is the Gaussian in
Lemma 4.3. In other words, g = r · vm where r ∈ R follows a fixed χ distribution independent of
vm.

Now consider each monomial in F , and let G be the part of monomial over entries of vm, then
it suffices to show that E[G(vm)] is a degree-d semi-polynomial in v1, . . . , vm−1. Lemma 4.3 already
showed this for E[G(g)], and since G is a monomial of degree ℓ ≤ d, we have

E[G(g)] = E[G(r · vm)] = E[rℓ]E[G(vm)], (21)

where E[rℓ] is a non-zero constant irrelevant to the choice of v1, . . . , vm−1. Therefore E[G(vm)] is
also a degree-d semi-polynomial in v1, . . . , vm.

Since P is an expectation over F , it is also always non-negative and has the same expectation
as E[F ]. Thus the induction hypothesis gives

Pr[P (v1, . . . , vm−1) ≤ εE[F ]] ≤ C ′(n,m− 1, d) · εC(n,m−1,d). (22)

Now we fix some v1, . . . , vm−1 and consider the degree-d semi-polynomial

Fv1,...,vm−1
(vm) = F (v1, . . . , vm−1, vm),
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which is always non-negative. Since there exists a linear map A : Cn−m+1 → Cn such that vm = Au,
where u is a Haar-random unit vector in Cn−m+1, we can apply (19) from the previous stage for
m = 1 on Fv1,...,vm−1

(Au) to get

Pr
[
Fv1,...,vm−1

(Au) ≤ εEu

[
Fv1,...,vm−1

(Au)
]]

≤ C ′(n, 1, d) · εC(n,1,d). (23)

Therefore we conclude that, for every p ∈ (0, 1),

Pr[F (v1, . . . , vm) ≤ εE[F ]]

≤ Pr[P (v1, . . . , vm−1) ≤ εpE[F ]] + Pr
[
F (v1, . . . , vm) ≤ ε1−pP (v1, . . . , vm−1)

]
= Pr[P (v1, . . . , vm−1) ≤ εpE[F ]] + Pr

[
Fv1,...,vm−1

(vm) ≤ ε1−pE[Fv1,...,vm−1
]
]

≤ C ′(n,m− 1, d) · εpC(n,m−1,d) + C ′(n, 1, d) · ε(1−p)C(n,1,d), (24)

Similar to the previous stage, we can take

C(n,m, d) =
1

C(n,m− 1, d)−1 + C(n, 1, d)−1 =
1

4nmd
,

and C ′(n,m, d) = C ′(n,m−1, d)+C ′(n, 1, d) = O(n2md). This completes the proof of Theorem 4.1.

5 Mixing Bound for Random Circuits

In this section we prove Theorem 1.1. Since the output qubit ΦC(ρ) is in the lightcone of the input
qubit ρ, there exists gates G1, . . . , GD in the circuit C that connect the input and output qubits.
That is, there are qubits ρ0, ρ1, . . . , ρD with ρ0 = ρ and ρD = ΦC(ρ), such that the gate Gi has
ρi−1 as an input and ρi as an output. Each gate Gi is independently drawn from the Haar measure

U(2k).
Note that even when gate Gi is given, we cannot directly claim any relationship between ρi−1

and ρi, as the other input qubits to Gi are correlated and possibly entangled with ρi−1. To handle
this, we let τi−1 be the composite state of the k input qubits to Gi, and by Lemma 3.5 we have∥∥τi−1 − τ ′i−1

∥∥
F
≥ 2−k/2∥∥ρi−1 − ρ′i−1

∥∥
F
, (25)

where ρ′i and τ ′i are the corresponding states when the input state is ρ′0 = ρ′. Therefore we only
need to bridge the remaining gaps by proving∥∥ρi − ρ′i

∥∥
F
≥ λi

∥∥τi−1 − τ ′i−1

∥∥
F

(26)

where λi is some function of Gi, and then bound the distribution of λi by applying the anti-
concentration bound from Theorem 1.6.

At a first glance, this looks impossible as τi−1 is a k-qubit state while ρi is single-qubit, which
means that as long as k > 1, whatever Gi is, there will be input states τi−1 ̸= τ ′i−1 to Gi with
the output qubits ρi = ρ′i. The key observation is that the states τi cannot be arbitrary k-qubit
states: Since all the input qubits to the circuit C are fixed except ρ, when the circuit C is given,
each τi is the result of ρ through a fixed quantum channel. As the difference ρ − ρ′ ranges within
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the 3-dimensional Euclidean space ∆1, the difference τi−1 − τ ′i−1 could also only range within a
3-dimensional subspace of ∆k.

This allows us to define and bound the distribution of λi that uniformly holds for every such
subspace as follows:

Lemma 5.1. For every k ∈ N, there exists a distribution Λk over [0,∞) that satisfies:

• There exists t > 0 such that E[Λ−t
k ] < ∞, where we use E[Λ−t

k ] as shorthand for Ex∼Λk
[x−t].

• For every fixing of the input qubits other than ρ, and layers 1, . . . , i− 1 of the circuit C, there
exists a function λi : U(2k) → [0,∞) at layer i such that∥∥ρi − ρ′i

∥∥
F
≥ λi(Gi)

∥∥τi−1 − τ ′i−1

∥∥
F

holds for all input states ρ and ρ′, and λi(Gi) ∼ Λk when Gi ∼ U(2k).

We will prove Lemma 5.1 in Section 5.1. For now let us show how Lemma 5.1 would imply
Theorem 1.1.

Proof of Theorem 1.1. From Lemma 5.1 and (25) we get∥∥ρi − ρ′i
∥∥
F
≥ λi(Gi)

∥∥τi−1 − τ ′i−1

∥∥
F
≥ 2−k/2λi(Gi)

∥∥ρi−1 − ρ′i−1

∥∥
F

(27)

for every i = 1, . . . , D. Here each function λi(Gi) depends on the previous layers, but as random
variables λi = λi(Gi) they are independent, since λi follows the same distribution Λk no matter
how λ1, . . . , λi−1 are fixed.

Since
∥∥ρ0 − ρ′0

∥∥
F

=
∥∥ρ− ρ′

∥∥
F

and
∥∥ρD − ρ′D

∥∥
F

=
∥∥ΦC(ρ) −ΦC(ρ′)

∥∥
F
, we have∥∥ΦC(ρ) −ΦC(ρ′)

∥∥
F
≥ 2−kD/2λ1 · · ·λD

∥∥ρ− ρ′
∥∥
F
. (28)

To bound the product of λi we use Markov’s inequality, which states that for every α > 0,

Pr[λ1 · · ·λD ≤ α] = Pr[(λ1 · · ·λD)−t ≥ α−t]

≤ αtE[λ−t
1 · · ·λ−t

D ] = αtE[Λ−t
k ]D (29)

where we take t > 0 to be the constant in Lemma 5.1. Take α such that γ = αtE[Λ−t
k ]D, we

conclude that with probability at least 1 − γ,∥∥ΦC(ρ) −ΦC(ρ′)
∥∥
F
≥ 2−kD/2α

∥∥ρ− ρ′
∥∥
F

= 2−kD/2γ1/tE[Λ−t
k ]−D/t∥∥ρ− ρ′

∥∥
F

= (2−Dγ)Ok(1)
∥∥ρ− ρ′

∥∥
F
.

5.1 Proof of Lemma 5.1

The basic idea of the proof is to lower bound the ratio
∥∥ρi − ρ′i

∥∥
F
/
∥∥τi−1 − τ ′i−1

∥∥
F

with a polynomial
function on the entries of Gi and apply Theorem 1.6.

The quantum channel defined by Gi that maps τi−1 to ρi induces the linear map

Mi : τi−1 − τ ′i−1 7→ ρi − ρ′i.
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The domain of Mi is a 3-dimensional subspace of ∆k which we denote as Si, while the range of Mi

is ∆1. Notice that the map Mi is completely determined by the domain Si and the gate Gi, while
Si depends only on the fixed inputs to the circuit C and the gates of C in layers 1, . . . , i− 1.

Since both the domain and the range are Euclidean spaces, the absolute determinant |detMi| is
independent of the choices of bases when writing Mi as matrix in R3×3. We will show that |detMi|
is basically the lower bound that we seek for, via the following propositions.

Proposition 5.2. It always holds that∥∥ρi − ρ′i
∥∥
F
≥ 2−k|detMi| ·

∥∥τi−1 − τ ′i−1

∥∥
F
.

Proof. Let σ1 ≤ σ2 ≤ σ3 be the singular values of Mi, then
∥∥ρi − ρ′i

∥∥
F

≥ σ1
∥∥τi−1 − τ ′i−1

∥∥
F

as
the norms in both spaces coincide with the Frobenius norm. On the other hand, we know that
σ2 ≤ σ3 ≤ 2k/2 by Lemma 3.5. Therefore, |detMi| = σ1σ2σ3 ≤ 2kσ1 and thus the claim holds.

Proposition 5.3. For each fixed domain Si, detMi is a degree-6 semi-polynomial in the entries
of Gi.

Proof. After fixing the orthonormal bases {ξ1, ξ2, ξ3} for Si and {σ1, σ2, σ3} for ∆1, the (ℓ, r)-th
entry in the matrix representation of Mi is

Tr[σr ·Mi(ξℓ)] = Tr[(IA ⊗ σr) ·GiξℓG
†
i ] (30)

where A is the system that consists of the output qubits of Gi other than ρi. This is a quadratic
form in the entries of Gi and thus a degree-2 semi-polynomial, and therefore detMi is a degree-6
semi-polynomial.

Proposition 5.4. There exists a constant µk > 0 such that for every possible domain Si,

E
Gi∼U(2

k
)

[
|detMi|

2
]
≥ µk.

Proof. When Si is fixed, |detMi|
2 is a continuous function of Gi ∈ U(2k). For at least one Gi,

which is a permutation over the k qubits that swaps ρi−1 to ρi, we have |detMi| > 0. This implies

that E
[
|detMi|

2
]
> 0 always holds.

Now we think of E
[
|detMi|

2
]

as a continuous function of Si, while the set of all possible Si is

a closed subset of the Grassmannian Gr3(R
4
k−1) and thus is compact. That means the function

admits a global minimum µk, which depends only on k, and µk > 0.

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. Applying Theorem 1.6 with Propositions 5.3 and 5.4 gives

Pr
[
2−k|detMi| ≤ ε

]
≤ Pr

[
|detMi|

2 ≤ 22kµ−1
k ε2E

[
|detMi|

2
]]

≤ C ′(2k, 6) · (22kµ−1
k ε2)C(2

k
,6) (31)
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which holds for every domain Si and every ε ≥ 0. We define Λk as the distribution over [0,∞)
with the following cumulative function:

Pr[Λk ≤ x] = min

{
C ′(2k, 6) · (22kµ−1

k x2)C(2
k
,6), 1

}
.

Take t = C(2k, 6) > 0 and let C = C ′(2k, 6) · (22kµ−1
k )C(2

k
,6) > 0, then we have

E[Λ−t
k ] =

∫ ∞

0
x−td Pr[Λk ≤ x]

=

∫ C
−1/(2t)

0
x−td(Cx2t)

=

∫ C
−1/(2t)

0
2tC · xt−1dx = 2tC1/2 < ∞. (32)

Now suppose the input qubits other than ρ are fixed, and the layers 1, . . . , i − 1 of the circuit
C is given. This fixes the domain Si for Mi, and provides the cumulative function

P (x) = Pr
[
2−k|detMi| ≤ x

]
.

Notice that P is continuous and non-decreasing, and by defining its inverse P−1(y) = supx P (x) ≤ y
on [0, 1], we can show that for every y ∈ [0, 1],

Pr
[
P
(
2−k|detMi|

)
≤ y

]
= Pr

[
2−k|detMi| ≤ P−1(y)

]
= P (P−1(y)) = y.

We then define the function λi : U(2k) → [0,∞) as follows: For each Gi ∈ U(2k), let λi(Gi) be
the smallest λ ≥ 0 such that

P
(
2−k|detMi|

)
= Pr[Λk ≤ λ].

When Gi ∼ U(2k), we have λi(Gi) ∼ Λk since

Pr[λi(Gi) ≤ x] = Pr
[
P
(
2−k|detMi|

)
≤ Pr[Λk ≤ x]

]
= Pr[Λk ≤ x]. (33)

We also have 2−k|detMi| ≥ λi(Gi) since P (x) ≤ Pr[Λk ≤ x] holds for all x ≥ 0. Combined with
Proposition 5.2 we get∥∥ρi − ρ′i

∥∥
F
≥ 2−k|detMi| ·

∥∥τi−1 − τ ′i−1

∥∥
F
≥ λi(Gi)

∥∥τi−1 − τ ′i−1

∥∥
F
.

6 Applications

6.1 Depth Lower Bound for Approximate Designs

In this section we prove Theorem 1.2. We first recall the definition of an approximate unitary
design.
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Definition 6.1. For a distribution D over U(n) and t ∈ N+, define the moment superoperator as
the following channel:

Φ
(t)
D : ρ 7→

∫
U(n)

U⊗tρ(U †)⊗tdD(U).

The distribution D is an ε-approximate unitary t-design if∥∥∥Φ(t)
D −Φ

(t)
U(n)

∥∥∥
⋄
≤ ε.

Note that there are several other definitions of the approximate design (see e.g. [BHH16]), and
we choose the weaker one so that our Theorem 1.2 is still compatible with the stronger definitions
of designs.

Proof of Theorem 1.2. Without loss of generality, let us assume that the first input qubit ρ and
the first output qubit π are depth D apart. We fix all other input qubits to be maximally mixed,
so that when ρ is also maximally mixed, the entire output is maximally mixed regardless of the
circuit C, and thus π = I/2. On the other hand, when ρ = |0⟩⟨0|, we know the following about the
output qubit π via Theorem 1.1 that with probability 1 − 2−D over the circuit C,

∥π − I/2∥F ≥ ∥|0⟩⟨0| − I/2∥F · (2−2D)ck =
1√
2
· 2−2Dck . (34)

We can expand the left hand side of (34) as

∥π − I/2∥2F = Tr[(π − I/2)2] = Tr[π2] − 1/2. (35)

Since Tr[π2] ≤ 1 always holds, we get

EC [Tr[π2]] ≥ 1

2
+

1

2
· 2−4Dck +

1

2
· 2−D. (36)

Now imagine feeding two copies of the input state |0⟩⟨0| ⊗ (I/2)⊗(n−1) to the superoperators

Φ
(2)
C and Φ

(2)
U(n), and apply a swap test on the first output qubits in the two copies. The output

probability is determined by Tr[π2]. We know already from [EAZ05] that when going through
an n-qubit Haar random unitary, we have EU(n)[Tr[π2]] = 1/2. Therefore, we conclude that the

difference 2−4Dck + 2−D ≤ O(ε) which means that D ≥ Ωk(log ε−1).

6.2 Depth Test

In this section we prove Theorem 1.3, where we learn the exact depth of a brickwork random circuit
C.

The processed is described in Algorithm 1. Here c2 is the constant ck in Theorem 1.1 with
k = 2 for brickwork circuits, and γ > 0 is the target error probability. Notice that in a brickwork
circuit of depth D, the (D + 2)-th output qubit lies outside the lightcone of the first input qubit.
Therefore, when the algorithm iterates to the correct depth D, we have π = π′ and D must be
returned even when both π and π′ are estimated with ε error.

On the other hand, when D is smaller than the actual depth, the (D + 2)-th output qubit lies
inside the lightcone of the first input qubit. By Theorem 1.1, with probability 1 − 2−Dγ over C we
have ∥∥π − π′∥∥

F
≥ ∥|0⟩⟨0| − |1⟩⟨1|∥F · (2−2Dγ)c2 > 4ε. (37)
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1 Arbitrarily fix all input qubits except the first one ρ.
2 for D = 0, 1, . . . do

3 Let ε = (2−2Dγ)c2/4;
4 Apply C with ρ = |0⟩⟨0| and let π be the (D + 2)-th output qubit;

5 Apply C with ρ = |1⟩⟨1| and let π′ be the (D + 2)-th output qubit;

6 Estimate π and π′ up to ε error by state tomography;

7 if
∥∥π − π′∥∥

F
≤ 2ε then return D.

Algorithm 1: Algorithm for depth testing.

This means when both π and π′ are estimated with ε error, we still have
∥∥π − π′∥∥

F
> 2ε. By

a union bound over D, with probability 1 − γ all those D smaller than the actual depth will be
skipped, and thus the outputted depth is correct.

Note that the efficiency of the algorithm depends on the single-qubit tomography process, which
by Proposition 3.3 is poly(1/ε). As a conclusion, we obtain the following more general statement
which implies Theorem 1.3:

Theorem 6.2. Let C be a brickwork random quantum circuit of an unknown depth D , where each
gate is independently Haar random.. Given oracle access to C, for any γ ∈ (0, 1), Algorithm 1
outputs D with probability at least 1 − γ in time poly(2D, γ−1).

Remark. The only property of the brickwork architecture we used here is that the set of qubits
within the lightcone of an input qubit is strictly expanding when the depth grows, which allows us
to distinguish between different depths. Therefore the algorithm can be easily modified, with the
same efficiency, to work with higher dimensional brickwork circuits and other architectures.

6.3 Learning Brickwork Random Circuits

6.3.1 Learning the First Gate

Here we prove Theorem 1.4, where we learn the gate G1,1, namely the gate in the first layer acting
on the first and second qubit, in a brickwork circuit of depth D = O(log n) with Haar random
gates. The same arguments also work for other gates in the first layer.

To learn G1,1, we try to uncompute G1,1 by first apply some two-qubit unitary G† ∈ U(4) and
then apply the circuit C. We distinguish whether G is close to G1,1 or not using the similar idea

as in Section 6.2. Specifically, if G = G1,1 so that G† perfectly uncomputes the gate G1,1, then
the (D + 1)-th output qubit will lie outside the lightcone of the first input qubit. Note that this

is also true when G† cancels G1,1 into unentangled single-qubit gates, that is when there exists

U1, U2 ∈ U(2) that G1,1G
† = U1 ⊗ U2. In contrast, when G† does not cancel G1,1 into unentangled

single-qubit gates, the first two qubits will be entangled after the first layer of gates, and thus the
(D + 1)-th output qubit will be affected when the first input qubit changes.

To put the above intuition more formally, we first define the distance between two-qubit gates
when taking the quotient over unentangled single-qubit gates:

Definition 6.3. For G,G′ ∈ U(4), we define the distance

d⊗(G,G′) = min
U1,U2∈U(2)

d⋄(G, (U1 ⊗ U2) ·G
′).
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We note that d⊗, like the diamond distance d⋄, is a pseudometric on U(4). That is, a metric
except that two distinct unitaries could have distance zero. However, d⊗(G,G′) = 0 if and only if

G′ ·G−1 = U1 ⊗ U2 for some U1, U2 ∈ U(2).

The learning algorithm is described in Algorithm 2, with δ, γ > 0 being the target error rate.
Notice that within each loop of σ2, the second input qubit ρ2 is fixed, while the first one changes
with a difference σ1 that goes through the Pauli basis. The input qubits ρ1 and ρ2 are Pauli
eigenstates except when σ2 = ρ2 = I/2, which can be obtained by randomly choosing |0⟩ or |1⟩.

1 Arbitrarily fix all input qubits except the first and second ones ρ1, ρ2.

2 Let ε = 10−4δ2(2−D+1γ)c2 ;
3 foreach G from an ε-net of U(4) under distance d⊗ do
4 for σ1 ∈ {X,Y, Z} and σ2 ∈ {I,X, Y, Z} do

5 Let ρ1 = (I + σ1)/2, ρ2 = (I + σ2)/2 and apply G† on the first two qubits,
6 then apply C and let π be the (D + 1)-th output qubit;

7 Let ρ1 = (I − σ1)/2, ρ2 = (I + σ2)/2 and apply G† on the first two qubits,

8 then apply C and let π′ be the (D + 1)-th output qubit;

9 Estimate π and π′ up to ε error by state tomography;

10 if
∥∥π − π′∥∥

F
≥ 5ε then reject G.

11 return G if not rejected.

Algorithm 2: Algorithm for learning the gate G1,1

To prove the correctness of the algorithm, we need the following lemmas that connects the
distance d⊗(U, I ⊗ I) with the behavior of U over the Pauli basis.

Lemma 6.4. For U ∈ U(4), if d⊗(U, I⊗I) ≤ δ then for every σ1 ∈ {X,Y, Z} and σ2 ∈ {I,X, Y, Z},∥∥∥TrA

[
U(σ1 ⊗ σ2)U

†
]∥∥∥

F
≤ 2δ,

where TrA is the partial trace that traces out the first qubit.

Proof. By definition, d⊗(U, I⊗I) ≤ δ means that there exists U1, U2 ∈ U(2) that d⋄(U,U1⊗U2) ≤ δ.
Therefore, ∥∥∥TrA

[
U(σ1 ⊗ σ2)U

†
]∥∥∥

F
≤

∥∥∥TrA

[
U(σ1 ⊗ σ2)U

†
]∥∥∥

1

=
∥∥∥TrA

[
U(σ1 ⊗ σ2)U

†
]
− TrA

[
U1σ1U

†
1 ⊗ U2σ2U

†
2

]∥∥∥
1

≤
∥∥∥U(σ1 ⊗ σ2)U

† − (U1 ⊗ U2)(σ1 ⊗ σ2)(U1 ⊗ U2)
†
∥∥∥
1

≤ 2δ.

Lemma 6.5. For U ∈ U(4), if for every σ1 ∈ {X,Y, Z} and σ2 ∈ {I,X, Y, Z} we have∥∥∥TrA

[
U(σ1 ⊗ σ2)U

†
]∥∥∥

F
≤ δ,

then d⊗(U, I ⊗ I) ≤ 20
√
δ.
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The proof of Lemma 6.5 is rather technical and thus is deferred to the end of this section. For
now, let us show how Lemmas 6.4 and 6.5 would imply the completeness and the soundness of
Algorithm 2.

We apply Theorem 1.1 to the circuit C minus its first layer, which is a circuit of depth D − 1.
Notice that among the input qubits to the second layer of C, the third to n-th qubits only depends
on the gates G1,3, . . . , G1,n and thus can be viewed as fixed. The first qubit does not affect the
(D+ 1)-th output qubit and thus its entire lightcone can be removed from the picture. That leaves
us the second qubit, which is

TrA

[
G1,1G

†(ρ1 ⊗ ρ2)GG†
1,1

]
.

Therefore, with ρ1 changed with a difference σ1 and ρ2 = (I + σ2)/2 unchanged, Theorem 1.1
implies that with probability 1 − γ, the following holds for every G.∥∥π − π′∥∥

F
≥

∥∥∥TrA

[
G1,1G

†(σ1 ⊗ ρ2)GG†
1,1

]∥∥∥
F
· (2−D+1γ)c2 . (38)

Meanwhile, Lemma 3.5 implies that∥∥π − π′∥∥
F
≤

∥∥∥TrA

[
G1,1G

†(σ1 ⊗ ρ2)GG†
1,1

]∥∥∥
F
·
√

2. (39)

For completeness, since we take G from an ε-net, the algorithm must have tested some G with
d⊗(G1,1, G) = d⊗(G1,1G

†, I⊗I) ≤ ε ≤ δ. Hence by Lemma 6.4 and (39), for such G it always holds

that
∥∥π − π′∥∥

F
≤ 2

√
2ε, and thus G will not be rejected even with ε tomography errors in π and

π′.
For soundness, assume that d⊗(G1,1, G) > δ, then by Lemma 6.5 we know that for some

σ1 ∈ {X,Y, Z} and σ2 ∈ {I,X, Y, Z},∥∥∥TrA

[
G1,1G

†(σ1 ⊗ σ2)GG†
1,1

]∥∥∥
F
>

1

400
δ2. (40)

As σ2 = 2ρ2 − I, that means there exists some ρ2 such that∥∥∥TrA

[
G1,1G

†(σ1 ⊗ ρ2)GG†
1,1

]∥∥∥
F
>

1

1200
δ2. (41)

Thus by (38) we have
∥∥π − π′∥∥

F
> δ2(2−D+1γ)c2/1200 > 7ε, and G will be rejected when π and π′

are estimated with ε error.
The efficiency of the algorithm depends on the size of the ε-net and the state tomography

process, which are both poly(1/ε) = poly(1/δ, 1/γ). Notice that the algorithm similarly works
for every gate in the first layer, and as a result, we obtained the following formal statement of
Theorem 1.4:

Theorem 6.6. Let C be a brickwork random quantum circuit of depth D, where each gate is
independently Haar random. Let G1,1 be the gate in the first layer of C that acts on the first and
second qubit. Given oracle access to C, for any δ, γ ∈ (0, 1), with probability at least 1 − γ over C,
Algorithm 2 outputs some G ∈ U(4) such that d⊗(G,G1,1) ≤ δ in time poly(2D, 1/δ, 1/γ).

The rest of this section is devoted to prove Lemma 6.5.
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Proof of Lemma 6.5. In the proof we assume that δ ≤ 1/2, as otherwise the claim is trivial.
For any Hermitian operator σ ∈ C4×4 with trace zero, the value ∥TrA[σ]∥F/

√
2 is exactly the

length of the projection of σ on to the subspace I ⊗ span{X,Y, Z}. Therefore, the assumptions
would imply that for every σ ∈ span{X,Y, Z} ⊗ {I,X, Y, Z} and σ′ ∈ I ⊗ span{X,Y, Z}, we have

Tr[UσU †σ′] ≤ δ√
2
· ∥σ∥F

∥∥σ′∥∥
F
. (42)

Now consider any single-qubit state ρ, and let σ be the projection of U †(I ⊗ ρ)U onto the subspace
span{X,Y, Z} ⊗ {I,X, Y, Z}. Inequality (42) gives

Tr[U †(I ⊗ ρ)Uσ] = Tr[UσU †(I ⊗ ρ)]

= Tr[UσU †(I ⊗ (ρ− I/2))]

≤ δ√
2
· ∥σ∥F ·

√
2∥ρ− I/2∥F ≤ δ.

That means the projection of U †(I ⊗ ρ)U onto the orthogonal subspace I ⊗ span{I,X, Y, Z} must

be large. Since this projection is exactly 1
2I ⊗ TrA[U †(I ⊗ ρ)U ], we have

1

2

∥∥∥TrA

[
U †(I ⊗ ρ)U

]∥∥∥2
F
≥

∥∥∥U †(I ⊗ ρ)U
∥∥∥2
F
− δ = 2∥ρ∥2F − δ. (43)

If we define the following channel

Φ(ρ) =
1

2
TrA

[
U †(I ⊗ ρ)U

]
then inequality (43) translates to

∥Φ(ρ)∥2F ≥ ∥ρ∥2F − δ/2. (44)

That means Φ is almost norm preserving and thus almost a unitary channel. In fact, as Φ(I) = I

by definition, Φ is a unital channel and has a canonical form [CL23] Φ′(ρ) = WΦ(V ρV †)W † for
some V,W ∈ U(2) such that

Φ
′(X) = dxX, Φ

′(Y ) = dyY, Φ
′(Z) = dzZ, dx, dy, dz ∈ [−1, 1].

By taking ρ = (I + X)/2 we get d2x ≥ 1 − δ, and the same also holds for dy and dz. The
canonical form has an additional property that (dx, dy, dz) is a convex combination of vectors

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1), and as δ ≤ 1/2, Φ′ must be close to a Pauli rotation
in {I,X, Y, Z}. That means there exists U2 ∈ {VW, V XW,V YW, V ZW} such that for every
single-qubit state ρ, ∥∥∥Φ(ρ) − U †

2ρU2

∥∥∥2
F
≤ 1

2

(
1 −

√
1 − δ

)2
≤ 1

2
δ2. (45)

Therefore, for any two single-qubit states ρ and ρ′ with Tr[ρρ′] = 0 we have

Tr
[
U2Φ(ρ)U †

2ρ
′
]

= Tr
[(

U2Φ(ρ)U †
2 − ρ

)
ρ′
]

≤
∥∥∥U2Φ(ρ)U †

2 − ρ
∥∥∥
F

∥∥ρ′∥∥
F

=
∥∥∥Φ(ρ) − U †

2ρU2

∥∥∥
F

∥∥ρ′∥∥
F
≤ 1√

2
δ. (46)
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Now consider the unitary U ′ = U(I ⊗ U †
2) ∈ U(4), and we denote the entries of U ′ as uij for

i, j = 1, . . . , 4. Notice that

U2Φ(ρ)U †
2 =

1

2
TrA

[
(I ⊗ U2)U

†(I ⊗ ρ)U(I ⊗ U †
2)
]

=
1

2
TrA

[
U ′†(I ⊗ ρ)U ′

]
,

and this allows us to write out Tr
[
U2Φ(ρ)U †

2ρ
′
]

exactly. In particular, when ρ = |0⟩⟨0| and

ρ′ = |1⟩⟨1|, we get from (46) that

|u12|
2 + |u14|

2 + |u32|
2 + |u34|

2 ≤
√

2δ. (47)

When ρ = |1⟩⟨1| and ρ′ = |0⟩⟨0|, we get

|u21|
2 + |u23|

2 + |u41|
2 + |u43|

2 ≤
√

2δ. (48)

And when ρ = |+⟩⟨+| and ρ′ = |−⟩⟨−|, we get

|u11 + u21 − u12 − u22|
2 + |u13 + u23 − u14 − u24|

2

+ |u31 + u41 − u32 − u42|
2 + |u33 + u43 − u34 − u44|

2 ≤ 4
√

2δ. (49)

Combine (47) to (49) together we also get

|u11 − u22|
2 + |u13 − u24|

2 + |u31 − u42|
2 + |u33 − u44|

2 ≤ 16
√

2δ. (50)

Inequalities (47), (48) and (50) imply that there exists a matrix M ∈ C2×2 such that∥∥U ′ −M ⊗ I
∥∥2
F
≤ 10

√
2δ. (51)

Let M = V ′ΣW ′ be the singular value decomposition of M , then we have∥∥U ′ − V ′W ′ ⊗ I
∥∥
F
≤

∥∥U ′ −M ⊗ I
∥∥
F

+
∥∥V ′W ′ ⊗ I −M ⊗ I

∥∥
F

=
∥∥U ′ −M ⊗ I

∥∥
F

+ min
U

′′∈U(4)

∥∥U ′′ − Σ ⊗ I
∥∥
F

≤ 2
∥∥U ′ −M ⊗ I

∥∥
F

≤ 10
√
δ. (52)

Therefore, if we let U1 = V ′W ′, then with the bound of diamond norm [HKO+23] we get

d⊗(U, I ⊗ I) ≤ d⋄(U,U1 ⊗ U2)

≤ 2∥U − U1 ⊗ U2∥F = 2
∥∥U ′ − U1 ⊗ I

∥∥
F
≤ 20

√
δ.

6.3.2 Learning the Circuit with Discretized Distribution

It is tempting to use Theorem 6.6 to learn the entire circuit C. Indeed, if the statement is errorless
that d⊗(G,G1,1) = 0, we could view the single-qubit gates G1,1G

† = U1 ⊗ U2 as part of the second
layer. That means after learning the first layer, we can perfectly uncompute it and hence use
Algorithm 2 to learn the second layer, and proceed until we are only left with single qubit gates,
which are easily learnable.
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However, when there are learning errors, which are inevitable for a continuous gate distribution
like U(4), the above framework runs into a problem. Since we cannot perfectly uncompute the first
layer, the inputs to the rest of the circuit are not clean enough: In particular, the error in σ1 ⊗ ρ2
could have much larger influence on the output difference π − π′ than σ1 itself. To control the
influence of the errors, we need to reduce the learn error in the previous layer to be polynomially
smaller than the target error in the current layer, and therefore a circuit of depth D = Θ(log n)

would require error as small as 2−Ω(log
2
n) and incur quasi-polynomial running time.

Here we present a bypass to the problem which allows us to prove an errorless version of
Theorem 6.6 and thus make the proposed framework work. The idea is to change the distribution
from U(4) into a discrete one that approximates U(4). Intuitively, any ε-net where the elements
are distributed according to U(4) would be a good approximation. We formalize this intuition as
the following:

Definition 6.7. An ε-net of a distribution D over a pseudometric space (S, d) is a distribution Dε

over S with a finite support, such that Dε = f(D) for some (possibly randomized) map f : S → S,
with the following properties:

• For every x ∈ S, d(x, f(x)) ≤ ε.

• For every x1, x2 ∈ S, either f(x1) = f(x2) or d(f(x1), f(x2)) ≥ ε.

Notice that under Definition 6.7, the set suppDε is indeed an ε-net in the normal sense. Actually,
the definition is general enough so that we can first choose any ε-net as the support, remove the
redundant elements with zero distances, and then take f to be an arbitrary rounding scheme into
the support. We show that Dε approximates D via the following lemma.

Lemma 6.8. If F : S → R is L-Lipschitz, that is for all x1, x2 ∈ S,

|F (x1) − F (x2)| ≤ L · d(x1, x2),

then for every δ ∈ R we have

Pr
x∼Dε

[F (x) ≤ δ] ≤ Pr
x∼D

[F (x) ≤ δ + εL].

Proof. Let f : S → S be the map in Definition 6.7, then

Pr
x∼Dε

[F (x) ≤ δ] = Pr
x∼D

[F (f(x)) ≤ δ]

≤ Pr
x∼D

[F (x) ≤ δ + |F (x) − F (f(x))|]

≤ Pr
x∼D

[F (x) ≤ δ + L · d(x, f(x))]

≤ Pr
x∼D

[F (x) ≤ δ + εL].

From now on, for each ε > 0 we fix some ε-net of the Haar measure U(4) under the d⊗ distance,
and denote it by Uε(4). We will show that when the gates in the brickwork circuit are drawn the
net, we can actually use the framework at the start of this section to learn the circuit. To do so,
we first prove an errorless version of Theorem 6.6 as follows.
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Theorem 6.9. Let C be a brickwork random quantum circuit of depth D, where each gate is
independently drawn from Uε(4). Let G1,1 be the gate in the first layer of C that acts on the first
and second qubit. Given oracle access to C, for every γ ∈ (0, 1) there is an algorithm that with
probability at least 1 − γ over C outputs G1,1 in time poly(2D, 1/γ).

Proof. The algorithm is basically the same as Algorithm 2, except that we now iterate G through
the support of Uε(4). The proof is also mostly the same: When G = G1,1, we have π = π′ and thus
G will not be rejected; Otherwise d⊗(G,G1,1) ≥ ε, and the proof goes through as long as we have
the corresponding version of Theorem 1.1.

Since Theorem 1.1 is proved via Lemma 5.1, it suffices to prove Lemma 5.1 where U(4) is
replaced with Uε(4). The crux is to prove the inequality (31), that is for some C,C ′ > 0, it holds
for all x ≥ 0 that

Pr[|detM | ≤ x] ≤ C ′xC , (53)

where M is the matrix form of the linear map M : τ −τ ′ 7→ TrA[G(τ −τ ′)G†], for τ −τ ′ in a certain
fixed 3-dimensional subspace of ∆2.

Note that by Proposition 5.2, each entry of M is in [−2, 2], while by (30), each entry of M is a
Lipschitz function of G under distance d⋄. This is because when G,G′ ∈ U(4) that d⋄(G,G′) ≤ δ
corresponds to matrices M and M ′, for any τ − τ ′ ∈ ∆2 and σ ∈ ∆1 with

∥∥τ − τ ′
∥∥
F

= ∥σ∥F = 1
we have∣∣Tr[σM(τ − τ ′)] − Tr[σM ′(τ − τ ′)]

∣∣ =
∣∣∣Tr

[
(I ⊗ σ)

(
G(τ − τ ′)G† −G′(τ − τ ′)G′†

)]∣∣∣
≤

∥∥∥G(τ − τ ′)G† −G′(τ − τ ′)G′†
∥∥∥
1

≤
∥∥∥GτG† −G′τG′†

∥∥∥
1

+
∥∥∥Gτ ′G† −G′τ ′G′†

∥∥∥
1

≤ 2δ. (54)

As detM consists of 6 monomials of degree 3 in the entries of M , we conclude that |detM | is

23 · 3 · 6 = 144-Lipschitz in G under d⋄. But when G′ = (U1 ⊗ U2)G we have M ′ = U2MU †
2 which

means |detM | =
∣∣detM ′∣∣, and thus |detM | is also 144-Lipschitz in G under d⊗.

As a result, since we already know that (53) holds when G ∼ U(4), by Lemma 6.8 we have

Pr
G∼Uε(4)

[|detM | ≤ x] ≤ Pr
G∼U(4)

[|detM | ≤ x + 144ε] ≤ C ′(x + 144ε)C . (55)

However, this will not yield Lemma 5.1 as the bound is even non-zero when x = 0. Fortunately, we
can simply use the union bound to ignore the cases when |detM | ≤ ε for any gate G on the path,
which will only add poly(ε)D to the error probability γ. And conditioned on |detM | > ε, for every
x ≥ 0 we have

Pr
G∼Uε(4)

[|detM | ≤ x] ≤ C ′(145x)C , (56)

which allows us to prove Lemma 5.1 on Uε(4), albeit with different constants.

As a result, we can use Theorem 6.9 to exactly learn the circuit C layer by layer, and obtain
Theorem 1.5 formally as follows.

Theorem 6.10. Let C be a brickwork random quantum circuit on n qubits of depth D, where each
gate is independently drawn from Uε(4). Given oracle access to C, for every γ ∈ (0, 1) there is an
algorithm that with probability at least 1 − γ outputs C in time poly(n, 2D, 1/γ).
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