
Lifting to Bounded-Depth and Regular Resolutions over Parities

via Games∗

Yaroslav Alekseev†1 and Dmitry Itsykson‡2,3

1Technion – Israel Institute of Technology, Haifa, Israel
2Ben-Gurion University of the Negev, Beer Sheva, Israel

3On leave from Steklov Institute of Mathematics at St. Petersburg

June 29, 2025

Abstract

Proving superpolynomial lower bounds on proof size in the proof system resolution over
parities (Res(⊕)) remains a significant open challenge. A recent breakthrough by Efremenko,
Garlik, and Itsykson (STOC 2024) established an exponential lower bound for regular Res(⊕).

In this work, we introduce a lifting technique for regular Res(⊕), applicable to a wide range
of formulas. Specifically, we develop a method that transforms any formula with large resolution
depth into a formula requiring exponential-size regular Res(⊕) refutations. This transformation
is achieved through a combination of mixing and constant-size lifting.

Using this approach, we provide an alternative and improved separation between resolution
and regular Res(⊕), originally proved by Bhattacharya, Chattopadhyay, and Dvorak (CCC
2024). We construct an n-variable formula with a polynomial-size resolution refutation of depth
O(

√
n), yet requires regular Res(⊕) refutations of size 2Ω(

√
n).

Furthermore, we apply our technique to establish an exponential lower bound on the size of
depth-cn log log n Res(⊕) refutations, where n is the number of variables in the refuted formula,
and c is a constant. The hard instances in this setting are Tseitin formulas lifted with the Maj5
gadget. Since even depth-n Res(⊕) captures all possible definitions of regular Res(⊕), our result
yields an exponential lower bound for top-regular Res(⊕), resolving an open question posed by
Gryaznov, Pudlák, and Talebanfard (CCC 2022).

1 Introduction

Propositional proof systems are used to certify that given Boolean formulas are unsatisfiable. Cook
and Rekhow [11] noticed that NP ̸= coNP implies that for every propositional proof system, there is
a family of hard formulas that require superpolynomial proof sizes. However, currently, we cannot
prove superpolynomial proof-size lower bounds for many particular proof systems.

One of the long-standing open questions in proof complexity is proving superpolynomial lower
bounds on the size of derivations in Frege proof systems. Proof lines in Frege systems are Boolean

∗The short version of the paper appeared in Proceedings of STOC 2025.
†e-mail: tolstreg@gmail.com
‡e-mail: dmitrits@gmail.com. Supported by European Research Council Grant No. 949707.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 128 (2024)

formulas; each particular Frege system is defined by a sound and implicationally complete set of
rules. Currently, we only know how to prove Frege lower bounds in bounded-depth cases where
proof lines are restricted to be bounded-depth formulas over ¬,∨ and ∧ (see [1], for example). The
techniques used to prove those lower bounds are quite similar to techniques used in bounded-depth
circuits lower bounds. So, it was conjectured that techniques used by Razborov and Smolenski
[27, 28] to prove a lower bound for constant depth circuits built up from ¬, ∨, ∧, and Modp gates
can be extended to bounded-depth Frege operating with formulas using ¬, ∨, ∧ and Modp gates
(denoted AC0[p]-Frege). However, proving lower bounds for AC0[p]-Frege is still open for all values
of p > 1.

The weakest subsystem of AC0[2]-Frege for which we still do not know superpolynomial lower
bounds is resolution over parities (Res(⊕)). The proof lines in this proof system are disjunctions of
linear equations over F2 (or, equivalently, negations of F2-linear systems), called linear clauses. A
Res(⊕) refutation of an unsatisfiable CNF formula φ is a sequence of linear clauses C1, C2, . . . , Cs

such that (1) Cs is the empty clause (i.e. identically false); (2) for every i, Ci is either a clause of
φ or is obtained from Cj and Ck with j, k < i by the resolution rule, or is obtained from Cj with
j < i by the weakening rule. The resolution rule allows to derive the clause C ∨ D from clauses
C ∨ (f = 0) and D ∨ (f = 1), where f is a linear form. The weakening rule allows us to derive D
from C if C semantically implies D. Recently, this proof system received a lot of attention from
different researchers. Below, we highlight some of the achievements.

Tree-like lower bounds. There are plenty of tree-like Res(⊕) lower bounds for particular for-
mulas obtained by different techniques: Prover-Delayer games [22, 23, 17, 18], reductions from
communication complexity [22, 23, 21, 24], reductions from polynomial calculus degree [15].

Chattopadhyay et al. [9] proved that resolution depth can be lifted by stifling gadgets to tree-
like Res(⊕) size. Independently, Beame and Koroth [6] got similar results. Resolution depth of an
usatisfiable CNF formula φ equals the query complexity of finding a clause of φ that is falsified by
the given assignment. Proving lower bound on resolution depth is relatively easy; so this lifting
theorem gives us a relatively easy way to prove tree-like Res(⊕) lower bounds for many formulas.

Regular Res(⊕) lower bounds Recently, Efremenko, Garlik and Itsykson [13] proved the first
exponential lower bounds on the size of regular (bottom-regular) Res(⊕) refutations. Regular
Res(⊕) is a fragment of Res(⊕) in which resolving linear clauses C1 and C2 on a linear form f
is permitted only if, for both i ∈ {1, 2}, the linear form f does not lie within the linear span of
all linear forms that were used in resolution rules during the derivation of Ci. Regular Res(⊕) is
known to be strictly stronger than tree-like Res(⊕).

A formula that was shown by [13] to be hard for regular Res(⊕) is the Binary Pigeonhole
Principle (BPHP). The key technical tool for proving this lower bound is the notion of closure;
given a F2-linear system in variables of BPHP, the closure is roughly speaking the set of pigeons
on which this linear system is actually talking about.

Bhattacharya, Chattopadhyay, and Dvorák [7] have recently shown that specific CNF formulas
require an exponential size refutation in regular Res(⊕) but admit polynomial size refutation in
resolution. This result heavily utilizes the techniques from [13] and the techniques from lifting
literature. However, unlike [9], this result is formula-specific and does not immediately provide a
complexity measure that can be lifted to regular Res(⊕) size. The possibility of general lifting was
left as an open question.

2

Other definitions of regularity. The question of what is the natural notion of regularity is
debatable. For example, Gryaznov, Pudlak and Talebanfard [19] suggested the notion of top-
regular Res(⊕) refutations, where if a linear clause C is derived by resolving over a linear form
f , then f does not belong to the span of all linear forms that were used in resolution rules in all
clauses that were derived using C. Gryaznov Pudlak and Talebanfard [19] posed an open question
to prove superpolynomial lower bounds for top-regular Res(⊕) refutations. One can also define
weakly regular Res(⊕), where for each path from the axioms to the contradiction, all resolved
linear forms are linearly independent. Both top-regular and bottom-regular refutations are weakly
regular. We also notice that the depth of any weakly regular refutation does not exceed the number
of variables in the refuted formula. So, proving superpolynomial lower bounds on the size Res(⊕)
refutations of depth at most n, where n is the number of variables in the refuted formula, will
capture all possible definitions of regularity.

1.1 Our Contributions

Consider a CNF formula φ(y1, y2, . . . , ym). Let g : {0, 1}ℓ → {0, 1} be a gadget. Consider a lifted
formula φ ◦ g that is obtained from φ by applying the substitutions yi := g(xi,1, xi,2, . . . , xi,ℓ) for
all i ∈ [m] and then converting the resulting formula in CNF.

We contribute to lifting with stifling gadgets introduced by Chattopadhyay et al. [9]. A gadget
g is called k-stifling [9] if for every a ∈ {0, 1} and every ℓ− k variables of g, we can fix them such
that regardless of the value of the rest k variables, the value of the gadget will be fixed to a. It is
easy to see that the majority function Maj2k+1 : {0, 1}2k+1 → {0, 1} is k-stifling for every k.

To illustrate our approach, we present a clear and simple example of the lifting theorem.

Theorem 1.1 (Theorem 3.1). Let g : {0, 1}ℓ → {0, 1} be a 1-stifling gadget and φ be a CNF
formula. Assume that φ ◦ g has a Res(⊕) refutation of rank W . Then φ has a resolution refutation
of width at most W .

Next, we contribute to the research direction initiated by Bhattacharya, Chattopadhyay, and
Dvořák [7], which seeks a relatively simple proof-complexity measure for formulas that enables
lifting lower bounds to the size of regular Res(⊕) refutations. Our result is not a classical lifting
theorem, as it does not rely solely on composition with a gadget. Before applying composition,
we first modify the formula using an operation called mixing. Importantly, mixing does not alter
the formula’s semantic meaning. Alekhnovich et al. [2] introduced a transformation of CNF
formulas—also known as Alekhnovich’s trick—where each clause C is replaced by C∨x and C∨¬x,
with x being a randomly chosen variable. This transformation was used by [2] to separate regular
resolution from general resolution. Our notion of mixing follows a similar idea but extends it
by adding multiple random variables (either a constant or logarithmic number) to each clause.
Specifically, we transform a clause C into

∧
α∈{0,1}k C ∨ xα1

1 ∨ . . . ∨ xαk
k , where x0 denotes ¬x and

x1 denotes x.

Theorem 1.2 (Informal restatement of Theorem 6.8). Let φ be an unsatisfiable CNF formula in
n variables that requires a resolution depth at least αn. Let mix(φ) denote the mixing of φ, where
every clause of φ is “mixed” with O(1

α2) additional variables. Then any regular Res(⊕) refutation

of mix(φ) ◦ h has size at least 2αn/4−1, where h = ⊕5 ◦ g is the composition of the parity function
and a 2-stifling gadget g (for example, the 5-bit majority (Maj5) is 2-stifling).

3

Using ideas from Theorem 1.2, we give an alternative proof of separation between regular
Res(⊕) and Resolution. Namely, we give the family of formulas with M variable that has a
resolution refutation of size poly(M) and depth O(

√
M) but requires regular Res(⊕) refutations of

size 2Ω(M1/2). This improves the size lower bound 2Ω(M1/12) obtained in [7].

Theorem 1.3 (Informal restatement of Corollary 7.3 and Theorem 7.5). Let Gn be a graph of
n × n grid. Let mix(Peb(Gn)) denote some specific mixing of the pebbling formula based on Gn,
where each clause is mixed with O(log n) variables. Then there exists a constant k and a gadget
g : {0, 1}k → {0, 1} such that mix(Peb(Gn)) ◦ g requires regular Res(⊕) refutations of size at least
2n/4 but has a resolution refutation of size poly(n) and depth O(n).

Theorem 1.3 in particular implies that depth-n Res(⊕) (where n is the number of variables
in the refuted formula) is more powerful than regular Res(⊕). We apply the developed lifting
technique to prove an exponential lower bound for Res(⊕) refutations with depth up to cn log log n,
where n is the number of variables and c is a small constant.

Theorem 1.4 (Informal restatement of Corollary 8.3). Let T(G, c) be an unsatisfiable Tseitin
formula based on a d-regular expander with n vertices. Then, any Res(⊕) refutation of T(G, c) ◦
Maj5 has either size at least 2n or depth at least Ω(nd log d). In particular, if d = Θ(log n), then
T(G, c) ◦ Maj5 is a formula with m = 5dn/2 variables and size poly(m) such that any Res(⊕)
refutation of T(G, c) ◦Maj5 has either size at least 2Ω(m/ logm) or depth at least Ω(m log logm).

The direct consequences of Theorem 1.4 are the following:

• Exponential refutation size lower bounds for weakly regular and, thus, top-regular Res(⊕)
are established (see Fig. 1). This answers the open question raised in articles [19] and [7].

• Exponential lower bounds for top-regular Res(⊕) imply exponential lower bounds for weakly
read-once linear branching programs computing search problems (see [19] for details).

1.2 Overview of Technique

Lifting of strategies in games. A standard approach to proving lifting theorems — from a
complexity measure µ1 in a weak proof system Π1 to a complexity measure µ2 in a stronger proof
system Π2 — relies on an explicit transformation: given a Π2-proof π2 of a lifted formula ϕ ◦ g, one
constructs a corresponding Π1-proof π1 of the base formula ϕ, such that µ2(π2) can be bounded
in terms of µ1(π1). In contrast, our approach circumvents this proof-level transformation entirely.
Instead, we work with game characterizations of the complexity measures µ1 and µ2, and show
how a winning strategy for the game associated with µ1 can be transformed into a strategy for the
game associated with µ2, applied to the lifted formula.

A simple instance of this idea was introduced by Urquhart [30], who demonstrated that res-
olution depth lower bounds can be lifted to tree-like resolution size lower bounds using the ⊕2

gadget. His method involved transforming an Adversary strategy in the Prover–Adversary game
characterizing the resolution depth of a formula ϕ into a Delayer strategy in the Prover–Delayer
game characterizing the tree-like resolution size of the lifted formula ϕ ◦ ⊕2. We provide several
more non-trivial applications of this transformation between game strategies.

4

Tree Res(⊕)

Top-regular Res(⊕)Bottom-regular Res(⊕)

Weakly regular Res(⊕)

Depth n Res(⊕)

Depth cn log logn Res(⊕)

Res(⊕)

AC0[2]-Frege

Tree Resolution

Regular Resolution

Depth n Resolution

Resolution

AC0-Frege

Frege

Exponential lower bounds
known before

Exponental lower bounds
from this paper

Superpolynomial lower
bounds are not known

Figure 1: A summary of proof systems for which superpolynomial lower bounds are known. The
arrows indicate p-simulations; the solid arrows indicate that it is known that there is no p-simulation
in the other direction.

Closure in the lifting framework. Efremenko, Garlik, and Itsykson [13] introduced the no-
tion of closure in the context of the binary pigeonhole principle. Subsequently, Bhattacharya,
Chattopadhyay, and Dvorák [7] observed that this concept can also be applied in lifting.

Assume we are working within the lifting framework. Let Y = {y1, y2, . . . , ym} denote the set
of unlifted variables, and let X = {xi,j | i ∈ [m], j ∈ [ℓ]} denote the corresponding set of lifted
variables. These variables are connected via a 1-stifling gadget g, in the following sense: for each
i ∈ [m], the values of the lifted variables xi,1, . . . , xi,ℓ determine the value of the unlifted variable
yi through the function g, that is, yi = g(xi,1, . . . , xi,ℓ).

Consider a F2-matrix A whose columns correspond to lifted variables. We say that a matrix
A is safe1 [13] if the linear span of the columns of A has a basis consisting of columns of A such
that for every unlifted variable yi, there is at most one basis element, corresponding to a column
xi,j for some j. To solve a linear system with a safe matrix A, we can assign arbitrary values to

1Here, we give slightly simplified notions of safe matrices and closure of the matrices. In Section 2.4, we define
the notion of a safe set of linear forms over lifted variables; there is the following correspondence: the set of linear
forms is safe if its coefficient matrix is safe. In Section 2.5, we define the closure of the set of linear forms over lifted
variables, and again, the closure of the set of linear forms equals the closure of its coefficient matrix.

5

all non-basis variables; the values of the basis variables are then uniquely determined to satisfy the
system. Since the gadget g is 1-stifling, this implies that for any satisfiable linear system Ax = b
with safe A, and for every assignment σ to the unlifted variables, there exists a solution to Ax = b
that induces σ on the unlifted variables.

Now assume that an F2-matrix A, whose columns correspond to lifted variables, is not necessar-
ily safe. A closure of A [13] is defined as an inclusion-minimal set of unlifted variables I ⊆ Y such
that removing from A all columns corresponding to I yields a safe matrix. It is known that the
closure of A is unique and that its size does not exceed the rank of A. By the previously discussed
property of safe matrices, it follows that for any solution π of a linear system Ax = b, and for any
full assignment σ to the unlifted variables such that π agrees with σ on the closure of A, there
exists a solution to Ax = b that induces σ on all unlifted variables. Roughly speaking, the closure
of a matrix is the set of unlifted variables that the matrix ”talks about.”

Using the notion of closure, we define a correspondence between linear systems over lifted
variables and partial assignments to unlifted variables as follows:

− A linear system Ax = b is said to correspond to a partial assignment ρ if there exists a solution
σ of Ax = b such that ρ is the restriction to the closure of A of the assignment induced by σ
on the unlifted variables.

This correspondence is not necessarily one-to-one. Crucially, if Ax = b corresponds to a partial
assignment ρ, and ρ does not falsify any clause of a CNF formula φ, then Ax = b is consistent with
every clause of the lifted formula φ ◦ g.

1.2.1 Lifting from resolution width to Res(⊕) rank

The proof of Theorem 1.1 relies on Spoiler-Duplicator games introduced by Atserias and Dalmau [5],
which characterize resolution width, as well as on analogous games characterizing Res(⊕) rank (or
width) [18] (see Section 3 for the formal definitions of these games). In both settings, Duplicator’s
strategies are defined in terms of sets of winning positions: partial assignments in the case of
resolution, and linear systems in the case of Res(⊕).

Assuming that φ does not admit a resolution refutation of width at most W , there exists a
winning strategy for Duplicator in the (W + 1)-pebble resolution game. We construct from this a
corresponding winning strategy for Duplicator in the (W + 1)-pebble Res(⊕)-game for the lifted
formula φ ◦ g. This implies that φ ◦ g does not have a Res(⊕) refutation of rank W .

The key to this transformation is the correspondence defined above: a linear system over lifted
variables is considered a winning position in the Res(⊕) game if it corresponds to a winning position
(i.e., a non-falsifying partial assignment) in the original resolution game (see Section 3 for details).

1.2.2 Prover Delayer games and random walk

Let φ be a CNF formula and A be a set consisting of partial assignments for variables of φ. We
assume that A has two properties:

• A is closed under restrictions: if for every ρ ∈ A for every σ ⊆ ρ, σ ∈ A.

• For every σ ∈ A, σ does not falsify any clause of φ.

6

We define a (φ,A)-game of Prover and Delayer with starting position ρ0 ∈ A. In this game,
two players, Prover and Delayer, maintain a partial assignment ρ for variables of φ that initially
equals ρ0. On every move, Prover chooses a variable x, and Delayer has two options:

• Delayer can earn a white coin and reports ∗. Then, Prover chooses a Boolean value a of x.

• Delayer can earn a white coin and pay a black coin to choose a Boolean value a of x by
himself.

The current assignment ρ is updated: ρ := ρ ∪ {x := a}. The game ends when ρ /∈ A.
Delayer’s strategy is called linearly described if there exists a map f that takes as input

an ordered set of variables L and a variable x, and returns either ∗ or an F2-affine function
h depending on the variables in L. The strategy is applied as follows: given a game history
x1 = a1, x2 = a2, . . . , xk = ak and a requested variable x, Delayer evaluates f((x1, x2, . . . , xk), x).
If f((x1, x2, . . . , xk), x) = ∗, then Delayer reports ∗. Otherwise, if f((x1, x2, . . . , xk), x) = h for
some affine function h, Delayer reports h(a1, a2, . . . , ak).

Random walk. Our central technical tool for proving lower bounds on the size of regular and
bounded-depth Res⊕ proofs is a random walk on the refutation graph.

Let Π be a Res(⊕) refutation, C0 a linear clause from Π, Σ a set of full assignments that
falsify C0, and t ∈ N a natural number. A (Π, C0,Σ, t)-random walk is defined as follows: sample
an assignment σ uniformly at random from Σ, and perform a random walk of length t on the
refutation graph of Π, starting at the node labeled by C0. At each step, the walk proceeds from
a linear clause to a premise that is falsified by σ. If the walk terminates at a node labeled with a
linear clause C, then C is the value of the random variable defined by the walk.

We prove the following theorem.

Theorem 1.5 (Simplified version of Theorem 4.3). Assume that in a (φ,A)-game with starting
position ρ0 ∈ A, Delayer has a linearly described strategy that guarantees him to earn w white
coins while paying at most c black coins. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Consider
a Res(⊕) refutation Π of φ ◦ g. Let C0 be a linear clause from this refutation Res(⊕) refutation of
φ ◦ g. Assume that the linear system ¬C0 corresponds to the partial assignment ρ0. Let Σ be the
set of all assignments π falsifying C0 such that π defines the correspondence between ¬C0 and ρ0.
(If C0 is an empty clause, then ρ0 is an empty assignment; hence, in this case, Σ is the set of all
assignments.) Let a linear clause C denotes the result of the (Π, C0,Σ, t)-random walk. Then with
probability at least 2−c(ℓ−1), the linear system ¬C corresponds to some ρ ∈ A.

Similar random walk arguments have appeared in the context of regular Res(⊕) lower bounds
for specific formulas in [13] and [7]. In both works, the random walks are initiated from the empty
clause. The analysis in [13] assumes a uniform distribution over assignments, whereas [7] employs
a non-uniform distribution. Like [13], we adopt the uniform distribution; however, a key difference
is that in our setting, the probability of reaching a good clause is exponentially small (albeit not
negligible), in contrast to the constant success probabilities observed in [13] and [7]. While our proof
shares some structural similarities with that of [13], our result is much more general, necessitating
a more careful analysis and deeper arguments.

7

1.2.3 Lifting to Regular Resolution Size

We define several games on Boolean formulas and show that if a sufficiently strong strategy exists in
a game based on a formula φ, then the lifted version of φ is hard for regular Res(⊕) proofs. We begin
with the first game, which is particularly well-suited for the lifting argument. Subsequently, we
introduce simpler games and demonstrate how strategies for these games can be lifted to strategies
in the original game.

Let Φ be an unsatisfiable CNF formula represented as Φ =
∧

v∈V ϕv, where each ϕv is itself a
CNF formula in which all clauses share the same set of variables.

A partial assignment ρ is called q-correct for Φ if for every set U ⊆ V such that
|Vars(

∧
v∈U ϕv)| < |Vars(Φ)| − q, ρ can be extended to an assignment satisfying

∧
v∈U ϕv, where

Vars(Φ) denotes the set of variables that appear in Φ.
Let Aq denote the set of all q-correct partial assignments for Φ.

Advanced (Φ, q)-games of Prover and Delayer. We define the advanced (Φ, q)-game of Prover
and Delayer as the (Φ,Aq)-game of Prover and Delayer with empty starting position.

Theorem 1.6 (Theorem 5.2). Let Φ be an unsatisfiable CNF formula. Assume that Delayer has
a linearly described strategy in the advanced (Φ, q)-game that guarantees him to earn t white coins
while paying at most c black coins. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Then the size of
any regular Res(⊕) refutation of Φ ◦ g is at least 2t−qℓ−c(ℓ−1).

The overall strategy for proving lower bounds on the size of regular Res(⊕) refutations follows
the same approach as in [13] and later in [7]. We analyze a random walk within a regular Res(⊕)
refutation of Φ◦g, guided by a random assignment σ. The walk begins at the empty clause and, at
each step, proceeds to a premise falsified by σ. By Theorem 1.5, with noticeable probability, this
walk reaches a linear clause C such that ¬C corresponds to a q-correct partial assignment.

We then show that if the distance from C to the empty clause is large and ¬C is q-correct,
regularity forces C to contain many linearly independent linear forms. This, in turn, implies that
the probability of σ falsifying such a clause C is very small. Therefore, the refutation must include
many such complex linear clauses, leading to a lower bound on its size.

This theorem enables us to resolve an open question posed in [7] and establish a lower bound
for lifted Tseitin formulas:

Corollary 1.7 (Informal restatement of Corollary 5.4). Let g : {0, 1}ℓ → {0, 1} be a 2-stifling
gadget and G be is a good enough constant-degree expander on n vertices. Then the size of any
regular Res(⊕) refutation of T(G, c) ◦ g is at least 2Ω(n), where T(G, c) is an unsatisfiable Tseitin
formula based on the graph G.

To derive Corollary 1.7 from Theorem 1.6, we introduce a natural strategy for the Delayer
on Tseitin formulas that preserves the following invariant: at every stage, the only unsatisfiable
connected component of the current Tseitin formula is the largest one. See Section 4.2 for details.

Later, we will demonstrate that lifted Tseitin formulas are also hard for an even stronger proof
system.

A disadvantage of Theorem 1.6 is that advanced (Φ, q)-games of Prover and Delayer are a bit
complicated. Our goal is to demonstrate that strategies from much simpler games can be lifted
to strategies in the advanced Prover-Delayer games. We achieve this simplification in two stages,
ultimately reducing the problem to strategies in very simple games that characterize resolution
depth (see Section 6.2 for a formal definition of these games).

8

Simplified (Φ, q)-games of Prover and Delayer. Let us define simplified (Φ, q)-games , played
between two players: Prover and Adversary. In each round, Prover selects a variable x from the
formula Φ, and Adversary responds by assigning it a value of 0 or 1. The game continues until the
current partial assignment ceases to be q-correct. For every move made, Adversary earns one coin.

Lemma 1.8 (Lemma 6.1). Assume that there is a strategy of Adversary in the simplified (Φ, q)-
game that allows him to earn at least t coins. Let ⊕r : {0, 1}r → {0, 1} be the parity function. Then
for the advanced (Φ ◦⊕r, qr)-game, there is a linearly described strategy of Delayer that guarantees
him to earn tr white coins while paying at most t black coins.

The proof of Lemma 1.8 builds on the same idea that Urquhart used to lift resolution depth to
tree-like resolution size in [30].

Lifting from resolution depth to regular Res(⊕) size. Plan of the proof of Theorem 1.2 is
the following:

1. We lift a strategy of Adversary in the depth-characterizing game for formula ϕ allowing to
earn him αn coins to a strategy of Adversary in the simplified (mix(φ), ϵn)-game allowing
him to earn αn/2 coins.

2. We lift the latter strategy to the linearly described strategy of Delayer in the advanced
(mix(φ) ◦ ⊕5, ϵn)-game by Lemma 1.8.

3. Get lower bound on size of regular Res(⊕) refutation of mix(φ) ◦ ⊕5 ◦Maj5 refutations by
Theorem 1.6 using that Maj5 is a 2-stifling gadget.

By Corollary 1.7, expander-based Tseitin formulas lifted by a constant-size gadget are O(1)-
CNF formulas with n variables of size O(n) which require regular Res(⊕) refutation of size 2Ω(n).
This is the best possible lower bound up to a constant in the exponent, and such tight lower bounds
for regular Res(⊕) were not known before. Theorem 1.2 allows us to construct many formulas given
the same tight lower bounds. To do this, we can apply Theorem 1.2 to O(1)-CNF formulas with n
variables, O(n) clauses and with resolution depth Ω(n). It is well-known that resolution depth is at
least resolution width (see, for example, [30]). Hence, we can, for example, apply Theorem 1.2 to
random O(1)-CNF formulas with n variables and O(n) clauses that are known to have resolution
width Ω(n) [3].

1.2.4 Size vs Depth Tradeoff

Using the techniques developed in this paper, we obtain the following result.

Theorem 1.9 (Theorem 8.1). Assume that there are integers t and c such that for every ρ ∈ A
such that |ρ| < t, in the (φ,A)-game of Prover and Delayer with starting position ρ there is a
linearly described strategy of Delayer that guarantees him to earn at least t− |ρ| white coins while
paying at most c black coins. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Then any Res(⊕)
refutation of φ ◦ g has either size at least 2c or depth at least t

2 logℓ+2

(
t
2c

)
.

To prove Theorem 1.9, we also use the random walk and try to use the same approach we used
for regular Res(⊕). We take a random full assignment σ and consider a path of length t in the
proof graph of φ ◦ g starting in the empty clause, and at each step, we go to a premise that is

9

falsified by σ. By Theorem 1.5, with noticeable probability, the random walk reaches a good clause
C (i.e., ¬C corresponds to an assignment from A). In regular cases, a good clause must contain
many linear independent forms. If, for some reason, all good clauses on the distance t from the
empty clause indeed have many linearly independent forms, then we can use the same argument
we used in the regular case to show the lower bound. So the main case is then on the distance t
from the root, there is a good clause C having a small rank of ¬C. In this case, we start another
random work defined by the random assignment falsifying ¬C of some smaller length t1. And we
continue the same reasoning. Either all good clauses have a large rank of their negations, which
implies the lower bound on the proof size, or we can start the next random walk, etc. So we get
that either the proof is large or has depth at least t+ t1 +

By applying Theorem 1.9 together with the natural Delayer’s strategy on Tseitin formulas, we
obtain Theorem 1.4.

Organisation of the paper. In Section 2, we give the basic definitions and facts, including the
definitions of closure and lifting. In Section 3, we demonstrate our lifting technique by proving
resolution width to Res(⊕) rank lifting theorem. In Section 4, we define Prover-Delayer games
and prove the random walk theorem for the lifted formula’s refutation. In Section 5, we prove the
lifting theorem from strategies in advanced (Φ, q)-games to the size of regular Res(⊕) refutations.
In Section 6, we prove the lifting from resolution depth to regular Res(⊕) size. In Section 7, we
prove the improved separation between regular Res(⊕) and Resolution. In Section 8, we prove
size depth tradeoff for Res(⊕). In Section 9, we formulate open questions. Dependencies between
sections are illustrated in Fig. 2.

Section 2

Section 3

Section 4

Section 8

Section 5 Section 6 Section 7

Figure 2: Dependencies between sections.

2 Preliminaries

2.1 Basic notations

For a propositional formula ϕ we denote by Vars(ϕ) the set of all variables mentioned in ϕ. For a
set of vectors U from a vector space V we denote by ⟨U⟩ the linear span of U .

In this paper, all scalars are from the field F2. Let X be a set of variables that take values in
F2. A linear form in variables from X is a homogeneous linear polynomial over F2 in variables from
X or, in other words, a polynomial

∑n
i xiai, where xi ∈ X is a variable and ai ∈ F2 for all i ∈ [n].

A linear equation is an equality f = a, where f is a linear form and a ∈ F2.
A linear clause is a disjunction of F2-linear equations:

∨t
i=1(fi = ai), where fi are non-zero

linear forms, ai ∈ F2, t ≥ 0 is integer number. Notice that over F2 a linear clause
∨t

i=1(fi = ai)
may be represented as the negation of a linear system: ¬

∧t
i=1(fi = ai + 1).

For a linear clause C we denote by L(C) the set of linear forms that appear in C; i.e.
L
(∨t

i=1(fi = ai)
)
= {f1, f2, . . . , ft}. The same notation we use for linear systems: if Ψ is a F2-linear

10

system, L(Ψ) denotes the set of all linear forms from Ψ.

2.2 Resolution over Parities

Let φ be an unsatisfiable CNF formula. A refutation of φ in the proof system Res(⊕) [23] is a
sequence of linear clauses C1, C2, . . . , Cs such that Cs is the empty clause (i.e., identically false)
and for every i ∈ [s] the clause Ci is either a clause of φ or is obtained from previous clauses by
one of the following inference rules:

• Resolution rule: From the linear clauses C ∨ (f = a) and D ∨ (f = a+ 1), we can derive the
linear clause C ∨D.

• Weakening rule: From a linear clause C, we can derive any linear clause D in the variables of
φ that semantically follows from C, meaning that every assignment satisfying C also satisfies
D.

A resolution refutation of a formula φ is a special case of a Res(⊕) refutation, where all linear
clauses are ordinary clauses.

Any Res(⊕) refutation Π of a CNF formula φ can be represented as a directed acyclic graph
GΠ with one source. Each node of GΠ is labeled with a linear clause, the source is labeled with
the empty clause, sinks are labeled with clauses of ϕ and every node except sinks has one or two
outgoing edges such that (1) if a node labeled with C1 has two outgoing edges to nodes labeled
with C2 and C3, then C1 is the result of the resolution rule applied to C2 and C3 and (2) if a node
labeled with C1 has only one outgoing edge to a node labeled with C2, then C1 is the result of the
weakening rule applied to C2.

We will use another graph G̃Π obtained from GΠ by contractions of all edges corresponding to
weakening rules. For every node u of G̃Π:

• Let u be the result of merging the nodes v1, v2, . . . , vk (k > 1) forming a path in Gπ such
that each of the edges (v1, v2), . . . , (vk−1, vk) of the path corresponds to an application of
the weakening rule. Assume that the nodes v1, v2, . . . , vk are labeled with C1, C2, . . . , Ck,
respectively;

• We label u with Ck, the strongest of the clauses.

We call the resulting graph G̃Π the refutation graph. It has the following properties:

• G̃Π is a directed acyclic graph with one source, and each of its sinks is labeled with a clause
of φ;

• every node of G̃Π except sinks has two outgoing edges, and if a node labeled with C1 has two
outgoing edges to nodes labeled with C2 and C3, then C1 is the result of the resolution rule
applied to a weakening of C2 and a weakening of C3.

By the size of a Res(⊕) refutation Π, we mean the number of vertices in its refutation graph
G̃Π. The depth of a Res(⊕) refutation Π is the length of the longest path in its refutation graph
G̃Π.

11

2.3 Res(⊕) Refutations as Linear Branching Programs

Let X be a set of variables. A linear branching program is a directed acyclic graph with one source;
every node except sinks has two outgoing edges; for every non-sink node v there is a linear form
fv in variables from X that is called a query at the node v; one edge leaving v is labeled fv = 0
and the other edge is labeled fv = 1. Each sink of the graph is labeled with an element from a set
A (the set of answers). Every linear branching program computes a function from {0, 1}X → A:
a full assignment of variables from X determines the unique path from the source to a sink such
that this assignment satisfies all equations labeling the path’s edges. The sink label is the result of
the function.

For every unsatisfiable CNF formula φ we define a relation Search(φ) that consists of all pairs
of (σ,C), where σ is an assignment of the variables of φ and C is a clause of φ falsified by σ. We
may think of Search(φ) as a search problem where, given an assignment σ, we have to find C such
that (σ,C) ∈ Search(ϕ).

Consider a Res(⊕) refutation graph GΠ of a CNF formula φ. We now show that the graph GΠ

can be relabeled to turn into a linear branching program with the set of answers equal to the set
of clauses of φ. Sinks of GΠ are already labeled with clauses of φ. For every non-sink node v of
Gπ, there is a linear form fv that is used in the resolution rule at the node v; fv will be a query
at the node v of the linear branching program. Consider an arbitrary node v1 of GΠ with outgoing
edges to nodes v2 and v3 and let us define labels of the edges (v1, v2) and (v1, v3). Let v1, v2 and
v3 be labeled with linear clauses C1, C2 and C3, respectively. Let C1 be the result of the resolution
rule applied to D2 ∨ (fv1 = a) and D3 ∨ (fv1 = a + 1), where D2 ∨ (fv1 = a) is a weakening of C2

and D3 ∨ (fv1 = a + 1) is a weakening of C3. We label the edge (v1, v2) with the linear equation
fv1 = a+ 1 and the edge (v1, v3) with fv1 = a.

Lemma 2.1 ([13]). Consider a Res(⊕) refutation graph with its edges labeled as in the linear
branching program associated with it. Let u and v be two nodes labeled with linear clauses Cu and
Cv such that a path p connects u to v. Let Φp be the conjunction of the equations labeling the
edges of p. Then Φp ∧ ¬Cu implies ¬Cv. In particular, for any path from the source of a Res(⊕)
refutation graph to a node v labeled with Cv, the system of linear equations written on the edges of
this path implies ¬Cv.

Lemma 2.1 implies that every Res(⊕) refutation graph of a formula φ may also be considered
a linear branching program solving the search problem Search(φ).

For a node v of a linear branching program, we denote by Post(v) the linear span of all linear
forms f such that f is a query at a node on a path from v to a sink.

A Res(⊕) refutation is called bottom-regular, or just regular, if for every edge (v, w) in the
associated linear branching program fv /∈ Post(w), where fv is the query at v.

Lemma 2.2 ([13]). Suppose that ϕ is an unsatisfiable CNF formula in n variables, and Π is a
regular Res(⊕) refutation of ϕ. Let GΠ be the refutation graph associated with Π. Then, for every
node v in GΠ such that there is a path from the source to v of length d, the dimension of Post(v)
is at most n− d.

For a node v of a linear branching program, we denote by Pre(v) the linear span of all linear
forms f such that f is a query at a node u ̸= v on a path from the source to v. A Res(⊕) refutation
is called top-regular if for all non-sink nodes v of the linear branching program associated with the
refutation, fv ̸∈ Pre(v), where fv is a query at a node v.

12

A Res(⊕) refutation is called weakly regular if, for every path from the source to the sink of the
linear branching program associated with the refutation, all queries are linearly independent.

Proposition 2.3. 1. Top-regular and bottom-regular resolution refutations are also weakly regular.
2. The depth of any weakly regular resolution refutation of φ is at most |Vars(φ)|.

Proof. 1. Consider a linear branching program associated with a bottom-regular or top-regular
refutation and a path v1, v2, . . . , vs from the source to a sink in it. Let f1, f2, . . . , fs1 are queries in
this path. In bottom-regular case for every i ∈ [s− 1], fi /∈ Post(vi+1), hence fi /∈ ⟨fj | s ≥ j > i⟩.
In top-regular case for every i ∈ [s − 1], fi /∈ Pre(vi), hence fi /∈ ⟨fj | 1 ≤ j < i⟩. Thus, in both
cases, all f1, . . . , fs are linearly independent. Thus, the refutation is also weakly regular.

2. Consider a linear branching program associated with a weakly regular refutation of φ and a
path v1, v2, . . . , vs from the source to a sink in it. Let f1, f2, . . . , fs1 are queries in this path. The
length of the path s− 1 = dim⟨f1, f2, . . . , fs−1⟩ ≤ |Vars(φ)|.

2.4 Safe and Dangerous Sets of Linear Forms

We consider the set of propositional variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. The variables from X
are divided into m blocks by the value of the first index. The variables xi,1, xi,2, . . . , xi,ℓ form the
ith block, for i ∈ [m].

Consider sets of linear forms using variables from X over the field F2. The support of a linear
form f = xi1,j1 + xi2,j2 + · · ·+ xik,jk is the set {i1, i2, . . . , ik} of blocks of variables that appear in f
with non-zero coefficients. We denote the support by supp(f). The support of a set of linear forms
F is the union of the supports of all linear forms in this set. We denote it by supp(F). We say that
a linearly independent set of linear forms F is dangerous if |F | > |supp(F)|. We say that a set of
linear forms F is safe if ⟨F ⟩ does not contain a dangerous set. If F is linearly dependent but ⟨F ⟩
contains a dangerous set, instead of saying that F is dangerous, we say it is not safe.

Every linear form corresponds to a vector of its coefficients indexed by the variables from the
set X. Given a list of linear forms f1, f2, . . . , fk, one may consider their coefficient matrix of size
k × |X| in which the i-th row coincides with the coefficient vector of fi.

Theorem 2.4 ([13]). Let f1, f2, . . . , fk be linearly independent linear forms and let M be their
coefficient matrix. Then, the following conditions are equivalent.

(1) The set of linear forms f1, f2, . . . , fk is safe.

(2) One can choose k blocks and one variable from each of these blocks such that the columns of
M corresponding to the k chosen variables are linearly independent.

2.5 Closure

Let S ⊆ [m] be a set of blocks; for a linear form f we denote by f [\S] a linear form obtained from
f by substituting 0 for all variables with support in S. For a set of linear forms F we will use the
notation F [\S] = {f [\S] | f ∈ F}.

A closure of a set of linear forms F is any inclusion-wise minimal set S ⊆ [m] such that F [\S]
is safe.

Lemma 2.5 (Uniqueness [13]). For any F , its closure is unique.

13

We denote the closure of F by Cl(F).

Lemma 2.6 (Monotonicity [13]). If F1 ⊆ F2, then Cl(F1) ⊆ Cl(F2).

Lemma 2.7 (Span invariance [13]). Cl(F) = Cl(⟨F ⟩).

Lemma 2.8 (Size bound [13]). |Cl(F)|+dim⟨F [\Cl(F)]⟩ ≤ dim⟨F ⟩, and hence |Cl(F)| ≤ dim⟨F ⟩.

2.6 Tseitin Formulas

Let G(V,E) be a graph. Let c : V → {0, 1} be a charge function. A Tseitin formula T(G, c) depends
on the propositional variables xe for e ∈ E. For each vertex v ∈ V , we define the parity condition of
v as P (v) :=

(∑
e∋v xe ≡ c(v) mod 2

)
, where e ∋ v means that an edge e is incident to the vertex v.

The Tseitin formula T(G, c) is the conjunction of vertices’ parity conditions:
∧

v∈V P (v). Tseitin
formulas are represented in CNF as follows: we represent P (v) in CNF in a canonical way for all
v ∈ V .

Assume that G consists of connected components H1, H2, . . . ,Ht. Then the Tseitin formula
T(G, c) is equivalent to the conjunction

∧t
i=1T(Hi, c). In the last formula, we abuse the notation

since c is defined not only on the vertices of Hi; thus, we implicitly use the corresponding restriction
on the set of vertices.

Lemma 2.9 (Folklore, see e.g. [29]). A Tseitin formula T(G, c) is satisfiable if and only if for
every connected component C(U,EU) of the graph G, the condition

∑
u∈U c(u) ≡ 0 mod 2 holds.

Corollary 2.10. Let G(V,E) be connected graph and c : V → {0, 1}. Then, for every u ∈ V , the
conjunction of parity conditions for all vertices except u, i.e.,

∧
v∈V,v ̸=u P (v) is satisfiable.

Proof. Let c′ : V → {0, 1} differ from from c only in u. By Lemma 2.9 the one formula from T(G, c)
and T(G, c′) is satisfiable. The formula

∧
v∈V,v ̸=u P (v) is a subformula of both of them; hence it is

also satisfiable.

Lemma 2.11 (Folklore). The result of the substitution xe := b to T(G, c) where b ∈ {0, 1} is a
Tseitin formula T(G′, c′) where G′ = G− e and c′ differs from c on the endpoints of the edge e by
b and equals c for every other vertex.

2.7 Spectral Expanders

Let G(V,E) be an undirected graph without loops but possibly with multiple edges. G is a spectral
(n, d, α)-expander if G is d-regular, |V | = n, and the absolute value of the second largest eigenvalue
of the adjacency matrix of G is not greater than αd.

It is well known that for all 1 > α > 0 and all large enough constants d there exist natural
number n0 and a family {Gn}∞n=n0

of (n, d, α)-expanders. There are explicit constructions such
that Gn can be constructed in poly(n) time [25]. Also, it is known that a random d-regular graph
is an expander with high probability.

Let us denote by E(A,B) a multiset of edges with one end in A and another in B. Note that
when both ends of an edge are simultaneously in A and in B, we count this edge twice.

Lemma 2.12 (Cheeger inequality [10]). Let G(V,E) be an (n, d, α)-expander. Then for all A ⊆ V
such that |A| ≤ n

2 the following inequality holds: |E(A, V \A)| ≥ 1−α
2 d|A|.

14

Corollary 2.13. Every (n, d, α)-expander with 0 < α < 1 is connected.

Proof. If G is not connected, then we will get a contradiction with Lemma 2.12 if we choose A to
be the smallest connected component.

Lemma 2.14 (Expander mixing lemma [4]). Let G(V,E) be (n, d, α)-expander, A,B ⊆ V . Then∣∣∣|E(A,B)| − d|A||B|
n

∣∣∣ ≤ αd
√

|A||B|.

Lemma 2.15 (Lemma 11 from [16]). Every graph that can be obtained by deleting l ≤ n
4 edges

from an algebraic (n, d, α)-expander G contains at most 2l
d(1−α) + 1 connected components.

2.8 Lifting of Formulas via Gadget

For every CNF formula φ with variables Y = {y1, y2, . . . , ym} and every Boolean function
g : {0, 1}ℓ → {0, 1} we define a CNF formula φ ◦ g with variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}
representing φ(g(x1,1, x1,2, . . . , x1,ℓ), g(x2,1, x2,2, . . . , x2,ℓ), . . . , g(xm,1, xm,2, . . . , xm,ℓ)) (i.e. we sub-
stitute to every variable of φ the function g applied to ℓ fresh variables). Let φ =

∧
i∈I

Ci, where

Ci is a clause for all i ∈ I. For every i ∈ [m] we denote by yi ◦ g the cannonical CNF formula
representing g(xi,1, xi,2, . . . , xi,ℓ) which has ℓ variables in every clause and by (¬yi) ◦ g the can-
nonical CNF formula representing ¬g(xi,1, xi,2, . . . , xi,ℓ) which has ℓ variables in every clause. Let
Ci = li,1 ∨ li,2 ∨ · · · ∨ li,ni , where li,j is a literal. Then we denote by Ci ◦ g a CNF formula that
represents li,1 ◦ g ∨ li,2 ◦ g ∨ · · · ∨ li,ni ◦ g as follows: Ci ◦ g consists of all clauses of the form
D1 ∨D2 ∨ · · · ∨Dni , where Dj is a clause of li,j ◦ g for all j ∈ [ni]. And φ ◦ g :=

∧
i∈I

Ci ◦ g.

Lemma 2.16. If a clause C contains variables {yi}i∈I , then every clause of C ◦g contains variables
{xi,j | i ∈ I, j ∈ [ℓ]}.

Proof. The definition straightforwardly implies the lemma.

We refer to φ ◦ g as a formula φ lifted with a gadget g. We refer to the set Y = {y1, y2, . . . , ym}
as a set of unlifted variables and to the set X = {xi,j | i ∈ [m], j ∈ [ℓ]} as a set of lifted variables.

Sometimes, we will identify subsets of [m] with corresponding subsets of Y . It is especially
convenient to use such correspondence for the notions of support and closure. So, we will assume
that the support and the closure of the set of linear forms over lifted variables is the set of unlifted
variables.

A partial assignment ρ to the set of variables X is called block-respectful if, for every i, ρ either
assigns values to all variables with support i or does not assign values to any of them.

Suppose that ρ is a block-respectful partial assignment. Then we define by ρ̂ the partial assign-
ment on the set of variables Y such that ρ̂(yi) = g(ρ(xi,1), ρ(xi,2), . . . , ρ(xi,ℓ)) (here we assume that
if the right-hand side is undefined, then the left-hand side is also undefined).

Let k < ℓ. A gadget (i.e. Boolean function) g : {0, 1}ℓ → {0, 1} is called k-stifling [9] if for
every A ⊂ [ℓ] of size k for every c ∈ {0, 1} there exists a ∈ {0, 1}ℓ such that for every b ∈ {0, 1}ℓ if
a and b agree on set of indices [ℓ] \A, then g(b) = c.

Lemma 2.17. Let Ψ be a satisfiable linear system in the lifted variables X and L(Ψ) be safe. Let
g : {0, 1}ℓ → {0, 1} be an 1-stifling gadget. Then for any full assignment σ to the unlifted variables
Y there exists a full assignment τ to the lifted variables X such that τ satisfies Ψ and τ̂ = σ.

15

Proof. W.l.o.g. assume that all equations of Ψ are linearly independent.
By Theorem 2.4, the span of columns of the coefficient matrix of Ψ contains a basis that

contains at most one column for every block. Let Z ⊆ X be the set of variables corresponding
to this basis. Using a 1-stifling property of g we can construct the full assignment τ0 to variables
X \ Z such that for every assignment ρ extending τ0 to the set of variables X, for every i ∈ [m],
g(ρ(xi,1), ρ(xi,2), . . . , ρ(xi,ℓ)) = σ(yi). Since Z corresponds to the basis of the span of the columns
of the linear system Ψ, τ0 can be extended to an assignment τ that satisfies Ψ. By the construction,
τ̂ = σ.

The following lemma appeared in [7]; we provide its proof since it is a simple corollary of
Lemma 2.17. Informally, the next lemma states that any linear system over the lifted variables
restricts unlifted variables only from the closure.

Lemma 2.18 (Lemma 17 from [7]). Let Ψ be a satisfiable linear system in the lifted variables X.
Let g : {0, 1}ℓ → {0, 1} be an 1-stifling gadget. Suppose

• σ is a full assignment to lifted variables X satisfying Ψ.

• π is a full assignment to unlifted variables Y such that π|Cl(L(Ψ)) = σ̂|Cl(L(Ψ)).

Then there exists a full assignment τ to the lifted variables X such that τ satisfies Ψ and τ̂ = π.

Proof. Let T be the set of all lifted variables with support in Cl(L(Ψ)). Let σ0 be the restriction of
σ to T . The linear system (Ψ)|σ0 is satisfiable, and its set of linear forms is safe by the definition
of closure. By Lemma 2.17, there exists an assignment γ to the lifted variables Vars(Ψ) \ T that

satisfies (Ψ)|σ0 and such that ̂(σ0 ∪ γ) = π. Thus, we can take τ = σ0 ∪ γ.

Lemma 2.19. Let Ψ be a satisfiable linear system in the lifted variables X. Let g : {0, 1}ℓ → {0, 1}
be an 1-stifling gadget. Suppose there exists a full assignment σ to lifted variables X satisfying Ψ
such that σ̂|Cl(L(Ψ)) does not falsify any clause of φ. Then, Ψ does not contradict any clause of
φ ◦ g.

Proof. Consider a clause C ′ from φ ◦ g and a clause C from φ such that C ′ is a clause from C ◦ g.
Since σ̂|Cl(L(Ψ)) does not falsify any clause of φ, there exists a full assignment of unlifted variables

π that extends σ̂|Cl(L(Ψ)) and satisfies C. By Lemma 2.18, there exists an assignment τ of the lifted
variables that satisfies Ψ and such that τ̂ = π. Hence, τ satisfies C ◦ g and, thus, τ satisfies C ′.

3 Lifting resolution width to Res(⊕) rank

The width of a resolution refutation is the maximal number of literals in any clause of the refutation.
Similarly, we can define the rank of Res(⊕) refutation. The rank of a Res(⊕) refutation is the

maximal rank of the negation of any linear clause in the refutation.
The goal of this section is to relate these two measures by a lifting theorem:

Theorem 3.1. Let g : {0, 1}ℓ → {0, 1} be a 1-stifling gadget. Consider a CNF formula φ such that
φ ◦ g has a Res(⊕) refutation of rank W . Then φ should have a resolution refutation of width at
most W .

To prove this theorem, we will need to consider Spoiler-Duplicator games.

16

Spoiler-Duplicator game for resolution. Firstly defined by Atserias and Dalmau [5], the
k-pebble game on an unsatisfiable CNF formula φ proceeds as follows: starting with the empty
assignment, on every turn Spoiler has two options:

• If the size of the current assignment is less than k, then Spoiler can ask Duplicator about the
value of some variable x from φ. Then Duplicator chooses the value of x.

• Spoiler can erase one of the variables from the domain of the assignment.

Spoiler wins if the current assignment contradicts one of the clauses of φ. Duplicator wins if he
can answer Spoiler’s responses such that Spoiler does not win.

One can formalize this game by defining a Duplicator’s winning strategy as follows:
Let φ be an unsatisfiable CNF formula. We say that the Duplicator wins the k-pebble game on

φ if there is a non-empty family H of partial truth assignments that do not falsify any clause from
φ such that:

• If f ∈ H, then |f | ≤ k.

• If f ∈ H and g ⊆ f , then g ∈ H.

• If f ∈ H, |f | < k and x is a variable, then there is value a ∈ {0, 1} such that f ∪{x := a} ∈ H.

The following equivalence establishes the connection between the resolution width and Spoiler-
Duplicator games:

Lemma 3.2 ([5]). Let φ be a k-CNF formula, and W be an integer number. Then φ does not
have a resolution refutation of width W if and only if a Duplicator’s winning strategy exists in
(W + 1)-pebble game on φ.

Spoiler-Duplicator game for Res(⊕). Similarly to the games of Atserias and Dalmau, one can
define Spoiler-Duplicator k-pebble Res(⊕)-games [18]. This game on an unsatisfiable CNF formula
φ proceeds as follows: starting with the empty system of F2-linear equations, on every turn, Spoiler
has two options:

• If the rank of the current system is less than k, then Spoiler can ask Duplicator about the
value of some linear form ℓ over the variables from φ. Then Duplicator can choose the value
a ∈ {0, 1} of ℓ and add ℓ = a to the current linear system.

• Spoiler can change the current linear system to any other linear system, which is implied by
the current system.

Spoiler wins if the current system contradicts one of the clauses of φ. Duplicator wins if he can
answer Spoiler’s responses such that Spoiler does not win.

Similarly to [18], we formally define a Duplicator’s strategy in Res(⊕)-games: We say that the
Duplicator wins the Res(⊕) existential k-pebble game on φ if there is a non-empty family H of
linear systems over F2 such that:

• For every F ∈ H and every clause C in φ, there exists a solution of F that satisfies C.

• If F ∈ H, then rk(F) ≤ k.

17

• If F ∈ H and F semantically implies G, then G ∈ H.

• If F ∈ H and rk(F) ≤ k − 1 and f is a linear form, then there is a ∈ F2 such that F ∧ {f =
a} ∈ H.

Similarly to Lemma 3.2, one can prove the following lemma:

Lemma 3.3 (cf. [18]). If for an unsatisfiable CNF formula φ Duplicator has a winning strategy H
in a (W + 1)-pebble Res(⊕)-game, then φ does not have a Res(⊕) refutation of rank at most W .

Proof. Suppose there is a Res(⊕) refutation Π for φ of rank at most W and a Duplicator’s winning
strategy H in the (W + 1)-pebble Res(⊕)-game. Consider a linear branching program associated
with Π. Consider the following strategy of Spoiler: it starts at the source labeled with the empty
clause, and the current linear system is also empty. Every his move, Spoiler asks for a value of
the linear form corresponding to the current node (this move is legal since the rank of the current
linear system is at most W) and moves to the node corresponding to the answer of Duplicator and
then changes the current linear system to the negation of the clause in the new node (this move
is legal by Lemma 2.1). Properties of the Duplicator’s strategy imply that this process will never
stop since the current linear system does not contradict clauses of φ. This is a contradiction since
there are no infinite paths in the directed acyclic graph.

Now, using those two lemmas, we can prove the main result of this section.

Proof of Theorem 3.1. Suppose there is no resolution refutation of φ of widthW . Consider a (W +
1)-winning strategy H for the resolution Spoiler-Duplicator games for φ that exists by Lemma 3.2.
Consider the following family of linear systems H̃: it will consist of all F2-linear systems F over
the variables from φ ◦ g for which the following holds:

• rk(F) ≤W + 1.

• There exist h ∈ H and a solution σ of F such that σ̂ coincides with h on Cl(L(F)).

We show that H̃ satisfies all the properties of (W + 1)-winning Res(⊕)-strategy:

• By definition, for every F ∈ H̃, rk(F) ≤W + 1.

• By Lemma 2.19, for every F ∈ H̃ and every clause C ′ from φ ◦ g, there exists a solution of F
that satisfies C ′.

• Let us show that if G is a linear system satisfying and for some F ∈ H̃, F semantically
implies G, then G ∈ H̃. Indeed, since F semantically implies G, L(G) ⊆ ⟨L(F)⟩. Then by
Lemmas 2.6 and 2.7, Cl(L(G)) ⊆ Cl(L(F)). Clear that rk(G) ≤ rk(F) ≤ W + 1. Since,
F ∈ H̃ there exist h ∈ H and there is a solution σ of F such that σ̂ coincides with h on
Cl(L(F)). Notice that σ is also a solution of G and σ̂ coincides with h on Cl(L(G)). Hence
G is in H̃.

• Finally, we need to show that for any F ∈ H̃ with rk(F) < W + 1 and for every linear form
f , there exists a constant a ∈ F2 such that F ∧ {f = a} ∈ H̃.

There exist h ∈ H and a solution σ of F such that σ̂ coincides with h on Cl(L(F)). W.l.o.g.,
assume that the domain of h is precisely Cl(L(F)). By Lemma 2.8, |(Cl(L(F) ∪ {f}))| ≤

18

rk(F) + 1 ≤ W + 1. By the properties of H there is g ∈ H such that h ⊆ g and g is defined
on Cl(L(F)∪{f}); indeed, we can extend h for all variables from Cl(L(F)∪{f})) \Cl(L(F))
one by one. Using Lemma 2.18, we can find a solution τ of F such that τ̂ coincides with
g on Cl(L(F) ∪ {f})). Let a be a value of linear form f on the solution τ . Then τ clearly
satisfies F ∧ {f = a}. On the other hand, τ̂ coincides with g on Cl(L(F) ∪ {f})). Thus
F ∧ {f = a} ∈ H̃.

Since H̃ is (W +1)-winning Res(⊕)-strategy, by Lemma 3.3, it is impossible to construct a Res(⊕)
refutation for φ ◦ g of rank W .

4 Prover-Delayer Games and Random Walk

4.1 Prover-Delayer Games

Let φ be a CNF formula. Let A be a set consisting of partial assignments for variables of φ. We
define a (φ,A)-game of Prover and Delayer with starting position ρ0 ∈ A. In this game, there are
two players: Prover and Delayer. The players save the current partial assignment ρ that initially
equals ρ0. On every move, Prover chooses a variable x ∈ Vars(φ) \ Dom(ρ), and Delayer has two
options:

• Delayer can earn a white coin and reports ∗. Then, Prover chooses a Boolean value a of x.

• Delayer can earn a white coin and pay a black coin to choose a Boolean value a of x by
himself.

After the move the current assignment is updated: ρ := ρ ∪ {x := a}; The game ends when ρ /∈ A
or Dom(ρ) = Vars(φ).

A strategy of Delayer is a function f : H × Vars(φ) → {0, 1, ∗}, where H is the set of all
possible sequences of pairs of queries asked by Prover with answers (so it is the sequences of the
form (xi1 := α1, xi2 := α1, . . . , xik := αk)). The strategy is utilized in a natural way: on every step,
given the sequence of previous queries with answers Q and a last queried variable x, Delayer answers
f(Q, x). If f(Q, x) ̸= ∗, we say that the value of x is forced.

A linearly described strategy is a special case of a strategy of Delayer. A linearly described
strategy has the following form: given a sequence of queries (xi1 , xi2 , . . . , xik) (without the an-
swers for those queries) and a last queried variable x it outputs either ∗ or an F2-linear function
h(xi1 , xi2 , . . . , xik).

Delayer utilizes this strategy in the following way. On every step given a sequence of queries
with answers (xi1 := α1, xi2 := α1, . . . , xik := αk) and a last queried variable x: if strategy outputs
∗ on (xi1 , xi2 , . . . , xik , x), then Delayer answers ∗; if strategy outputs function h(xi1 , xi2 , . . . , xik),
then Delayer answers h(α1, α2, . . . , αk).

We say that a strategy of Delayer guarantees him to earn t white coins while paying at most c
black coins if, for every behavior of Prover, Delayer, using his strategy, achieves the position with
the current assignment ρ ∈ A such that by this moment he earns t white coins and pay at most c
black coins.

19

4.2 Natural Strategy for Tseitin Formulas

In this subsection, we give an example of Prover-Delayer games and the strategy of Delayer for
Tseitin formulas based on expanders.

Proposition 4.1. If a graph H is obtained from an (n, d, α)-expander by the deletion of at most
dn
4 · 1−α

2 edges, then the largest connected component of H has size more than n/2.

Proof. Proof by contradiction. Let us delete edges from the (n, d, α) expander one by one. Consider
the first moment where the largest connected component becomes at most n/2. Its size at this
moment is greater than n/4. By Lemma 2.12, by this moment we have to remove more than
dn
4 · 1−α

2 edges.

Let T(G, c) be an unsatisfiable Tseitin formula based on a spectral (n, d, α)-expander G(V,E).
Consider a partial assignment ρ for variables of T(G, c). By Lemma 2.11, T(G, c)|ρ is also a

Tseitin formula; we denote by Gρ and cρ the graph and the charge function for T(G, c)|ρ.Note
that the graph Gρ is obtained from G by the deletion of edges corresponding to Dom(ρ). Let

U1
ρ , U

2
ρ , . . . , U

kρ
ρ ⊆ V be the connected components of Gρ sorted by decreasing of their sizes: |U1

ρ | ≥
|U2

ρ | ≥ · · · ≥ |Ukρ
ρ |. By Proposition 4.1, if |ρ| ≤ dn

4 · 1−α
2 , |U1

ρ | > n/2 and U1
ρ is the unique largest

connected component of Gρ. It is easy to see that the Tseitin formula T(Gρ, cρ) is the conjunction
of independent Tseitin formulas corresponding to the components of Gρ and the restrictions of cρ
to them.

Let T be the set of all partial assignments ρ for variables of T(G, c) such that |ρ| ≤ dn
4 · 1−α

2 and∑
v∈U1

ρ
cρ(v) = 1 and for i ∈ [kρ] \ {1},

∑
v∈U i

ρ
cρ(v) = 0. In other words, ρ ∈ T iff |ρ| ≤ dn

4 · 1−α
2

and the Tseitin formula corresponding to the largest connected component of Gρ is unsatisfiable,
but Tseitin formulas corresponding to all other connected components of Gρ are satisfiable.

Consider the following strategy of Delayer for the game based on T (G, c) and every starting
position ρ0 ∈ T . Let ρ be the current assignment in the game. The strategy will maintain the
following invariant: if |ρ| ≤ dn

4 · 1−α
2 , then ρ ∈ T . The strategy is the following.

• If |ρ| + 1 ≤ dn
4 · 1−α

2 and the request corresponds to a non-bridge edge in the graph of Gρ,
Delayer responds ∗.

– In this case, connected components of Gρ are not changed, and the substitution of a
non-bridge edge does not reflect their satisfiability.

• If |ρ| + 1 ≤ dn
4 · 1−α

2 and the request corresponds to a bridge e in the graph of Gρ, Delayer
chooses the answer to satisfy the invariant as follows.

– Assume that the bridge e connects two vertices from U i
ρ for i ∈ [kρ] and let the removing

e from Gρ split U i
ρ to the new connected components A and B and |A| ≥ |B|. According

the stratagy Delayer chooses the value γ =
∑

v∈B cρ(v) to xe. We denote ρ′ := ρ ∪
xe :=

∑
v∈B cρ(v). Below, we verify that the invariant is satisfied in two different cases:

i ̸= 1 and i = 1.

– Case i ̸= 1. Then
∑

v∈U i
ρ
cρ(v) = 0, hence

∑
v∈B cρ(v) =

∑
v∈A cρ(v) = γ. Then∑

v∈B cρ′(v) =
∑

v∈B cρ(v)+ γ = 0 and
∑

v∈A cρ′(v) =
∑

v∈A cρ(v)+ γ = 0. In this case,
A and B are not the largest connected component of Gρ, thus, the invariant holds.

20

– Case i = 1. Then
∑

v∈U i
ρ
cρ(v) = 1. Then

∑
v∈B cρ(v) = γ,

∑
v∈A cρ(v) = 1 + γ. Then∑

v∈B cρ′(v) =
∑

v∈B cρ(v)+ γ = 0 and
∑

v∈A cρ′(v) =
∑

v∈A cρ(v)+ γ = 1. In this case,
A is the largest connected component in Gρ′ .

• If |ρ|+ 1 > dn
4 · 1−α

2 , Delayer responds ∗.

We will refer to this strategy as the natural strategy.

Lemma 4.2. The natural strategy is linearly described.

Proof. Forced variables in the natural strategy correspond to bridges. Let ρ be the current as-
signment, and Prover asks the value of an edge e, which is a bridge of Gρ connecting two vertices
from the connected component U i

ρ. Let the removing of e from Gρ split U i
ρ to the new compo-

nents A and B and |A| ≥ |B|. Then, Delayer, according to the natural strategy, chooses the value
γ =

∑
v∈B cρ(v) to xe.

Let I be set of edges corresponding to variables Dom(ρ) \ Dom(ρ0) connecting B with V \ B.
Then γ =

∑
v∈B cρ(v) =

∑
v∈B cρ0(v) +

∑
e∈I ρ(xe). Hence, γ is the result of an affine function

applied to the values of previous variables.

4.3 Random Walk

We say that a set of partial assignments A is closed under restrictions, if for every ρ ∈ A for every
σ ⊆ ρ, σ ∈ A.

Theorem 4.3. Let φ be an unsatisfiable CNF formula. Let A be a set of partial assignments
for Vars(φ) such that A is closed under restrictions and for any σ ∈ A, σ does not falsify any
clause of φ. Assume that in the (φ,A)-game, Delayer has a linearly described strategy with start
position ρ0 ∈ A that guarantees him to earn w white coins while paying at most c black coins. Let
g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Consider a Res(⊕) refutation of φ ◦ g and the linear
branching program associated with it. Let C0 be a linear clause from this refutation. Assume that
Cl(L(C0)) = Dom(ρ0) and there is a solution τ of ¬C0 such that τ̂ extends ρ0. Let Σ be the set of
all full assigmnets π such that π satisfies ¬C0 and π̂ extends ρ0. Let t be integer number such that
t ≤ w − rk(¬C0) + |ρ0|. (If C0 is an empty clause, then ρ0 is an empty assignment; hence, in this
case, Σ is the set of all assignments, and t is restricted to be at most w.) Consider a random full
assignment σ ∈ Σ and make t steps in the linear branching program from C0 according to σ (if we
reach a sink earlier than in t steps, we stay there); let we stop in a node labeled with a linear clause
C. Then σ̂|Cl(L(C)) ∈ A with probability at least 2−c(ℓ−1).

We start with an informal proof plan of Theorem 4.3.
1. Let Ψi denote the conjunction of ¬C0 and the linear system corresponding to the first i edges

of the path in the linear branching program defined by σ. By the properties of linear branching
program Ψt |= ¬C and, hence, L(C) ⊆ ⟨L(Ψt)⟩ and, thus by Lemmas 2.6 and 2.7, Cl(L(C)) ⊆
Cl(L(Ψt)). Since A is closed under restrictions, Pr[σ̂|Cl(L(C)) ∈ A] ≥ Pr[σ̂|Cl(L(Ψt)) ∈ A]. Let us

denote the latter probability by P ∗. We will prove that P ∗ ≥ 2−c(ℓ−1).
2. To estimate P ∗ w.l.o.g. we may assume that the linear branching program is a tree (i.e.,

parity decision tree). We can convert a linear branching program to a tree in a standard way by
repeating the nodes at the same distance from the source.

21

3. We consider the following metaphor: we assume that elements of Σ are grains of sand.
Initially, we put all the sand in a node of the parity decision tree labeled with C0. Each round,
every grain of sand in an interior node moves to a child of the current node corresponding to the
equation on the edge going to this child. A grain of sand (i.e., full assignment) τ disappears from
the node v (and does not move to children in the tree) if τ̂ |Cl(L(Fv)) is not consistent with Delayer’s
strategy, where Fv is the conjunction of ¬C0 with the system of equations written on the path
from C0 to v. Notice that if τ̂ |Cl(L(Fv)) is consistent with Delayer’s strategy, since |Cl(L(Fv))| ≤
rk(C0) + t ≤ |ρ0|+w, by the properties of the strategy, τ̂ |Cl(L(Fv)) ∈ A. It is easy to see that P ∗ is
at least the fraction of sand still in the tree in t steps.

4. The following lemma allows us to estimate the fraction of sand still in the tree in t steps.

Lemma 4.4. Consider a binary tree with root r and a set of leaves L. We associate every node v
except leaves with a number pv ̸= 0. For every node v of the tree, there is a number nv such that if
u and w are children of v, then nvpv = (nu+nw). Let for every leaf l the unique path from the root
to l be denoted πl = (s1 = r, s2, . . . , st = l); let us denote p(πl) =

∏t−1
i=1 psi. Then nr =

∑
l∈L nl

1
p(πl)

.

Proof. Induction on the number of leaves in the tree.

In Lemma 4.4, nv is the amount of sand that was in the node v. And pv is the fraction of sand
that does not disappear when the sand moves from v to its children.

5. P ∗ ≥ 1
nr

∑
l∈L nl, where L consists of the nodes on distance t and the leaves on distance

at most t. If l is a leaf of the parity decision tree, then Fl contradicts a clause of φ ◦ g. Hence,
there is no sand in the leaves, and we can assume that L does not contain leaves. To estimate
the probability P ∗, it is sufficient to bound from below p(πl) for some node l ∈ L. If we denote
by s1 = r, s2, . . . , st = l the path from the root to l, then p(πl) =

∏t−1
i=1 psi . The following lemma

estimates psi regarding Delayer’s strategy.

Lemma 4.5. Let h be a linear description of Delayer’s strategy in the (φ,A)-game with starting
position ρ0. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Let F be a system of linear equations in
the lifted variables (i.e., variables of φ◦g). Let f be a linear form. Consider some order θ on unlifted
variables such that variables from Cl(L(F)) preceded variables from Cl(L(F)∪{f}) \Cl(L(F)) that
preceded all other variables. Let T be the set of solutions τ of F such that τ̂ |Cl(L(F)) is consistent
with the strategy h if variables appear according θ. Let T ′ be the set of solutions τ of F such
that τ̂ |Cl(L(F)∪{f}) is consistent with the strategy h if variables appear according θ. Then |T ′| ≥
|T |2−(ℓ−1)n, where n is the number of variables from Cl(L(F) ∪ {f}) \Cl(L(F)) such that Delayer
recognizes them as forced according the strategy h if variables appear in the order θ.

We will prove Lemma 4.5 in Subsection 4.4.
Lemma 4.5 and properties of Delayer’s strategy imply that p(πl) ≥ 2(ℓ−1)c for every l ∈ L. Thus

by Lemma 4.4,

P ∗ ≥
∑

l∈L nl

nr
=

∑
l∈L nl∑

l∈L
nl

p(πl)

≥ 2−(ℓ−1)c.

Proof of Theorem 4.3. We denote by Ψi the conjunction of ¬C0 and the linear system corresponding
to the first i edges of the path in the linear branching program defined by σ. By Lemma 2.1, the
linear system Ψt semantically implies ¬C, then L(C) ∈ ⟨L(Ψt)⟩, then by Lemmas 2.6 and 2.7,
Cl(L(C)) ⊆ Cl(L(Ψt)). Since A is closed under restrictions, it is sufficient to prove that with
probability at least 2−c(ℓ−1), σ̂|Cl(L(Ψt)) ∈ A.

22

We convert the linear branching program to a parity decision tree in the standard way by making
several copies of nodes and edges with the same labels. Since the end of the path corresponding
σ has the same label in the tree and the linear branching program, we can continue reasoning
assuming we walk in the parity decision tree. Let H be the subtree of the parity decision tree
rooted in C0 that contains vertices on the distance at most t from C0; let r be the root of H.

Let v be a vertex of H. We denote by Fv conjunction of ¬C0 and the system linear equations
written on the path from the root to v.

For every v of H we construct an order θv of the set of variables Cl(L(Fv)). We construct them
by induction from the root to the leaves. θr is some order on Cl(L(C0)). If u and w are children of
v, then θu = θw and equals to an order that extends θv such that all elements of Cl(L(Fv)) preceded
to all elements of Cl(L(Fu)) \ Cl(L(Fv)).

For every vertex v of the tree, we define a set Tv consisting of the set of full assignments τ
satisfying Fv such that τ̂ |Cl(L(Fv)) is consistent with Delayer’s strategy when variables appear in
the order θv.

For the root, Tr = Σ. By Lemma 2.8, for every vertex v of H, |Cl(L(Fv))| ≤ dim⟨L(Fv)⟩ ≤
t + rk(¬C0) ≤ w + |ρ0|, hence for every σ ∈ Tv, σ̂|Cl(L(Fv)) ∈ A by the properties of Delayer’s
strategy.

Claim 4.6. If Tv ̸= ∅, then Fv does not contradict any clause of φ ◦ g.

Proof. Consider some σ ∈ Tv, by the remark above, σ̂|Cl(L(Fv)) ∈ A, hence by the conditions of the
theorem, σ̂|Cl(L(Fv)) does not falsify any clause of φ. Then by Lemma 2.19, Fv does not contradict
any clause of φ ◦ g.

If a and b are distinct leaves of H, then linear systems Fa and Fb contradict each other. Hence,
Ta ∩ Tb = ∅. Thus, to prove the theorem, it is sufficient to show that

∑
a∈L |Ta| ≥ 2−(l−1)c · |Tr|,

where L denotes the set of leaves of H.
For every vertex v in H with children u and w, we define pv such that pv := |Tw|+|Tu|

|Tv | if

|Tv| ̸= 0 and pv := 1, otherwise. Notice that if |Tv| = 0, then |Tu| = |Tw| = 0, hence the
equality pv|Tv| = |Tu| + |Tv| is always satisfied. Since u and w are children of v, there exists a
linear form f and α ∈ {0, 1} such that Fu = F ∧ (f = α) and Fv = F ∧ (f = 1 − α). Hence,
Cl(L(Fu)) = Cl(L(Fw)) = Cl(L(Fv) ∪ {f}). It is easy to see that Tu ∪ Tv is the set of assignments
τ satisfying Fv such that τ̂ |Cl(Fv∪{f}) is consistent with Delayer’s strategy if variables appear in

the order θu = θw. By Lemma 4.5 applied to the order θu, we get that pv ≥ 2−(ℓ−1)k, where k is
the number of forced variables in Cl(L(Fu)) \Cl(L(Fv)) according to Delayer’s strategy if variables
appear in the order θu.

Let a be a leaf of H. Consider a path from the root of H to a: u1 = r, u2, . . . , us = a. As we
noticed above, pui ≥ 2−(ℓ−1)ki , where ki is the number of forced variables in Cl(Fui+1) \ Cl(Fui)
according to Delayer’s strategy if variables appear in the order θa. By the properties of the strategy,
Delayer should spend at most c black coins if he earns at most w. Since |Cl(L(Fa))| ≤ w + |ρ0|,∏s−1

i=1 pui ≥ 2−(ℓ−1)c.
Recall that L is the set of leaves of H. By Lemma 4.4 applied to H, pv and nv := |Tv|,∑

a∈L |Ta| ≥ |Tr|2−(ℓ−1)c.

23

4.4 Proof of Lemma 4.5

Lemma 4.7. Let g1, g2, . . . , gn be 2-stifling gadgets from {0, 1}ℓ → {0, 1}. Let α1, α2, . . . , αn

be arbitrary Boolean functions from {0, 1}(ℓ−1)n → {0, 1} and β1, β2, . . . , βn be affine functions
from {0, 1}(ℓ−1)n → {0, 1}. Then there exist r1, r2, . . . , rn ∈ {0, 1}ℓ−1 such that for every i ∈ [n],
gi(ri, αi(r1, r2, . . . , rn)) = βi(r1, r2, . . . , rn).

Proof of Lemma 4.7. We have to prove that the system of n equations has a solution. We introduce
variables ri,1, ri,2, . . . , ri,ℓ for bits of ri. We prove the lemma by induction on the number of equations
n.

Assume that there is i ∈ [n] such that βi is a constant. Then we can satisfy the ith equation
by choosing an appropriate value of ri by using a 2-stifling property of g. Thus we fix values of
variables corresponding to ri and remove the ith equation. The remaining equations we can satisfy
by the induction hypothesis.

Assume that there exists i ∈ [n] such that βi(r1, . . . , rn) is dependent on ri,j for some j ∈ [ℓ].
Then the equation βi = 0 expresses ri,j from the other variables. We change all occurrences of ri,j
to this expression. Now on the left-hand side, we have gi applied to ri,k for k ∈ [ℓ−1]\{j} and two
more complicated positions. After this, we fix values of ri,k for k ∈ [ℓ− 1] \ {j} such that the value
of the gadget equals zero regardless of the values of the two remaining positions. This is possible
since gi is 2-stifling. Thus we eliminate variables ri and delete the ith equation. The remaining
equations can be satisfied by the induction hypothesis.

Let us consider a directed graph with vertices [m]. We say that there is an edge from i to j if βi
depends on a variable corresponding to rj . The graph contains a directed cycle since every vertex
has an outgoing edge.

Consider the minimal directed cycle: βi1 depends on the variable ri2,j2 , βi2 depends on ri3,j3
etc., βik depends on ri1,j1 . Notice that variables ri1,j1 , ri2,j2 , . . . , ril,jk have exactly one occurrence
in βi1 , βi2 , . . . , βik since otherwise the cycle can be decreased. Consider the linear system βi1 =
0,∧ · · · ∧ βil = 0. From this system we can express variables ri1,j1 , ri2,j2 , . . . , ril,jk in other variables
using these equations. We substitute these expressions instead of variables. After this substitution
the right-hand sides of equations with numbers i1, i2, . . . , ik will be fixed to 0. For every j ∈ [k] the
left-hand side of ijth equation contains ℓ−2 positions that contain only variables, so we can fix the
values of all variables to satisfy the ijth equation using the 2-stifling property. Thus we eliminate
all variables corresponding ri and delete ith equation for i ∈ {i1, . . . , ik}. The remaining equations
can be satisfied by the induction hypothesis.

Proof of Lemma 4.5. If Cl(L(F)) = Cl(L(F) ∪ {f}), then the lemma is trivial. So we assume
that Cl(L(F)) ⊊ Cl(L(F) ∪ {f}). Let ρ be a solution of F restricted to variables with support
in Cl(F) such that ρ̂ is consistent with the strategy h if variables appear in the order θ. Let
Tρ = {τ ∈ T | τ is consistent with ρ}. Let T ′

ρ = {τ ∈ T ′ | τ is consistent with ρ}. It is sufficient to

show that for any ρ, |T ′
ρ| ≥ |Tρ|2−(ℓ−1)n.

The linear system F |ρ is satisfiable, and the set of its linear forms is safe by the definition
of closure. Hence, by Theorem 2.4, one can choose a basis of the span of the columns of the
matrix of F |ρ such that there is at most one basis element in every block. Let Z denote the set of
variables corresponding to this basis. Every solution of F |ρ defines an element of Tρ. Hence, the
size of Tρ equals the number of solutions of F |ρ. The set of solutions of F |ρ can be constructed as
follows: choose arbitrary values of non-Z variables, and then the values of Z-variables are uniquely
determined. Let D denote the number of non-Z variables in F |ρ. Then |Tρ| = 2D.

24

Let K be the set of unlifted variables from Cl(L(F) ∪ {f}) \ Cl(L(F)) that are forced in the
strategy h where variables appear in the order θ. We will show that if we arbitrarily fixvalues of
non-Z variables such that their support is not in K and values of the xi,ℓ if yi ∈ K and Z does
not contain variables with support i, then we can extend this assignment to an element of T ′

ρ. The
number of unfixed variables out of Z is exactly (ℓ − 1)n. Hence we will get the desired inequality
|T ′

ρ| ≥ 2D−(ℓ−1)n = |Tρ|2−n(ℓ−1).
For all blocks that are not in K, we have fixed values of variables out of Z. For every yi ∈ K

we have to choose values of unfixed variables from xi,1, xi,2, . . . , xi,ℓ such that when we determine
values of Z variables, the value of the gadget applied to xi,1, xi,2, . . . , xi,ℓ will be consistent with
the strategy h.

We know that |K| = n; w.l.o.g. K = {y1, y2, . . . , yn}. According to the strategy h values
of forced variables are computed by linear functions from the values of the previous variables.
W.l.o.g. we assume that the correct values of these variables depend only on unforced variables.
Unfortunately, it is possible that when we have fixed all lifted variables except one in the block with
support not in K, the value of the gadget is not determined and depends on the value of the last
variable. Then, the gadget’s value is linearly dependent on the unfixed variable from Z. In this case,
the required value of some variable from K may depend on these unfixed Z-variables, but in this
case, the dependence is linear. For every yi ∈ K we denote unfixed variables among xi,1, xi,2, . . . , xi,ℓ
by vector of variables ri; for all i ∈ [n], ri consists of exactly ℓ− 1 variables. Notice that the values
of Z-variables are chosen to satisfy the system F |ρ. Hence, the values of every Z-variable can be
computed from r1, r2, . . . , rℓ by an affine function. Thus, we have to satisfy the following system
of equations:

∧n
i=1 gi(ri, αi(r1, r2, . . . , rn)) = βi(r1, r2, . . . , rn), where for i ∈ [n], gi is a function

obtained from g by a variable permutation, αi and βi are affine functions; αi corresponds to either
expression of a Z-variable (if there are Z-th variables in ith block) or constant (if there are no Z
variables in ith block and we have fixed xi,ℓ); βi corresponds the linear dependence between the
value of the variable yi according the strategy h and values of several Z-variables.

This system of equations has a solution by Lemma 4.7.

5 Lifting from Strategies in Advanced Prover-Delayer Games to
Regular Resolution over Parities

In this section, our goal is to show that if a formula Φ has some good properties and g : {0, 1}ℓ →
{0, 1} is a 2-stifling gadget, then Φ ◦ g requires large regular Res(⊕) proofs (for precise statement
see Theorem 5.2). The high-level proof plan is as follows: 1) We consider a random full assignment
σ of the variables of Φ ◦ g and make several steps in a branching program associated with a regular
Res(⊕) refutation of Φ ◦ g from the source according to σ. Let C be a clause at the end of the
path. 2) We show that with probability p the linear system ¬C has rank at least r. 3) By the
construction σ satisfies ¬C. Random assignment satisfies a linear system with rank at least r with
probability at least 2−r. Hence, the refutation must contain at least p2r clauses.

The main technical part is the realization of the step 2 of the above plan. In Subsection 5.1,
we define the notion of a q-corect partial assignment of an unlifted formula Φ. In Theorem 5.1, we
show that if a clause C is on a large enough distance from the source of the branching program
and ¬C has a solution π such that π̂|Cl(L(C)) is q-correct, then ¬C has a large rank.

In Subsection 5.2 we define the advanced (Φ, q) games for the formula Φ and the set of q-correct
partial assignments as a special case of games defined in Section 4. Using Theorem 4.3, we consider

25

a random walk described in the 1st step of the above plan and show that if Delayer has a good
strategy in the game and get that with high enough probability σ̂|Cl(L(C)) is q-correct. Then, we
prove the main result (Theorem 5.2).

In Subsection 5.3, we give an example of the application of Theorem 5.2 for lifted Tseitin
formulas.

5.1 Rank Lower Bound and q-Correct Partial Assignments

Let Φ be an unsatisfiable CNF formula that can be represented in the form of
∧

v∈V ϕv, where ϕv
is a CNF formula, in which each clause consists of the same set of variables. In the simple case,
each ϕv contains just one clause. For example, for Tseitin formulas, ϕv can be a parity condition
in the vertex v.

A partial assignment ρ is called q-correct for Φ if for every set U ⊆ V such that
|Vars(

∧
v∈U ϕv)| < |Vars(Φ)| − q, ρ can be extended to an assignment satisfying

∧
v∈U ϕv.

Theorem 5.1. Let g : {0, 1}ℓ → {0, 1} be a 1-stifling gadget. Consider a regular Res(⊕) refutation
of the lifted formula Φ ◦ g and its linear branching program. Let C be a linear clause such that there
is a path of length t from the source of the linear branching program to C. Suppose that ¬C has a
solution σ such that σ̂|Cl(L(C)) is q-correct (here σ̂|Cl(L(C)) is the restriction of σ̂ to Cl(L(C)) which
is identified with the set of unlifted variables). Then rk(¬C) ≥ t− ℓq.

Proof. Consider the linear branching program associated with the Res(⊕) refutation of Φ ◦ g. Let
W consist of all sinks u of the linear branching program such that there is a path from C to u
and the conjunction of linear equations labeling the edges of this path is consistent with the linear
system ¬C (i.e., the conjunction of the linear system on the path and ¬C is satisfiable). Let A
be the set of labels of the nodes from W ; A consists of clauses of Φ ◦ g. It is easy to see that A
semantically implies C. Indeed, consider an assignment σ of the lifted variables that falsifies C.
We start a path in the linear branching program from C to a sink such that σ satisfies all equalities
along the edges. Let the path end in a sink w labeled with a clause D. By Lemma 2.1, σ falsifies
D.

Let U := {v ∈ V | ∃C ∈ A,C is a clause of ϕv ◦ g}.
Assume that |Vars(

∧
v∈U ϕv)| < |Vars(Φ)| − q, then since σ̂|Cl(L(C)) is q-correct, there exists τ

extending σ̂|Cl(L(C)) such that τ satisfies
∧

v∈U ϕv. By Lemma 2.18, there exists a full assignment π
to lifted variables such that π̂ = τ and π satisfies ¬C. Then π satisfies

∧
v∈U ϕv ◦g, hence, π satisfies

all clauses from A. Since C is a semantic implication of A, π satisfies C, this is a contradiction
since π satisfies ¬C.

Hence, |Vars(
∧

v∈U ϕv)| ≥ |Vars(Φ)| − q. Since for all v ∈ V , all clauses from ϕv have the same
set of variables, Lemma 2.16 implies that |Vars(A)| = |Vars(

∧
v∈U ϕv ◦ g)|. Again by Lemma 2.16,

|Vars(A)| ≥ ℓ(|Vars(Φ)| − q) ≥ |Vars(Φ ◦ g)| − qℓ.
Consider W = ⟨L(C)∪Post(C)⟩. Using regularity, by Lemma 2.2, we get that dim(Post(C)) ≤

|Vars(Φ ◦ g)| − t, and thus dim(W) ≤ dim⟨L(C)⟩+dim(Post(C)) ≤ rk(¬C) + |Vars(Φ ◦ g)| − t. On
the other hand, for every clause D ∈ A, there is a path from C to D such that ¬C is consistent
with the system of all equations labeling the path’s edges. By Lemma 2.1, all variables that appear
in D are linear combinations of L(C) and the linear forms of the equations at the edges of this path
from C to D.

Hence, dim(W) ≥ |Vars(A)| ≥ |Vars(Φ ◦ g)| − qℓ. Combining those two inequalities together,
we get rk(¬C) ≥ t− qℓ.

26

5.2 Lower Bound for Regular Res(⊕)

Let Φ be an unsatisfiable CNF formula that can be represented in the form of
∧

v∈V ϕv, where ϕv
is a CNF formula, in which each clause consists of the same set of variables. Let Aq be the set of
all q-correct for Φ partial assignments. By advanced (Φ, q)-game of Prover and Delayer we denote
(Φ,Aq) games with empty starting position.

Theorem 5.2. Let Φ be an unsatisfiable CNF formula. Assume that in the (Φ, q)-game, Delayer
has a linearly described strategy that guarantees him to earn t white coins while paying at most c
black coins, where t+ q < |Vars(Φ)|. Let g : {0, 1}ℓ → {0, 1} be 2-stifling gadget. Then the size of
any regular Res(⊕) refutation of Φ ◦ g is at least 2t−qℓ−c(ℓ−1).

Proof. Consider a regular Res(⊕) refutation of Φ ◦ g and the linear branching program associated
with it. Consider a random full assignment σ of variables Φ ◦ g and make t steps according to σ
in the linear branching program starting from the source. The condition t+ q < |Vars(Φ)| implies
that any q-correct assignment of size at most t does not contradict any clause of Φ. Thus, by
Theorem 4.3 with probability 2−c(ℓ−1) we reach a node labeled with a linear clause C such that the
partial assignment σ̂|Cl(L(C)) is q-correct. Then by Theorem 5.1, rk(¬C) ≥ t− qℓ. Hence, a random

assignment satisfies ¬C with probability at most 2−t+qℓ. Thus, the refutation consists of at least
2t−qℓ−c(ℓ−1) linear clauses.

5.3 Lifted Tseitin formulas are hard for regular Res(⊕)

In this subsection, we give an example of the application of Theorem 5.2, namely, we show that
lifted Tseitin formulas based on spectral expanders are hard for regular Res(⊕).

Theorem 5.3. Let T(G, c) be an unsatisfiable Tseitin formula based on a spectral (n, d, α)-expander
G(V,E), where α < 1/2 and d ≥ 4. Let β ≤ 1

4 and t = βn be a natural number. Then in the
advanced (T(G, c), ϵt)-game, the natural strategy of Delayer (defined in Section 4.2) guarantees him
to earn t white coins while paying at most 2

d(1−α) t black coins, where ϵ = α
1−α + 2β

d · 1
(1−α)2

.

Proof. Since α < 1/2 and d ≥ 4, t = n/4 < dn
4 · 1−α

2 .
Consider ρ ∈ T such that |ρ| ≤ t. Let us show that ρ is ϵt-correct.
Let Gρ be the graph of the Tseitin formula T(G, c)|ρ. Let us denote by A the set of all vertices

that do not belong to the maximal connected component of Gρ. Since ρ ∈ T and |ρ| ≤ t < dn
4 · 1−α

2 ,
|A| < n/2. Since every move in the game corresponds to removing the edge in the graph, during the
first t steps we have removed at most t edges from G. Hence, by Lemma 2.14, t ≥ E(A, V \ A) ≥
d|A|1−α

2 . Thus, |A| ≤ 2t
d(1−α) .

Notice that |E(A,A)| equals two times the number of edges in G with both ends inside A.
Using Lemma 2.14, we can estimate the number of edges inside A as follows: 1

2 |E(A,A)| ≤
1
2

(
αd|A|+ d|A|2

n

)
= 1

2 |A|d(α+ |A|/n) ≤ t
1−α

(
α+ 2

d(1−α) t
n

)
= βn

(
α

1−α + 2β
d · 1

(1−α)2

)
= ϵt.

Let Pρ(v) denote the parity condition of the Tseitin formula T(G, c)|ρ for vertex v ∈ V . Consider
a inclusion minimal set U ⊆ V such that

∧
v∈U Pρ(v) is unsatisfiable. Since ρ ∈ T , the minimality of

U implies that U contains only vertices from the largest connected component. By Corollary 2.10,
U contains all vertices from the largest component. Hence, |Vars(

∧
v∈U Pρ(v))| = |Vars(T(G, c))| −

1
2 |E(A,A)| ≥ |Vars(T(G, c))| − ϵt.

27

Whenever we remove a bridge, the number of connected components increases by one.
Lemma 2.15 implies that during t moves, the number of times when the requested edge is a bridge
is at most 2

d(1−α) t. Hence, hence after t moves, Delayer, using the natural strategy, earns t white

coins and pays at most 2
d(1−α) t black coins.

Corollary 5.4. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget and G be an (n, d, α)-expander, where
d ≥ 6ℓ and α ≤ 1

6ℓ . Then, the size of any regular Res(⊕) refutation of T(G, c) ◦ g is at least 2Ω(n).

Proof. Let β = ⌊n/4⌋
n , clear that β = 1/4. By Theorem 5.3, Lemma 4.2 and Theorem 5.2, size of any

regular Res(⊕) refutation of T(G, c)◦g is at least 2t(1−ϵℓ)−t
(

2
d(1−α)

)
(ℓ−1)

, where ϵ = α
1−α+

2β
d · 1

(1−α)2
.

It is sufficient to have ϵ+ 2
d(1−α) =

α
1−α + 2β

d · 1
(1−α)2

+ 2
d(1−α) < 1/ℓ.

It is easy to verify that this is true since d ≥ 6ℓ, β ≤ 1
4 , and α ≤ 1

6ℓ :

α

1− α
+

2β

d
· 1

(1− α)2
+

2

d(1− α)
≤ 1

6ℓ
· 6
5
+

1

6ℓ
· 1
2
·
(
6

5

)2

+
1

3ℓ
· 6
5
≤ 1

5ℓ
+

1

6ℓ
+

2

5ℓ
< 1/ℓ.

6 Lifting from Resolution Depth

In this section, we show how to construct formulas that require large regular Res(⊕) refutations
based on formulas requiring large resolution depth. In Subsection 6.1, we define simplified games
that are very similar to games characterizing resolution depth. We show that the strategy in these
simplified games can be converted into the strategy in advanced games for the formula lifted by
the parity gadget. In Subsection 6.3, we define a mixing transformation of formulas that does not
change the formula semantically but allows us to convert strategies in the games characterizing
depth to the simplified games.

6.1 Simplified Games

Let Φ be an unsatisfiable CNF formula that can be represented in the form of
∧

v∈V ϕv, where ϕv
is a CNF formula, in which each clause consists of the same set of variables. We define one more
game associated with Φ and a natural number q.

A simplified (Φ, q)-game of Prover and Adversary. In this game there are two players:
Prover and Adversary. On every move, Prover chooses a variable x of the formula Φ, and Adversary
chooses the 0/1 value of this variable. The game ends when the current partial assignment is not
q-correct. For every his move Adversary earns a coin.

A strategy for the Adversary is a function f : H × Vars(Φ) → {0, 1}, where H is the set of all
possible sequences of k queries asked by Delayer in the previous rounds (so it is the sequences of the
form (xi1 , xi2 , . . . , xik)). The strategy is utilized naturally: on every step, given a previous sequence
of queries Q of Delayer and a last queried variable x, Adversary answers f(Q, x). Notice that in
this definition f does not depend on the previous answers of Delayer since Delayer can compute
these answers by itself if necessary.

28

If g : {0, 1}ℓ → {0, 1} is some gadget, then Φ ◦ g can be represented as
∧

v∈V (ϕv ◦ g). By
Lemma 2.16, all clauses of ϕv ◦ g use the same set of variables.

Lemma 6.1. Assume that there is a strategy of Adversary in the simplified (Φ, q)-game that allows
him to earn at least t coins. Let ⊕r : {0, 1}r → {0, 1} be the parity function. Then for the advanced
(Φ ◦ ⊕r, qr)-game, there is a linearly described strategy of Delayer that guarantees him to earn tr
white coins while paying at most t black coins.

Proof. Let Φ depend on variables y1, y2, . . . , ym. Then Φ ◦ ⊕r depends on variables {xi,j | r ∈
[m], j ∈ [r]}.

Let us present a linear description f of Delayer’s strategy. Let L be an ordered list of already
asked variables and xi,j be a new variable.

• If |L ∩ {xi,1, xi,2, . . . , xi,r}| < r − 1, then f(L, xi,j) = ∗.

• Otherwise, let L′ = {yj | {xj,1, xj,2, . . . , xj,r} ⊆ L}. Let for yi ∈ L, ni be the maximal number
in the list L of a variable with support i. We introduce an order in L′: yk is less than yj if
nk < nj . Consider the strategy of Adversary in the simplified game that guarantees him to
earn t coins. Assume that Prover chooses variables according to the introduced order in L′

and then asks yi. Let α ∈ {0, 1} be the value of yi according to this strategy. In this case
f(L, xi,j) :=

∑
k∈[r]\j xi,k + α.

Let us show that this strategy guarantees Delayer to earn tr white coins. Consider any subset
U ⊆ V such that |Vars(

∨
u∈U ϕu ◦ ⊕r)| < |Vars(Φ ◦ ⊕r)| − qr. By Lemma 2.16, |Vars(

∨
u∈U ϕU)| <

|Vars(Φ)| − q. Assume that Delayer uses the described strategy. Consider some state of the game
after at most tr moves. Let M = {k ∈ [m] | xk,j were requested for all j ∈ [r]}; |M | ≤ t. There
are at most t such k such that xk,i were asked. For m ∈ [k], values of

∑r
i=1 xki are fixed according

to the value of yk to the strategy of Adversary in the simplified game. Hence the current partial
assignment in the variables {yk | k ∈ M} can be extended to satisfy

∨
u∈U ϕU . So we can extend

partial assignment in the lifted variables to satisfy
∨

u∈U (ϕu ◦ ⊕r).
It is easy to see that for every moment when Delayer pays a black coin, there are at least (r−1)

moments when he does not pay. Hence the number of paid black coins is at most t.

6.2 Resolution Depth

Simplified games are similar to games characterizing resolution depth [30].
The depth of a resolution proof is the length of the shortest path between an empty clause and

a clause of the refuted formula. The resolution depth of an unsatisfiable CNF formula φ denoted by
dR(φ) is the minimal possible depth overall resolution refutations of φ. The resolution depth of an
unsatisfiable CNF formula φ can be characterized by the following game of Prover and Adversary:
on every move, Prover asks the value of the variable of φ and Adversary answers and earns a coin.
The game ends whenever the current assignment falsifies the clause of φ.

Lemma 6.2 ([30]). dR(φ) ≥ t iff Adversary has a strategy that guarantees him to earn at least t
coins.

The main difference between simplified (Φ, q)-games and games characterizing depth is the
condition of the end of the game. In the next subsection, we define the mixing operation for
formulas to map formulas with large resolution depth to formulas with good Adversary strategies
in simplified games.

29

6.3 Mixed Formulas

6.3.1 Mixers

A bipartite graph G(X,Y,E) is an (n,D, α, ϵ)-mixer if

1. |X| = n, |Y | = n;

2. Degrees of all vertices from X are at most D;

3. For every A ⊆ X and B ⊆ Y if |A| ≥ αn and |B| ≥ ϵn, then there is at least one egde between
A and B.

Lemma 6.3. For every integer n, real α ∈ (0; 1) and ϵ ∈ (0, 1) there exists an (n,D, α, ϵ)-mixer,
where D = O(1

ϵα).

Proof. We construct a graph with vertices X and Y such that |X| = n, |Y | = n by the random
process.

1. Initially, the set of edges E is empty;

2. For every v ∈ X repeat D = ⌈K 1
αϵ⌉ times (the value of K will be chosen later):

3. Choose u ∈ Y at random;

4. Add (v, u) to E;

For every A ⊆ X and B ⊆ Y such that |A| ≥ αn, |B| ≥ ϵn, the probability that there are no
edges between A and B is at most (1− ϵ)D|A| ≤ (1− ϵ)Kn/ϵ < e−Kn.

The number of pairs A and B is at most 22n. Hence by the union bound the probability that
there exist such A ⊆ X and B ⊆ Y such that |A| ≥ αn, |B| ≥ ϵn and there are no edges between
A and B is at most e−Kn22n that is less than 1 for K ≥ 2. Hence with positive probability, the
constructed graph is an (n,D, α, ϵ)-mixer with D = O(1

αϵ).

The explicit constructions of mixers can also be obtained from spectral expanders using the
expander mixing lemma (Lemma 2.14).

6.3.2 Mixed formulas

Let C be a clause and Z be a set of propositional variables with no occurrences in C. Let Clauses(Z)
be the set of all 2|Z| different clauses, each containing all variables from Z. We denote by pad(C,Z)
the CNF formula

∧
D∈Clauses(Z)(C ∨D).

Lemma 6.4. There is a resolution derivation of C from pad(C,Z) of length 2|Z| and of depth |Z|.

Proof. The proof is straightforward by induction on the number of variables in Z.

Lemma 6.5. C is semantically equivalent to pad(C,Z).

Proof. pad(C,Z) =
∧

D∈Clauses(Z)(C ∨D) and it is semantically equivalent to C ∨
∧

D∈Clauses(Z)D
and the later is semantically equivalent to C since

∧
D∈Clauses(Z)D is identically false.

30

Let φ =
∧

v∈V Cv be a CNF formula from n variables (for every v ∈ V , Cv is a clause) and
G(X,Y,E) be a bipartite graph with |X| = |Y | = n and with degrees of all vertices from X at
most D. We define a CNF formula mixG(φ) as follows:

• Let π1 be a bijection from Vars(φ) → X and π2 be a bijection from Y → Vars(φ).

• mixG(φ) =
∧

v∈V ψv, where ψv = pad(Cv, π2(Γ(π1(Vars(Cv)))) \Vars(Cv)), where for A ⊆ X,
Γ(A) is the set of neighbors of the set A in the graph G.

Notice that if φ is a k-CNF formula, then mixG(φ) is a kD-CNF formula. By Lemma 6.5,
mixG(φ) is semantically equivalent to φ.

Lemma 6.6. If G is (n,D, α, ϵ)-mixer, then if Vars(
∧

v∈V Cv) ≥ αn, then Vars(
∧

v∈V ψv) ≥ (1 −
ϵ)n.

Proof. The proof is straightforward.

6.3.3 Lifting from resolution depth

Lemma 6.7. Let a CNF formula φ with n variables have a resolution depth at least d; let G
be (n,D, d

2n , ϵ)-mixer. Then, in the simplified (mixG(φ), ϵn)-game, Adversary has a strategy that
guarantees him to earn at least ⌊d/2⌋ coins.

Proof. Adversary will use his strategy in the game characterizing the resolution depth of the formula
ϕ, given by Lemma 6.2. Consider the game after ⌊d/2⌋ moves. Let ρ be the current substitution.

Let mixG(φ) =
∧

v∈V ψv. Assume that for some U ⊆ V , ρ can not be extended to satisfy∧
v∈U ψv. By Lemma 6.5,

∧
v∈U ψv is semantically equivalent to

∧
v∈U Cv. Since ρ is the first part

of the strategy in the game characterizing depth, Vars(
∧

v∈U Cv) ≥ d
2 (otherwise, Prover can just

query all the variables from Vars(
∧

v∈U Cv) and end the game in less than d
2 steps). Hence, by

Lemma 6.6, Vars(
∧

v∈U ψv) ≥ (1− ϵ)n.

Theorem 6.8. Let φn be the family of unsatisfiable k-CNF formulas in n variables such that
dR(φn) ≥ αn. Let G be a (n,D, α, ϵ)-mixer, where ϵ = α/100, D = O(1

α2), that exists by

Lemma 6.3. Then any regular Res(⊕) refutation of mixG(φn)◦⊕5 ◦Maj5 has size at least 2αn/4−1.

Notice that if in the conditions of Theorem 6.8, k and α are constants, then mixG(φn)◦⊕5◦Maj5
is O(k)-CNF formula.

Proof. By Lemma 6.7, in the simplified (mixG(φn), ϵn)-game, there is a strategy of Adversary that
guarantees him to earn at least ⌊αn/2⌋ coins.

By Lemma 6.1, in the advanced (mixG(φn) ◦ ⊕5, 5ϵn) game there is a strategy of Delayer that
guarantees him to earn at least 5⌊αn/2⌋ white coins while paying at most ⌊αn/2⌋ black coins.

Maj5 : {0, 1}5 → {0, 1} is a 2-stifling gadget; hence, by Theorem 5.2, the size of any regular
Res(⊕) refutation of mixG(φn) ◦ ⊕5 ◦Maj5 is at least 25⌊αn/2⌋−25ϵn−4⌊αn/2⌋ ≥ 2αn/4−1.

31

7 Regular Res(⊕) Does Not Simulate Resolution

In this section, we give an alternative and improved separation between regular Res(⊕) and Reso-
lution firstly proved by Bhattacharya, Chattopadhyay, and Dvorak [7].

One of the possible ways to do it using our technique is to apply the combination of mixing
and lifting from the previous section to pebbling formulas Peb(Gn) that have O(n) variables and
resolution depth Ω(n/ log n) [30, 26]. The problem is that we need (n,D,O(1/ log n), O(1/ log n))
mixers, and for them, D = O(log2 n) and the resulting formula will have superpolynomial size.
This will imply some separation but not very good. Instead, we will consider Pebbling formulas on
the well-structured grid graphs. For such formulas, we can require a much weaker mixing property
that allows us to decrease the degree of mixers to O(log n).

Let Hn(Vn, En) be a directed grid graph with the set of vertices Vn = [n]× [n]. The edges are
oriented to the left and the bottom or formally 1) for i > 1, j > 1 the vertex (i, j) has two outgoing
edges to (i− 1, j) and (i, j − 1); 2) for j > 1, the vertex (1, j) has one outgoing edge to (1, j − 1);
and for i > 1 the vertex (i, 1) has one outgoing edge to (i− 1, 1).

We define the Pebbling formula Peb(Hn) as follows. The set of variables is {xv | v ∈ Vn}. The
formula Peb(Hn) is defined to be ¬x1,1 ∧

∧
v∈Vn

Cv, where Cv = xv ∨
∨

u∈Vn:(u,v)∈En

¬xu.

A bipartite graph G(X,Y,E) is called (n2, D, ϵ)-grid mixer if 1) |X| = |Y | = n2; let σ be a
bijection from Vn → X; 2) degree of all vertices from X are at most D; 3) for all A ⊆ [n] and
B ⊆ [n] such that |A| ≥ n/2 and |B| ≥ n/2 and all C ⊆ Y such that |C| ≥ ϵn, there is at least one
edge between σ(A×B) and C.

Lemma 7.1. For every integer n and real ϵ ∈ (0, 1) there exists an (n2, D, ϵ)-grid mixer, where
D = O(log n/ϵ).

Proof. We construct a graph with vertices X and Y such that |X| = n2, |Y | = n2 by the random
process. Let σ be a bijection from [n]× [n] → X.

1. Initially, the set of edges E is empty;

2. For every v ∈ X repeat D = ⌈K log n⌉ times (the value of K will be chosen later):

3. Choose u ∈ Y at random;

4. Add (v, u) to E;

For every A ⊆ [n] and B ⊆ [n] such that |A| ≥ n/2, |B| ≥ n/2 and every C ⊆ Y such that
|C| ≥ ϵn, the probability that there are no edges between σ(A×B) and C is at most (1− ϵ

n)
Dn2/4 ≤

(1− ϵ
n)

n
ϵ
·ϵKn logn/4 < e−Kϵn logn/4.

The number of pairs A and B is at most 22n, and the number of different C is at most
(
n2

ϵn

)
≤

22ϵn logn. Hence by the union bound the probability that there exist such A ⊆ [n] and B ⊆ [n] and
C ⊆ Y such that |A| ≥ n/2, |B| ≥ n/2, |C| ≥ ϵn and there are no edges between σ(A×B) and C
is at most e−Knϵ logn/422n+2n lognϵ that is less than 1 for K ≥ 16

ϵ . Hence with positive probability,

the constructed graph is an (n,D, α, ϵ)-mixer with D = O
(
logn
ϵ

)
.

Let Gn,ϵ be an (n2, D, ϵ)-grid mixer with D = O
(
log(n)

ϵ

)
. Consider the Pebbling formula

Peb(Hn) = ¬x1,1 ∧
∧

v∈Vn

Cv and let Φn,ϵ := ¬x1,1 ∧mixG

(∧
v∈Vn

Cv

)
.

32

Theorem 7.2. In the simplified (Φn,ϵ, ϵn)-game there is a strategy of Adversary that guarantees
him to earn at least n/4 coins.

Proof. For every i ∈ [n] we define the ith cross as the set of vertices {(a, b) ∈ Vn | a = i or b = i}.
The top-right part of the ith cross is the set of vertices {(a, i), (i, a) | a > i}.
Let us describe the Adversary’s strategy. Adversary has two variables i and p, where i takes

values from [n] and p denotes a path in Hn from (i, i) to (1, 1). Initially i = 1 and p consists of the
only vertex (1, 1). During the game, Adversary maintains the following invariant:

• For every i′ < i there were requests to variables from i′th cross.

• There were no requests to variables from the top-right part of the ith cross.

• If a variable xv was requested, then xv was assigned to 0 if v belongs the path p and to 1
otherwise.

The strategy of Adversary is as follows. Let Prover ask the value of xv

• Adversary responds 0 if v belongs p and 1, otherwise;

• If v belongs to top-right part of the i-th cross, then

– Let j be the number of the minimal cross such that there were no requests to its variables.
If there are no such crosses, Adversary gives up. Notice that the invariant guarantees
j > i.

– Since v is the first request to the top-right part of the ith cross, one of the following paths
does not contain any requests (j, j), (j−1, j), . . . , (i, j), (i, j−1), . . . , (i, i) or (j, j), (j, j−
1), . . . , (j, i), (j − 1, i), . . . , (i, i); let p′ denotes this path.

– i := j; the new value of p is p′ prolonged by the previous value of p.

Let t be an integer number and t ≤ n/4. Consider the moment after t rounds of the game where
Adversary follows the described strategy. Notice that every two crosses have exactly two common
vertices, hence there are crosses without requests, and Adversary does not give up. Let k be the
number of requests made to the first i− 1 crosses during the first t rounds. Since every two crosses
have two common vertices and all crosses with numbers lesser than i contain requests, k ≥ i−1

2 .
Let A = {l | i ≤ l ≤ n and there are no requests to variables xl,j for j ∈ [n]} and B = {l | i ≤

l ≤ n and there are no requests to variables xj,l for j ∈ [n]}.
|A| ≥ (n− (i− 1))− (t− k) ≥ (n− 2k)− (t− k) ≥ n− 2t ≥ n/2. Analogously, |B| ≥ n/2.
Let us verify that the current partial assignment is ϵn-correct.
Let Φn,ϵ = ¬x1,1 ∧

∧
v∈Vn

ψv, where ψv is the result of pad applied to Cv.

Consider some U ⊆ Vn. If A × B ⊆ U , then Vars(
∧

v∈U ψv) ≥ n2 − ϵn by the property of the
greed-mixer G. Assume that there is u such that u ∈ A × B and u /∈ U . We will show that the
current assignment can be extended to satisfy ¬x1,1∧

∧
v∈Vn\{u}

Cv. Since Cv and ψv are semantically

equivalent, we will get that the current assignment can be extended to satisfy ¬x1,1 ∧
∧
v∈U

ψv.

Let u ∈ A × B. We claim that the formula ¬x1,1 ∧
∧

v∈Vn\{u}
Cv can be satisfied by extending

the current assignment from the game. Indeed, there is the following path p′ from u to (i, i): at

33

first, we decrease the first coordinate to level i and then decrease the second coordinate to level
i. Consider an assignment that assigns 0 to vertices of p and p′ and 1 to all other variables. By
the construction of the strategy, this assignment agrees with the current assignment. It is easy
to see that Cu is the only unsatisfied condition from Peb(Hn). Thus, the current assignment is
(ϵn)-correct.

Corollary 7.3. The size of any regular Res(⊕) refutation of Φn,ϵ ◦⊕r ◦Majℓ is at least 2
n/4, where

ℓ = 5, r = 6 and ϵ = 1/120.

Proof. By Theorem 7.2 and Lemma 6.1, in the advanced (Φn,ϵ ◦ ⊕r, ϵrn) game there is a strategy
of Delayer that guarantees him to earn at least rn/4 white coins while paying at most n/4 black
coins.

Since Majl is a 2-stifling gadget for l ≥ 5, by Theorem 5.2, the size of any regular Res(⊕)
refutation of Φn ◦ ⊕r ◦Majℓ is at least 2

n
4
r−ϵrℓn−n

4
(ℓ−1). Let us choose ℓ = 5, r = 6 and ϵ = 1

4rℓ =

1/120, then we get the size lower bound 2n/4.

Lemma 7.4. Let g : {0, 1}r → {0, 1} be a gadget. If a CNF formula φ has a resolution refutation
Π of size S and width w and depth d, then the formula φ ◦ g has a resolution refutation of size
S2O(wr) and depth O(dr).

Proof. It is enough to show that each step of the resolution derivation Π can be simulated with the
lifted derivation of size 2O(rw) and depth O(r). Let the set Y = {y1, y2, . . . , ym} be a set of unlifted
variables and the set X = {xi,j | i ∈ [m], j ∈ [r]} be a set of lifted variables.

Consider a resolution step in which we derive A ∨B from A ∨ yi and B ∨ ¬yi, where the width
of the abovementioned clauses is bounded by w. First, we derive (A ∨B ∨ yi) ◦ g from (A ∨ yi) ◦ g
and (A∨B∨¬yi) ◦ g from (B∨¬yi) ◦ g by using the weakening rule. This can be done with a depth
1 parallel derivation with 2O(rw) steps. Then both (A ∨B ∨ yi) ◦ g and (A ∨B ∨ ¬yi) ◦ g consist of
at most 2O(wr) clauses of the following form: D ∨Dyi , where clause D belongs to (A ∨ B) ◦ g and
clause Dyi belongs to yi ◦ g (or ¬yi ◦ g).

Now, consider any particular D from (A∨B) ◦ g. For any possible subset of literals li,1, . . . , li,r
where each li,j is either xi,j or ¬xi,j we know that li,1 ∨ . . . ∨ li,r belongs as a clause to the CNF
corresponding to either yi ◦ g or (¬yi) ◦ g. Thus, D can be derived with the derivation of depth r
and size 2r from D ∨ (yi ◦ g) and D ∨ ((¬yi) ◦ g). By applying those derivations in parallel, we get
that (A ∨B) ◦ g can be derived with size 2O(wr) and depth O(r).

Theorem 7.5. Suppose ε, r and ℓ are constants. Then formula Φn,ε ◦ ⊕r ◦Majℓ has a resolution
refutation of size poly(n) and depth O(n).

Proof. We consider the following resolution refutation of Φn,ε, which consists of two steps:

1. For each v ∈ Vn we derive ψv from mixG(ψv) by Lemma 6.4. This can be done in parallel
with at most poly(n) steps and both depth and width O(log n).

2. After deriving ψv for each v ∈ Vn we consider a topological order on the graph Hn. Starting
from variable xn,n, we derive xn−1,n from xn−1,n ∨¬xn,n and xn,n−1 from xn,n−1 ∨¬xn,n. We
continue this procedure for each v ∈ Vn by deriving xv from xv ∨

∨
u∈Vn:(u,v)∈En

¬xu and xu,

where u ∈ Vn is such that (u, v) ∈ En. Since those steps essentially follow the graph Hn, the
graph of this refutation has depth O(n) and has poly(n) steps. In the end we resolve x1,1
with ¬x1,1 to get an empty clause. The width of this part of the refutation is constant.

34

All together this gives a refutation of size poly(n), width O (log n), and depth O (n). After appli-
cation of Lemma 7.4 to this refutation with gadget ⊕r ◦ Majℓ, we get a resolution refutation of
Φn,ε ◦ ⊕r ◦Majℓ of size poly(n) and depth O(n).

8 Size vs Depth Tradeoff for Res(⊕)

Theorem 8.1. Let φ be an unsatisfiable CNF formula. Let A be a set of partial assignments
for Vars(φ) such that for any σ ∈ A, σ does not falsify any clause of φ and A is closed under
restrictions (i.e., if ρ ∈ A and τ ⊆ ρ, then τ ∈ A). Assume that there are integers t and c such
that for every ρ ∈ A such that |ρ| < t, in the (φ,A)-game with start position ρ there is a linearly
described strategy of Delayer that guarantees him to earn at least t− |ρ| white coins while paying at
most c black coins. Let g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Then any Res(⊕) refutation of
φ ◦ g has either size at least 2c or depth at least t

2 logℓ+2

(
t
2c

)
.

Proof. We say that a linear clause C in lifted variables is A-good if there is a solution τ of ¬C such
that τ̂ |Cl(L(C)) ∈ A.

Consider a Res(⊕) refutation of φ ◦ g and denote is by Π.

Claim 8.2. Assume that Π contains an A-good linear clause C0 such that rk(¬C0) ≤ r, where
r < t. Let St−r(C0) denote the set of all A-good clauses C such that there is a path from C0 to C
of length t − r in the branching program associated with Π. Assume that for every C ∈ St−r(C0),
rk(¬C) ≥ r(ℓ+ 1) + cℓ holds. Then, the size of the refutation Π is at least 2c.

Proof. Since C0 is A-good, there is a solution τ0 of ¬C0 such that τ̂0|Cl(L(C)) ∈ A. Let us denote
ρ0 := τ̂0|Cl(L(C0)). Then |ρ0| ≤ |Cl(L(C0))| ≤ rk(¬C0) ≤ r. By the conditions of the theorem,
there is a linearly described strategy of Delayer in the (φ,A)-game with starting position ρ0 that
guarantees him to earn t− |ρ0| white coins while paying at most c black coins.

Let Σ be the set of all assignments π such that π satisfies ¬C0 and π̂|Cl(L(C0)) = ρ0. Since
τ0 ∈ Σ, Σ ̸= ∅.

Consider a random assignment σ ∈ Σ and make t−r steps in the linear branching program from
C0 according to σ. Notice that t− r ≤ (t− |ρ0|)+ |ρ0| − rk(¬C0). Let C be the linear clause at the
end of the path. By Theorem 4.3, with probability at least 2−(ℓ−1)c, C is A-good. By Lemma 2.19,
C is not a clause of ϕ ◦ g, hence, C ∈ St−r(C0). Thus, rk(¬C) ≥ r(ℓ+ 1) + cℓ.

Let τ be a random full assignment of variables φ ◦ g.
Let us estimate Pr[τ ∈ Σ] ≥ Pr[τ satisfies ¬C0,∀i ∈ Cl(L(C0)), j ∈ [ℓ], τ(xi,j) = τ0(xi,j)] ≥

2−r(ℓ+1). In the last inequality, we used that the event is defined by a satisfiable linear condition
on τ of rank at most rk(¬C0) + ℓ|Cl(L(C0))| ≤ r(ℓ+ 1). Then

Pr[Π contains a linear clause C with rk(¬C) ≥ r + cℓ such that τ satisfies ¬C] ≥
Pr[Π contains a linear clause C with rk(¬C) ≥ r + cℓ such that τ satisfies ¬C | τ ∈ Σ]·

Pr[τ ∈ Σ] ≥ 2−(ℓ−1)c2−r(ℓ+1).

If Ψ is a satisfiable linear system such that rk(Ψ) ≥ r(ℓ + 1) + cℓ, then Pr[σ satisfies Ψ] ≤
2−r(ℓ+1)−cℓ. Hence, the refutation contains at least 2c clauses C such that rk(¬C) ≥ r(ℓ+1)+cℓ.

35

Let D0 denote the empty clause from Π. If for every A-good clause C such that there is a path
from D0 to C of length t, rk(¬C) is at least c(ℓ+2), then (since c(ℓ+2) > cℓ) by Claim 8.2, the size
of the refutation Π is at least 2c. Otherwise, there is an A-good clause D1 such that there is a path
from D0 to D1 of length t and rk(¬D1) ≤ c(ℓ+ 2). Let k := ⌈logℓ+2(

t
2c)⌉, then c(ℓ+ 2)k−1 ≤ t/2.

We repeat the same reasoning k − 1 more times for all i from 1 to k − 1 maintaining invariant
rk(¬Di) ≤ c(ℓ+ 2)i: if for every A-good clause C such that there is a path from Di to C of length
t − c(ℓ + 2)i, rk(¬C) is at least c(ℓ + 2)i+1, then (since c(ℓ + 2)i+1 > c(ℓ + 2)i(ℓ + 1) + cℓ) by
Claim 8.2, the size of Π is at least 2c. Otherwise, there is an A-good clause Di+1 such that there
is a path from Di to Di+1 of length t− c(ℓ+ 2)i and rk(¬Di+1) ≤ c(ℓ+ 2)i+1.

So we get that either the size of refutation is at least 2c or depth is at least the length of the path
from D0 to D1, from D1 to D2, etc, from Dk−1 to Dk which is at least kt/2 ≥ t

2 logℓ+2

(
t
2c

)
.

Corollary 8.3. Let T(G, c) be an unsatisfiable Tseitin formula based on a spectral (n, d, α)-
expander. Then, any Res(⊕) refutation of T(G, c) ◦ Maj5 has either size at least 2n or depth

at least n ·
⌊
d · (1−α)

16

⌋
log7

⌊
d · 1−α

16

⌋
. In particular, if d = Θ(log n) and α < 1 is a constant, then

T(G, c) ◦ Maj5 is a formula with m = 5dn/2 variables and of size poly(m). And any Res(⊕)
refutation of T(G, c) ◦Maj5 has either size at least 2Ω(m/ logm) or depth at least Ω(m log logm).

Proof. Consider the set of partial assignments T and the natural strategy of Delayer in the
(T(G, c), T)-game defined in Subsection 4.2. Let us denote t := ⌊dn(1 − α)/8⌋. Consider some
ρ ∈ T , then the natural strategy of Delayer in the (T(G, c), T)-game with starting position ρ
guarantees him to earn at least t − |ρ| white coins. The number of paid black coins does not
exceed the possible number of connected components, which is at most n. By Lemma 4.2, this
strategy is linearly described. The gadget Maj5 is 2-stifling, hence, by Theorem 8.1 we get
that size of any Res(⊕) refutation of T(G, c) ◦Maj5 has either size at least 2n or depth at least
t
2 log7(t/2n) ≥ n ·

⌊
d · (1−α)

16

⌋
log7

⌊
d · 1−α

16

⌋
.

9 Further Research

Chattopadhyay and Dvořák [8] recently established the following lifting theorem: if every resolution
refutation of a CNF formula φ of width at most w requires depth at least d, then for every strongly
stifling gadget g, any tree-like Res(⊕) refutation of the lifted formula φ ◦ g of width at most w
must have size at least 2d. The class of strongly stifling gadgets forms a strict subclass of the class
of 1-stifling gadgets.

Efremenko and Itsykson [14] recently extended this result to encompass all 1-stifling gadgets.
Their approach builds on our game-based framework but introduces a refined tool—namely, the
notion of amortized closure. This concept ensures that when a new linear form is added to a set,
the closure can grow by at most one element. This refinement enables a more precise analysis in
our proof of the depth-vs-size tradeoff, allowing the achievable depth to be improved up to cn log n.

We consider it interesting to address the following questions connected with our research.

1. The lifting theorem from [9] applies to parity decision trees in the Boolean case. Developing
a similar technique for strongly read-once branching programs [20] would be an interesting
direction.

36

2. Lifting was used to establish the NP-hardness of automating algebraic proof systems [12].
Can the lifting approach from the paper similarly prove that regular Res(⊕) is NP-hard to
automate?

3. Our lower bound for bounded-depth Res(⊕) applies only to lifted Tseitin formulas. Extending
it to a broader class of formulas could be valuable, potentially aiding in separating unrestricted
Res(⊕) from bounded-depth Res(⊕).

Acknowledgments. The authors thank Klim Efremenko, Michal Garlik, Yuval Filmus, and
Alexander Knop for their fruitful discussions, and the anonymous reviewers for their useful com-
ments that helped improve the exposition.

References

[1] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14:417–433, 1988.

[2] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. Theory Comput., 3(1):81–102, 2007.

[3] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 190–199. IEEE Computer Society,
2001.

[4] Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks.
Discrete Mathematics, 306(10-11):1068–1071, 2006.

[5] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width.
Journal of Computer and System Sciences, 74(3):323–334, 2008. Computational Complexity
2003.

[6] Paul Beame and Sajin Koroth. On Disperser/Lifting Properties of the Index and Inner-
Product Functions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer
Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 14:1–14:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[7] Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvorák. Exponential sep-
aration between powers of regular and general resolution over parities. In Rahul Santhanam,
editor, 39th Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor,
MI, USA, volume 300 of LIPIcs, pages 23:1–23:32. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024.

[8] Arkadev Chattopadhyay and Pavel Dvorak. Super-critical trade-offs in resolution over parities
via lifting. Electron. Colloquium Comput. Complex., TR24-132, 2024.

[9] Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting to parity
decision trees via stifling. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Com-
puter Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts,

37

USA, volume 251 of LIPIcs, pages 33:1–33:20. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2023.

[10] Jeff Cheeger. A Lower Bound for the Smallest Eigenvalue of the Laplacian, pages 195–200.
Princeton University Press, Princeton, 1971.

[11] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof sys-
tems. Journal of Symbolic Logic, 44(1):36–50, 1979.

[12] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is np-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 209–222. ACM, 2021.

[13] Klim Efremenko, Michal Garĺık, and Dmitry Itsykson. Lower bounds for regular resolution
over parities. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of
the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC,
Canada, June 24-28, 2024, pages 640–651. ACM, 2024. The full version is available as ECCC
technical report TR23-187.

[14] Klim Efremenko and Dmitry Itsykson. Amortized closure and its applications in lifting for
resolution over parities. Electron. Colloquium Comput. Complex., TR25-039, 2025.

[15] Michal Garĺık and Leszek Aleksander Kolodziejczyk. Some subsystems of constant-depth frege
with parity. ACM Trans. Comput. Log., 19(4):29:1–29:34, 2018.

[16] Ludmila Glinskih and Dmitry Itsykson. Satisfiable tseitin formulas are hard for nondeterminis-
tic read-once branching programs. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François
Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages
26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[17] Svyatoslav Gryaznov. Notes on resolution over linear equations. In René van Bevern and
Gregory Kucherov, editors, Computer Science - Theory and Applications - 14th International
Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Russia, July 1-5, 2019,
Proceedings, volume 11532 of Lecture Notes in Computer Science, pages 168–179. Springer,
2019.

[18] Svyatoslav Gryaznov, Sergei Ovcharov, and Artur Riazanov. Resolution over linear equations:
Combinatorial games for tree-like size and space. ACM Trans. Comput. Theory, jul 2024. Just
Accepted.

[19] Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching programs and
directional affine extractors. In Shachar Lovett, editor, 37th Computational Complexity Con-
ference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[20] Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching programs and
directional affine extractors. In Shachar Lovett, editor, 37th Computational Complexity Con-
ference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

38

[21] Dmitry Itsykson and Artur Riazanov. Proof complexity of natural formulas via communication
arguments. In Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC
2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs,
pages 3:1–3:34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[22] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combinations. In
Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foun-
dations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 372–383. Springer, 2014.

[23] Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann.
Pure Appl. Log., 171(1), 2020.

[24] Jan Kraj́ıček. Randomized feasible interpolation and monotone circuits with a local oracle. J.
Math. Log., 18(2):1850012:1–1850012:27, 2018.

[25] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,
September 1988.

[26] W.J. Paul, R.E. Tarjan, and J.R. Celoni. Space bounds for a game on graphs. Math. Systems
Theory, 10:239–251, 1976.

[27] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41:333–338, 1987.

[28] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. Proceedings of the nineteenth annual ACM symposium on Theory of computing,
1987.

[29] A. Urquhart. Hard examples for resolution. JACM, 34(1):209–219, 1987.

[30] Alasdair Urquhart. The depth of resolution proofs. Stud Logica, 99(1-3):349–364, 2011.

39

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

