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Abstract

We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large
class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a
similar result for almost satisfiable Max-CSPs.

Our framework is based on a new hybrid approximation algorithm, which uses a combination of
the Gaussian elimination technique (i.e., solving a system of linear equations over an Abelian group)
and the semidefinite programming relaxation. We complement our algorithm with a matching dictator
vs. quasirandom test that has perfect completeness.

The analysis of our dictator vs. quasirandom test is based on a novel invariance principle, which we
call the mixed invariance principle. Our mixed invariance principle is an extension of the invariance
principle of Mossel, O’Donnell and Oleszkiewicz [Annals of Mathematics, 2010] which plays a crucial
role in Raghavendra’s work. The mixed invariance principle allows one to relate 3-wise correlations
over discrete probability spaces with expectations over spaces that are a mixture of Guassian spaces and
Abelian groups, and may be of independent interest.

1 Introduction

1.1 Constraint Satisfaction Problems

The class of constraint satisfaction problems (CSPs in short) consists of some of the most studied computa-
tional problems in artificial intelligence, database theory, logic, graph theory, and computational complexity.
Given a predicate P : Σk → {0, 1} for some finite alphabet Σ, a P -CSP instance consists of a set of vari-
ables X = {x1, x2, . . . , xn} and a collection of local constraints C1, C2, . . . , Cm, each one of the form
P (xi1 , xi2 , . . . , xik) = 1. Here and throughout, we refer to the parameter k as the arity of the CSP. For a
class of predicates P ⊆ {P : Σk → {0, 1}}, an instance of P-CSP consists of a set of variables X and a
colleciton of constraints C1, . . . , Cm each one of the form P (xi1 , xi2 , . . . , xik) = 1 for some P ∈ P . The
value of an instance Υ, denoted by val(Υ), is the maximum fraction of the constraints that can be satisfied
by an assignment to the variables.

The most natural decision problem associated with instances of P-CSP is the satisfiability problem:
given an instance Υ of P-CSP, determine if it is satisfiable, i.e. , if there exists an assignment A : X → Σ
satisfying all of the constraints of Υ. In a relaxation of this problem called the Max-P-CSP problem (which
is most relevant to this paper), one is given an instance Υ of P-CSP, and the task is to efficiently find
an assignment to the variables that satisfies as many of the constraints as possible. An α-approximation
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algorithm is a polynomial-time algorithm that, given an instance Υ, finds an assignment satisfying at least
α · OPT(Υ) fraction of the constraints, where OPT(Υ) is the value of the optimal assignment.

The study of CSPs has driven some of the most influential developments in theoretical computer science,
including the theory of NP-completeness [21, 40], the PCP theorem [1, 2, 24], the development of semidefi-
nite programming algorithms [28, 35, 53, 54, 46, 18], the Unique Games Conjecture (UGC in short) and its
consequences [36, 46], the dichotomy theorem [23, 17, 52] and more. Below, we elaborate on two of these
topics.

The Dichotomy Theorem: a systematic study of the complexity of solving CSPs was started by Schaefer
in 1978 [48], who showed that for every predicate P over a Boolean alphabet, the problem of checking
satisfiability of a P -CSP instance is either in P or is NP-complete. Note that this is not a trivial statement:
by Lander’s theorem [39], if P̸=NP, then there are languages that are not in P nor are NP-hard; these are
often called NP-intermediate problems. Thus, another way of stating Shaefer’s theorem is that CSPs over
Boolean alphabets cannot be NP-intermediate. Feder and Vardi [23] conjectured that Shaefer’s theorem
holds for all finite alphabets, and this statement is often referred to as the Dichotomy Conjecture. Much
effort has gone into studying the dichotomy conjecture, mainly using the tools of abstract algebra. The
conjecture was recently resolved by Bulatov and Zhuk (independently) [17, 52], who proved that, indeed,
for any family of prediactes P , the decision problem P-CSP is either in P or is NP-complete.

Approximating Almost Satisfiable Instances: the complexity of approximating almost satisfiable in-
stances is rather well understood by now. Here and throughout, we say that an instance Υ is almost satisfi-
able if OPT(Υ) ⩾ 1− ε where ε > 0 is a small constant.

Some of the theory here is based on the PCP theorem [24, 2, 1]. As an example, an important result
of Håstad [33] states that for all ε > 0, given an instance Υ of the Max-3-Lin problem promised to have
OPT(Υ) ⩾ 1− ε, it is NP-hard to find an assignment satisfying at least 1/2 + ε fraction of the constraints.
Here, the Max-3LIN problem is the problem Max-P-CSP where P = {P0, P1} and Pa : F3

2 → {0, 1}
is defined by Pa(x, y, z) = 1x+y+z=a. In fact, Håstad’s hardness result [33] also applies to the decision
version of the problem: for every ε > 0, it is NP-hard to distinguish between the cases val(Υ) ⩾ 1− ε and
val(Υ) ⩽ 1/2 + ε.

Getting a more comprehensive understanding of the approximability of almost satisfiable CSPs requires
a stronger PCP characterization of NP, in the form of the Unique Games Conjecture (UGC) [36]. Assuming
UGC, Raghavendra [46] showed that for every collection of predicates P and ε > 0, there is a constant βP
such that:

1. Algorithm: there exists a polynomial-time algorithm that given an instance Υ of P-CSP promised to
have OPT(Υ) ⩾ 1−ε, outputs an assignment satisfying at least βP fraction of the constraints. Clearly,
this also means that there exists a polynomial-time algorithm that distinguishes instances with a value
at least 1− ε from instances with a value at most almost βP .

2. Hardness: for all δ > 0, given an instance Υ, it is NP-hard to distinguish between the case that
val(Υ) ⩾ 1− ε− δ, and the case that val(Υ) ⩽ βP + δ.

In words, Raghavendra’s result asserts that for every collection of predicates, the approximability of almost
satisfiable instances exhibits a dichotomy between approximation ratios that can be achieved in polynomial
time, and those that are NP-hard (assuming UGC).
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1.2 Approxmiating Satisfiable Instances

The complexity of approximating satisfiable CSPs is much more complicated and remains mostly unsolved
as of now (even under reasonable conjectures in the style of UGC [36]). The proof of the dichotomy
theorem implies that for P for which P-CSP is NP-complete, there exists a constant 0 < δP < 1 such that
it is NP-hard to distinguish satisfiable instances from instances with value at most δP . However, unlike the
almost-satisfiable case, we do not know tight inapproximability results for satisfiable instances for every
P . There are only a few P’s for which we know the existence of αP for which efficient αP approximation
of Max-P-CSP is possible, while αP + ε approximation is NP-hard, and even fewer P’s for which we
know the value of αP . An example for such problem is the 3-SAT problem, for which Håstad [33] proved
that α3SAT = 7/8 works (and more generally αkSAT = 1 − 1/2k for the k-SAT problem). Another
example is the NTW predicate1 that received much attention [43, 44, 37], for which the optimal threshold
of αNTW = 5/8 was shown by Håstad [34]. The problem of determining the existence of the ratio α and
pinning it down gets very difficult very quickly though; see [15] for the case of the NAE predicate.

1.3 The Dichotomy Approximation Conjecture

Motivated by the dichotomy theorem and Raghavendra’s theorem discussed above, in [7] the authors sug-
gested the following statement, referred to as the Approximation Dichotomy Conjecture:

Conjecture 1.1 (Approximation Dichotomy Conjecture). For all k ∈ N and for all collections of k-ary
predicates P for which P-CSP is NP-hard, there exists a constant αP such that:

1. Algorithm: there is a polynomial-time algorithm that distinguishes satisfiable instances of Max-P-
CSP from instances with value at most αP .

2. Hardness: for all ε > 0, it is NP-hard to distinguish satisfiable instances of Max-P-CSP from in-
stances with value at most αP + ε.

In words, the approximation dichotomy conjecture states that the complexity of the approximating Max-
P-CSP exhibits a rapid phase transition between approximation ratios that can be achieved by polynomial-
time algorithms, and approximation ratios that are NP-hard to achieve. In other words, the approximation
problem is never NP-intermediate.

A sequence of works [7, 9, 10, 11] made progress on the case k = 3 of Conjecture 1.1, focusing on
the “hardness” part; we elaborate on these works below. The goal of the current paper is to make further
progress on the case that 3-ary predicates and address the “algorithmic” part of Conjecture 1.1. In particular,
we propose an approximation algorithm for a wide class of CSPs, and develops tools to bridge between its
performance and the “hardness” side of the conjecture.

1.3.1 Why 3-ary Predicates?

In full generality, Conjecture 1.1 is likely to be very difficult to settle. Settling it, even for certain classes
of CSPs, requires one to study associated, very general analytical problems. These problems include within
them (as subcases) the inverse theorems for Gowers’ uniformity norms over finite fields [5, 50, 51]. In
fact, the resulting analytical problem for k-ary predicates implies a generalization of the inverse theorem
for Gowers’ Uk−1-norms. For instance, the main result of [11] is a solution to this analytical problem for

1The accepting assignments of the predicate NTW are {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
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k = 3, and it can be used to study the density of restricted 3-AP free sets [8], a result which was previously
unknown. As the difficulty in the study of Gowers’ uniformity norms sharply increases when k is large, it
stands to reason the associated analytical problems we study also become more challenging as k increases.
Hence we focus on the simplest case that is not understood, k = 3, which is already highly non-trivial. It is
also reasonable to expect that the resolution of the analytical problem for general k will ultimately proceed
by induction on k, in which scenario the case k = 3 will be the base case of this induction.2

We remark that prior works, and more specifically Raghavendra’s theorem [46] as well as the dichotomy
theorem [17, 52], have side-stepped these issues. First, due to the imperfect completeness Raghavendra
requires only fairly simple inverse theorems (corresponding to distributions with full support), and the argu-
ment is essentially the same for all k. Second, in the context of the dichotomy theorem one does not have to
worry about preserving approximation ratios, and the difference between this case and our case is analogous
to the difference between the Hales-Jewett theorem [32] and the density Hales-Jewett theorem [25, 27, 45].

1.3.2 Approximation Algorithms vs Hardness Reductions

To characterize the right approximation threshold for Max-P-CSP, one has to work in two fronts and make
them meet: the algorithmic front and the hardness front. In this section we discuss these two fronts, the way
it is manifested in almost satisfiable CSPs, and the difference between that and the case of satisfiable CSPs.

Dictatorship tests as evidence for hardness: dictatorship tests are one of the most important components
in hardness of approximation results. A function f : Σn → Σ is called a dictatorship function if it depends
only on one variable. A dictatorship test is a procedure that queries f at a few (correlated) locations ran-
domly, and based on the function values at these locations it decides if f is a dictator function or far from
any dictator function. For brevity, we often refer to the latter type of functions as quasirandom functions.

We briefly describe the notion of being far from dictator functions here. The influence of a coordinate i
on a function f : (Σn, νn)→ C is the amount it affects the value of f at a random input, i.e.,

Ii[f ] = E
(x1,...,xn)∼νn

x′
i∼ν

[∣∣f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

∣∣2].
Note that dictatorship functions have one coordinate whose influence is 1. A function is called far from
dictatorship functions if, for every coordinate i, the influence of the coordinate i in f is small. There are
three important properties of a dictatorship test that are useful in getting the hardness of approximation result
for Max-P-CSP:

1. The completeness c, which is the probability that test accepts any dictatorship function.

2. The soundness s, which is the probability that the test accepts any function which is far from being a
dictatorship.

3. The check that the test makes: if the dictatorship test makes k queries, say to the points x(1), . . . , x(k),
and performs a check of the form P (f(x(1)), . . . , f(x(k))) = 1, for P ∈ P , then it can be used to
get a hardness result for Max-P-CSP.

Typically, a dictatorship test with parameters 0 < s < c ⩽ 1 that uses a collection of predicates P , can
be converted to an NP-hardness result for the following promise problem: given an instance Υ of CSP-P

2Many of the proofs of the inverse theorem for Gowers’ uniformity norms indeed proceed in this fashion.
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promised to be at least c-satisfiable, find an assignment satisfying at least s fraction of the constraints. While
this transformation is far from being automatic in general,3 dictatorship tests are often thought of as strong
evidence towards this form of hardness of approximation result. Thus, the hardness part of Conjecture 1.1
requires dictatorship tests with c = 1, which we refer to as perfect completeness.

Dictatorship tests with perfect completeness: the papers [7, 9, 10, 11] develop tools to analyze dictator-
ship tests with perfect completeness. This case turns out to be considerably more complicated than the case
of imperfect completeness. Whereas in the latter case, one can change the dictatorship test slightly (to gain
desirable features from it) at only a mild cost in the completeness parameter, this is unaffordable once we
take c = 1. In particular, the paper [11] gives a “quasirandom” versus “dictatorship” result for a wide class
of 3-ary predicates.

Matching the dictatorship test via an algorithm: to match the performance of the dictatorship test, an
approximation algorithm has to gain insights from the soundness analysis of the test. At a high level, the
algorithm has to be able to utilize any quasirandom function in an algorithmic way.

In the context of Raghavendra’s theorem [46], the class of quasirandom functions consists of low-degree
functions with no influential coordinates [41]. To utilize these functions algorithmically, the powerful invari-
ance principle of [42] is used, asserting that these type of functions essentially come from Gaussian space.
As Gaussian samples can be produced algorithmically by solving the semi-definite programming relaxation
and multiplying by vector-valued Gaussian random variables, this gives rise to an algorithm.

In the context of satisfiable CSPs, the class of quasirandom functions is more rich in general. In fact,
this class may even depend on the specific predicate in question. In many cases of interest this class includes
low-degree functions as well as Fourier characters, and it is not immediately clear how to use these types
of functions algorithmically. The invariance principle of [42] fails for these types of functions, and more
information (besides the one gained from the semi-definite programming relaxation) seems necessary for
an algorithm. The main contribution of the current work is to propose such an algorithm and prove a
generalization of the invariance principle that facilitates the use of this type of functions algorithmically.

1.4 Our Main Result

We now state the main result of this paper, and towards this end we require a few definitions. We begin with
the notion of Abelain embeddings, also referred to as linear embeddings.

Definition 1.2. Let Σ1, . . . ,Σk be finite alphabets and let A ⊆
k∏

i=1
Σi. For an Abelian group (G,+), we

say maps σi : Σi → G for i = 1, . . . , k form an Abelian embedding of A if

(a1, . . . , ak) ∈ A =⇒
k∑

i=1

σi(ai) = 0G.

We say A is Abelianly embeddable if there are maps σi that are not all constant that form an Abelian

embedding of A. We say that a distribution µ over
k∏

i=1
Σi is Abelialy embeddable if supp(µ) is.

3Often times one requires a plausible complexity-theoretic assumption, such as the Unique-Games Conjecture [36] or the Rich-
2-to-1 Games Conjecture [16].
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The notion of Abelian embeddings is central to the study of satisfiable CSPs, and the existence of
embeddings into a group G should be thought of as hinting towards a subspace-type structure inside A. For
technical reasons though, we are only able to handle Abelian groups G that are finite. Thus, we say that A
admits a (Z,+) embedding if it has an Abelian embedding into the group (Z,+). With this in mind, we
wish to define the class of predicates we handle in the current paper, and we begin by giving a few examples.

1. Vector valued punctured 3-Lin: let p be a prime number, let m ⩾ 2 and take Σ = Fm
p \ {⃗0}. Take

the collection of predicates P = {P}, where the set of satisfying assignments of P consists of tuples
(x, y, z) such that x, y, z ∈ Fm

p \ {⃗0}, each pair of x, y, z is linearly independent and x+y+z = 0⃗. It
is easy to observe that P admits an Abelian embedding into Fm

p . There are other Abelian embeddings
that are induced by it, such as σ1(x) = ⟨α, x⟩, σ2(y) = ⟨α, y⟩, σ3(z) = ⟨α, z⟩ for any α ∈ Fm

p .

The predicate P does not admit a (Z,+) embedding, and furthermore there is a group action on Σ
that preserves satisfying assignments of P . Namely, for each invertible M ∈ Fm×m

p we can take
τM : Fm

p → Fm
p defined as τMu = Mu. It is easy to see that for each such M , if P (x, y, z) = 1,

then P (τM (x), τM (y), τM (z)) = 1. Using this, one can show that the collection P is MILDLY-
SYMMETRIC as defined below, and our results therefore apply to P .

2. 3-Uniform hypergraph p-strong coloring: let p ⩾ 5 be a prime, take Σ = Fp and consider the
predicate P : Σ → {0, 1} where P (x, y, z) = 1x,y,z are distinct and P = {P}. The problem Max-P-
CSP is also known [12] as the p-strong coloring problem: an instance can be viewed as a hypergraph
(whose hyperedges are the triplets that are involved in some constraint), and a solution can be viewed
as coloring the graph maximizing the fraction of hyperedges with all distinct colors.

The predicate P does not admit Abelian embeddings, however its support does contain subsets that do
admit Abelian embeddings. The collection P can be seen to be MILDLY-SYMMETRIC (see Section A
for a proof), and so our result applies to P .

3. 3-Uniform hypergraph 3-rainbow coloring: consider the previous example except that we take
p = 3. This problem is also known [31] as the rainbow hypergraph coloring problem, wherein an
hyperedge is properly colored if all the colors are present. This time the predicate P has Abelian
embeddings, such as σ, γ, ϕ : Σ→ F3 defined as σ(x) = x, γ(y) = y − 1, ϕ(z) = z − 2. In fact, this
is even a (Z,+) embedding. We also note that there is a group action {τa,b}a,b∈F3,a̸=0 on Σ defined
as τa,b(u) = au+ b that preserves the satisfying assignment of P .

Because P admits a (Z,+) embedding, the collection P is not MILDLY-SYMMETRIC as defined
below, and our result does not apply to it. As discussed in Sections 1.7.3 and 1.9 we view the (Z,+)-
embedding obstruction as an issue of a technical nature (as opposed to the issue of pairwise connectiv-
ity, which appears much more fundamental). Therefore, we suspect that a variant of our result should
hold for this predicate as well.

Having looked at a few examples and non-examples, we now formally define the class of MILDLY-
SYMMETRIC predicates as follows:

Definition 1.3 (MILDLY-SYMMETRIC predicates). A family of predicates P ⊆ {P : Σ3 → {0, 1}} is called
MILDLY-SYMMETRIC if there are actions τ1, τ2, . . . , τℓ : Σ→ Σ such that:

1. For every P ∈ P , every i ∈ [ℓ] and every satisfying assignment σ ∈ Σ3 of P , the assignment
(τi(σ1), τi(σ2), τi(σ3)) is a satisfying assignment of P .
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2. For every P ∈ P and for every satisfying assignment σ ∈ Σ3 of P , the set {(τi(σ1), τi(σ2), τi(σ3)) |
i ∈ [ℓ]} ⊆ Σ3 does not have a (Z,+)-embedding.

In words, a collection of predicates P is called MILDLY-SYMMETRIC if there are maps on the alphabet
Σ that both (1) preserve the satisfying assignments of all predicates in P , and (2) the orbit of each satisfying
assignment under the maps is rich enough that it doesn’t admit any (Z,+) embedding.

Our main result with regard to Conjecture 1.1 is the following statement.

Theorem 1.1. Let P be a collection of MILDLY-SYMMETRIC 3-ary predicates. Then there exists αP such
that for all ε > 0:

1. Hardness: there is a dictatorship vs quasirandom test using P with perfect completeness and sound-
nesss αP + ε.

2. Algorithm: there exists a polynomial-time algorithm that distinguishes between satisfiable instances
of P-CSP from instances of P-CSP with value at most αP .

Organization: the rest of this introductory section is organized as follows. In Section 1.5 we discuss the
algorithmic approach for CSPs, and in Section 1.6 we present our hybrid algorithm. In Section 1.7 we
discuss the analysis of the hybrid algorithm and in Section 1.8 we discuss our main technical contribution,
the mixed invariance principle. In Section 1.9 we discuss other related works.

1.5 Approximation Algorithms for CSPs

In this section we discuss two algorithmic techniques that are vital towards our hybrid algorithm, and are
used in Raghavendra’s theorem and in the dichotomy theorem.

1.5.1 Raghavendra’s Algorithm: Semi-definite Programming Relaxations

For almost satisfiable CSPs, Raghavendra [46] showed that semi-definite programming (SDP) based al-
gorithms give the optimal approximation algorithms (assuming the UGC). More specifically, we can write
down a basic SDP relaxation of a given instance of Max-P-CSP as shown in Figure 1. Here, V is the set
of variables of the instance and C is a distribution over constraints of the instance (representing a weighted
instance of CSP-P), and for each c ∈ C, V(c) is the set of variables appearing in c. For each variable i ∈ V
and an alphabet symbol a ∈ Σ the program has a vector bi,a and additionally there is a global vector b0.
We think of these vectors as describing a distribution over good assignments to the instance, and write down
conditions corresponding to that.

The SDP-solution is then rounded, via a non-trivial rounding procedure, to an assignment to the vari-
ables. More precisely, given a solution to the SDP program that lives in dimension m, Raghavendra samples
Gaussians g(1), . . . , g(R) ∈ Rm in which each coordinate is an independent standard Gaussian random
variable, and produces jointly distributed Gaussians zℓ,(i,a) = ⟨g(ℓ), bi,a⟩. It is easy to see that the z’s
pairwise correlations match the inner products of the SDP solution vectors. Using these samples (as in-
puts), Raghavendra shows that any quasirandom function that performs well in the dictatorship tests yields a
rounding function that satisfies (in expectation) at least s fraction of the constraints, where s is the soundness
of the dictatorship test. We stress that in this context, quasirandom functions refer to low-degree functions
in which all variables have small influence.
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It is, therefore, natural to ask if semi-definite programming relaxation also gives the best approximation
algorithm in the setting of Theorem 1.1. This turns out to be false as can be seen from the following CSP.
Let (G, ·) be a non-Abelian group and consider the problem 3-LinG. In this problem, we have variables
x1, . . . , xn that are supposed to be assigned values from G, and the constraints are of the form xi ·xj ·xk = c
where c ∈ G are constants. In [4] it is shown that the basic SDP for 3-LING has an integrality gap of 1
vs. 1/|G|, meaning that an algorithm that only uses SDP rounding cannot achieve a better ratio than 1/|G|
on satisfiable instances. However, there is an algorithm that achieves 1/|[G,G]| factor approximation on
satisfiable instances, where [G,G] is a commutator subgroup of G; see [6] for example.4

1.5.2 Gaussian Elimination

Another important algorithmic technique is Gaussian elimination, i.e., solving a system of linear equa-
tions over an Abelian group [22]. Gaussian elimination can at times be more powerful than semi-definite
programming relaxations: using it one can decide whether a given system of linear equations over Fp is
perfectly satisfiable or not, but SDPs fail to do so [30, 49]. Still, by itself it is rather weak, and it is not clear
how to use it to obtain non-trivial approximation algorithms for problems such as Max-Cut. We remark
that Gaussian elimination is not enough to check the satisfiability of bounded width P -CSPs [3], which
otherwise are tractable using local-propagation algorithms [3].

1.5.3 Our Hybrid Algorithm

Our hybrid algorithm blends the two aforementioned algorithmic tools in a nontrivial way. We note that
these two techniques have recently been used together to produce nontrivial algorithms in the area of promise
CSPs. Indeed, therein a combination of semidefinite program/linear program (SDP/LP) and affine integer
program (AIP) was used [13, 14, 19] to solve a few tractable cases. Similarly, SDP+AIP was shown [20] not
to be enough to solve the approximate graph coloring problem. However, these prior works consider solving
the SDP and the system of linear equations once and using these solutions to output the final decision. In
contrast, our hybrid algorithm iteratively modifies the SDP program and the system of linear equations
before coming up with the final decision.

1.6 A New Approximation Algorithm for Satisfiable CSPs

In this section we present our hybrid algorithm that will be used in the analysis of our dictatorship test.
Let P be a collection of 3-ary predicates, all of which are embeddable in a finite Abelian group G

via the map σ : Σ → G.5 Fix an instance Υ = (V, C) of Max-P-CSP, where V is identified with the set
{1, 2, . . . , n}, and C is a set of constraints on V . The basic semidefinite programming relaxation of the
instance is given on the left side of Figure 1. It consists of vectors {bi,a}i∈V,a∈Σ, distributions {µc}c∈C over
the local assignments (i.e., on ΣV(c), where V(c) denotes the tuple of variables in c) and a unit vector b0.
The notation ▲(Z) refers to the collection of all probability distributions over the set Z. Observe that this
is indeed a relaxation: given a satisfying assignment α : V → Σ, choose b0 to be some unit vector, and

4For many non-Abelian groups G, such as for the group G = Sm for example, the size of the commutator subgroup [G,G] is
strictly smaller than the size of G. In particular, a 1/|[G,G]|-approximation is strictly better than a 1/|G|-approximation.

5For simplicity, we assume here that this is essentially the only group in which the predicates are embeddable and all the
embedding maps are identical, i.e., σ1 = σ2 = σ3 = σ.
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consider the vector assignment

bi,a =

{
b0 if α(i) = a,

0⃗ otherwise.
(1)

For every c ∈ C, the distribution µc is set to be supported on the assignment α|V(c), which by definition sat-
isfies the constraint c. It can be easily observed that all the constraints (1)–(4) are satisfied, and furthermore,
the objective value of this vector solution is 1, as c(x) = 1 if x ∼ µc for every c ∈ C.

Semidefinite Program System of linear equations over G
maximize E

c∈C
E

x∼µc

[c(x)]

subject to

(1) ⟨bi,a, bj,b⟩ = Pr
x∼µc

[xi = a, xj = b]

c ∈ C, i, j ∈ V(c), a, b ∈ Σ,

(2) ⟨bi,a, b0⟩ = ∥bi,a∥22, ∀i ∈ V, a ∈ Σ,

(3) ∥b0∥22 = 1,

(4) µc ∈ ▲(ΣV(c)), c ∈ C.

Find ϑ : {y1, y2, . . . , yn} → (G,+) such that

∀c ∈ C with V(c) = (i1, i2, i3), we have

ϑ(yi1) + ϑ(yi2) + ϑ(yi3) = 0G.

Figure 1: A semidefinite programming formulation and a system of linear equations for a given Max-P -CSP
instance Υ = (V, C).

We also write down a system of linear equations over an Abelian group G, given on the right-side of
Figure 1. Note that if the instance Υ is satisfiable, then the system of linear equations over G also has
solutions. This follows from the definition of Abelian embeddability (Definition 1.2): take any satisfying
assignment α ∈ Σn and assign ϑ(yi) = σ(αi) for all i ∈ [n].

We modify the semi-definite program and the system of linear equations iteratively as follows. At every
step, we work with an SDP solution where for every satisfying assignment α : V → Σ to the instance Υ,
µc(α|V(c)) > 0.6 In other words, every satisfying assignment to the instance ‘survives’ in the SDP solution.

• For a constraint c ∈ C we say that (g1, g2, g3) ∈ G3 is SDP-unattainable if (σ(a1), σ(a2), σ(a3)) ̸=
(g1, g2, g3) for all (a1, a2, a3) ∈ supp(µc). Consider an SDP-unattainable tuple (g1, g2, g3) not in a
subgroup (of G3) generated by the SDP-attainable tuples. We modify the system of linear equations
by eliminating (g1, g2, g3) from being a possible setting to the variables corresponding to c while
preserving all the SDP-attainable tuples in a solution.

• For every constraint c ∈ C and an assignment a = (a1, a2, a3) ∈ Σ3 if no solution to system of linear
equations assigns (σ(a1), σ(a2), σ(a3)) to the variables of c, then add a constraint µc(a) = 0 to the
SDP formulation.

It is easy to see that the process ends in polynomially many steps. The algorithm accepts an instance if
the SDP value is 1 at the end of the above procedure. Since we ensured that every satisfying assignment to
the instance ‘survives’ in the SDP solution, for a satisfying assignment α, the vector solution given in (1))
will be a feasible solution to the final SDP. Therefore, the algorithm always accepts satisfiable instances of
Max-P-CSP.

6This can be achieved in polynomial time, see Lemma 7.9.
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As for the soundness of the algorithm, let S be the collection of all Max-P-CSP instances where the
algorithm accepts, and define s = infΥ∈S val(Υ). To complete the proof of Theorem 1.1 we show an 1 vs.
s+ o(1) dictatorship test. We explain this in Section 1.7.

1.7 The Dictatorship Test

In this section we explain how to use an integrality gap of the above hybrid algorithm to construct a dicta-
torship test. Throughout, we have an integrality gap Υ with val(Υ) = s+ o(1). To analyze the dictatorship
test, it will be useful for us to consider the following approximation algorithm (we stress that it is specific
for the instance Υ):

1. Solving the programs. Solve the final SDP program such that the objective value of the solution is 1.
As there are n|Σ|+ 1 vectors, we can assume without loss of generality that these vectors live in Rm

for m ⩽ n|Σ|+1. Denote by S ⊆ Gn be the set of all the satisfying assignments ϑ for this system of
linear equations, and note that S is a subspace.

2. Setting up rounding functions and sampling. For a constant R ⩾ 1 to be chosen as large enough, we
fix a rounding function f : RR|Σ| × GR → ▲(Σ), such that f(z,w) gives a probability distribution
on Σ. We sample R Gaussian vectors g(1), g(2), . . . , g(R) ∈ Rm where for each j ∈ [m] and ℓ ∈ [R],
g
(ℓ)
j is distributed according to the standard normal variable. We also sample R uniformly random

satisfying assignments over G from the set S, which we denote by σ(1),σ(2), . . . ,σ(R).

3. SDP rounding component. We first take the inner product of the Gaussian vectors with the SDP
vectors corresponding to the variable i. More formally, let zi,(ℓ,a) = ⟨bi,a, g(ℓ)⟩, for every i ∈ V ,
ℓ ∈ [R] and a ∈ Σ. This gives a vector zi = (zi,(ℓ,a))ℓ∈[R],a∈Σ ∈ RR|Σ| for each variable i ∈ V .

4. Gaussian elimination component. Taking the assignments we sampled form S, we create a string
from wi ∈ GR for each variable i ∈ V , where wi = (σ(ℓ)(yi))ℓ∈[R].

5. Outputting an assignment. For each i ∈ V , sample A(i) according to the distribution f(zi,wi).

1.7.1 A Dictatorship Test with Imperfect Completeness

Towards the construction of the dictatorship test, it is helpful to first analyze a variant of the above algorithm
that only solves the SDP program and applies a rounding scheme (or alternatively, that applies a rounding
scheme that ignores its w-component). This is the setting in Raghavendra’s theorem, and he uses it to
construct a dictatorship test with completeness 1− ε and soundness s+ o(1) that uses the collection P , for
all ε > 0. Denote by (b,µ) the SDP solution with value 1 and consider the following test to check if a given
function f : ΣR → Σ is a dictator function or far from a dictator function:

1. Sample (y1,y2, . . . ,yk) as follows:

(a) Sample a random constraint c ∈ C and let P ∈ P be the predicate it uses.

(b) For each i ∈ [R], sample (y1,i, y2,i, . . . , yk,i) according to µc independently.

(c) For each i ∈ [R], with probability ε resample (y1,i, y2,i, . . . , yk,i) from Σk uniformly and inde-
pendently.

2. Check if P (f(y1), f(y2), . . . , f(yk)) = 1.

10



Completeness: If f is a dictator function, say f(y) = yj for some j ∈ [R], then the probability that the test
passes is as follows:

Pr[Test passes] = E
(c,P )

[
E

(y1,y2,...,yk)
[P (f(y1), f(y2), . . . , f(yk))]

]

⩾ (1− ε) E
(c,P )

[
E

(y1,j ,y2,j ,...,yk,j)∼µc

[P (y1,j , y2,j , . . . , yk,j)]

]
= (1− ε) · 1,

where the last equality follows from the fact that the SDP value is 1 and hence µc is supported on P−1(1)
for every c ∈ C.

Soundness: Let us now analyze the soundness of the test. Towards this, suppose f : ΣR → Σ is a quasiran-
dom function.7 Our goal is to show that the dictatorship test accepts with probability at most s+ o(1). First,
we express the test passing probability as follows:

Pr[Test passes] = E
(c,P )

[
E

(y1,y2,...,yk)
[P (f(y1), f(y2), . . . , f(yk))]

]
.

Fix c and P and focus on the inner expectation. By expressing P in terms of its multi-linear extension, the
expectation above can be written as a linear combination of expectations of the form

E

[∏
i∈S

Fi(yi)

]
, (2)

where S ⊆ [k] and Fi : ΣR → {0, 1} is an indicator function of the form Fi(y) = 1f(y)=a for some
a ∈ Σ. An important point is that the analysis of the test boils down to analyzing the expectation of product
of functions where the output of each function is bounded. From this point onwards, Raghavendra [46]
argument proceeds as follows (for the simplicity of presentation we are omitting from the description many
important technical details, such as how to keep the functions we work with bounded):

I. For ε > 0, as the distribution on (y1,j , y2,j , . . . , yk,j) has full support, a result of [41] asserts the
expectation (2) can be approximately computed by only considering the low-degree part F⩽d

i of the
corresponding Fis, that is,

E

[∏
i∈S

Fi(yi)

]
≈ E

[∏
i∈S

F⩽d
i (yi)

]
, (3)

for some d = Oε(1).

II. Using the fact that F⩽d
i s are low-degree and far from dictator functions, the invariance principle

of [42] states that the inputs F⩽d
i can be “replaced” by correlated Gaussian random variables that

have matching pairwise correlation to the yi’s, i.e.,

E

[∏
i∈S

F⩽d
i (yi)

]
≈ E

[∏
i∈S

F⩽d
i (gi)

]
. (4)

7By that, we mean that for all a ∈ Σ, the function 1f(x)=a is quasirandom.
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III. The process of sampling the correlated Gaussian can be simulated by the SDP rounding component as
stated above. Thus, using the above observations, an algorithm can generate Gaussian samples such
that[

E
(y1,y2,...,yk)

[P (f(y1), f(y2), . . . , f(yk))]

]
≈

[
E

(y1,y2,...,yk)

[
P (f̃(g1), f̃(g2), . . . , f̃(gk))

]]
, (5)

for some function f̃ . This means that in expectation, the randomized strategy above satisfies at least
Pr[Test passes]−o(1). On the other hand, val(Υ) ⩽ s+o(1), so overall we get that Pr[Test passes] ⩽
s+ o(1) as required.

Note that in the analysis above, even though we started with an integrality gap with perfect completeness,
the resulting dictatorship test has completeness 1 − ε. Tracing this back, the only place in the proof that
the fact that ε > 0 was used is in (3). In words, that equality asserts that for a k-ary distribution µ, if we
want to measure the correlation of f1(y1), . . . , fk(yk) where (y1, . . . , yk) ∼ µ⊗R and fi : Σ

R → R, then
this correlation only comes from the low-degree parts of f1, . . . , fk. This fact holds if the support of the
distribution µ is Σk, and more generally when the distribution µ is connected in the sense of [41]. Alas, this
fact is false for general distributions.

1.7.2 A Dictatorship Test with Perfect Completeness

To design a dictatorship test with completeness 1 via the above paradigm we are forced to set ε = 0, meaning
that the distributions arising in (3) are arbitrary. This means that the equality in (3) is no longer true, and it
is unclear how to proceed with the analysis of the dictatorship test.

This is the point where the works [7, 9, 10, 11] enter the picture. The goal in these works is to understand
what sort of functions may contribute to the left hand side of (3) under only very mild assumptions on the
input distribution. This goal was partially achieved in [11], and we now explain how we use that result to
proceed with the analysis of the dictatorship test. Throughout the rest of the discussion, we fix k = 3 and
ε = 0 in the above dictatorship test.

Decoding correlations and fixing (3): the result of [9] asserts that if µc has no Abelian embeddings,
then (3) continues to hold, and so the analysis above proceeds in the same way. The result of [11] is a
strengthening of it, asserting that if µc admits Abelian embeddings but no (Z,+) embeddings, then functions
F1, F2, F3 for which the left hand side of (3) is non-negligible must arise from characters of Abelian groups
and low-degree functions. More precisely, that result shows that there is a finite Abelian group G, a character
χ ∈ Ĝ⊗R, a map σ : Σ→ G and a low-degree function L : ΣR → R with 2-norm 1 such that

E
(y1,y2,y3)∼µ⊗R

c

[F1(y1)χ(σ(y1))L(y1)] ⩾ Ω(1).

In this paper, we deduce a list-decoding version of this statement, roughly making the following assertion.
We can find functions G1, G2, G3 : Σ

R → R that are each a sparse combination of functions of the form
χ ◦σ ·L for a character χ, σ : Σ→ G and low-degree function L such that a correct version of (3) becomes

E

[∏
i∈S

Fi(yi)

]
≈ E

[∏
i∈S

Gi(yi)

]
, (6)

for any S ⊆ {1, 2, 3}. 8

8We remark that strictly speaking, the description of G1, G2, G3 is incorrect, and they are only close in L2-distance to functions
of this form. Our argument requires that G1, G2, G3 are O(1)-bounded, and this results in significant technical complications.
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Generalization of the invariance principle and fixing (4): with (6) in hand, the analysis of the dicta-
torship test would be done provided an algorithm could generate samples that “fool” the functions Gi on
the right hand. The invariance principle of [42] asserts that low-degree functions with small influences are
“fooled” by Gaussian samples, which we are able to produce using the semi-definite programming relax-
ation. However, Gaussian samples fail to fool characters. This is where the Gaussian elimination part of
the algorithm enters the picture: we argue that characters are fooled by the solutions to the linear system of
equations in the hybrid algorithm. Expressing

G1(y1) =

W∑
j=1

χj(σ(y1))Lj(y1),

this leads us to consider the function G̃1 : R|Σ|R ×GR → R defined by

G̃1(g1,σ1) =
W∑
j=1

χj(σ1)Lj(g1)

A priori, it is not clear what is the relation between G1 and G̃1. We have split the input y1 of G1 into
two independent samples from Gaussian space and from the set of solutions to the linear system. We show
however, that if all Lj have small influences, then the functions G1 and G̃1 are close in a sense that suffices
for our purposes (this requires some features from the set of characters χj appearing in G1 that we are able
to ensure). This is what we refer to by the “mixed invariance principle”, because the discrete probability
distribution of y1 is replaced by a mix of a Gaussian distribution and a distribution arising from a solution
for a system of linear equations. We defer a more formal statement of the mixed invariance principle to
Section 1.8 below.

Algorithmically, we are able to generate inputs to G̃1, G̃2, G̃3 by solving the hybrid algorithm, allowing
us to replace (4) with

E
(y1,y2,y3)∼µR

c

[∏
i∈S

Gi(yi)

]
≈ E

(g,σ)

[∏
i∈S

G̃i(gi,σi)

]
(7)

for all S ⊆ {1, 2, 3}, and the rest of the arguments proceeds in the same way. In the end we get an analog
of (5) wherein the inputs to the function f̃ are generated by the rounding algoirthm presented in the begining
of the section. Hence, we showed that the probability the test accepts is at most val(Υ) + o(1) ⩽ s+ o(1).

1.7.3 On the MILDLY-SYMMETRIC Assumption

We finish this section by discussing the MILDLY-SYMMETRIC assumption, and in particular where it is
used in the above analysis. To carry out the above argument, our only requirement is that the distributions
µc arising in the solution of the SDP part of the hybrid algorithm are distribution for which the result of [11]
applies. Therein, an inverse theorem holds for all 3-ary distributions that do not admit (Z,+) embeddings,
and it stands to reason that result should hold for the more general class of pair-wise connected distributions
(in the sense defined therein).

Therefore, if one is interested in a particular family of predicates P which is not MILDLY-SYMMETRIC ,
then in principle one could still solve the SDP program, and if the resulting local distributions µc do not
admit any (Z,+) embeddings, then our argument still goes through and the hybrid algorithm above works.

The conditions stated in MILDLY-SYMMETRIC are a relatively elegant way of ensuring that the local
distributions µc have no (Z,+) embeddings, and hence Theorem 1.1 is stated in this way. More precisely,
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we argue that if we have an SDP solution with value 1 for a collection P that is MILDLY-SYMMETRIC ,
then can modify it to get an SDP solution with value 1 in which the local distributions µc have no (Z,+)
embeddings.

1.7.4 On Search vs Decision Algorithm

Our main result, Theorem 1.1, gives a polynomial time algorithm that distinguishes satisfiable instances
of Max-P-CSP from instances with value at most αP . The approximation guarantee is matched with the
soundness of the corresponding dictatorship test. At this point, we do not know how to convert this decision
algorithm into a search algorithm. Namely, an algorithm that given a satisfiable instance as an input, finds
an assignment with value at least αP in polynomial time. We believe that modifications of the techniques
from Raghavendra-Steurer [47] and Khot, Tulsiani, and Worah [38] could provide the search algorithm, and
we leave this as an open problem for the future.

1.8 The Mixed Invariance Principle

In this section we discuss the mixed invariance principle. Let µ be a distribution over Σ3 that has no
(Z,+) embeddings, and let f1 : (Σn, µ⊗n

1 ) → C, f2 : (Σn, µ⊗n
2 ) → C, f3 : (Σn, µ⊗n

3 ) → C be 1-bounded
functions. The goal of the mixed invariance principle is to study expectations of the form

E
(x,y,z)∼µ⊗n

[f1(x)f2(y)f3(z)] (8)

and relate them to expectations of related functions over different domains. The above expression should be
compared to the left hand side in (6). As explained therein, in this paper we show that we can find functions
f̃1, f̃2, f̃3 that are 1-bounded, and additionally are close in L2-distance to sparse sums of functions that are
product of characters over some finite Abelian group G and low-degree functions, such that∣∣∣∣∣ E

(x,y,z)∼µ⊗n
[f1(x)f2(y)f3(z)]− E

(x,y,z)∼µ⊗n

[
f̃1(x)f̃2(y)f̃3(z)

]∣∣∣∣∣ = o(1). (9)

For the sake of simplicity assume that f̃1, f̃2, f̃3 are themselves this sparse combinations (as opposed to just
close to them; see Section 2 for a more formal discussion), and write

f̃1(x) =
∑
P∈P1

P (σ(x))LP (x) (10)

and similarly for f̃2 and f̃3. Here, P1 is a set of characters and σ : Σ → G is some map.9 Note that in
the case that |P1| = 1 and the only element in P is the constant 1 function, the function f̃1 is precisely
the low-degree part of f1. Towards the statement of the invaraince principle we decouple the inputs to the
characters-part of f̃1 and the low-degree parts of f̃1 and define

f̃1
decoupled(x, x

′) =
∑
P∈P1

P (σ(x)) · LP (x
′), (11)

and we similarly define f̃2
decoupled and f̃3

decoupled.

9We remark that this decomposition is not unique, and often, for our applications, we work with a decomposition with certain
extra properties.
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Definition 1.4. We say that a function f̃decoupled of the (11) has τ -small shifted low-degree influences if for
every j ∈ [n] and every P ∈ P1 it holds that the jth influence of LP is at most τ .

We are now ready to state our mixed invariance principle.

Theorem 1.2. (Informal) Suppose µ is a distribution over Σ3 that has no Z-embedding. There exists an
Abelian group G and embeddings σi : Σ → G such that for 1-bounded functions f1, f2, f3 : Σn → C, if
the corresponding decoupled functions f̃ i

decoupled(x, x
′) have τ -small shifted low-degree influences, then by

letting F̃i be f̃ i
decoupled except we replace LP s with their corresponding multi-linear expansions, we have∣∣∣∣∣∣∣ E

(x,y,z)∼µ⊗n
[f1(x)f2(y)f3(z)]− E

(x,y,z)∼µ⊗n,
(gx,gy ,gz)∼G⊗n

[
F̃1(x, gx)F̃2(y, gy)F̃3(z, gz)

]∣∣∣∣∣∣∣ ⩽ ξ(τ), (12)

where ξ(τ)→ 0 as τ → 0. Here G has the same pairwise correlations as the distribution µ.

Remark 1.5. In the above theorem, we use a non-standard notion of the functions that are ‘far from the
dictator functions.’ At this point, we do not know how to use this notion of dictatorship test in the actual
(conditional) NP-hardness result (starting with the Rich 2-to-1 Games Conjecture [16]). We believe that
new techniques need to be designed for this goal, and we leave it as an open problem for future research.

1.9 Further Remarks and Other Related Work

As discussed above, we view the condition that the distribution µ has no (Z,+) embedding as being of
technical nature, and expect the above argument to have an analog as long as µ is pairwise connected. Here, a
3-ary distribution over triples (x, y, z) ∈ Σ3 is pairwise connected if the bipartite graph Gx,y = ((Σ,Σ), E)
where E = {(x, y) | ∃z, (x, y, z) ∈ supp(µ)}, is connected, and similarly the analogously defined bipartite
graphs Gx,z and Gy,z are also connected.

We expect that going beyond pairwise connected distribution would be a significant challenge. The
class of distributions that are not pairwise connected is very rich, and an inverse theorem for this class
is likely to imply effective bounds for the density Hales-Jewett theorem for combinatorial lines of length
3 [25, 27, 45], a prominent open problem in combinatorics. More generally and for larger arities k, this
class of distributions captures problems such as multi-dimensional Szemerédi theorems [26], for which only
ergodic theoretic proofs are known.

2 Techniques

Is this section we give an outline to the proof of Theorem 1.2. The formal proof appears in Sections 4, 5, 6.

2.1 List Decoding

To begin the discussion, consider an expectation of the form (8), and suppose it is non-negligible in absolute
value. We already know, using results of Mossel [41], that if the distribution µ is connected, then each
one of the functions fi must be correlated with a low-degree function. But what happens in the case that
µ is not connected? This question was asked in [7, 9, 11], wherein under the condition that µ does not
admit (Z,+) embedding, some conclusion regarding the structure of the functions fi was made. More
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precisely, the main result of [11] asserts that there is a constant size Abelian group Gmaster and embeddings
σ, γ, ϕ : Σ→ Gmaster of µ into Gmaster, such that if f1, f2, f3 are O(1)-bounded functions satisfying∣∣∣∣∣ E

(x,y,z)∼µ⊗n
[f1(x)f2(y)f3(z)]

∣∣∣∣∣ ⩾ ε,

then function f1 (and similarly f2, f3) must be correlated with a function of the form χ ◦ σ · L where
χ ∈ Ĝn

master and L is a function of degree Oε(1) and bounded 2-norm. In other words, f1 is correlated with
a single function that appears on the right hand side of (10). Optimistically, one may hope that χ ◦ σ · L
“explains” all of the magnitude of E(x,y,z)∼µ⊗n [f1(x)f2(y)f3(z)] in the sense that f1 may be replaced by it
without changing the value of the expectation by much. Unfortunately, this is incorrect; for once, f1 could
be correlated with numerous functions of this type that are very far from each other. Besides, even if this
was true, there is an additional issue: we do not wish to replace the function f1 by a function that is not
bounded (at least not at this point of the argument).

A common strategy for addressing the first issue is by appealing to the notion of list decoding. As a
first attempt, one may hope to collect all of the functions of the form χ ◦ σ · L that are correlated with f1,
and then replace f1 with a weighted sum of them according to their correlation. This would have worked
had that collection of functions been pairwise orthogonal. This is not true in our case, though. As a second
attempt, one may find a single function χ ◦ σ · L that is correlated with f1, and then iterate the argument
with f ′

1 = f1 − α · χ ◦ σ · L where α = ⟨f1, χ ◦ σ · L⟩. This attempt also fails, this time due to the fact that
f ′
1 may not be O(1)-bounded, and hence the result of [11] no longer applies.

To resolve this issue, we take inspiration from the invariance principle of [42, 41] and from the inverse
Gowers’ norms literature [29]. In the former, instead of harsh truncations, one performs “soft truncations”
by applying a noise operator that gives a bounded function that is close in L2 distance to the low-degree part
of the function. In the latter, one defines an averaging operator with respect to a sigma-algebra induced by
the collection of functions that were already found to be correlated with f1. We combine these two solutions,
and the bulk of our effort is devoted to showing it works.

2.2 The Noise Operator, the Regularity Lemma, and the Approximating Formula

Let ν be the marginal distribution of µ on the first coordinate, and consider the function f1 : (Σ
n, ν⊗n)→ C

above. Let P = {P1, . . . , Pr : Σ
n → H} be a collection of functions into some discrete domain H , and

let ε > 0. We define the function TP,1−εf1 : Σ
n → C in the following way. First, for each x ∈ Σn, we

define the distribution TP,1−εx, wherein a sample y ∼ TP,1−εx is generated as follows: sample I ⊆ [n]
by including each element in it independently with probability 1 − ε, then sample y ∼ ν conditioned on
yI = xI and Pi(y) = Pi(x) for all i = 1, . . . , r (see Definition 5.1). The function TP,1−εf1 is then defined
by

TP,1−εf1(x) = E
y∼TP,1−εx

[f1(y)].

To get some intuition to the operator TP,1−ε we recommend thinking of ε as very small. We begin by
noting that the distribution ν is a stationary distribution of TP,1−ε, and that functions f for which f(x) =
g(P1(x), . . . , Pr(x)) for some g : Hr → R are eigenfunctions with eigenvalue 1. We also note (though this
is a bit more tricky to prove) that low-degree functions are nearly eigenfunctions of TP,1−ε of eigenvalue 1,
and more precisely that ∥(I−TP,1−ε)L∥2 = o(∥L∥2) provided that ε is small compared to the degree of L.
In other words, when constructed for an appropriate collection P , the operator TP,1−ε almost doesn’t affect
functions of the form of the right-hand side of (10), and therefore it may be useful to detect such structures.
We show that this is indeed the case.

16



2.2.1 The Regularity Lemma

With the new noise operator TP,1−ε in hand, we may attempt to execute the idea of the list decoding
argument in a different way. More specifically, starting with f = f1, P = ∅ and f̃1 = 0, once we find a
function of the form χ ◦ σ ·L that f is correlated with, we insert P = χ ◦ σ into P , take f̃1 = TP,1−εf and
proceed the argument on f = f1 − f̃1. In the next step, we will find a new χ′ ◦ σ · L′ correlated with the
updated f , insert P ′ = χ′ ◦ σ to P , update f̃1 = TP,1−εf and proceed the argument on f = f1 − f̃1. When
the argument terminates, we will have that∣∣∣∣∣ E

(x,y,z)∼µ⊗n

[
(f1 − f̃1)(x)f2(y)f3(z)

]∣∣∣∣∣ = o(1),

meaning we can replace f1 with f̃1. Our proof goes along these lines, but to make it go through a great
deal of care is required. The key issue is that if we inspect the previous inductive process closely, instead of
updating f̃1 at each step, we should have subtracted a new noised function. For instance, in the second step
we would have subtracted T{P ′},1−ε(f − T{P},1−εf) from f − T{P},1−εf to get the function

f̃1 = f − T{P},1−εf − T{P ′},1−ε(f − T{P},1−εf),

and at each iteration, the function we inspect gets even more complicated. After a large number of steps,
the function we end up with is no longer O(1)-bounded, in which case the the iterative process gets stuck.
Fortunately, we show that instead of doing this, one may update the approximating function f̃1 as explained
above. We remark that in the formal argument we are required to modify the noise rate ε at each step, which
contributes to several technical challenges. Once this process is done appropriately, we find a function
f̃1 = TP,1−εf where |P| is constant and ε is bounded away from 0, such that∣∣∣∣∣ E

(x,y,z)∼µ⊗n
[f1(x)f2(y)f3(z)]− E

(x,y,z)∼µ⊗n

[
f̃1(x)f2(y)f3(z)

]∣∣∣∣∣ = o(1).

Similarly, we show that one may replace f2 and f3 with noisy versions of them.

2.2.2 The Approximating Formula

The next step in the proof is to show that a function of the form TP,1−εf1 may be approximated by a
function of the form of the right-hand side of (10) in L2 distance.10 We establish such a formula by fairly
direct calculations, starting with

TP,1−εf(x) =
1

A(x)
EI⊆1−ε[n],y∼ν

[
f(y)1Pi(y)=Pi(x) ∀i

∣∣ yI = xI
]
,

where A(x) = PrI⊆1−ε[n],y∼ν [Pi(y) = Pi(x) ∀i | yI = xI ]. We show that on most inputs, both 1/A(x) and
the expectation above are close to functions of the form of the right-hand side of (10). The intuition here is
that first, the expectation above looks like the application of the standard noise operator on some function.
Second, on inputs where A(x) is bounded away from 0 (which we prove are almost all inputs), we have that

1

A(x)
=

d∑
j=0

(1−A(x))d + 2−Θ(d),

and one may easily expand the definition of A(x) and write down an explicit formula for it of the form (10).
10We remark that in fact, such a formula is necessary for us even to make the previous regularity lemma go through.
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2.3 Decoupling the Abelian Part and the Low Degree Part

With the previous steps done, we managed to replace each one of the functions f1, f2, f3 in the expecta-
tion (8) with the functions TP,1−εf1, TQ,1−εf2 and TR,1−εf3 respectively. Additionally, we have approx-
imate formula for each one of these functions that seem to have the desired form. Namely, ignoring the
aspect of this approximation for a moment, we have that

TP,1−εf1(x) =
∑

P∈spnN(P)

P (x)LP (x)

where spnN(P) consists of all possible products of functions from P , and each one of the functions LP is
a low-degree function with bounded 2-norm. We would now like to decouple the input x into two copies,
one of which will be fed to the functions P and the other one will be fed to the low-degree functions LP

(indeed, this is the only difference between the formulas in (10) and in (11)). It turns out that provided that
the collection P is well separated, there is a coupling X, (X ′, X ′′) between ν⊗n and ν⊗n × ν⊗n such that∑

P∈spnN(P)

P (X)LP (X) =
∑

P∈spnN(P)

P (X ′)LP (X
′′) + o(1)

in L2 distance. By well-separated, we mean that besides the trivial all 1 function coming from the empty
product, every function in spnN(P) has a high Fourier analytic degree; in fact, this degree should be much
higher than the degree of any of the functions LP . We do not elaborate on this point further but remark that
we show how to achieve this property via an appropriate clean-up process (which in return necessitates the
set-up made in Section 4).

The intuition for the existence of the coupling comes from the fact that if we look at the left-hand
side above, and expose 1 − 1/D of the coordinates of X where D is much higher than the degrees of the
functions LP but much smaller than the separatedness of P , then the values of the functions LP are almost
fully determined, whereas the values of the functions P (X) still have the same distribution as the original
one. This suggests that the behavior of the values of P (X)’s and LP (X)’s is almost independent of each
other, and hence, such a coupling should exist.

2.4 Deducing the Invariance Principle

Collecting the facts gathered so far, we have shown that the values of the noised function TP,1−εf1 can be
coupled with the values of decoupled function from (11) in a way that is close in L2 distance, implying that∣∣∣∣∣∣∣ E
(x,y,z)∼µ⊗n

[f1(x)f2(y)f3(z)]− E
(x,y,z)∼µ⊗n

(x′,y′,z′)∼µ⊗n

[
f̃1,decoupled(x, x

′)f̃2,decoupled(y, y
′)f̃3,decoupled(z, z

′)
]∣∣∣∣∣∣∣ = o(1)

(strictly speaking, we need to apply a rounding function on the output of the decoupled functions; the goal
is to make sure the output is a number bounded by 1 in absolute value). Multiplying the second expectation
out, one may use the standard invariance principle to replace x′, y′, z′ with Gaussian random variables. As
for the x, y, z, one notes that the values of the functions only depend on σ(x), γ(y) and ϕ(z), and so they
can be replaced with elements from Gmaster that add up to 0. This finishes a proof sketch of Theorem 1.2.

3 Preliminaries

In this section, we collect a few basic notions and results that we need.
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Notations. For a vector x ∈ Σn and a subset I ⊆ [n] of coordinates, we denote by xI the vector in ΣI

which results by dropping from x all coordinates outside I . We denote by x−I the vector in Σn−|I| resulting
from dropping from x all coordinates from I; if I = {i} we often simplify the notation and write it as x−i.
For I ⊆ [n], a ∈ ΣI and b ∈ Σn−|I| we denote by (xI = a, x−I = b) the point in Σn whose I-coordinates
are filled according to a, and whose I-coordinates are filled according to b. For two strings x, y ∈ Σn we
denote by ∆(x, y) the Hamming distance between x and y, that is, the number of coordinates i ∈ [n] such
that xi ̸= yi. We denote by i the complex root of −1, and by a the complex conjugate of the number a ∈ C.

We denote A ≲ B to refer to the fact that A ⩽ C · B for some absolute constant C > 0, and A ≳ B
to refer to the fact that A ⩾ c · B for some absolute constant c > 0. If this constant depends on some
parameter, say m, the corresponding notation is A ≲m B. We will also use standard big-O notations: we
denote A = O(B) if A ≲ B, A = Ω(B) if A ≳ B; if there is a dependency of the hidden constant on some
auxiliary parameter, say m, we denote A = Om(B) and A = Ωm(B).

We denote 0 < A≪ B to refer the choice of A and B in the way that B is fixed, and then A is taken to
be sufficiently small compared to B.

3.1 Discrete Fourier Analysis over Product Spaces

Let (Σ, ν) be a finite probability space, and consider the product space (Σn, νn). We will often consider the
space L2(Σ

n, νn) of complex-valued functions f : Σn → C equipped with the standard inner product

⟨f, g⟩ν = E
x∼νn

[
f(x)g(x)

]
.

Often times, the underlying measure ν will omitted from the notation as it will be clear from context.
The space L2(Σ

n, νn) admits several types of decompositions that we will use throughout this paper. The
coarsest decomposition is the degree decomposition; the Efron-Stein decomposition is a refinement of the
degree decomposition; finally, the Fourier decomposition is a refinement of the Efron-Stein decomposition.
We next present each one of these decompositions.

3.1.1 The Degree Decomposition

We first define the notion of d-juntas and the space V⩽d(Σ
n).

Definition 3.1. For a subset I ⊆ [n], function f : Σn → C is called a I-junta if a function f ′ : ΣI → C
such that f(x) = f ′(xI) for all x ∈ Σn. A function f is called a d-junta for d ∈ N if it is an I-junta for I
of size at most d. We define the space V⩽d(Σ

n) to be the linear span of all d-juntas.

The space V⩽d(Σ
n) is often referred to as the space of degree d functions. Using our inner product, we

may define the space of pure degree d functions as follows.

Definition 3.2. Given a product space (Σn, νn), the space of pure degree d functions is defined as

V=d(Σ
n, νn) = V⩽d(Σ

n) ∩ V⩽d(Σ
n)⊥.

It is easily seen that

L2(Σ
n, νn) = V⩽n(Σ

n) =

n⊕
d=0

V=d(Σ
n, νn),
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and thus any function f : Σn → C may be uniquely written as

f(x) =

n∑
d=0

f=d(x), where f=d ∈ V=d(Σ
n, νn) ∀d.

This decomposition is called the degree decomposition of f , and the function f=d is referred to as the degree
d part of f .

3.1.2 The Efron-Stein Decomposition

The Efron-Stein decomposition is a refinement of the degree decomposition. For each d ∈ N and S ⊆
[n] of size d, one defines the space V=S(Σ

n, νn) = V=d(Σ
n, νn) ∩ {S-juntas}. It is a standard fact that⊕

|S|=d V=S = V=d, and thus one may write f=d ∈ V=d as

f=d(x) =
∑
|S|=d

f=S(x) where f=d ∈ V=S(Σ
n, νn) ∀S.

Thus, one gets the decomposition of f as

f=d(x) =
∑
S⊆[n]

f=S(x)

where f=S ∈ V=S(Σ
n, νn) for all S. This decomposition is known as the Efron-Stein Decomposition.

3.1.3 The Fourier Decomposition

The Fourier decomposition is the most refined and explicit decomposition among the decompositions dis-
cussed herein. One first looks at the base space, L2(Σ, ν), and picks an orthonormal basis for it consisting of
m = |Σ| real-valued functions, v0, . . . , vm−1 : Σ→ R. It is standard to take v0 to be the all 1 function, and
we will do so here. With these notations, we may construct an orthonormal basis for L2(Σ

n, νn) consisting
of the functions {vα⃗}α⃗∈{0,...,m−1}n where

vα⃗(x) =

n∏
i=1

vαi(xi).

Thus, any function f : Σn → C admits a unique decomposition as f(x) =
∑

α⃗∈[m]n
f̂(α⃗)vα⃗(x) where f̂(α⃗) =

⟨f, vα⃗⟩. We remark that it is easily seen that the space V=d is the span of all vα⃗ with |supp(α)| = d, and
furthermore that V=S is the span of all vα⃗ with supp(α) = S.

The Fourier definition presented herein can be somewhat arbitrary as there are many ways of defining the
functions v1, . . . , vm−1. Nevertheless, it will be useful for us in order to present the invariance principle [42].
Towards this end

3.1.4 Hypercontractivity

Definition 3.3. For q ⩾ 2 and f : (Σn, νn)→ C, we define the q-norm of f as

∥f∥q =
(

E
x∼νn

[|f(x)|q]
)1/q

.

20



Theorem 3.4. Suppose that (Σ, ν) is a probability space with |Σ| = m such that ν(x) ⩾ α for all x ∈ Σ,
where m ∈ N and α > 0. For all q ⩾ 2 there exists C = C(q, α,m) > 0 such that if f : (Σn, νn)→ C is a
degree d function, then

∥f∥q ⩽ Cd∥f∥2.

3.1.5 The Noise Operator

We will need the standard noise operator on product spaces.

Definition 3.5. For a parameter ρ ∈ [0, 1] and an input x ∈ Σn, we define the distribution Tρx over
ρ-correlated inputs with x in the following way. For each i ∈ [n] independently, with probability ρ pick
yi = xi, and otherwise sample yi according to ν.

The process Tρ is described as a Markov chain, and as is standard we may consider it as an averaging
operator over functions. That is, we may consider it as a linear operator Tρ : L2(Σ

n, νn) → L2(Σ
n, νn)

defined as
Tρf(x) = E

y∼Tx
[f(y)].

3.2 Influences and Low-degree Influences

Next, we define a few basic notions from the analysis of Boolean functions.

Definition 3.6. For a function f : (Σn, νn)→ C and a coordinate i ∈ [n], the influence of i is defined as

Ii[f ] = E
y∼νn−1

a,b∼ν

[
|f(x−i = y, xi = a)− f(x−i = y, xi = b)|2

]
.

Next, we define the notion of low-degree influences.

Definition 3.7. For a function f : (Σn, νn)→ C, a parameter d ∈ N and a coordinate i ∈ [n], the degree d
influence of i is defined as I⩽d

i [f ] = Ii[f
⩽d].

3.3 The Invariance Principle

In this section, we present the invariance principle of [42], and we begin with some set-up. Suppose that
Σ,Γ,Φ are finite alphabets of sizes m1,m2,m3 respectively, and µ is a probability measure over Σ×Γ×Φ
in which the probability of each atom is at least α > 0. We set up Fourier bases for (Σ, µx), (Γ, µy) and
(Φ, µz) given by v0, . . . , vm1−1, u0, . . . , um2−1 and w0, . . . , wm3−1. Consider the ensemble of random
variables

X = {v1(x), . . . , vm1−1(x), u1(y), . . . , um2−1(y), w1(z), . . . , wm3−1(z)}

where (x, y, z) ∼ µ. We define the covariance matrix P ∈ R(m1+m2+m3)×(m1+m2+m3) whose rows and
columns correspond to the functions in X , and the entry corresponding to tow random variables in X . For
example, for vi and uj , the corresponding entry is

P (vi, uj) = E
(x,y,z)∼µ

[
vi(x)uj(y)

]
.

Let
G = {G1,x, . . . , Gm1−1,x, . . . , G1,z, . . . , Gm3−1}
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be an ensemble of centered Gaussian random variables with covariance matrix P . The invariance principle
relates the behavior of low-influence, multi-linear polynomials over X and over G. Below, we state the
version that we need from [41] specialized to our case of interest, but before that, we need a few definitions.

Denote q = m1 +m2 +m3 − 3, and let M : Cqn → C be a multi-linear polynomial given as

M(a1,1, . . . , a1,q, . . . , an,1, . . . , an,q) =
∑

T⊆[n]×[q]

mT

∏
(i,j)∈T

ai,j .

Definition 3.8. The influence of variable (i, j) on M as above is defined as

Ii,j [M ] =
∑

T∋(i,j)

|ai,j |2 .

We will also consider vector-valued multi-linear functions, which are functions M : Cqn → Ck wherein
each Ms is a multi-linear function. The influence of (i, j) on M is defined as Ii,j [M ] = maxs Ii,j [Ms].

Finally, define trunc : C→ C by trunc(a) = a if |a| ⩽ 1 and trunc(a) = a/|a| otherwise.

Theorem 3.9. For all α > 0, k,m ∈ N, d ∈ N, C > 0 and ε > 0, there exists τ > 0 such that the following
holds. Suppose that |Σ| , |Γ| , |Φ| ⩽ m, that µ is a distribution over Σ × Γ × Φ in which the probability
of each atom is at least α, and let X and G be the ensembles of random variables as above with the same
covariance matrix. Let M : Cqn → Ck is a multi-linear polynomial with maxi,j Ii,j [M ] ⩽ τ .

1. If Ψ: Ck → C is differentiable three times and its third order derivatives are at most C in absolute
value, then ∣∣∣∣E [Ψ(M(X n))]− E [Ψ(M(Gn))]

∣∣∣∣ ⩽ ε.

2. Define ξ : Ck → R by ξ(a1, . . . , ak) =

√
k∑

i=1
|trunc(ai)− ai|2. Then∣∣∣∣E [ξ(M(X n))]− E [ξ(M(Gn))]

∣∣∣∣ ⩽ ε.

Last, we need the following elementary fact.

Fact 3.10. Consider the function ξ : C → [0,∞) defined as ξ(a) = |trunc(a)− a|. Then ξ is 2-Lipshitz
function.

Proof. Let a, b ∈ C; we show that |ξ(a)− ξ(b)| ⩽ 2 |a− b|. If a, b are both at most 1 in absolute value,
then the left-hand size is 0 and the claim is trivial. If exactly one of a and b is at most 1 in absolute value,
say a then

|ξ(a)− ξ(b)| = |ξ(b)| = |b| − 1 ⩽ |b| − |a| ⩽ |b− a| ,
and we are done. It remains to consider the case that both a and b are at least 1 in absolute value. In that
case, by the triangle inequality

|ξ(a)− ξ(b)| = |a |b| − b |a||
|a| |b|

⩽
|a |b| − a |a||+ |a |a| − b |a||

|a| |b|

=
||b| − |a||
|b|

+
||a− b||
|b|

⩽ 2 |a− b| ,

and the proof is concluded.
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3.4 The µ-norm and the CSP Stability Result

Definition 3.11. For a distribution µ over Σ × Γ × Φ and a function f : (Σn, µ⊗n
x ) → C, we define the µ

semi-norm of f as

∥f∥µ = sup
g : Γn→C
h : Φn→C
1-bounded

∣∣∣∣∣ E
(x,y,z)∼µ⊗n

[f(x)g(y)h(z)]

∣∣∣∣∣ .
For general distributions µ, ∥∥µ is actually a semi-norm; for instance, if the distribution µ is uniform

over Σ × Γ × Φ, then ∥f∥µ = |E [f(x)]|. For most distributions we will be concerned with, though, this
semi-norm will actually be a norm.

In our applications, we will need to work with several distribution µ over triplets that have the same
marginal distribution over x. A special collection of distributions µ that we care about is as follows:

Definition 3.12. For alphabets Σ, Γ and Φ, a distribution ν over Σ and a parameter α > 0, define the
collections

Mν = {µ | pairwise connected distribution over Σ× Γ× Φ with no (Z,+)-embedding, µx = ν} ,

Mα = {µ |µ(x, y, z) ⩾ α ∀(x, y, z) ∈ supp(µ)} ,

and Mν,α = Mν ∩Mα.

Definition 3.13. Let ν be a distribution over Σ, let Γ, Φ be alphabets and let M be a collection of dis-
tributions over Σ × Γ × Φ such that µx = ν for all µ ∈ M . For a function f : (Σn, µ⊗n

x ) → C, we
define

∥f∥M,ν =
∑
µ∈M
∥f∥µ.

In the special case that M = Mν,α, we refer to the associated norm ∥f∥M,ν as the ν semi-norm of f , and
denote it by

∥f∥ν,α = sup
µ∈Mν,α

∥f∥µ.

Remark 3.14. The results in Sections 4, 5 and 6.3 apply to the more general notion of semi-norm ∥f∥M,ν

with suitable adaptations, and we will need such a result in Section 7. However, stating it in this generality
would complicate the statements (that are already quantifier heavy) further, and hence we state all of the
results for the most general semi-norm ∥f∥ν,α.

It will be important for us to understand the type of functions f that have a significant µ-norm, and
towards that end, we use the following result from [11]:

Theorem 3.1. For all m ∈ N, and alphabet Σ of size at most m, there is an Abelian group G and σ : Σ→ G
such that for all ε, α > 0 there exists δ > 0 and d ∈ N such that the following holds. Suppose that Σ, Γ,
Φ are alphabets of size at most m, and µ is a pairwise connected distribution over Σ × Γ × Φ with no Z
embeddings in which the probability of each atom is at least α. If f : Σn → C is a 1-bounded function such
that ∥f∥µ ⩾ ε, then there is χ ∈ Ĝ⊗n and L : Σn → C of degree at most d and ∥L∥2 ⩽ 1 such that

|⟨f, L · χ ◦ σ⟩| ⩾ δ.

Throughout, a function of the type χ ◦ σ will be referred to as a character function or a character
embedding function.
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4 Embeddings, Embedding Functions and Cyclic Embedding Functions

Character embedding functions arising in Theorem 3.1 will be important for us to study. The structure of
a general character embedding function, however, is too abstract, and our arguments require more strict
structure from them to go through. The main goal of this section is to process embeddings σ as arising in
Theorem 3.1, as well as collections of character embedding functions. This process will produce sort-of
refinements that have a more strict structure, which will be useful for us later.

4.1 Product Functions

Let Σ be an alphabet of size at most m, let G be an Abelian group of size Om(1) and let σ : Σ → G be a
map.

Definition 4.1. We define the class of product functions P(Σ, G, σ) to be the collection of functions of the
form P : Σn → C for which there are 1-bounded univariate functions u1, . . . , un : G→ C for which

P (x1, . . . , xn) =

n∏
i=1

ui(σ(xi)).

Definition 4.2. We say that a class of product functions P(Σ, G, σ) is τ -separated if for any univariate
functions u, v : Σ→ C in it, it either holds that |⟨u, v⟩| = 1 or else |⟨u, v⟩| ⩽ 1− τ .

We need to define a metric on product functions, which we refer to as the symbolic metric.

Definition 4.3. Let P, P ′ : Σn → C be product functions inP(Σ, G, σ). The symbolic metric ∆symbolic(P, P
′)

is defined as the minimum number k such that there are u1, . . . , un : G
n → C, v1, . . . , vn : Gn → C for

which ui = vi for all but k of the indices i ∈ [n], and

P (x1, . . . , xn) =
n∏

i=1

ui(σ(xi)), P ′(x1, . . . , xn) =
n∏

i=1

vi(σ(xi)).

Definition 4.4. For a set P = {P1, . . . , Pr : Σ
n → C}, we define

spnN(P) =

{
r∏

i=1

Pαi
i

∣∣∣∣∣αi ∈ N, Pαi ̸= 1 for at least one i

}
.

We note that in all applications, the functions Pi’s will be a composition of a character over some finite
Abelian group χ ∈ Â⊗n with a map σ⊗n where σ : Σ→ A is some map, and as such there will be a power
m = O|A|(1) such that Pm

1 = 1. Thus, the set spN(P) will always have a finite size O|A|,r(1).

Definition 4.5. The rank of P = {P1, . . . , Pr : Σ
n → C} is defined as

rk(P) = min
P∈spN,P ̸=1

∆symbolic (P, 1)

We have the following simple fact, asserting that product functions with large symbolic distance act like
high-degree monomials.

Lemma 4.6. Suppose that P : Σn → C is a product function from P(Σ, G, σ) which is τ -separated. Then
for all ξ ∈ [0, 1) we have that ∥T1−ξP∥2 ⩽ 2−Ωξ,m(∆symbolic(P,1)).
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4.2 Embeddings, Master Embeddings and Reduced Embeddings

In this section we fix alphabets Σ,Γ,Φ and a distribution over ν. The primary goal of this section is to
define the master embedding of ν and pre-process it to make it easier to work with. At a high level, the
master embedding of ν is a group embedding that encapsulates all possible embeddings that may arise in
Theorem 3.1 for Σ. This embedding is too abstract and hard to work with, and the goal of our preprocessing
is to modify it so that it satisfies a few properties. Throughout, we let m = max(|Σ| , |Γ| , |Φ|).

4.2.1 The Master Embedding

Let ν be a distribution over Σ, and note that the set Mν is finite. For each µ ∈ Mν there are finitely many
Abelian embeddings of µ, say (σi,µ, γi,µ, ϕi,µ) into (Gi,+) for i = 1, . . . , k for some k = Om(1). Thus,
we may define σµ(x) = (σ1,µ(x), . . . , σk,µ(x)) into the group Gµ = G1× . . .×Gk. With this notation, the
master embedding of ν is defined in the following way:

Definition 4.7. For a distribution ν over Σ, define σmaster(x) = (σµ(x))µ∈Mν and Gmaster =
∏

µ∈Mν

Gµ.

We remark that strictly speaking, the set Mν is infinite. However, as σµ depends only on supp(µ) and
the number of distinct sets that supp(µ) may be for µ ∈Mν is finite. Thus, we may think of σmaster as being
of finite length of at most Om(1).

Remark 4.8. We remark that if we wanted to work with the semi-norms ∥f∥M,ν (instead of ∥f∥ν,α) as
suggested in Remark 3.14, then we have to modify the definition of the master embedding σmaster and the
master group Gmaster in the natural way. Namely, we would only take product over µ ∈ M , and then the
content of this section remains as is.

A key feature of the master embedding σmaster is that it captures all characters over any Abelian group
that may arise via embeddings of any µ ∈ Mν . Indeed, for any µ ∈ Mµ, for any Abelian group G that
µ may be embedded into via, say, σ : Σ → G, and for any χ ∈ Ĝ, we may find χ′ ∈ Ĝmaster such that
χ ◦σ(x) = χ′ ◦σmaster(x) for all x ∈ Σ. This is true since σ is one of the coordinates in σmaster. In a sense,
the master embedding σmaster encapsulates within it any character function.

4.2.2 Embedding Reduction

We would like to modify the embedding σmaster and the master group Gmaster so that they have more
structure. The key feature of these modifications that will make them applicable for us is that they preserve
the collection of character functions.

Definition 4.9. Let ν be a probability distribution over Σ and let σ′ : Σ→ G′ be a map.

1. We say that a map σ : Σ→ G reduces to σ′ : Σ→ G′ if for any χ ∈ Ĝ there is χ′ ∈ Ĝ′ and θ ∈ C of
absolute value 1 such that χ ◦ σ ≡ θχ′ ◦ σ′.

2. We say that σ′ is character-encapsulating if the master embedding of ν, (σmaster, Gmaster) reduces to
χ′.

Thus, the goal in our preprocessing step is to find an embedding that has more structural properties than
the master embedding, yet it is still character-encapsulating.
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4.2.3 Reducing the Master Embedding

We now begin with a series of modifications to (σmaster, Gmaster) so as to gain additional structural proper-
ties. First, we may assume without loss of generality that the group generated by Image(σmaster) is Gmaster,
since otherwise, we may replace Gmaster with that sub-group. Second, as Gmaster is an Abelian group, by
the fundamental theorem of finite Abelian groups, it may be written as G1× . . .×Gk where each one of the
group Gi is a cyclic group of prime power order, say (Zpidi

,+). The fact that some primes pi may repeat,
and furthermore that we have to consider prime powers (i.e., the case di > 1) create complications, and the
goal of this section is to obtain enough structure on our embedding so that we can tolerate them.

Of central interest to us will be the following consideration. Suppose that χ1, . . . , χs are some character
functions, and consider the partition over Σn defined as

Pθ1,...,θs = {x ∈ Σn | (χi ◦ σ)(x) = θi ∀i} .

Suppose that χ1, . . . , χs satisfy some relation such that χb1
1 · · ·χbs

s ≡ 1. Can we always “simplify” the
collection χ1, . . . , χs without changing the partition it induces? The goal of our preprocessing is that the
answer to the above would be positive, and to get some intuition as to how such simplifications look we first
consider the basic case where the map σ is ignored.

4.2.4 Complications that May Arise in Prime Power Cyclic Groups

To get a sense of these potential complications, note that any character function of (Zn
p ,+) is a character

function of (Zn
p2 ,+), and this create issues. For instance, suppose that for a prime p we have χ1, . . . , χs ∈

Ẑn
p such that χb

1 · · ·χb
s ≡ 1 for some 1 ⩽ b ⩽ p − 1. In our applications we will care about the partition of

the domain, in this case, Zn
p , induced by the functions χ1, . . . , χs:

Pθ1,...,θs = {x |χi(x) = θi ∀i} .

In this language, the fact χb
1 · · ·χb

s ≡ 1 means that there are redundancies in this partition. Indeed, in
this case, we could drop χs and have the same partition: by raising both sides to the power a where
ab = 1 (mod p) it follows that χ1 · · ·χs ≡ 1, so χs = χ1 · · ·χs−1. Hence, the partition formed by
{χ1, . . . , χs−1, χs} is the same as the partition formed by {χ1, . . . , χs−1}, and we have simplified our col-
lection without affecting the partition. Things become more complicated in prime power cyclic groups.

Suppose for illustration that χ1, . . . , χs ∈ Ẑ⊗n
p2

satisfy that χb
1 · · ·χb

s ≡ 1 for some 1 ⩽ b ⩽ p2 − 1, then
we can no longer always conclude that their product is also 1. If b is co-prime to p this would be true (by
raising both sides again to a power a where ab = 1 (mod p2)). If b is not co-prime to p, say b = rp, then we
would be able to replace the characters {χ1, . . . , χs} with {χ1, . . . , χs−1, χ

′
s} where χ′

s ∈ Ẑn
p and have the

same partition. Indeed, we may write χi(x) = e
⟨ci,x⟩
p2

2πi for some ci ∈ Zn
p2 , and get that p(c1+ . . .+cs) = 0

(mod p2). Thus, cs = −(c1 + . . .+ cs−1) (mod p), and so cs = −(c1 + . . .+ cs−1) + pt for t ∈ Nn. We

may take χs′(x) = e
⟨t,x⟩
p

2πi and get that

χs(x) = e
⟨cs,x⟩
p2

2πi
= e

⟨−c1−...−cs−1,x⟩
p2

2πi
e

⟨t,x⟩
p

2πi
= χ1 · · ·χs−1χ

′
s,

from which it follows that the partition induced by {χ1, . . . , χs} is the same as the partition induced by
{χ1, . . . , χs−1, χ

′
s}. Thus, we again got to simplify our system while keeping the partition the same.
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Complications that may arise due to the map σ: re-introducing the map σ into the picture creates some
further complications. Suppose for example that d1 = 2 and the corresponding coordinate of σ, namely
σ1 : Σ→ Zp21

is a map of the form σ1(x) = pm(x) for some m : Σ→ Zp21
. Then character functions χ ◦σ1

for χ ∈ Ẑp21
yield functions χ ◦ σ1 that are not really characters over Zp21

. Rather, they are trivial lifts of a
character form Zp1 . We would like to avoid these lifted functions, and so we must clean up the map σ.

Definition 4.10. Let p be a prime and let d > 1. We say that a map m : Σ → Zpd is reducible if there is a
map m′ : Σ→ Zpd and a, b ∈ Zpd such that m′(x) = p · a ·m(x) + b for all x ∈ Σ. Otherwise, we say that
m is irreducible.

We note that if m is reducible, then any character function χ ◦ m for χ ∈ Ẑpd is equal to a constant

times a character function χ′ ◦m′ for χ′ ∈ Ẑpd−1 . We also need to clean up redundancies between different
coordinates of a master embedding. We begin with handling maps using a single prime p.

Definition 4.11. Let σ : Σ →
s∏

k=1

Zpdk be a map, and let d = max dk. We say σ contains redundancies if

there are a1, . . . , as, b ∈ N such that 0 ⩽ ak < pd are not all 0 and

s∑
k=1

akσk(x) = b (mod pd).

Otherwise, we say σ does not contain redundancies.

Suppose that σ is a map containing redundancies, and take t : Σ→ Zpd satisfying that

s∑
k=1

akσk(x) = b+ pdt(x).

Write ak = pska′k where a′k is co-prime to p and take i minimizing di + si. Take the map σ′ which results
from dropping the coordinate i from σ and replacing it by t. We claim that if χ ◦ σ is a character function,
then we could write it as θχ′ ◦ σ′ for some χ′ ∈

∏̂
j ̸=i

Z
pdj

and θ a complex number of absolute value 1.

Indeed, we may write

e
cσi(x)

pdi
2πi

= e
cpsiσi(x)

pdi+si
2πi

= e

1

pdi+si

(
bca′i

−1+ca′i
−1pdt(x)−ca′i

−1 ∑
k ̸=i

akp
skσk(x)

)
2πi

= e
bca′i

−1

pdi+si
2πi

e
ca′i

−1
t(x)

pdi+si−d 2πi ·
∏
k ̸=i

e
− ca′i

−1
a′kpdk+sk−(di+si)σk(x)

pdk .

Thus, we can take t(x) modulo max(pdi+si−d, 1) and get that any character of the i coordinate of σ can
be written as a product of a constant and characters over σ′. The benefit here is that we always have that
di + si − d < di, hence we reduce the size of the group on the ith coordinate. For general embeddings, the
definition proceeds as follows:

Definition 4.12. Let σ : Σ→
k∏

i=1
Zpidi

. We say that σ contains redundancies if there is some prime p, such

that looking at the coordinates of σ with pi = p, the resulting map contains redundancies. Otherwise, we
say that σ is redundancy-free.
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We summarize this section and the above discussion with the following immediate fact:

Fact 4.13. Let G =
k∏

i=1
Zpidi

be an Abelian group, and let σ : Σ → G be a map. Then there exists an

Abelian group G′ =
k∏

i=1
Z
pi

d′
i

with d′i ⩽ di and a map σ′ : Σ→ G′ such that:

1. The map σ is reducible to σ′.

2. Each coordinate of σ′ is irreducible.

3. The map σ′ contains no redundancies.

Proof. As long as there is a coordinate of σ that is reducible, say σi(x) = p · a · σ′
i(x) + b, we replace σi

with σ′
i and pi

di with pi
di−1 to get the map σ′. We get from the above discussion that σ is reducible to σ′.

As long as there are redundancies in σ, we find a coordinate i as above and replace the embedding σ there
as explained above.

Clearly, this process must terminate, at which point we get to a σ′ that is irreducible and does not contain
redundancies.

4.2.5 Reducing Our Master Embedding

Applying Fact 4.13 on the maser embedding σmaster we get an embedding which is irreducible and with
no redundancies, and to simplify notations we assume henceforth that σmaster is irreducible to begin with.
Furthermore, by applying an affine shift (which clearly preserves all the features of σmaster), we may assume
that its image contains 0 ∈ Gmaster. We recall that we may assume that the image of σmaster generates the
whole group Gmaster, otherwise we may shrink it (and, if necessary, we repeat the above process to get the
embedding to once again be irreducible with no redundancies).

4.3 Cyclic Embedding Functions

As we explained earlier, embedding functions – namely functions of the form P = χ ◦ σmaster for χ ∈
Ĝn

master – will be of interest to us. For convenience, it will be easier for us to handle cyclic embedding
functions.

Definition 4.14. Let P = χ ◦ σmaster be a function for χ ∈ Ĝn
master, and write Gmaster =

k∏
i=1

Zpidi
and so

χ = (χ1, . . . , χk) for χi ∈ Ẑpidi
as above. We say P is a cyclic embedding function if there is j ∈ {1, . . . , k}

such that for all i ̸= j we have that χi ≡ 1.

In words, a cyclic embedding function is a function P = χ ◦ σmaster that takes into account only one of
the coordinates of σmaster. We have the following trivial fact:

Fact 4.15. Suppose that P = χ ◦ σmaster is an embedding function. Then there are Om(1) functions cyclic
embedding functions P1, . . . , Pk such that P (x) = P1(x) · · ·Pk(x) for all x.

Proof. Write χ = (χ1, . . . , χk) for χi ∈ Ẑpidi
and take Pi(x) = χi(σmaster(x)) for each i = 1, . . . , k.
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Fact 4.15 will allow us to reduce ourselves to always working with cyclic embedding functions. The
main benefit of working with cyclic embedding functions is that it allows one to isolate calculation to be
only with respect to some prime number p and its powers (as opposed to multiple different primes). Note
that if P is a cyclic embedding function using embedding into Zpd , then P pd ≡ 1. However, as the image
of σmaster may not include the whole group Zpd , there may be a smaller power k such that P k ≡ 1. The
smallest such power is defined to be the order of P :

Definition 4.16. Let P be a cyclic embedding function on Zpd . The order of P , denoted by ord(P ) is the
smallest number k such that P k ≡ 1.

The following facts will be useful for us:

Fact 4.17. Suppose that P is a cyclic embedding function into Zpd , suppose that ord(P ) = t and write

P (x) = e
⟨c,σmaster,j(x)⟩

pd
2πi

. Then:

1. We have that t = ps for some integer 1 ⩽ s ⩽ d.

2. We may write c = pd−sc′ for some c′ ∈ Zn
pd

.

Proof. Take s to be the smallest integer so that pd−s divides each one of the entries of c. Then the second
item holds and we write c = pd−sc′. Note that

P ps = e
ps

⟨pd−sc′,σmaster,j(x)⟩
pd

2πi
e⟨c

′,σmaster,j(xi)⟩2πi = 1,

so ord(P ) ⩽ ps. Suppose for contradiction that t = ord(P ) < ps. Then by the above computation,
we get that ⟨pd−stc′, σmaster,j(x)⟩ = 0 (mod pd) for all x, and as gcd(pd−st, pd) < pd it follows that
⟨c′, σmaster,j(x)⟩ = 0 (mod p) for all x. By choice of s there is i such that c′i is co-prime to p, and we fix
this i. As 0 is in the image of σmaster (see Section 4.2.5), we may consider fixings of the input x outside
the coordinate i such that σmaster,j(xk) = 0 for all k ̸= i and get that c′iσmaster,j(xi) = 0 (mod p) for all
i. It follows that σmaster,j(xi) = 0 (mod p) for all xi ∈ Σ, and contradiction to the fact that σmaster is
irreducible.

4.4 Utilizing Redundancies in Collections of Simple Cyclic Embedding Functions

We are now ready to formalize the simplification process as outlined in Section 4.2.4. More specifically,
the general flavor of statements in this section will be of the following type: we have a collection of cyclic
functions that satisfy that equality (or near equality), and we would like to produce a new collection of
embedding functions that simplifies it while producing the same partition over inputs (or nearly the same in
the case of near equality).

We begin with the case of exact equality:

Lemma 4.18. Fix a prime p and suppose that P1, . . . , Pr are cyclic embedding functions of Zpd1 , . . . ,Zpdr

respectively. Further suppose that there are powers 1 ⩽ αi < ord(Pi) for i = 1, . . . , r such that

Pα1
1 (x) · · ·Pαr

r (x) = 1

for all x ∈ Σn. Then there exists i and powers {βj}j ̸=i such that Pi =
∏
j ̸=i

P
βj

j .
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Proof. Consider the powers α1, . . . , αr. If there is an i such that αi is co-prime to p, then we may find
βi ∈ N such that αiβi = 1 (mod pdi). Taking the equality in the statement of the lemma to the power βi
and re-arranging gives that

Pi =
∏
j ̸=i

P
−αjβj

j .

We assume henceforth that each one of the αi’s is divisible by p, and write αi = paiα′
i where α′

i is co-prime
to p. Write ord(Pi) = pdi−si and

Pi = e

⟨psi c(i),σmaster,ji
(x)⟩

pdi
2πi

where ji is some index, di is an integer and c(i) is not divisible by p. Let d = max di; we get that
m∑
i=1

α′
ip

ai+si+d−di⟨c(i), σmaster,ji(x)⟩ = 0 (mod pd). (13)

We note that 0 < ai + si + d− di < d for all i as αi < ord(Pi) and αi is divisible by p. Next, we argue that
all of the functions Pi use the same coordinate of the master embedding.

Claim 4.19. There is j such that ji = j for all i.

Proof. Suppose this is not the case, and without loss of generality j1 ̸= j2. Pick a coordinate k such that
c(1)k is co-prime to k, and fix the input x in (13) on all other coordinates so that we get from (13) that

Ac(1)kσmaster,j1(xk) +Bc(2)kσmaster,j2(xk) = C (mod pd)

for all xk ∈ Σ, where A and B are constants smaller than pd and C is some constant. We get that σmaster

contains redundancies, and contradiction.

Thus, (13) simplifies to
r∑

i=1

α′
ip

ai+si+d−di⟨c(i), σmaster,j(x)⟩ = 0 (mod pd). (14)

Using the fact that the image of σmaster contains the 0-element and that the image of σmaster generates the
whole group (see Section 4.2.5), we get that

r∑
i=1

α′
ip

ai+si+d−dic(i) = 0 (mod pd).

Take i minimizing ai, and denote by (α′
i)
−1 an integer such that (α′

i)(α
′
i)
−1 = 1 (mod pd). Then

Pi = e
pai+si+d−di ⟨c(i),σmaster,j(x)⟩

pai+d 2πi
=
∏
k ̸=i

e
−

pak+sk+d−dkα′
k(α′

i)
−1⟨c(k),σmaster,j(x)⟩

pai+d 2πi

=
∏
k ̸=i

e
−

pak+sk−aiα′
k(α′

i)
−1⟨c(k),σmaster,j(x)⟩

pdk
2πi

=
∏
k ̸=i

P
−pak−aiαk(α

′
i)

−1

k ,

concluding the proof.
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Next, the following lemma handles the case of approximate equality. In this case, things are more
complicated, and there are two options. A first conclusion may be, as in the exact equality case, that there
is a Pi in our collection that is very close to some product of the other functions in our collection. This may
fail however, and another possibility is that we may replace one of the Pi’s in our system with a different
cyclic embedding function P ′

i such that the partitions induced by the two collections are very similar, and
additionally ord(P ′

i ) < ord(Pi).

Lemma 4.20. Suppose that P = {P1, . . . , Pr} is a collection of cyclic embedding functions of the additive
groups Zpd1 , . . . ,Zpdr respectively, and suppose that rk(P) ⩽ T . Then at least one of the following holds:

1. There exists i and powers {βj}j ̸=i such that

∆symbolic(Pi,
∏
j ̸=i

P
βj

j ) ⩽ T.

2. There exists i and a cyclic embedding function P ′
i such that ord(P ′

i ) < ord(Pi) and

∆symbolic(Pi, P
′
i ) ⩽ T.

Proof. By definitions, there are powers α1 < ord(P1), . . . , αr < ord(Pr) not all 0 and a subset I ⊆ [n] of
size at least n− T such that

Pα1
1 |I · · ·P

αr
1 |I = 1.

Define Qi = Pi|I and note that ord(Qi) ⩽ ord(Pi). Define α′
i = αi (mod ord(Qi)), and note that we get

that Qα′
1

1 · · ·Q
α′
r

r . There are two cases:

1. If there is some α′
i that is 0, then we conclude that ord(Qi) < ord(Pi). Thus, we may replace Pi by

Qi and get that the second conclusion holds.

2. Else, all of the α′
i’s are non-zero. Applying Lemma 4.18 we conclude that there is i and powers

{βj}j ̸=i such that
Qi =

∏
j ̸=i

Q
βj

j ,

and so by definition ∆symbolic(Pi,
∏
j ̸=i

P
βj

j ) ⩽ T .

With Lemma 4.20 in hand, we can now state and prove a version of it that applies to general collections
of cyclic functions (and not only ones that are associated with the same prime p).

Lemma 4.21. Suppose thatP = {P1, . . . , Pr} is a collection of cyclic embedding functions of Zp1d1
, . . . ,Zprdr

respectively, and suppose that rk(P) ⩽ T . Then at least one of the following holds:

1. There exists i and powers {βj}j ̸=i such that

∆symbolic(Pi,
∏
j ̸=i

P
βj

j ) ⩽ T.

2. There exists i and a cyclic embedding function P ′
i such that ord(P ′

i ) < ord(Pi) and

∆symbolic(Pi, P
′
i ) ⩽ T.
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Proof. Pick a prime p such that pi = p for at least a single i, let I = { i | pi = p} and define a =
∏

i:pi ̸=p

pi
di .

Then
∆symbolic(P

α1a
1 · · ·Pαra

r , 1) ⩽ ∆symbolic(P
α1
1 · · ·P

αr
r , 1) ⩽ T.

On the other hand, note that if i ̸∈ I , then

Pαia
i = (P

p
di
i

i )αia/p
di
i = 1,

and it follows that
∆symbolic(

∏
i∈I

Pαia
i , 1).

Let d = maxi∈I di. Note that as a is co-prime to p we may find an integer b such that ab = 1 (mod pd). It
follows that

∆symbolic(
∏
i∈I

Pαi
i , 1) = ∆symbolic(

∏
i∈I

Pαiab
i , 1) ⩽ ∆symbolic(

∏
i∈I

Pαia
i , 1) ⩽ T.

The proof is concluded by applying Lemma 4.20.

4.5 Low Degree Functions

In this section, we collect a few facts about low-degree functions and related notions that we shall need. The
first fact asserts that if a function f is close to a low-degree function, then the values of f(x) and f(y) are
close if we sample x and y ∼ T1−δ; also, the statement holds in the other direction.

Fact 4.22. Let f : Σn → C be a function.

1. For all δ > 0 and d ∈ N,

E
x

y∼T1−δx

[
|f(x)− f(y)|2

]
⩽ 2dδ + 2W⩾d[f ].

2. Suppose that E x
y∼T1−δx

[
|f(x)− f(y)|2

]
⩽ ξ for some δ. Then W⩾1/δ[f ] ⩽ ξ.

Proof. We begin with the first item. Writing the degree decomposition f =
n∑

i=0
f=i and using Parseval, we

ge that

E
x

y∼T1−δx

[
|f(x)− f(y)|2

]
= 2⟨(I − T1−δ)f, f⟩ =

n∑
i=0

2(1− (1− δ)i)∥f=i∥22,

and separating the sum into i ⩽ d and i > d finishes the proof.
For the second item, doing the same computation we get that for d ⩾ 1/δ it holds that

W⩾d[g] ⩽
1

2(1− e−1)

n∑
i=0

2(1− (1− δ)i)∥f=i∥22 ⩽ ξ,

and the proof is concluded.
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If f1, . . . , fs : Σn → C are functions of degree at most d, then it is clear that
s∏

i=1
fi is a function of degree

at most sd. What if the functions f1, . . . , fs are not degree d functions, but instead are very close to degree
d functions in L2-norm? In the following lemma, we show that if f1, . . . , fs are bounded, then f1 · · · fs is
still close to a low-degree function.

Lemma 4.23. Suppose that f1, . . . , fs : Σn → C are 1-bounded functions such that W⩾d[fi] ⩽ ξ for all i.

Then W⩾d/ξ

[
s∏

i=1
fi

]
⩽ 4s2ξ.

Proof. Define g =
s∏

i=1
fi, and let δ > 0 be a parameter to be determined. We show that

∥g − T1−δg∥22 ⩽ E
x

y∼T1−δx

[
|g(x)− g(y)|2

]
.

Define hi(x, y) =
i∏

j=1
fj(x)

s∏
j=i+1

fj(y). Then we get that

∥g − T1−δg∥22 ⩽ E
x

y∼T1−δx

∣∣∣∣∣
s−1∑
i=0

hi+1(x, y)− hi(x, y)

∣∣∣∣∣
2
 ⩽ s

s−1∑
i=0

E
x

y∼T1−δx

[
|hi+1(x, y)− hi(x, y)|2

]
,

where we used Cauchy-Schwarz. Using the fact that each fi is 1-bounded, we get that |hi+1(x, y)− hi(x, y)| ⩽
|fi+1(x)− fi+1(y)|, and so we get that

∥g − T1−δg∥22 ⩽ s2max
i

E
x

y∼T1−δx

[
|fi(x)− fi(y)|2

]
⩽ 2s2(dδ + ξ),

where in the last inequality we used Fact 4.22. By Fact 4.22 it follows that W⩾1/δ[g] ⩽ 2s2(dδ + ξ), and
the proof is concluded by picking δ = ξ/d.

5 A Regularity Lemma

In this section, we state and prove a regularity lemma that will be crucial for our mixed invariance principle.

5.1 The Noise Operator with Respect to Sigma Algebras

In the following definition, we give a variant of the standard noise operator over product spaces that will be
crucial for our regularity lemma.

Definition 5.1. Let Σ be a finite alphabet, let ν be a distribution over Σ, let P = {P1, . . . , Pr : Σ
n → C}

be a collection of functions, and let ε > 0. For each x ∈ Σn we define the distribution Tν,P,1−εx to be the
distribution sampled as:

1. Sample I ⊆ε [n].

2. Sample y ∼ ν⊗n conditioned on yI = xI and Pi(y) = Pi(x) for all i.
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3. Output y.

Often times the distribution ν will be clear from context and we will omit it from the notation.

As is usually the case, we will associated with Tν,P,1−ε an averaging operator over functions, which by
abuse of notation we denote as Tν,P,1−ε : L2(Σ

n, ν⊗n)→ L2(Σ
n, ν⊗n) and define as

Tν,P,1−εf(x) = E
y∼Tν,P,1−εx

[f(y)].

We will use noise operators as a replacement for harsh truncations, as it is important for us to come
up with an operation that is truncation-like yet preserves the boundedness of functions. In this section, we
collect a few basic properties of the noise operator Tν,P,1−ε.

5.1.1 A Stationary Distribution of Tν,P,1−ε

We begin by stating a few basic properties of the operator Tν,P,1−ε. The following claim asserts that
Tν,P,1−ε is a Markov chain over Σn and ν⊗n is a stationary distribution of it. We remark that whenever the
set P is non-empty, the Markov chain Tν,P,1−ε is disconnected.

Fact 5.2. Sampling x ∼ ν⊗n and then y ∼ Tν,P,1−εx, the distribution of y is ν⊗n.

Proof. Write P = {P1, . . . , Pm}, fix a point w ∈ Σn and calculate the probability that y = w. Denote
ai = Pi(wi), and fix I a choice of a subset of coordinates in the process that samples y conditioned on x.
Then

Pr
x,y

[y = w | I] = Pr
x,y

[Pi(x) = ai∀i, xI = wI | I]Pr
x,y

[y = w | I, Pi(x) = ai∀i, xI = wI ].

Let A be the set of x ∈ Σn such that Pi(x) = ai for all i and xI = wI . Then by sampling of y we have
that Prx,y [y = w |Pi(x) = ai∀i, xI = wI ] = ν(w)/ν(A), as y is sampled according to ν conditioned on
y ∈ A. Also, Prx,y [Pi(x) = ai∀i, xI = wI ] = ν(A), and multiplying gives that Prx,y [y = w] = ν(w).
Since this is true for every I , it follows that it is true for any distribution over I , and thus we get that
Prx,y [y = w] = ν(w).

5.1.2 Relating Different Noise Operators

In the next fact, we show that if P ′ is close to spnN(P), then the operators Tν,P,1−ε and Tν,P∪{P ′},1−ε are
close.

Fact 5.3. Let P be a collection, let ε > 0, let P ′ : Σn → C and suppose that k = minP∈spnN(P)∆(P, P ′).
Then

1. There is a coupling of (x, y, y′) such that (x, y) is distributed according to (x,Tν,P,1−εx), (x, y′) is
distributed according to (x,Tν,P∪{P ′},1−εx) and Pr [y ̸= y′] ⩽ kε.

2. For any 1-bounded function f : Σn → N,

∥Tν,P∪{P ′},1−εf − Tν,P,1−εf∥2 ⩽ 2
√
kε.
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Proof. We begin with the first item. Let P ∈ spnN(P) be the P achieving the minimum, and let K ⊆
[n] be the set of coordinates where P and P ′ differ. Sample x ∼ ν, then I ⊆1−ε [n] and then y ∼ ν
conditioned on yI = xI and Pi(y) = Pi(x) for all i; note that y is distributed according to Tν,P,1−εx. Let
y′ ∼ Tν,P∪{P ′},1−εx. Note that if I ∩ K = ∅, then P ′(y) = P ′(x). Thus, letting E be the event that
I ∩K = ∅, we have that Pr [E] ⩾ 1− kε and that the distributions of y | E and y′ | E are identical. Thus,
the statistical distance between y and y′ is at most Pr [E] ⩽ kε. It follows that there is a coupling between
y and y′ such that Pr [y ̸= y′] ⩽ kε.

For the second item, fix the coupling (x, y, y′) so that we may write

∥Tν,P∪{P ′},1−εf − Tν,P,1−εf∥22 = E
x

[∣∣∣∣ E
y,y′

[
f(y)− f(y′)

]∣∣∣∣2
]
⩽ 4E

x

[
1y ̸=y′

]
⩽ 4kε.

5.1.3 Nearly Preserving Low Degree Functions

The first of which says that TP,1−ε roughly preserves low-degree functions. Toward this end, we introduce
the function

AP(x) = Pr
I⊆ε[n]
x′∼ν⊗n

[
Pi(x

′) = Pi(x) ∀i
∣∣x′

I
= xI

]
= Pr

x′∼T1−εx

[
Pi(x

′) = Pi(x) ∀i
]

that measures how likely a random noisy step from x is to leave the values of all Pi ∈ P unchanged. We
have the following fact:

Fact 5.4. Suppose that Σ is an alphabet of size at most m, P = {P1, . . . , Pr} is a collection of r product
functions and ν is a distribution over Σ. Then for all τ > 0 we have that

Pr
x∼ν⊗n

[AP(x) ⩽ τ ] ⩽ Or,m(τ).

Proof. For each a ∈
r∏

i=1
Image(Pi) define

Ba⃗ = {x ∈ Σn |Pi(x) = ai ∀i = 1, . . . , r} , B′
a⃗ =

{
x ∈ Ba⃗ | Pr

y∼T1−ε

[Pi(y) = ai ∀i = 1, . . . , r] ⩽ τ

}
.

In words, B′
a⃗ is a subset of Ba⃗ of elements from which a step according to the random walk of T1−ε escapes

outside the set with noticeable probability. Note that

Pr
x,y∼T1−ε

[x, y ∈ Ba⃗′ ] = ⟨1Ba⃗′ ,T1−ε1Ba⃗′ ⟩ = ⟨T√
1−ε1Ba⃗′ ,T

√
1−ε1Ba⃗′ ⟩ = ∥T√

1−ε1Ba⃗′∥
2
2

⩾ ∥T√
1−ε1Ba⃗′∥

2
1,

which is equal to ν(Ba⃗′)
2. On the other hand,

Pr
x,y∼T1−ε

[x, y ∈ Ba⃗′ ] = ν(Ba⃗′) Pr
x∈Ba⃗′ ,y∼T1−ε

[y ∈ Ba⃗′ ] ⩽ ν(Ba⃗′) Pr
x∈Ba⃗′ ,y∼T1−ε

[y ∈ Ba⃗] ⩽ ν(Ba⃗′)τ,

and combining the two inequalities we get that ν(Ba⃗′) ⩽ τ . We define Xbad =
⋃

a⃗∈
r∏

i=1
Image(Pi)

Ba⃗′ , and

get that as the size of the image of each one of the Pi’s is Om(1) it holds that

Pr
x∼ν⊗n

[AP(x) ⩽ τ ] ⩽ ν(Xbad) ≲m τ.
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Claim 5.5. Let d, r,m ∈ N and α, ε > 0. Suppose that Σ has size at most m, ν is a distribution over Σ in
which the probability of each atom is at least α, and P = {P1, . . . , Pr} is a collection of product functions
from P(Σ, G, σ) where G is a group of size at most m. Then for any L : Σn → C of degree at most d we
have that

∥(I − TP,1−ε)L∥22 ≲d,m,r,α ε1/3∥L∥22.

Proof. Normalizing, we assume that ∥L∥2 = 1. The left-hand side is equal to

E
x

∣∣∣∣∣ E
y∼TP,1−εx

[L(x)− L(y)]

∣∣∣∣∣
2
 ⩽ E

x

[
E

y∼TP,1−εx
[|L(x)− L(y)|]2

]
, (15)

and in the rest of the proof we bound the right-hand side. Let τ > 0 be a parameter to be chosen. We break
right hand size of (15) and break it to x such that AP(x) ⩾ τ and x such that AP(x) < τ :

E
x

[
E

y∼TP,1−εx
[|L(x)− L(y)|]21AP (x)<τ

]
︸ ︷︷ ︸

(I)

+E
x

[
E

y∼TP,1−εx
[|L(x)− L(y)|]21AP (x)⩾τ

]
︸ ︷︷ ︸

(II)

.

For (I), we have by Cauchy-Shcwartz that

(I) ⩽

√√√√E
x

[
E

y∼TP,1−εx
[|L(x)− L(y)|]4

]√
Pr

x∼ν⊗n
[AP(x) ⩽ τ ] ≲ ∥L∥24

√
Pr

x∼ν⊗n
[AP(x) ⩽ τ ].

By hypercontractivity ∥L∥24 ≲α,d ∥L∥22 = 1, and combining with Fact 5.4 we conclude that (I) ≲α,m,d
√
τ .

For (II), we have that

(II) = E
x

EI⊆ε[n],y∼ν⊗n

[
|L(y)− L(x)|2 1Pi(y)=Pi(x) ∀i

∣∣∣ yI = xI

]
PrI⊆ε[n],y∼ν⊗n

[
Pi(y) = Pi(x) ∀i | yI = xI

] 1AP (x)⩾τ


= E

x

EI⊆ε[n],y∼ν⊗n

[
|L(y)− L(x)|2 1Pi(y)=Pi(x) ∀i

∣∣∣ yI = xI

]
AP(x)

1AP (x)⩾τ


We conclude that (II) is upper bounded by

1

τ
E
x

[
E

y∼T1−εx

[
|L(y)− L(x)|2

]]
=

1

τ
(2− 2⟨L,T1−εL⟩) =

2

τ

(
1− ∥T√

1−εL∥
2
2

)
⩽

2

τ

(
1− (1− ε)d

)
,

which is at most 2d
τ ε. Combining, we get that

(15) ≲α,m,d

√
τ +

ε

τ
,

and choosing τ = ε2/3 finishes the proof.
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5.2 An Approximating Formula for Tν,P,1−εf

Note that any function P ∈ spN(P) is an eigenvector of TP,1−ε of eigenvalue 1. Thus, by Claim 5.5
functions of the form P · L are nearly preserved under the operator TP,1−ε (provided that the degree of L
is sufficiently small compared to 1/ε). In this section, we show that for any function f , TP,1−εf may be
approximated as a linear combination of such functions. This statement, which is Lemma 5.8 below, will be
very important for us in at least two contexts:

1. First, in Section 5 we will use this approximate formula in the proof of our µ-regularity lemma.

2. Second, in Section 6.3 we will use it to state and prove our mixed invariance principle.

Towards getting such an approximation we need more basic properties of the function AP(x). In
Claim 5.4 we proved that its values are almost always positive numbers bounded away from 0. In the
next fact, we show that AP(x) is close to a linear combination of functions of the form P ·L for low-degree
functions L. For technical purposes, we need a slightly different claim, giving low-degree-like functions L
that are still bounded:

Fact 5.6. For all r,m ∈ N, ε > 0 and ξ > 0 and any collection of product functions P , the function AP
may be written as

AP(x) =
∑

P∈spN(P)

P · L̃P ,

where for every P the function L̃P is Om,r(1) and for all d, W⩾d(L̃P ) ⩽ Om,r((1− ε)d).

Proof. Note that as all of the functions Pi’s get the values of characters over an Abelian group of size at
most m, we have that in the set I =

⋃
i Image(Pi) the distance between any two distinct points is Ωm(1).

Thus, we may find a bi-variate polynomial Q(z1, z2) of degree at most Om(1) and coefficients that are at
most Om(1) in absolute value such that Q(z1, z2) = 1 if z1 = z2 ∈ I , Q(z1, z2) = 0 if z1, z2 ∈ I are
distinct.11Using Q, we may write

AP(x) = E
y∼TP,1−ε

[
r∏

i=1

Q(Pi(y), Pi(x))

]
.

Write Q(z1, z2) =
d∑

j,k=0

aj,kz
j
1z

k
2 for d = Om(1) and plug it in above to get that

AP(x) =
d∑

j1,...,jr,k1,...,kr=0

aj1,k1 · · · ajr,krP1(x)
k1 · · ·Pr(x)

kr E
y∼T1−ε

[
P1(y)

j1 · · ·Pr(y)
jr
]

=

d∑
j1,...,jr,k1,...,kr=0

aj1,k1 · · · ajr,krP1(x)
k1 · · ·Pr(x)

krT1−ε(P
j1
1 · · ·P

jr
r )(x).

11A polynomial Q satisfying these properties may be constructed via Lagrange interpolation for example.
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In our argument, we will actually want to show that the function 1/AP(x) is close to being a linear
combination of functions of the type P · L. A slight concern is about values of x where AP(x) since
such behavior is not typical for low-degree functions. The following fact asserts that when we discount the
contribution of such inputs x, 1/AP(x) may be approximated by a linear combination of functions of the
type P · L; this fact is a relatively easy consequence of Fact 5.6.

Fact 5.7. For all m ∈ N, τ, ε > 0 and ξ > 0, the following holds for sufficiently large D ∈ N. There is
A′′ : Σn → C with the following properties:

1. A′′ may be written as A′′(x) =
∑

P∈spN(P)

P · L̃P where for all P , L̃P is Om,ξ,τ,r(1) bounded and

W⩾22D [L̃P ] ⩽ 2−Ω(D).

2. Ex

[∣∣∣ 1
AP (x) −A′′(x)

∣∣∣2 1AP (x)⩾τ

]
⩽ ξ.

Proof. Fix x such that AP(x) ⩾ τ , and note that clearly AP(x) ⩽ 1. Thus, we may write

1

AP(x)
=

1

1− (1−AP(x))
=

∞∑
k=0

(1−AP(x))
k =

T∑
k=0

(1−AP(x))
k + e−τT ,

where we take T = log(2/ξ)/τ . Define A′′(x) =
T∑

k=0

(1−AP(x))
k; then the second item is clear.

Using the formula for AP from Fact 5.6, expanding A′′ and re-grouping terms we get that it may be
written as a linear combination of functions of the form P · L̃1 · · · L̃T+1 where P ∈ spnN(P) and each L̃j is
Om,r(1) bounded and W⩾d[L̃j ] ≪m,r (1− ε)d for all d. Take d = D/ε for D to be determined; it follows
from Lemma 4.23 that W⩾d2D [L̃1 · · · L̃T+1] ≲T 2−Ω(D). Re-grouping, we may write

A′′(x) =
∑

P∈spnN(P)

PL̃P

where L̃P is Om,T,r(1) = Om,ξ,τ,r(1)-bounded and W⩾d2D [L̃P ] ≲m,ξ,τ,r 2
−Ω(D).

Lemma 5.8. For all m, r ∈ N, α, ε > 0 and ξ > 0 there exist C,D ∈ N such that the following holds.
Suppose that Σ has size at most m, ν is a distribution over Σ in which the probability of each atom is at
least α, and P = {P1, . . . , Pr} is a collection of product functions from P(Σ, G, σ) where G is a group of
size at most m. Then for all 1-bounded f : Σn → C, there exists a function f ′ : Σn → C such that:

1. The function f ′ approximates TP,1−εf : ∥TP,1−εf − f ′∥2 ⩽ ξ.

2. The function f ′ can be written as

f ′(x) =
∑

P∈spN(P)

P (x) · LP (x)

where for all P , deg(LP ) ⩽ D and ∥LP ∥2 ⩽ C.
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Proof. Take the parameters

0 < D−1 ≪ ζ ≪ τ ≪ r−1,m−1, α, ε, ξ ⩽ 1.

Let τ ′ ∈ [τ, τ +
√
τ ] be a parameter to be determined, define F1(x) = TP,1−εf(x)1AP (x)⩾τ ′ and note that

∥TP,1−εf − F1∥2 = ∥TP,1−εf(x)1AP (x)⩽τ∥2 ⩽ ∥1AP (x)⩽τ ′∥2 ≲m,r

√
τ ′ ⩽ τ1/8 (16)

where we used Fact 5.4. Next, expanding the definition we get that

TP,1−εf(x) = E I⊆ε[n]
x′∼ν⊗n

[
f(x′)

∣∣x′
I
= xI , Pi(x

′) = Pi(x) ∀i
]

=
1

AP(x)
E I⊆ε[n]
x′∼ν⊗n

[
f(x′)1Pi(x′)=Pi(x) ∀i

∣∣x′
I
= xI

]
︸ ︷︷ ︸

(I)

.

Take A′′(x) from Fact 5.7 with the parameter ξ therein being τ in the current setting. Then ∥A′′1AP⩾τ ′ −
1

AP (x)1AP⩾τ ′∥2 ⩽ τ . Thus, as (I) is 1-bounded we conclude that for F2 = (I)(x)A′′(x)1AP (x)⩾τ ′ it holds
that

∥F1 − F2∥2 ⩽ τ. (17)

Next, note that ∥F2∥22 ⩽ 2, therefore there exists 1 ⩽ j ⩽ 1/
√
τ such that

E
x

[
(I)(x)2A′′(x)21AP (x)∈[τ+jτ,τ+(j+1)τ ]

]
⩽ τ1/4,

and we fix such j. Define the continuous function h : [0, 1] → [0, 1] so that h(t) = 0 for t ⩽ τ + jτ ,
h(t) = 1 for t ⩾ τ + (j + 1)τ and we linearly interpolate between the two ranges. Also, take τ ′ = τ + jτ .
Defining F3(x) = (I)(x)A′′(x)h(AP(x)), we get that

∥F2 − F3∥2 ⩽
√

E
x

[
(I)(x)2A′′(x)21AP (x)∈[τ+jζ,τ+(j+1)ζ]

]
⩽ τ1/8. (18)

At this point, our approximating function F3 almost fits the form as needed for f ′, but we still need some
modifications. First, we need to explore the structure of (I)(x) and of h(AP(x)) further, and secondly we
need to perform degree truncation.

For h(AP(x)), by Weirstrass approximation theorem we may find a polynomial W : [0, 1] → R such
that |W (t)− h(t)| ⩽ ζ for all t ∈ [0, 1]. We define F4(x) = (I)(x)A′′(x)W (AP(x)) and get that

∥F3 − F4∥2 ⩽ ζ
√

E
x
[(I)(x)2A′′(x)2] ⩽ ζ

√
E
x
[A′′(x)2] ≲m,r,τ,ε ζ ⩽

√
ζ, (19)

where we used the fact that A′′ is Om,r,τ,ε(1) bounded.

The Structure of (I). As in the proof of Fact 5.6, take a bi-variate polynomial Q(z1, z2) of degree Om,r(1)
whose coefficients are all bounded by Om,r(1) in absolute value such that Q(z1, z2) = 1z1=z2 for every
z1, z2 ∈

⋃r
i=1 Image(Pi). Then

(I) = E I⊆ε[n]
x′∼ν⊗n

[
f(x′)

r∏
i=1

Q(Pi(x
′), Pi(x))

∣∣∣∣∣x′I = xI

]
.
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Writing Q(z1, z2) =
d∑

i,j=0
ai,jz

i
1z

j
2 where |ai,j | = Om,r(1), we get that

(I) =

d∑
j1,...,jr=0

P1(x)
i1 · · ·Pr(x)

irE I⊆ε[n]
x′∼ν⊗n

 d∑
i1,...,ir=0

ai1,j1 · · · air,jrf(x′)P1(x
′)j1 · · ·Pr(x

′)jr

∣∣∣∣∣∣x′I = xI


=
∑

j1,...,jr

P1(x)
i1 · · ·Pr(x)

irFj1,...,jr ,

where Fj1,...,jr(x
′) = T1−ε

d∑
i1,...,ir=0

ai1,j1 · · · air,jrf(x′)P
j1
1 (x′) · · ·P jr

r (x′). Note that Fj is Om,r(1)-bounded

by the triangle inequality, and W⩾d[Fj1,...,jr ]≪m,r (1− ε)d for all d. Thus, after re-arranging we may write

(I) =
∑

P∈spnN(P)

P · L̃P ,

where W⩽22D [L̃P ] ⩽ 2−Ω(D).

Combining the Structures. Write W (t) =
q∑

i=0
ait

i, where q, |ai| ⩽ Oζ(1) for all i, so that

W (AP(x)) =

q∑
i=0

aiAP(x)
i.

Plugging in the formula for AP(x) from Fact 5.6, we get that W (AP(x)) may be written as a linear com-
bination of at most Oq(1) may terms each of the form aP · L̃1(x) · · · L̃q(x), where |a| = Oζ(1) and for
all i, L̃i is Om,r(1) bounded with W⩾d[L̃i] ≪m,r (1 − ε)d for each i. By Lemma 4.23, it follows that
W⩾D

ε
2D [L̃1(x) · · · L̃q] ≲ζ,m,r 2−Ω(D), so for large enough D we have W⩾22D [L̃1(x) · · · L̃q] ⩽ 2−Ω(D).

Re-arranging the resulting expression for W (AP(x)) gives that it may be written as

W (AP(x)) =
∑

P∈spnN(P)

P · L̃′
P ,

where L̃′
P is Oζ(1) bounded and W⩾22D [L̃

′
P ] ≲m,r,ζ,q 2

−Ω(D).
By choice of A′′ from Fact 5.7, we may write

A′′(x) =
∑

P∈spnN(P)

P · L̃′′
P

where L̃′′
P is Om,r,τ (1) bounded and W⩾22D [L̃

′′
P ] ⩽ 2−Ω(D).

Combining the formulas for (I), W (AP(x)) and A′′(x) and multiplying out, we get that

F4(x) =
∑

P∈spnN(P)

P · L̃′′′
P ,
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where each L̃′′′
P is a linear combination of at most Om,r(1) products of at most 3 of the functions L̃Q,

L̃′
Q′ and L̃′′

Q′′ . Thus, L̃′′′
P is Oζ(1)-bounded. Also, For each Q,Q′ and Q′′ we get by Lemma 4.23 that

W⩾23D [L̃QL̃
′
Q′L̃′′

Q′′ ] ⩽ 2−Ω(D), and so W⩾23D [L̃
′′′
P ] ⩽ 2−Ω(D). Thus, defining

f ′ =
∑

P∈spnN(P)

P · (L̃′′′
P )

⩽23D ,

we get that
∥f ′ − F4∥2 ≲m,r 2

−Ω(D). (20)

Combining (16), (17), (18), (19) and (20) gives the second item of the lemma.

5.3 The µ Regularity Lemma

With the tools from the previous sections in hand, we may now state a regularity lemma for the norm ∥∥µ.
In words, the regularity lemma says that we can approximate any 1-bounded function f with a function of
the form f ′ = TP,1−ε, where P has a bounded size and ε is bounded away from 0.

5.3.1 A Basic Version of the Regularity Lemma

We begin with the following basic version of our regularity lemma, which already contains all of the essential
ideas.

Lemma 5.9. For all α > 0, m ∈ N and ξ > 0 there exist ε0 > 0 and r ∈ N such that the following holds.
Let Σ be an alphabet of size at most m, let ν be a distribution over Σ in which the probability of each atom is
at least α and let f : Σn → C be a 1-bounded function. Then there exists a collection P of cyclic embedding
functions of size at most r such that

∥f − TP,1−εf∥ν,α ⩽ ξ.

The rest of this section is devoted to the proof of Lemma 5.9.
We look at all µ ∈ Mν,α and apply Theorem 3.1 on them with the parameters α,m as here and ε there

being ξ/100. As Mν,α has size Om(1), we may take δ to be the minimum over all the δ’s in Theorem 3.1
and d to be the maximum of all the d’s, take the Abelian group G to be the product of all the Abelian
group in the applications in Theorem 3.1 and σ to be the concatenation of all of σ’s from the applications of
Theorem 3.1.

We fix these parameters, set R = ⌈100
δ2
⌉ and further use the following parameters:

0 < d−1
R ≪ ζR ≪ εR ≪ . . .≪ d−1

1 ≪ ζ1 ≪ ε1 ≪ d−1, δ ≪ α, ξ,m−1 ⩽ 1. (21)

We now proceed with the following iterative process. Starting with g0 = E[f ], f0 = f − g0, P0 = ∅ and
i = 0, if fi has correlation at least δ with a function of the form Pi · Li for Pi = χ ◦ σ and Li : Σ

n → C of
2-norm 1, we do the following:

1. Using Fact 4.15, write Pi = Pi,1 · · ·Pi,k where each Pi,j is a cyclic embedding function and k =
Om(1). Define Pi+1 = Pi ∪ {Pi,1, . . . , Pi,k}, gi+1 = TPi+1,1−εi+1f and fi+1 = f − gi+1.

2. Increase i by 1 and repeat.

The following claim, stating that ∥gi+1∥22 ⩾ iδ2/2, is the key in the proof of Lemma 5.9. Once it is
established, the proof is concluded quickly.
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Claim 5.10. For all i ⩽ R we have that ∥gi+1∥22 ⩾ iδ2/10.

Proof. Fix i, and for each of notation denote Ti = TPi,1−εi . Thus, for j = 1, . . . , i + 1 we have that
|⟨fj , PjLj⟩| ⩾ δ. Thus, we may pick a complex number θj of absolute value 1 such that ⟨fj , θjPjLj⟩ ⩾ δ.
Noting that fi = f − gi = (I − Tj)f and using the fact that I − Tj is self adjoint, we conclude that

⟨f, θj(I − Tj)PjLj⟩ ⩾ δ ∀j = 1, . . . , i+ 1. (22)

We next inspect that quantity (I) = ⟨Ti+2f,
i+1∑
j=1

θj(I − Tj)PjLj⟩, and prove an upper bound as well as a

lower bound on it.

The Lower Bound: as Ti+2 is self adjoint, we conclude that (I) = ⟨f,
i+1∑
j=1

θjTi+2(I − Tj)PjLj⟩, and

we next argue that Ti+2(I − Tj)PjLj is very close to (I − Tj)PjLj for each j. Clearly,

Ti+2(I − Tj)PjLj = Ti+2PjLj − Ti+2TjPjLj .

For the first term on the right-hand side, note that Pj ∈ spnN(Pi+2) and so Ti+2PjLj = PjTi+2Lj . It
follows from Claim 5.5 that

∥Ti+2PjLj − PjLj∥2 ⩽ ∥Ti+2Lj − Lj∥2 = ∥(I − Ti+2)Lj∥ ≲d,m,i,α ε
1/3
i+2,

and so ∥Ti+2PjLj − PjLj∥2 ⩽ ∥Ti+2Lj − Lj∥2 ⩽ ε
1/6
i+2. For the second term, namely for Ti+2TjPjLj ,

first apply Lemma 5.8 to get that ∥TjPjLj−hj∥2 ⩽ ζj where hj is a function of the form
∑

P ′∈spnN(Pj)

P ′LP ′

where LP ′ has degree at most dj and ∥LP ′∥2 = Om,ζj ,α,j,εj (1). Combining with Claim 5.5 again it follows
that

∥Ti+2TjPjLj−TjPjLj∥2 ⩽ 2ζj+∥Ti+2hj−hj∥2 = 2ζj+∥(I−Ti+2)hj∥2 ⩽ 2ζj+Om,ζj ,α,j,εj ,dj (ε
1/3
i+2),

and so ∥Ti+2TjPjLj − TjPjLj∥2 ⩽ ε
1/6
i+2.

Concluding, we get that ∥Ti+2(I−Tj)PjLj−(I−Tj)PjLj∥ ⩽ 2ε
1/6
i+2, and plugging this into (I) gives

that

(I) ⩾ ⟨f,
i+1∑
j=1

θj(I − Tj)PjLj⟩ − 2(i+ 1)ε
1/6
i+2 ⩾ (i+ 1)δ − 2(i+ 1)ε

1/6
i+2,

where in the last inequality we used (22). Thus, (I) ⩾ 0.99(i+ 1)δ.

The Upper Bound: by Cauchy-Schwarz we have that

(I) ⩽ ∥Ti+2f∥2∥
i+1∑
j=1

θj(I − Tj)PjLj∥2,

and we upper bound the second norm. Taking a square and expanding, we have that

∥
i+1∑
j=1

θj(I − Tj)PjLj∥22 =
∑
j

∥(I − Tj)PjLj∥22 + 2
∑
j′<j

⟨(I − Tj)PjLj , (I − Tj′)Pj′Lj′⟩. (23)

42



We bound the first sum on the right-hand side by the trivial bound of 2(i + 1) (as each one of the norms
individually is at most 2), and next we show that the off-diagonal terms are negligible. Fix j′ < j and
inspect the corresponding summand. Then by self-adjointness and Cauchy-Schwarz∣∣⟨(I − Tj)PjLj , (I − Tj′)Pj′Lj′⟩

∣∣ = ∣∣⟨PjLj , (I − Tj)(I − Tj′)Pj′Lj′⟩
∣∣ ⩽ ∥(I − Tj)(I − Tj′)Pj′Lj′∥2.

Using the same argument as in the upper bound section, we have that ∥Tj(I−Tj′)Pj′Lj′−(I−Tj′)Pj′Lj′∥ ⩽
ε
1/6
j , implying that ∥(I − Tj)(I − Tj′)Pj′Lj′∥2 ⩽ ε

1/6
j . Plugging this into (23) gives that

(23) ⩽ 2(i+ 1) + (i+ 1)2ε
1/6
1 ⩽ 2(i+ 2),

and so (I) ⩽ ∥Ti+2f∥2
√
2(i+ 2).

Combining the Upper and Lower Bounds: combining the upper and lower bounds for (I), we conclude
that ∥Ti+2f∥22 · 2(i + 2) ⩾ 0.992(i + 1)2δ2, and simplifying we get that ∥Ti+2f∥22 ⩾ iδ2/10, concluding
the proof.

Using Claim 5.10, the process we designed terminates within at most R steps at step i ⩽ R, at which
point we have that fi has correlation at most δ with any function of the form P · L. Applying Theorem 3.1
and the fact that fi is 2-bounded we conclude that ∥fi∥ν,α ⩽ 2 · ξ

100 ⩽ ξ, concluding the proof.

5.3.2 A Version of the Regularity Lemma Allowing Noise Modification

In this section, we state and prove a variant of Lemma 5.9 in which we have a lot of freedom in picking
the noise parameter ε. Naively, and borrowing intuition from the case of the standard noise operator, one
expects that the first item in Lemma 5.9 to hold not only for ε but rather for any 0 < ε′ < ε. Indeed, for
the standard noise operator the left-hand side may be interpreted as the weight of f on the high degrees,
and taking smaller epsilon amounts to looking at even higher degrees (thus trivially looking at less weight).
While we do not know how to make such an argument go through, below we show how to circumvent this
issue in a relatively easy way.

In the formulation of the lemma below, we will use a decay function w : [0, 1] → [0, 1], meaning a
function w satisfying that w(ε) ⩽ ε. The reader should have in mind w of the forms w(ε) = ε10 or
w(ε) = 2−1/ε.

Lemma 5.11. For all α > 0, m ∈ N and ξ > 0 there exists r ∈ N such that for any decay function
w : [0, 1]→ [0, 1] there is ε0 > 0 for which the following holds. Let Σ be an alphabet of size at most m, let
ν be a distribution over Σ in which the probability of each atom is at least α. Then there exists an Abelian
group G whose size depends only on m, σ : Σ→ G, such that for any 1-bounded function f : Σn → C there
is r′ ⩽ r, a collection P of at most r′ cyclic embedding functions and ε ⩾ ε0 such that

∥f − TP,1−ε′f∥ν,α ⩽ ξ

for all w(ε) ⩽ ε′ ⩽ ε.

Proof. We run the same process as in the proof of Lemma 5.9. Once the process terminates, say at step i, we
know that (I − TPi,1−ε)f has correlations at most δ with any function of the form P · L for ε = εi. If this
holds for all ε ∈ (w(εi), εi), we are done as then by Theorem 3.1 it follows that ∥(I−TPi,1−ε)f∥ν,α ⩽ ξ for
all ε ∈ (w(εi), εi). Otherwise, we may find ε′i ∈ (w(εi), εi) such that (I−TPi,1−ε′i

)f has correlation at least
δ with some function Pi+1Li+1, and we may continue the argument therein by modifying εi to be ε′i (ε′i still
satisfies the same requirements from the parameters as εi). Carrying out the same analysis as in Lemma 5.9,
we conclude that this modified process also terminates within R steps, and the proof is concluded.
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5.3.3 A Regularity Lemma with High Rank

We finish this section off by presenting our final regularity lemma which will be used in subsequent sections.
This lemma is a strict strengthening of Lemma 5.11, and it asserts that the collection of cyclic embedding
functions can additionally be guaranteed to have a high rank.

Lemma 5.12. For all α > 0, m ∈ N and ξ > 0 there exist r ∈ N and ε0 > 0 such that the following holds
for any decay function w : [0, 1] → [0, 1]. Let Σ be an alphabet of size at most m, let ν be a distribution
over Σ in which the probability of each atom is at least α. Then there exists an Abelian group G whose size
depends only on m, σ : Σ→ G, such that for any 1-bounded function f : Σn → C there are r′ ⩽ r, ε ⩾ ε0
and a collection P of cyclic embedding functions of size at most r′ such that:

1. We have rk(P) ⩾ 1
w(ε) .

2. For all ε′ ∈ (w(ε), ε) we have that ∥f − TP,1−ε′f∥ν,α ⩽ ξ.

Proof. Fix α,m, ξ, pick r from Lemma 5.11 and take R = R(m, r) to be sufficiently large. Take parameters

0 < εR ≪M−1
R ≪ εR−1 ≪M−1

R−1 ≪ . . .≪M−1
2 ≪ ε1 ≪M−1

1 ≪ ε0 ⩽ ε, (24)

and pick the decay function w(ε) = εr, and then take ε0 from Lemma 5.11.
Applying Lemma 5.11, we get that there is r′, a collection P of cyclic embedding functions of size at

most r′ and ε > ε0 such that for all ε′ ∈ (w(ε), ε) it holds that

∥f − TP,1−ε′f∥ν,α ⩽ ξ.

If rk(P) ⩾ M1, we are done by picking ε′ = ε. Otherwise, we apply Lemma 4.21 and there are two cases:

1. In the first case, there is P ∈ P such that writing P1 = P \ {P} we have ∆symboblic(P, spnN(P ′)) ⩽
M1. We get by Fact 5.3 that for all ε′ ⩽ ε1

∥TP,1−ε′f − TP1,1−ε′f∥2 ⩽ 2
√
M1ε1 ⩽

ξ

R
.

2. Else, there is P ∈ P and a cyclic embedding function P ′ such that ∆symbolic(P, P
′) ⩽ M1 and

ord(P ′) < ord(P ). In that case, we take P1 = (P \ {P}) ∪ {P ′} and get by applying Fact 5.3 twice
that

∥TP,1−ε′f − TP1,1−ε′f∥2 ⩽ ∥TP∪{P ′},1−ε′f − TP,1−ε′f∥2 + ∥TP∪{P ′},1−ε′f − TP1,1−ε′f∥2
≲
√

M1ε1,

which is again at most ξ
R .

Continuing, if rk(P1) ⩾ M2 we are done, and else we repeat the above argument to produce a new collection
of cyclic embedding functions P2 satisfying that for all ε′ ⩽ ε2 it holds that ∥TP2,1−ε′f−TP1,1−ε′f∥2 ⩽ ξ

R .
Denote by Pi the collection formed after i steps of this process.

Note that
∑

P∈Pi+1

ord(P ) ⩽
∑

P∈Pi

ord(P )− 1 for all i. Indeed, in the first case above we drop an element

from the collection and that element has order at least 1. In the second case above we replace an element in
the collection with an element whose order is strictly smaller. Thus, as originally we have that

∑
P∈P

ord(P )
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is at most r ·Om(1) (as each P ∈ P has order which is at most Om(1)), it follows that the process terminates
within r ·Om(1) < R steps.

Let i be the step in which the process is finished. Thus, rk(Pi) ⩾ Mi+1, and by the triangle inequality
get that

∥TPi,1−ε′f − TP,1−ε′f∥2 ⩽
i−1∑
j=0

∥TPj+1,1−ε′f − TPj ,1−ε′f∥ ⩽ i · ξ
R

⩽ ξ

for all ε′ ⩽ εi. It follows that for any such ε′ it holds that

∥f − TPi,1−ε′f∥ν,α ⩽ ∥f − TP,1−ε′f∥ν,α + ∥TP,1−ε′f − TPi,1−ε′f∥ν,α
⩽ ∥f − TP,1−ε′f∥ν,α + ∥TP,1−ε′f − TPi,1−ε′f∥2
⩽ 2ξ,

and the proof is complete.

6 Moving to the Mixed Space

In this section, we make another step towards proving our mixed invariance principle: we show how to
associate with a given product space (Σn, νν) a mixed space (Rn′ ×Gn′

,Dn′
) where n′, n′′ = Θ(n), which

is a product of a Gaussian space with an Abelian group (equipped with some product measure). In particular,
we will need this association to allow us to transfer bounded functions from the product space to the mixed
space, and in this section, we explain this transference.

6.1 Motivation

To begin the discussion, we recall that in Section 5.3, we have shown that if f : (Σn, νn) → C is a 1-
bounded function, then we may find a collection P of cyclic embedding functions such that (we omit the
various quantifiers and parameters for the sake of clarity):

1. The size of P is constant.

2. The functions f and TP,1−ε are close in ∥ · ∥ν,α-norm.

3. P has arbitrarily large rank.

Similarly, we may apply the statement for functions g : Γn → C and h : Φn → C to get collections Q and
R of cyclic embedding functions such that

E
(x,y,z)∼µn

[f(x)g(y)h(z)] = E
(x,y,z)∼µn

[TP,1−εf(x)TQ,1−εg(y)TR,1−εh(z)] + o(1).

Thus, to achieve our goal it suffices to come up with a mixed-space on which there are functions f ′, g′, h′

that can be associated with TP,1−εf , TP,1−εg and TP,1−εh such that

E
(x,y,z)∼µn

[TP,1−εf(x)TQ,1−εg(y)TR,1−εh(z)] = E
(x,y,z)∼Dn′

[
f ′(x)g′(y)h′(z)

]
+ o(1).

To motivate the construction of f ′, g′ and h′ we consider the following two simplified scenarios:
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1. The case that P = Q = R = ∅: In this case, we have the functions T1−εf,T1−εg,T1−εh which
are morally low-degree functions. For these types of functions, the invariance principle of [42] tells
us that we can transfer them to Gaussian space. This is done by looking at T1−εf,T1−εg,T1−εh as
real-valued polynomials of an orthonormal basis of the basic space, and then plugging in correlated
Gaussian random variables (gx, gy, gz) whose pairwise correlations match those in the base space.

2. The case that ε = 1: In that case, the value of TP,1−εf(x) depends only on the value of (P (x))P∈P .
In other words, writing P = {P1, . . . , Pr}, there is a function f ′ : Cr → C such that TP,1−εf(x) =

f ′(P1(x), . . . , Pr(x)). Since each Pi is a cyclic embedding function, for each i there is χi ∈ Ĝmaster

such that Pi(x) = χi ◦ σ(x), and so there is a function f ′′ : Gn
master → C such that TP,1−εf(x) =

f ′′(σmaster(x)).

Summarizing, in the first case we can move to Gaussian space, whereas in the second case, we can move to
the master group. In both cases, one can show that the associated function is (essentially) 1-bounded and
has roughly the same distribution of values. The goal of this section is to show that in the general case that
P may be non-empty and ε is smaller than 1 (but bounded away from 0), we may find an associated function
with TP,1−εf that “mixes” between these two possibilities.

6.2 The Decoupled Function

We now move to the formal description of the mixed space and the associated function with f on it.
Our transference works with a function TP,1−εf satisfying the following properties:

1. |P| = Om,α,η(1).

2. ∥f − TP,1−εf∥ν,α ⩽ η where ε is arbitrarily small compared to η.

3. rk(P) ⩾ T where T ≫ 1/η, 1/ε, 1/α,m.

A function TP,1−εf of this form is guaranteed to exist by Lemma 5.12, and for simplicity of notation we
denote f ′ = TP,1−εf . By Lemma 5.8 we may find a function f̃ of the form

f̃(x) =
∑

P∈spnN(P)

P (x) · LP (x)

such that:

1. ∥f ′ − f̃∥2 ⩽ ζ.

2. deg(LP ) and ∥LP ∥2 are both Om,α,η,ζ,ε(1).

Define f̃decoupled : (Σ
n × Σn, νn × νn)→ C by

f̃decoupled(x, x
′) =

∑
P∈spnN(P)

P (x) · LP (x
′).

In words, we take two independent copies of the input of f̃ , plug one copy of it to the embedding functions
and another copy to the low-degree functions.

We wish to prove a relation between the functions f̃decoupled and f̃ . Intuitively, the distribution of values
of f̃decoupled(x, x′) when x, x′ are sampled from νn independently is close to the distribution of values of
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f̃(X) when X ∼ νn. To see that, looking at the formula of f̃(X), the values of the low-degree functions LP

are mostly determined after we expose 1 − δ/d of the coordinates of X , where d is an upper bound on the
degrees of LP . On the other hand, since P has a high rank, conditioning on exposing these coordinates of X
the values of (P (X))P∈spnN(P) still has the same distribution. Thus, the values of (LP (X))P∈spnN(P) and
(P (X))P∈spnN(P) are almost independent of each other, which matches the values of the function f̃decoupled.

We now move on to stating and proving a formal relation between f̃decoupled and f̃ , and begin with a
few auxiliary facts. The first of which asserts that if P = {P1, . . . , Pr} is a collection of cyclic embedding
functions of high rank, then for all ai ∈ Image(Pi) the event that Pi(x) = ai for all i has probability at least
Ωm,r(1).

Fact 6.1. For all m, r ∈ N there exists M ∈ N such that if P = {P1, . . . , Pr : Σ
n → C} is a collection

of cyclic embedding functions with rk(P) ⩾ M , then for all a1 ∈ Image(P1), . . . , ar ∈ Image(Pr) it holds
that either Prx∼νn [Pi(x) = ai] = 0 or

Pr
x∼νn

[Pi(x) = ai] ⩾ Ωm,r(1).

Proof. We write 1Pi(x)=ai =
∏

bi∈supp(Pi),bi ̸=ai

bi−Pi(x)
bi−ai

, so that the left-hand side is equal to

CE
x

∏
i

∏
bi∈supp(Pi)\{ai}

(bi − Pi(x))

,
where C =

∏
i

∏
bi∈supp(Pi)\{ai}

1
bi−ai

, thus |C| ⩾ Ωr(1). To compute the expectation, we expand it out and

get that

E
x

∏
i

∏
bi∈supp(Pi)\{ai}

(bi − Pi(x))

 = C ′ +
∑

(α1,...,αr)∈A

C(α1, . . . , αr)E
x

[
r∏

i=1

Pi(x)
αi

]
,

where
A = {(α1, . . . , αr) | 0 ⩽ αi ⩽ |Image(Pi)| ∀i and αi < |Image(Pi)| for some i} .

Note that |Image(Pi)| ⩽ ord(Pi) hence for each (α1, . . . , αr) ∈ A it holds that
∣∣∣∣Ex

[
r∏

i=1
Pi(x)

αi

]∣∣∣∣ =

O(2−Ωr,m(M)). We conclude that

Pr
x∼νn

[Pi(x) = ai] ⩾ C −O(2−Ωr,m(M)) ⩾ Om,r(1)

for sufficiently large M .

Next, suppose that P = {P1, . . . , Pr} is a collection of cyclic embedding functions, for each i take
ai ∈ Image(Pi) and consider the set of inputs S = {x ∈ Σn |Pi(x) = ai}. By Fact 6.1 we know that S
has a fairly large density. The next statement asserts that if the rank of P is sufficiently large, then a noisy
process starting from a random point in S generates a probability distribution close to νn.
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Fact 6.2. For all r,m ∈ N, ξ > 0 and M ∈ N, if P = {P1, . . . , Pr : Σ
n → C} is a collection of cyclic

embedding functions with rk(P) ⩾ M , take a1 ∈ Image(P1), . . . , ar ∈ Image(Pr) and define

S = {x ∈ Σn |Pi(x) = ai} .

Then ∥∥∥∥T1−ε1S
ν(S)

− 1

∥∥∥∥
2

⩽ 2−Ωm,ε,r(M).

Proof. Expanding 1S as in the proof of Fact 6.1, we see that 1S = A +
∑

P∈spnN(P),P ̸=1

C(P )P where

|C(P )| = Om,r(1) for all P . Taking expectation of both sides shows that ν(S) = A + 2−Ωm,r(M) and so
A = ν(S)(1 + 2−Ωm,r(M)). We get that

1S
ν(S)

− 1 = 2−Ωm,r(M) +
∑

P∈spnN(P),P ̸=1

C ′(P )P.

Applying the operator T1−ξ on both sides we conclude that∥∥∥∥T1−ξ1S
ν(S)

− 1

∥∥∥∥
2

⩽ 2−Ωm,r(M) +Om,r

(
max

P∈spnN(P),P ̸=1
∥T1−εP∥2

)
⩽ 2−Ωm,r(M) +Om,r

(
max

P∈spnN(P),P ̸=1
2−Ωm,r,ε(M)

)
⩽ 2−Ωm,ε,r(M),

where we used Lemma 4.6.

We are now ready to prove the main technical ingredient in the relation between f̃ and f̃decoupled.

Lemma 6.3. Let m, r ∈ N, ξ > 0 and M ∈ N. Let P = {P1, . . . , Pr : Σ
n → C} be a collection of cyclic

embedding functions such that rk(P) ⩾ M . Consider the joint distribution of (x, x′) and X sampled as:
sample X ∼ νn and independently sample x ∼ TPX and x′ ∼ T1−εX . Then then distribution of (x, x′) is
2−Ωr,m,ε(M) close to νn × νn in statistical distance.

Proof. Fix w,w′ ∈ Σn and define qw,w′ = PrX,x,x′ [x = w, x′ = w′] and qw′|w = PrX,x,x′ [x′ = w′ |x = w].
By Fact 5.2 the marginal distribution of x is νn and so qw,w′ = ν(w)qw′|w. Denote

S = {u ∈ Σn |Pi(u) = Pi(w) ∀i} ,

and note that conditioned on x = w, the distribution of X is ν conditioned on S, i.e.

Pr
X,x,x′

[X = u |x = w] = ν(u)
1S(u)

ν(S)
.

Thus,

qw′|w =
∑
u

ν(u)
1S(u)

ν(S)
Pr

u′∼T1−εu

[
u′ = w′] =∑

u

ν(u)
1S(u)

ν(S)
T1−ε1w′(u),

where 1w′(v) = 1w′=v. Writing this last expression as an inner product, we get that

qw′|w = ⟨ 1S
ν(S)

,T1−ε1w′⟩ = ⟨T1−ε
1S
ν(S)

, 1w′⟩ = ν(w′)T1−ε
1S
ν(S)

(w′),
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and so qw,w′ = ν(w)ν(w′)T1−ε
1S
ν(S)(w

′). Computing, we get that

∑
w,w′

∣∣qw,w′ − ν(w)ν(w′)
∣∣ = ∑

w,w′

ν(w)ν(w′)

∣∣∣∣T1−ε
1S
ν(S)

(w′)− 1

∣∣∣∣ = ∥∥∥∥T1−ε
1S
ν(S)

− 1

∥∥∥∥
1

⩽

∥∥∥∥T1−ε
1S
ν(S)

− 1

∥∥∥∥
2

,

and the proof is concluded by applying Fact 6.2.

With Lemma 6.3 in hand, we can now state and prove the relation between the functions f̃ and f̃decoupled.
We begin with a basic version of it:

Lemma 6.4. Let m, r, d ∈ N, and M ∈ N. Let P = {P1, . . . , Pr : Σ
n → C} be a collection of cyclic

embedding functions such that rk(P) ⩾ M , and consider the joint distribution of (x, x′) and X from
Lemma 6.3. Then

E
x,x′,X

[∣∣∣f̃decoupled(x, x′)− f̃(X)
∣∣∣2] ≲d,m,r ε.

Proof. Writing f̃ =
∑

P∈spnN(P)

P (x)LP (x) where deg(LP ) ⩽ d, we get that the left-hand side in the lemma

is equal to

E
x,x′,X

∣∣∣∣∣∣
∑

P∈spnN(P)

P (x)LP (x
′)−

∑
P∈spnN(P)

P (X)LP (X)

∣∣∣∣∣∣
2

= E
x,x′,X

∣∣∣∣∣∣
∑

P∈spnN(P)

P (X)(LP (x
′)− LP (X))

∣∣∣∣∣∣
2.

By Cauchy-Schwarz, we may upper bound the last quantity by

≲m,r

∑
P∈spnN(P)

E
x,x′,X

[∣∣LP (x
′)− LP (X)

∣∣2] = ∑
P∈spnN(P)

∥LP − T1−εLP ∥22 ≲m,r dε.

We next state the version of our relation that will be used later on.

Lemma 6.5. Let m, r, d ∈ N, ε > 0 and M ∈ N. Let P = {P1, . . . , Pr : Σ
n → C} be a collection of cyclic

embedding functions such that rk(P) ⩾ M . Then there is a coupling (X ′, X ′′) and X between νn× νn and
νn such that

E
X,X′,X′′

[∣∣∣f̃decoupled(X ′, X ′′)− f̃(X)
∣∣∣2] ⩽ Om,r,d(ε) +Om,r,d,α,η,ε(2

−Ωr,m,ε(M)).

Proof. Let (x, x′) and X be a coupling as in Lemma 6.3. As the statistical distance between (x, x′) and
νn × νn is at most 2−Ωr,m,ε(M), we may couple (x, x′) with (X ′, X ′′) such that Pr [(x, x′) ̸= (X ′, X ′′)] ⩽
2−Ωr,m,ε(M) and (X ′, X ′′) is distributed according to νn×νn. We take the coupling of (X ′, X ′′) and X and
prove that it satisfies the conclusion of the lemma. Note that the left-hand side of the lemma is at most

≲ E
x,x′,X,X′,X′′

[∣∣∣f̃decoupled(x, x′)− f̃(X)
∣∣∣2]+ E

x,x′,X,X′,X′′

[∣∣∣f̃decoupled(x, x′)− f̃decoupled(X
′, X ′′)

∣∣∣2].
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The first expectation above is at most Or,m,d(ε). For the second expectation, let E be the event that (x, x′) ̸=
(X ′, X ′′). Then by Cauchy-Schwarz

E
x,x′,X,X′,X′′

[∣∣∣f̃decoupled(x, x′)− f̃decoupled(X
′, X ′′)

∣∣∣2 1E]2
⩽ E

x,x′,X,X′,X′′

[∣∣∣f̃decoupled(x, x′)− f̃decoupled(X
′, X ′′)

∣∣∣4]Pr [E]

⩽ E
x,x′,X,X′,X′′

[∣∣∣f̃decoupled(x, x′)∣∣∣4 + ∣∣∣f̃decoupled(X ′, X ′′)
∣∣∣4]Pr [E].

We upper bound the first expectation above. By the triangle inequality,
∣∣∣f̃decoupled(x, x′)∣∣∣ ⩽ ∑

P

|LP (x
′)|,

and hence by Holder’s inequality and hypercontractivity we get that

E
x,x′

[∣∣∣f̃decoupled(x, x′)∣∣∣4] ≲r

∑
P

∥LP ∥44 ≲r,d

∑
P

∥LP ∥42 ≲r,m,d,α,η,ε 1.

The expectation of
∣∣∣f̃decoupled(X ′, X ′′)

∣∣∣4 can be bounded in the same way by Or,m,d,α,η,ε(1). As Pr [E] ⩽

2−Ωr,m,ε(M) we conclude that

E
x,x′,X,X′,X′′

[∣∣∣f̃decoupled(x, x′)− f̃decoupled(X
′, X ′′)

∣∣∣2] ≲r,m,d,α,η,ε 2
−Ωr,m,ε(M).

6.3 The Mixed Invariance Principle

In this section, we prove the mixed invariance principle. We will use the notations of the beginning of
Section 6.2; the notation therein is presented in terms of the function f , and we use analogous notations for
the functions g and h below. The notion of shifted low-degree influences will be important for us, and below
we define it formally.

Definition 6.6. We say that a function f̃ of the form above has τ -small shifted low-degree influences if for
every i ∈ [n] and every P ∈ spnN(P) it holds that Ii[LP ] ⩽ τ .

Let Ψ: C3 → C be any smooth function such that Ψ(a, b, c) = abc for a, b, c that have absolute value at
most 1, which additionally satisfies that∣∣Ψ(a, b, c)−Ψ(a′, b′, c′)

∣∣ ≲√|a− a′|2 + |b− b′|2 + |c− c′|2

for all complex numbers a, b, c ∈ C. Denote m1 = |Σ|, m2 = |Γ| and m3 = |Φ|. Given 1-bounded
functions f : (Σn, νnx ) → C, g : (Γn, νny ) → C and h : (Φn, νnz ) → C, define the functions F : Σn ×
R(m1−1)n → C, G : Γn × R(m2−1)n → C, H : Φn × R(m3−1)n → C by

F (x,Gx) = trunc(f̃decoupled(x,Gx)), G(y,Gy) = trunc(g̃decoupled(y,Gy)),

H(z,Gz) = trunc(h̃decoupled(z,Gz)),

where trunc : C→ C was defined in Section 3.3. The main result of this section takes the following form:
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Theorem 6.7. Let f : Σn → C, g : Γn → C and h : Φn → C be 1-bounded functions, and consider the
functions f̃ , F, g̃, G, h̃,H defined as above. Then for every ξ > 0 there exists τ > 0 such that if f̃ , g̃, h̃ have
τ -small shifted low-degree influences∣∣∣∣∣∣∣ E

(x,y,z)∼µn
[Ψ(f(x), g(y), h(z))]− E

(x,y,z)∼µn

(Gx,Gy ,Gz)∼Gn

[Ψ(F (x,Gx), G(y,Gy), H(z,Gz))]

∣∣∣∣∣∣∣ ⩽ ξ. (25)

Proof. We keep the parameters as in the setup preceding the theorem. These parameters satisfy the hierar-
chy:

0 < τ ≪ T−1 ≪ ε≪ d−1 ≪ ζ ≪ η, r−1 ≪ m−1, α, ξ < 1. (26)

First, as ∥f − f ′∥ν,α ⩽ η and similarly for g and h, we have that∣∣∣∣∣ E
(x,y,z)∼µn

[Ψ(f(x), g(y), h(z))]− E
(x,y,z)∼µn

[
Ψ(f ′(x), g′(y), h′(z))

]∣∣∣∣∣ ≲ ξ. (27)

Second, by the smoothness of Ψ it follows that∣∣∣∣∣ E
(x,y,z)∼µn

[
Ψ(f ′(x), g′(y), h′(z))

]
− E

(x,y,z)∼µn

[
Ψ(f̃(x), g̃(y), h̃(z))

]∣∣∣∣∣
≲ E

(x,y,z)∼µn

[√∣∣∣f ′(x)− f̃(x)
∣∣∣2 + |g′(y)− g̃(y)|2 +

∣∣∣h′(z)− h̃(z)
∣∣∣2]

≲ ξ, (28)

where we used Cauchy-Schwarz and the fact that f ′ and f̃ are η-close in L2 distance, and similarly g′, g̃ and
h′, h̃. Third, using the coupling from Lemma 6.5 and the smoothness of Ψ it follows that∣∣∣∣∣∣∣∣∣∣

E
(X,Y,Z)

[
Ψ(f̃(X), g̃(Y ), h̃(Z))

]
− E
(X,Y,Z)

(X′,Y ′,Z′)
(X′′,Y ′′,Z′′)

[
Ψ(f̃decoupled(X

′, X ′′), g̃decoupled(Y
′, Y ′′), h̃decoupled(Z

′, Z ′′))
]
∣∣∣∣∣∣∣∣∣∣

≲ E
(X,Y,Z)

(X′,Y ′,Z′)
(X′′,Y ′′,Z′′)

[√
|∆1(X,X ′, X ′′)|2 + |∆2(Y, Y ′, Y ′′)|2 + |∆3(Z,Z ′, Z ′′)|2

]
. (29)

Here, ∆1(X,X ′, X ′′) = f̃(X) − f̃decoupled(X
′, X ′′) and ∆2,∆3 are defined analogously for g and h. By

Cauchy-Schwarz and Lemma 6.5, we get that (29) is at most ξ. Fix X ′, Y ′, Z ′, and note that the 2-norm of
f̃decoupled(X

′, X ′′) over the choice of X ′′ is at most O(1) and the influences are at most O(τ). We apply
Theorem 3.3 and average over (X ′′, Y ′′, Z ′′) ∼ µn, to get that, provided that τ is small enough∣∣∣ E

(X′,Y ′,Z′)
(X′′,Y ′′,Z′′)

[
Ψ(f̃decoupled(X

′, X ′′), g̃decoupled(Y
′, Y ′′), h̃decoupled(Z

′, Z ′′))
]

− E
(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[
Ψ(f̃decoupled(X

′, Gx), g̃decoupled(Y
′, Gy), h̃decoupled(Z

′, Gz))
]∣∣∣ ⩽ ξ. (30)
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Next, by the smoothness of Ψ it follows that∣∣∣ E
(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[
Ψ(f̃decoupled(X

′, Gx), g̃decoupled(Y
′, Gy), h̃decoupled(Z

′, Gz))
]

− E
(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[
Ψ(F (X ′, Gx), G(Y ′, Gy), H(Z ′, Gz))

]∣∣∣ ⩽ E, (31)

where

E = E
(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[√
ξ(f̃decoupled(X ′, Gx)) + ξ(g̃decoupled(Y ′, Gy)) + ξ(h̃decoupled(Z ′, Gz))

]
,

and we recall that the function ξ is ξ(a1, . . . , as) =
√∑

i
|trunc(ai)− ai|2.

Claim 6.8. E ≲
√
ζ.

Proof. By Cauchy-Schwarz, E ⩽
√
E1 + E2 + E3 where

E1 = E
(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[
ξ(f̃decoupled(X

′, Gx))
]
, E2 = E

(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[
ξ(g̃decoupled(Y

′, Gy))
]
,

E3 = E
(X′,Y ′,Z′)∼µn

(Gx,Gy ,Gz)∼Gn

[
ξ(h̃decoupled(Z

′, Gz))
]
,

and we upper bound each one of E1, E2 and E3 separately. As the arguments are identical, we show it only
for E1. By Theorem 3.9, provided that τ is small enough

E1 ⩽ E
(X′,Y ′,Z′)∼µn

(X′′,Y ′′,Z′′)∼µn

[
ξ(f̃decoupled(X

′, X ′′))
]
+ ζ.

By Fact 3.10 the function ξ is O(1)-Lipshitz, and so

E
X′,X′′

[
ξ(f̃decoupled(X

′, X ′′))
]
≲ E

X,X′,X′′

[
ξ(f ′(X)) +

∣∣∣f̃decoupled(X ′, X ′′)− f ′(X)
∣∣∣].

Note that as f ′ is 1-bounded, ξ(f ′(X)) = 0. Also, note that f ′ is ζ-close in ℓ2 distance to f̃ , and so we get
that

E1 ⩽ E
X,X′,X′′

[∣∣∣f̃decoupled(X ′, X ′′)− f̃(X)
∣∣∣]+O(

√
ζ).

Applying Cauchy-Schwarz and Lemma 6.5 gives that E1 ≲
√
ζ, as desired.

Combining all of the inequalities (27), (28), (29), (30) and (31) and Claim 6.8 proves (25).
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6.4 A Version of the Mixed Invariance Principle for CSPs

In this section, we prove a variant of Theorem 6.7 which is tailored to the application in approximating
constraint satisfaction problems. The core issue we have to address is that we need to allow an algorithm
designer the capabilities of making samples according to the mixed space we invariance into. Recall that an
algorithm designer may generate Gaussian samples as Gx, Gy, Gz as in the theorem statement, and this is
done via solving an SDP relaxation of the CSP. However, the same cannot be said about the inputs x, y, z
which are also needed to evaluate the functions F,G and H . A closer inspection shows that we do not
actually need the samples x, y, z to evaluate F , G and H; instead, we only need to know the values of
σ(x), γ(y) and ϕ(z) where σ, γ, ϕ are master embeddings of all distributions that we look at.

Generating samples of σ(x), γ(y) and ϕ(z) to plug into F , G and H sounds like a feasible task. Consider
the case that our master embedding has a particularly simple structure, and that they form embeddings into
the Abelian group (Fp,+). In that case, the embeddings σ, γ, ϕ can be computed by solving the system
of linear equations σ(x) + γ(y) + ϕ(z) = 0 for all (x, y, z) ∈ supp(µ). The solution to this system of
equations is a subspace of F|Σ|+|Γ|+|Φ|

p , and we may generate uniform samples from it so that we may plug
them in place of the values of σ(x), γ(y), ϕ(z). Intuitively, this makes sense: the algorithm designer uses
their capability of doing linear algebra (on top of their capabilities to solve SDP programs) in order to realize
rounding schemes corresponding to the functions F , G and H in Theorem 6.7.

Indeed, ultimately we show that this is in fact the case, but some care is needed due to the mismatch in
the distributions of group elements the algorithm designer generates, versus what the functions F , G and H
expect. The issue boils down to the fact that the distribution of σ(x), γ(y), ϕ(z) where (x, y, z) ∼ µ need
not be the same as the one generated by the algorithm designer, and thus we are not able to say that, for any
triplet of product functions

P (x) =
n∏

i=1

χi(σ(xi)), Q(y) =
n∏

i=1

χ′
i(γ(yi)), R(z) =

n∏
i=1

χ′′
i (ϕ(zi))

it holds that the expectation of P (x)Q(y)R(z) is roughly the same under the two distributions. Having said
that, there are two cases wherein we are able to make such an assertion:

1. If we have that P (x)Q(y)R(z) ≡ 1 pointwise on the support of µn, then the two expectations are of
course the same.

2. If we have that ∆symbolic(PQR, 1) ⩾ T , then each one of the expectations above is exponentially
small in T , and in particular, they are roughly the same.

Thus, to make the shift from the distribution of (σ(x), γ(y), ϕ(z)) in Theorem 6.7 to the distribution gen-
erated by the algorithm designer, we must ensure that any 3 triplet of functions associated with the decom-
positions used for f, g and h fall into one of the types above. We achieve this property in the context of
dictatorship tests by a simple preprocessing step.

Towards this end, let Hmaster be the master group, and define the functions F ′ : Hn
master × Rn′ → C,

G′ : Hn
master × Rn′ → C and H ′ : Hn

master × Rn′ → C in the following way. We demonstrate it for F ′, and
the same goes for G′ and H ′. Let P be the collection of product functions associated with f , and write each

P ∈ spnN(P) as P =
n∏

i=1
χP,i(σ(xi)). Thus,

f̃decoupled(x,Gx) =
∑

P∈spnN(P)

n∏
i=1

χi,P (σ(xi))LP (Gx).
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We define F ′ by replacing σ(xi) by the group element input. Namely,

F ′(a,Gx) = trunc

 ∑
P∈spnN(P)

n∏
i=1

χi,P (ai)LP (Gx)

 .

Theorem 6.9. For all η, r ∈ N the following holds for sufficiently small τ . In the set up of Theorem 6.7,
suppose that f : Σn → C, g : Γn → C and h : Φn → C are 1-bounded functions, and that we associate with
them collections of cyclic embedding embedding functions P,Q,R respectively of size at most r such that
for any P ∈ spnN(P), Q ∈ spnN(Q) and R ∈ spnN(R) it either P (x)Q(y)R(z) ≡ 1 in the support of µn,
or ∆symbolic(PQR, 1) ⩾ T ′. Then∣∣∣∣∣∣∣∣∣ E
(x,y,z)∼µn

[Ψ(f(x), g(y), h(z))]− E
a,b,c∈Hn

master
a+b+c=0

(Gx,Gy ,Gz)∼Gn

[
Ψ(F ′(a,Gx), G

′(b,Gy), H
′(c,Gz))

]
∣∣∣∣∣∣∣∣∣ ≲ η+2−Ωm,r,α(T ′).

(32)

6.4.1 Auxiliary Facts

The proof of Theorem 6.9 requires a few auxiliary facts that we record here.

Fact 6.10. Let H be an Abelian group, Σ, Γ, Φ be finite alphabets and let µ be a pairwise connected
distribution over Σ × Γ × Φ. Suppose that σ : Σ → H , γ : Γ → H and ϕ : Φ → H be maps such that
(σ, γ, ϕ) is an Abelian embedding of µ into H and each one of Image(σ), Image(γ) and Image(ϕ) generates
H . Then, for any χ, χ′, χ′′ ∈ Ĥ , we have that the following conditions are equivalent:

1. For a, b, c such that a+ b+ c = 0 it holds that χ(a)χ′(b)χ′′(c) = 1.

2. For all (x, y, z) ∈ supp(µ) we have that χ(σ(x))χ′(γ(y))χ′′(ϕ(z)) = 1.

3. χ ≡ χ′ ≡ χ′′.

Proof. It is clear that the third item implies the first item, and that the first item implies the second item.
Thus, it suffices to prove that the second item implies the third item.

Plugging in γ(y) = −σ(x)− ϕ(z), we get that for all (x, z) ∈ supp(µx,z) it holds that

(χχ′)(σ(x)) = (χ′χ′′)(ϕ(z)).

In particular, we get that if x, x′ have a common z such that (x, z) and (x′, z) are both in the support of
µx,z , then (χχ′)(σ(x)) = (χχ′)(σ(x′)). Thus, the function (χχ′)(σ(x)) is constant, and plugging in an x
such that σ(x) = 0 gives it is the constant 1 function. As the image of σ is H and χχ′ is a character, it
follows that χχ′ ≡ 1 on H , and so χ = χ′. In a similar fashion, one can argue that χ′ = χ′′, and the proof
is concluded.

Fact 6.11. In the setting of Fact 6.10, suppose that χ, χ′, χ′′ ∈ Ĥn are such that (χχ′χ′′)i ̸= 1 for at least
T ′ coordinates. Then letting α be the minimum probability of an atom in µ, we have that∣∣∣∣∣ E

(x,y,z)∼µn

[
χ(σ(x))χ′(γ(y))χ′′(ϕ(z))

]∣∣∣∣∣ ⩽ (1− Ωα,|H|(1))
T ′
.
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Proof. Let T ′ be the set of i’s such that (χχ′χ′′)i ̸= 1. Then∣∣∣∣∣ E
(x,y,z)∼µn

[
χ(σ(x))χ′(γ(y))χ′′(ϕ(z))

]∣∣∣∣∣ = ∏
i∈T ′

∣∣∣∣∣ E
(x,y,z)∼µn

[
χi(σ(xi))χ

′
i(γ(yi))χ

′′
i (ϕ(zi))

]∣∣∣∣∣ ,
and it suffices to upper bound each one of the terms by 1−Ωα,|H|(1). Fix i ∈ T ′, and note that the values that
χiχ

′
iχ

′′
i may receive are discrete, all have absolute value 1 and they are Ω|H|(1) far apart in absolute value.

Thus, there is a fixed constant c|H|,α > 0 such that either
∣∣E(x,y,z)∼µn [χi(σ(xi))χ

′
i(γ(yi))χ

′′
i (ϕ(zi))]

∣∣ ⩽
1 − c|H|,α or else

∣∣E(x,y,z)∼µn [χi(σ(xi))χ
′
i(γ(yi))χ

′′
i (ϕ(zi))]

∣∣ = 1. Suppose for the sake of contradiction
the latter holds. Then we get that there is a constant θ ∈ C of absolute value 1 such that

χi(σ(xi))χ
′
i(γ(yi))χ

′′
i (ϕ(zi)) ≡ θ.

Plugging in (xi, yi, zi) ∈ supp(µ) that maps to (0, 0, 0) ∈ H3 we get that θ = 1. It follows from Fact 6.10
that χi ≡ χ′

i ≡ χ′′
i , and contradiction.

Next, suppose we have collections P , Q and R as in the setting of Theorem 6.9. For notational con-
venience, for each P ∈ spnN(P) we pick χP ∈ Ĥ such that P (x) = χP (σ(x)). We wish to consider the
following two distributions:

1. The distribution DH : sample (a, b, c) ∈ Hn uniformly such that a+ b+ c = 0 and output

(χP (a), χQ(b), χR(c))P∈spnN(P),Q∈spnN(Q),R∈spnN(R).

2. The distribution Dµ: sample (x, y, z) ∼ µn and output

(χP (σ(x)), χQ(γ(y)), χR(ϕ(z)))P∈spnN(P),Q∈spnN(Q),R∈spnN(R).

The following lemma asserts that the distributions DH and Dµ are close in statistical distance.

Lemma 6.12. Suppose the sizes of each one of P,Q,R is at most r, |H| ⩽ m and that for any P ∈
spnN(P), Q ∈ spnN(Q) and R ∈ spnN(R) it holds that either PQR ≡ 1 or else PiQiRi ̸≡ 1 for at least
T ′ of the coordinates i ∈ [n]. Then

SD(Dµ,DH) ≲m,r (1− Ωm,α(1))
T ′
.

Proof. The proof is similar to the proof of Fact 6.1. Note that the support of DH ,Dµ has size at most
Om,r(1), and take S = (aP , bQ, cR)P∈spnN(P),Q∈spnN(Q),R∈spnN(R) in either one of the supports. Note that

DH(S) = E
a,b,c∈Hn

a+b+c=0

 ∏
P∈spnN(P)

1χP (a)=aP

∏
Q∈spnN(Q)

1χQ(b)=bQ

∏
R∈spnN(R)

1χR(c)=cR


and

Dµ(S) = E
(x,y,z)∼µn

 ∏
P∈spnN(P)

1χP (σ(x))=aP

∏
Q∈spnN(Q)

1χQ(γ(y))=bQ

∏
R∈spnN(R)

1χR(ϕ(z))=cR

.
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Arithmetizing the indicators as 1χP (a)=aP =
∏

a′ ̸=aP
a′∈Image(P )

χP (a)−a′

aP−a′ and similarly for the other ones, then

opening things up, we get that there are coefficients C(P,Q,R) that are at most Om,r(1) in absolute value
such that

DH(S) =
∑

P∈spnN(P)
Q∈spnN(Q)
R∈spnN(R)

C(P,Q,R) E
a,b,c∈Hn

a+b+c=0

[χP (a)χQ(b)χR(c)]

and
Dµ(S) =

∑
P∈spnN(P)
Q∈spnN(Q)
R∈spnN(R)

C(P,Q,R) E
(x,y,z)∼µn

[χP (σ(x))χQ(γ(y))χR(ϕ(z))].

Fix P,Q,R and consider their contribution to Dµ(S) and DH(S). For P,Q,R such that PQR ≡ 1, the two
contributions are the same. Else, by assumption PiQiRi ̸≡ 1 for at least T ′ coordinates, and by fact each
one of the expectations is at most (1− Ωm,α(1))

T ′
in absolute value. It follows that

|DH(S)−Dµ(S)| ⩽
∑

P∈spnN(P)
Q∈spnN(Q)
R∈spnN(R)

|C(P,Q,R)| (1− Ωm,α(1))
T ′

≲m,r (1− Ωm,α(1))
T ′
.

Therefore we get that SD(Dµ,DH) ≲m,r
∑
S

(1− Ωm,α(1))
T ′

≲m,r (1− Ωm,α(1))
T ′

.

6.4.2 Proof of Theorem 6.9

By Theorem 6.7 and the triangle inequality, it suffices to show that the difference between

(I) = E
(x,y,z)∼µn

(Gx,Gy ,Gz)∼Gn

[Ψ(F (x,Gx), G(y,Gy), H(z,Gz))]

and
(II) = E

a,b,c∈Hn
master

a+b+c=0
(Gx,Gy ,Gz)∼Gn

[
Ψ(F ′(a,Gx), G

′(b,Gy), H
′(c,Gz))

]

is at most ≲r,m 2−Ωm,r,α(T ′). Let S ∈ supp(DH), and define

M(S) = E (x,y,z)∼µn

(Gx,Gy ,Gz)∼Gn

[Ψ(F (x,Gx), G(y,Gy), H(z,Gz)) |S];

the conditioning on S means (χP (σ(x)), χQ(γ(y)), χR(ϕ(z)))P∈spnN(P),Q∈spnN(Q),R∈spnN(R) = S. Note
that |M(S)| ⩽ 1 always. Note that (I) = ES∼Dµ [M(S)] and (II) = ES∼DH

[M(S)], and it follows that

|(I)− (II)| ⩽ SD(Dµ,DH) ≲m,r 2
−Ωm,r(T ′)

where we used Lemma 6.12.
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7 Applying the Mixed Invariance in CSPs

The goal of this section is to prove Theorem 1.1.
One of the main difficulties in coming up with a dictatorship test with completeness 1 and analyzing

its soundness is the following. Following Raghavendra [46], and as shown in [7], one way to construct a
dictatorship test is to start with an instance of a Max-P -CSP such that its SDP value is 1. Such an SDP
solution gives a set of distributions on the set of satisfying assignments of the predicate P which then can
be used in constructing the queries of the dictatorship test. One issue with this approach is that even if
we know that the SDP value is 1, there is no guarantee that a given local distribution is fully supported on
P−1(1). Therefore, the support of a local distribution might not enjoy the pairwise connectedness and the
non-Z-embeddability even if the predicate P satisfies both properties. In this case, we cannot apply the
analytical lemma from [11], in the soundness analysis of the dictatorship test.

In order to handle this issue, we demonstrate the use of our mixed invariance principle (which uses
the analytical lemma from [11]) by focusing on a MILDLY-SYMMETRIC predicates. These predicates en-
joy interesting symmetry properties. More specifically, any SDP solution with value 1 can be converted
into another SDP solution with value 1 such that in the modified SDP solution, the support of every local
distribution satisfies the pairwise connectedness and the non-Z-embeddability conditions.

We start by setting up a few notations.

Instance of Max-P-CSP Fix any collection P of MILDLY-SYMMETRIC predicates. An instance Υ =
(V, C) of Max-P-CSP consists of a variable set V where the variables take values from Σ, and a distribution
C on the constraint set. We will associate V with the set [N ] = {1, · · · , N} for N = |V|. Each constraint
C ∈ supp(C) is over a tuple of 3 variables, denoted by V(C) = (s1, s2, s3), and consists of a predicate PC :
Σ3 → {0, 1}. An assignment (x, y, z) to the tuple V(C) satisfies the constraint C iff (x, y, z) ∈ P−1

C (1)
where PC ∈ P . For ease of notation, we will use C to refer to the constraint as well as the underlying
predicate PC , and simply write C(x, y, z) = 1 or (x, y, z) ∈ C−1(1) if PC(x, y, z) = 1.

7.1 The SDP Program

Given an instance Υ = (V, C) of Max-P-CSP, the basic semidefinite programming relaxation of the instance
is given in Figure 2. Given a set T , the set of all the distributions on T is denoted by ▲(T ). The SDP
formulation consists of vectors {bi,a}i∈V,a∈Σ, distributions {µC}C∈supp(C) over local assignments (i.e., on
ΣV(C)) and a unit vector b0. Let val(V ,µ) be the objective value of the solution (V ,µ).

For every η > 0, the SDP can be solved up to an additive accuracy of η in time poly(n, log(1/η)). We
will ignore this issue of approximation and assume that the SDP can be solved optimally in polynomial time.

During the execution of our algorithm, we will modify the SDP by imposing additional linear conditions
on the local distributions. We define a valid integral solution to the SDP program as follows:

Definition 7.1. Fix any assignment α to Υ. The vector assignment

bi,a =

{
b0 a = α|i
0 otherwise

along with µ where for every C ∈ supp(C), µC(α|V(C)) = 1 and µC(d) = 0 for every d ̸= α|V(C) is called
an integral assignment to the SDP. Such an assignment is called a valid integral solution if it is a feasible
solution to the SDP.
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maximize E
C∼C

E
x∈µC

[C(x)]

subject to ⟨bi,a, bj,b⟩ = Pr
x∼µC

[xi = a, xj = b] C ∈ supp(C), i, j ∈ V(C), a, b ∈ Σ (33)

⟨bi,a, b0⟩ = ∥bi,a∥22 ∀i ∈ V, a ∈ Σ (34)

∥b0∥22 = 1 (35)

µC ∈ ▲(ΣV(C)) C ∈ supp(C) (36)

Figure 2: Basic SDP relaxation of a Max-CSP instance Υ = (V, C).

7.2 Setting up a System of Linear Equations

Once the SDP relaxation is solved, we construct an initial system of linear equations over a certain abelian
group. In this section, we describe an algorithm for formulating this system of linear equations. For conve-
nience, let us call this system of linear equations GE System.

Fix an arbitrary SDP solution (V ,µ) with value 1. The solution induces local distributions µC over
ΣV(C) where C ∈ supp(C). We assume that for every C ∈ supp(C), the support of µC is pairwise connected
and has no Z-embedding.

7.2.1 Setting up the Variables associated to v ∈ V in GE System

In our GE System, there will be many variables associated with a given variable v ∈ V from the CSP
instance Υ. Here, we describe a polynomial-time procedure that first constructs a matrix Mv with |Σ| rows
associated with the variable v. The columns of the matrix are all the embedding functions associated with
all the constraints v is involved in.

In order to be consistent across different embeddings, we will need to work with embeddings that assign
the identity element to a special element from Σ. It will be convenient to treat Σ as [q] = {1, 2, . . . , q}
where q = |Σ| and let w⋆ = 1.

Definition 7.2. An embedding σ1, σ2, σ3 : Σ → G of a subset S ⊆ Σ × Σ × Σ is called a standard
embedding if σ1(w⋆) = σ2(w

⋆) = σ3(w
⋆) = 0G and there exists g ∈ G such that for every (x, y, z) ∈ S,

σ1(x) + σ2(y) + σ3(z) = g. We will denote such embeddings by ((σ1, σ2, σ3), g).

Note that any embedding (σ1, σ2, σ3) defined in Definition 1.2 can be converted into a standard embed-
ding by adding −σ1(w⋆),−σ2(w⋆),−σ3(w⋆) to the maps σ1, σ2, σ3 respectively.

An informal description of the algorithm (presented in Algorithm 1) for computing the matrix Mv is as
follows. Fix a variable v ∈ V . The matrix Mv is generated in the following three steps.

Step 1. In this step, for every constraint C such that v ∈ V(C), and every embedding (σ1, σ2, σ3, g) of
supp(µC) into an ableian group G, we add columns corresponding to the evaluations of characters of
G on (σj(x))x∈Σ where j is the index of v in C.

Step 2. Next, for every subset S of columns in the matrix Mv generated in Step 1, we add a column, which
is a pointwise multiplication of columns S. If we treat each complex number in the polar form as eiθ,
then in this step, we add all the linear combinations of columns when viewed as vectors of exponents.
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Step 3. Finally, we add rows that are pointwise multiplication of the subsets of rows of Mv generated in
Step 2. Similar to Step 2., here we add all the linear combinations of the exponents of the rows.

This completes the description of the algorithm for computing Mv. In the actual algorithm, we also keep
track all the group elements mapped to a given element from Σ across all the embeddings. This is stored in
the variable rvℓ . Finally, we denote by H⋆

v a subgroup generated by {rvℓ }ℓ∈Σ.

Algorithm 1 Computing the matrix Mv

1: Start with q × 1 matrix Mv with 1⃗ as a column.
2: Instantiate rvℓ to be an empty tuple for every ℓ ∈ [q]. Set H to be the trivial group.
3: Suppose v is involved in the constraints C1, C2, . . . , Ct.
4: for i← 1 to t do
5: Let j ∈ {1, 2, 3} be the index of v in V(Ci).
6: for each standard irreducible embedding ((σ1, σ2, σ3), g)

12of supp(µCi) into an abelian group G
do

7: Add a column (χ(σj(x))x∈Σ) to Mv for every χ ∈ Ĝ such that χ ̸≡ 1.
8: H ← H ×G.
9: rvℓ ← (rvℓ , σj(ℓ)) for every ℓ ∈ [k]. ▷ rvℓ ∈ H .

10: end for
11: end for
12: Set Gv

master ← H .
13: Let L′ be the number of columns in Mv

14: for every subset S ⊆ [L′] do ▷ Adding more columns
15: if ◦i∈SMv[.][i] is not present as a column in Mv then ▷ Mv[.][i] is the ith column of Mv and ◦ is

pointwise multiplication
16: Add a column ◦i∈SMv[.][i] to Mv.
17: end if
18: end for
19: Let Lv be the number of columns of Mv.
20: Let H⋆

v be the group generated by {rvℓ }ℓ∈[q]. Let i = q
21: for each h ∈ H⋆

v do ▷ Adding more rows
22: Suppose h =

∑
ℓ∈S rvℓ where S is a multi-subset of [q] and addition is a group operation Gv

master.
23: Add a row ◦ℓ∈SMv[ℓ][.] to Mv and set i← i+ 1.
24: Set rvi = h.
25: end for

We start with a few simple observations.

Claim 7.3. The group Gv
master generated in Step 12. of Algorithm 1 is the Master group associated with the

set of distributions µCi where v ∈ V(Ci).

Proof. First, we add all the embedding of v in lines 4-11 of the algorithm. While doing this, we update the
group H appropriately by ‘adding’ the current group G to it. The variable rvℓ corresponds to the element of
H associated with the row ℓ. After the algorithm exits from the for loop at line 12, the value of rvℓ is the
master embedding of the symbol ℓ ∈ Σ in Gv

master.

Claim 7.4. The columns of the matrix Mv contain evaluations of all the characters of Gv
master on a subgroup

generated by {rv1 , rv2 , . . . , rvq}.
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Proof. One should think of the column generated by χ ∈ Ĝ in step 7 as the evaluation of the character
(1, . . . , 1, χ, 1, . . . , 1) ∈ Ĝv

master on rvℓ . With this view in mind, in steps 14-18, we add columns that
correspond to every other character from Ĝv

master evaluated at {rvℓ }ℓ∈[q]. This follows as the character χ :=

(χ1, χ2, . . . , χt) ∈ Ĝv
master is, by definition, χ(g) =

∏t
i=1 χi(gi), and Step 16. is precisely adding such

columns.
Finally, in lines 20-14, we are adding rows that correspond to the evaluations of all the characters from

Ĝv
master on every element of Gv

master generated by {rv1 , rv2 , . . . , rvq}. This follows as χ ∈ Ĝv
master is a group

homomorphism χ : Gv
master → C, i.e., χ(g1 + g2) = χ(g1) · χ(g2) for every g1, g2 ∈ Gv

master.

The variables in the GE System associated to v ∈ V are {yχ⃗v } where χ⃗ ∈ Ĝv
master. It would be

convenient to think of the variable set as a row of the matrix Mv.

7.2.2 Adding Equations to the GE System

Our next step is to set up a system of linear equations. Ideally, we would like to assign a group element
from {rv1 , rv2 , . . . , rvq} to a variable v (which corresponds to assigning an element from Σ). However, this
may not be enforced by a set of linear equations over the group Gv

master. Instead, we relax this requirement
and expect an assignment from H⋆

v to the variable v.
In a GE System that we describe next, a solution to the GE System corresponds to assigning a group

element from H⋆
v to v. We do this by relating values to the variables associated with v ∈ V to a group

element. In other words, every h ∈ H⋆
v is identified by the respective row of the matrix Mv.

The following two types of sets of linear equations are added to the GE System.

1. Valid character constraints. These equations enforce that the variables {yχ⃗v }χ⃗∈Ĝv
master

correspond to
a row of the matrix Mv, and hence, the vector assignment corresponds to a group element from H⋆

v .
Towards this, we add the following set of equations for every v ∈ V ,

• ytrivv = 1, where triv corresponds to the first column of the matrix Mv.

• For every column χ⃗′ := (1, . . . , 1, χ, 1, . . . , 1) added in step 7, if G ∼= Zpd , add a constraint

(yχ⃗
′

v )p
d
= 1.

• For every χ⃗, χ⃗′, χ⃗′′ such that χ⃗′′ = χ⃗ · χ⃗′, we add the equation yχ⃗
′′

v = yχ⃗v · yχ⃗
′

v .

• As H⋆
v can be a subgroup of Gv

master, there will be certain columns in Mv that are constant. If
the column corresponding to χ⃗ is constant c, then add the equation yχ⃗v = c.

2. Valid satisfying assignments constraints. These equations make sure that the solution to the GE System
is consistent with the SDP local distributions (the latter are supported on the set of satisfying assign-
ments). Towards this, we add the following set of equations

• For every constraint C ∈ supp(C) such that V(C) = (s1, s2, s3), and for every embedding
((σ1, σ2, σ3), g) of supp(µC) in G, we add the equation yχ⃗1

s1 · y
χ⃗2
s2 · y

χ⃗3
s3 = χ(g) where χ ∈ Ĝ

and χ⃗1, χ⃗2, χ⃗3 are the respective columns added in step 7 in Ms1 ,Ms2 ,Ms3 , for this embedding
and the character χ.

The equations are linear equations over the circle group T = {z ∈ C | |z| = 1} and hence a solution to
the GE System can be found in polynomial time.
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The justification for these constraints is given by the following observation, which states that a valid
integral solution to the SDP gives a solution to the GE System.

Observation 7.5. Suppose x ∈ [k]N is a satisfying assignment to the instance Υ and suppose that this
assignment survives in the SDP solution (V ,µ), i.e., for every C ∈ supp(C), the local distribution µC

assigns a non-zero probability mass to x|V(C). Then assigning the xth
v row from Mv to the variables {yχ⃗v }

satisfies all the equations from the GE System.

There is a natural way in which one can view a solution to the system of equations above as an element
of
∏

v∈V H⋆
v . With this map, we denote the set of all the solutions to the GE System as a subset of

∏
v∈V H⋆

v .

7.3 Set up towards the Hybrid Algorithm: Modifying the SDP and the GE System

Jumping ahead in the soundness analysis of our dictatorship test that matches the guarantees of our (to be
stated) approximation algorithm, we are interested in computing the expectation

E
C(s1,s2,s3)∼C

[
E

(x,y,z)∼µC

[Fs1(σ(x), x) · Fs2(γ(y), y) · Fs3(ϕ(z), z)]

]
where the first input goes to the product functions from the decomposition of Fvis and the second input goes
to the low-degee functions. During the application of our mixed invariance principle, we want to replace the
local distribution (σ(x), γ(y), ϕ(z)) by some global distribution. In our analysis, the global distribution will
be a random solution to our GE System.

One important technical condition that is required to apply the mixed invariance principle is that when
we make this switch, then the product functions coming from Fvis should satisfy the following property.

• For every tuple of product functions P , Q and R coming from the decompositions of Fs1 , Fs2 and
Fs3 , respectively, PQR ≡ 1 under the local distribution iff PQR ≡ 1 under the global distribution.

In order to make sure this technical condition is satisfied, we modify our SDP solution as well as the
GE System iteratively. This procedure is given in Algorithm 2. This algorithm has two main components.

1. ModifyGESystem: In this procedure, we modify the GE System so that if PQR ≡ 1 under the local
distribution then PQR ≡ 1 under the global distribution.

2. ModifySDP: In this procedure, we modify the SDP formulation so that if PQR ≡ 1 under the global
distribution then PQR ≡ 1 under the SDP local distribution.

The following claim shows the correctness of the procedure ModifyGESystem given in Algorithm 4.

Claim 7.6. Suppose for cyclic embedding function P,Q, and R, PQR ≡ 1 under the SDP local distribution,
then the GE System can be modified so that PQR ≡ 1 under the modified global distribution (i.e., under a
random solution to the GE System).

Proof. Fix a constraint C ∈ supp(C) and let V(C) = (s1, s2, s3). In the algorithm for computing Msis,
we add columns corresponding to all the embeddings ((σj , σ′

j , σ
′′
j ), gj) of supp(µC) over the group Gj for

j = 1, 2, . . . , t for some t ⩾ 1. Let H⋆
C :=

∏t
j=1Gj be the product group. Note that H⋆

C is a subgroup of
Gvi

master for i ∈ [3].
Now, if PQR ≡ 1 under the local distribution then the product functions must be from the spN of the

characters over H⋆
C , as these product functions correspond to an embedding of supp(C) and H⋆

C is the master
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group of supp(µC) by definition. Let Hspan(supp(µC)) be the subgroup of H⋆
C ×H⋆

C ×H⋆
C generated by

{(σj(a), σ′
j(b), σ

′′
j (c)) | (a, b, c) ∈ supp(µC)}. Using the fact that each of P,Q,R belongs to the spN of

the characters over H⋆
C , it can be easily checked that PQR ≡ 1 on the subgroup Hspan(supp(µC)). This

means that there is a unique collection of characters {(χi
1, χ

i
2, χ

i
3)}i of the group H⋆

C × H⋆
C × H⋆

C that
evaluates to the constant 1 on Hspan(supp(µC)) and are not constant on any subgroup containing it. Using
these characters, we can add an additional equation to the GE System that enforces PQR ≡ 1 on every
solution to the modified GE System. More specifically, we add the equation y

χi
1

s1 · y
χi
2

s2 · y
χi
3

s3 = 1 for all i to
the GE System.

The above claim fixes the problem in one direction. We also require that PQR ≡ 1 under a random
solution to the GE System implies that PQR ≡ 1 under the local distribution. This is easy to fix by
imposing conditions on the local distributions in the SDP. This is done in Algorithm 3 by simply excluding
the assignments from a local distribution not implied by the GE System.

Claim 7.7. Suppose PQR ≡ 1 for every solution to the GE System, then the SDP can be modified so that
PQR ≡ 1 under the SDP local distribution.

Thus, we run the procedures modifyGESystem and modifySDP towards achieving the condition that
PQR ≡ 1 under a random solution to the GE System iff PQR ≡ 1 under the local distribution. The
procedure modifyGESystem depends on the SDP solution (V ,µ). We need to make sure that after running
the procedure on a satisfiable instance, the final SDP and the GE System should have all the satisfying
assignments preserved (i.e., they will be valid integral solutions to the final SDP and the master embedding
of any valid satisfiable assignment is a solution to the GE System).

Preserving all the integral solutions. To make sure we do not exclude any satisfying assignment from the
subsequent SDP formulation during the execution of Algorithm 2, we will need to work with a SDP solution
(V ,µ) in step 3 with the following property: For every satisfying assignment σ ∈ Σn to the instance, and
any constraint C ∈ supp(C), the support of the local distribution µC contains σ|V(C). To see the necessity
of this condition on (V ,µ), suppose there are multiple satisfying assignments to Υ, but the SDP solution
S is supported on a specific satisfying assignment σ⋆. During the execution of ModifyGEStstem in step 15
of the algorithm, the GE System will exclude every other assignment from its solution space. Thus, if we
end up running ModifySDP in the subsequent iterations, then the SDP formulation will no longer support
satisfying assignments other than σ⋆.

Lemma 7.9 below states that we can get an SDP solution (V ,µ) with value 1 such that for every
satisfiable assignment α to the instance Υ, and for every C ∈ supp(C), µC(α|V(C)) > 0. Before we state
and prove the lemma, we first prove the following simple claim.

Claim 7.8. If (V ,µ) and (V ′,µ′) be any two SDP solutions with value 1. Then there is a SDP solution
(V ′′,µ′′) with value 1 such that for every constraint C ∈ supp(C),

supp(µ′′
C) = supp(µC) ∪ supp(µ′

C).

Proof. Suppose the SDP solution (V ,µ) consists of vectors {bi,a} ∪ {b0} and the SDP solution (V ′,µ′)
consists of vectors {b′i,a}∪{b′0} from Rqn+1. Let e1 = (1, 0) and e2 = (0, 1) be the vectors in R2. Consider
the following vectors

b′′i,a =
1√
2
(e1 ⊗ bi,a) +

1√
2
(e2 ⊗ b′i,a), b′′0 =

1√
2
(e1 ⊗ b0) +

1√
2
(e2 ⊗ b′0)
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It can be easily verified that

⟨b′′i,a, b′′0⟩ = ⟨
1√
2
(e1 ⊗ bi,a) +

1√
2
(e2 ⊗ b′i,a), b

′′
0⟩

=
1√
2
⟨e1 ⊗ bi,a, b

′′
0⟩+

1√
2
⟨e2 ⊗ b′i,a, b

′′
0⟩

=
1

2
∥bi,a∥2 +

1

2
∥b′i,a∥2

= ∥b′′i,a∥2,

Similarly, ∥b′′0∥2 = 1
2∥b0∥

2 + 1
2∥b

′
0∥2 = 1. Consider µC = 1

2µC + 1
2µ

′
C for every C ∈ supp(C). We have

⟨b′′i,a, b′′j,b⟩ = ⟨
1√
2
(e1 ⊗ bi,a) +

1√
2
(e2 ⊗ b′i,a),

1√
2
(e1 ⊗ bj,b) +

1√
2
(e2 ⊗ b′j,b)⟩

=
1

2
⟨bi,a, bj,b⟩+

1

2
⟨b′i,a, b′j,b⟩

= Pr
x∼µ′′

C

[xi = a, xj = b]

Therefore, the vectors V ′′ = {b′′i,a} ∪ {b′′0} along with the local distributions µ′′ satisfy all the SDP con-
straints. Furthermore, we have supp(µ′′

C) = supp(µC) ∪ supp(µ′
C) for every C ∈ supp(C). Finally, the

SDP value of the solution (V ′′,µ) is 1 as µC is supported on the set of satisfying assignments to C for every
C ∈ supp(C).

Lemma 7.9. Fix a satisfiable instance Υ(V, C) of a Max-P-CSP and a SDP formulation SDP(Υ) such that
every satisfiable assignment to Υ is a valid integral solution to SDP(Υ).

There is a polynomial-time algorithm that returns a SDP solution (V ,µ) with value 1 such that for
every satisfiable assignment α to the instance Υ, and for every C ∈ supp(C), µC(α|V(C)) > 0.

Proof. To prove this lemma, we will combine different SDP solutions using Claim 7.8. For every constraint
C and every d = (a1, a2, a3) ∈ Σ3 such that C(d) = 1, we augment the relaxation SDP(Υ) with a constraint
µC(d) = 1; call this new relaxation SDPC,d(Υ). Let (VC,d,µC,d) be any arbitrary solution to SDPC,d(Υ).
We then combine all the solutions (VC,d,µC,d) with value 1 iteratively using Claim 7.8 to get a solution
(V ,µ). This solution satisfies the required guarantee. To see this, fix any satisfiable assignment α to the
instance Υ and fix any C ∈ supp(C). Since, µC(α|V(C)) = 1, the solution (VC,α|V(C)

,µC,α|V(C)
) has value

1 and hence µC(α|V(C)) > 0 using Claim 7.8. Furthermore, Claim 7.8 guarantees that the value of the
solution (V ,µ) is 1, proving this lemma.

While Algorithm 2 makes sure that the SDP solution and the GE System are compatible towards apply-
ing the invariance principle in the analysis of our dictatorship test, it is important to show that the modified
SDP has all the satisfying assignments as valid integral solutions. The following claim shows precisely this.

Claim 7.10. If x ∈ ΣN is a satisfying assignment to the instance Υ, then it remains a valid integral solution
to the SDP S that we get after running Algorithm 2.

Proof. We will show that the procedure maintains the following two invariants: 1) every satisfying assign-
ment from x ∈ [q]N is also a valid satisfying assignment (after interpreting xv with rvxv

) to the GE System
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after the modification, and 2) Every satisfying assignment from x ∈ [q]N is a valid integral solution to SDP.
These invariants are clearly satisfied at the beginning.

When we run ModifySDP, the modified SDP has all the satisfying assignments to the instance Υ as valid
integral solutions. This follows as T has the embedding of every satisfying assignment to start with, and we
only excluded assignments from the local distributions that are not implied by the GE System.

Next, when we modify the GE System, we add equations, and these equations do not exclude any em-
bedding from the support of µC for any C ∈ supp(C). As the solution from step 3 is guaranteed to keep
α|V(C) for every satisfying assignment α and C, every satisfying assignment from [q]N is also a valid satis-
fying assignment to the GE System after the modification.

Algorithm 2 Massaging the SDP and the GE System towards applying the mixed invariance principle
1: Input: An instance Υ(V, C) of Max-P-CSP.
2: Let SDP(Υ) be the basic semidefinite program from Figure 2.
3: Let (V ,µ) be the SDP solution to SDP(Υ) guaranteed by Lemma 7.9.
4: if val(V ,µ) ̸= 1 then
5: Abort. ▷ Υ is not satisfiable
6: end if
7: if for a constraint C ∈ supp(C), supp(µC) is either pairwise disconnected or has a Z-embedding then
8: Abort. ▷ Υ is not satisfiable or C is not MILDLY-SYMMETRIC

9: else
10: Set up a GE System using the SDP solution (V ,µ) and solve it.
11: Let T ⊆

∏N
v=1H

⋆
v be the set of solutions to the GE System.

12: if ∃ (a, b, c) ∈ supp(µC) such that (rs1a , rs2b , rs3c ) /∈ T |V(C) where V(C) = (s1, s2, s3) then
13: Run ModifySDP below.
14: else
15: Run ModifyGESystem below.
16: end if
17: if the SDP S or the GE System is modified then
18: Repeat from step 3 above
19: else
20: Return S and the GE System
21: end if
22: end if

Algorithm 3 ModifySDP
1: for every (a, b, c) ∈ supp(µC) such that (rs1a , rs2b , rs3c ) /∈ T |V(C) where V(C) = (s1, s2, s3) do
2: Augment SDP(Υ) by adding the constraint µC(a, b, c) = 0.
3: end for

We now have the following important lemma that shows that applying Algorithm 2 on a CSP instance
where every predicate is MILDLY-SYMMETRIC give returns an SDP solution and a system of linear equa-
tions that are consistent with respect to each other.
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Algorithm 4 ModifyGESystem
1: for every C ∈ supp(C) do
2: Let V(C) = (s1, s2, s3), and H⋆

C be as defined in the proof of Claim 7.6.
3: Let Hspan(supp(µC)) be the subgroup of H⋆

C ×H⋆
C ×H⋆

C , again defined in the proof of Claim 7.6.
4: Let Hspan(T |V(C)) := {(xs1 |H⋆

C
,xs2 |H⋆

C
,xs3 |H⋆

C
) | x ∈ T }.

5: if Hspan(supp(µC)) ⊊ Hspan(T |V(C)) then
6: Let (χ1, χ2, χ3) ∈ ̂H⋆

C ×H⋆
C ×H⋆

C be the character that evaluates to the constant 1 on
Hspan(supp(µC)) and not constant on any subgroup containing it.

7: Add the equation yχ1
s1 · y

χ2
s2 · y

χ3
s3 = 1 to the GE System.

8: end if
9: end for

Lemma 7.11. Applying Algorithm 2 on a satisfiable CSP instance Υ(V, C) where every predicate C ∈ C is
MILDLY-SYMMETRIC will return an SDP solution (V ⋆,µ⋆) and a system of linear equations GE System⋆

that are consistent with each other. More formally, For every constraint C ∈ supp(C) where V(C) =
{s1, s2, s3}, and for every cyclic embedding functions P , Q and R, PQR ≡ 1 under the local distribution
from the SDP solution (V ⋆,µ⋆) iff PQR ≡ 1 under the solutions to the GE System⋆.

Proof. We rule out that the algorithm will never reach the Abort steps (Steps 5. and 8.). Using Claim 7.6
and Claim 7.7, eventually, the algorithm will return an SDP solution and a GE System that are consistent
with each other.

Using Claim 7.10, the algorithm will never reach Step 5. Fix a satisfying assignment α ∈ ΣN to the
instance. Using Lemma 7.9, for every C ∈ supp(C), the local distribution µC in the SDP solution has in its
support the set Zα,C := {(τi(σ1), τi(σ2), τi(σ3)) | i ∈ [ℓ]} ⊆ Σ3 for σ = α|C . Because every predicate
is MILDLY-SYMMETRIC , the set Zα,C (and hence supp(µC)) is pairwise connected and does not have a
(Z,+)-embedding. Hence, the algorithm will never reach Step 8.

Finally, we compute the running time of Algorithm 2

Lemma 7.12. Algorithm 2 on a satisfiable CSP instance Υ(V, C) where every predicate C ∈ C is MILDLY-
SYMMETRIC runs in time poly(|V|, |Σ|).

Proof. First, the procedure ModifySDP runs in time poly(|V|, |Σ|). As every modification to the SDP
program strictly reduces the support of one of the local distributions, there can be at most poly(|V|, |Σ|)
calls to the ModifySDP procedure through the execution of Algorithm 2.

In the procedure ModifyGESystem, for a constraint C, if there are cyclic embedding functions P , Q and
R such that PQR ≡ 1 under the local distribution from the SDP solution (V ⋆,µ⋆) but PQR ̸≡ 1 under
the solutions to the GE System⋆, then the procedure runs in time poly(|V|, |Σ|) to modify the GE System to
make sure PQR ≡ 1 under the solutions to the GE System. The number of cyclic embedding functions is
O|Σ|(1), and therefore, every call to ModifyGESystem takes at most poly(|V|, |Σ|) time.

Therefore, the overall running time of Algorithm 2 is poly(|V|, |Σ|)

7.4 Hybrid Approximation Algorithm

In this section, we give our hybrid algorithm for satisfiable instances of Max-P-CSP where P is a collection
of MILDLY-SYMMETRIC predicates.
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Hybrid Algorithm (ALG): the algorithm is given below.

Algorithm 5 Hybrid Approximation algorithm for MILDLY-SYMMETRIC predicates
1: Input: An instance Υ(V, C) of Max-P-CSP where P is a collection of 3-ary MILDLY-SYMMETRIC

predicates.
2: Perform the operations mentioned in Algorithm 2.
3: if the procedure fails to output an SDP solution (V ⋆,µ⋆) and a system of linear equations GE System⋆

that are consistent with each other then
4: Reject.
5: else
6: Accept.
7: end if

It can be checked easily that given Lemma 7.12, the algorithm runs in polynomial time. We define the
following quantity αALG

P , and by definition, the approximation guarantee of the hybrid algorithm is αALG
P .

αALG
P = infβ


∃ an instance Υ of Max-P-CSP such that
1. OPT(Υ) ⩽ β,
2. SDP value = 1,
3. The hybrid algorithm accepts.

Theorem 7.1. For any collection of MILDLY-SYMMETRIC predicates P , the algorithm ALG for Max-P-
CSP distinguishes between the following two cases.

1. The input instance is satisfiable.

2. The input instance has value at most αALG
P .

Proof. If the instance is satisfiable, then by Lemma 7.11, ALG accepts. If the instance has value strictly
less than αALG , then by definition, ALG rejects such instances.

In the next section, we study a dictatorship test for Max-P-CSP whose soundness matches with the
approximation guarantee of the hybrid algorithm. In other words, we design a test where the test accepts
according to the predicate P , has perfect completeness, and has soundness αALG

P + ε, for every constant
ε > 0.

7.5 Dictatorship Test

We fix an Υ = (V, C) of a Max-P-CSP such that the algorithm ALG accepts Υ. Let Σ be the alphabet of
the CSP and we identify Σ with the set [q] = {1, 2, . . . , q} where q = |Σ|. Let (V ,µ) be a solution for the
SDP relaxation of Υ.

Given a function F : ΣR → Σ, in our dictatorship test DictV ,µ, we will sample three queries ac-
cording to the distribution µ⊗R

C for C ∼ C. For the test DictV ,µ, there is no single natural choice of
probability measure µn on Σn using which we can define the function F to be ‘far-from-dictator’ required
(as in Definition 6.6) for the application of our mixed invariance principle. Therefore, we need to define
quasirandomness of a function appropriately, and we do so in the next section.
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7.6 The Notion of Quasirandom Functions

For each variable s ∈ V in the original Max-P-CSP instance Υ = (V, C), there is a corresponding prob-
ability space Ωs = (Σ, µs). Therefore, we will define the relative notion of “quasirandom with respect to
(V ,µ)”. Roughly speaking, we shall call a function “quasirandom” if all its “influences” are low under
nearly all of the probability distributions corresponding to variables si ∈ V .

Definition 7.13. (Quasirandom function w.r.t. (V ,µ)) A function F : Σn → Σ is called a (d, τ)-
quasirandom w.r.t. (V ,µ) if the following property holds. Consider the functions (Fs,1, Fs,2, . . . , Fs,q),
where for every j ∈ [q], Fs,j : ([q]n, µ⊗n

s ) → R is defined as Fs,j(x) := 1F (x)=j . Suppose there exist
product functions Ps,j with rkPs,j) ⩾ T such that functions F̃s,j of the form

F̃s,j(x) =
∑

P∈spnN(Ps,j)

P (x) · LP (x)

satisfy:

1. ∥Fs,j − F̃s,j∥2 ⩽ ε.

2. deg(LP ) and ∥LP ∥2 are both d = OT,α,q,ε(1).

3. Furthermore, for every C ∈ supp(C) where V(C) = (s1, s2, s3), j, k, ℓ ∈ [q], and for any P ∈
spnN(Ps1,j), Q ∈ spnN(Ps2,k) and R ∈ spnN(Ps3,ℓ), either P (x)Q(y)R(z) ≡ 1 in the support of
µn
C , or ∆symbolic(PQR, 1) ⩾ T ′.

Then, F is called (d, τ)-quasirandom w.r.t. (V ,µ) if for every s ∈ V , j ∈ [q] and P ∈ spnN(Ps,j), for
every i ∈ [n] it holds that Ii[LP ] ⩽ τ .

Remark 7.14. A standard notion of (d, τ)-quasirandomness that gets used in proving the hardness results
from dictatorship tests has the conditions Ii[F

⩽d
s,j ] ⩽ τ for all j ∈ [q] and i ∈ [n], where F⩽d

s,j is a low-
degree truncation of Fs,j up to degree d. The reason behind ignoring the high-degree component of Fs,j in
the hardness reduction is that the underlying distribution is connected and hence the high-degree compo-
nents have a negligible contribution. In our case, Fs,j has high-degree components P (x), and we cannot
ignore such components in hardness reductions for satisfiable Max-P-CSPs as the underlying distribution
cannot be made connected. Thus, a natural extension of quasirandomness is to enforce the small influence
conditions on the low-degree components LP in Fs,js. At this point, we do not know how to use this notion
of quasirandomness to convert a dictatorship test to a (conditional) hardness result. We leave this as an
open question for future research.

One may wonder if it is even possible to find the functions F̃s,j such that all the above (except for the
quasirandomness property) properties hold for small enough ε and large T and T ′. Lemma 5.12 already
shows the existence of product functions Ps,j for Fs,j such that properties 1. and 2. above hold. The
following lemma states that for any collection of functions (f1, f2, . . . , fs), we can find a collection of
product functions such that the above three properties hold simultaneously.

Lemma 7.15. For all α > 0, m ∈ N, T ⩾ 1, and ξ > 0 there exist r ∈ N and ε0 > 0 such that the following
holds for any decay function w : [0, 1]→ [0, 1]. Let Σ be an alphabet of size at most m, let µjkℓ be pairwise
consistent distributions over Σ3 in which the probability of each atom is at least α for all 1 ⩽ j, k, ℓ ⩽ s.
Then there exists an Abelian group G whose size depends only on |Σ|, σ : Σ→ G, such that for any function
fj : (Σ

n, µn
j ) → C, for 1 ⩽ j ⩽ s, there are r′ ⩽ r, ε ⩾ ε0 and a collections Pj of cyclic embedding

functions of size at most r′ such that:
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1. We have rk(Pj) ⩾ 1
w(ε) .

2. For all ε′ ∈ (w(ε), ε) we have that ∥fj − TPj ,1−ε′fj∥νj ,α ⩽ ξ, where νj is the marginal distribution
µjkℓ on j.

3. for any P ∈ spnN(Pj), Q ∈ spnN(Pk) and R ∈ spnN(Pℓ), either P (x)Q(y)R(z) ≡ 1 in the support
of µn

jkℓ, or ∆symbolic(PQR, 1) ⩾ T .

Proof. Fix a decay function w′ : [0, 1] → [0, 1]. For given m,α and sufficiently small ξ, we first apply
Lemma 5.12 to the functions fjs individually to get a collection of product functions Pj for fj such that
rk(Pj) ⩾ T and for all ε′ ∈ (w(ε), ε), ∥fj − TPj ,1−ε′fj∥µj ,α ⩽ ξ, for a sufficiently small decay function
w compared to w′. We will update the collection Pj iteratively to arrive at a final collection P ′

j of size at
most |Pj | that will satisfy all the conditions from the lemma with the decay function w′, ε′0 = Ωr,s(ξ

2/T ),
ξ′ = 2ξ.

1. Set t = 1 and U1 = [n].

2. Construct a subset At ⊆ Ut as follows:

(a) Set At = ∅.
(b) For every j, k, l and P ∈ spnN(Pj), Q ∈ spnN(Pk), and R ∈ spnN(Pℓ) such that P (x)Q(y)R(z) ̸≡

1 in the support of µn
jkℓ, and ∆symbolic(PQR, 1) < T ,

i. Add i ∈ [n] to At for which PiQiRi ̸≡ 1 in the support of µjkℓ.
ii. Change P ′ ∈ Pj to

∏
i∈Ut\At

P ′
i (x), and similarly do the same for every j ∈ [s].

iii. Set Ut+1 = Ut \At.

3. Increment t by 1 and repeat step 2 unless for every j, k, l and P ∈ spnN(Pj), Q ∈ spnN(Pk), and
R ∈ spnN(Pℓ) either P (x)Q(y)R(z) ≡ 1 in the support of µn

jkℓ, or ∆symbolic(PQR, 1) ⩾ T ,

We start with a simple observation. If once triple P,Q,R is responsible for adding a coordinate to At, then
it will never be responsible for adding a coordinate in later iterations. This follows as we change the P,Q,R
so that P (x)Q(y)R(z) ≡ 1. The consequence of this is that the procedure stops after a finite number of
iterations. Let t⋆ be the last iteration. Clearly, t⋆ ⩽

∏
j

∏
P∈Pj

ord(P ), as the RHS is the number of distinct
triples from the collections {spnN(Pj)}j∈[q]. Thus t⋆ = Or,s(1), where |Pj | ⩽ r for every j. Furthermore,
at any given iteration, |At| ⩽

∏
j

∏
P∈Pj

ord(P ) · T = Or,s(T ) as every triple contributes at most T to the
set At. If we let A := ∪t⋆t=1At, then |A| = Or,s(T ).

At the end of the procedure, we have that a product function P (x) =
∏n

i=1 Pi(x) is changed to P ′(x) =∏
i∈[n]\A Pi(x). Let the final collection of these product functions be {P ′

j}j∈[s]. Since the procedure ends,
we have that for any P ′ ∈ spnN(P ′

j), Q
′ ∈ spnN(P ′

k) and R′ ∈ spnN(P ′
ℓ), either P ′(x)Q′(y)R′(z) ≡ 1

in the support of µn
jkℓ, or ∆symbolic(P

′Q′R′, 1) ⩾ T . Furthermore, as we changed |A| many coordinates to
1 in each of the product functions, we have rk(Pj) ⩾ 1

w(ε) − |A| ⩾
1

w′(ε) . We now show that the second
property holds for these updated collections.

We have the following claim which is similar to Fact 5.3, except we do the analysis in one shot by
observing that the coupling works for the collections Pj and P ′

j directly.

Claim 7.16. For every ε > 0, for any 1-bounded function fj : (Σ
n, νnj )→ C,

∥TPj ,1−εfj − TP ′
j ,1−εfj∥νj ,2 ⩽ 2

√
|A|ε.
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Proof. We first show that there is a coupling of (x, y, y′) such that (x, y) is distributed according to (x,TPj ,1−εx),
(x, y′) is distributed according to (x,TP ′

j ,1−εx) and Pr [y ̸= y′] ⩽ |A|ε.
Note that A is the set of all the coordinates in which P ∈ Pj and P ′ ∈ P ′

j differ. Sample x ∼ ν, then
I ⊆1−ε [n] and then y ∼ νj conditioned on yI = xI and P (y) = P (x) for all P ∈ Pj ; note that y is
distributed according to TPj ,1−εx. Let y′ ∼ TP ′

j ,1−εx. Note that if I ∩ A = ∅, then P ′(y) = P ′(x). Thus,
letting E be the event that I ∩A = ∅, we have that Pr [E] ⩾ 1− |A|ε and that the distributions of y | E and
y′ | E are identical. Thus, the statistical distance between y and y′ is at most Pr [E] ⩽ |A|ε. It follows that
there is a coupling between y and y′ such that Pr [y ̸= y′] ⩽ |A|ε.

Fix the coupling (x, y, y′) so that we may write

∥TP ′
j ,1−εfj − TPj ,1−εfj∥2νj ,2 = E

x

[∣∣∣∣ E
y,y′

[
fj(y)− fj(y

′)
]∣∣∣∣2
]
⩽ 4E

x

[
1y ̸=y′

]
⩽ 4|A|ε.

There exists ε′0 ⩾
ξ2

4|A| = Ωr,s(
ξ2

T ), and ε ⩾ ε′0, such that for all ε′ ∈ (w′(ε), ε), we have

∥fj − TP ′
j ,1−ε′fj∥νj ,α ⩽ ∥fj − TPj ,1−ε′fj∥νj ,α + ∥TP ′

j ,1−ε′fj − TPj ,1−ε′fj∥νj ,α
⩽ ∥fj − TPj ,1−ε′fj∥νj ,α + ∥TP ′

j ,1−ε′fj − TPj ,1−ε′fj∥2

⩽ ξ + 2
√
|A|ε′

⩽ 2ξ.

7.6.1 The Dictatorship Test for MILDLY-SYMMETRIC Predicates

We are now ready to state the dictatorship test and prove its completeness and soundness. Let (V ,µ) be a
solution for the SDP relaxation of Υ and S ⊆ GV

master, where GV
master :=

∏
v∈V H⋆

v , be the subspace of the
set of satisfying assignments of the instance Υ(V, C) coming from the GE System that satisfy the conditions
from Lemma 7.11. Let α > 0 be a lower bound on the non-zero probabilities from the distributions µC , and
we treat α as a constant as the instance size is fixed.

In Figure 3, we give the dictatorship test DictV ,µ for functions F : ΣR → Σ. Note that Lemma 7.11
guarantees that (V ,µ) and S ⊆ GV

master are consistent with respect to every P,Q,R coming from the
decompositions of Fs1,j , Fs2,k, Fs3,ℓ, for every C ∈ supp(C) and 1 ⩽ j, k, ℓ ⩽ q such that V(C) =
(s1, s2, s3) and we will use this fact in the analysis of our dictatorship test.
Completeness: a function F : ΣR → Σ is called a dictator function if F (z) = z(i) for some i ∈ [R]. The
completeness of the test is defined as follows,

Completeness(DictV ,µ) = min
i∈[R],

F is the ith dictator

Pr[F passes DictV ,µ].

As the distribution µC is supported on the satisfying assignment of the constraint C, the test passes with
probability 1 when F is a dictator function. Therefore, Completeness(DictV ,µ) = 1.

Soundness: the soundness of the test is the maximum probability with which it accepts quasirandom func-
tions. More formally, define the soundness of the test as:
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1. Let (V ,µ) be a solution for the basic SDP relaxation of Υ that satisfy the conditions from
Lemma 7.11.

2. Sample a payoff C ∼ C. Let V(C) = {s1, s2, s3}.

3. Sample zC = {zs1 , zs2 , zs3} from the product distribution µ⊗R
C , i.e., independently for each i ∈

[R], (z(i)
s1 , z

(i)
s2 , z

(i)
s3 ) ∼ µC .

4. Query the function values F (zs1), F (zs2), F (zs3).

5. Accept iff C(F (zs1), F (zs2), F (zs3)) = 1.

Figure 3: SDP integrality gap to a dictatorship test DictV ,µ.

Soundness(d,τ)(DictV ,µ) = sup
F :ΣR→Σ

F is (d,τ)−quasirandom w.r.t.(V ,µ)

Pr[F passes DictV ,µ].

We now state our main theorem regarding the soundness of the dictatorship test DictV ,µ.

Theorem 7.2. Fix any collection of MILDLY-SYMMETRIC predicates P . Given an instance Υ = (V, C) of
a Max-P-CSP such that the algorithmALG accepts Υ, the test DictV ,µ has completeness 1 and soundness

Soundness(d,τ)(DictV ,µ) = OPT(Υ) + od,τ (1),

where OPT(Υ) is the optimal value of the instance Υ and od,τ (1)→ 0 as τ → 0.

The following corollary follows from the above theorem and the approximation guarantee of our hybrid
algorithm.

Corollary 7.17. Fix any collection of MILDLY-SYMMETRIC predicates P . For every ε > 0, there exists a
dictator vs. quasirandom test with completeness 1 and soundness αALG

P + ε, and the accepting criterion of
the test is from the set of predicates P .

Theorem 7.1 along with Corollary 7.17 prove our main Theorem 1.1. We prove Theorem 7.2 in the
rest of the section. We first set up a few notations in Section 7.6.2 that will be used in the analysis of the
soundness of the test.

7.6.2 Functions on Product Spaces

Let (Ω, µ) be a probability space with |Ω| = q and µ has full support on Ω. Define the inner product between
two functions f, g : Ω→ R on this space as follows: ⟨f, g⟩ = Ex∼µ[f(x)g(x)].

Definition 7.18. An orthonormal ensemble consists of a basis of real orthonormal random variables L =
{ℓ0 ≡ 1, ℓ1, . . . , ℓq−1}, where 1 is the constant 1 function.
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Henceforth, we will sometimes refer to orthonormal ensembles as just ensembles. For an ensemble
L = {ℓ0 ≡ 1, ℓ1, . . . , ℓq−1} of random variables, we will use LR to denote the ensemble obtained by taking
R independent copies of L. Further L(i) = {ℓ(i)0 , ℓ

(i)
1 , . . . , ℓ

(i)
q−1} will denote the ith independent copy of L.

Fix an ensemble L = {ℓ0 ≡ 1, ℓ1, . . . , ℓq−1} that forms a basis for L2(Ω). Given such a basis for
L2(Ω), it induces a basis for the space L2(ΩR), given by the random variables{

ℓσ :=
R∏
i=1

ℓ(i)σi

∣∣∣∣∣ σ ∈ {0, 1, . . . , q − 1}R
}
.

Therefore, any function F : ΩR → R has a multilinear expansion

F(z) =
∑

σ∈{0,1,...,q−1}R
F̂(σ)ℓσ(z),

where ℓσ(z) =
∏R

i=1 ℓσi(zi).

Definition 7.19. A multi-index σ is a vector (σ1, σ2, . . . .σR) ∈ {0, 1, . . . , q − 1}R and the degree of σ is
denoted by |σ| which is equal to |σ| = |{i ∈ [R] | σi ̸= 0}|. Given a set of indeterminates X = {x(i)j |j ∈
{0, 1, . . . , q − 1}, i ∈ [R]} and a multi-index σ, define the monomial xσ as

xσ =
R∏
i=1

x(i)σi
.

The degree of the monomial is given by |σ|. A multilinear polynomial over such indeterminates is given by

F (x) =
∑

σ∈{0,1,...,q−1}R
F̂σxσ.

Given any function F : ΩR → R, with the multilinear expansion F(z) =
∑

σ∈{0,1,...,q−1}R F̂(σ)ℓσ(z)
with respect to the orthonormal ensemble L = {ℓ0 ≡ 1, ℓ1, . . . , ℓq−1}, we define a corresponding formal
polynomial in the indeterminates X = {x(i)j |j ∈ {0, 1, . . . , q − 1}, i ∈ [R]}, as follows:

F (x) =
∑
σ

F̂(σ)xσ.

We will always use the symbol F to denote a real-valued function on a product probability space ΩR.
Further F (x) will denote the formal multilinear polynomial corresponding toF . Hence, F (LR) is a random
variable obtained by substituting the random variablesLR in place of x. For instance, the following equation
holds in this notation:

E
z∈ΩR

[F(z)] = E[F (LR)].

Vector Valued Functions. We will always use the symbol F = (F1,F2, . . . ,Fq) to denote a vector-
valued function on a product probability space ΩR. Further, F (x) = (F1, F2, . . . , Fq) will denote the
formal multilinear polynomial corresponding to F .
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7.6.3 Soundness Analysis of the Dictatorship Test

We now analyze the soundness of the test. Towards this, we assume that F is quasirandom according to
Definition 7.13 and we fix a decomposition of F that guarantees the quasirandomness of F throughout the
analysis. For each s ∈ V , let Ωs = (Σ, µs) be a probability space with atoms in Σ where the probability of
a ∈ Σ is ∥bs,a∥22.

We will fix an arbitrary mapping from Σ to {1, 2, . . . , q}, denoted by ς : Σ→ {1, 2, . . . , q}. The domain
of the payoff C : Σ3 → {0, 1} can be extended from Σ3 to ▲3

q . To see this, by the abuse of notation, first
define a ∆q-representation of a payoff C : Σ3 → {0, 1} as C : ∆3

q → {0, 1} where

C(ea1 , ea2 , ea3) = C(ς−1(a1), ς
−1(a2), ς

−1(a3)), for all (a1, a2, a3) ∈ {1, 2, . . . , q}3.

The function C can be extended to the domain ▲3
q by its multi-linear extension. Again, by abusing the

notation, define the extension C as:

C(x1,x2,x3) =
∑
σ∈Σ3

C(σ)

3∏
i=1

xi,ς(σi), for all x1,x2,x3 ∈ ▲q. (37)

Extending C to R3q: We will extend the payoff function C further to a real valued function on (Rq)3, by
plugging the real values in the expansion of C given in the Equation (37). This extension of C is smooth in
the following sense:

1. All the partial derivatives of C up to order 3 are uniformly bounded by C0(q).

2. C is a Lipschitz function with Lipschitz constant C0(q), i.e.,∀{x1,x2,x3}, {y1,y2,y3} ∈ (Rq)3,

|C(x1,x2,x3)− C(y1,y2,y3)| ⩽ C0(q)
3∑

i=1

∥xi − yi∥2.

Local and Global Ensembles. Fix a given SDP solution (V ,µ) with value 1. We define the following
local and global orthonormal ensembles of random variables for every s ∈ V as follows.

• Local Integral Ensembles L: The Local Integral Ensemble L = {ℓs | s ∈ V} for a variable s ∈ V ,
ℓs = {ℓs,0 ≡ 1, ℓs,1, . . . , ℓs,q−1} is a set of random variables that are orthonormal ensembles for the
space Ωs.

We also define the following global ensembles of random variables:

• Global Gaussian Ensembles G: The Global Gaussian Ensembles G = {gs | s ∈ V} are generated
by setting gs = {gs,0 ≡ 1, gs,1, . . . , gs,q−1} where

gs,j =
∑
ω∈Σ

ℓs,j(ω)⟨bs,ω, ζ⟩, ∀j ∈ {1, . . . , q − 1},

and ζ is a normal Gaussian random vector of appropriate dimension.

The following lemma states that the local integral ensemble and the global Gaussian ensemble have
matching first and second moments. We need this to apply the invariance principle in our analysis below.
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Lemma 7.20. ([7]) For every s ∈ V , gs is an orthonormal ensemble w.r.t. the space Ωs. Also, for any
payoff C ∈ C, the global ensembles G match the following moments of the local integral ensembles L:

E
ζ
[gs,j .gs′,j′ ] = E

(ω,ω′)∼µC |(s,s′)
[ℓs,j(ω).ℓs′,j′(ω

′)] ∀j, j′ ∈ {1, . . . , q − 1}, s, s′ ∈ V(P ′),

where µC |(s, s′) is the marginal distribution of µC on the coordinates of s, s′.

Soundness analysis. The acceptance probability of the test for a given function F is given by:

Pr[F passes DictV ,µ] = E
C∼C

E
zC∼µ⊗R

C

[C(Fs1(zs1),Fs2(zs2),Fs3(zs3))], (38)

where V(C) = (s2, s2, s3). Consider the following expression.

C(Fs1(zs1),Fs2(zs2),Fs3(zs3)) =
∑
σ∈Σ3

C(σ)
3∏

j=1

Fsj ,σj (zsj ). (39)

We now apply Theorem 6.9, to the expression

E
zC∼µ⊗R

C

 3∏
j=1

Fsj ,σj (zsj )

 .

The invariant distribution we wish to move to is slightly different from the setting of Theorem 6.9.
Specifically, we wish to consider the following two distributions:

1. The distributionDS : sample R assignments α(1),α(2), . . . ,α(R) from the set of satisfying assignment
S ⊆ GV

master to the GE System independently and uniformly at random, consider (ai, bi, ci) :=

(α
(i)
s1 , α

(i)
s2 , α

(i)
s3 ) ∈ H⋆

s1 ×H⋆
s2 ×H⋆

s3 and output

(χP (a), χQ(b), χR(c))P∈spnN(Ps1,σ1 ),Q∈spnN(Ps2,σ2 ),R∈spnN(Ps3,σ3 )
.

2. The distribution DµC : sample (x,y, z) ∼ µ⊗R
C and output

(χP (σ(x)), χQ(γ(y)), χR(ϕ(z)))P∈spnN(Ps1,σ1 ),Q∈spnN(Ps2,σ2 ),R∈spnN(Ps3,σ3 )
.

The following lemma asserts that the distributions DH and Dµ are close in statistical distance.

Lemma 7.21. Suppose the sizes of each one of Ps1,σ1 ,Ps2,σ2 ,Ps3,σ3 is at most r, |Gmaster| ⩽ m and that
for any P ∈ spnN(Ps1,σ1)), Q ∈ spnN(Ps2,σ2)) and R ∈ spnN(Ps3,σ3)) it holds that either PQR ≡ 1 or
else PiQiRi ̸≡ 1 for at least T ′ of the coordinates i ∈ [R]. Then

SD(DµC ,DS) ≲m,r (1− Ωm,α(1))
T ′
.

where α is the minimum non-zero probability of an item from supp(µ).
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Proof. The proof of the lemma is similar to the proof of Lemma 6.12 and we only sketch the proof. Here,
we crucially use the fact that the set of solutions S to the GE System and the SDP solution (V ,µ) are
consistent to each other as stated in Lemma 7.11. Consider S in the support of one of the distribution.
For any P,Q,R, consider their contribution to DµC (S) and DS(S) defined in Lemma 6.12, but for the
two distributions DµC and DS . For P,Q,R such that PQR ≡ 1, the two contributions are the same.
Else, by assumption PiQiRi ̸≡ 1 for at least T ′ coordinates, and each one of the expectations is at most
(1− Ωm,α(1))

T ′
in absolute value.

Now, define the functions F dec
s,j : (H⋆

s )
R×R(q−1)R → C in the following way. Let Ps,j be the collection

of product functions associated with F̃s,j from the decomposition of F : ΣR → Σ satisfying the quasiran-

domness property with respect to the Definition 7.13. Write each P ∈ spnN(Ps,j) as P =
R∏
i=1

χP,i(σ(xi)).

Thus,

F̃dec
s,j (x,y) =

∑
P∈spnN(Ps,j)

LP (y) ·
R∏
i=1

χi,P (σ(xi)). (40)

Interpreting the first input over the group (H⋆
s )

R, we define Fdec
s,j : (H⋆

s )
R×ΣR → C by replacing σ(xi) by

the group element input. Namely,

Fdec
s,j (a,y) =

∑
P∈spnN(Ps,j)

LP (y) ·
R∏
i=1

χi,P (ai). (41)

Next, we replace the low-degree polynomials with their corresponding multilinear extensions to get the
functions F dec

s,j : (H⋆
s )

R × R(q−1)R → C.

F dec
s,j (a, ℓ) =

∑
P∈spnN(Ps,j)

LP (ℓ) ·
R∏
i=1

χi,P (ai).

Finally, the function F̃ dec
s,j : (H⋆

s )
R × R(q−1)R → R is defined by taking only real part of the output of F dec

s,j

and truncating it using the function trunc.

F̃ dec
s,j (a, ℓ) = trunc(Re(F̃ dec

s,j (a, ℓ))).

Applying Theorem 6.9 but with respect to the distributions (DS ,DµC ), and with the function Ψ(a, b, c) :=
abc for a, b, c ∈ C, we get

∣∣∣∣∣∣∣∣∣∣∣
E

zC∼µ⊗R
C

 3∏
j=1

Fsj ,σj (zsj )

− E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

 3∏
j=1

F̃ dec
sj ,σj

(asj , gsj )


∣∣∣∣∣∣∣∣∣∣∣
⩽ 2−Ωq,α,ε(T ′) + η(τ).

Combining the above with Equations (38) and (39), we get
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Pr[F passes DictV ,µ] ⩽ E
C∼C

E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

[C(F̃ dec
s1 (as1 , gs1), F̃

dec
s2 (as2 , gs2), F̃

dec
s3 (as3 , gs3))]

+ 2−Ωq,α,ε(T ′) + η(τ) (42)

Note that F̃ dec
s (a, g) ∈ Rq. We now analyze the loss that happens because of scaling, as given in Step 4

of the rounding scheme. Let F dec
s (a, g)⋆ ∈ ▲q be the vector obtained by scaling it using the function Scale

defined in Step 4 of the rounding scheme RoundF below.
The expected value of the solution returned by the rounding scheme RoundF is given by the following

expression.

RoundF (V ,µ) = E
C∼C

E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

[
C(F dec

s1 (as1 , gs1)
⋆,F dec

s2 (as2 , gs2)
⋆,F dec

s3 (as3 , gs3)
⋆)
]

(43)

Let δ = oτ,T ′(1) where δ → 0 as τ → 0 and T ′ → ∞ . Fix a constraint C and a variable s ∈ V(C).
Let Es be the event that

∑
j Re(F dec

s,j (as, gs)) ∈ [1 − δ, 1 + δ]. Note that for all s and z ∈ ΣR, we have∑
j Fs,j(z) = 1. The next claim shows that with high probability over as, gs sampled according to the

rounding scheme,
∑

j Re(F dec
s,j (as, gs)) ∈ [1− δ, 1 + δ].

Claim 7.22. For every s ∈ V , Pr[Es] ⩾ 1−Oq(δ).

Proof. Define Fa(z) =
∑

j Fdec
s,j (a, z) where Fdec

s,j is defined in Equation 41. Let Fa(ℓ) := F dec
s,j (a, ℓ) be

the multilinear extension of Fa. By definition, all the influences of Fa are bounded by Oq(τ).
Consider the function ζ(x) = |1− x|2. Applying the invariance principle from Theorem 3.9, we get∣∣∣∣∣ E

ℓs∼L|s
[ζ(Fa(ℓs))]− E

gs
[ζ(Fa(gs))]

∣∣∣∣∣ ⩽ oτ (1). (44)

Now, we have

E
ℓs∼L|s

[ζ(Fa(ℓs))] = E
x′′
s∼µ⊗R

s

[ζ(Fa(x
′′
s))] = E

x′′
s∼µ⊗R

s

ζ
∑

j

Fdec
s,j (a,x

′′
s)

 .

We now fix a coupling (x′
s,x

′′
s ,xs) between µ⊗R

s × µ⊗R
s and µ⊗R

s given by Lemma 6.5. Let as denote
the sample (α

(1)
s , α

(2)
s , . . . , α

(R)
s ) corresponding to the variable s according to the rounding scheme. Using

Lemma 7.21, we switch as to a distribution σ(x′)

E
as

E
x′′
s∼µ⊗R

s

ζ
∑

j

Fdec
s,j (a,x

′′
s)

 ⩽ E
(x′

s,x
′′
s ,xs)

ζ
∑

j

F̃dec
s,j (x

′
s,x

′′
s)

+ 2−Ωq,α,ε(T ′), (45)
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where F̃s,j is the function defined in Equation(40). Using the fact that ζ(1 + b) = |b|2 for every b ∈ C, we
get

E
(x′

s,x
′′
s ,xs)

ζ
∑

j

Fdec
s,j (x

′
s,x

′′
s)

 = E
(x′

s,x
′′
s ,xs)

ζ
∑

j

Fdec
s,j (x

′
s,x

′′
s) +

∑
j

Fs,j(xs)−
∑
j

Fs,j(xs)


= E

(x′
s,x

′′
s ,xs)

∣∣∣∣∣∣
∑
j

Fdec
s,j (x

′
s,x

′′
s)−

∑
j

Fs,j(xs)

∣∣∣∣∣∣
2

⩽
∑
j

E
(x′

s,x
′′
s ,xs)

[∣∣∣Fdec
s,j (x

′
s,x

′′
s −Fs,j(xs)

∣∣∣2]
Using Lemma 6.5 we have for every 1 ⩽ j ⩽ q,

E
(x′

s,x
′′
s ,xs)

[∣∣∣Fdec
s,j (x

′
s,x

′′
s)−Fs,j(xs)

∣∣∣2] ⩽ 2−Ωq,α,ε(T ′)

Therefore, we get

E
(x′

s,x
′′
s ,xs)

ζ
∑

j

Fdec
s,j (x

′
s,x

′′
s)

 ⩽ 2−Ωq,α,ε(T ′). (46)

Using Equations (44), (45), and (46), we have

E
as,gs

ζ
∑

j

F dec
s,j (as, gs)

 ⩽ 2−Ωq,α,ε(T ′) + oτ (1).

Setting δ′ ≈ 2−Ωq,α,ε(T ′) + oτ (1), we get that with probability at least 1 −
√
δ′,
∑

j Re(F dec
s,j (as, gs)) ∈

[1−
√
δ′, 1 +

√
δ′]. This finished the proof of the claim.

Using Equation(43), the above claim, and the facts that F dec
s (as, gs)

⋆ is a 1-bounded function and the
function C is upper bounded by Oq(1) on 1-bounded inputs, we have

RoundF (V ,µ)

⩾ E
C∼C

E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

[
C(F dec

s1 (as1 , gs1)
⋆,F dec

s2 (as2 , gs2)
⋆,F dec

s3 (as3 , gs3)
⋆) | ∧3j=1Esj

]
−Oq(δ).

(47)

We now remove the truncation and scaling, and see the effect of this on the above expression. Towards
this, we have a following simple claim.

Claim 7.23. Let a ∈ Rq such that
∑

i ai ∈ [1− δ, 1 + δ], and let a⋆ be the vector that we get after scaling
the vector ã := trunc(a), then ∑

i

(ãi − a⋆i )
2 ⩽ q

∑
i

(ai − ãi)
2 +Oq(δ).
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Proof.

∑
i

(ãi − a⋆i )
2 =

∑
i

(
ãi −

ãi∑
j ã

2
j

)2

=

(∑
i

ãi − 1

)2∑
i

ã2i
(
∑

j ãj)
2
⩽

(∑
i

ãi − 1

)2

Now, (∑
i

ãi − 1

)2

⩽

(∑
i

ãi − ai

)2

+Oq(δ) ⩽ q
∑
i

(ãi − ai)
2 +Oq(δ),

where the last inequality is the Cauchy-Schwarz inequality.

Claim 7.24. For every constraint C on (s1, s2, s3), if (as1 ,as2 ,as3) and (gs1 , gs2 , gs3) are distributed
according to the distribution from Equation (47), then∣∣∣∣∣∣ E

[
C(F dec

s1 (as1 , gs1)
⋆,F dec

s2 (as2 , gs2)
⋆,F dec

s3 (as3 , gs3)
⋆) | ∧3j=1Esj

]
−

E
[
C(F̃ dec

s1 (as1 , gs1), F̃
dec
s2 (as2 , gs2), F̃

dec
s3 (as3 , gs3)) | ∧3j=1Esj

] ∣∣∣∣∣∣ ⩽ oτ (1) +Oq(δ).

Proof. Using the fact that C is a Lipschitz function with Lipschitz constant C0(q), we get that the LHS is
upper bounded by

C0(q) ·
3∑

j=1

E
[
∥F dec

sj (asj , gsj )
⋆ − F̃ dec

sj (asj , gsj )∥2 | ∧3j=1Esj

]
,

which by Claim 7.23 is upper bounded by

Oq(1) ·
3∑

j=1

E
[
∥Re(F dec

sj (asj , gsj ))− F̃ dec
sj (asj , gsj )∥2 | ∧3j=1Esj

]
+Oq(δ),

where we use the fact that conditioned on the event Esj ,
∑

σ Re(F dec
sj ,σ(asj , gsj )) ∈ [1 − δ, 1 + δ]. For a

non-negative random variable, E[X | E] ⩽ E[X]
Pr[E] , and hence,

E
[
∥Re(F dec

sj (asj , gsj ))− F̃ dec
sj (asj , gsj )∥2 | ∧3j=1Esj

]
⩽

1

Pr[∧3j=1Esj ]
E
[
∥Re(F dec

sj (asj , gsj ))− F̃ dec
sj (asj , gsj )∥2

]
⩽ 2E

[
∥Re(F dec

sj (asj , gsj ))− F̃ dec
sj (asj , gsj )∥2

]
,

using the fact that Pr[∧3j=1Esj ] = 1 − Oq(δ) ⩽ 1/2. Therefore, the LHS from the claim is upper bounded
by

Oq(1) ·
3∑

j=1

E
[
∥Re(F dec

sj (asj , gsj ))− F̃ dec
sj (asj , gsj )∥2

]
+Oq(δ) (48)
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Now, for a given variable s ∈ V , by the Cauchy-Schwarz inequality,

E
[
∥Re(F dec

s (as, gs))− F̃ dec
s (as, gs)∥2

]2
⩽ E

[
∥Re(F dec

s (as, gs))− F̃ dec
s (as, gs)∥22

]
= E

 q∑
j=1

(Re(F dec
s,j (as, gs))− F̃ dec

s,j (as, gs))
2


=

q∑
j=1

E
[
(Re(F dec

s,j (as, gs))− F̃ dec
s,j (as, gs))

2
]

=

q∑
j=1

E
[
γ
(
F dec
s,j (as, gs)

)]
, (49)

where γ(x) := (Re(x) − trunc(Re(x))2. Applying the invariance principle from Theorem 6.9 with the
smooth function Ψ = γ for functions f = Fs,j , g ≡ 1, and h ≡ 1, we get∣∣∣∣∣E [γ (F dec

s,j (as, gs)
)]
− E

zs∼µ⊗R
s

[γ (Fs,j(zs))]

∣∣∣∣∣ ⩽ 2−Ωq,α,ε(T ′) + oτ (1).

As γ (Fs,j(zs)) = 0, we have

E
[
γ
(
F dec
s,j (as, gs)

)]
⩽ 2−Ωq,α,ε(T ′) + oτ (1). (50)

Combining Equations (48), (49), and (50), we get that the LHS from the claim is upper bounded by
2−Ωq,α,ε(T ′) + oτ (1) +Oq(δ) as claimed.

Using the above claim and Equation(47), we get

RoundF (V ,µ)

⩾ E
C∼C

E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

[
C(F̃ dec

s1 (as1 , gs1), F̃
dec
s2 (as2 , gs2), F̃

dec
s3 (as3 , gs3)) | ∧3j=1Esj

]
−Oq(δ).

We can now remove the conditioning using the fact that F̃ dec
s is 1-bounded and Pr[E] ⩾ 1 − Oq(δ) to

get.

RoundF (V ,µ) ⩾ E
C∼C

E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

[
C(F̃ dec

s1 (as1 , gs1), F̃
dec
s2 (as2 , gs2), F̃

dec
s3 (as3 , gs3))

]
−Oq(δ).

(51)
We already had the following bound from Equation(42)
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Pr[F passes DictV ,µ] ⩽ E
C∼C

E
α(1),α(2),...,α(R)∼S,

as,i=α
(i)
s ,

GR

[C(F̃ dec
s1 (as1 , gs1), F̃

dec
s2 (as2 , gs2), F̃

dec
s3 (c, gs3))]

+ 2−Ωq,α,ε(T ′) + η(τ)

Combining the above two inequalities, we get

Pr[F passes DictV ,µ] ⩽ RoundF (V ,µ) + 2−Ωq,α,ε(T ′) + η′(τ)

where η′(τ) → 0 as τ → 0. As the integral value of the instance Υ is at most OPT(Υ), we have
RoundF (V ,µ) ⩽ OPT(Υ) and hence

Pr[F passes DictV ,µ] ⩽ OPT(Υ) + 2−Ωq,α,ε(T ′) + η′(τ),

and this finishes the proof of Theorem 7.2.
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Setup: For each s ∈ V , the probability space Ωs = (Σ, µs) consists of atoms in Σ with the
distribution µs(a) = ∥bs,a∥2. Let Fs denote the function obtained by interpreting the function
F : ΣR → ▲q as a function over ΩR

s .
Input: An instance Υ = (V, C) of a Max-P-CSP such that the algorithm ALG accepts Υ. Let
(V ,µ) be a solution for the basic SDP relaxation of Υ and S ⊆ GV

master be the subspace of the set of
satisfying assignments of the instance Υ(V, C) over GV

master :=
∏

v∈V H⋆
v that satisfy the conditions

from Lemma 7.11.

Rounding Scheme:
Step I: Sample R Gaussian vectors ζ(1), ζ(2), . . . , ζ(R) with the same dimension as V .

Step II: For each s ∈ V , do the following:

1. For each j ∈ [R], let g(j)s,0 ≡ 1 and for c ∈ {1, . . . , q − 1}, set

g(j)s,c =
∑
ω∈Σ

ℓs,c(ω)⟨bs,ω, ζ(j)⟩.

Let g(j)
s = (g

(j)
s,0 ≡ 1, g

(j)
s,1, . . . , g

(j)
s,q−1) and gs = (g

(1)
s , g

(2)
s , . . . , g

(R)
s ).

2. Sample R uniformly random assignments α(1),α(2), . . . ,α(R) from the set of satisfying as-
signments to the instance Υ over GV

master. Let as = (α
(1)
s ,α

(2)
s , . . . ,α

(R)
s ).

3. Evaluate the polynomial F dec
s with (as, gs) as inputs to obtain ps ∈ Cq, and let, p̃s =

trunc(Re(ps)) where

trunc(x) =


0 if x < 0
x if 0 ⩽ x ⩽ 1,
1 if x > 1,

4. Round ps to p⋆
s.

p⋆
s = Scale((ps)1, (ps)2, . . . , (ps)q),

where

Scale(x1, x2, . . . , xq) =

{
1∑
i xi

(x1, x2, . . . , xq) if
∑

i xi ̸= 0,

(1, 0, 0, . . . , 0) if
∑

i xi = 0.

5. Assign the variable s ∈ V a value a ∈ Σ with probability (p⋆
s)ς−1(a).

Step III: Output the assignment from Step II.

Figure 4: Rounding Scheme RoundF .
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[20] Lorenzo Ciardo and Stanislav Živný. Semidefinite programming and linear equations vs. homomor-
phism problems. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, page 1935–1943, New York, NY, USA, 2024. Association for Computing Machinery.

[21] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual
ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York, NY, USA, 1971.
Association for Computing Machinery.

[22] Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapproximability results for equations
over finite groups. Theoretical Computer Science, 312(1):17–45, 2004.

[23] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp and con-
straint satisfaction: A study through datalog and group theory. SIAM Journal on Computing, 28(1):57–
104, 1998.

[24] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs
and the hardness of approximating cliques. Journal of the ACM (JACM), 43(2):268–292, 1996.

[25] Harry Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett theorem for k= 3.
In Annals of Discrete Mathematics, volume 43, pages 227–241. Elsevier, 1989.

[26] Hillel Furstenberg and Yitzhak Katznelson. An ergodic Szemerédi theorem for commuting transfor-
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A Omitted Proofs

Let p ⩾ 5 be a prime, take Σ = Fp and consider the predicate P : Σ3 → {0, 1} defined as P (x, y, z) =
1x,y,z are distinct.

Claim A.1. The collection {P} is MILDLY-SYMMETRIC .

Proof. For each a ∈ Fp \ {0} and b ∈ Fp define the map τa,b : Σ → Σ by τa,b(u) = au + b. It is clear
that each one of these maps preserves the satisfying assignments of P , so it remains to check the second
condition in Definition 1.3.

Let (x, y, z) be any satisfying assignment. We can find a ̸= 0 and b such that ax+b = 0 and ay+b = 1,
so we may assume without loss of generality that (x, y, z) = (0, 1, z) for some z ̸= 0, 1; this is justified as
the orbits of (0, 1, az + b) and (x, y, z) under {τa′,b′}a′ ̸=0,b′ are the same, and az + b is some element in Fp

not equal to 0, 1. Take z′ = ax + b, and to simplify notation we omit z′ and simply call it z (the original
x, y, z will not be used henceforth in the argumnet).

Let A = {(b, a+ b, az + b) | a ̸= 0, b ∈ Fp} be the orbit of (0, 1, z) under {τa,b}a̸=0,b, and suppose that
σ, γ, ϕ is an embedding of A into (Z,+). By applying an affine shift to all embeddings we may assume that
γ(0) = ϕ(0) = 0, and by the definition of embeddings we get that

σ(b) + γ(a+ b) + ϕ(az + b) = 0 ∀a ̸= 0, b. (52)

Taking b = −a and using γ(0) = 0 we get that σ(−a) + ϕ(a(z − 1)) = 0 for a ̸= 0, so ϕ(a(z − 1)) =
−σ(−a). Hence we get that

−ϕ(−b(z − 1)) + γ(a+ b) + ϕ(az + b) = 0 ∀a, b ̸= 0.
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Taking b = −az and using ϕ(0) = 0 we get −ϕ(az(z − 1)) + γ(−a(z − 1)) = 0, meaning that γ(y) =
ϕ(−zy) for all y ̸= 0. Equality also holds for y = 0 (as both values are 0) and we conclude that

−ϕ(−b(z − 1)) + ϕ(−z(a+ b)) + ϕ(az + b) = 0 ∀a, b ̸= 0.

Note that the image of (−b(z − 1),−z(a + b)) under a, b ̸= 0 consists of (α, β) such that α ̸= 0 and
(z − 1)β − zα ̸= 0, and we get that for any such α, β it holds that ϕ(α) = ϕ(β) + ϕ(α− β). Note that this
equality trivially holds for β = 0 (as ϕ(0) = 0), so we conclude that ϕ(α) = ϕ(β)+ϕ(α−β) holds whenever
(z − 1)β − zα ̸= 0. We now use the idea of local self correction to argue that ϕ(α) = ϕ(β) + ϕ(α− β) in
fact holds for all α, β ∈ Fp.

Take any α, β satisfying (z − 1)β − zα = 0, and choose α′, β′ ∈ Fp uniformly and independently.
With probability at least 1 − 4

p > 0 we have that (z − 1)β′ − zα′ ̸= 0, (z − 1)(β − β′) − z(α − α′) ̸= 0,
(z − 1)β′ − zβ ̸= 0, (z − 1)(α′ − β′) − z(α − β) ̸= 0 and (z − 1)α′ − zα ̸= 0 all hold,13 and we fix
α′, β′ > 0 satisfying all of these inequalities. Adding up the constraints we get from the first two conditions
we get that

ϕ(α′) + ϕ(α− α′) = (ϕ(β′) + ϕ(α′ − β′)) + (ϕ(β − β′) + ϕ(α− β − α′ + β′))

Using the third and foruth conditions we have ϕ(β′)+ϕ(β−β′) = ϕ(β) and ϕ(α′−β′)+ϕ(α−β−α′+β′) =
ϕ(α − β) so that the right hand side simplifies to ϕ(β) + ϕ(α − β). Using the fifth condition the left hand
side simplifies to ϕ(α), altogether giving that ϕ(α) = ϕ(β) + ϕ(α− β).

We conclude that ϕ(α) = ϕ(β) + ϕ(α − β) for all α, β ∈ Fp. Thus, we get that ϕ(x) = xϕ(1) for all
x ∈ Fp and also that ϕ(1) = ϕ(2 · (p− 1)/2+ 2) = 2ϕ((p− 1)/2)+ ϕ(2) = (p+1)ϕ(1), hence ϕ(1) = 0.
This implies that ϕ ≡ 0, and using γ(y) = ϕ(−zy) that holds for y ̸= 0 and γ(0) = 0 it follows that γ ≡ 0.
Plugging this into (52) gives that σ ≡ 0, and the proof is concluded.

13Note that we have 5 conditions, so a naive application of the union bound only gives a lower bound of 1− 5
p

on the probability
that all of these events hold. However, since (z − 1)β − zα = 0, the first two conditions can be seen to be equivalent, so the result
of the union bound improves to 1− 4

p
.
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