
Improved Circuit Lower Bounds and

Quantum-Classical Separations

Sabee Grewal Vinayak M. Kumar

Abstract

We continue the study of the circuit class GC0, which augments AC0 with unbounded-fan-
in gates that compute arbitrary functions inside a sufficiently small Hamming ball but must
be constant outside it. While GC0 can compute functions requiring exponential-size circuits,
Kumar (CCC 2023) showed that switching-lemma lower bounds for AC0 extend to GC0 with no
loss in parameters.

We prove a parallel result for the polynomial method: any lower bound for AC0[p] obtained
via the polynomial method extends to GC0[p] without loss in parameters. As a consequence,

we show that the majority function MAJ requires depth-d GC0[p] circuits of size 2Ω(n1/2(d−1)),
matching the best-known lower bounds for AC0[p]. This yields the most expressive class of non-
monotone circuits for which exponential-size lower bounds are known for an explicit function.
We also prove a similar result for the algorithmic method, showing that ENP requires exponential-
size GCC0 circuits, extending a result of Williams (JACM 2014).

Finally, leveraging our improved classical lower bounds, we establish the strongest known
unconditional separations between quantum and classical circuit classes. We separate QNC0

from GC0 and GC0[p] in various settings and show that BQLOGTIME is not contained in GC0.
As a consequence, we construct an oracle relative to which BQP lies outside uniform GC0,
extending the Raz–Tal oracle separation between BQP and PH (STOC 2019).

Contents

1 Introduction 2
1.1 Our Results in a Nutshell . 3
1.2 Our Results in Detail . 5
1.3 Open Problems . 10

2 Preliminaries 11
2.1 The G(k) Gate . 13

3 Approximating G(k) Gates by Low-Degree Polynomials 13
3.1 Approximating GC0[p] by Low-Degree Polynomials 14
3.2 Probabilistic Circuits for G(k) Gates With Very Few Random Bits 16

4 Applications to Classical Complexity 19
4.1 Average-Case Lower Bounds for GC0[q] . 20
4.2 Non-Uniform GCC0 Lower Bounds . 21
4.3 PAC Learning GC0[p] . 25

{sabee, vmkumar}@cs.utexas.edu. Department of Computer Science, The University of Texas at Austin.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 130 (2024)

mailto:sabee@cs.utexas.edu,vmkumar@cs.utexas.edu

5 Applications to Quantum Complexity 26
5.1 Pushing Raz & Tal: BQLOGTIME ̸⊆ GC0 . 26
5.2 Separation Between QNC0 and GC0 . 29
5.3 Separation Between QNC0/qpoly and GC0(k)[2] . 35
5.4 Separation Between QNC0/qpoly and GC0(k)[p] . 38
5.5 On Interactive QNC0 Circuits . 40

1 Introduction

Proving superpolynomial circuit lower bounds for an explicit function is a longstanding challenge

in computer science. It remains one of our only viable approaches to resolving the P
?
= NP question

[Aar16]. Beyond this central goal, circuit lower bounds also find applications throughout complexity
theory, for example, in structural complexity [FSS84, H̊as86, Aar10, HRST17, RT22], proving un-
conditional quantum advantage [BGK18, WKST19, GS20], and pseudorandomness [NW94, IW97].

Motivated in part by the relativization barrier of Baker, Gill, and Solovay [BGS75], considerable
effort was put forth in the mid-1970s to early 1980s to prove circuit lower bounds for explicit
functions. After a burst of progress [Sch74, Pau75, Sto76, Sch80, Blu81, Blu83], the best lower
bound for an explicit function was 3n − o(n). The current state of the art is 3.1n − o(n), and
the (seemingly) marginal improvement in the leading constant was highly nontrivial to obtain
[DK11, FGHK16, GK16, LY22].

A “bottom-up” approach to circuit lower bounds has also been explored, where the goal is to
prove lower bounds for highly restricted circuits, then slightly relax those restrictions and repeat.
This approach has led to two techniques: switching lemmas (or more broadly, the method of
random restrictions) [Ajt83, FSS84, Yao85, H̊as86] and the polynomial method [Raz87, Smo87].
The former technique has been used to show lower bounds against AC0, constant-depth circuits of
AND, OR, and NOT gates with unbounded fan-in. The latter technique has been used to prove
lower bounds against AC0[p], constant-depth circuits that include unbounded fan-in MODp gates,
where p is prime, in addition to AND, OR, and NOT gates.1

Alas, this bottom-up approach stalled in the late 1980s. Furthermore, the natural proofs barrier
of Razborov and Rudich [RR97] showed that the random restriction and polynomial methods fail to
prove superpolynomial-size lower bounds against TC0, constant-depth, polynomial-size circuits of
AND, OR, NOT and MAJ gates with unbounded fan-in—a circuit class far weaker than polynomial-
depth, polynomial-size circuits.2 Additionally, Aaronson and Wigderson [AW09] identified a third
barrier, the algebrization barrier, another hurdle any new lower bound technique must overcome.

The gold standard in circuit complexity is the development of new lower bound techniques
that circumvent known barriers. A shining example is Williams’ algorithmic method, which led
to breakthrough ACC0 lower bounds [Wil14].3 However, new techniques are few and far between.
In this work, we take a complementary approach: rather than seeking new techniques, we aim to
refine our understanding of existing ones. By examining how and where current methods fail, we
hope to gain insight into what future breakthroughs might require. Broadly, our work is driven by
two motivating questions:

Question 1.1. What is the strongest circuit class for which current techniques can still yield
nontrivial lower bounds?

1MODp outputs 0 iff the sum of the input bits is congruent to 0 (mod p).
2MAJ outputs 1 iff at least half of the input bits are 1.
3ACC0 is the union of AC0[m] for all m.

2

Question 1.2. Is there a unifying perspective that captures existing techniques, revealing a common
structure or property they all exploit?

1.1 Our Results in a Nutshell

An early attempt to unify and extend lower bound techniques was made by Yao [Yao89], who
observed that certain lower bounds hold even when circuits are augmented with local computa-
tion, i.e., bounded fan-in gates that compute arbitrary functions. For example, Yao showed that
Razborov’s monotone circuit-size lower bound for k-Clique on n vertices [Raz85] holds even when
the monotone circuits are allowed arbitrary monotone gates of fan-in n1/100 (whereas Razborov’s
original lower bound assumed gates of fan-in 2). In a follow-up work, Jukna [Juk90] showed that
Razborov’s lower bound holds for arbitrary monotone gates of fan-in n as long as the minterm of
each gate is at most (n/ log n)2/3.

Beyond proving lower bounds for more expressive circuit classes, the study of local computation
has also been used to analyze the limitations of lower bound techniques, a perspective taken by
Chen, Hirahara, Oliveira, Pich, Rajgopal, and Santhanam [CHO+22]. At a high level, the idea is
as follows: if a lower bound technique for AC0 also applies to some larger class C, it suggests that
the technique is insensitive to the differences between AC0 and C. By analyzing this insensitivity
more carefully, one can hope to refine the technique and obtain stronger lower bounds against AC0.

The notion of locality studied in prior work—arbitrary computation over a small number of
input bits—does not generalize constant-depth circuits with unbounded fan-in. For example, even
a single unbounded fan-in OR gate cannot be implemented by a constant-depth circuit with only
bounded fan-in gates. To extend the line of investigation pursued by Yao, Jukna, and Chen et
al. to the unbounded fan-in setting, we must identify a notion of locality that is compatible with
unbounded fan-in gates.

Recently, Kumar [Kum23] introduced the G(k) gate: an unbounded fan-in gate that can compute
an arbitrary function within a Hamming ball of radius k but must be constant outside it. In this
work, we propose interpreting the G(k) gate as defining a new notion of locality—one that is
especially well-suited to the unbounded fan-in setting. To see this, observe that AND, OR, and
NOT can be viewed as special cases of this model: each computes a function that depends only
on inputs within a Hamming ball of radius 0, and is constant elsewhere. Thus, the circuit class
GC0(k), constant-depth circuits built from G(k) gates, naturally generalizes AC0. Moreover, since
arbitrary bounded fan-in gates are also special cases of G(k) gates, this definition subsumes earlier
models of local computation studied by Yao and by Chen et al., while extending them to include
unbounded fan-in.4

The main result of [Kum23] was to prove a novel switching lemma for GC0, which implies lower
bounds for GC0 that are just as strong as those known for AC0. The core takeaway is captured by
the following informal theorem:

4Let us briefly compare our model with the more traditional notion of locality, i.e., the arbitrary bounded fan-in
model considered in Yao’s work. Specifically, consider constant-depth circuits composed of unbounded fan-in AND,
OR, and NOT gates, along with arbitrary gates of bounded fan-in k—call this class YAO0. This offers a natural point
of comparison with our GC0(k) model.

A natural question is whether GC0(k) can be simulated by YAO0. However, a simple counting argument shows
that this is not the case: there exist individual G(k) gates that require exponential-size YAO0 circuits to implement.
Indeed, a size-s YAO0 circuit on n input bits can be encoded by s(k log(n + s) + 2k) bits: each of the s gates is
specified by its k inputs and the length-2k truth table. In contrast, a G(k) gate of fan-in n requires

(
n
≤k

)
= Ω((n/k)k)

bits to specify. Thus s must be (n/k)Ω(k), which is exponential in n when k = nε—the regime of interest in this work.

3

Theorem 1.3 (Main result of [Kum23], Informal). If one can prove size-s lower bounds against
depth-d AC0 using a switching lemma, then one can prove size-s lower bounds against depth-d
GC0(k) even when k = 0.1n1/d (for a possibly different hard function).

This result is surprising because, in this regime of k, a simple counting argument shows that
GC0(k) can compute functions requiring exponential-size Boolean circuits (see Theorem 5.39). In
the spirit of Yao [Yao89] and Jukna [Juk90], Theorem 1.3 yields new lower bounds for a strictly
more powerful class of circuits. But in the spirit of Chen et al.[CHO+22], the result also illuminates
the limitations of the technique itself. In particular, it shows that the switching lemma cannot
distinguish between AC0 and GC0(k). In other words, the technique applies equally well to both
classes, despite the latter’s significantly greater computational power.

The first contribution of this work is to show the analogous result for the polynomial method.

Theorem 1.4 (Improved circuit lower bounds, Informal). Define GC0(k)[p] as the class of constant-
depth GC0(k) circuits augmented with unbounded fan-in MODp gates. If one can prove size-s lower
bounds against depth-d AC0[p] using the polynomial method, then one can prove size-s lower bounds
against depth-d GC0(k)[p] even when k = 0.1n1/2d (for a possibly different hard function).

Towards addressing Question 1.1, our result yields exponential-size circuit lower bounds against
GC0(k)[p] in a regime where this class can compute functions requiring exponential-size Boolean
circuits. In particular, our results give the least restricted class of non-monotone circuits for which
we have exponential-size circuit lower bounds against an explicit function (see Remark 1.9 for
further detail). Notably, AC0[p] and GC0(k)[p] provably do not satisfy a switching lemma, so our
lower bounds could not have been achieved by prior work.5

Towards addressing Question 1.2, a central conceptual contribution of this work is to identify a
broader notion of locality—namely, arbitrary computation restricted to small Hamming balls—as
the key property exploited by both the switching lemma and the polynomial method. Strikingly,
both techniques operate at a level that is agnostic to the precise gate types involved, so long as the
computation remains sufficiently local in this Hamming-ball sense. This is particularly surprising,
as the switching lemma and the polynomial method are deeply different in nature—combinatorial
versus algebraic—yet both extend naturally to G(k) gates.

Because our result shows that the polynomial method cannot distinguish between AC0[p] and
GC0(k)[p], it can also be interpreted as identifying a barrier—much like relativization, naturaliza-
tion, and algebrization [BGS75, RR97, AW09]. Specifically, if a function f can be computed by
size-s GC0[p] circuits, then neither the polynomial method nor the switching lemma can be used to
prove a stronger than size-s lower bound against AC0[p]. Otherwise, by our results, such a lower
bound would lift to GC0[p]—contradicting the assumed existence of a small GC0[p] circuit for f .
This perspective may help explain why certain lower bounds remain elusive, such as proving tight
lower bounds for MAJ against AC0[p].

In addition to these conceptual contributions and new circuit lower bounds, we also present
several related results. We prove analogous (but weaker) results for the algorithmic method. Fur-
thermore, our new lower bounds have a range of applications, including to learning theory and
quantum-classical separations. We discuss these in detail in the following subsection.

5It is natural to wonder if existing AC0[p] lower bounds already imply our results for GC0[p]. We explain at length
in Section 1.2.1 why this is not the case.

4

1.2 Our Results in Detail

1.2.1 Our New Circuit Lower Bound

Our first result uses the polynomial method to prove exponential-size lower bounds for GC0(k)[p]
circuits.

Theorem 1.5 (GC0(k)[p] lower bound, Restatement of Corollary 4.3). Let p and q be distinct prime
numbers, and let k = O(n1/2d). Any depth-d GC0(k)[p] circuit that computes either MAJ or MODq

on n input bits must have size 2Ω(n
1/2(d−1)).

Notably, this lower bound matches the best-known bound for depth-d AC0[p].

Is k = O(n1/2d) optimal? The locality k = O(n1/2d) in Theorem 1.5 is optimal up to a factor of
2 in the exponent; specifically, there is a gap between 1/2d and 1/d. This is because MODq over n
bits can be computed by a depth-d circuit of size O(n1−1/d) using MODq gates of fan-in n1/d—that
is, by a GC0(n1/d) circuit.

Why the näıve aproach fails It is natural to ask whether our lower bound for GC0(k)[p] could
be recovered by simulating such circuits within AC0[p] and applying known lower bounds. This
näıve approach, however, fails: it incurs an unavoidable blow-up in size and therefore yields much
weaker bounds.

Suppose we have a depth-d size-s GC0(k)[p] circuit with s = 2Θ(n
1

2(2d−1) /k). To simulate it
in AC0[p], each G(k) gate could have fan-in up to s, and upon expressing each one as a CNF or

DNF of size sO(k), we obtain a depth-2d, size-2O(n
1

2(2d−1)) AC0[p] circuit. This blow-up is inherent:
by a counting argument,6 there exists G(k) gates of fan-in s requiring size sΩ(k) when expressed
as a CNF/DNF. Hence, any size-s GC0(k)[p] circuit including such a gate will have a size-sO(k)

simulating circuit.

Known AC0[p] lower bounds [Raz87, Smo87] imply depth-2d size-2O(n
1

2(2d−1)) AC0[p] circuits

cannot compute majority. Combining this with our simulation implies a size s = 2Θ(n
1

2(2d−1) /k)

lower bound for GC0(k)[p], which is far weaker than our exponential bound in Theorem 1.5 due to

the 1/k factor in the exponent. Even for constant k this is weaker than our 2Ω(n1/2d) bound, and

when k ≥ n1/(4d−2) it yields no nontrivial bound at all. By contrast, Theorem 1.5 gives 2Ω(n1/2(d−1))

lower bounds for all k ≤ O(n1/2d), bypassing the simulation bottleneck entirely.
One might also ask whether saving on the depth blow-up from d to 2d could salvage the simu-

lation. The answer is no: the real obstacle is the size blow-up, which persists regardless of depth.7

For completeness, we note that some depth reduction is possible, but it seems challenging to avoid
some constant factor blow-up in depth. If our GC0(k) circuit had no MODp gates, expanding even
layers into CNFs and odd layers into DNFs collapses to depth d + 1. In the presence of MODp

gates, a similar argument yields depth 3d/2, and whether further collapse to d+1 is possible is, to
the best of our knowledge, a challenging open problem.8 In any case, even with such reductions,

6The number of CNFs/DNFs of size t is at most 2nt, while a single G(k) gate of fan-in s requires sΩ(k) bits to
specify. Thus, representing all such gates requires t = sΩ(k).

7A size-t AC0[p] circuit is describable in O(t2 log t) bits. As a G(k) gate of fan-in s requires sΩ(k) bits to specify,
it follows there exists G(k) gates that require size sΩ(k) AC0[p] circuits (regardless of depth).

8For example, consider a depth-d GC0(k)[p] circuit where even layers are MODp gates and odd layers are G(k)
gates not in G(k − 1). Expanding the G(k) gates does not obviously allow collapse due to the sandwiching layers of
MODp gates, leading to depth 3d/2.

5

the sO(k) size blow-up rules out recovering our bounds through a näıve simulation.

1.2.2 Related Classical Results

We now outline the key ingredients in the proof of Theorem 1.5, along with our results on the
algorithmic method, PAC learning of GC0(k)[p] circuits, and a new multi-output multi-switching
lemma for GC0(k).

Proof Ingredients for Theorem 1.5 The key lemma in our argument is to show that any G(k)
gate can be computed by a probabilistic polynomial of extremely low degree (Definition 3.3).

Lemma 1.6 (Restatement of Lemma 3.6). For any prime p and G(k) gate G of fan-in n, there is
an ε-probabilistic Fp-polynomial of degree O(k + log(1/ε)) computing G.

This upper bound is, in fact, optimal:

Lemma 1.7 (Restatement of Lemma 3.7). There exists a G(k) gate that requires probabilistic degree
Ω(k + log(1/ε)).

The tightness of our degree bound in Lemma 1.6 is crucial for obtaining GC0(k)[p] lower bounds
that match the best-known AC0[p] lower bounds. Anything even slightly suboptimal would not
suffice! For example, had the degree been modestly larger—say, O(k log(1/ε))—the resulting lower
bound in Theorem 1.5 would degrade with increasing k.

We use Lemma 1.6 to prove that GC0(k)[p] can be approximated by proper Fp polynomials (i.e.,
polynomials that have Boolean outputs when the inputs are Boolean, see Definition 3.1).

Theorem 1.8 (Restatement of Theorem 3.8). Let p be a prime. For any constant-depth-d size-s
GC0(k)[p] circuit, there exists an proper polynomial q(x) ∈ Fp[x1, . . . , xn] with

deg(q) ≤ O
Ä
kd + logd−1 s

ä
such that

Pr
x∼Un

[q(x) ̸= C(x)] ≤ 0.1.

Combining Theorem 1.8 with the well-known fact that any Fp polynomial approximating MAJ
or MODq must have degree Ω(

√
n) yields our Theorem 1.5.

Remark 1.9. Theorem 1.5 gives the least restricted class of non-monotone circuits for which we
have exponential-size lower bounds for an explicit function. In particular, the result applies to
GC0(k)[p] ∩ TC0. Consequently, GC0(k)[p] ∩ TC0 currently represents the largest subclass of TC0

for which we have superpolynomial-size lower bounds. As a concrete example, consider AC0[2]
augmented with THRk gates, which output 1 if the Hamming weight of the input exceeds k, and
0 otherwise. This class lies within GC0(k)[p] ∩ TC0, and our result also yields exponential lower
bounds against it.

Algorithmic Method In a celebrated result, Williams [Wil14] used the algorithmic method
to prove that there are languages in ENP and NEXP that require exponential-size ACC0 circuits.
Recall that ENP is the class of languages that can be decided by a Turing machine in time 2O(n)

with access to an NP oracle. In this work, we prove that there are languages in ENP that require
exponential-size GCC0(k) circuits, where GCC0(k) :=

⋃
m∈N GC0(k)[m].9

9A similar result can be shown for NEXP, but we focus on ENP because we get a stronger size-depth tradeoff.

6

Theorem 1.10 (ENP ̸⊆ GCC0(k), Restatement of Theorem 4.13). For every constant d, there is a
δ > 0 such that for all k ≤ O(nδ/ logn), there is language in ENP that fails to have GCC0(k) circuits
of depth d and size exp

(
Ω(nδ/k)

)
.

As for GC0(k)[p], one might again consider expanding a depth-d, size-s GCC0(k) circuit into
a depth-2d, size-sO(k) ACC0 circuit by converting each G(k) gate into a CNF. Applying Williams’
lower bound in this setting would yield strictly weaker results than our Theorem 1.10; we elaborate
on this in Section 4.2. Nonetheless, our current bound still incurs a 1/k loss in the exponent, and
it remains an open question whether ACC0 lower bounds can be lifted to GCC0(k) without such
degradation.

For a circuit class C, the C-CircuitSAT problem asks whether a given circuit C ∈ C has a
satisfying input x ∈ {0, 1}n with C(x) = 1. The algorithmic method shows that faster-than-brute-
force algorithms for C-CircuitSAT yield circuit lower bounds for C. Accordingly, our lower bound
for GCC0 follows from a fast algorithm for GCC0(k)-CircuitSAT, which we obtain by generalizing
Williams’ algorithm for ACC0-CircuitSAT.

Theorem 1.11 (GCC0(k)-CircuitSAT algorithm, Restatement of Theorem 4.12). For every d > 1
and certain ε = ε(d) , the satisfiability of depth-d GCC0(k) circuits with n inputs and 2n

ε/k size can

be determined in time 2n−Ω(nδ/k) for some δ > ε.

The key ingredient in our faster GCC0-CircuitSAT algorithm is a randomness-efficient prob-
abilistic circuit for computing G(k) gates. While our earlier probabilistic polynomial construction
(from Lemma 1.6) yields degree-O(k) approximations using poly(n) random bits, this construction
uses too many random bits, and attempting to use it in the algorithmic method would yield a GCC0-
CircuitSAT algorithm that is too slow. Furthermore, the randomness is used in a complicated
manner, making it unclear how to convert it from a probabilistic polynomial into a probabilistic
circuit.

To address this, we design a new probabilistic circuit of degree O(k2 log2 n) that computes any
G(k) gate using only O(k2 log2 n) random bits. This generalizes a construction of Allender and
Hertrampf [AG94], and trades a modest increase in degree for exponential savings in randomness,
which is crucial for obtaining a faster algorithm for CircuitSAT.

Theorem 1.12 (Restatement of Theorem 3.12). Let q be a prime. Any G(k) gate on n bits can
be computed by a depth-2 probabilistic circuit using O(k2 log2 n log(1/ε)) random bits, and consists

of a MODq of fan-in 2O(k3 log2 n log(1/ε)) at the top, and AND gates of fan-in O(k3 log2 n log(1/ε)) at

the bottom layer. Furthermore, the circuit can be constructed in 2O(k3 log2 n log(1/ε)) time.

PAC Learning GC0(k)[p] Using a framework of Carmosino, Impagliazzo, Kabanets, and Kolokolova
[CIKK16], we give a quasipolynomial time learning algorithm for GC0(k)[p] in the PAC model over
the uniform distribution with membership queries (Definition 4.14).

Theorem 1.13 (Learning GC0(k)[p] in quasipolynomial time, Restatement of Corollary 4.18). For
every prime p and k = O(n1/2d), there is a randomized algorithm that, using membership queries,
learns a given n-variate Boolean function f ∈ GC0(k)[p] of size sf to within error ε over the uniform
distribution, in time quasipoly(n, sf , 1/ε).

Using circuit lower bounds to obtain learning algorithms dates back to the seminal work of
Linial, Mansour, and Nisan [LMN93] where they gave a quasipolynomial time learning algorithm
for AC0 in the PAC model over the uniform distribution (hereafter, the “LMN algorithm”). One

7

can interpret the LMN algorithm as exploiting the existence of a natural property that is useful
against AC0 (in the sense of Razborov and Rudich [RR97], see Definition 4.15).

Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16] prove that for any circuit class C
containing AC0, a natural property that is useful against C implies a quasipolynomial time learning
algorithm for C in the PAC model over the uniform distribution with membership queries. It is not
hard to show that our GC0(k)[p] lower bound (Theorem 1.5) is natural, which implies Theorem 1.13.

Theorem 1.14 (Informal version of Theorem 4.16). For every prime p and k = O(n1/2d), there is
a natural property of n-variate Boolean functions that is useful against GC0(k)[p] circuits of depth

d and of size up to exp
Ä
Ω(n1/2d)

ä
.

A New Multi-Output Multi-Switching Lemma For GC0(k) In Section 1.2.3, we describe
new separations between quantum and classical circuits. One such separation relies on a new
multi-switching lemma for GC0(k) tailored to handle circuits with multiple outputs. The details
of the switching lemma are quite technical, and we refer the interested reader to Section 5.2.1 for
details. The general switching lemma is stated in Theorem 5.20. We heavily rely on Kumar’s
multi-switching lemma [Kum23], which we use in a black-box manner.

This strengthened switching lemma allows us to show that GC0(k) circuits have exponentially
small correlation with a particular search problem that can be solved by constant-depth quantum
circuits. While a similar separation could be obtained using only Kumar’s switching lemma, our
new version yields significantly stronger bounds on the correlation.

1.2.3 Improved Quantum-Classical Separations

A central goal in quantum complexity theory is to identify problems that are tractable for quantum
computers but intractable for classical ones. One way to formalize this goal is to show that BQP
(Bounded-Error Quantum Polynomial Time) strictly contains P (Polynomial Time). Alas, even
showing that P is strictly contained in PSPACE is currently beyond the reach of complexity theory.

One can separate BQP from P conditionally, for example, under the assumption that there is
no polynomial-time algorithm for factoring integers [Sho97, Reg24]. There is also a long line of
research that separates quantum and (randomized) classical computation in the black-box model
[BV97, Sim97, AA15].

Yet another option (and the one that is most relevant to this work) is to look at restricted
models of computation. In a groundbreaking work, Bravyi, Gosset, and König [BGK18] exhibited
a search problem that is solvable by QNC0 (constant-depth bounded-fan-in quantum circuits), but is
hard for NC0 (constant-depth bounded-fan-in classical circuits). This is an unconditional separation
between a quantum and classical model of computation.

Since then, there has been a lot of progress [WKST19, LG19, CSV19, GS20, BGKT20, GJS21,
GKMdO24]. We briefly summarize the state of the art prior to this work: there is a decision prob-
lem that separates BQLOGTIME (Definition 5.1) and quasipolynomial-size AC0 [RT22]; a search
problem that separates QNC0 and exponential-size AC0 [WKST19]; and a search problem that
separates QNC0/qpoly and polynomial-size AC0[p] for any prime p [WKST19, GKMdO24]. Recall
that QNC0/qpoly is the class of constant-depth bounded-fan-in quantum circuits that start with
a quantum advice state, i.e., an input-independent quantum state of choice. Grier and Schaef-
fer [GS20] also obtain a separation between QNC0 and exponential-size AC0[p] for an interactive
problem. Finally, Bravyi, Gosset, König, and Temamichel [BGKT20] and Grier, Ju, and Schaeffer
[GJS21] showed that these separations hold even when the quantum circuits are subject to certain

8

types of noise.10

Building on this line of work, we can subsume all previously known separations between quantum
and classical circuits. In particular, we show that even if we allow arbitrary unbounded fan-in local
circuits (i.e., GC0 and its extensions), these circuits are still not powerful enough to simulate
constant-depth quantum circuits. We re-use the problems used to obtain the above quantum-
classical separations; our contribution is to strengthen all of the lower bounds to hold for GC0(k)
or GC0(k)[p]. All of our separations are exponential, meaning that the problems can be solved
with polynomial-size quantum circuits but require exponential-size classical circuits. Previously
the best separation between QNC0/qpoly and polynomial-size AC0[p] circuits. In the remainder of
this subsection, we state our separations in more detail.

BQLOGTIME vs. GC0 In Section 5.1, we exhibit a promise problem that separates BQLOGTIME
from GC0(k).

Theorem 1.15 (Restatement of Corollary 5.7). There is a promise problem in BQLOGTIME (Def-

inition 5.1) that is not solvable by constant-depth GC0(k) for k = O(n1/4d)

(logn)ω(1) and size quasipoly(n).

By well-known reductions, this implies an oracle relative to which BQP is not contained in the
class of languages decided by uniform GC0 circuit families.

Corollary 1.16 (Restatement of Corollary 5.8). There is an oracle relative to which BQP is not
contained in the class of languages decidable by uniform families of circuits {Cn}, where for all

n ∈ N, Cn is a size-2n
O(1)

depth-d GC0(k) circuit with k ∈ 2n/4d

nω(1) .

Raz and Tal [RT22] showed that BQLOGTIME ̸⊆ AC0, which implied an oracle relative to which

BQP is not contained in the class of languages decided by uniform families of size-2n
O(1)

constant-
depth AC0 circuits. It is well-known that this class is precisely the polynomial hierarchy PH. Hence,
because GC0(k) contains AC0 (and can even compute functions that require exponential-size AC0

circuits), Corollary 1.16 is a generalization of the relativized separation of BQP and PH.
One reason Raz and Tal [RT22] is such a striking result is that it shows even the enormous

power of PH fails to simulate quantum computation in a relativizing way. This is made more precise
in the beautiful follow-up work of Aaronson, Ingram, and Kretschmer [AIK22] who show (among
many other results) that there is an oracle relative to which P = NP but BQP = P#P. In words,
they show that even in a world where NP is easy, BQP can still be extremely powerful. Our oracle
separation result complements these results (and relies on Raz and Tal).

We give one concrete implication of Corollary 5.8. Namely, we show that there is an oracle
relative to which BQP is outside of hierarchies of counting classes, where the counting classes can
count whether there are a small number of accepting witnesses. This is perhaps surprising because
BQP ⊆ PP relative to all oracles [ADH97]. Hence, we show that it is actually necessary to count a
larger number of witnesses to simulate BQP in a relativizing way. The counting classes are defined
in Definitions 5.9 and 5.10, and the oracle separation is given in Corollary 5.11.

QNC0 vs. GC0 In Section 5.2, we exhibit a search problem that separates QNC0 from GC0(k).
Our separation is based on the 2D Hidden Linear Function (2D HLF) problem (Definition 5.12)
introduced by Bravyi, Gosset, and König [BGK18].

10Watts and Parham [WP24] also studied unconditional separations for input-independent sampling problems. In
this work, we focus on computational problems that have inputs and outputs.

9

Theorem 1.17 (Restatement of Theorem 5.15). The 2D HLF problem (Definition 5.12) on n
bits cannot be solved by a constant-depth-d size-exp(O(n1/4d)) GC0(k) circuit with k = O(n1/4d).
Furthermore, for the same value of k, there exists an (efficiently samplable) input distribution on
which any GC0

d(k) circuit (or GC0
d(k)/rpoly circuit) of size at most exp(n1/4d) only solves the 2D

HLF problem with probability at most exp(−nc) for some c > 0.

Theorem 1.17 generalizes the separation between QNC0 and AC0 obtained by Watts, Kothari,
Schaeffer, and Tal [WKST19]. The proof requires a new multi-output multi-switching lemma for
GC0(k), which we prove in Section 5.2.1.

Using the frameworks developed by Bravyi et al. [BGKT20] and Grier et al. [GJS21], we show
in Theorem 5.23 that this separation holds even when the quantum circuits are subjected to certain
types of noise.

QNC0/qpoly vs. GC0[p] In Sections 5.3 and 5.4, we exhibit a family of search problems that sepa-
rates QNC0/qpoly from GC0(k)[p] for all primes p. The family of search problems is a generalization
of the Parity Bending problem introduced by Watts, Kothari, Schaeffer, and Tal [WKST19] and
was also studied in a recent work of Grilo, Kashefi, Markham, and Oliveira [GKMdO24].

Theorem 1.18 (Restatement of Theorem 1.18). For any prime p, there is a search problem that
is solvable by QNC0/qpoly with probability 1− o(1), but any GC0(k)[p]/rpoly circuit of depth d and

size at most exp
Ä
O(n1/2.01d)

ä
with k = O(n1/2d) cannot solve the search problem with probability

exceeding n−Ω(1).

Previously the best separations were between polynomial-size QNC0 and polynomial-size AC0[p]
obtained in the works of Watts et al. [WKST19] and Grilo et al. [GKMdO24]. Our Theorem 1.18
is a separation between polynomial-size QNC0 and exponential-size GC0(k)[p].

Interactive QNC0 vs. GC0(k)[p] Grier and Schaeffer [GS20] studied quantum-classical separa-
tions that can be obtained in certain interactive models. Among some conditional results, they
obtain an unconditional separation between QNC0 and AC0[p] for all primes p. We generalize their
separation to GC0(k)[p].

Theorem 1.19 (Restatement of Theorem 5.41). Let k = O(n1/2d). There is an interactive task

that QNC0 circuits can solve that depth-d, size-s GC0(k)[p] circuits cannot for s ≤ exp
Ä
O(n1/2.01d)

ä
.

1.3 Open Problems

Combined with the work of Kumar [Kum23], we now know that AC0 size lower bounds from the
combinatorial technique of switching lemmas, as well as AC0[p] lower bounds using the algebraic
technique of probabilistic polynomials, both lift losslessly to GC0 and GC0(k)[p], respectively. It is
extremely surprising to us that both techniques, while extremely different in flavor, generalize so
cleanly to G(k) gates. This observation raises many questions about how G(k) gates can help us
understand the limitations of our lower bound techniques.

• Do G(k) gates exactly capture the switching lemma technique as well as the probabilistic
polynomial technique? This would let us know whether there is an even more general class
of gates that capture the power of these techniques.

10

• Can we use G(k) gates (or its generalizations derived from the last item) to show barrier
results for current lower bounds we have? For example, implementing explicit functions in
GC0(k) or GC0(k)[p] would demonstrate a limitation on the size lower bounds achievable for
AC0 or AC0[p] via switching lemmas or the polynomial method.

• Can lower bounds for ENP using Williams’ algorithmic method be lifted losslessly from ACC0

to GCC0?

There are also general questions about how GC0 and their counterparts fit in the landscape of
circuit classes.

• How do GC0(k), GC0(k)[p], and GCC0(k) compare to more classical circuit classes like NC1

and TC0? We know that when k = n, GC0(k) can compute any function, and when k = 1,
GC0(k) = AC0. What is the smallest k such that TC0 ⊂ GC0(k)? We know this is true when
k ≥ n/2, but is it true for smaller k? Similar questions can be raised for GC0(k)[p].

• Can we get stronger quantum-classical separations? Specifically, can we obtain separations
between QNC0 and GC0(k)[p] without giving the quantum circuit an advice state?

• [Kum23] gave a natural subclass of G(k) consisting of biased linear threshold gates. Are there
other natural gates contained in G(k)?

Concurrent Work An independent and concurrent work of Hsieh, Mendes, Oliveira, and Sub-
ramanian [HMdOS24] overlaps with our work in one way. They give an exponential separation
between GC0(k) and QNC0, which is essentially the same as our separation (Theorem 5.15).11 Like
us, they also prove a new muli-output multi-switching lemma for GC0(k) (Theorem 5.20) to obtain
their separation. The similarity in our arguments comes from the fact that we both use the expo-
nential separation between AC0 and QNC0 of Watts, Kothari, Schaeffer, and Tal [WKST19] as a
starting point.

Hsieh et al. also show that their separation holds if the quantum circuits are subjected to
a certain noise model, which we also do in Theorem 5.23. This noise-robustness result follows
from applying the framework introduced by Bravyi, Gosset König, and Temamichel [BGKT20]
and further developed by Grier, Ju, and Schaeffer [GJS21]. Hsieh et al. also study extending this
framework to prime-dimensional qudits.

2 Preliminaries

We presume the reader is familiar with common concepts in the theory of computation (circuit
complexity and quantum computing, in particular). All prerequisite knowledge can be found in
standard textbooks such as [Gol08, AB09, NC02].

We obey the following notation and conventions throughout. For a positive integer n, [n] :=
{1, . . . , n}. For us, the natural numbers do not include 0, i.e., N := {1, 2, 3, . . .}. Define

(n
≤k

)
:=∑k

i=0

(n
i

)
. For S ⊆ [n] and x ∈ {0, 1}n, define xS :=

∏
i∈S xi. Let quasipoly(n) denote all functions

that have an upper bound of the form 2O(logc n) for some constant c.
We denote the Hamming weight of a string x ∈ {0, 1}n as |x| =

∑
i xi. More generally, for

x ∈ Fn
q (for some prime q), |x| =

∑
i xi (mod q). The Hamming distance between x, y ∈ {0, 1}n is

11Hsieh et al. denote GC0(k) by bPTF0[k].

11

∆(x, y) = |{i ∈ [n] : xi ̸= yi}|. The Hamming ball of radius k is the set {x ∈ {0, 1}n : |x| ≤ k}, and
Hamming ball of radius k centered at c is the set {x ∈ {0, 1}n : ∆(x, c) ≤ k}.

For a distribution D over support S, x ∼ D denotes sampling an x ∈ S according to the
distribution D. For a set S, we denote drawing a sample s ∈ S uniformly at random by s ∼ S. Un

denotes the uniform distribution over length-n bit strings. For a distribution D and a function f ,
E[f(D)] := Ex∼D[f(x)]. For two discrete distributions p and q supported on S, the total variation
distance (also called the statistical distance) is defined as 1

2

∑
s∈S |p(s)− q(s)|.

We also use Fermat’s little theorem.

Theorem 2.1 (Fermat’s little theorem). For any integer a ̸≡ 0 (mod p) for a prime p, ap−1 ≡ 1
(mod p).

All circuit classes studied in this work are constant depth, and d always denotes a constant.
Circuits are comprised of layers of gates. When we refer to the “top” of a classical circuit, we are
referring to the last layer of the circuit. In particular, for a Boolean-valued circuit, the top is a
single gate. The “bottom” of a circuit refers to the first layer of gates.

For an integer m, the MODm gate is the unbounded fan-in Boolean gate that outputs 0 iff the
sum of the input bits is congruent to 0 (mod m). The MAJ gate computes the majority function,
i.e., the unbounded fan-in Boolean gate that outputs 1 iff the majority of the input bits are 1. The
THRk gate is the unbounded fan-in Boolean gate that outputs 1 iff the Hamming weight of the
input is > k.

Recall the following well-studied circuit classes:

• NCi: O(logi n)-depth circuits of bounded fan-in AND, OR, and NOT gates.

• ACi: O(logi n)-depth circuits of unbounded fan-in AND, OR, and NOT gates.

• ACi[p]: O(logi n)-depth circuits of unbounded fan-in AND, OR, NOT, and MODp gates.

• ACCi: The union of ACi[m] for all m.

• TCi: O(logi n)-depth circuits of unbounded fan-in AND,OR,NOT, and MAJ gates.

• QNCi: O(logi n)-depth quantum circuits of bounded fan-in quantum gates.

• SIZE(f(n)): fan-in-2 Boolean circuits of size O(f(n)).

NC :=
⋃

iNC
i, and AC and TC are defined analogously. It is known that NC = AC = TC. The

size of a circuit is the number of gates in the circuit besides NOT gates. We always specify the
circuit size when relevant; however, if the size is not explicitly mentioned, it should be assumed to
be polynomial.

A search problem (also called a relation problem or relational problem) is a computational
problem with many valid outputs, as opposed to a function problem which only has one valid
output for each input. A two-round interactive problem is a computational problem where in the
first round you are given an input and produce an output and in the second round, you produce
another input and output. The correctness of an interactive algorithm is based on the entire
transcript of the interaction, and a computational device solving an interactive problem gets to
keep state from the first round during the second round.

In a common abuse of notation we use e.g. AC0 or GC0(k)[p] to interchangeably talk about a
type circuit or a class of (decision/relation/interactive) problems, where the context clarifies what
we are referring to.

We also will use probabilistic circuits.

12

Definition 2.2. A probabilistic circuit that computes a function f : {0, 1}n → {0, 1} is a circuit
C that takes input x ∈ {0, 1}n and uniformly random bits r, and satisfies the property that for all
x ∈ {0, 1}n,

Pr
r
[C(x, r) ̸= f(x)] ≤ ε.

2.1 The G(k) Gate

The G(k) gate is an unbounded fan-in gate with the following behavior. The circuit designer chooses
a Hamming ball Bk,c of radius k centered at c. On input x ∈ {0, 1}n, if x ∈ Bk,c, the G(k) gate
can compute any function f of the circuit designer’s choosing. Otherwise, the G(k) gate outputs a
constant c ∈ {0, 1} of the designer’s choosing. We define GC0 as the class of constant-depth circuits
comprised of G(k) gates.

One can equivalently define the G(k) gate as an unbounded fan-in gate that computes within
the Hamming ball of radius k centered at 0n. This is because one can use this gate to implement
NOT. Then one can shift the center of the Hamming ball by appropriately applying NOT gates to
the input bits. We typically use this definition in our proofs, because it yields cleaner arguments.

The value of k controls the power of the G(k) gate. When k is a constant, it is easy to see that
a single G(k) gate can be computed by a depth-two polynomial-size AC0 circuit. When k = n, a
single G(k) gate can compute any function. Much of the landscape between k = O(1) and k = n is
not yet understood, which we discuss further in Open Problems.

We also emphasize that the circuit designer can use the G(k) gate however they like. On the
tamer side, the G(k) gate can, e.g., evaluate parity on k bits or majority on 2k bits, and, on the
wilder side, it can, e.g., evaluate uncomputable functions like the halting function (with the caveat
that it must output a constant if the input is not within the relevant Hamming ball).

The G(k) gates capture natural gates as special cases. For example, G(k) gates naturally
generalize AND and OR gates to biased linear threshold gates. Let θ, w1, . . . , wn ∈ R, with the wi’s
sorted such that |w1| ≤ |w2| ≤ · · · ≤ |wn|. Let f(x) = sgn(

∑n
i=1wixi−θ). If

∑
i>k|wi|−

∑
i≤k|wi| <

|θ|, then f can be computed by a G(k) gate [Kum23, Theorem A.1]. Kumar [Kum23] showed
that circuits comprised of biased linear threshold gates interpolate between AC0 and TC0 as the
parameter k varies. We note that there is a connection between linear threshold functions and
neural networks that dates back to the 1940s [MP43], and there is a precise connection between
feed-forward neural networks and TC0 circuits [Mur71, MSS91] (see also [AGS21, Section 2.5.1]).
Circuits with G(k) gates capture a subset of neural networks whose activation functions are biased
linear threshold functions.

3 Approximating G(k) Gates by Low-Degree Polynomials

We show that any G(k) gate can be approximated by proper low-degree polynomials. To discuss
our results in more detail, we must introduce some terminology.

Definition 3.1 (Proper polynomial). Let q be a prime number. A polynomial p(x) ∈ Fq[x1, . . . , xn]
is proper when p(x) ∈ {0, 1} for all inputs x ∈ {0, 1}n.

Definition 3.2 (ε-approximating polynomial). An ε-approximate polynomial for a function f :
{0, 1}n → {0, 1} is a proper polynomial p such that

Pr
x∼Un

[f(x) ̸= p(x)] ≤ ε.

13

Definition 3.3 (ε-probabilistic polynomial). An ε-probablistic polynomial of degree d for a func-
tion f : {0, 1}n → {0, 1} is a distribution P over proper polynomials of degree ≤ d such that for
every x ∈ {0, 1}n,

Pr
p∼P

[p(x) ̸= f(x)] ≤ ε.

In Section 3.1, we show that G(k) gates can be approximated by low-degree polynomials. As a
consequence, we show that any GC0(k)[q] circuit can be approximated by low-degree polynomials,
generalizing the Razborov-Smolensky polynomial method [Raz87, Smo87] for AC0[q] to GC0(k)[q].
This allows us to prove circuit lower bounds for GC0(k)[q]; we discuss this application and others
in Sections 4 and 5.

In Section 3.2, we construct probabilistic polynomials for G(k) gates that use very few bits of ran-
domness. The randomness-efficiency of our construction will be essential to invoke the algorithms-
to-lower-bounds technique of Williams [Wil14], which we do in Section 4.2.

3.1 Approximating GC0[p] by Low-Degree Polynomials

We show that size-s GC0(k)[q] circuits can be well-approximated by Fq-polynomials of degree
poly(k, log s). To do so, we need a standard lemma stating that one can interpolate a truth table
on a radius k Hamming ball by a degree-k polynomial. We give a proof for convenience.

Lemma 3.4. For any f : {0, 1}n → Fq and prime q, there exists a unique Fq-polynomial p with
deg(p) ≤ k such that for all x ∈ {0, 1}n with |x| ≤ k, f(x) = p(x). Furthermore, this polynomial
can be constructed in nO(k) time.

Proof. Consider the Fq-linear system of equations given by
∑

|S|≤k cSa
S = f(a) for each a ∈ {0, 1}n

such that |a| ≤ k. These equations are linearly independent, and since the number of equations
equals the number of variables, there is a unique set of coefficients {cS} that satisfies this system.
Therefore, the polynomial with these coefficients, p(x) :=

∑
|S|≤k cSx

S , is the desired polynomial.

Furthermore, these coefficients can be retrieved in nO(k) time via Gaussian elimination on the
(n
k

)
linear equations.

Next, we prove a technical lemma that says there are low-degree probabilistic polynomials
for G(k) gates. Our construction uses probabilistic polynomials for THRk, where THRk is the
unbounded fan-in gate that outputs 1 iff the Hamming weight of the input is > k.

Lemma 3.5 ([STV21, Theorem 3]). For any prime q, there is an ε-probabilistic Fq polynomial of
degree O(

√
k log(1/ε) + log(1/ε)) that computes THRk.

Lemma 3.6. For any G(k) gate G of fan-in n and constant prime q, there is an ε-probabilistic
Fq-polynomial of degree O(k + log(1/ε)) computing G.12

Proof. Because G ∈ G(k), we can express its behavior as

G(x) =

®
c |x| > k

f(x) |x| ≤ k

for an arbitrary f : {0, 1}n → {0, 1} and c ∈ {0, 1}. By Lemma 3.4, there exists a (deterministic)
degree-k polynomial p(x) that matches f(x)− c when |x| ≤ k. Furthermore, by Lemma 3.5, there

12By constant prime, we mean that q does not grow with n. In particular, the O(·) expressions may hide factors
depending on q.

14

exists a probabilistic polynomial Q(x) of degree O(
√
k log(1/ε) + log(1/ε)) that computes THRk

with error ε.
Consider the probabilistic polynomial

P (x) := (p(x)(1−Q(x)) + c)q−1.

Notice that deg(P) = O(k+
√
k log(1/ε) + log(1/ε)) = O(k+ log(1/ε)), and that the support of P

is over proper polynomials by Fermat’s Little Theorem (Theorem 2.1).
When |x| ≤ k, observe that Pr[Q(x) = 0] ≥ 1 − ε. Hence, with probability at least 1 − ε, we

have
P (x) = (p(x) + c)q−1 = f(x)q−1 = f(x) = G(x),

where we use the fact that p(x) = f(x) − c when |x| ≤ k and the third equality follows from
Fermat’s Little Theorem (Theorem 2.1).

When |x| > k, Pr[Q(x) = 1] ≥ 1− ε. Therefore, with probability at least 1− ε, we have

P (x) = cq−1 = c = G(x).

Thus in either case, it follows that P computes G with error ≤ ε.

We can also show that the degree of the probabilistic polynomial in Lemma 3.6 is optimal.

Lemma 3.7. There exists a G(k) gate that requires probabilistic degree Ω(k + log(1/ε)).

Proof. To show a probabilistic degree lower bound of d against a G(k) gate G, it suffices by Yao’s
minimax principle to construct a hard distribution D supported over {0, 1}n such that for any
degree-d polynomial p, Prx∼D[p(x) ̸= G(x)] > ε. We will show a lower bound of max(k/2, log(1/ε)) =
Ω(k+ log(1/ε)) by showing there exists a gate G(k) gate G and hard distributions D1 and D2 such
that any polynomial ε-approximating G under D1 requires degree ≥ k/2, and any polynomial ε-
approximating G under D2 requires degree ⌊log(1/ε)⌋. We will use the probabilistic method and
pick G ∈ G(k) uniformly at random.

We will set D1 to be uniform over all strings x with |x| ≤ k. For a fixed polynomial p, we see
by a Chernoff bound that

Pr
G

ï
Pr

x∼D1

[p(x) ̸= G(x)] < ε

ò
≤ e−

1
4(

n
≤k).

Union bounding over all q(
n

≤k/2) degree-(k/2) Fq-polynomials tells us that G cannot be computed
by any degree-k/2 polynomial with error ε with probability

≥ 1− q(
n

≤k/2) · e−
1
4(

n
≤k) ≥ 1− e−Ω

Ä
(n
≤k)
ä
.

Now let D2 be the sample 1k0n−k−⌊log(1/ε)⌋y, where y ∼ U⌊log(1/ε)⌋. Notice that with probability

1/2, G′(y) := G(1k0n−k−⌊log(1/ε)⌋y) is either an AND or OR up to negation (and with the other 1/2
probability it is constant). Furthermore, if there exists even one y such that

p(1k0n−k−⌊log(1/ε)⌋y) ̸= G(1k0n−k−⌊log(1/ε)⌋y),

then Prx∼D2 [p(x) ̸= G(x)] ≥ 1
2⌊log(1/ε)⌋

> ε. Therefore, any polynomial p ε-approximating G under

D2 must have the restricted polynomial p′(y) := p(1k0n−k−⌊log(1/ε)⌋y) exactly compute G′. Condi-
tioning on G being an AND/OR up to negation, we note that the AND/OR over m variables has
Fq-degree m, and so deg(p) ≥ deg(p′) = deg(G′) = ⌊log(1/ε)⌋.

15

Consequently by a union bound, a randomly picked G will require degree k/2 to approximate

under D1 and degree ⌊log(1/ε)⌋) to approximate under D2 with probability ≥ 1
2 − e

−Ω
Ä
(n
≤k)
ä
> 0.

Hence, our desired G exists, and the lower bound holds.

We are now ready to show the main theorem. Namely, that proper low-degree Fq polynomials
can approximate any GC0(k)[q] circuit.

Theorem 3.8. Let q be a constant prime. For any GC0
d(k)[q] circuit C of size s, there exists a

proper polynomial p(x) ∈ Fq[x1, . . . , xn] with deg(p) ≤ O
(
(k + log(1/ε)(k + log(s/ε))d−1

)
such that

Pr
x∼Un

[p(x) ̸= C(x)] ≤ ε.

Proof. We will construct a probabilistic low-degree polynomial for each gate in the circuit. By
composing these polynomials according to the structure of the circuit, we will obtain a probabilistic
low-degree polynomial for the entire circuit. This final probabilistic polynomial is the low-degree
polynomial approximating the circuit.

For each gate G ∈ C with fan-in nG, we will associate a probabilistic low-degree polynomial PG

that approximates it. If G = NOT, then nG = 1 and we set PG(x) = x + 1. If G = MODq, then
we set PG(x) =

∑
xi. If G ∈ G(k) and G is not the top gate, we will set PG to be the probabilistic

polynomial with degree O(k + log(2s/ε)) that computes G with error probability at most ε/s,
as given by Lemma 3.6. Otherwise if G is the top gate, we will set PG to be the probabilistic
polynomial with degree O(k+ log(2/ε)) that computes G with error probability at most ε/2. Note
that for all gates G below the top gate in the circuit and all inputs x, Pr[G(x) ̸= PG(x)] ≤ ε/2s,
and deg(PG) ≤ O(k + log(s/ε)), whereas the top gate G satisfies Pr[G(x) ̸= PG(x)] ≤ ε/2 with
deg(PG) ≤ O(k + log(2/ε)).

Now, if we replace each gate G with the probabilistic polynomial PG and compose the polynomi-
als together, we get a probabilistic polynomial P with deg(P) ≤ O((k+log(2/ε))(k+log(2s/ε))d−1).
Fix an input x to the circuit. Let xG ∈ {0, 1}nG be the bits of x read by gate G. If PG(xG) = G(xG)
for all gates G in C, then P (x) = C(x). Therefore, by a union bound and accounting for the larger
error on the top gate, we have that

Pr
p∼P

[p(x) ̸= C(x)] ≤
∑
G

Pr[PG(xG) = G(xG)] ≤
ε

2
+

ε

2s
· s = ε.

Since x was arbitrary, the above holds for all x, which means

ε ≥ E
x
[Pr
p∼P

[p(x) ̸= C(x)]] = E
p∼P

[Pr
x
[p(x) ̸= C(x)]].

Hence, by an averaging argument, there exists a polynomial p in the support of P that agrees with
C(x) on all but an ε fraction of inputs.

3.2 Probabilistic Circuits for G(k) Gates With Very Few Random Bits

We prove that G(k) gates can be approximated by a randomness-efficient depth-2 probabilistic
circuit (Definition 2.2) comprised of AND gates of small fan-in in the bottom layer and a MODq

gate for any prime q in the top layer, generalizing a prior work of Allender and Hertrampf [AH94].
This result will be crucial for invoking the lower bound technique of Williams [Wil14] as we do in
Section 4.2.

Depth-2 probabilistic circuits with AND gates at the bottom and a MODq gate at the top are
an instance of probabilistic Fq-polynomials. In particular, if the AND gates all have fan-in at most

16

d, then these depth-2 circuits are probabilistic polynomials of degree d. Therefore, one can view
the main result of this subsection (Theorem 3.12) as a version of Lemma 3.6 that uses very few bits
of randomness. To compare, our Lemma 3.6 uses poly(n) random bits to construct a probabilistic
Fq-polynomial of degree O(k) for any G(k) gate. In this section, we use O(k2 log2 n) random bits to
construct a probabilistic Fq-polynomial of degree O(k3 log2 n) for any G(k) gate. So, at the cost of
a poly(k, log n) factor in the degree, we can obtain an exponential savings in the number of random
bits used in our construction.

Our construction uses the following theorem of Valiant and Vazirani.

Theorem 3.9 ([VV85]). Let n ∈ N and let S ⊆ {0, 1}n be a nonempty set. Suppose w1, w2, . . . , wn

are randomly chosen from {0, 1}n. Let S0 = S and let

Si = {v ∈ S : ⟨v, w1⟩ = ⟨v, w2⟩ = . . . = ⟨v, wi⟩ = 0}, for each i ∈ [n]

(where the dot product of two vectors v, w of length n is ⟨v, w⟩ =
∑n

j=1 vjwj (mod 2)). Let Pn(S)

be the probability that |Si| = 1 for some i ∈ {0, . . . , n}. Then Pn(S) ≥ 3
4 .

We start by constructing a depth 5 circuit and then reducing it to depth 2.

Theorem 3.10. Let q be a constant prime number. Any G(k) gate on n bits can be computed by
a uniform family of probabilistic circuits of size nO(k) log(1/ε), with O(k2 log2 n log(1/ε)) random
bits and error ε. Furthermore, the circuit has the following structure from top to bottom.

• The first layer (the top output gate) is an AND of fan-in O(k log n log(1/ε)).

• The second layer consists of MODp gates with fan-in nO(k).

• The third layer consists of AND gates of fan-in k.

• The fourth layer consists of MODp gates of size nO(k).

• The fifth layer consists of AND gates of fan-in O(k log n).

Furthermore, this circuit can be constructed in nO(k) time.

Proof. Let G be an arbitrary G(k) gate. Assume that G(x) = 0 for |x| > k. Otherwise, we can
construct a circuit C computing ¬G, and then negate it by using a MODq gate connected to C and
q − 1 1’s. We begin by describing our circuit construction (with some commentary to help digest
the circuit’s behavior). A rigorous analysis of the construction will then follow.

Construction. It will be helpful to think of the circuit as the AND of two subcircuits, C1 and
C2. On inputs x with |x| ≤ k, C1 will compute G exactly while C2 will output 1. On the remaining
inputs with |x| > k, C1 will have arbitrary behavior while C2 will output 0 with high probability
over the probabilistic bits.

Our circuit C1 is the low-degree polynomial constructed in Lemma 3.4. This degree-k polynomial
can be constructed in nO(k) time, represented as a depth-2 circuit with fan-in-k AND gates at the
bottom, one MODq gate at the top, and requires no random bits.

Next, we describe the circuit C2 layer-by-layer, from the inputs to the output gate. Define
m := ⌊log

(n
k+1

)
⌋+ 1. In the first layer, we will have n+m2 bits as input: the input x along with

m2 random bits. Identify the random bits as m vectors w1 . . . wm ∈ {0, 1}m. Arbitrarily associate

each S ∈
([n]
k+1

)
with a distinct bit string in {0, 1}m, and denote the length-m bit string associated

with S by (S1, S2, . . . , Sm). We can then define ⟨S,wi⟩ :=
∑
Siwi (mod 2).

17

In the second layer, we will compute ⟨S,wi⟩ :=
∑m

j=1 xiwi,j (mod 2) for each S ∈
([n]
k+1

)
and

i ∈ [m]. Each ⟨S,wi⟩ can be computed with a single ⊕ gate with fan-in ≤ m by adding a wire from
wij to the gate iff Sj = 1. To turn ⊕ into MODq and AND gates, each ⊕ gate can be expanded

into a DNF of size
(n
k

)O(1)
= nO(k). Because at most one of the bottom-layer AND clauses can be

satisfied simultaneously, we can replace the top OR gate with a MODq gate. This conversion is
done for each ⊕ gate, so, in total, we have

(n
k

)
· m depth-2 subcircuits of size nO(k), where each

subcircuit has a layer of fan-in-m AND gates in the bottom layer and a single MODq gate at the
top. Denote the MODq gate computing ⟨S,wi⟩ by AS,i.

In the third layer, for all S ∈
([n]
k+1

)
and 0 ≤ ℓ ≤ m we will compute the predicates

BS,ℓ := 1

¶
(xS = 1) ∧ (∀i ≤ ℓ, ⟨S,wi⟩ = 0)

©
.

These predicates are easily computed using the AS,i’s. In particular, to compute BS,k, take the
AND of xi for i ∈ S, as well as the AS,i for all i ≤ k. This uses a single AND gate of fan-in O(m).
Notice that if |x| ≤ k, BS,ℓ is false for all S, ℓ.

In the fourth layer, for 0 ≤ i ≤ m, we will compute the predicates

Dℓ := 1

®∣∣∣{S ∈ Ç[n]
k

å
: xS = 1 and ∀i ≤ ℓ, ⟨S,wi⟩ = 0}

∣∣∣ ̸≡ 1 (mod q)

´
.

In words, Dℓ is 1 iff the number of sets S ∈
([n]
k

)
such that xS = 1 and ∀i ≤ ℓ, ⟨S,wi⟩ = 0 is not one

more than a multiple of q. This is accomplished by taking the MODq of BS,ℓ for all S, along with

q − 1 1’s. Notice if |x| > k, then the set of all S ∈
([n]
k+1

)
such that xS = 1 is nonempty. Hence by

Theorem 3.9, with probability ≥ 1/4 there will exist some ℓ such that there is exactly one S with
xS = 1 and ∀i ≤ ℓ, ⟨S,wi⟩ = 0. In this case, we will have that Dℓ = 0.

In the fifth layer, we simply take the AND of all the Dℓ, which will have fan-in m. By the
analysis above, we know this AND gate will output 0 with probability ≥ 1/4 when |x| > k.

We also note that by algorithmically constructing C2 exactly in the manner we described, we
can produce C2 in nO(k) time.

Analysis. Consider an input x to C.
If |x| ≤ k, then we know by our construction of C1 and Lemma 3.4 that C1(x) = G(x), and

from our construction of C2 that BS,ℓ is 0 for all S and ℓ. It is clear that if all BS,ℓ’s 0, then all
the Dℓ’s must be 1. Therefore, C2(x) = 1. Hence, in this case we have,

C(x) = C1(x) ∧ C2(x) = G(x) ∧ 1 = G(x).

Now if |x| > k, C1(x) may be arbitrary, but, as argued above, C2(x) = 0 with probability ≥ 1/4.
We can amplify the error probability of C by replacing C2 with C

′
2, which is an AND of O(log(1/ε))

copies of C2. It is easy to see that the behavior of C is preserved when |x| ≤ k. Now when |x| > k,

Pr[C(x) = 0] = Pr[C1(x) ∧ C ′
2(x) = 0] ≥ Pr[C ′

2(x) = 0] ≥ 1− (3/4)O(log(1/ε)) ≥ 1− ε.

We have shown that our circuit C has the desired behavior: computing G with error ε. C1

has size and construction runtime nO(k) and uses no random bits, and C2 has size and construc-
tion runtime nO(k) and uses m2 random bits. Hence C will have size and construction runtime
O(nO(k) log(1/ε)) and use O(k2 log2 n log(1/ε)) random bits.

One can also verify easily that the construction has the desired structure (upon collapsing the
cluster of AND gates at the top of the circuit, and trivially extending circuit C1 past layer 2 using
fan-in one gates).

18

To shorten this construction to depth-2, we use the following depth-reduction lemma of Allender
and Hertrampf [AH94].

Lemma 3.11 ([AH94, Lemma 3]). Let q be prime. Then every depth-4 circuit consisting of

• one MODp gate with fan-in s1 on the top level,

• AND gates with fan-in t on the second level,

• MODp gates with fan-in s2 on the third level, and

• AND gates with fan-in r on the last level

can be converted into a depth-2 circuit that is a MODp of s1 · st·(p−1)
2 AND gates, each with fan-in

r · t · (p− 1). Furthermore, this conversion can be done in O(s1s
t(p−1)
2 + rt) time.

By applying this lemma twice to our depth-5 probabilistic circuit, we get the following depth-2
probabilistic circuit approximating a G(k) gate.

Theorem 3.12. Let q be a constant prime. Any G(k) gate on n bits can be computed by a depth-
2 probabilistic circuit using O(k2 log2 n log(1/ε)) random bits, and consists of a MODq of fan-in

2O(k3 log2 n log(1/ε)) at the top, and AND gates of fan-in O(k3 log2 n log(1/ε)) at the bottom layer.

Furthermore, the circuit can be constructed in 2O(k3 log2 n log(1/ε)) time.

Proof. We take the construction of Theorem 3.10 and apply Lemma 3.11 to all the depth-4 subcir-
cuits. This yields a circuit with an AND of fan-in O(k log n log(1/ε)) at the top, followed by MODp

gates of fan-in nO(k) · nO(k·k(q−1)) = 2O(k2 logn) in the next layer, followed by a final layer of AND
gates of fan-in O(k2 log n).

We now apply Lemma 3.11 again on this resulting circuit, where we add a dummy fan-in 1 AND
gate at the top. This gives a depth-2 circuit whose top gate is a MODq of fan-in 2O(k3 log2 n log(1/ε)),
and whose bottom layer are AND gates of fan-in O(k3 log2 n log(1/ε)) as desired.

4 Applications to Classical Complexity

Theorems 3.8 and 3.12 generalize the seminal works of Razborov [Raz87], Smolensky [Smo87],
and Allender-Hertrampf [AH94], which have found use throughout theoretical computer science
for nearly four decades. We expect most (if not all) of these applications to hold equally well for
GC0(k)[p] and GCC0, given our results in the previous section. To illustrate this, we have selected
three applications to present here.

In Section 4.1, we prove average-case lower bounds against GC0(k)[p]. In particular, we prove
that exponential-size circuits are necessary for a GC0(k)[p] circuit to compute MAJ or MODq for
any prime q ̸= p. This was the original application of the theorems of Razborov and Smolensky.

In Section 4.2, we prove that ENP does not have non-uniform GCC0 circuits of exponential size.
This generalizes the celebrated result of Williams [Wil14].

Finally, in Section 4.3, we apply a framework of Carmosino, Impagliazzo, Kabanets, and
Kolokolova [CIKK16] to give a quasipolynomial time learning algorithm for GC0(k)[p] in the PAC
model over the uniform distribution with membership queries.

19

4.1 Average-Case Lower Bounds for GC0[q]

We prove that exponential-size GC0(k)[q] circuits are necessary to compute MAJ and MODr for
any prime r ̸= q. Our lower bounds generalize the lower bounds of Razborov [Raz87] and Smolen-
sky [Smo87] and follow the same structure. The lower bound argument has two main pieces:
(1) GC0(k)[q] circuits can be approximated by low-degree polynomials and (2) MAJ and MODr

gates require large degree to be approximated by a polynomial. The former result was shown in
Theorem 3.8, and the latter is a result of Razborov and Smolensky.

Proposition 4.1 ([Raz87, Smo87]). Let q and r be distinct prime numbers, and let F ∈ {MAJ,MODr}.
For all degree-t polynomials p(x) ∈ Fq[x1, . . . , xn],

Pr
x∈{0,1}n

[p(x) = F (x)] ≤ 1

2
+O

Å
t√
n

ã
.

We can prove correlation bounds against GC0(k)[q] by combining Theorem 3.8 and Proposi-
tion 4.1.

Theorem 4.2 (Correlation bounds against GC0(k)[q]). Let F ∈ {MAJ,MODr}. For any depth-d
size-s GC0(k)[q] circuit C, we have

Pr
x∈{0,1}n

[C(x) = F (x)] ≤ 1

2
+O

Ç
(k + log n)(k + log(ns))d−1

√
n

å
+

1

n
.

Proof. By Theorem 3.8, there exists a polynomial p(x) ∈ Fq[x1, . . . , xn] with degree

O ((k + log(1/ε))(k + log(s/ε))d−1) such that

Pr
x∈{0,1}n

[p(x) = ¬C(x)] ≥ 1− ε.

Then

Pr
x∈{0,1}n

[C(x) = F (x)] = Pr
x∈{0,1}n

[¬C(x) ̸= F (x)]

≤ Pr
x∈{0,1}n

[p(x) ̸= F (x)] + Pr
x∈{0,1}n

[p(x) ̸= ¬C(x)]

≤ Pr
x∈{0,1}n

[1− p(x) = F (x)] + ε

≤ 1

2
+O

Ç
(k + log(1/ε))(k + log(s/ε))d−1

√
n

å
+ ε,

where the second inequality follows from the fact that Prx∈{0,1}n [p(x) = ¬C(x)] ≥ 1 − ε and the
third inequality follows from Proposition 4.1. The result follows from setting ε = 1/n.

As a corollary, we get a lower bound for GC0(k)[q].

Corollary 4.3. Let q and r be distinct prime numbers, let F ∈ {MAJ,MODr}, and let k = Θ(n1/2d).

Any depth-d GC0(k)[q] circuit that computes F must have size 2Ω(n
1/2(d−1)).

Proof. Let C be a size-s, depth-d GC0(k)[q] circuit C that can compute F ∈ {MAJ,MODr}. We
have

1 = Pr[C(x) = F (x)] ≤ 1

2
+O

Ç
(k + log n)(k + log(ns))d−1

√
n

å
+

1

n
.

20

By solving for s, we can conclude that

s ≥ 2Ω(n
1/2(d−1)−kd/(d−1)).

Plugging in k gives the desired result.

We can improve our average-case lower bounds for GC0(k)[q] to average-case lower bounds for
GC0(k)[q]/rpoly. Recall that /rpoly means the circuit gets random advice as additional input. In
other words, one gets to choose a probability distribution over polynomially many bits that depends
on the input size (but not the specific input), and the circuit gets to draw one sample from this
distribution.

Theorem 4.4 (Average-case lower bound for GC0(k)[q]). Let q and r be distinct prime numbers,
and let F ∈ {MODr,MAJ}. There exists an input distribution on which any GC0(k)[q]/rpoly circuit

of depth d, k = O(n1/2d), and size at most exp
Ä
O
Ä
n1/2.01d

ää
only computes F with probability

1
2 + 1

nΩ(1) .

Proof. Toward a contradiction, assume that for all input distributions, there exists a GC0
d(k)[q]/rpoly

circuit with k = O(n1/2d) and size 2Ω(n1/2.01d) that computes F with probability 1/2 + ε for ε =
1/no(1). Then Yao’s minimax principle implies that there exists a distribution over GC0

d(k)[q] circuits
that computes F with probability 1/2 + ε on every input. By drawing O(1/ε2) samples from this
distribution and taking the majority vote of their outputs, we obtain a new circuit that computes
F with probability 0.99 on every input. Recall that one can compute majority on m bits with a
size-2O(n1/d) AC0 circuit [H̊as14]. Therefore, since O(1/ε2) = no(1), the majority of the GC0

d(k)[q]

circuits can be computed in depth d and size 2n
o(1)

, which doubles the depth of the original circuit
and only increases the size by a negligible amount.

Next, we amplify the success probability from 0.99 to 1 − exp(−n), for some exp(−n) < 2−n,
by sampling O(n) circuits that succeed with probability 0.99 and taking their majority vote. Since
the circuits succeed with probability 0.99, it is easy to see that a 0.99-fraction of the votes will be
0’s or 1’s with high probability. Hence, the approximate majority construction of Ajtai and Ben-or
[ABO84] suffices, which can be performed by a polynomial-size AC0 circuit.13

Because this distribution over GC0
d(k)[q] circuits fails to compute F with probability less than

2−n, it follows by union bounding over all 2n inputs that there exists one circuit in the distribution
that computes F on all inputs. Hence, we have constructed a GC0

d(k)[q] circuit of depth 2d+O(1),
k = O(n1/2d), and size exp(n1/2.01d), contradicting Corollary 4.3.

4.2 Non-Uniform GCC0 Lower Bounds

We prove that there are languages in ENP that fail to have polynomial-size GCC0(k) circuits for
certain values of k (which are stated carefully in Theorem 4.13). Recall that E is the class of
languages that can be decided by a Turing machine in time 2O(n). This generalizes the breakthrough
work of Williams [Wil14] who proved that there are languages in NEXP and ENP that fail to have
polynomial-size ACC0 circuits. Here we focus on ENP instead of NEXP because we get a stronger
size-depth tradeoff. We note that similar arguments can show that NEXP fails to have GCC0(k)
circuits.

These lower bounds are based on Williams’ algorithmic method, which, in short, connects the
existence of fast algorithms for the CircuitSAT problem to circuit lower bounds.

13For the unfamiliar reader, the approximate majority circuit will output “1” when at least a 0.75-fraction of the
inputs are 1, “0” when at most a 0.25-fraction of the inputs are 0, and behave arbitrarily otherwise.

21

Definition 4.5 (C-CircuitSAT). Given as input a description of a C circuit C, the C-CircuitSAT
problem is to decide whether there exists an input x ∈ {0, 1}n such that C(x) = 1.

The algorithmic method only works for “nice” circuit classes.

Definition 4.6 (Nice circuits [Wil14]). A nice circuit class C is a collection of circuit families that:

• contain AC0: for every circuit family in AC0, there is an equivalent circuit family in C, and

• is closed under composition: for {Cn}, {Dn} ∈ C and any integer c, the circuit family obtained
by feeding n input bits to nc+ c copies of Cn and feeding the outputs into Dnc+c is also in C.

Every well-studied circuit class is nice, and it is easy to see that GCC0 is nice too.
We can now formally state the essence of the algorithmic method. Specifically, fast algorithms

for C-CircuitSAT imply circuit lower bounds for C.

Theorem 4.7 ([Wil14, Theorem 3.2]). Let S(n) ≤ 2n/4 and let C be a nice circuit class. There is
a c > 0 such that, if C-CircuitSAT instances with at most n+ c log n variables, depth 2d+O(1),
and O(nS(2n) + S(3n)) size can be solved in O(2n/nc) time, then ENP does not have non-uniform
C circuits of depth d and S(n) size.

To apply Theorem 4.7 and obtain our GCC0 lower bound, we will give fast algorithms for GCC0-
CircuitSAT, showing that the algorithmic method of Williams also lifts from ACC0 to GCC0. As a
starting point, we will recall the ACC0 satisfiability algorithm and then extend the necessary parts
to GCC0(k). Let SYM+ be the class of depth-two circuits with a layer of AND gates at the bottom
and some symmetric function at the top. The ACC0-CircuitSAT algorithm can be modularized
as follows. Given as input a description of a size-s depth-d ACC0 circuit (that is comprised of AND,
OR, NOT, and MODm gates for a fixed m), the algorithm performs the following four steps.

1. Turn each MODm gate into an AND of MODp’s of AND’s, where all gates have constant fan-in
and p is some prime dividing m. This takes sO(1) time.

2. Replace each OR gate with a probabilistic circuit consisting of a MODp of 2poly(log s) ANDs,
each of fan-in poly(log s). Call the resulting circuit C. C uses poly(log s) random bits.

3. Convert C into a SYM+ circuit C ′ of size 2O(poly(log s)) whose top symmetric gate can be
evaluated in time 2O(poly(log s)).

4. Run a SYM+-CircuitSAT algorithm on C ′.

To design a GCC0(k)-CircuitSAT algorithm, it suffices to modify only the second step in the
above blueprint to handle G(k) gates. In particular, we will use our Theorem 3.12 to turn a G(k)
gate into a probabilistic circuit with only MODp gates and bounded fan-in ANDs with comparable
parameters to Step 2 above. (In particular, our circuit will have the same size and AND fan-in, but
with k log s in place of log s.)

Now we will prove that Step 2 above holds for G(k) gates. We first recall the ACC0 theorems
established in [Wil14] that we will use in a black-box manner. In these theorems, we will fix a
function f(d) := 2O(d) that quantifies the size-depth tradeoffs in these theorems. This will be
important to track the size-depth improvements we obtain in our GCC0(k) lower bounds.

22

Theorem 4.8 ([AG94, Wil14]). Let f : N→ N be a function where f(d) = 2O(d) and let t ∈ N. Let
C be a probabilistic circuit with depth 2d = O(1), size 2t

4
, no OR or MODm gates for any composite

m, and AND gates of fan-in at most t4 that computes a function with t3 probabilistic inputs and
error probability 1/3. There is an algorithm that, given C, outputs an equivalent SYM+ circuit of

size 2O(tf(d)). The algorithm takes at most 2O(tf(d)) time.
Furthermore, if the number of ANDs in the SYM+ circuit that evaluate to 1 is known, then the

symmetric function in the SYM+ circuit can be evaluated in 2O(tf(d)) time.

Williams transforms a size-s, depth-d ACC0 circuit into a SYM+ circuit by replacing each
OR/AND gate with a depth-2 probabilistic circuit with AND gates of bounded fan-in and then
applying Theorem 4.8 with t← O(log s). This is formalized in the following lemma.

Lemma 4.9 ([AH94, AG94, Wil14]). Let f : N→ N be a function where f(d) = 2O(d). There is an
algorithm that, given an ACC0 circuit of depth d = O(1) and size s, outputs an equivalent SYM+

circuit of size 2O(logf(d) s). The algorithm takes 2O(logf(d) s) time.
Furthermore, if the number of ANDs in the SYM+ circuit that evaluate to 1 is known, then the

symmetric function in the SYM+ circuit can be evaluated in 2O(logf(d) s) time.

We will get a similar conversion for size-s depth-d GCC0 circuits by replacing G(k) gates with our
newly constructed depth-2 probabilistic circuits from Theorem 3.12, which are comparable in size
and identical in depth to the AND/OR probabilistic circuit construction used to prove Lemma 4.9.
This allows us to use Theorem 4.8 with t← O(k log s).

Theorem 4.10. Let f : N → N be a function where f(d) = 2O(d). There is an algorithm that,
given a GCC0(k) circuit of depth d = O(1) and size s, outputs an equivalent SYM+ circuit of size

2O((k log s)f(d)). The algorithm takes at most 2O((k log s)f(d)) time.
Furthermore, if the number of ANDs in the SYM+ circuit that evaluate to 1 is known, then the

symmetric function in the SYM+ circuit can be evaluated in 2O((k log s)f(d)) time.

Proof. Let C be the given circuit. As in the ACC0 case, we will identically use Step 1 to convert all
MODm gates into MODp gates, with p prime, in sO(1) time (see [Wil14, Appendix A] for specific
details). Denote this new circuit C ′. At this point we will now use Theorem 3.12 to replace each
G(k) gate with a probabilistic circuit that computes the gate except with probability ε := 1/3s
and uses the same random bits (versus having a fresh supply per gate), which can be done in time

s ·2O(k3 log3 s). Since the fan-in of each G(k) gate is at most s and ε = 1/3s, it follows that each G(k)

gate is replaced by a depth-2 probabilistic circuit of size 2O(k3 log3 s) consisting of MODp gates with
p prime, and AND gates of fan-in O((k log s)3). Furthermore, the circuit uses O(k2 log3 s) random
bits altogether. Notice by a union bound, there is at most s(1/3s) = 1/3 probability that one of
the s probabilistic subcircuits substituted in is faulty. Therefore, the resulting circuit computes C
with probability ≥ 2/3. We finally apply Theorem 4.8 to construct the desired SYM+ circuit in the
desired time complexity.

The algorithm in Theorem 4.10 is the transformation in Step 2 above. Hence, all that remains
to get our lower bound is to put the pieces together. To do so, we need the following evaluation
algorithm, which takes a SYM+ circuit as input and outputs its truth table.

Lemma 4.11 ([Wil14]). There is an algorithm that, given a SYM+ circuit of size s ≤ 20.1n and n
inputs with a symmetric function that can be evaluated in poly(s) time, runs in (2n+poly(s))poly(n)
time and prints a 2n-bit vector V which is the truth table of the function represented by the given
circuit. That is, V [i] = 1 iff the SYM+ circuit outputs 1 on the ith variable assignment.

23

This gives us our fast GCC0(k)-CircuitSAT algorithm. Recall that f : N→ N in the theorems
below is a function f(d) = 2O(d).

Theorem 4.12. For every d > 1 and ε = ε(d) := .99/f(d), the satisfiability of depth-d GCC0(k)

circuits with n inputs and 2n
ε/k size can be determined in time 2n−Ω(nδ/k) for some δ > ε.

Proof. Consider C, a depth-d GCC0 circuit of size 2n
ε/k. For any ℓ ∈ [n], we can create circuit C ′

of depth d+1, size s2ℓ over n− ℓ inputs by taking 2ℓ copies of C, plugging in a distinct assignment
of the first ℓ bits into each copy, and then taking the OR of them. Notice that C is satisfiable iff
C ′ is.

We now apply Theorem 4.10 on C ′ to get an equivalent SYM+ circuit C ′′, which is a symmetric
function of s′′ ≤ 2(k(ℓ+log s))f(d) ANDs. By Lemma 4.11 and the fact the symmetric function can be
computed in poly(s′′) time, it follows that upon setting ℓ := log s = nε/k, we get an algorithm that

runs in O(2n−ℓpoly(n)) = 2n−Ω(nδ/k) for some δ > ε.

Our circuit satisfiability algorithm implies the following lower bound.

Theorem 4.13 (ENP ̸⊆ GCC0). For every d, there is a constant C > 1 and δ = δ(d) := 1/Cf(2d),
such that for all k ≤ O(nδ/ log n), there exists a language in ENP that fails to have GCC0(k) circuits
of depth d and size exp

(
Ω(nδ/k)

)
.

Proof. By Theorem 4.12, we know for every d, the satisfiability of depth-d GCC0(k) of size 2O(n.99/f(d))

on n inputs can be solved in 2n−Ω(nε/k) time for some ε > 1/4f(d). Now by Theorem 4.7, we know
there exists a constant c > 0 such that if GCC0(k)-Circuit SAT instances with n + c log n vari-

ables, depth 2d + O(1), and size s = n2(2n)
δ
+ 2(3n)

δ
can be solved in time O(2n/nc), then ENP

doesn’t have non-uniform GCC0(k) circuits of depth d and size 2n
δ
. Since f(d) = 2O(n), we know

f(2d+O(1)) ≤ Cf(2d) for some constant C. Consequently, for δ = 1/Cf(2d), we can indeed solve

depth 2d+O(1) and size n2(2n)
δ
+2(3n)

δ ≤ exp
(
O(n

.99
f(2d+O(1)))

)
GCC0 circuits over n+c log n inputs

in time 2(n+c logn)−Ω((n+c logn)ε/k) = O(2n/nc) for small enough constant c (by using the assumption
nδ/k = Ω(log n)), yielding the desired lower bound.

We conclude with some remarks about the extent of our contribution. The Williams lower bound
of ENP ̸⊆ ACC0 suffices to prove that there exist languages in ENP that fail to have polynomial-size
GCC0 circuits (or even exponential-size GCC0 circuits for some small enough exponential function).
This is achieved by nälively transforming the GCC0 circuit to an ACC0 circuit. Specifically, suppose
we have a size-s depth-d GCC0(k) circuit, and then we transform each G(k) gate into a CNF (or
DNF, it does not matter). The resulting circuit will be a size-sk depth-2d ACC0 circuit. Then, after
applying the lower bound for depth-d size-exp(Ω(n1/f(2d))) ACC0 circuits14, we obtain a separation
between ENP and depth-d GCC0(k) circuits of size exp(O(n1/Cf(4d)/k)).

In our Theorem 4.13, we get a separation between ENP and depth-d GCC0(k) circuits of size
exp(O(n1/Cf(2d)/k)). The difference is the f(2d) in Theorem 4.13 vs. f(4d) in the näıve approach
that appear in the exponent of the exponent of the circuit size. Because f is an exponential function
as well, the difference is then a factor of 2 in the exponent of the exponent of the exponent. Hence,
using our result yields an improvement in the triple exponent in the size-depth tradeoff compared
to the näıve approach.

14This is the lower bound proved by Williams [Wil14]. It is also a special case of Theorem 4.13 with k = 1.

24

4.3 PAC Learning GC0[p]

Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16] gave a quasipolynomial time learning
algorithm for AC0[p] in the PAC model over the uniform distribution with membership queries. We
recall their result in more detail and argue that there is a quasipolynomial time learning algorithm
for GC0(k)[p].

To begin, we establish some notation and define the learning model. For a circuit class Λ and
a set of size functions S, Λ[S] denotes the set of size-S n-input circuits of type Λ. For a Boolean

function f : {0, 1}n → {0, 1} and ε ∈ [0, 1], fiCKTn(f, ε) denotes the set of all circuits that compute
f on all but an ε fraction of inputs.

Definition 4.14 (Learning model). Let C be a class of Boolean functions. An algorithm A PAC-
learns C if for any n-variate f ∈ C and for any ε, δ > 0, given membership query access to f ,
algorithm A prints with probability at least 1 − δ over its internal randomness a circuit C ∈fiCKTn(f, ε). The runtime of A is measured as a function of T (n, 1/ε, 1/δ, size(f)).

Carmosino et al. establish a connection between learning and natural proofs [RR97]. We recall
the definition of natural proofs here for convenience. Let Fn be the collection of all Boolean functions
on n variables. Λ and Γ denote complexity classes. A combinatorial property is a sequence of subsets
of Fn for each n.

Definition 4.15 (Natural property [RR97]). A combinatorial property Rn is Γ-natural against Λ
with density δn if it satisfies the following three conditions:

• Constructivity: The predicate fn
?
∈ Rn is computable in Γ.

• Largeness: |Rn| ≥ δn|Fn|.

• Usefulness: For any sequence of functions fn, if fn ∈ Λ then fn /∈ Rn, almost everywhere.

A proof that some explicit function is not in Λ is called Γ-natural against Λ with density δn when
it involves a Γ-natural property Rn that is useful against Λ with density δn. Razborov and Rudich
[RR97] showed that the Razborov-Smolensky lower bound proofs are NC2-natural against AC0[p],
where, roughly speaking, the natural property contains functions that cannot be approximated
by low-degree polynomials (see [RR97, Section 3] and [CIKK16, Section 5] for further details).
An immediate implication of our lower bounds (Corollary 4.3 and Theorem 4.4) is that the same
property is NC2-natural against GC0(k)[p].

Theorem 4.16. For every prime p, there is an NC2-natural property of n-variate Boolean functions,
with largeness at least 1/2, that is useful against GC0(k)[p] circuits of depth d and of size up to

exp
Ä
Ω(n1/2d)

ä
where k = O(n1/2d).

Carmosino et al. [CIKK16] prove the following connection between natural properties and PAC
learning algorithms over the uniform distribution with membership queries.

Theorem 4.17 ([CIKK16, Theorem 5.1]). Let Λ be any circuit class containing AC0[p] for some
prime p. Let R be a P-natural property, with largeness at least 1/5, that is useful against Λ[u],
for some size function u : N → N. Then there is a randomized algorithm that, given oracle

access to any function f : {0, 1}n → {0, 1} from Λ[sf], produces a circuit C ∈ fiCKT(f, ε) in time

poly(n, 1/ε, 2u
−1poly(n,1/ε,sf)).

25

By combining Theorem 4.16, Theorem 4.17, and the basic fact that AC0[p] ⊆ GC0(k)[p] for all
primes (and prime powers) p, we get the following learning algorithm for GC0(k)[p].

Corollary 4.18 (Learning GC0(k)[p] in quasipolynomial time). Let k = O(n1/2d). For every
prime p, there is a randomized algorithm that, using membership queries, learns a given n-variate
Boolean function f ∈ GC0(k)[p] of size sf to within error ε over the uniform distribution, in time
quasipoly(n, sf , 1/ε).

5 Applications to Quantum Complexity

We study the implications of our lower bounds for GC0[p] and GC0 on quantum complexity theory.
Specifically, we show exponential separations between shallow quantum circuits and both GC0[p]
and GC0, surpassing all previously known separations between quantum and classical circuits. We
emphasize that these separations are unconditional and our results generalize the prior work in this
area [BGK18, WKST19, BGKT20, GJS21, RT22, GKMdO24].

For convenience, we summarize the separations we obtain in this section. We say a separa-
tion is exponential when polynomial-size quantum circuits can solve a certain problem but even
some exponential-size classical circuits cannot. In this section, we exhibit (formal definitions and
arguments are given within the corresponding subsection):

• A promise problem separating BQLOGTIME and GC0(k) (Corollary 5.7).

• A relation problem separating QNC0 and GC0(k) (Theorem 5.15).

• A relation problem separating QNC0/qpoly and GC0(k)[p] for any prime p (Theorems 5.24
and 5.34).

• An interactive problem separating QNC0 and GC0(k)[p] for any prime p (Theorem 5.41).

Our separations are all exponential (i.e., the problems can be solved by polynomial-size QNC0

circuits but are hard for exponential-size classical circuits), and Theorems 5.15, 5.24 and 5.34 prove
average-case lower bounds.

In addition to our results in Sections 3 and 4, our quantum-classical separations require a few
new classical ingredients. We prove a multi-output multi-switching lemma for GC0 (Theorem 5.20),
which generalizes the multi-switching lemma proved by Kumar [Kum23] to multi-output GC0 cir-
cuits. Our result is based on the multi-switching lemmas for AC0 that were proven by H̊astad
[H̊as14] and Rossman [Ros17], and is based on the proof of the AC0 multi-output multi-switching
lemma established in [WKST19].

We also prove that a single G(k) gate can compute functions that are not computable in NC =
AC = TC when k = logω(1) n (Theorem 5.38). We use this to show that certain GC0(k)[p] circuits
are incomparable to NC1 (Corollary 5.40), which is needed in the proof of Theorem 5.41.

5.1 Pushing Raz & Tal: BQLOGTIME ̸⊆ GC0

In a breakthrough work, Raz and Tal [RT22] showed that BQP is not in PH relative to an oracle. An
unconditional separation between BQLOGTIME and AC0 is at the core of their result. Specifically,
they give a distribution that is pseudorandom (i.e., cannot be distinguished from the uniform
distribution) for AC0 circuits, but not for BQLOGTIME circuits. By well-known reductions, this
implies their oracle and circuit separations. We show that their distribution is also pseudorandom
for GC0 circuits. Hence, by the same reductions, we can conclude that BQLOGTIME ̸⊆ GC0. We
begin with a formal definition of BQLOGTIME.

26

Definition 5.1. BQLOGTIME is the class of promise problems Π = (ΠYes,ΠNo) that are decidable,
with bounded error probability, by a LOGTIME-uniform family of quantum circuits {Cn}n∈N, where
each Cn is an n-qubit quantum circuit with O(log n) gates that are either (i) input query gates
(i.e., gates that map |i⟩ |z⟩ to |i⟩ |z ⊕ xi⟩ where x = x1 . . . xn is the input string) or (ii) standard
quantum gates from a fixed, finite gate set.

Let DRaz-Tal denote the distribution over {−1, 1}2N described in [RT22, Section 4] (see also
[Wu22, Section 2]). Raz and Tal showed that if DRaz-Tal is sufficiently pseudorandom, then one
can obtain separations from BQLOGTIME.

Lemma 5.2 ([RT22]). Let F be a class of Boolean functions f : {±1}2N → {0, 1}. Suppose that
for each f ∈ F , ∣∣∣E[f(DRaz-Tal)]−E[f(U2N)]

∣∣∣ ≤ Å 1

logN

ãω(1)
.

Then BQLOGTIME ̸⊆ F .

Furthermore, Raz and Tal showed that the desired pseudorandomness property follows from
understanding the second-level Fourier growth, i.e., the ℓ1-norm of the Fourier coefficients on the
second level.

Lemma 5.3 ([RT22], [Wu22, Theorem 4.4]). Let f : {±1}2N → {0, 1} be a Boolean function. For
L > 0, suppose that for any restriction ρ,∑

S⊆[2N]
|S|=2

|“fρ(S)| ≤ L.
Then, ∣∣∣E[f(DRaz-Tal)]−E[f(Un)]

∣∣∣ ≤ 2εL√
N
.

In prior work, Kumar [Kum23] gave upper bounds on the Fourier growth of GC0-computable
functions.

Lemma 5.4 ([Kum23, Theorem 5.14]). Let f : {±1}n → {±1} be computable by a size-m GC0
d(k)

circuit. Then, for all ℓ ∈ N, the following is true for some universal constants C1, C2 > 0:∑
S⊆[n]
|S|=ℓ

|f̂(x)| ≤ C1(C2 · k(k + logm)d−1)ℓ.

In particular, for some universal constant C > 0,∑
S⊆[n]
|S|=2

|f̂(x)| ≤ Ck2(k + logm)2(d−1).

We can now start combining these ingredients to obtain the claimed separation.

Proposition 5.5 (Generalization of [RT22, Theorem 7.4]). Let f : {±1}2N → {±1} be a size-m
GC0

d(k) circuit. Then there is a universal constant C > 0 such that∣∣∣E[f(DRaz-Tal)]−E[f(Un)]
∣∣∣ ≤ Cεk2(k + logm)2(d−1)

√
N

.

27

Proof. Combine Lemmas 5.3 and 5.4.

Combining Lemma 5.2 and Proposition 5.5 yields the following two corollaries.

Corollary 5.6 (Generalization of [RT22, Corollary 7.5]). Let f : {±1}2N → {±1} be a GC0(k)

circuit of constant depth and size quasipoly(N). For ε = O
Ä

1
logN

ä
and k = O(N1/4d)

logω(1) N
,

∣∣∣E[f(DRaz-Tal)]−E[f(U2N)]
∣∣∣ ≤ 1

logω(1)N
.15

Corollary 5.7 (Generalization of [RT22, Corollary 1.6]). There is a promise problem in BQLOGTIME

that is not solvable by constant-depth GC0(k) for k = O(n1/4d)

logω(1) n
and size quasipoly(n), where n is the

input size.

Our circuit separation also says something about oracle separations. By standard techniques,
Corollaries 5.6 and 5.7 imply an oracle A relative to which BQPA ̸⊆ CA for any class of languages
C that can be decided by a uniform family of constant-depth, exponential-size GC0 circuits.16

Corollary 5.8 (Generalization of [RT22, Corollary 1.5]). There is an oracle relative to which BQP
is not contained in the class of languages decidable by uniform families of circuits {Cn}, where for

all n ∈ N, Cn is a size-2n
O(1)

depth-d GC0(k) circuit with k ∈ 2n/4d

nω(1) .

The proof is the same as [RT22, Appendix A] but the step where they apply their Theorem 1.2
should be replaced with our Corollary 5.6. Hence, we omit the details. Similar proofs were also
given by Aaronson [Aar10] and Fefferman, Shalteil, Umans, and Viola [FSUV13], which were based
on an earlier work of Bennett and Gill [BG81].

It is well-known that PH is the class of languages decided by uniform families of size-2n
O(1)

constant-depth AC0 circuits (see e.g., [AB09, Theorem 6.29]). Therefore, the separation of BQP
and PH is a special case of our theorem, because AC0 ⊆ GC0(k) for all k ≥ 0.

Because G(k) gates can compute many functions, Corollary 5.8 can be instantiated in many
ways. We give one concrete example separating BQP from a biased version of the counting hierarchy,
which we now define. First, we define existential and universal counting quantifiers. Similar
definitions date back to [Wag86, Tor91, AW93]. For a bit string x, let len(x) denote the length of
x.

Definition 5.9 (Counting quantifiers). Let C be a class of languages, and let k : N → N be a
function. Define ∃k · C to be the set of all languages L such that there is some polynomial p and a
language C ∈ C such that x ∈ L ⇐⇒

|{y ∈ {0, 1}p(len(x)) : ⟨x, y⟩ ∈ C}| > k(len(x)).

Define ∀k ·C to be the set of all languages L such that there is some polynomial p and a language
C ∈ C such that for x ∈ {0, 1}n, x ∈ L ⇐⇒

|{y ∈ {0, 1}p(len(x)) : ⟨x, y⟩ /∈ C}| ≤ k(len(x)).
15Note that ε ∈ Ω(1/ logN) is necessary for the BQLOGTIME to succeed with a large enough probability. See

[RT22, Section 6] for further detail.
16The notion of uniformity here is sometimes called direct connect uniform [AB09, Definition 6.28] or highly uniform

[Gol08, Exercise 3.8].

28

We note that ∃0 = ∃ and ∀0 = ∀.
We can now define the k-biased counting hierarchy. For two functions f1, f2 : N → N, we say

f1 ≤ f2 when ∀n, f1(n) ≤ f2(n).

Definition 5.10 (Biased counting hierarchy). Let k : N→ N be a function. The k-biased counting
hierarchy CH(k) is the smallest family of language classes satisfying:

(i) P ∈ CH(k),

(ii) If L ∈ CH(k), then ∃k′ · L and ∀k′ · L ∈ CH(k) for all k′ : N→ N, k′ ≤ k.

It is a well-known fact that the polynomial hierarchy PH can be characterized by alternating ∃0
and ∀0 quantifiers, so CH(0) = PH. As mentioned above, there is also a well-known characterization
of PH by AC0 circuits. Roughly speaking, the ∃0 quantifiers are replaced by OR gates, and the
∀0 quantifiers are replaced by AND gates. Let k-OR be the gate that is 1 iff > k input bits are
1. Similarly, let k-AND be the gate that is 0 iff > k input bits are 0. Observe OR = 0-OR and
AND = 0-AND, and that k-AND and k-OR are G(k) gates up to negations (specifically, one can
construct k-AND with NOT and k-OR via De Morgan’s law). So, in exactly the same manner as
PH, for any class C ∈ CH(k), one can construct a GC0(k) circuit that decides an L ∈ C by replacing
the ∃k quantifiers with k-OR gates and the ∀k quantifiers with k-AND gates. By doing this standard
construction, one obtains the following corollary of Corollary 5.8.

Corollary 5.11. There is an oracle A relative to which BQPA ̸⊆ CH(k)A for k(n) = 2Θ(n)

nω(1) .

This result is perhaps surprising considering that BQP ⊆ PP relative to all oracles [ADH97]
and PP is the first level of the standard counting hierarchy. Thus, our Corollary 5.11 shows that a
relativizing simulation of BQP requires being able to count a larger number of witnesses (exponential
in the input instance size), as one can in PP.

More broadly, Corollary 5.8 separates BQP from many complexity classes that contain PH and
are incomparable with PP; the specific complexity classes one gets depends on how the G(k) gates
are used in the uniform circuit families. Above we gave an example where the G(k) gates are all
k-AND and k-OR gates.

5.2 Separation Between QNC0 and GC0

We exhibit a search problem with input size n that can be solved by QNC0 circuits (i.e., polynomial-
size, constant-depth quantum circuits with bounded fan-in gates), but not by size-s GC0(k) circuits
for s ≤ exp(n1/4d) and k = O(log s). In particular, we show strong average-case lower bounds
against GC0 for this search problem, i.e., that any GC0 circuit can only succeed on an exp(−nc)
fraction of input strings for some c > 0. In Section 5.2.3, we show that our separation holds even
when the quantum circuits are subject to noise.

Our result builds on prior work of Bravyi, Gosset, and König [BGK18] and Watts, Kothari,
Schaeffer, and Tal [WKST19]. In particular, we use the same search problems introduced in these
works and prove that they are average-case hard for GC0. To prove our lower bound, we prove a
new multi-switching lemma for multi-output GC0 circuits in Section 5.2.1.

Bravyi et al. introduced the 2D Hidden Linear Function Problem and showed that it can be
solved by QNC0 circuits.

Definition 5.12 (2D Hidden Linear Function Problem, 2D HLF [BGK18]). Let b ∈ {0, 1, 2, 3}n
be a vector and let A ∈ {0, 1}n be a symmetric matrix describing an n × n 2D grid, i.e., Aij = 1

29

when vertices i and j are connected on the 2D grid. Define q : Fn
2 → Z4 as q(u) := uTAu + bTu

(mod 4). Define Lq as

Lq := {u ∈ Fn
2 : ∀v ∈ Fn

2 , q(u⊕ v) = q(u) + q(v) (mod 4)} .

⊕ denotes the addition of binary vectors modulo two, and the addition q(u) + q(v) is modulo four.
Bravyi, Gosset, and König [BGK18] show that the restriction of q onto Lq is a linear form, i.e.,
there exists a z ∈ Fn

2 such that q(x) = 2zTx (mod 4) for all x ∈ Lq. Given A ∈ {0, 1}n×n and
b ∈ {0, 1, 2, 3}n as input, the 2D Hidden Linear Function (2D HLF) problem is to output one
such z ∈ Fn

2 .

Subsequently, Watts et al. [WKST19] introduced the Parallel Parity Halving Problem and
showed that it reduces to 2D HLF.

Definition 5.13 (Parallel Parity Halving Problem, PHPr
n,m [WKST19]). Given r length-n strings

x1, . . . , xr ∈ {0, 1}n as input, promised that each xi has even parity, output r length-m strings
y1, . . . , yr ∈ {0, 1}m such that, for all i ∈ [p],

|yi| ≡
1

2
|xi| (mod 2).

Lemma 5.14 ([WKST19, Theorem 26, Corollary 30]). PHPn
m,n reduces to 2D HLF.

Hence, to obtain our separation between QNC0 and GC0(k) it suffices to prove that PHP is
hard for GC0, which we do in the remainder of this subsection. Doing so yields the following result.

Theorem 5.15 (Generalization of [WKST19, Theorem 1]). The 2D HLF problem on n bits cannot
be solved by a size-exp(O(n1/4d)) GC0

d(k) circuit with k = O(n1/4d). Furthermore, there exists an
(efficiently samplable) input distribution on which any GC0

d(k) circuit (or GC0
d(k)/rpoly circuit) of

size at most exp(n1/4d) only solves the 2D HLF problem with probability at most exp(−nc) for
some c > 0.

In Section 5.2.1, we prove a multi-switching lemma for multi-output GC0 circuits necessary for
our lower bound. In Section 5.2.2, we prove that PHP is average-case hard to compute for GC0

circuits, yielding Theorem 5.15. Finally, in Section 5.2.3, we generalize our result further to obtain
an exponential separation between noisy QNC0 circuits and GC0(k), building on the work of Bravyi,
Gosset, König, and Temamichel [BGKT20] and Grier, Ju, and Schaeffer [GJS21].

5.2.1 A Multi-Switching Lemma for GC0

We prove a multi-output multi-switching lemma for GC0(k), building on prior works of Rossman
[Ros17], H̊astad [H̊as14], and Kumar [Kum23]. We must first establish some notation, following
Rossman [Ros17] and Watts et al. [WKST19, Appendix A]. Our proof involves the following classes
of functions:

• DT(w) is the class of depth-w decision trees.

• CKT(k; d; s1, . . . , sd) is the class of depth-d GC0(k) circuits with si gates at the ith layer of
the circuit for all i ∈ {1, . . . , d}. Note that these circuits have sd many output bits.

• CKT(k; d; s1, . . . , sd) ◦ DT(w) is the class of circuits in CKT(k; d; s1, . . . , sd) whose inputs are
labeled by depth-w decision trees. Note that these functions have sd many output bits.

30

• DT(t) ◦ CKT(k; d; s1, . . . , sd) ◦ DT(w) is the class of depth-t decision trees whose leaves are
labeled by functions in CKT(k; d; s1, . . . , sd) ◦DT(k). Note that these functions have sd many
output bits.

• DT(w)m is the class of m-tuples of depth-k decision trees. This function has m many output
bits, where each output bit is computed by an element of DT(w).

• DT(t) ◦DT(w)m is the class of depth-t decision trees where each leaf is labeled by an m-tuple
of depth-k decision trees. Note that these functions have m many output bits.

In the remainder of this subsection, we will build to the multi-switching lemma by combining
ingredients from Rossman [Ros17] and Kumar [Kum23]. To begin, we need the following lemma that
says, with high probability, a depth-ℓ decision tree will reduce in depth under random restriction.

Lemma 5.16 ([Ros17, Lemma 20]). For a depth-ℓ decision tree T ∈ DT(ℓ),

Pr
ρ∼Rp

[T |ρ has depth ≥ t] ≤ (2epℓ/t)t.

We also need the multi-switching lemma for GC0.

Lemma 5.17 ([Kum23, Theorem 4.8, Lemma 4.9]). Let f ∈ CKT(k; d; s1, . . . , sd) ◦ DT(w), then

Pr
ρ∼Rp

[f |ρ /∈ DT(t− 1) ◦ CKT(k; d− 1; s2, . . . , sd) ◦ DT(r)] ≤ 4(64(2ks1)
1/rpw)t.

Proof. This follows immediately from [Kum23, Theorem 4.8, Lemma 4.9]. We include the details
for completeness. The bottom two layers of f are s1 elements of G(k) ◦ DT(w), i.e., G(k) gates
whose inputs are labeled by depth-w decision trees. [Kum23, Lemma 4.9] shows that G(k) ◦DT(w)
is equivalent to G(k) ◦ ANDw, i.e., a depth-2 circuit whose bottom layer has fan-in-w AND gates
that feed into a G(k) gate one the top layer. Hence, the s1 G(k) ◦ DT(w) substructures in f can
be viewed as s1 G(k) ◦ ANDw subcircuits. To complete the proof, apply [Kum23, Theorem 4.8] to
these s1 subcircuits.

We can now show that under random restriction elements of DT(t− 1) ◦ CKT(k; d; s1, . . . , sd) ◦
DT(w) simplify to elements of DT(t− 1) ◦ CKT(k; d− 1; s2, . . . , sd) ◦ DT(r) with high probability.

Lemma 5.18 (Generalization of [Ros17, Lemma 24]). Let f ∈ DT(t − 1) ◦ CKT(k; d; s1, . . . , sd) ◦
DT(w), then

Pr
ρ∼Rp

[f |ρ /∈ DT(t− 1) ◦ CKT(k; d− 1; s2, . . . , sd) ◦ DT(r)] ≤ 5(64(2ks1)
1/rpw)t.

Proof. Say f is computed by a depth-(t−1) decision tree T , where each leaf ℓ is labeled by a circuit
Cℓ ∈ CKT(k; d; s1, s2, . . . , sd) ◦ DT(w). Let E1 be the event T |ρ has depth ≤ ⌊t/2⌋ − 1, and let E2
be the event Cℓ|ρ ∈ DT(⌈t/2⌉− 1) ◦CKT(k; d− 1; s2, . . . , sd) ◦DT(r) for all leaves ℓ of T . Note that

E1 ∧ E2 =⇒ f |ρ ∈ DT(t− 1) ◦ CKT(k; d− 1; s2, . . . , sd) ◦ DT(r).

By Lemma 5.16, we know

Pr
ρ∼Rp

[¬E1] ≤ (2ep(t− 1)/⌈t/2⌉)⌈t/2⌉ ≤ (4ep)t/2.

31

By Lemma 5.17 and a union bound, we have

Pr
ρ∼Rp

[¬E2] ≤
∑

leaves ℓ

Pr[Cℓ|ρ /∈ DT(⌈t/2⌉ − 1) ◦ CKT(k; d− 1; s2, . . . , sd) ◦ DT(r)]

≤
∑
ℓ

4(64(2ks1)
1/rpw)t

≤ 2t · 4(64(2ks1)1/rpw)t

= 4(128(2ks1)
1/rpw)t.

Therefore, we can finally bound

Pr
ρ
[f |ρ /∈ DT(t− 1) ◦ CKT(k; d− 1; s2, . . . , sd) ◦ DT(r)] ≤ Pr

ρ
[¬E1] +Pr

ρ
[¬E2]

≤ (4ep)t/2 + 4(128(2ks1)
1/rpw)t

≤ 5(128(2ks1)
1/rpw)t.

Lemma 5.18 shows a depth reduction by 1 under random restriction. At a high level, our
argument will repeat this process d times to simplify the depth of the circuit to 1 with high
probability. When the depth has simplified to 1, we will need the following form of the multi-
switching lemma for GC0 to complete our argument.

Theorem 5.19 ([Kum23, Theorem 4.8, Lemma 4.9] restated). Let f ∈ CKT(k; 1;m) ◦ DT(w).
Then

Pr
ρ∼Rp

[f |ρ /∈ DT(t− 1) ◦ DT(r − 1)m] ≤ 4(64(2km)1/rpw)t.

Proof. Like Lemma 5.17, this follows immediately from [Kum23, Theorem 4.8, Lemma 4.9].

We are now ready to prove our multi-output multi-switching lemma for GC0(k), the main
theorem of this subsection.

Theorem 5.20 (Multi-Output Multi-Switching Lemma for GC). Let f ∈ CKT(k; d; s1, . . . , sd−1,m)
with n inputs and m outputs. Let s = s1+ · · ·+sd−1+m. Let p = p1 ·p2 · · · pd and w := ⌈log s⌉+1.
Then

Pr
ρ∼Rp

[f |ρ /∈ DT(2t− 2) ◦DT(r− 1)m] ≤ 5(128 · 2k/wp1)t+
d−1∑
i=2

5(128 · 2k/wpiw)t+4(128(2km)1/rpw)t.

Proof. Let sd := m. Notice we can factor ρ ∼ Rp as ρ1 ◦ · · · ◦ ρd, where each ρi ∼ Rpi . Now for
each i ∈ [d− 1], define the event

Ei ⇐⇒ f |ρ1·····ρi ∈ DT(t− 1) ◦ CKT(d− i; si+1, . . . , sd) ◦ DT(w),

and define
Ed ⇐⇒ f |ρ1◦···◦ρd ∈ DT(2t− 2) ◦ DT(r − 1)m.

Notice that
d∧

i=1

Ei =⇒ Ed ⇐⇒ f |ρ ∈ DT(2t− 2) ◦ DT(q − 1)m.

We will bound the complement of this event. Notice that since

f ∈ CKT(k; d; s1, . . . , sd) ⊂ DT(t− 1) ◦ CKT(k; d; s1, . . . , sd) ◦ DT(1),

32

we have by Lemma 5.18 that

Pr
ρ
[¬E1] ≤ 5(64(2ks1)

1/wp1)
t ≤ 5(128 · 2k/wp1)t.

For i = 2, . . . , d− 1, Lemma 5.18 gives us

Pr[¬Ei|E1, . . . , Ei−1] ≤ 5(64(2ksi)
1/wpiw)

t ≤ 5(128 · 2k/wpiw)t.

We now bound Pr[¬Ed|E1, . . . , Ed−1]. Let g := f |ρ1◦···◦ρd−1
. Conditioning on E1, . . . , Ed−1, we

have
g ∈ DT(t− 1) ◦ CKT(k; 1;m) ◦ DT(w).

For each leaf ℓ of the partial decision tree of depth t − 1 for g, define gℓ to be g restricted by the
root-to-leaf path in the tree to ℓ. It follows that each gℓ, by definition, is CKT(k; 1;m) ◦ DT(w).
Consequently, by Theorem 5.19, we have for each ℓ,

Pr[gℓ|ρd /∈ DT(t− 1) ◦ DT(r − 1)m] ≤ 4(64(2km)1/rpw)t.

As there are 2t−1 leaves, by a union bound it follows that the probability some gℓ doesn’t simplify
is at most

4(128(2km)1/rpw)t.

In the complementary event, we have

g|ρd = f |ρ1◦···◦ρd ∈ DT(t− 1) ◦ DT(t− 1) ◦ DT(q − 1)m = DT(2t− 2) ◦ DT(q − 1)m,

so event Ed holds. We now finally bound

Pr
ρ∼Rp

[f |ρ /∈ DT(2t− 2) ◦ DT(r − 1)m] = Pr[¬E1, . . . ,¬Ed]

=
d∑

i=1

Pr[¬Ei|E1, . . . , Ei−1]

≤ 5(128 · 2k/wp1)t +
d−1∑
i=2

5(128 · 2k/wpiw)t + 4(128(2km)1/rpw)t.

Corollary 5.21. Let f : {−1, 1}n → {−1, 1}m be computable by a GC0(k) circuit of size s, depth
d, and k = O(log s). Let p = 1

m1/qO(log s)d−1 . Then, for all t ∈ N,

Pr
ρ∼Rp

[f |ρ /∈ DT(2t− 2) ◦ DT(q − 1)m] ≤ 2−t.

Proof. For w := ⌈log s⌉, we have that 2k/w = O(1). Using this and applying Theorem 5.20 with
p1 = Ω(1), p2 = · · · = pd−1 = Ω(1/w), and pd = 1/O(m1/qw) yields the desired result.

33

5.2.2 GC0 Lower Bound

We can now use our multi-output multi-switching lemma to prove that PHP (Definition 5.13) is
hard GC0 circuits.

Theorem 5.22 (PHPr
n,m /∈ GC0(k), Generalization of [WKST19, Theorem 25]). Let r = n and

m ∈ [n, n2]. Any GC0
d(k) circuit F : {0, 1}nr → {0, 1}mr with size s ≤ exp

Ä
(nr)

1
2d

ä
and k =

O((nr)
1
2d) solves PHPr

n,m with probability at most exp
Ä
−n2/(m1+o(1)O(log s)2(d−1)

ä
.

Proof. Set q =
√

log(mr), p = 1/(O(log s)d−1(mr)1/q), and t = pnr/8. Let ρ be a p-random
restriction. The only fact about AC0 used in the proof of [WKST19, Theorem 25] is that a function
F computable by a size-s AC0 circuit simplifies to an element of DT(2t) ◦ DT(q)m under ρ with
probability at least 1 − exp(−Ω(pnr)). By Corollary 5.21, this holds for functions computable by
size-s GC0(k) circuits with k = O(log s). Hence, the rest of the argument in [WKST19, Theorem
25] goes through.

With that, the main result follows.

Proof of Theorem 5.15. The result follows from combining Lemma 5.14 and Theorem 5.22.

5.2.3 Separation Between Noisy QNC0 and GC0

Our separation between GC0 and QNC0 holds even when the QNC0 circuits are subjected to noise.
The noise model considered is the local stochastic quantum noise model [FGL20, BGKT20] (see
also [GJS21, Section 2.2]). As in prior works, the noise rate is assumed to be below some con-
stant threshold. Here and throughout, “noisy QNC0” refers to QNC0 subjected to local stochastic
quantum noise with a certain constant noise rate.

Bravyi, Gosset, König, and Temamichel [BGKT20] show that for any relation problem solvable
by QNC0, one can construct a “noisy version” of that relation problem that is solvable by noisy QNC0

([BGKT20, Definition 15, Theorem 17], [GJS21, Definition 14, Theorem 15]. Additionally, [GJS21,
Lemma 16] implies that any classical circuit solving the noisy version of the relation problem can
solve the original relation problem with the overhead of first running a quasipolynomial-size AC0

circuit.
We can apply this framework to separate GC0(k) and noisy QNC0.

Theorem 5.23 (Generalization of [GJS21, Proposition 18, Theorem 19]). There is a search problem
that is solvable by noisy QNC0 with probability 1 − exp(−Ω(polylog(n))), but any size-s depth-d
GC0(k) circuit with k = O(log s) cannot solve the search problem with probability exceeding

exp

Ç
−n1/2−o(1)

O (log(s+ exp(polylog(n))))2d+O(1)

å
.

Proof. Let the noisy 2D HLF be the relation problem obtained from applying [GJS21, Definition
14] to the 2D HLF (Definition 5.12). The quantum upper bound is precisely [GJS21, Proposition
18].

Towards the classical lower bound, assume there exists a size-s, depth-d GC0(k) circuit with
k = O(log s) that solves noisy 2D HLF with probability at most ε. Then, by [GJS21, Lemma
16], there exists a size-(s+ exp(polylog(n))), depth-(d+ O(1)) GC0(k) circuit with k = O(log(s+
exp(polylog(n))) that solves 2D HLF with probability at most ε. But, by Theorem 5.22 and

34

[WKST19, Theorem 26, Corollary 30], any GC0(k) circuit of size s, depth d, and k = O(log s) for
2D HLF succeeds with probability at most

exp

Ç
−n1/2−o(1)

O(log s)2d

å
.

Therefore, we can conclude that

ε ≤ exp

Ç
−n1/2−o(1)

O (log (s+ exp(polylog(n))))2d+O(1)

å
.

5.3 Separation Between QNC0/qpoly and GC0(k)[2]

We exhibit a relation problem that can be solved with high probability by a QNC0/qpoly circuit
but is average-case hard for GC0(k)[2]/rpoly. Recall that QNC0/qpoly is the class of QNC0 circuits
with quantum advice, i.e., polynomial-size, constant-depth quantum circuits with bounded fan-in
gates that can start with any quantum state as long as it is independent of the input.

Our argument follows the same structure as Watts et al. [WKST19]. However, we obtain an
exponential separation between GC0(k)[2]/rpoly and QNC0/qpoly. Previously, the best separation
was between QNC0/qpoly and polynomial-size AC0[2] circuits.

Theorem 5.24 (Generalization of [WKST19, Theorem 6]). There is a search problem that is
solvable by QNC0/qpoly with probability 1 − o(1), but any GC0(k)[2]/rpoly circuit of depth d and

size at most exp
Ä
O
Ä
n1/2.01d

ää
with k = O(n1/2d) cannot solve the search problem with probability

exceeding n−Ω(1).

The remainder of this subsection is devoted to proving Theorem 5.24. The quantum upper
bound is given in [WKST19, Section 6.1, Section 6.3]. We will show an average-case lower bound
for the following problem.

Definition 5.25 (r-Parallel Parity Bending Problem [WKST19, Problem 8]). Given inputs x1, . . . , xr
with xi ∈ {0, 1, 2}n for all i ∈ [r], produce outputs y1, . . . , yr ∈ {0, 1}n such that yi satisfies:

|yi| ≡ 0 (mod 2) if |xi| ≡ 0 (mod 3) or

|yi| ≡ 1 (mod 2) if |xi| ̸≡ 0 (mod 3).

for at least a 2
3 + 0.005 fraction of the i ∈ [k].

Note that this problem takes input over {0, 1, 2}. Ultimately we are studying Boolean circuits,
so, technically speaking, trits are encoded with two bits (e.g., 0 7→ 00, 1 7→ 01, 2 7→ 10). We use
{0, 1, 2} for notational convenience.

On the way to our lower bound, we first prove lower bounds for the following problem.

Definition 5.26 (3 Output Mod 3 [WKST19, Problem 9]). Given an input x ∈ {0, 1, 2}n, output
a trit y ∈ {0, 1, 2} such that y ≡ |x| (mod 3).

To prove 3 Output Mod 3 is hard for GC0(k)[2], we use the following worst-case to average-case
reduction, given in [WKST19].

35

Lemma 5.27. Suppose there is a GC0(k)[2]/rpoly circuit of size s and depth d that solves 3 Output
Mod 3 (Definition 5.26) on a uniformly random input with probability 1/3 + ε for some ε > 0.
Then there exists a GC0(k)[2]/rpoly circuit C of depth d+O(1) and size s+O(n) such that for any
x ∈ {0, 1, 2}n,

Pr[C(x) ≡ |x| (mod 3)] =
1

3
+ ε, and

Pr[C(x) ≡ |x|+ 1 (mod 3)] = Pr[C(x) ≡ |x|+ 2 (mod 3)] =
1

3
− ε

2
.

Proof. The proof is exactly the same as [WKST19, Lemma 35].

We can now show that 3 Output Mod 3 is average-case hard for exponential-size GC0(k)[2]
circuits.

Lemma 5.28 (Generalization of [WKST19, Lemma 36]). Let k = O(n1/2d). Any GC0(k)[2]/rpoly

circuit of depth d and size s ≤ exp
Ä
O
Ä
n1/2.01d

ää
solves 3 Output Mod 3 (Definition 5.26) on the

uniform distribution with probability at most 1
3 + 1

nΩ(1) .

Proof. Let C be the GC0(k)[2]/rpoly circuit that solves 3 Output Mod 3 on the uniform distribution
with probability 1

3 +ε. Lemma 5.27 implies that there is a circuit C ′ that succeeds with probability
1
3 + ε and outputs each wrong answer with probability 1

3 −
ε
2 .

Let E : {0, 1, 2} → {0, 1} be the circuit that maps 0 to 0 and everything else to 1. Define C ′′ to
be the circuit that, given input x, outputs 0 with probability 1

4 , and outputs E(C ′′(x)) otherwise.
Observe that, if |x| ≡ 0 (mod 3), then C ′′ correctly outputs 0 with probability 1

4+
3
4(

1
3+ε) =

1
2+

3ε
4 .

Similarly, if |x| ̸≡ 0 (mod 3), then C ′′ correctly outputs 1 with probability 3
4(

1
3+ε+

1
3−

ε
2) =

1
2+

3ε
8 .

Hence C ′′ computes MOD3 with probability 1
2 + 3ε

8 , so Theorem 4.4 implies that ε ∈ 1
nΩ(1) .

The average-case lower bound in Lemma 5.28 implies the following corollary.

Corollary 5.29 (Generalization of [WKST19, Corollary 37]). Let k = O(n1/2d). Let C be a

GC0(k)[2]/rpoly circuit of depth d and size s ≤ exp
Ä
O
Ä
n1/2.01d

ää
outputting a trit. Then, for all

i ∈ {0, 1, 2},
1

3
− 1

nΩ(1)
≤ Pr

x∈{0,1,2}n
[C(x)− |x| ≡ i (mod 3)] ≤ 1

3
+

1

nΩ(1)
.

Proof. Because ∑
i∈{0,1,2}

Pr
x∈{0,1,2}n

[C(x)− |x| ≡ i (mod 3)] = 1,

it suffices to prove

Pr
x∈{0,1,2}n

[C(x)− |x| ≡ i (mod 3)] ≤ 1

3
+

1

nΩ(1)

for each i ∈ {0, 1, 2}. For i = 0, the desired bound is exactly shown in Lemma 5.28. For i ∈ {1, 2},
observe that if there is a GC0(k)[2]/rpoly circuit D of depth d and size at most exp

Ä
O
Ä
n1/2.01d

ää
for which

Pr[D(x)− |x| ≡ i (mod 3)] ≥ 1

3
+

1

no(1)
,

then one could construct a circuit D′ for which

Pr[D′(x) ≡ |x| (mod 3)] ≥ 1

3
+

1

no(1)

by subtracting by the trit i at the end of the circuit. Subtracting by a fixed trit only adds a constant
overhead to the size and depth of the circuit, so such a D′ contradicts Lemma 5.28.

36

We note that [WKST19, Corollary 37] is only stated for polynomial-size AC0[2]/rpoly circuits.
However, we observe the statement also holds for exponential-size circuits, as demonstrated in
Corollary 5.29. This allows us to obtain exponentially stronger lower bounds than the ones obtained
in [WKST19].

Now we study the difficulty of solving r instances of the 3 Output Mod 3 Problem.

Definition 5.30 (r-Parallel 3 Output Mod 3). Given inputs x1, . . . , xr ∈ {0, 1, 2}n, output a vector
y⃗ ∈ {0, 1, 2}r such that

yi ≡ |xi| (mod 3)

for at least a 1
3 + 0.01 fraction of the i ∈ [k].

To prove lower bounds for this problem, we use the XOR lemma for finite abelian groups.

Lemma 5.31 ([Rao07, Lemma 4.2], XOR lemma for finite abelian groups). Let D be a distribution
over a finite abelian group G such that |E[ψ(X)]| ≤ ε for every non-trivial character ψ. Then D is
ε
√
|G|-close (in total variation distance) to the uniform distribution over G.

Theorem 5.32 (Generalization of [WKST19, Theorem 39]). Let k = O(n1/2d). There exists an

r ∈ Θ(log n) for which any GC0(k)[2]/rpoly circuit of depth d and size s ≤ exp
Ä
O
Ä
n1/2.01d

ää
solves

the r-Parallel 3 Output Mod 3 Problem (Definition 5.30) with probability at most n−Ω(1).

Proof. For k = O(n1/2d), let C be a GC0(k)[2]/rpoly circuit of depth d and size at most exp
Ä
O
Ä
n1/2.01d

ää
that solves the r-Parallel 3 Output Mod 3 problem with probability ε. Throughout this proof, let
x1, . . . , xr ∈ {0, 1, 2}n be chosen uniformly at random, and let (y1, . . . , yr) be the output trits of
the circuit C. Let D be the distribution over r trits defined by

r⊗
i=1

(|xi| − yi (mod 3)).

We begin by showing that D is close to the uniform distribution over {0, 1, 2}r in total variation
distance. Let χa be the character of Fr

3 corresponding to a ∈ Fr
3. Recall that χa(z) := ω

∑r
i=1 aizi ,

where z ∈ Fr
3 and ω is a third root of unity. To show that D is close to uniform, it suffices to show

that |E[χa(D)]| is small for all nonzero a.
For a ∈ Fr

3, let S denote the set of indices on which ai ̸= 0. Consider the problem where, given
a nonzero a ∈ Fr

3 and strings x1, . . . , xr ∈ {0, 1, 2}n, the goal is to find trits y1, . . . , yr such that∑
i∈S

ai|xi| ≡
∑
i∈S

aiyi (mod 3).

This problem reduces to 3 Output Mod 3 on the concatenated input x̃ := (aixj,i)i∈S,j∈[r] ∈
{0, 1, 2}n|S|. Specifically, given any circuit A solving the former problem, one can solve the lat-
ter problem by first running the circuit A to obtain the trits y1, . . . , yr. Then, add a circuit to
compute the sum

∑
i∈S aiyi (mod 3), which is the correct answer to the 3 Output Mod 3 problem

on input x̃. This last step can be done with a depth-2 AC0 circuit with exp(|S|) ≤ exp(r) ≤ poly(n)
many gates.

Now, because we are choosing x1, . . . , xr uniformly at random, the concatenated input x̃ ∈
{0, 1, 2}n|S| is uniformly random. Therefore, Corollary 5.29 implies that the distribution∑

i∈S
ai(|xi| − yi) (mod 3)

37

is at most n−Ω(1)-far from the uniform distribution over a trit {0, 1, 2} in total variation distance.
Hence, |E[χa(D)]| ≤ n−Ω(1) for each nonzero a. Then, Lemma 5.31 implies that D is n−Ω(1)

√
3r-

close to the uniform distribution on {0, 1, 2}r.
Because D is close to uniform, the probability ε that the circuit C solves the r-Parallel 3

Output Mod 3 problem is (almost) equivalent to the probability that a uniformly random string
in {0, 1, 2}r has more than a 1

3 + 0.01 fraction of its trits set to 0. By a Chernoff bound, this
probability is bounded above by exp (−Ω(r)). More carefully, we see that the probability of C
solving the r-Parallel 3 Output Mod 3 problem is at most

n−Ω(1)
√
3r + exp (−Ω(r)) ,

which is bounded above by n−Ω(1) for some r ∈ Θ(log n).

In [WKST19, Theorem 40] they show that the r-Parallel Parity Bending Problem (Defini-
tion 5.25) is as hard as the r-Parallel 3 Output Mod 3 Problem (Definition 5.30). Their reduction
and Theorem 5.32 imply the following corollary.

Corollary 5.33. Let k = O(n1/2d). There exists an r ∈ Θ(log n) for which any GC0(k)[2]/rpoly

circuit of depth d and size at most exp
Ä
O
Ä
n1/2.01d

ää
solves the r-Parallel Parity Bending Problem

with probability at most n−Ω(1).

Combining Corollary 5.33 with the quantum upper bound in [WKST19, Section 6] implies
Theorem 5.24.

5.4 Separation Between QNC0/qpoly and GC0(k)[p]

We exhibit relation problems that can all be solved by QNC0/qpoly but each one is average-case
hard for GC0(k)[p] for some prime p ̸= 2. Since we proved a separation when p = 2 in the previous
subsection (Theorem 5.24), we have an exponential separation between QNC0/qpoly and GC0(k)[p]
for all primes p.

Theorem 5.34. For any prime p, there is a search problem that is solvable by QNC0/qpoly with

probability 1 − o(1), but any GC0(k)[p]/rpoly circuit of depth d and size at most exp
Ä
O(n1/2.01d)

ä
with k = O(n1/2d) cannot solve the search problem with probability exceeding n−Ω(1).

We also note that we use the case where p = 2 to obtain separations for primes p ̸= 2, which is
why the p = 2 case is handled in a separate subsection.

Previously, the best separation known was between QNC0/qpoly and polynomial-size AC0[p]
circuits, which was shown in the recent work of Grilo, Kashefi, Markham, and Oliveira [GKMdO24].
The case where p = 2 was shown in Section 5.3. We handle all other primes in this subsection. We
will show lower bounds for the following problem, which is a natural generalization of the r-Parallel
Parity Bending Problem introduced by [WKST19, Problem Problem 8].

Definition 5.35 ((q, r)-Parallel Parity Bending Problem [GKMdO24, Definition 4]). Given inputs
x1, . . . , xr with xi ∈ {0, 1}n for all i ∈ [r], produce outputs y1, . . . , yr ∈ {0, 1}n such that yi satisfies:

|yi| ≡ 0 (mod q) if |xi| ≡ 0 (mod 2) or

|yi| ̸≡ 0 (mod q) if |xi| ≡ 1 (mod 2).

for at least a 2
3 + 0.005 fraction of the i ∈ [k].

38

Grilo et al. [GKMdO24] prove that QNC0/qpoly can solve this problem. We prove that the
problem is average-case hard for GC0(k)[p] for all primes p ̸= 2. We begin with the following
corollary of Theorem 4.4.

Corollary 5.36. Let k = O(n1/2d). For a prime p ̸= 2, let C be a GC0(k)[p]/rpoly circuit of depth

d and size s ≤ exp
Ä
O
Ä
n1/2.01d

ää
. Then, for all i ∈ {0, 1},

1

2
− 1

nΩ(1)
≤ Pr

x∈{0,1}n
[C(x)− |x| ≡ i (mod 2)] ≤ 1

2
+

1

nΩ(1)
.

Proof. The proof is similar to Corollary 5.29. Because∑
i∈{0,1}

Pr
x∈{0,1}n

[C(x)− |x| ≡ i (mod 2)] = 1,

it suffices to prove

Pr
x∈{0,1}n

[C(x)− |x| ≡ i (mod 2)] ≤ 1

2
+

1

nΩ(1)

for each i ∈ {0, 1}. For i = 0, the desired bound is exactly shown in Theorem 4.4. For i = 1,

observe that if there is a GC0(k)[p]/rpoly circuit D of depth d and size at most exp
Ä
O
Ä
n1/2.01d

ää
for which

Pr[D(x)− |x| ≡ 1 (mod 2)] ≥ 1

2
+

1

no(1)
,

then one could construct a circuit D′ for which

Pr[D′(x) ≡ |x| (mod 2)] ≥ 1

2
+

1

no(1)

adding a NOT gate to the end of the circuit. However, such a D′ cannot exist as it contradicts
Theorem 4.4.

We now prove our average-case lower bound.

Theorem 5.37. Let p ̸= 2 be a prime, and let k = O(n1/2d). There exists an r ∈ Θ(log n) for which

any GC0(k)[p]/rpoly circuit of depth d and size at most exp
Ä
O
Ä
n1/2.01d

ää
solves the (q, r)-Parallel

Parity Bending Problem (Definition 5.35) with probability at most n−Ω(1).

Proof. The proof is similar to Theorem 5.32. For k = O(n1/2d), let C be a GC0(k)[2]/rpoly circuit of

depth d and size at most exp
Ä
O
Ä
n1/2.01d

ää
that, on input x1, . . . , xr ∈ {0, 1}n, outputs y1, . . . , yr ∈

{0, 1} such that, for at least a 1
2 + 0.01 fraction of i ∈ [r], yi ≡ |xi| (mod 2). Let ε denote the

probability that C succeeds at this task. Throughout this proof, consider x1, . . . , xr to be chosen
uniformly at random. Let D be the distribution over r bits defined by

r⊗
i=1

(|xi| − yi (mod 2)).

We will show that D is close to the uniform distribution over {0, 1}r in total variation distance.
Let χa be the character of Fr

2 corresponding to a ∈ Fr
2. Recall that χa(z) := (−1)

∑r
i=1 aizi , where

z ∈ Fn
2 . We will show that |E[χa(D)]| is small for all nonzero a, which implies that D is close to

the uniform distribution in total variation distance.

39

For a ∈ Fr
2, let S denote the set of indices on which ai ̸= 0. Consider the problem where, given

a nonzero a ∈ Fr
2 and strings x1, . . . , xr ∈ {0, 1}n, the goal is to find y1, . . . , yr ∈ {0, 1} such that∑

i∈S
ai|xi| ≡

∑
i∈S

aiyi (mod 2).

Let x̃ := (aixj,i)i∈S,j∈[r] ∈ {0, 1}n|S|, i.e., the bits chosen by a for each xi for i ∈ [r]. The problem
above reduces to computing MOD2 on x̃. Specifically, let y1, . . . , yr be the output of a circuit solving
the former problem. Then, add a circuit that computes the sum

∑
i∈S aiyi (mod 2), which is equal

to MOD2(x̃). Note this last step requires at most a depth-2 AC0 circuit with exp(|S|) ≤ exp(r) ≤
poly(n) many gates.

Next, because x1, . . . , xr are uniformly random, so too is the concatenated input x̃. Therefore,
Corollary 5.36 implies that the distribution∑

i∈S
ai(|xi| − yi) (mod 2)

is at most n−Ω(1)-far from the uniform distribution over a single bit in total variation distance.
Hence, |E[χa(D)]| ≤ n−Ω(1). Then, Lemma 5.31 implies that D is n−Ω(1)

√
2r-close to the uniform

distribution on {0, 1}r.
Note that for a sample drawn from D, the bits that are 0 correspond to the circuit successfully

computing MOD2 on the corresponding input. Hence, the success probability ε of C is precisely
the probability that a sample drawn from D has more than a 1

2 + 0.01 fraction of the bits set to
0. By a Chernoff bound, the probability that a uniformly random string in {0, 1}r has more than
a 1

2 + 0.01 of its bits set to 0 is at most exp(−Ω(r)). Because D is n−Ω(1)
√
2r-close to uniform (in

variation distance), we have that ε (i.e., the probability that the number of bits in a sample drawn
from D has more than a 1

2 + 0.01 fraction of its bits set to 0) is at most

n−Ω(1)
√
3r + exp(−Ω(r)),

which is bounded above by n−Ω(1) for some r ∈ Θ(log n).
At this point, we have shown that any GC0(k)[p]/rpoly circuit of depth d and size at most

exp(O(n1/2.01d)) trying to compute MOD2(xi) on a 1
2 + 0.01 fraction of inputs x1, . . . , xr ∈ {0, 1}n

will succeed with probability at most n−Ω(1). To complete the proof, we give a reduction from this
problem to the (q, r)-Parallel Parity Bending Problem, following the reduction given in [WKST19,
Theorem 40]. Suppose we have a solution y1, . . . , yr to (q, r)-Parallel Parity Bending Problem. Then
we can output y′1, . . . , y

′
r solving the above problem as follows. For yi, set y

′
i = 0 when |yi| ≡ 0

(mod q), and set y′i = 1 otherwise. This transformation preserves the number of successes, i.e., if
yi is correct for the (q, r)-Parallel Parity Bending Problem, then y′i will equal MOD2(xi).

5.5 On Interactive QNC0 Circuits

Grier and Schaeffer [GS20] obtain quantum-classical separations for two-round interactive problems.
We provide a high-level overview of their interactive problems and refer readers to [GS20] for further
detail. The problems involve a simple quantum state |G⟩ that is fixed (independent of the input).
In the first round, the input specifies a sequence of Clifford gates to be applied to |G⟩, along with
a subset of n − O(1) qubits to measure in the standard basis. A valid output for this round is
any measurement outcome that could have been observed if the measurement was performed on an
actual quantum computer.

40

In the second round, a similar process occurs: the input specifies a sequence of Clifford gates
to be applied to the O(1) qubits that were not measured in the first round. Again, a valid output
is any measurement outcome that could have been observed if the measurement was performed on
a quantum computer.

To summarize, all the interactive problems in [GS20] revolve around simulating a Clifford circuit
on n qubits, and the simulation is broken into two rounds. The point is that this problem caters
to quantum devices, and the interactive aspect is crucial for proving lower bounds.

In more detail, Grier and Schaeffer give three different interactive tasks T1,T2, and T3 that
follow the above structure. The differences between the three tasks come from, e.g., the geometry
of the starting state |G⟩. It is not too surprising that Grier and Schaeffer show that QNC0 can solve
their interactive tasks. On the other hand, they prove that any classical model that can solve these
interactive tasks (i.e., simulate the action on the fixed state |G⟩) must be fairly powerful. A bit more

carefully, [GS20, Theorem 1] shows that AC0[6] ⊆
(
AC0

)T1 , NC1 ⊆
(
AC0

)T2 , and ⊕L ⊆
(
AC0

)T3 .
To illustrate the usefulness of their theorem, let us explain how it implies a separation between

AC0[2] and QNC0. For the upper bound, they show that QNC0 can solve any of the tasks Ti.
For the lower bound, suppose towards a contradiction that AC0[2] can solve T2. Then, by Grier

and Schaeffer’s theorem, this implies that NC1 ⊆
(
AC0

)AC0[2]
= AC0[2], but this is a contradiction

because the containment of AC0[2] in NC1 is known to be strict.
The remainder of this subsection will use Grier and Schaeffer’s framework to show that there is

an interactive task that QNC0 circuits can solve but GC0(k)[p] circuits cannot. We begin by showing
that even a single G(k) gate can compute functions that are not computable by NC = AC = TC.

Theorem 5.38. There is a function f : {0, 1}n → {0, 1} computable by a single G(k) gate that is
not computable in NCi for any constant i and k = ω(logi−1(n)). When k ∈ logω(1)(n), then there
are functions f : {0, 1}n → {0, 1} that are computable by a single G(k) gate that cannot be computed
in NC = AC = TC.

Proof. We count the functions computable by NCi and a single G(k). For NCi, since the circuit

has depth O(logi n) with fan-in 2, there are ≤ 2O(logi n) gates in any NCi circuit. Furthermore, all
fan-in points of these gates are connected by a wire to the fan-out of another gate or an input bit.

Each gate can be one of {AND,OR,NOT}, giving 6O(logi n) many options. For each fan-in point

of a gate, there exists ≤ 2O(logi n) + n+ 2 many choices of wires that will connect this fan-in point
to either the fan-out of another gate, an input variable, or a constant 0/1 bit. This gives a total of

6O(logi n)(2O(logi n) + n+ 2)2
O(logi n)

= 2
‹O(2log

i n) NC1 circuits. Meanwhile, the number of G(k) gates

of fan-in n is at least 2(
n
≤k). To see this, note that

(n
≤k

)
many inputs can be assigned arbitrarily,

giving 2(
n
≤k) many options.17 This number exceeds 2

‹O(2log
i n) as long as k = ω(logi−1(n)). The final

part of the theorem follows from setting k = logω(1)(n).

As another form of Theorem 5.38, we can also show that, e.g., a single G(k) gate can compute
functions that require exponential-size circuits. We find this interesting in its own right because
proving superlinear circuit lower bounds is currently beyond our techniques.

Theorem 5.39. There is a function f : {0, 1}n → {0, 1} computable by a single G(k) gate that

requires SIZE
Ä
2Ω̃(nε)

ä
for k = Ω(nε) and ε > 0.

17By counting carefully, one can show that the number of G(k) gates is 2 · 2(
n
≤k) for 0 ≤ k ≤ n − 1, and 22

n

for
k = n. We do not need this for our argument.

41

Proof. We use a counting argument. In the proof of Theorem 5.38, we showed that there are at

least 2(
n
≤k) functions computable by G(k) gates. We will give a loose upper bound on the number

of size-s circuits, which suffices for our purposes. There are 3 choices each gate could be (from
{AND,OR,NOT}), and each gate has at most

(s+n
2

)
choices of two gates to feed into it (including

the n input bits). Finally there are s ways to pick one gate to be the output. Thus the total number
of ways to pick our s gates are at most 3s

(n+s
2

)s
s = (n+ s)O(s).

For s = Ω(nk−1) and k ≥ 2, this quantity is ≤ (n + s))O(s) = 2O(s log s) = 2
‹O(nk−1). But

2
‹O(nk−1) = o(2(

n
≤k)), so the number of size-s circuits is smaller than the number of G(k) gates for

s = Ω(nk−1) and k ≥ 2. Hence, there exists a G(k) gate that cannot be computed by size nk−1

circuits. In particular, by setting k = nε, we see that GC0(nε) /∈ SIZE(2Ω̃(nε)).

We say two circuit classes C and D are incomparable when there are functions f, g : {0, 1}n →
{0, 1} such that f ∈ C but f /∈ D and g /∈ C but g ∈ D.

Corollary 5.40. Let p be a prime number. For k ∈ ω(1), the class of depth-d GC0(k)[p] circuits

of size at most exp
Ä
O(n1/2.01d)

ä
is incomparable to NC1.

Proof. Theorem 4.4 says that MAJ cannot be computed by GC0(k)[p] for any prime p. MAJ can be
computed by NC1 because NC1 ⊇ TC0. Theorem 5.38 implies that there is a function that can be
computed by GC0(k)[p] but not NC1.

We can now use Grier and Schaeffer’s framework to get a separation between QNC0 and
GC0(k)[p] for an interactive problem.

Theorem 5.41 (Generalization of [GS20, Corollary 2]). Let k = O(n1/2d). There is an inter-
active task that QNC0 circuits can solve that depth-d, size-s GC0(k)[p] circuits cannot for s ≤
exp
Ä
O(n1/2.01d)

ä
.

Proof. Grier and Schaeffer’s task T2 ([GS20, Problem 12]) can be solved by QNC0. Suppose it can be

solved by GC0(k)[p] circuits for some prime p. Then, by [GS20, Theorem 1], NC1 ⊆ (AC0)GC
0(k)[p] =

GC0(k)[p] but this contradicts Corollary 5.40.

Acknowledgements

We thank Scott Aaronson, Srinivasan Arunachalam, Anna Gál, Uma Girish, Jesse Goodman,
Daniel Grier, Siddhartha Jain, Nathan Ju, William Kretschmer, Shyamal Patel, Avishay Tal, Ryan
Williams, and Justin Yirka for helpful conversations. This work was done in part while the authors
were visiting the Simons Institute for the Theory of Computing, supported by NSF QLCI Grant
No. 2016245, and in part while SG was an intern at IBM Quantum.

SG is supported by the NSF QLCI Award OMA-2016245 (Scott Aaronson). VMK is supported
by NSF Grants CCF-2008076 and CCF-2312573, and a Simons Investigator Award (#409864,
David Zuckerman).

References

[AA15] Scott Aaronson and Andris Ambainis. Forrelation: A Problem that Optimally
Separates Quantum from Classical Computing. In Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing, pages 307–316, 2015. arXiv:

1411.5729, doi:10.1145/2746539.2746547. [p. 8]

42

https://arxiv.org/abs/1411.5729
https://arxiv.org/abs/1411.5729
https://doi.org/10.1145/2746539.2746547

[Aar10] Scott Aaronson. BQP and the Polynomial Hierarchy. In Proceedings of the Forty-
Second ACM Symposium on Theory of Computing, pages 141–150, 2010. arXiv:

2010.05846, doi:10.1145/1806689.1806711. [pp. 2, 28]

[Aar16] Scott Aaronson. P
?
= NP. Open Problems in Mathematics, pages 1–122, 2016.

scottaaronson.com. doi:10.1007/978-3-319-32162-2_1. [p. 2]

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009. doi:10.5555/1540612. [pp. 11, 28]

[ABO84] Miklós Ajtai and Michael Ben-Or. A Theorem on Probabilistic Constant Depth Com-
putations. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, pages 471–474, 1984. doi:10.1145/800057.808715. [p. 21]

[ADH97] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. Quantum
Computability. SIAM Journal on Computing, 26(5):1524–1540, 1997. doi:10.1137/
S0097539795293639. [pp. 9, 29]

[AG94] Eric Allender and Vivek Gore. A Uniform Circuit Lower Bound for the Per-
manent. SIAM Journal on Computing, 23(5):1026–1049, 1994. doi:10.1137/

S0097539792233907. [pp. 7, 23]

[AGS21] Srinivasan Arunachalam, Alex Bredariol Grilo, and Aarthi Sundaram. Quantum
Hardness of Learning Shallow Classical Circuits. SIAM Journal on Computing,
50(3):972–1013, 2021. arXiv:1903.02840, doi:10.1137/20M1344202. [p. 13]

[AH94] Eric Allender and Ulrich Hertrampf. Depth Reduction for Circuits of Unbounded
Fan-in. Information and Computation, 112(2):217–238, 1994. doi:10.1006/inco.

1994.1057. [pp. 16, 19, 23]

[AIK22] Scott Aaronson, DeVon Ingram, and William Kretschmer. The Acrobatics of BQP.
In 37th Computational Complexity Conference (CCC 2022), volume 234 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 20:1–20:17, 2022. doi:10.

4230/LIPIcs.CCC.2022.20. [p. 9]

[Ajt83] Miklós Ajtai. Σ1-Formulae on Finite Structures. Annals of Pure and Applied Logic,
24(1):1–48, 1983. doi:10.1016/0168-0072(83)90038-6. [p. 2]

[AW93] Eric W. Allender and Klaus W. Wagner. Counting Hierarchies: Polynomial Time and
Constant Depth Circuits. In Current Trends in Theoretical Computer Science: Essays
and Tutorials, pages 469–483. World Scientific, 1993. doi:10.1142/9789812794499_
0035. [p. 28]

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complexity
Theory. ACM Transactions on Computation Theory, 1(1):1–54, 2009. doi:10.1145/
1490270.1490272. [pp. 2, 4]

[BG81] Charles H. Bennett and John Gill. Relative to a Random Oracle A, PA ̸= NPA ̸=
coNPA with Probability 1. SIAM Journal on Computing, 10(1):96–113, 1981. doi:

10.1137/0210008. [p. 28]

43

https://arxiv.org/abs/2010.05846
https://arxiv.org/abs/2010.05846
https://doi.org/10.1145/1806689.1806711
https://www.scottaaronson.com/papers/pnp.pdf
https://doi.org/10.1007/978-3-319-32162-2_1
https://doi.org/10.5555/1540612
https://doi.org/10.1145/800057.808715
https://doi.org/10.1137/S0097539795293639
https://doi.org/10.1137/S0097539795293639
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1137/S0097539792233907
https://arxiv.org/abs/1903.02840
https://doi.org/10.1137/20M1344202
https://doi.org/10.1006/inco.1994.1057
https://doi.org/10.1006/inco.1994.1057
https://doi.org/10.4230/LIPIcs.CCC.2022.20
https://doi.org/10.4230/LIPIcs.CCC.2022.20
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1142/9789812794499_0035
https://doi.org/10.1142/9789812794499_0035
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1137/0210008
https://doi.org/10.1137/0210008

[BGK18] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shal-
low circuits. Science, 362(6412):308–311, 2018. arXiv:1704.00690, doi:10.1126/
science.aar3106. [pp. 2, 8, 9, 26, 29, 30]

[BGKT20] Sergey Bravyi, David Gosset, Robert König, and Marco Tomamichel. Quantum
advantage with noisy shallow circuits. Nature Physics, 16(10):1040–1045, 2020.
arXiv:1904.01502, doi:10.1038/s41567-020-0948-z. [pp. 8, 10, 11, 26, 30, 34]

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P
?
= NP

Question. SIAM Journal on computing, 4(4):431–442, 1975. doi:10.1137/0204037.
[pp. 2, 4]

[Blu81] Norbert Blum. A 2.75n-lower bound on the network complexity of Boolean functions.
Technical Report A81/05, Universität des Saarlandes, 1981. [p. 2]

[Blu83] Norbert Blum. A Boolean function requiring 3n network size. Theoretical Computer
Science, 28(3):337–345, 1983. doi:10.1016/0304-3975(83)90029-4. [p. 2]

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997. doi:10.1137/S0097539796300921. [p. 8]

[CHO+22] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and
Rahul Santhanam. Beyond natural proofs: Hardness magnification and locality. Jour-
nal of the ACM, 69(4), 2022. doi:10.1145/3538391. [pp. 3, 4]

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning Algorithms from Natural Proofs. In 31st Conference on Com-
putational Complexity (CCC 2016), 2016. doi:10.4230/LIPIcs.CCC.2016.1. [pp. 7,
8, 19, 25]

[CSV19] Matthew Coudron, Jalex Stark, and Thomas Vidick. Trading Locality for Time:
Certifiable Randomness from Low-Depth Circuits. Communications in Mathematical
Physics, 2019. arXiv:1810.04233, doi:10.1007/s00220-021-03963-w. [p. 8]

[DK11] Evgeny Demenkov and Alexander S Kulikov. An Elementary Proof of a 3n − o(n)
Lower Bound on the Circuit Complexity of Affine Dispersers. In International Sym-
posium on Mathematical Foundations of Computer Science, pages 256–265. Springer,
2011. eccc:TR11-026. doi:10.1007/978-3-642-22993-0_25. [p. 2]

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S
Kulikov. A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit
Function. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Sci-
ence, pages 89–98, 2016. eccc:TR15-166. doi:10.1109/FOCS.2016.19. [p. 2]

[FGL20] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. Constant overhead quan-
tum fault tolerance with quantum expander codes. Communications of the ACM,
64(1):106–114, 2020. arXiv:1808.03821, doi:10.1145/3434163. [p. 34]

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and the
Polynomial-Time Hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. doi:
10.1007/BF01744431. [p. 2]

44

https://arxiv.org/abs/1704.00690
https://doi.org/10.1126/science.aar3106
https://doi.org/10.1126/science.aar3106
https://arxiv.org/abs/1904.01502
https://doi.org/10.1038/s41567-020-0948-z
https://doi.org/10.1137/0204037
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1145/3538391
https://doi.org/10.4230/LIPIcs.CCC.2016.1
https://arxiv.org/abs/1810.04233
https://doi.org/10.1007/s00220-021-03963-w
https://eccc.weizmann.ac.il/report/2011/026/
https://doi.org/10.1007/978-3-642-22993-0_25
https://eccc.weizmann.ac.il/report/2015/166/
https://doi.org/10.1109/FOCS.2016.19
https://arxiv.org/abs/1808.03821
https://doi.org/10.1145/3434163
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/BF01744431

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On Beating
the Hybrid Argument. Theory of Computing, 9(26):809–843, 2013. doi:10.4086/

toc.2013.v009a026. [p. 28]

[GJS21] Daniel Grier, Nathan Ju, and Luke Schaeffer. Interactive quantum advantage with
noisy, shallow Clifford circuits, 2021. arXiv:2102.06833. [pp. 8, 10, 11, 26, 30, 34]

[GK16] Alexander Golovnev and Alexander S. Kulikov. Weighted Gate Elimination: Boolean
Dispersers for Quadratic Varieties Imply Improved Circuit Lower Bounds. In Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
pages 405–411, 2016. doi:10.1145/2840728.2840755. [p. 2]

[GKMdO24] Alex Bredariol Grilo, Elham Kashefi, Damian Markham, and Michael de Oliveira. The
power of shallow-depth Toffoli and qudit quantum circuits, 2024. arXiv:2404.18104.
[pp. 8, 10, 26, 38, 39]

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008. doi:10.1017/CBO9780511804106. [pp. 11, 28]

[GS20] Daniel Grier and Luke Schaeffer. Interactive shallow Clifford circuits: Quantum ad-
vantage against NC1 and beyond, 2020. arXiv:1911.02555, doi:10.1145/3357713.
3384332. [pp. 2, 8, 10, 40, 41, 42]

[H̊as86] Johan H̊astad. Computational limitations for small depth circuits. PhD thesis, Mas-
sachusetts Institute of Technology, 1986. [p. 2]

[H̊as14] Johan H̊astad. On the Correlation of Parity and Small-Depth Circuits. SIAM Journal
on Computing, 43(5):1699–1708, 2014. doi:10.1137/120897432. [pp. 21, 26, 30]

[HMdOS24] Min-Hsiu Hsieh, Leandro Mendes, Michael de Oliveira, and Sathyawageeswar Subra-
manian. Unconditionally separating noisy QNC0 from bounded polynomial threshold
circuits of constant depth, 2024. [p. 11]

[HRST17] Johan H̊astad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An Average-
Case Depth Hierarchy Theorem for Boolean Circuits. Journal of the ACM, 64(5),
2017. doi:10.1145/3095799. [p. 2]

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 220–229, 1997. doi:10.1145/258533.

258590. [p. 2]

[Juk90] Stasys Jukna. Monotone Circuits and Local Computations. In Proceedings of the 31th
Conference of Lithuanian Mathematical Society, pages 28–29, 1990. [pp. 3, 4]

[Kum23] Vinayak M. Kumar. Tight Correlation Bounds for Circuits Between AC0 and TC0.
In 38th Computational Complexity Conference, volume 264, pages 18:1–18:40, 2023.
arXiv:2304.02770, doi:10.4230/LIPIcs.CCC.2023.18. [pp. 3, 4, 8, 10, 11, 13, 26,
27, 30, 31, 32]

[LG19] François Le Gall. Average-Case Quantum Advantage with Shallow Circuits. In
34th Computational Complexity Conference, volume 137 of Leibniz International

45

https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.4086/toc.2013.v009a026
https://arxiv.org/abs/2102.06833
https://doi.org/10.1145/2840728.2840755
https://arxiv.org/abs/2404.18104
https://doi.org/10.1017/CBO9780511804106
https://arxiv.org/abs/1911.02555
https://doi.org/10.1145/3357713.3384332
https://doi.org/10.1145/3357713.3384332
https://doi.org/10.1137/120897432
https://doi.org/10.1145/3095799
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://arxiv.org/abs/2304.02770
https://doi.org/10.4230/LIPIcs.CCC.2023.18

Proceedings in Informatics (LIPIcs), pages 21:1–21:20, 2019. arXiv:1810.12792,
doi:10.4230/LIPICS.CCC.2019.21. [p. 8]

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant Depth Circuits, Fourier
Transform, and Learnability. Journal of the ACM, 40(3):607–620, 1993. doi:10.

1145/174130.174138. [p. 7]

[LY22] Jiatu Li and Tianqi Yang. 3.1n−o(n) Circuit Lower Bounds for Explicit Functions. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1180–1193, 2022. eccc:TR21-023. doi:10.1145/3519935.3519976. [p. 2]

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5:115–133, 1943. doi:

10.1007/BF02478259. [p. 13]

[MSS91] Wolfgang Maass, Georg Schnitger, and Eduardo D. Sontag. On the Computational
Power of Sigmoid versus Boolean Threshold Circuits. In Proceedings of the Thirty
Second Annual Symposium of Foundations of Computer Science, pages 767–776, 1991.
doi:10.1109/SFCS.1991.185447. [p. 13]

[Mur71] Saburo Muroga. Threshold Logic and Its Applications. John Wiley & Sons, Inc.,
1971. [p. 13]

[NC02] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum Infor-
mation, 2002. doi:10.1017/CBO9780511976667. [p. 11]

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. Randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1.
[p. 2]

[Pau75] Wolfgang J Paul. A 2.5n-lower bound on the combinational complexity of Boolean
functions. In Proceedings of the Seventh Annual ACM Symposium on Theory of Com-
puting, pages 27–36, 1975. doi:10.1145/800116.803750. [p. 2]

[Rao07] Anup Rao. An Exposition of Bourgain’s 2-Source Extractor. In Electronic Colloquium
on Computational Complexity (ECCC), 2007. eccc:TR07-034. [p. 37]

[Raz85] Alexander Razborov. Lower bounds on the monotone complexity of some boolean
function. In Doklady Mathematics, volume 31, pages 354–357, 1985. [p. 3]

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical notes of the Academy of Sciences
of the USSR, 41(4):598–607, 1987. doi:10.1007/BF01137685. [pp. 2, 5, 14, 19, 20]

[Reg24] Oded Regev. An Efficient Quantum Factoring Algorithm, 2024. arXiv:2308.06572.
[p. 8]

[Ros17] Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on
the decision-tree size of AC0 , 2017. URL: https://users.cs.duke.edu/~br148/
logsize.pdf. [pp. 26, 30, 31]

[RR97] Alexander A. Razborov and Steven Rudich. Natural Proofs. Journal of Computer
and System Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494. [pp. 2, 4, 8,
25]

46

https://arxiv.org/abs/1810.12792
https://doi.org/10.4230/LIPICS.CCC.2019.21
https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/174130.174138
https://eccc.weizmann.ac.il/report/2021/023/
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/SFCS.1991.185447
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1145/800116.803750
https://eccc.weizmann.ac.il/report/2007/034/
https://doi.org/10.1007/BF01137685
https://arxiv.org/abs/2308.06572
https://users.cs.duke.edu/~br148/logsize.pdf
https://users.cs.duke.edu/~br148/logsize.pdf
https://doi.org/10.1006/jcss.1997.1494

[RT22] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. Journal of the ACM,
69(4):1–21, 2022. eccc:TR18-107. doi:10.1145/3313276.3316315. [pp. 2, 8, 9, 26,
27, 28]

[Sch74] Claus-Peter Schnorr. Zwei lineare untere Schranken fur die komplexitat Boolescher
funktionen. Computing, 13:155–171, 1974. doi:10.1007/BF02246615. [p. 2]

[Sch80] Claus-Peter Schnorr. A 3n-lower bound on the network complexity of Boolean
functions. Theoretical Computer Science, 10(1):83–92, 1980. doi:10.1016/

0304-3975(80)90074-2. [p. 2]

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509,
1997. arXiv:quant-ph/9508027, doi:10.1137/S0097539795293172. [p. 8]

[Sim97] Daniel R. Simon. On the Power of Quantum Computation. SIAM Journal on Com-
puting, 26(5):1474–1483, 1997. doi:10.1137/S0097539796298637. [p. 8]

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, pages 77–82, 1987. doi:10.1145/28395.28404. [pp. 2, 5, 14,
19, 20]

[Sto76] Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory, 10(1):323–336, 1976. doi:10.1007/

BF01683282. [p. 2]

[STV21] Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh. On the Probabilistic De-
grees of Symmetric Boolean Functions. SIAM Journal on Discrete Mathematics,
35(3):2070–2092, 2021. doi:10.1137/19M1294162. [p. 14]

[Tor91] Jacobo Torán. Complexity Classes Defined by Counting Quantifiers. Journal of the
ACM, 38(3):752–773, 1991. doi:10.1145/116825.116858. [p. 28]

[VV85] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.
In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
page 458–463. Association for Computing Machinery, 1985. doi:10.1145/22145.

22196. [p. 17]

[Wag86] Klaus W. Wagner. The Complexity of Combinatorial Problems with Succinct Input
Representation. Acta Informatica, 23:325–356, 1986. doi:10.1007/BF00289117. [p.
28]

[Wil14] Ryan Williams. Nonuniform ACC Circuit Lower Bounds. Journal of the ACM, 61(1),
2014. doi:10.1145/2559903. [pp. 2, 6, 14, 16, 19, 21, 22, 23, 24]

[WKST19] Adam Bene Watts, Robin Kothari, Luke Schaeffer, and Avishay Tal. Exponential
separation between shallow quantum circuits and unbounded fan-in shallow classical
circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 515–526, 2019. arXiv:1906.08890, doi:10.1145/3313276.

3316404. [pp. 2, 8, 10, 11, 26, 29, 30, 34, 35, 36, 37, 38, 40]

47

https://eccc.weizmann.ac.il/report/2018/107/
https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1007/BF02246615
https://doi.org/10.1016/0304-3975(80)90074-2
https://doi.org/10.1016/0304-3975(80)90074-2
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1145/28395.28404
https://doi.org/10.1007/BF01683282
https://doi.org/10.1007/BF01683282
https://doi.org/10.1137/19M1294162
https://doi.org/10.1145/116825.116858
https://doi.org/10.1145/22145.22196
https://doi.org/10.1145/22145.22196
https://doi.org/10.1007/BF00289117
https://doi.org/10.1145/2559903
https://arxiv.org/abs/1906.08890
https://doi.org/10.1145/3313276.3316404
https://doi.org/10.1145/3313276.3316404

[WP24] Adam Bene Watts and Natalie Parham. Unconditional Quantum Advantage for Sam-
pling with Shallow Circuits, 2024. arXiv:2301.00995. [p. 9]

[Wu22] Xinyu Wu. A Stochastic Calculus Approach to the Oracle Separation of BQP and
PH. Theory of Computing, 18(17):1–11, 2022. arXiv:2007.02431, doi:10.4086/
toc.2022.v018a017. [p. 27]

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In
26th Annual Symposium on Foundations of Computer Science, pages 1–10, 1985.
doi:10.1109/SFCS.1985.49. [p. 2]

[Yao89] A. C. Yao. Circuits and local computation. In Proceedings of the Twenty-First Annual
ACM Symposium on Theory of Computing, page 186–196. Association for Computing
Machinery, 1989. doi:10.1145/73007.73025. [pp. 3, 4]

48
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://arxiv.org/abs/2301.00995
https://arxiv.org/abs/2007.02431
https://doi.org/10.4086/toc.2022.v018a017
https://doi.org/10.4086/toc.2022.v018a017
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1145/73007.73025

