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Abstract
Razborov [22] exhibited the following surprisingly strong trade-off phenomenon in propositional
proof complexity: for a parameter k = k(n), there exists k-CNF formulas over n variables, having
resolution refutations of O(k) width, but every tree-like refutation of width n1−ϵ/k needs size
exp

(
nΩ(k)). We extend this result to tree-like Resolution over parities, commonly denoted by

Res(⊕), with parameters essentially unchanged.
To obtain our result, we extend the lifting theorem of Chattopadhyay, Mande, Sanyal and Sherif

[11] to handle tree-like affine DAGs. We introduce additional ideas from linear algebra to handle
forget nodes along long paths.
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1 Introduction

Understanding trade-offs among complexity measures in a computational model is a well
known interesting theme, with many published results (for example, time-space trade-
offs [14, 15, 24], rounds-communication trade-offs [19, 10, 2] and space-size trade-offs in
propositional proof complexity [6, 3, 5]). Typically, in these trade-offs, one showed that in
various models of computation, simultaneous optimization of two complexity measures, like
space and time, or rounds and total communication, or space and width (in refuting CNF
formulas) is not always possible. In particular trying to optimize one complexity measure,
necessarily leads to a huge blow-up in the other measure. For instance, in Yao’s 2-party
model of communication, the Greater-Than function can be computed in 1 round. It can
also be computed using randomized protocols of communication cost O(log n). But every
O(1)-round protocol, requires Ω(n) communication cost. On the other hand, every function
has a protocol of cost O(n). In all of the trade-off results cited above, the general story was
that trying to optimize the use of one resource, led to the cost wrt to the other resource
shooting up to the cost needed by a naive/generic algorithm.

In 2016, Razborov [22] exhibited formulas for which very different and extreme kind of
trade-offs hold in the propositional proof system of resolution. Although these unsatisfiable
k-CNF formulas on n variables have narrow refutations of O(k) width, every one of their tree-
like refutation of width less than n1−ϵ/k has size exp(nΩ(k)). That is, despite the fact that
every n-variable formula has a generic tree-like refutation of size 2n, these exhibited formulas
that do have narrow refutation require super-critical tree-like refutation size whenever width
is mildly restricted. Moreover, the super-critical size is in fact exponentially larger than the
generic upper bound. Razborov remarked that such a phenomenon seemed extremely rare in
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the known body of tradeoff results in the computational complexity literature. In concluding
his work, he urged finding more instances of such trade-offs. In response to that, follow-up
works have appeared. They can be classified into two types. Ones which continue to focus
on resolution and, others on more powerful proof systems. Examples of the former include
work by Berkholz and Nordstrom [8], who showed super-critical trade-offs between width and
space. A very recent work of Berkholz, Lichter and Vinall-Smeeth [7] proves super-critical
trade-offs for resolution width and tree-like size for refuting the isomorphism of two graphs1.

The second type of work answers Razborov’s call by finding such trade-offs in stronger
proof systems. This includes the recent work of Fleming, Pitassi and Robere [13] who first
showed that the argument of Razborov extends to general resolution DAGs. They then use
it along with appropriate lifting theorems to prove trade-offs between size and depth for
DAG like Resolution, Res(k), and cutting planes. Our work also falls in this second type of
trade-offs.

We exhibit super-critical trade-offs for width and tree-like size/depth in the style of
Razborov for resolution over parities, denoted by Res(⊕). This system, introduced by
Itsykson and Sokolov [17, 18], is one of the simplest generalizations of resolution for which
obtaining super-polynomial lower bounds on size of refutations is a current, well known,
challenge. Very recent works (see [12, 9]) managed to obtain exponential lower bounds on
the size of regular proofs in this system.

Our work here will concern tree-like Res(⊕) proofs. Lower bounds for them were obtained
by Itsykson and Sokolov [18] themselves. More recently, two independent works, one by
Beame and Koroth [4] and the other by Chattopadhyay, Mande, Sanyal and Sherif [11],
proved lifting theorems that yielded a systematic way of lifting tree-like resolution width
complexity to strong lower bounds on size of tree-like Res(⊕) proofs for formulas lifted
with constant-size gadgets. In this paper, we extend the lifting theorem by Chattopadhyay
et al. [11] in the following manner. Their result was applicable to parity decision trees
(duals of tree-like Res(⊕) proofs) that only had usual nodes where the algorithm queried
(correspondingly the proof resolved on) an F2 linear form. We call such nodes as query
nodes. On the other hand, we want to deal here with width-bounded proofs that could be
much deeper than n, the total number of variables of the formula. This would correspond
to parity decision trees where the height is much larger than n, and therefore, necessarily
there are nodes that forget. The affine space corresponding to such a forget node u is strictly
contained in the affine space corresponding to u’s only child node v. Alternatively, in the
bottom-up view of the corresponding proof, the linear clause at v is strictly weakened to get
the linear clause at u. Dealing with such nodes, so that the width of the (ordinary) clauses
in the extracted resolution proof never exceed the corresponding width of the linear clauses,
is the main technical contribution of this work. Thus, we establish a depth-to-size lifting
result from tree-like Res(⊕) of arbitrary depth to tree-like resolution, which also preserves
the width of the refutation.

▶ Theorem 1. Let Φ ◦ g be a lift of a contradiction Φ by an appropriate gadget g : {0, 1}ℓ →
{0, 1}. Suppose there is a tree-like Res(⊕) refutation for Φ ◦ g with size s and width w. Then,
there is a tree-like resolution refutation for Φ with depth at most log s and width at most w.

▶ Remark 2. We point out the precise difference between our Theorem 1 and the earlier
lifitng theorem of Chattopadhyay et al [11]. The earlier theorem, given a tree-like refutation

1 This work appears to have improved Razborov’s work in the following manner. Their size lower bound
is exponential in the size of the formula whereas this was not so for Razborov.
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of Φ ◦ g in Res(⊕) of size s and width w, would have extracted a tree-like refutation of Φ in
ordinary resolution of depth log s, with no guarantees on the width of this refutation. In
fact, the width could get as large as the depth of the extracted refutation, i.e. log s. In
super-critical trade-offs, which is our chief interest here, the width w of the given Res(⊕)
refutation of Φ ◦ g could be exponentially smaller than log s. This renders the earlier lifting
theorem unusable for demonstrating such trade-offs.

Applying Theorem 1 to the trade-off by Razborov [22], we immediately obtain an analogous
trade-off in the Res(⊕) proof system.

▶ Theorem 3. Let k = k(n) ≥ 12 be any parameter and let ε > 0 be an arbitrary constant.
Then, there exists a k-CNF contradiction τ over n variables such that there is a resolution
refutation for τ with width at most O(k), but for every tree-like Res(⊕) refutation Π for τ

with w(Π) ≤ n1−ε/k, we have the bound |Π| ≥ exp(nΩ(k)).

The contradiction τ from the previous theorem is a lift of the contradiction τ ′ constructed
by Razborov [22] by an appropriate gadget g : {0, 1}ℓ → {0, 1} with a constant size. A
caveat of τ ′ (as Razborov also noted) is that the number of clauses of τ ′ is nΘ(k). Naturally,
this caveat is inherited by our contradiction τ . However, since Theorem 3 is proved via a
lifting theorem using a gadget of constant size, if one were to construct a formula τ̃ with
significantly fewer clauses while yielding a similar trade-off for resolution, then Theorem 3
would be immediately improved – the number of clauses of τ̃ ◦ g would also be reduced.

Relation to Other Recent Works

The Res(⊕) proof system has been an active area of research. Recently, Efremenko, Garlík,
and Itsykson [12] showed that the binary pigeonhole principle formula requires an exponential-
size refutation within the so-called bottom-regular Res(⊕). The bottom-regular Res(⊕) is
a fragment of Res(⊕) that contains both tree-like Res(⊕) and regular resolution proof
systems. Furthermore, Bhattacharya, Chattopadhyay, and Dvořák [9] showed that bottom-
regular Res(⊕) can not polynomially simulate even ordinary, but DAG-like resolution. This
separation was very recently improved quantitatively by Alekseev and Itsykson [1].

Furthermore, Alekseev and Itsykson [1] established a width-to-width lifting from resolution
to Res(⊕). They proved this in a contra-positive way – if there is no resolution refutation
of a contradiction Φ with width w, then there is no width-w Res(⊕) refutation of a lift
of Φ by an appropriate gadget g. They utilized a game interpretation of resolution and
Res(⊕) to prove their lifting theorem. While their proof is quite short, it is unclear whether
their technique can be adapted to prove the depth-to-size lifting theorem as we need in
order to show the trade-off in Res(⊕) (our Theorem 3). In particular, their theorem seems
incomparable to the depth-to-size lifting of Chattopadhyay et al. [11]. On the other hand,
since any refutation can be expanded into a tree-like refutation (with a possible exponential
blow-up in size), our lifting theorem (Theorem 1) immediately implies the width-to-width
lifting theorem of Alekseev and Itsykson (however our proof seems more involved). Hence,
our Theorem 1 effectively contains a common generalization of the width-to-width lifting of
Alekseev and Itsykson [1] and depth-to-size lifting of Chattopadhyay et al. [11]. Moreover,
we use a completely different technique than Alekseev and Itsykson [1]. Specifically, we
establish our lifting theorem directly by constructing a tree-like resolution refutation for a
contradiction Φ simulating a tree-like Res(⊕) refutation for Φ ◦ g. To achieve this, we use
some ideas from linear algebra that, to our knowledge, have not been previously utilized in
the context of lifting.
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Overview of Our Ideas

Overall, the ideas behind the proof of Theorem 1 are inspired by the work of Chattopadhyay
et al. [11]. However, they did not consider Res(⊕) refutation with a limited width. Thus,
they only needed to process query nodes to prove their lifting theorem. In contrast, our
setting also involves forget nodes, where a linear equation from the span of previously queried
equations is forgotten. It turns out that processing forget nodes is non-trivial. The linear
algebraic machinery we develop to process forget nodes appears novel and is our main
technical contribution. In particular, an affine space can be viewed in two ways: the first is
by the (linear) space of constraints that could be thought of as the dual view. The primal
view is that of the set of vectors lying in space represented by a basis of the underlying
vector space and a shift vector. Previously, in [11], the dual view was very effectively used for
depth-to-size lifting in the absence of forget nodes. This is because a query node naturally
adds a constraint to the dual space. On the other hand, a forget node increases the dimension
of the affine space. This new space is not conveniently representable wrt the basis maintained
for the dual space of constraints just before ‘forgetting’ happens. Here it seems the primal
view is more helpful as any basis of a space A1 can be extended to a basis of a space A2
whenever A1 ⊆ A2. Our technical centre-piece is to combine the primal and dual views to
arrive at a characterization, via Theorem 13, of the constraint space of A2 in terms of the
constraint space of A1, where A1 ⊆ A2 ⊆ Fn

2 . With more ideas, including a new notion of
strongly stifled gadgets that extends the earlier notion of stifling introduced by [11], Section 7
yields the process of dealing with forget nodes.

We feel that this machinery should find use in tackling other open problems at the
interface of linear algebra and computational complexity.

2 Tree-like Proofs and Decision Trees

A proof in a propositional proof system starts from a set of clauses Φ, called axioms, that
is purportedly unsatisfiable. It generates a proof by deriving the empty clause from the
axioms, using inference rules. The main inference rule in the standard resolution, called the
resolution rule, derives a clause A ∨B from clauses A ∨ x and B ∨ ¬x (i.e., we resolve the
variable x). If we can derive the empty clause from the original set Φ then it proves the set
Φ is unsatisfiable.

Resolution over parities (Res(⊕)) is a generalization of the standard resolution, using
linear clauses (disjunction of linear equations in F2) to express lines of a proof. It consists of
two rules:
Resolution Rule: From linear clauses A ∨ (ℓ = 0) and B ∨ (ℓ = 1) derive a linear clause

A ∨B.
Weakening Rule: From a linear clause A derive a linear clause B that is semantically implied

by A (i.e., any assignment satisfying A also satisfies B).
The length |Π| of a resolution (or Res(⊕)) refutation Π of a formula Φ is the number of
applications of the rules above in order to refute the formula Φ. The width w(Π) of a
resolution (or Res(⊕)) refutation Π is the maximum width of any (linear) clause that is used
in the resolution proof. A (linear) resolution proof is tree-like if the resolution rule is applied
in a tree-like fashion. The depth of the tree-like proof Π is the depth of the underlying tree
(i.e., the length of the longest path from the root to a leaf).

It is known that a tree-like resolution (or Res(⊕)) proof, for an unsatisfiable set of clauses
Φ, corresponds to a (parity) decision tree for a search problem Search(Φ) that is defined as
follows. For a given assignment α of the n variables of Φ, one needs to find a clause in Φ that
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is not satisfied by α (at least one exists as the set Φ is unsatisfiable). The correspondence
holds even for general (not only tree-like) proofs (see for example Garg et al. [16], who credit
it to earlier work of Razborov [21] that was simplified by Pudlák [20] and Sokolov[23]), but
in this paper, we are interested only in tree-like proofs.

Let R ⊆ {0, 1}m ×O, where O is a set of possible outputs. A forgetting parity decision
tree (FPDT) computing R is a tree T such that each node has at most two children and the
following conditions hold:

Each node v is associated with an affine space Av ⊆ Fm
2 .

For every node v with two children u and w, it holds that Av = Au ∪ Aw. Such nodes
are called query nodes.
Every node v with exactly one child u is called a forget node. It holds that Av ⊆ Au.
Each leaf ℓ is labeled by oℓ ∈ O such that for all x ∈ Aℓ, it holds that (x, oℓ) ∈ R.
For the root r, Ar = Fm

2 .

The size |T | of an FPDT T is the number of nodes of T and the width w(T ) of FPDT
T is the largest integer d such that there exists an affine space of co-dimension at least d

associated with some node of T . Note that there are no forget nodes in a standard parity
decision tree. Thus, for such trees, the width is exactly the depth of the tree. It no longer
holds for this model, because we may “forget” some linear queries that have been made
earlier.

By properties of affine spaces, it holds that for every query node v with children u and w,
there is a linear query fv such that Au = {x ∈ Av|⟨fv, x⟩ = 0} and Aw = {x ∈ Av|⟨fv, x⟩ = 1},
or vice versa. We say that fv is the query at v.

A forgetting decision tree (FDT) is defined similarly to FPDT but instead of affine spaces,
cubes are associated to each node. Consequently, the width w(T ) of FDT is the maximum
number d such that there exists a cube of width at least d associated with some node of T
and queries of single variables replace the linear queries at nodes.

The correspondence between a F(P)DT’s and tree-like resolution (or Res(⊕)) proofs is the
following: we represent a (linear) resolution proof as a tree where nodes are associated with
(linear) clauses. The leaves are associated with clauses of Φ and the root is associated with
the empty clause. Each node with two children corresponds to an application of the resolution
rule and each node with exactly one child corresponds to an application of the weakening
rule. To get an F(P)DT for Search(Φ) we just negate the clauses that are associated with
the nodes. Thus, each node is associated with a cube (or an affine space in the case of
Res(⊕)/FPDT). Therefore, from a tree-like resolution (or Res(⊕)) refutation Π for Φ we can
get an F(P)DT T for Search(Φ) and vice versa. It is clear that the width and the depth of
such decision tree T are exactly the same as the width and the depth of the corresponding
tree-like Res(⊕) refutation Π and the length |Π| equals the number of inner nodes of T (as
the inner nodes of T correspond to the applications of the Res(⊕) rules).

We say an FPDT T is canonical if for each forget node v of T and its only child u, it
holds that co-dim(Av) = co-dim(Au) + 1. We say an FPDT T is succinct if the parent of
each forget node is a query node. Note that any FPDT can be transformed into an equivalent
canonical (or succinct) FPDT by expanding forget nodes into paths of forget nodes (or
contracting paths of forget nodes to single vertices).

Consider an FPDT T and its succinct form T̄ . Note that the number of query nodes of
T̄ and T is the same, and analogously the number of query nodes on a root-leaf path in T̄
equals the number of query nodes of the corresponding path in T . Thus, for an FPDT T we
define query size |T |q and query depth dq(T ) to be the number of query nodes of T and the
maximum number of query nodes on a root-leaf path of T .
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▶ Observation 4. Let T be a succinct FPDT and Π be the tree-like Res(⊕) refutation
corresponding to T . Then, |Π| ≤ 3 · 2dq(T ).

Proof. As mentioned above, the length of Π equals the number of inner nodes of T . The
tree T has at most 2dq(T ) − 1 query nodes. Since T is succinct, the number of forget nodes
is at most twice the number of query nodes as each query node might have at most two
forget nodes as its children. Further, any child of a forget node is not a forget node. Thus,
|Π| ≤ 3 · 2dq(T ). ◀

3 Lifting of Relations and Formulas

Let g : {0, 1}ℓ → {0, 1} be a boolean function. For a relation R ⊆ {0, 1}n ×O we define its
lift R ◦ g ⊆ {0, 1}nℓ ×O as

R ◦ g =
{

(y, o) ∈ {0, 1}nℓ ×O |
(−→g (y), o

)
∈ R

}
,

where −→g (y1
1 , . . . , y1

ℓ , . . . , yn
1 , . . . , yn

ℓ ) =
(
g(y1

1 , . . . , y1
ℓ ), . . . , g(yn

1 , . . . , yn
ℓ )

)
.

For CNF Φ over n variables {x1, . . . , xn}, let Φ ◦ g be the following lift of Φ over the
variables {yi

j | i ∈ [n], j ∈ [ℓ]}. For any clause D of Φ, let Vars(D) be the set of variables of
D, and let ηD ∈ {0, 1}Vars(D) be the only falsifying assignment of D. Then,

D ◦ g =

 ∨
xi∈Vars(D),j∈[ℓ]

yi
j ̸= κi

j

∣∣∣ κ ∈ −→g −1(ηD)

 ,

where yi
j ̸= κi

j is the following literal:

yi
j ̸= κi

j =
{

yi
j if κi

j = 0,

¬yi
j if κi

j = 1.

Now, the clauses of Φ ◦ g are {D ◦ g | D clause of Φ}.

▶ Observation 5. For a clause D, an assignment δ of Vars(D ◦ g) falsifies D ◦ g if and only
if −→g (δ) = ηD, i.e., −→g (δ) falsifies D.

4 Notation

Let S be a set. We present a notation that we use for matrices and vectors with entries from
the set2 S. For a matrix M ∈ Sq×m and j ∈ [m], M [∗; j] is a vector in Sq corresponding to the
j-th column of M . For a sequence of coordinates r1, . . . , rk ∈ [q], we denote M [r1, . . . , rk; j]
the projection of the j-th column of M onto the coordinates r1, . . . , rk, i.e., M [r1, . . . , rk; j] =(
M [r1; j], . . . , M [rk; j]

)
∈ Sk. Analogously, we use this notation also for rows and vectors,

e.g., M [i; ∗] ∈ Sm is the vector corresponding to the i-th row of M , and for a vector u ∈ Sq,
u[r1, . . . , rk] is the projection of u onto the coordinates r1, . . . , rk, etc. For a projection
on all but one coordinate i ∈ [q], we use the notation M [−i; j] or u[−i] for brevity. I.e.,
M [−i; j] :=

(
M [1; j], . . . , M [i − 1; j], M [i + 1; j], . . . , M [q; j]

)
∈ Sq−1 is the j-th column of

M without the i-th entry, and similarly u[−i] :=
(
u[1], . . . , u[i− 1], u[i + 1], . . . , u[q]

)
∈ Sq−1

is the vector u without the i-th entry. For indexing single entries of vectors or matrices we
also use subscripts – i.e. vi := v[i] and Mi,j := M [i; j].

2 In this paper, the set S will be either the field F2 or {0, 1, ∗}.
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5 Stifling

In this section, we extend the notion of stifling introduced by Chattopadhyay et al. [11].
Let g : {0, 1}ℓ → {0, 1} be a Boolean function. For i ∈ [ℓ] and b ∈ {0, 1}, we say a partial
assignment δ ∈ {0, 1, ∗}ℓ is an (i, b)-stifling pattern for g if δj = ∗ if and only if j = i, and
for any γ ∈ {0, 1}ℓ such that γ[−i] = δ[−i], we have g(γ) = b. In words, δ assigns a value to
all but the i-th bit and when we extend δ to a full assignment γ, it holds that g(γ) = b no
matter how we set the value of the i-th bit.

▶ Definition 6. A Boolean function g : {0, 1}ℓ → {0, 1} is strongly stifled if there is a
collection P :=

{
δi,b|i ∈ [ℓ], b ∈ {0, 1}

}
where each δi,b is an (i, b)-stifling pattern for g and

∀ i ∈ [ℓ], b ∈ {0, 1}, and ∅ ≠ D ⊆ [ℓ] \ {i}
∃ j ∈ D such that δj,b

[
D \ {j}

]
= δi,b

[
D \ {j}

]
.

The collection P is called a converting collection of stifling patterns of g.

Chattopadhyay et al. [11] defined a stifled function (namely 1-stifled) as a function
g : {0, 1}ℓ → {0, 1} such that for each i ∈ [ℓ] and b ∈ {0, 1} there is an (i, b)-stifling pattern
for g. In this work, we require not only the existence of the stifling patterns but a stronger
property that we can convert the stifling patterns to each other. More formally, consider an
(i, b)-stifling pattern δi,b from the collection P (from the definition above). Let an adversary
give us a set of coordinates D ⊆ [ℓ] \ {i}. Then, we are able to pick a coordinate j ∈ D such
that the stifling pattern δj,b is equal to δi,b on all coordinates in D \ {j}.

By a simple verification we can show that indexing of two bits IND1 : {0, 1}3 → {0, 1}
and majority of 3 bits MAJ3 : {0, 1}3 → {0, 1} are strongly stifled functions, where
IND1(a, d0, d1) = da and MAJ3(x) = 1 if and only if

∣∣{i ∈ [3]|xi = 1}
∣∣ ≥ 2.

▶ Observation 7. The functions IND1 and MAJ3 are strongly stifled.

Further, the strongly stifled notion is actually stronger than the original stifled notion,
because the inner product function of 2-bit vectors IP2 : {0, 1}4 → {0, 1} is stifled [11] but
not strongly stifled, where IP2(x1, x2, y1, y2) = x1x2 + y1y2 mod 2.

▶ Observation 8. The function IP2 is not strongly stifled.

For more details, see the appendix.

6 Linear Algebraic Tools

Let A ⊆ Fm
2 be an affine space over a field F2. A constraint representation of A is a

system of linear equations (M |z) where M ∈ Fq×m
2 and z ∈ Fq

2 for some q ≤ m such
that A = {y | My = z}. The columns of M correspond to the variables of the system
(M |z) and rows of M correspond to the constraints. We say a constraint i contains a
variable a if Mi,a = 1. A matrix M ∈ Fq×m

2 is in an echelon form if there are q columns
c1 < c2 < · · · < cq ∈ [m] such that for all i ∈ [q] it holds that

M [i; cj ] =
{

1 if i = j,

0 otherwise.

Thus, the submatrix of M induced by the columns c1, . . . , cq is the identity matrix Iq ∈ Fq×q
2 .

The variables corresponding to the columns c1, . . . , cq are dependent variables of the system
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(M |z) and the remaining variables are independent. The ci-th entry of the i-th row of M is
called the pivot of the i-th row. We say a constraint representation (M |z) is in an echelon
form if the matrix M is in an echelon form.

It turns out that transforming a constraint representation into a basis representation and
back is useful for processing of the forget nodes. Hence, we exhibit several properties of a
basis representation of affine spaces. Each affine space A ⊆ Fm

2 is a shift of a vector space
V ⊆ Fm

2 by a shift vector s ∈ Fm
2 , i.e. A = V + s = {v + s | v ∈ V }. Consider a basis of

V of dimension d and arrange the basis vectors as columns of a matrix B ∈ Fm×d
2 . Thus,

the vector space V is the column space of B that we denote C(B). We say [B, s] is a basis
representation of the affine space A.

▶ Observation 9. Let [B, s] be a basis representation of an affine space A ⊆ Fm
2 . Let b ∈ Fm

2
be a column in B and B′ be a matrix arising from B by adding the vector b to a different
column of B. Let s′ := s + b. Then, [B′, s] and [B, s′] are basis representations of A.

A matrix B ∈ Fm×d
2 , where m ≥ d, is in a canonical form if there are d rows r1 < r2 <

· · · < rd ∈ [m] such that for all i ∈ [d] it holds that

B[ri; i] =
{

1 if i = j,

0 otherwise.

Thus, analogous to the echelon form, the submatrix of B induced by the rows r1, . . . , rd is
the identity matrix Id ∈ Fd×d

2 .
One can transform a constraint representation in an echelon form into a basis repres-

entation in a canonical form and vice versa as follows. Let M ∈ Fq×m
2 be a matrix in

an echelon form with columns c1 < · · · < cq ∈ [m] inducing the identity matrix Iq. Let
W ∈ Fq×m−q

2 be the submatrix of M after removing the columns c1, . . . , cq. We construct
a matrix B ∈ Fm×m−q

2 in the following way. The ci-th row of B is the i-th row of W .
Thus, we have set q rows of B and let r1 < · · · < rm−q ∈ [m] be the rows of B that have
not been set yet. We set the ri-th row of B to be the canonical vector ei ∈ Fm−q

2 , where
ei = (0, . . . , 1

i
, . . . , 0).

Thus, the rows r1, . . . , rm−q of B induce the identity matrix Im−q and the matrix B is in
a canonical form. If ci = i for all i ∈ [q], then rj = q + j and the matrices M and B look as
follows:

M = (Iq W ), and B =
(

W

Im−q

)
.

Note that the sequence of columns c1, . . . , cq of M inducing the identity matrix does not have
to be unique. Thus, we say B is the canonical transform of M over the columns c1, . . . , cq.
Further, by a reverse procedure, we can create the matrix M again from the matrix B and
then the matrix M is the echelon transform of B over the rows r1, . . . , rm−q. i.e., the matrix
W is a submatrix of B induced by the rows c1 < · · · < cq, rj-th column of M is the j-th
column of W and ci-th column of M is the canonical vector ei ∈ Fq

2.

▶ Lemma 10. Let M ∈ Fq×m
2 be a matrix in an echelon form with columns c1, . . . , cq inducing

the identity matrix Iq. Let B ∈ Fm×m−q
2 be the canonical transform of M over c1, . . . , cq.

Then, the rows of M are orthogonal (under the standard dot product over F2) to the columns
of B.



A. Chattopadhyay and P. Dvořák 9

Proof. Let W be the submatrix of M after removing the columns c1, . . . , cq. Let u :=
M [i; ∗] ∈ Fm

2 , and v := B[∗; j] ∈ Fm
2 . Then,

⟨u, v⟩ =
∑

k∈[m]

ukvk =
∑

k∈{c1,...,cq}

ukvk +
∑

k∈[m]\{c1,...,cq}

ukvk. (1)

The projection u[c1, . . . , cq] equals to ei ∈ Fq
2 as it corresponds to the i-th row of the

identity matrix Iq. Thus, ucℓ
= 1 if and only if ℓ = i and we have that

∑
k∈{c1,...,ck} ukvk = vci .

Further, it holds B[ci; ∗] = W [i; ∗] by the construction. Therefore, vci
= Wi,j as v is the j-th

column of B.
Let r1 < r2 < · · · < rm−q ∈ [m] be the rows of B different from c1, . . . , cq. Recall that

the submatrix of B induced by the rows r1, . . . , rm−q is the identity matrix Im−q. Thus, the
projection v[r1, . . . , rm−q] corresponds to the j-th column of the identity matrix Im−q and
vrℓ

= 1 if and only if ℓ = j. Therefore,
∑

k∈[m]\{c1,...,cq} ukvk = urj
. The rj-th column of M

is the j-th column of W as rj ̸∈ {c1, . . . , cq}. Thus, urj
= Wi,j . After plugging it into (1),

we have ⟨u, v⟩ = Wi,j + Wi,j = 0 in F2. ◀

Now, we show how to get a basis representation from a constraint representation. Let
z ∈ Fq

2 for q ≤ m and c1 < · · · < cq ∈ [m]. We pad z with zeroes to get a vector in Fm
2 in the

following way:

Pad
(
z, m, {c1, . . . , cq}

)
j

=
{

zi if j = ci,

0 otherwise.

In words, to create the vector s := Pad
(
z, m, {c1, . . . , cq}

)
we put the value zi on the ci-th

entry of s and zeroes on all entries different from c1, . . . , cq.

▶ Lemma 11. Let z ∈ Fq
2 be a vector, M ∈ Fq×m

2 be a matrix in an echelon form with
columns c1 < · · · < cq ∈ [m] inducing the identity matrix Iq. Let (M |z) be a constraint
representation of an affine space A ⊆ Fm

2 . Let B ∈ Fm×q
2 be the canonical transform of M

over the columns c1, . . . , cq, and s := Pad
(
z, m, {c1, . . . , cq}

)
∈ Fm

2 . Then, [B, s] is a basis
representation of the affine space A.

Proof. Let A′ = C(B) + s, i.e., [B, s] is a basis representation of A′. We will show that
A′ = A. Let u ∈ A′, thus u = v + s for a vector v ∈ C(B). By Lemma 10 and linearity of the
inner product, we have that Mv = 0. By the construction, the vector s contains only 0’s on
the coordinates different from c1, . . . , cq and the projection s[c1, . . . , cq] equals the vector z.
Since the submatrix of M induced by the columns c1, . . . , cq is the identity matrix Iq, we
have Ms = z. We conclude that Mu = Mv + Ms = Ms = z. Thus, A′ ⊆ A. Since the rows
of M and columns of B are linearly independent, we have that dim(A) = dim(A′) = m− q.
Therefore, A′ = A. ◀

Let C ∈ Fq×m
2 be a matrix and t ∈ Fm

2 be a non-zero vector. We define a matrix
C ′ = Del(C, t, i) ∈ Fq−1×m

2 where C ′ arises from C by adding the i-th row to all rows j such
that tj = 1 and then deleting the row i. Analogously, we define the Del operation for a
constraint representation (M |z) of an affine space A ⊆ Fm

2 , where we treat the vector z as
the last column of the matrix C. It turns out the Del operation is the only operation needed
to get a constraint representation for a superspace as shown later in Theorem 13. Before we
prove Theorem 13, we show how the Del operation changes the columns of the input matrix.

▶ Lemma 12. Let C ∈ Fq×m
2 be a matrix in an echelon form with columns c1, . . . , cq ∈ [m]

inducing the identity matrix Iq. Let C ′ := Del(C, t, i) for a non-zero vector t ∈ Fq
2 with ti = 1.

Then,
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1. The columns c1, . . . , ci−1, ci+1, . . . , cq of C ′ induce the identity matrix Iq−1.
2. The ci-th column of C ′ equals to the vector t without the i-th entry, i.e., C ′[∗; ci] = t[−i].
3. Let j ∈ [m] \ {c1, . . . , cq} and let vj ∈ Fq

2 be the following vector.

vj :=
{

C[∗, j] + t if Ci,j = 1
C[∗, j] otherwise

Then, C ′[∗; j] = vj [−i].

Proof. Let D be a matrix arising from C by adding the i-th row to the rows j such that
tj = 1. Thus, the matrix C ′ arises from D by removing the i-th row.

The columns c1, . . . , ci−1, ci+1, . . . , cq are not modified by the adding of the i-th row
during the Del operation as the i-th entry of all these columns is 0. I.e., the column D[∗; cj ]
(for j ̸= i) equals to the canonical vector ej ∈ Fq

2. Thus after removing the i-th row, the
columns c1, . . . , ci−1, ci+1, . . . , cq of C ′ indeed induce the identity matrix Iq−1.

The column C[∗; ci] equals to the canonical vector ei ∈ Fq
2. After adding the i-th row to

the other rows of C according to the vector t, it holds that D[∗; ci] = t as ti = 1 and thus,
C ′[∗; ci] = D[−i; ci] = t[−i].

Let j ∈ [m] \ {c1, . . . , cq}. If Ci,j = 0, then the j-th column of C is not modified by the
adding of i-th row during the Del operation, i.e., D[∗; j] = C[∗; j] = vj . On the other hand,
if Ci,j = 1, then for any k ∈ [q] holds that

Dk,j =
{

Ck,j + Ci,j if tk = 1,
Ck,j otherwise.

It follows that D[∗, j] = C[∗, j] + t = vj if Ci,j = 1. In both cases, we have C ′[∗, j] = vj [−i].
◀

We are now ready to state below the main linear algebraic ingredient needed for our work.

▶ Theorem 13. Let A1 ⊆ A2 ⊆ Fm
2 be two affine spaces such that dim(A2) = dim(A1) + 1.

Let (M1|z1) be a constraint representation in the echelon form of A1 such that M1 ∈ Fq×m
2 .

Then, there is a non-zero vector t ∈ Fq
2 such that the following is true: for every i ∈ [q] with

ti = 1, Del
(
(M1|z1), t, i

)
is a constraint representation of A2 in echelon form.

Proof of Theorem 13. Let c1 < · · · < cq be columns of M inducing the identity matrix
Iq. Let B1 ∈ Fm×m−q

2 be the canonical transform of M1 over c1, . . . , cq, and let s1 :=
Pad

(
z1, m, {c1, . . . , cq}

)
. By Lemma 11, we have that A1 = C(B1) + s1. Since A1 ⊆ A2 and

dim(A2) = dim(A1) + 1, there is a vector v such that B′
2 := (B1 v) is a basis of A2, i.e.,

A2 = C(B′
2) + s1 where the matrix B′

2 ∈ Fm×m−q+1
2 arises by appending the vector v as the

last column to the matrix B1.
Let r1 < · · · < rm−q be the rows of B1 different from c1, . . . , cq. By the construction,

the rows r1, . . . , rm−q of B1 induce the identity matrix Im−q. Thus, we can assume that
v[r1, . . . , rm−q] = (0, . . . , 0). Otherwise, we can zero out those entries by adding the appro-
priate columns of B1 to v. By Observation 9, this operation does not change the affine
space that is represented by [B′

2, s1]. Note that s1[r1, . . . , rm−q] = (0, . . . , 0) as well by the
construction.

We set the vector t ∈ Fq
2 as t := v[c1, . . . , cq]. The vector t is indeed non-zero as the

columns of B′
2 are linearly independent and we suppose that the vector v contains only zeroes

on all coordinates different from c1, . . . , cq. We will show that the vector t is indeed the
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sought vector, i.e., for any i ∈ [q] with ti = 1 the system of equations Del
(
(M |z), t, i)

)
is a

constraint representation of A2.
To get a constraint representation for A2, we change B′

2 to a canonical form first. Let
i ∈ [q] such that ti = 1. We create a matrix B2 ∈ Fm×m−q+1

2 in two steps.
1. Add v (the last column of B′

2) to each column j such that the ci-th entry of the column
j is 1 (i.e., B′

2[ci, j] = 1).
2. Let k− 1 be the number of rj ’s smaller then ci, i.e., we have r1 < · · · < rk−1 < ci < rk <

· · · < rm−q (recall that rj ’s are different from cℓ’s). Move the last column (the vector v)
to be the k-th column of B2 (the remaining columns move right by 1 position).

Formally, we have B2[∗; k] := v and for j ̸= k :

B2[∗; j] :=


B′

2[∗; j] + v if j < k and B′
2[ci, j] = 1,

B′
2[∗; j] if j < k and B′

2[ci, j] = 0,

B′
2[∗; j − 1] + v if j > k and B′

2[ci, j − 1] = 1,

B′
2[∗; j − 1] if j > k and B′

2[ci, j − 1] = 0.

Now, the k-th column of B2 is the only column of B2 that has 1 on the ci-th entry.
Further, B2[r1, . . . , rm−q; k] = (0, . . . , 0) as it corresponds to the last column of B′

2 (i.e., to
the vector v). Let r′

1, . . . , r′
m−q+1 be the following sequence:

r′
j :=


rj if j < k,

ci if j = k,

rj−1 if j > k.

I.e., we insert the value ci into the k-th position of the sequence r1, . . . , rm−q. Then, the rows
r′

1 < · · · < r′
m−q+1 of B2 induce the identity matrix Im−q+1. Therefore, B2 is in a canonical

form. Let s2 ∈ Fm
2 be defined as

s2 :=
{

s1 + v if s1[ci] = 1,

s1 otherwise.

Note that the vector s2[r′
1, . . . , r′

m−q+1] = (0, . . . , 0) as v[ci] = ti and we assume that ti = 1.
Since changing the order of columns of a matrix does not change the columns space, [B2, s2]
is a basis representation of A2 by Observation 9.

Now, let M2 ∈ Fq−1×m
2 be the echelon transform of B2 over the rows r′

1, . . . , r′
m−q+1. Let

c′
1, . . . , c′

q−1 be the following sequence.

c′
j :=

{
cj if j < i,

cj+1 if i ≤ j.

i.e, we remove ci from the sequence c1, . . . , cq to get c′
1, . . . , c′

q−1. Let z2 ∈ Fq−1
2 be the

projection of s2 to the coordinates c′
1, . . . , c′

q−1 (i.e., we remove the entries r′
1, . . . , r′

m−q+1).
Note that s2 = Pad

(
z2, m, {c′

1, . . . , c′
q−1}

)
. Since B2 is the canonical transform of M2 over

c′
1, . . . , c′

q−1, the system (M2|z2) is a constraint representation of A2 by Lemma 11.
Let (M ′

2|z′
2) := Del

(
(M1|z1), t, i

)
. It remains to prove that (M2|z2) = (M ′

2|z′
2). By the

construction, the columns c′
1, . . . , c′

q−1 of M2 induce the identity matrix Iq−1. By Item 1
of Lemma 12, the columns c′

1, . . . , c′
q−1 of M ′

2 induce the identity matrix Iq−1 as well as
c′

1, . . . , c′
q−1 = c1, . . . , ci−1, ci+1, . . . , cq by definition.
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Now, consider the r′
j-th column of M2. By the construction, we have that M2[∗; r′

j ] =
B2[c′

1, . . . , c′
q−1; j]. First, suppose that j = k (i.e., r′

j = ci). We have B2[∗; k] = v and
t = v[c1, . . . , cq]. Thus, M2[∗; r′

k] = v[c′
1, . . . , c′

q−1] = t[−i] and by Item 2 of Lemma 12, the
r′

k-th column of M2 and M ′
2 are same.

Now, suppose that j ∈ [m− q + 1], j ̸= k. Let j′ := j if j < k, and j′ := j − 1 if j > k.
The j-th column of B2 arises from the j′-th column by adding the vector v if B1[ci; j′] = 1
(otherwise B2[∗; j] = B1[∗; j′]). Note that B1[c′

1, . . . , c′
q; j′] = M1[−i; rj′ ]. When we put

everything together we get the following.

M2[∗; r′
j ] = B2[c′

1, . . . , c′
q−1; j] =

=
{

B1[c′
1, . . . , c′

q−1; j′] + v[c′
1, . . . , c′

q−1] = M1[−i; rj′ ] + t[−i] if B1[ci; j′] = 1
B1[c′

1, . . . , c′
q−1; j′] = M1[−i; rj′ ] otherwise

Since rj′ = r′
j for j ̸= k, we have that M2[∗, r′

j ] = M ′
2[∗, r′

j ] by Item 3 of Lemma 12.
To show that z2 = z′

2 we can use the same argument. By the construction, z2 =
s2[c′

1, . . . , c′
q] and

s2[c′
1, . . . , c′

q] =
{

s1[c′
1, . . . , c′

q] + v[c′
1, . . . , c′

q−1] = z1[−i] + t[−i] if s1[ci] = 1,

s1[c′
1, . . . , c′

q] = z1[−i] otherwise.

Thus again, we have z2 = z′
2 by Item 3 of Lemma 12. Therefore, we show that (M2|z2) =

(M ′
2|z′

2). ◀

We call the vector t given by Theorem 13 as forgetting vector because it allows us to
forget one constraint in the representation of A1 to get a representation of A2. Note that
the dimension of t equals the number of equations in the system (M1|z1). We say t contains
a constraint i if ti = 1.

7 Simulation

In this section, we prove our lifting theorem.

▶ Theorem 14 (Theorem 1 stated for F(P)DT). Let R ⊆ {0, 1}n × O be a relation and T
be a canonical FPDT computing R ◦ g where g : {0, 1}ℓ → {0, 1} is a strongly stifled gadget.
Then, there is an FDT T ′ computing R such that dq(T ′) ≤ log |T |q and w(T ′) ≤ w(T ).

Algorithm

We prove Theorem 14 by simulation. On an input x ∈ {0, 1}n, the constructed FDT T ′

simulates given FPDT T on an input y ∈ {0, 1}m (for m := nℓ) with x = −→g (y) by traversing
a path from the root r of T to a leaf. The main loop of the simulation is quite simple. We
start in the root r of T and in each iteration, we process the current node v of T and pick a
new node. Sometimes during the processing of a node of T , we query or forget a bit of x.
When we reach a leaf s of T we just output the value of s. The main loop is summarized in
Algorithm 1.

Let v be a current node of T we have just encountered. We maintain a constraint
representation in echelon form (Mv|zv) of the affine space Av. We store queried (and not
forgotten) bits of x in a partial assignment ρv ∈ {0, 1, ∗}n. Let C(ρv) ⊆ {0, 1}n be a set of
all possible extension of ρv and w(ρv) be a number of fixed bits of ρv. Thus, C(ρv) is a cube
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and w(ρv) is its width. Our goal is that any x̄ ∈ C(ρw) is represented in Av (i.e., there is
y ∈ Av such that −→g (y) = x̄), and that w(ρv) is at most the co-dimension of Av.

An input y of T is divided into n blocks B1, . . . , Bn ⊆ [m], each of size ℓ, and each such
block corresponds to exactly one entry of x. Formally, Bi = {(i− 1)ℓ + 1, . . . , iℓ}. During
the simulation of T , we divide the blocks into two groups – free and fixed. Fixed blocks
correspond to the entries of x that were queried and were not forgotten – i.e., the entries
fixed by ρv. The other blocks are free.

For each fixed bit i ∈ [n] of ρv, we have a unique constraint ji of (Mv|zv) such that
the pivot of the constraint ji is in the block Bi. The constraint ji is called the primary
constraint of Bi. The constraints that are not primary for any block are called secondary.
The dependent variables of primary constraints are called marked variables. We will keep
an invariant that each marked variable is in a different block, i.e., each fixed block contains
a unique marked variable. The other (non-marked) variables of the fixed blocks are called
stifling variables. The variables of fixed blocks that are contained in the secondary constraints
are called dangerous. Note that the marked variables can not be dangerous. The remaining
variables of fixed blocks (i.e., non-marked and non-dangerous) are called safe. All variables
of free blocks are called free. Thus, the matrix Mv has the following form (after rearranging
columns):

Linear algebra classification: Dependent Independent

Mv = Id1 0 D S F primary constraints
0 Id2 E 0 0 secondary constraints

Simulation classification: Marked Dangerous Safe Free variablesStifling
Fixed Free blocks

Let P :=
{

δi,b | i ∈ [ℓ], b ∈ {0, 1}
}

be a converting collection of stifling patterns of g,
given by the assumption. Let αv ∈ {0, 1, ∗}m be the following partial assignment:

αv[Bi] =
{

δj,xi if Bi is a fixed block and j is the index of the marked variable of Bi

∗ℓ if Bi is a free block

We will keep an invariant that if we set all dangerous variables according to the pattern αv

all secondary constraints of (Mv|zv) will be satisfied. This will help us to ensure that each
x̄ ∈ Cv is represented in Av.

At the beginning of our simulation, we are at the root r of T . Since Ar = {0, 1}m, the
matrix Mr is an empty matrix and all variables are free because we have not queried any
entry of x yet. Also, the patterns ρr and αr do not contain any fixed bit, i.e. they are equal
to ∗n, or ∗m, respectively.

During the simulation, we will maintain the following invariants.
Invariant 1: The system of equations (Mv|zv) is a constraint representation of Av in the

echelon form.
Invariant 2: For each fixed bit i ∈ [n] of ρv, there is a unique primary constraint ji of

(Mv|zv) such that the pivot (i.e., the marked variable) of the constraint ji is in the block
Bi.

Invariant 3: All variables of all free blocks are independent.
Invariant 4: The partial assignment αv assigns values to all stifling variables and any

extension of αv to a full assignment satisfies all secondary constraints.
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Algorithm 1 Simulation
Input: x ∈ {0, 1}n ▷ Input for FDT T ′

FPDT T with the root r computing R ◦ g

Initialization:
1: v ← r ▷ Current node of T
2: ρr ← ∗n ▷ Known bits of x

3: (Mr|zr)← ∅ ▷ Constraint representation of Ar = {0, 1}m

Simulation:
4: while v is not a leaf do
5: if v is a query node then
6: Process Query Node ▷ Algorithm 2
7: else ▷ v is a forget node
8: Process Forget Node ▷ Algorithm 3
9: return the output of v

Note that Invariant 4 implies that secondary constraints of (Mv|zv) contain only variables
of fixed blocks. We will show these invariants hold for any node v of T at the moment, when
v is checked whether v is a leaf – i.e., at Line 4 of Algorithm 1. Clearly, the invariants hold for
the root r of T . Now, we describe how we process a current node v (depending on whether v

is a query node or forget node). We suppose the invariants hold for v. During the processing,
we pick an appropriate child u of v and make u the new current node. Subsequently, we
argue why the invariants hold for u.

We remark that the query node processing is a careful adaptation of the node processing
given by Chattopadhyay et al. [11]. All new machinery (strongly stifled function and obtaining
a constraint representation of a super-space by Theorem 13) is used only for the processing
of forget nodes.

Query Nodes

When v is a query node, then v introduce a new parity query fv, and if ⟨fv, y⟩ = 0 the
computation of T proceeds to the left child u0 of v, otherwise to the right child u1. Our
goal is to pick an appropriate child u of v and create the system (Mu|zu) representing Au

satisfying all our requirements. Let us start with a system
(
M ′|z(b)

)
, where

M ′ =
(

Mv

fv

)
, z(b) =

(
zv

b

)
,

with b being a parameter equal to 0 or 1. We fix the value of b when we pick the appropriate
child u of v as the new node. Surely, the system

(
M ′|z(b)

)
represents the space Aub

, however,
it might not satisfy our requirements (for example the matrix M ′ might not be in the echelon
form). Note that the matrix M ′ does not depend on the value of b. We do another pivoting
step of the Gaussian elimination to get the system

(
M ′|z(b)

)
into the echelon form, i.e.,

1. We zero out all coefficients in fv corresponding the dependent variables in (Mv|zv), to
get a new constraint (f ′|b′), where b′ is a function of b. We call the new constraint (f ′|b′)
the reduced form of the constraint (fv|b).

2. We pick one of the remaining variables a contained in f ′ as a new dependent variable, we
pick an appropriate child u of v and we set the value of b (and b′), accordingly.
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3. We zero out all coefficients corresponding to a in all original constraints from the system
(Mv|zv) to get the new system (Mu|zu).

It is clear the new system (Mu|zu) is a constraint representation of Au (i.e., Invariant 1 will
hold for u). The crucial part is to pick a new dependent variable a in Step 2 of the executed
Gaussian elimination. Note that the reduced constraint (f ′|b′) does not contain any marked
variable as all marked variables are dependant and, thus, they are zeroed out from (f |b) in
Step 1 of the executed pivoting step. There are two cases to consider as follows.

Case 1: The new constraint (f ′|b′) contains only variables of the fixed blocks. Then, the
new constraint becomes a secondary constraint, and the new dependent variable a can be
any variable of f ′. Since the constraint (f ′|b′) contains only variables of fixed blocks (but no
marked variable), we can assign a value to all variables of (f ′|b′) given by αv. Thus, there
is b̄ ∈ {0, 1} such that for any extension y of αv, it holds that ⟨f ′, y⟩ = b̄. Then, we pick
the appropriate child u of v, that gives us the right value of b (and b′) such that the new
constraint (f ′|b′) holds for any extension of αv. This ensures that Invariant 4 holds for u.

We did not query any new bit of x in this case. It follows that the partial assignment
ρv and the set of fixed and free blocks are not changed. The set of primary constraints is
unchanged as well. Further, the set of pivots of (Mv|zv) is not changed by the pivoting step
of the Gaussian elimination. Thus, Invariant 2 holds for u. Invariant 3 holds because the
constraint (f ′|b′) does not contain any free variable of (Mv|zv) and thus the new dependent
variable a can not be from a free block.

Case 2: The new constraint (f ′|b′) contains at least one variable a of a free block Bi. In
this case, we can pick the new vertex u as an arbitrary child of v. Let Tw be a subtree of T
rooted in a node w of T . We compare the query size of subtrees Tu0 and Tu1 and we pick u

to be the root of the subtree with the smaller query size, i.e., |Tu|q ≤ |Tw|q, where w is the
other children of v.

We query xi and update the partial assignment ρv by the value of xi to get ρu. The
block Bi becomes a fixed block. The new constraint (f ′|b′) becomes the primary constraint
of Bi and the variable a ∈ Bi becomes the pivot of (f ′|b′), i.e., a becomes a marked variable.
Since the set of pivots of (Mv|zv) is not changed, Invariant 2 holds for u. Since the only new
dependant variable is a ∈ Bi, Invariant 3 holds as well.

The partial assignment αu differs only at the block Bi from αv (αv[Bi] = ∗ℓ, and
αu[Bi] = δj,xi). Since the block Bi was free in (Mv|zv), no secondary constraint of (Mv|zv)
contains any variable of the block Bi. Thus, no secondary constraints of (Mv|zv) were
changed by the pivoting step in this case. The new constraint (f ′|b′) is primary. Thus, no
secondary constraint of (Mu|zu) contains any variable of the block Bi as well. Therefore,
any extension of αu still satisfies all secondary constraints of (Mu|zu) and Invariant 4 holds
for αu.

See Algorithm 2 for a summary of the query node processing.

Forget Nodes

In the case when v is a forget node, the node v has the only child u and dim(Au) = dim(Av)+1.
We have the constraint representation (Mv|zv) of Av maintained by our simulation for
Mv ∈ Fc×m

2 and zv ∈ Fc
2. Let t ∈ Fc

2 be a forgetting vector given by an application of
Theorem 13 to spaces Av and Au. The new system (Mu|zu) is obtained after applying
Del

(
(Mv|zv), t, i) for a right choice of i (the function Del is defined in Section 6). By

Theorem 13, the system (Mu|zu) is a constraint representation of Au in the echelon form, i.e.
Invariant 1 holds for u. Let p be the number of primary constraints in (Mv|zv), i.e. wlog, the
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Algorithm 2
Process Query Node (v: the current (query) node):

1: (f ′, b′)← reduced form of the constraint (fv, b)
▷ b′ is a parameter that will be set later

2: if f ′ does not contain a free variable then
3: a← arbitrary variable of f ′

4: u← the child of v where αv satisfy the new constraint (f ′|b′)
▷ (f ′|b′) is a secondary constraint

5: ρu ← ρv

▷ The sets of primary constraints, fixed blocks, and marked variables are not
changed

6: else ▷ f ′ contains a free variables
7: a← arbitrary free variable in f ′

8: u← a child of v such that Tu has smaller query size
9: ρu ← ρv, ρu[i]← query xi ▷ Bi is the block of a

▷ (f ′|b′) is the primary constraint of the newly fixed block Bi, a is a marked variable
10: Set b′ that the constraint (f ′|b′) is satisfied by all elements of Au

11: (Mu|zu)← add the constraint (f ′|b′) to the system (Mv|zv) and change it to the echelon
form by pivoting a

12: v ← u ▷ New current node

constraints 1, . . . , p are primary and the constraints p + 1, . . . , c are secondary. We consider
two cases.

Case 1: There is an i ∈ {p + 1, . . . , c} such that ti = 1. Then, fix one such i and take a
system (Mu|zu) = Del

(
(Mv|zv), t, i). We do not query or forget any bit of x, thus ρu = ρv

and αu = αv. To create (Mu|zu), we only added the secondary constraint i to some rows
of (Mv|zv) and then we deleted it. Thus, the set of variables which appear in secondary
constraints cannot grow in size and, therefore, secondary constraints are still satisfied by the
assignment αu. Therefore, Invariant 4 holds for αu.

The set of primary constraints is not changed. The Del operation does not change the
set of marked variables as the secondary constraint i does not depend on the pivot of any
primary constraint. Thus, Invariants 2 holds for u. The set of fixed blocks does not change
and there is no new dependant variable. Thus, Invariant 3 holds as well.

Case 2: For all i ∈ {p + 1, . . . , c}, it holds that ti = 0. Then, we fix some i ∈ {1, . . . , p}
such that ti = 1. Note that such an i exists as t is a non-zero vector. Again, let (Mu|zu) =
Del

(
(Mv|zv), t, i)

)
. Since t has only zeroes at the coordinates corresponding to the secondary

constraints, the secondary constraints are not changed by the Del operation. As the constraint
i is deleted and it was a primary one, one marked variable a (the pivot of the constraint
i) becomes independent and safe. Let Bj be the block containing the variable a, i.e., the
Constraint i of (Mv|zv) is the primary constraint for Bj . We consider two sub-cases.

Sub-case 2.1: The other variables of Bj are safe in (Mu|zu) as well, i.e., they are not
in any secondary constraint. Thus, the whole block Bj contains only independent and safe
variables of (Mu|zu). We forget the bit xj and make the block Bj free. The set of other
primary constraints (different from i) may change their form, but their pivots are not changed.
Hence, Invariant 2 holds for u. There is no new dependant variable. Thus Invariant 3 holds
as well.

We get the partial assignment ρu by simply setting the variable xj free. The partial



A. Chattopadhyay and P. Dvořák 17

assignment αu differs from αv only at the block Bj (αu[Bj ] = ∗ℓ, and αv[Bj ] = δj,xj ).
Further, the secondary constraints of (Mu|zu) do not contain any variable of the block Bj by
the assumption. Thus, Invariant 4 holds for αu.

Sub-case 2.2: There is a dangerous variable in the block Bj , i.e., there is a secondary
constraint of (Mu|zu) that contains a variable of Bj . In this case, we use the strong stifling
property of g. Let D ⊆ [ℓ] be the set of indices of all dangerous variables of (Mu|zu) in Bj .
Let j1 be the index of the variable a in Bj (i.e., the previously marked variable in Bj). Note
that j1 ̸∈ D because the variable a is safe. Thus by definition, there is a j2 ∈ D such that
δj2,xj

[
D \ {j2}

]
= δj1,xj

[
D \ {j2}

]
(note that αv[Bj ] = δj1,xj ). Let a′ be the j2-th variable

in the block Bj and k be a secondary constraint that contains a′ (such constraint exists by
the assumption).

We run again the pivoting step for a′, i.e., we zero out all coefficients corresponding to
a′ in all other constraints of (Mu|zu) by adding the constraints k to all other constraints
containing a′. We denote the final system of constraints as (M ′

u|z′
u). Note that (M ′

u|z′
u) is

still a constraint representation of Au as it arises from (Mu|zu) only by row operations.
The constraint k is now the only constraint containing the variable a′ and a′ becomes

a dependent variable. Thus, we make the constraint k a primary constraint for Bj and we
mark the variable a′. The primary constraint for Bj was changed from the constraint i of
(Mv|zv) to the constraint k of (M ′

u|z′
u) and the marked variable in the block Bj was changed

from a to a′. The set of other primary constraints and their pivots were not changed. Thus,
Invariant 2 holds for u.

We do not change the assignment ρv, thus the sets of free and fixed blocks are the same.
The only change in the set of dependent variables was done in the block Bj (that remains a
fixed block), thus Invariant 3 holds for u.

The secondary constraints of (Mv|zv) were not changed by the Del
(
(Mv|zv), t, i) executed

at the beginning of this case (as ti′ = 0 for all secondary constraints i′). Since k is a
secondary constraint of (Mu|zu), the secondary constraints of (M ′

u|z′
u) contains only variables

of fixed blocks. However, we change the marked variable in the block Bj . Thus, the partial
assignment αu differs from αv at the block Bj (αv = δj1,xi , and αu = δj2,xi , where j1 and j2
are indices of a and a′ in the block Bj). We need to be sure that αu still gives a solution to
the secondary constraints of (M ′

u|z′
u). Note that the secondary constraints of (M ′

u|z′
u) might

still contain variables from the block Bj .
By pivoting a′ and making the constraint k primary, the variable a′ is not in any secondary

constraint of (M ′
u|z′

u). Since k was a secondary constraint of (Mu|zu), it can not happen that
a safe variable in (Mu|zu) would become a dangerous one in (M ′

u|z′
u) (i.e., by the pivoting of

a′). In other words, the set of variables of the secondary constraints of (M ′
u|z′

u) is a subset
of the set of variables of the secondary constraints of (Mu|zu). Thus, the set D \ {j2} still
contains all dangerous variables of Bj in (M ′

u|z′
u). Since αv

[
D \ {j2}

]
= αu

[
D \ {j2}

]
by the

assumption, any extension αu satisfy all secondary constraints of (M ′
u|z′

u) and Invariant 4
holds for αu.

A summary of the forget node processing is in Algorithm 3.

Proof of Theorem 14

Theorem 14 follows from the following lemma.

▶ Lemma 15. Suppose the simulation is at Line 4 of Algorithm 1, i.e., it checks whether the
current node v is a leaf. Then,
1. w

(
C(ρv)

)
≤ co-dim(Av).
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Algorithm 3
Process Forget Node (v: the current (forget) node):

1: t← forgetting vector given by Theorem 13
2: u← the only child of v

3: if t contains a secondary constraint then
4: i← arbitrary secondary constraint in t

5: (Mu|zu)← Del
(
(Mv|zv), t, i

)
▷ The constraint i is now removed

6: ρu = ρv

▷ The sets of primary constraints, fixed blocks, and marked variables are not
changed

7: else ▷ t contains only primary constraints
8: i← arbitrary primary constraint in t

9: (Mu|zu)← Del
(
(Mv|zv), t, i

)
▷ The constraint i is now removed

10: a← the marked variable of i

11: Bj ← the block of the variable a ▷ i is the primary constraint of Bj in (Mv|zv)
12: j1 ← the index of a in Bj

13: if the variables Bj \ {j1} are safe in (Mu|zu) then
14: forget xj ▷ Bj is a new free block
15: else ▷ Bi contains a dangerous variable of (Mu|zu)
16: D ← indices of all dangerous variables of (Mu|zu) in Bj

17: j2 ∈ D \ {j1} by Definition 6
18: a′ ← the j2-th variable of Bj

19: k ← a secondary constraint of (Mu|zu) containing a′

20: (Mu|zu)← pivoting a′ in (Mu|zu) by adding the constraint k to other constraints
▷ k is the new primary constraint of Bj , a′ is the new marked variable of Bj

▷ a is a new safe (and thus independent) variable
21: v ← u

2. For any x̄ ∈ C(ρv), there is y ∈ Av such that −→g (y) = x.

Proof of Item 1. By Invariant 1, the co-dimension of Av is exactly the number of equations
in the system (Mv|zv). By Invariants 2, the number of fixed bits by ρv is at most the number
of constraints in (Mv|zv). Thus, w

(
C(ρv)

)
≤ co-dim(Av). ◀

Proof of Item 2. Let x̄ ∈ C(ρv). We will find a solution y to the system (Mv|zv) such that
−→g (y) = x̄. Thus by Invariant 1, y ∈ Av.

First, we set variables of free blocks. Let Bi be a free block. Thus by Invariant 3, all
variables of Bi are independent. We set the variables of Bi in a way such that the block Bi

is mapped to x̄i by the gadget g.
Now, we set the values of the stifling variables according to αv. By Invariants 4, all

secondary constraints are satisfied by any extension of αv. Recall that for a fixed block Bi,
αv[Bi] = δj,xi where j is the index of the marked variable of Bi and x̄i = ρv[i]. Since δj,xi

is a (j, xi)-stifling pattern, it holds that the block Bi will be always mapped to x̄i by g, no
matter how we set the marked variables. Thus, the constructed solution y will be mapped
onto x̄. By Invariant 2, each primary constraint contains a unique marked variable. Thus,
we can set a value to each marked variable a in such a way the primary constraint containing
a is satisfied. ◀
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Proof of Theorem 14. By Item 1 of Lemma 15, the width of a cube C(ρv) in a time of
checking whether a vertex v is a leaf is at most co-dimension of Av. Thus, the width of the
constructed FDT T ′ is at most the width of T .

Now, we bound the query depth of T ′. Consider a root-leaf path P of T ′ and let d be the
number of queries made on P . Note that any time we query a bit of x (Line 9 of Algorithm 2)
we also pick a subtree with a smaller query size (Line 8 of Algorithm 2). Thus, by each query
of T ′ we halve the query size of T . Thus, 2d ≤ |T |q.

It remains to prove the constructed FDT T ′ is correct. Let s be a leaf of T that is reached
during the simulation and o ∈ O is the output of s. Since T computes R ◦ g, it holds that for
all y ∈ As we have (y, o) ∈ R ◦ g. Note that the processing phase (Lines 5-8 of Algorithm 1)
is not executed for any leaf. Thus, the assertion of Lemma 15 holds for the leaf s even at
the time of output – Line 9 of Algorithm 1. Therefore at the end of the simulation, for any
x̄ ∈ C(ρs) there is y ∈ As such that −→g (y) = x̄. Since (y, o) ∈ R ◦ g, it holds that (x̄, o) ∈ R

and the constructed FDT T ′ indeed outputs a correct answer. ◀

8 Application

Razborov [22] showed the following trade-off between the width and size of the tree-like
resolution.

▶ Theorem 16 (Theorem 3.1, Razborov [22]). Let k = k(n) ≥ 4 be any parameter and let
ε > 0 be an arbitrary constant. Then, there exists a k-CNF contradiction τ ′ over n variables
such that there is a resolution refutation for τ ′ with width at most O(k), but for any tree-like
resolution refutation Π for τ ′ with w(Π) ≤ n1−ε/k, we have the bound |Π| ≥ exp(nΩ(k)).

By our simulation, given by Theorem 14, we can lift the trade-off (given by the previous
theorem) to tree-like Res(⊕) and prove Theorem 3.

▶ Theorem 3. Let k = k(n) ≥ 12 be any parameter and let ε > 0 be an arbitrary constant.
Then, there exists a k-CNF contradiction τ over n variables such that there is a resolution
refutation for τ with width at most O(k), but for every tree-like Res(⊕) refutation Π for τ

with w(Π) ≤ n1−ε/k, we have the bound |Π| ≥ exp(nΩ(k)).

Proof. Let g : {0, 1}3 → {0, 1} be a strongly stifled gadget – such functions exist as observed
in Section 5. Let k′ := ⌊k/3⌋, and τ ′ be a k′-CNF contradiction given by Theorem 16. We
set τ := τ ′ ◦ g that is a k-CNF contradiction. Since there is a resolution refutation for τ ′ with
width at most O(k′), then there is a resolution refutation for τ with width at most O(k).

Now, let Π be a tree-like Res(⊕) refutation for τ with w(Π) ≤ n1−ε/k. Let T be a
canonical FPDT corresponding to Π that computes Search(τ). Thus, we have w(T ) = w(Π)
and |T |q ≤ |Π|. We change T to compute Search(τ ′) ◦ g. Let s be a leaf of T outputting a
clause D of τ ′ ◦ g. The clause D has to appear in a set of clauses D′ ◦ g for a clause D′ of τ ′.
We change the output of s to be the clause D′ instead of D. By Observation 5, the tree T
now computes Search(τ ′) ◦ g.

By Theorem 14, there is FDT T ′ computing Search(τ ′) with dq(T ′) ≤ log |T |q and
w(T ′) ≤ w(T ). Let Π′ be the resolution refutation for τ ′ corresponding to the succinct form
of T ′. Thus, w(Π′) = w(T ′) and |Π′| ≤ 3 · 2dq(T ′) (by Observation 4). Since w(T ′) ≤ w(T ) ≤
n1−ε/k ≤ n1−ε/k′, we have that |Π′| ≥ exp(nΩ(k′)) by Theorem 16. Putting everything
together, we have

|Π| ≥ |T |q ≥ 2dq(T ′) ≥ 1
3 · |Π

′| ≥ exp(nΩ(k′)) = exp(nΩ(k)).

◀
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A Appendix

In this section, we show that the functions IND1 and MAJ3 are strongly stifled and IP2 is
not strongly stifled.

▶ Observation 7. The functions IND1 and MAJ3 are strongly stifled.

Proof. We present collections of (i, b)-stifling patterns P (IND1) and P (MAJ3) for IND1 and
MAJ3, respectively. It is straight-forward to verify that these collections are converting
collections of stifling patterns for IND1 and MAJ3.

i

b 0 1

1 (∗, 0, 0) (∗, 1, 1)
2 (1, ∗, 0) (1, ∗, 1)
3 (0, 0, ∗) (0, 1, ∗)

Table 1 P (IND1)

i

b 0 1

1 (∗, 0, 0) (∗, 1, 1)
2 (0, ∗, 0) (1, ∗, 1)
3 (0, 0, ∗) (1, 1, ∗)

Table 2 P (MAJ3)

◀

▶ Observation 8. The function IP2 is not strongly stifled.

Proof. The only (1, 1)-stifling pattern for IP2 : {0, 1}4 → {0, 1} is δ1 := (∗, 1, 0, 1). Similarly,
the only (2, 1)- and (4, 1)-stifling patterns for IP2 are δ2 := (1, ∗, 1, 0), and δ4 := (1, 0, 1, ∗),
respectively. Now, let D = {2, 4}. There is no j ∈ D such that δ1[

D \ {j}
]

= δj
[
D \ {j}

]
as

required to be a strongly stifled function. ◀
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