
Super-critical Trade-offs in Resolution over Parities1

Via Lifting2

Arkadev Chattopadhyay #3

Tata Institute of Fundamental Research, Mumbai, India4

Pavel Dvořák #5

Charles University, Prague, Czech Republic6

Abstract7

Razborov [24] exhibited the following surprisingly strong trade-off phenomenon in propositional8

proof complexity: for a parameter k = k(n), there exists k-CNF formulas over n variables, having9

resolution refutations of O(k) width, but every tree-like refutation of width n1−ϵ/k needs size10

exp
(
nΩ(k)). We extend this result to tree-like Resolution over parities, commonly denoted by11

Res(⊕), with parameters essentially unchanged.12

To obtain our result, we extend the lifting theorem of Chattopadhyay, Mande, Sanyal and Sherif13

[11] to handle tree-like affine DAGs. We introduce additional ideas from linear algebra to handle14

forget nodes along long paths.15

2012 ACM Subject Classification Theory of computation → Proof complexity16

Keywords and phrases Proof complexity, Lifting, Resolution over parities17

Funding Arkadev Chattopadhyay: Funded by the Department of Atomic Energy, Government of18

India, under project no. RTI4001, and a Google India Research Award.19

Pavel Dvořák: Major portion of work done as a visiting fellow at TIFR. Supported by Czech Science20

Foundation GAČR grant #22-14872O.21

1 Introduction22

Understanding trade-offs among complexity measures in a computational model is a well23

known interesting theme, with many published results (for example, time-space trade-24

offs [15, 16, 26], rounds-communication trade-offs [21, 10, 2] and space-size trade-offs in25

propositional proof complexity [6, 3, 5]). Typically, in these trade-offs, one showed that in26

various models of computation, simultaneous optimization of two complexity measures, like27

space and time, or rounds and total communication, or space and width (in refuting CNF28

formulas) is not always possible. In particular trying to optimize one complexity measure,29

necessarily leads to a huge blow-up in the other measure. For instance, in Yao’s 2-party30

model of communication, the Greater-Than function can be computed in 1 round. It can31

also be computed using randomized protocols of communication cost O(log n). But every32

O(1)-round protocol, requires Ω(n) communication cost. On the other hand, every function33

has a protocol of cost O(n). In all of the trade-off results cited above, the general story was34

that trying to optimize the use of one resource, led to the cost with respect to to the other35

resource shooting up to the cost needed by a naive/generic algorithm.36

In 2016, Razborov [24] exhibited formulas for which very different and extreme kind of37

trade-offs hold in the propositional proof system of resolution. Although these unsatisfiable38

k-CNF formulas on n variables have refutations of O(k) width, every one of their tree-like39

refutation of width less than n1−ϵ/k has size exp(nΩ(k)). That is, despite the fact that every40

n-variable formula has a generic tree-like refutation of size 2n, these exhibited formulas that41

do have refutation of small width require super-critical tree-like refutation size whenever42

width is mildly restricted. Moreover, the super-critical size is in fact exponentially larger than43

the generic upper bound. Razborov remarked that such a phenomenon seemed extremely44

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 132 (2024)

mailto:arkadev.c@tifr.res.in
mailto:koblich@iuuk.mff.cuni.cz

2 Super-critical Trade-offs in Resolution over Parities Via Lifting

rare in the known body of tradeoff results in the computational complexity literature. In45

concluding his work, he urged finding more instances of such trade-offs. In response to46

that, follow-up works have appeared. They can be classified into two types. Ones which47

continue to focus on resolution and, others on more powerful proof systems. Examples of the48

former include work by Berkholz and Nordstrom [8], who showed super-critical trade-offs49

between width and space. A recent work of Berkholz, Lichter and Vinall-Smeeth [7] proves50

super-critical trade-offs for narrow resolution width and narrow tree-like size for refuting the51

isomorphism of two graphs.52

The second type of work answers Razborov’s call by finding such trade-offs in stronger53

proof systems. This includes the recent work of Fleming, Pitassi and Robere [14] who first54

showed that the argument of Razborov extends to general resolution DAGs. They then use55

it along with appropriate lifting theorems to prove trade-offs between size and depth for56

DAG like Resolution, Res(k), and cutting planes. In very recent progress in the area, De57

Rezende, Fleming, Jannet, Nordström, and Pang [12], and Göös, Maystre, Risse, Sokolov [18]58

independently showed super-critical trade-offs not only for various proof systems but also59

the first super-critical depth-size tradeoffs for monotone circuits. Our work also falls in this60

second type as we study tree-like resolution over parities, that generalizes tree-like resolution.61

We exhibit super-critical trade-offs for width and tree-like size/depth in the style of62

Razborov for resolution over parities, denoted by Res(⊕). This system, introduced by63

Itsykson and Sokolov [19, 20], is one of the simplest generalizations of resolution for which64

obtaining super-polynomial lower bounds on size of refutations is a current, well known,65

challenge. Very recent works (see [13, 9]) managed to obtain exponential lower bounds on66

the size of regular proofs in this system.67

Our work here will concern tree-like Res(⊕) proofs. Lower bounds for them were obtained68

by Itsykson and Sokolov [20] themselves. More recently, two independent works, one by69

Beame and Koroth [4] and the other by Chattopadhyay, Mande, Sanyal and Sherif [11],70

proved lifting theorems that yielded a systematic way of lifting tree-like resolution width71

complexity to strong lower bounds on size of tree-like Res(⊕) proofs for formulas lifted72

with constant-size gadgets. In this paper, we extend the lifting theorem by Chattopadhyay73

et al. [11] in the following manner. Their result was applicable to parity decision trees74

(duals of tree-like Res(⊕) proofs) that only had usual nodes where the algorithm queried75

(correspondingly the proof resolved on) an F2 linear form. We call such nodes as query76

nodes. On the other hand, we want to deal here with width-bounded proofs that could be77

much deeper than n, the total number of variables of the formula. This would correspond78

to parity decision trees where the height is much larger than n, and therefore, necessarily79

there are nodes that forget. The affine space corresponding to such a forget node u is strictly80

contained in the affine space corresponding to u’s only child node v. Alternatively, in the81

bottom-up view of the corresponding proof, the linear clause at v is strictly weakened to get82

the linear clause at u. Dealing with such nodes, so that the width of the (ordinary) clauses83

in the extracted resolution proof never exceed the corresponding width of the linear clauses,84

is the main technical contribution of this work. Thus, we establish a depth-to-size lifting85

result from tree-like Res(⊕) of arbitrary depth to tree-like resolution, which also preserves86

the width of the refutation.87

▶ Theorem 1. Let Φ ◦ g be a lift of a contradiction Φ by an appropriate gadget g : {0, 1}ℓ →88

{0, 1}. Suppose there is a tree-like Res(⊕) refutation for Φ ◦ g with size s and width w. Then,89

there is a tree-like resolution refutation for Φ with depth at most log s and width at most w.90

▶ Remark 2. We point out the precise difference between our Theorem 1 and the earlier91

lifitng theorem of Chattopadhyay et al [11]. The earlier theorem, given a tree-like refutation92

A. Chattopadhyay and P. Dvořák 3

of Φ ◦ g in Res(⊕) of size s and width w, would have extracted a tree-like refutation of Φ in93

ordinary resolution of depth log s, with no guarantees on the width of this refutation. In94

fact, the width could get as large as the depth of the extracted refutation, i.e. log s. In95

super-critical trade-offs, which is our chief interest here, the width w of the given Res(⊕)96

refutation of Φ ◦ g could be exponentially smaller than log s. This renders the earlier lifting97

theorem unusable for demonstrating such trade-offs.98

Applying Theorem 1 to the trade-off by Razborov [24], we immediately obtain an analogous99

trade-off in the Res(⊕) proof system.100

▶ Theorem 3. Let k = k(n) ≥ 12 be any parameter and let ε > 0 be an arbitrary constant.101

Then, there exists a k-CNF contradiction τ over n variables such that there is a resolution102

refutation for τ with width at most O(k), but for every tree-like Res(⊕) refutation Π for τ103

with w(Π) ≤ n1−ε/k, we have the bound |Π| ≥ exp(nΩ(k)).104

The contradiction τ from the previous theorem is a lift of the contradiction τ ′ constructed105

by Razborov [24] by an appropriate gadget g : {0, 1}ℓ → {0, 1} with a constant size. A caveat106

of τ ′ (as Razborov also noted) is that the number of clauses of τ ′ is nΘ(k). Naturally, this107

caveat is inherited by our contradiction τ . This issue was addressed in very recent work of108

de Rezende et al. [12]. They provided a contradiction χ such that the size of its tree-like109

refutation with bounded width is super-exponential in not just in the number of variables110

but also in the size of the formula. However, the bound on width of the tree-like resolution111

for which super-critical size is needed is much more strict than in Razborov’s result. They112

showed the super-critical trade-off only for tree-like refutation of width smaller than 2w,113

where w is the width of the resolution refutation of χ. Since our gadget has size 3, we can114

guarantee only resolution refutation with width at most 3w for the lifted formula χ ◦ g. Thus,115

we can not lift their super-critical trade-off to Res(⊕) as it is extremely sensitive to width.116

Razborov’s result [24], on the other hand, is more robust making it possible to be lifted by117

our Theorem 1.118

If one were to construct another formula τ̃ improving state-of-the-art in supercritical119

trade-off between width and size of tree-like resolution that is not so sensitive to the width120

of the refutations, this improvement could be used with our simulation theorem (Theorem 1)121

and be lifted to tree-like Res(⊕).122

Relation to Other Recent Works123

The Res(⊕) proof system has been an active area of research. Recently, Efremenko, Garlík,124

and Itsykson [13] showed that the binary pigeonhole principle formula requires an exponential-125

size refutation within the so-called bottom-regular Res(⊕). The bottom-regular Res(⊕) is126

a fragment of Res(⊕) that contains both tree-like Res(⊕) and regular resolution proof127

systems. Furthermore, Bhattacharya, Chattopadhyay, and Dvořák [9] showed that bottom-128

regular Res(⊕) can not polynomially simulate even ordinary, but DAG-like resolution. This129

separation was very recently improved quantitatively by Alekseev and Itsykson [1].130

Furthermore, Alekseev and Itsykson [1] established a width-to-width lifting from resolution131

to Res(⊕). They proved this in a contra-positive way – if there is no resolution refutation132

of a contradiction Φ with width w, then there is no width-w Res(⊕) refutation of a lift133

of Φ by an appropriate gadget g. They utilized a game interpretation of resolution and134

Res(⊕) to prove their lifting theorem. While their proof is quite short, it is unclear whether135

their technique can be adapted to prove the depth-to-size lifting theorem as we need in136

order to show the trade-off in Res(⊕) (our Theorem 3). In particular, their theorem seems137

incomparable to the depth-to-size lifting of Chattopadhyay et al. [11]. On the other hand,138

4 Super-critical Trade-offs in Resolution over Parities Via Lifting

since any refutation can be expanded into a tree-like refutation (with a possible exponential139

blow-up in size), our lifting theorem (Theorem 1) immediately implies the width-to-width140

lifting theorem of Alekseev and Itsykson (however our proof seems more involved). Hence,141

our Theorem 1 effectively contains a common generalization of the width-to-width lifting of142

Alekseev and Itsykson [1] and depth-to-size lifting of Chattopadhyay et al. [11]. Moreover,143

we use a completely different technique than Alekseev and Itsykson [1]. Specifically, we144

establish our lifting theorem directly by constructing a tree-like resolution refutation for a145

contradiction Φ simulating a tree-like Res(⊕) refutation for Φ ◦ g. To achieve this, we use146

some ideas from linear algebra that, to our knowledge, have not been previously utilized in147

the context of lifting.148

Overview of Our Ideas149

Overall, the ideas behind the proof of Theorem 1 are inspired by the work of Chattopadhyay150

et al. [11]. However, they did not consider Res(⊕) refutation with a limited width. Thus,151

they only needed to process query nodes to prove their lifting theorem. In contrast, our152

setting also involves forget nodes, where a linear equation from the span of previously queried153

equations is forgotten. It turns out that processing forget nodes is non-trivial. In particular,154

an affine space can be viewed in two ways: the first is by the (linear) space of constraints155

that could be thought of as the dual view. The primal view is that of the set of vectors lying156

in space represented by a basis of the underlying vector space and a shift vector. Previously,157

in [11], the dual view was very effectively used for depth-to-size lifting in the absence of158

forget nodes. This is because a query node naturally adds a constraint to the dual space.159

On the other hand, a forget node increases the dimension of the affine space. This new space160

is not conveniently representable with respect to the basis maintained for the dual space of161

constraints just before ‘forgetting’ happens. Here it seems the primal view is more helpful as162

any basis of a space A1 can be extended to a basis of a space A2 whenever A1 ⊆ A2. The163

main tool we use is a a characterization, via Theorem 10, of the constraint space of A2 in164

terms of the constraint space of A1, where A1 ⊆ A2 ⊆ Fn
2 . The proof of this turns out to be165

simple1. With more ideas, including a new notion of strongly stifled gadgets that extends166

the earlier notion of stifling introduced by [11], Section 7 yields the process of dealing with167

forget nodes.168

2 Tree-like Proofs and Decision Trees169

A proof in a propositional proof system starts from a set of clauses Φ, called axioms, that170

is purportedly unsatisfiable. It generates a proof by deriving the empty clause from the171

axioms, using inference rules. The main inference rule in the standard resolution, called the172

resolution rule, derives a clause A ∨B from clauses A ∨ x and B ∨ ¬x (i.e., we resolve the173

variable x). If we can derive the empty clause from the original set Φ, then it proves that174

the set Φ is unsatisfiable.175

Resolution over parities (Res(⊕)) is a generalization of the standard resolution, using176

linear clauses (disjunction of linear equations in F2) to express lines of a proof. It consists of177

two rules:178

Resolution Rule: From linear clauses A ∨ (ℓ = 0) and B ∨ (ℓ = 1) derive a linear clause179

A ∨B.180

1 Our original proof was complicated. The much simpler proof we present here has been pointed out to
us by an anonymous referee.

A. Chattopadhyay and P. Dvořák 5

Weakening Rule: From a linear clause A derive a linear clause B that is semantically implied181

by A (i.e., any assignment satisfying A also satisfies B).182

The length |Π| of a resolution (or Res(⊕)) refutation Π of a formula Φ is the number of183

applications of the rules above in order to refute the formula Φ. The width w(Π) of a184

resolution (or Res(⊕)) refutation Π is the maximum width of any (linear) clause that is used185

in the resolution proof. A (linear) resolution proof is tree-like if the resolution rule is applied186

in a tree-like fashion. The depth d(Π) of the tree-like proof Π is the depth of the underlying187

tree (i.e., the length of the longest path from the root to a leaf).188

We can replace the general resolution rule with a canonical one:189

Canonical Resolution Rule: From linear clauses C ∨ (ℓ = 0) and C ∨ (ℓ = 1) derive a linear190

clause C.191

Using the canonical resolution rule instead of the general one will not make the proof system192

substantially weaker. If we want to apply the resolution rule on the clauses A ∨ (ℓ = 0)193

and B ∨ (ℓ = 1), we can apply the weakening rule to both of them to get linear clauses194

A ∨B ∨ (ℓ = 0) and A ∨B ∨ (ℓ = 1) and then apply the canonical resolution rule to derive195

the clause A ∨B. Thus, from a tree-like Res(⊕) refutation Π of a contradiction Φ, we can196

derive an equivalent tree-like Res(⊕) refutation Π′ that uses only canonical resolution rule197

(and the weakening rule) with |Π′| ≤ 3 · |Π|, d(Π′) ≤ 2 · d(Π), and w(Π′) ≤ w(Π) + 1 as for198

each application of the resolution rule in Π we add 2 applications of the weakening rule in Π′,199

and the width might increase by 1 as we introduce clause A∨B ∨ (ℓ = 0) and A∨B ∨ (ℓ = 1)200

but only the clause A ∨B was present in Π.201

It is known that a tree-like resolution (or Res(⊕)) proof, for an unsatisfiable set of clauses202

Φ, corresponds to a (parity) decision tree for a search problem Search(Φ) that is defined as203

follows. For a given assignment α of the n variables of Φ, one needs to find a clause in Φ that204

is not satisfied by α (at least one exists as the set Φ is unsatisfiable). The correspondence205

holds even for general (not only tree-like) proofs (see for example Garg et al. [17], who credit206

it to earlier work of Razborov [23] that was simplified by Pudlák [22] and Sokolov[25]), but207

in this paper, we are interested only in tree-like proofs.208

Let R ⊆ {0, 1}m ×O, where O is a set of possible outputs. A forgetting parity decision209

tree (FPDT) computing R is a tree T such that each node has at most two children and the210

following conditions hold:211

Each node v is associated with an affine space Av ⊆ Fm
2 .212

For every node v with two children u and w is called a query nodes. There is a linear213

query fv such that Au = {x ∈ Av|⟨fv, x⟩ = 0} and Aw = {x ∈ Av|⟨fv, x⟩ = 1}, or vice214

versa. We say that fv is the query at v.215

Every node v with exactly one child u is called a forget node. It holds that Av ⊆ Au.216

Each leaf ℓ is labeled by oℓ ∈ O such that for all x ∈ Aℓ, it holds that (x, oℓ) ∈ R.217

For the root r, Ar = Fm
2 .218

The size |T | of an FPDT T is the number of nodes of T and the width w(T) of FPDT219

T is the largest integer w such that there exists an affine space of co-dimension at least w220

associated with some node of T . The depth of T is denoted d(T). Note that there are no221

forget nodes in a standard parity decision tree. Thus, for such trees, the width is exactly the222

depth of the tree. It no longer holds for this model, because we may “forget” some linear223

queries that have been made earlier.224

A forgetting decision tree (FDT) is defined similarly to FPDT but instead of affine spaces,225

cubes are associated with each node. Consequently, the width w(T) of FDT is the maximum226

number w such that there exists a cube of width at least w associated with some node of T227

and queries of single variables replace the linear queries at nodes.228

6 Super-critical Trade-offs in Resolution over Parities Via Lifting

The correspondence between an F(P)DT’s and tree-like resolution (or Res(⊕)) proofs229

using only canonical resolution rule is the following: We represent a (linear) resolution proof230

as a tree where nodes are associated with (linear) clauses. The leaves are associated with231

clauses of Φ and the root is associated with the empty clause. Each node with two children232

corresponds to an application of the canonical resolution rule and each node with exactly one233

child corresponds to an application of the weakening rule. To get an F(P)DT for Search(Φ)234

we just negate the clauses that are associated with the nodes. Thus, each node is associated235

with a cube (or an affine space in the case of Res(⊕)/FPDT). Moreover, a cube Cv (or an236

affine space Av) associated with the node v of an F(P)DT T contains exactly the falsifying237

assignments of the (linear) clause that is associated with the corresponding node in the238

tree-like refutation Π that corresponds to T . It is clear that the width and the depth of239

such decision tree T are exactly the same as the width and the depth of the corresponding240

tree-like refutation Π and the length |Π| equals the number of inner nodes of T (as the inner241

nodes of T correspond to the applications of the resolution rule).242

We say an FPDT T is canonical if for each forget node v of T and its only child u, it243

holds that co-dim(Av) = co-dim(Au) + 1. We say an FPDT T is succinct if the parent of244

each forget node is a query node. Note that any FPDT can be transformed into an equivalent245

canonical (or succinct) FPDT by expanding forget nodes into paths of forget nodes (or246

contracting paths of forget nodes to single vertices).247

Consider an FPDT T and its succinct form T̄ . Note that the number of query nodes of248

T̄ and T is the same, and analogously the number of query nodes on a root-leaf path in T̄249

equals the number of query nodes of the corresponding path in T . Thus, for an FPDT T we250

define query size |T |q and query depth dq(T) to be the number of query nodes of T and the251

maximum number of query nodes on a root-leaf path of T .252

▶ Observation 4. Let Π be a Res(⊕) refutation of a contradiction Φ. Then, there is a253

canonical FPDT T computing Search(Φ) with |T |q ≤ |Π| and w(T) ≤ w(Π) + 1.254

Proof. As discussed above, first we modify Π to a Res(⊕) refutation Π′ that uses only255

canonical resolution rule (and weakening rule). By this modification, we have w(Π′) ≤ w(Π)+1256

and the number of applications of the resolution rule in Π is exactly the number of applications257

of the canonical resolution rule in Π′. From Π′, we derive an FPDT T ′ computing Search(Φ)258

that we finally modify to an equivalent canonical FPDT T . The width of Π′ and T ′ is259

the same, and the query size of T is exactly the number of applications of the canonical260

resolution rule in Π′. The modification of T ′ to the canonical FPDT T does not change the261

width and the query size of the tree. Thus, we have w(T) ≤ w(Π) + 1 and |T |q ≤ |Π|. ◀262

▶ Observation 5. Let T be a succinct FPDT computing Search(Φ) and Π be the tree-like263

Res(⊕) refutation of Φ corresponding to T . Then, |Π| ≤ 3 · 2dq(T).264

Proof. As mentioned above, the length of Π equals the number of inner nodes of T . The265

tree T has at most 2dq(T) − 1 query nodes. Since T is succinct, the number of forget nodes266

is at most twice the number of query nodes as each query node might have at most two267

forget nodes as its children. Further, any child of a forget node is not a forget node. Thus,268

|Π| ≤ 3 · 2dq(T). ◀269

3 Lifting of Relations and Formulas270

Let g : {0, 1}ℓ → {0, 1} be a boolean function. For a relation R ⊆ {0, 1}n ×O we define its271

lift R ◦ g ⊆ {0, 1}nℓ ×O as272

R ◦ g =
{

(y, o) ∈ {0, 1}nℓ ×O |
(−→g (y), o

)
∈ R

}
,273

A. Chattopadhyay and P. Dvořák 7

where −→g (y1
1 , . . . , y1

ℓ , . . . , yn
1 , . . . , yn

ℓ) =
(
g(y1

1 , . . . , y1
ℓ), . . . , g(yn

1 , . . . , yn
ℓ)

)
.274

For CNF Φ over n variables {x1, . . . , xn}, let Φ ◦ g be the following lift of Φ over the275

variables {yi
j | i ∈ [n], j ∈ [ℓ]}. For any clause D of Φ, let Vars(D) be the set of variables of276

D, and let ηD ∈ {0, 1}Vars(D) be the only falsifying assignment of D. Then,277

D ◦ g =

 ∨
xi∈Vars(D),j∈[ℓ]

yi
j ̸= κi

j

∣∣∣ κ ∈ −→g −1(ηD)

 ,278

where yi
j ̸= κi

j is the following literal:279

yi
j ̸= κi

j =
{

yi
j if κi

j = 0,

¬yi
j if κi

j = 1.
280

Now, the clauses of Φ ◦ g are {D ◦ g | D clause of Φ}.281

▶ Observation 6. For a clause D, an assignment δ of Vars(D ◦ g) falsifies D ◦ g if and only282

if −→g (δ) = ηD, i.e., −→g (δ) falsifies D.283

4 Notation284

We use the following notation. For a vector u we use both ui and u[i] to denote the i-th285

entry of u, similarly for a matrix M we use Mi,j and M [i; j] to denote the entry in the i-th286

row and j-th column. For an ordered set of indices D we denote by u[D] the subvector of u287

given by D, i.e., u[D] = (ui)i∈D. For an abbreviation, we use u[−i] to denote the vector u288

without the i-th entry, i.e., u[−i] = (u1, . . . , ui−1, ui+1, . . . , un).289

5 Stifling290

In this section, we extend the notion of stifling introduced by Chattopadhyay et al. [11].291

Let g : {0, 1}ℓ → {0, 1} be a Boolean function. For i ∈ [ℓ] and b ∈ {0, 1}, we say a partial292

assignment δ ∈ {0, 1, ∗}ℓ is an (i, b)-stifling pattern for g if δj = ∗ if and only if j = i, and293

for any γ ∈ {0, 1}ℓ such that γ[−i] = δ[−i], we have g(γ) = b. In words, δ assigns a value to294

all but the i-th bit and when we extend δ to a full assignment γ, it holds that g(γ) = b no295

matter how we set the value of the i-th bit.296

▶ Definition 7. A Boolean function g : {0, 1}ℓ → {0, 1} is strongly stifled if there is a297

collection P :=
{

δi,b|i ∈ [ℓ], b ∈ {0, 1}
}

where each δi,b is an (i, b)-stifling pattern for g and298

∀ i ∈ [ℓ], b ∈ {0, 1}, and ∅ ≠ D ⊆ [ℓ] \ {i}299

∃ j ∈ D such that δj,b
[
D \ {j}

]
= δi,b

[
D \ {j}

]
.300

The collection P is called a converting collection of stifling patterns of g.301

Chattopadhyay et al. [11] defined a stifled function (namely 1-stifled) as a function302

g : {0, 1}ℓ → {0, 1} such that for each i ∈ [ℓ] and b ∈ {0, 1} there is an (i, b)-stifling pattern303

for g. In this work, we require not only the existence of the stifling patterns but a stronger304

property that we can convert the stifling patterns to each other. More formally, consider an305

(i, b)-stifling pattern δi,b from the collection P (from the definition above). Let an adversary306

give us a set of coordinates D ⊆ [ℓ] \ {i}. Then, we are able to pick a coordinate j ∈ D such307

that the stifling pattern δj,b is equal to δi,b on all coordinates in D \ {j}.308

8 Super-critical Trade-offs in Resolution over Parities Via Lifting

By a simple verification we can show that indexing of two bits IND1 : {0, 1}3 → {0, 1}309

and majority of 3 bits MAJ3 : {0, 1}3 → {0, 1} are strongly stifled functions, where310

IND1(a, d0, d1) = da and MAJ3(x) = 1 if and only if
∣∣{i ∈ [3]|xi = 1}

∣∣ ≥ 2.311

▶ Observation 8. The functions IND1 and MAJ3 are strongly stifled.312

Further, the strongly stifled notion is actually stronger than the original stifled notion,313

because the inner product function of 2-bit vectors IP2 : {0, 1}4 → {0, 1} is stifled [11] but314

not strongly stifled, where IP2(x1, x2, y1, y2) = x1x2 + y1y2 mod 2.315

▶ Observation 9. The function IP2 is not strongly stifled.316

For more details, see the appendix.317

6 Linear Algebraic Tools318

Let A ⊆ Fm
2 be an affine space over a field F2. A constraint representation of A is a319

system of linear equations (M |z) where M ∈ Fq×m
2 and z ∈ Fq

2 for some q ≤ m such320

that A = {y | My = z}. The columns of M correspond to the variables of the system321

(M |z) and rows of M correspond to the constraints. We say a constraint i contains a322

variable a if Mi,a = 1. A matrix M ∈ Fq×m
2 is in an echelon form if there are q columns323

c1 < c2 < · · · < cq ∈ [m] such that for all i ∈ [q] it holds that324

M [i; cj] =
{

1 if i = j,

0 otherwise.
325

Thus, the submatrix of M induced by the columns c1, . . . , cq is the identity matrix Iq ∈ Fq×q
2 .326

The variables corresponding to the columns c1, . . . , cq are dependent variables of the system327

(M |z) and the remaining variables are independent. The ci-th entry of the i-th row of M is328

called the pivot of the i-th row. We say a constraint representation (M |z) is in an echelon329

form if the matrix M is in an echelon form.330

Let C ∈ Fq×m
2 be a matrix and t ∈ Fq

2 be a non-zero vector. We define a matrix331

C ′ = Del(C, t, i) ∈ Fq−1×m
2 where C ′ arises from C by adding the i-th row to all rows j such332

that tj = 1 and then deleting the row i. Analogously, we define the Del operation for a333

constraint representation (M |z) of an affine space A ⊆ Fm
2 , where we treat the vector z as334

the last column of the matrix C. It turns out that the Del operation is the only operation335

needed to get a constraint representation for a super-space as shown in the following theorem336

that will be the key technical tool for us to process forget nodes while proving our main337

lifting theorem.338

▶ Theorem 10. Let A1 ⊆ A2 ⊆ Fm
2 be two affine spaces such that dim(A2) = dim(A1) + 1.339

Let (M1|z1) be a constraint representation in the echelon form of A1 such that M1 ∈ Fq×m
2 .340

Then, there is a non-zero vector t ∈ Fq
2 such that the following is true: for every i ∈ [q] with341

ti = 1, Del
(
(M1|z1), t, i

)
is a constraint representation of A2 in echelon form.342

We call the vector t given by Theorem 10 as forgetting vector because it allows us to343

forget one constraint in the representation of A1 to get a representation of A2. Note that344

the dimension of t equals the number of equations in the system (M1|z1). We say t contains345

a constraint i if ti = 1.346

Theorem 10 follows from the following well-known lemma, which we will prove for347

completeness. Let V2 ⊆ V1 ⊆ Fn
2 be two vector spaces such that dim(V2) = dim(V1)− 1.348

A. Chattopadhyay and P. Dvořák 9

▶ Lemma 11. For any u, v ∈ V1 \ V2 holds that u + v ∈ V2.349

Proof. Since u is in V1 but not in V2, we have that Span(V2, u) = V1 by the dimensions of V1350

and V2. Since v ∈ V1 \ V2 as well, we have that v = w + u for an appropriate vector w ∈ V2.351

It follows that u + v = w ∈ V2. ◀352

▶ Corollary 12. Let v1, . . . , vd be a basis of V1. Let T = {i ∈ [d] | vi ̸∈ V2}. Let j ∈ T , and353

for i ∈ [d] \ j let354

ui =
{

vi + vj if i ∈ T ,
vi otherwise.

355

Then, (ui)i∈[d]\j is a basis of V2.356

Proof. Vectors ui’s are linearly independent as vi’s are linearly independent. By definition357

and Lemma 11, all ui’s are in V2. Since dim(V2) = d− 1, the vectors ui’s has to form a basis358

of V2. ◀359

Theorem 10 follows from the previous corollary by setting V1 and V2 to be the constraints360

spaces of A1, and A2, respectively (i.e., row spaces of matrices (M1|z1) and (M2|z2)).361

Further, the forgetting vector of Theorem 10 is the characteristic vector of the set T given362

by Corollary 12.363

7 Simulation364

In this section, we prove our lifting theorem.365

▶ Theorem 13 (Theorem 1 stated for F(P)DT). Let R ⊆ {0, 1}n × O be a relation and T366

be a canonical FPDT computing R ◦ g where g : {0, 1}ℓ → {0, 1} is a strongly stifled gadget.367

Then, there is an FDT T ′ computing R such that dq(T ′) ≤ log |T |q and w(T ′) ≤ w(T).368

Algorithm369

We prove Theorem 13 by simulation. On an input x ∈ {0, 1}n, the constructed FDT T ′
370

simulates given FPDT T on an input y ∈ {0, 1}m (for m := nℓ) with x = −→g (y) by traversing371

a path from the root r of T to a leaf. The main loop of the simulation is quite simple. We372

start in the root r of T and in each iteration, we process the current node v of T and pick a373

new node. Sometimes during the processing of a node of T , we query or forget a bit of x.374

When we reach a leaf s of T we just output the value of s. The main loop is summarized in375

Algorithm 1.376

Let v be a current node of T we have just encountered. We maintain a constraint377

representation in echelon form (Mv|zv) of the affine space Av. We store queried (and not378

forgotten) bits of x in a partial assignment ρv ∈ {0, 1, ∗}n. Let C(ρv) ⊆ {0, 1}n be a set of379

all possible extension of ρv and w(ρv) be a number of fixed bits of ρv. Thus, C(ρv) is a cube380

and w(ρv) is its width. Our goal is that any x̄ ∈ C(ρw) is represented in Av (i.e., there is381

y ∈ Av such that −→g (y) = x̄), and that w(ρv) is at most the co-dimension of Av.382

An input y of T is divided into n blocks B1, . . . , Bn ⊆ [m], each of size ℓ, and each such383

block corresponds to exactly one entry of x. Formally, Bi = {(i− 1)ℓ + 1, . . . , iℓ}. During384

the simulation of T , we divide the blocks into two groups – free and fixed. Fixed blocks385

correspond to the entries of x that were queried and were not forgotten – i.e., the entries386

fixed by ρv. The other blocks are free.387

10 Super-critical Trade-offs in Resolution over Parities Via Lifting

For each fixed bit i ∈ [n] of ρv, we have a unique constraint ji of (Mv|zv) such that the388

pivot of the constraint ji is in the block Bi. The constraint ji is called the primary constraint389

of Bi. The dependent variables of primary constraints are called marked variables. We will390

keep an invariant that each marked variable is in a different block, i.e., each fixed block391

contains a unique marked variable. The other (non-marked) variables of the fixed blocks are392

called stifling variables.393

The constraints that are not primary for any block are called secondary. We will keep394

invariants that the all secondary constraints contain variables only from fixed blocks. All395

variables of free blocks are called free. Thus, the matrix Mv has the following form (after396

rearranging columns):397

Linear algebra classification: Dependent Independent

Mv = Id1 0 C1 F primary constraints
0 Id2 C2 0 secondary constraints

Simulation classification: Marked Stifling Free variables
Fixed Free blocks

398

Let P :=
{

δi,b | i ∈ [ℓ], b ∈ {0, 1}
}

be a converting collection of stifling patterns of g,399

given by the assumption. Let αv ∈ {0, 1, ∗}m be the following partial assignment:400

αv[Bi] =
{

δj,xi if Bi is a fixed block and j is the index of the marked variable of Bi

∗ℓ if Bi is a free block
401

We will keep an invariant that if we set all dangerous variables according to the pattern αv402

all secondary constraints of (Mv|zv) will be satisfied. This will help us to ensure that each403

x̄ ∈ C(ρv) is represented in Av.404

At the beginning of our simulation, we are at the root r of T . Since Ar = {0, 1}m, the405

matrix Mr is an empty matrix and all variables are free because we have not queried any406

entry of x yet. Also, the patterns ρr and αr do not contain any fixed bit, i.e. they are equal407

to ∗n, or ∗m, respectively.408

Algorithm 1 Simulation
Input: x ∈ {0, 1}n ▷ Input for FDT T ′

FPDT T with the root r computing R ◦ g

Initialization:
1: v ← r ▷ Current node of T
2: ρr ← ∗n ▷ Known bits of x

3: (Mr|zr)← ∅ ▷ Constraint representation of Ar = {0, 1}m

Simulation:
4: while v is not a leaf do
5: if v is a query node then
6: Process Query Node ▷ Algorithm 2
7: else ▷ v is a forget node
8: Process Forget Node ▷ Algorithm 3
9: return the output of v

During the simulation, we will maintain the following invariants.409

A. Chattopadhyay and P. Dvořák 11

Invariant 1: The system of equations (Mv|zv) is a constraint representation of Av in the410

echelon form.411

Invariant 2: All variables of all free blocks are independent.412

Invariant 3: For each fixed bit i ∈ [n] of ρv, there is a unique constraint ji of (Mv|zv) such413

that the pivot (i.e., the marked variable) of the constraint ji is in the block Bi.414

The constraint ji from the previous invariant is called the primary constraint of the block415

Bi. The constraints that are not primary for some block are called secondary.416

Invariant 4: The partial assignment αv assigns values to all stifling variables and any417

extension of αv to a full assignment satisfies all secondary constraints.418

Note that Invariant 4 implies that secondary constraints of (Mv|zv) contain only variables419

of fixed blocks. We will show these invariants hold for any node v of T at the moment, when420

v is checked whether v is a leaf – i.e., at Line 4 of Algorithm 1. Clearly, the invariants hold for421

the root r of T . Now, we describe how we process a current node v (depending on whether v422

is a query node or forget node). We suppose the invariants hold for v. During the processing,423

we pick an appropriate child u of v and make u the new current node. Subsequently, we424

argue why the invariants hold for u.425

We remark that the query node processing is a careful adaptation of the node processing426

given by Chattopadhyay et al. [11]. All new machinery (strongly stifled function and obtaining427

a constraint representation of a super-space by Theorem 10) is used only for the processing428

of forget nodes.429

Query Nodes430

When v is a query node, then v introduce a new parity query fv, and if ⟨fv, y⟩ = 0 the431

computation of T proceeds to the left child u0 of v, otherwise to the right child u1. Our432

goal is to pick an appropriate child u of v and create the system (Mu|zu) representing Au433

satisfying all our requirements. Let us start with a system
(
M ′|z(b)

)
, where434

M ′ =
(

Mv

fv

)
, z(b) =

(
zv

b

)
,435

with b being a parameter equal to 0 or 1. We fix the value of b when we pick the appropriate436

child u of v as the new node. Surely, the system
(
M ′|z(b)

)
represents the space Aub

, however,437

it might not satisfy our requirements (for example the matrix M ′ might not be in the echelon438

form). Note that the matrix M ′ does not depend on the value of b. We do another pivoting439

step of the Gaussian elimination to get the system
(
M ′|z(b)

)
into the echelon form, i.e.,440

1. We zero out all coefficients in fv corresponding the dependent variables in (Mv|zv), to441

get a new constraint (f ′|b′), where b′ is a function of b. We call the new constraint (f ′|b′)442

the reduced form of the constraint (fv|b).443

2. We pick one of the remaining variables a contained in f ′ as a new dependent variable, we444

pick an appropriate child u of v and we set the value of b (and b′), accordingly.445

3. We zero out all coefficients corresponding to a in all original constraints from the system446

(Mv|zv) to get the new system (Mu|zu).447

It is clear the new system (Mu|zu) is a constraint representation of Au (i.e., Invariant 1 will448

hold for u). The crucial part is to pick a new dependent variable a in Step 2 of the executed449

Gaussian elimination. Note that the reduced constraint (f ′|b′) does not contain any marked450

variable as all marked variables are dependant and, thus, they are zeroed out from (f |b) in451

Step 1 of the executed pivoting step. There are two cases to consider as follows.452

12 Super-critical Trade-offs in Resolution over Parities Via Lifting

Case 1: The new constraint (f ′|b′) contains only variables of the fixed blocks. Then, the453

new constraint becomes a secondary constraint, and the new dependent variable a can be454

any variable of f ′. Since the constraint (f ′|b′) contains only variables of fixed blocks (but no455

marked variable), we can assign a value to all variables of (f ′|b′) given by αv. Thus, there456

is b̄ ∈ {0, 1} such that for any extension y of αv, it holds that ⟨f ′, y⟩ = b̄. Then, we pick457

the appropriate child u of v, that gives us the right value of b (and b′) such that the new458

constraint (f ′|b′) holds for any extension of αv. This ensures that Invariant 4 holds for u.459

We did not query any new bit of x in this case. It follows that the partial assignment460

ρv and the set of fixed and free blocks are not changed. The set of primary constraints is461

unchanged as well. Further, the set of pivots of (Mv|zv) is not changed by the pivoting step462

of the Gaussian elimination. Thus, Invariant 3 holds for u. Invariant 2 holds because the463

constraint (f ′|b′) does not contain any free variable of (Mv|zv) and thus the new dependent464

variable a can not be from a free block.465

Case 2: The new constraint (f ′|b′) contains at least one variable a of a free block Bi. In466

this case, we can pick the new vertex u as an arbitrary child of v. Let Tw be a subtree of T467

rooted in a node w of T . We compare the query size of subtrees Tu0 and Tu1 and we pick u468

to be the root of the subtree with the smaller query size, i.e., |Tu|q ≤ |Tw|q, where w is the469

other children of v.470

We query xi and update the partial assignment ρv by the value of xi to get ρu. The471

block Bi becomes a fixed block. The new constraint (f ′|b′) becomes the primary constraint472

of Bi and the variable a ∈ Bi becomes the pivot of (f ′|b′), i.e., a becomes a marked variable.473

Since the set of pivots of (Mv|zv) is not changed, Invariant 3 holds for u. Since the only new474

dependant variable is a ∈ Bi, Invariant 2 holds as well.475

The partial assignment αu differs only at the block Bi from αv (αv[Bi] = ∗ℓ, and476

αu[Bi] = δj,xi). Since the block Bi was free in (Mv|zv), no secondary constraint of (Mv|zv)477

contains any variable of the block Bi. Thus, no secondary constraints of (Mv|zv) were478

changed by the pivoting step in this case. The new constraint (f ′|b′) is primary. Thus, no479

secondary constraint of (Mu|zu) contains any variable of the block Bi as well. Therefore,480

any extension of αu still satisfies all secondary constraints of (Mu|zu) and Invariant 4 holds481

for αu.482

See Algorithm 2 for a summary of the query node processing.483

Forget Nodes484

In the case when v is a forget node, the node v has the only child u and dim(Au) = dim(Av)+1.485

We have the constraint representation (Mv|zv) of Av maintained by our simulation for486

Mv ∈ Fc×m
2 and zv ∈ Fc

2. For processing the forget node, we introduce a classification of487

stifling variables. The variables of fixed blocks that are contained in the secondary constraints488

are called dangerous. Note that the marked variables can not be dangerous. The remaining489

variables of fixed blocks (i.e., non-marked and non-dangerous) are called safe. Thus, with490

this new classification, the matrix Mv has the following form:491

Linear algebra classification: Dependent Independent

Mv = Id1 0 D S F primary constraints
0 Id2 E 0 0 secondary constraints

Simulation classification: Marked Dangerous Safe Free variablesStifling
Fixed Free blocks

492

A. Chattopadhyay and P. Dvořák 13

Algorithm 2
Process Query Node (v: the current (query) node):

1: (f ′, b′)← reduced form of the constraint (fv, b)
▷ b′ is a parameter that will be set later

2: if f ′ does not contain a free variable then
3: a← arbitrary variable of f ′

4: u← the child of v where αv satisfy the new constraint (f ′|b′)
▷ (f ′|b′) is a secondary constraint

5: ρu ← ρv

▷ The sets of primary constraints, fixed blocks, and marked variables are not
changed

6: else ▷ f ′ contains a free variables
7: a← arbitrary free variable in f ′

8: u← a child of v such that Tu has smaller query size
9: ρu ← ρv, ρu[i]← query xi ▷ Bi is the block of a

▷ (f ′|b′) is the primary constraint of the newly fixed block Bi, a is a marked variable
10: Set b′ that the constraint (f ′|b′) is satisfied by all elements of Au

11: (Mu|zu)← add the constraint (f ′|b′) to the system (Mv|zv) and change it to the echelon
form by pivoting a

12: v ← u ▷ New current node

Let t ∈ Fc
2 be a forgetting vector given by an application of Theorem 10 to spaces Av493

and Au. The new system (Mu|zu) is obtained after applying Del
(
(Mv|zv), t, i) for a right494

choice of i (the function Del is defined in Section 6). By Theorem 10, the system (Mu|zu) is495

a constraint representation of Au in the echelon form, i.e. Invariant 1 holds for u. Let p be496

the number of primary constraints in (Mv|zv), i.e. wlog, the constraints 1, . . . , p are primary497

and the constraints p + 1, . . . , c are secondary. We consider two cases.498

Case 1: There is an i ∈ {p + 1, . . . , c} such that ti = 1. Then, fix one such i and take a499

system (Mu|zu) = Del
(
(Mv|zv), t, i). We do not query or forget any bit of x, thus ρu = ρv500

and αu = αv. To create (Mu|zu), we only added the secondary constraint i to some rows501

of (Mv|zv) and then we deleted it. Thus, the set of variables which appear in secondary502

constraints cannot grow in size and, therefore, secondary constraints are still satisfied by the503

assignment αu. Therefore, Invariant 4 holds for αu.504

The set of primary constraints is not changed. The Del operation does not change the set505

of marked variables as the secondary constraint i does not contain any pivot of the primary506

constraints. Thus, Invariants 3 holds for u. The set of fixed blocks does not change and507

there is no new dependant variable. Thus, Invariant 2 holds as well.508

Case 2: For all i ∈ {p + 1, . . . , c}, it holds that ti = 0. Then, we fix some i ∈ {1, . . . , p}509

such that ti = 1. Note that such an i exists as t is a non-zero vector. Again, let (Mu|zu) =510

Del
(
(Mv|zv), t, i)

)
. Since t has only zeroes at the coordinates corresponding to the secondary511

constraints, the secondary constraints are not changed by the Del operation. As the constraint512

i is deleted and it was a primary one, one marked variable a (the pivot of the constraint513

i) becomes independent and safe. Let Bj be the block containing the variable a, i.e., the514

Constraint i of (Mv|zv) is the primary constraint for Bj . We consider two sub-cases.515

Sub-case 2.1: The other variables of Bj are safe in (Mu|zu) as well, i.e., they are not516

in any secondary constraint. Thus, the whole block Bj contains only independent and safe517

variables of (Mu|zu). We forget the bit xj and make the block Bj free. The set of other518

14 Super-critical Trade-offs in Resolution over Parities Via Lifting

primary constraints (different from i) may change their form, but their pivots are not changed.519

Hence, Invariant 3 holds for u. There is no new dependant variable. Thus Invariant 2 holds520

as well.521

We get the partial assignment ρu by simply setting the variable xj free. The partial522

assignment αu differs from αv only at the block Bj (αu[Bj] = ∗ℓ, and αv[Bj] = δj,xj).523

Further, the secondary constraints of (Mu|zu) do not contain any variable of the block Bj by524

the assumption. Thus, Invariant 4 holds for αu.525

Sub-case 2.2: There is a dangerous variable in the block Bj , i.e., there is a secondary526

constraint of (Mu|zu) that contains a variable of Bj . In this case, we use the strong stifling527

property of g. Let D ⊆ [ℓ] be the set of indices of all dangerous variables of (Mu|zu) in Bj .528

Let j1 be the index of the variable a in Bj (i.e., the previously marked variable in Bj). Note529

that j1 ̸∈ D because the variable a is safe. Thus by definition, there is a j2 ∈ D such that530

δj2,xj
[
D \ {j2}

]
= δj1,xj

[
D \ {j2}

]
(note that αv[Bj] = δj1,xj). Let a′ be the j2-th variable531

in the block Bj and k be a secondary constraint that contains a′ (such constraint exists by532

the assumption).533

We run again the pivoting step for a′, i.e., we zero out all coefficients corresponding to534

a′ in all other constraints of (Mu|zu) by adding the constraints k to all other constraints535

containing a′. We denote the final system of constraints as (M ′
u|z′

u). Note that (M ′
u|z′

u) is536

still a constraint representation of Au as it arises from (Mu|zu) only by row operations.537

The constraint k is now the only constraint containing the variable a′ and a′ becomes538

a dependent variable. Thus, we make the constraint k a primary constraint for Bj and we539

mark the variable a′. The primary constraint for Bj was changed from the constraint i of540

(Mv|zv) to the constraint k of (M ′
u|z′

u) and the marked variable in the block Bj was changed541

from a to a′. The set of other primary constraints and their pivots were not changed. Thus,542

Invariant 3 holds for u.543

We do not change the assignment ρv, thus the sets of free and fixed blocks are the same.544

The only change in the set of dependent variables was done in the block Bj (that remains a545

fixed block), thus Invariant 2 holds for u.546

The secondary constraints of (Mv|zv) were not changed by the Del
(
(Mv|zv), t, i) executed547

at the beginning of this case (as ti′ = 0 for all secondary constraints i′). Since k is a548

secondary constraint of (Mu|zu), the secondary constraints of (M ′
u|z′

u) contains only variables549

of fixed blocks. However, we change the marked variable in the block Bj . Thus, the partial550

assignment αu differs from αv at the block Bj (αv = δj1,xi , and αu = δj2,xi , where j1 and j2551

are indices of a and a′ in the block Bj). We need to be sure that αu still gives a solution to552

the secondary constraints of (M ′
u|z′

u). Note that the secondary constraints of (M ′
u|z′

u) might553

still contain variables from the block Bj .554

By pivoting a′ and making the constraint k primary, the variable a′ is not in any secondary555

constraint of (M ′
u|z′

u). Since k was a secondary constraint of (Mu|zu), it can not happen that556

a safe variable in (Mu|zu) would become a dangerous one in (M ′
u|z′

u) (i.e., by the pivoting of557

a′). In other words, the set of variables of the secondary constraints of (M ′
u|z′

u) is a subset558

of the set of variables of the secondary constraints of (Mu|zu). Thus, the set D \ {j2} still559

contains all dangerous variables of Bj in (M ′
u|z′

u). Since αv

[
D \ {j2}

]
= αu

[
D \ {j2}

]
by the560

assumption, any extension αu satisfy all secondary constraints of (M ′
u|z′

u) and Invariant 4561

holds for αu.562

A summary of the forget node processing is in Algorithm 3.563

Proof of Theorem 13564

Theorem 13 follows from the following lemma.565

A. Chattopadhyay and P. Dvořák 15

Algorithm 3
Process Forget Node (v: the current (forget) node):

1: t← forgetting vector given by Theorem 10
2: u← the only child of v

3: if t contains a secondary constraint then
4: i← arbitrary secondary constraint in t

5: (Mu|zu)← Del
(
(Mv|zv), t, i

)
▷ The constraint i is now removed

6: ρu = ρv

▷ The sets of primary constraints, fixed blocks, and marked variables are not
changed

7: else ▷ t contains only primary constraints
8: i← arbitrary primary constraint in t

9: (Mu|zu)← Del
(
(Mv|zv), t, i

)
▷ The constraint i is now removed

10: a← the marked variable of i

11: Bj ← the block of the variable a ▷ i is the primary constraint of Bj in (Mv|zv)
12: j1 ← the index of a in Bj

13: if the variables Bj \ {j1} are safe in (Mu|zu) then
14: forget xj ▷ Bj is a new free block
15: else ▷ Bi contains a dangerous variable of (Mu|zu)
16: D ← indices of all dangerous variables of (Mu|zu) in Bj

17: j2 ∈ D \ {j1} by Definition 7
18: a′ ← the j2-th variable of Bj

19: k ← a secondary constraint of (Mu|zu) containing a′

20: (Mu|zu)← pivoting a′ in (Mu|zu) by adding the constraint k to other constraints
▷ k is the new primary constraint of Bj , a′ is the new marked variable of Bj

▷ a is a new safe (and thus independent) variable
21: v ← u

▶ Lemma 14. Suppose the simulation is at Line 4 of Algorithm 1, i.e., it checks whether the566

current node v is a leaf. Then,567

1. w
(
C(ρv)

)
≤ co-dim(Av).568

2. For any x̄ ∈ C(ρv), there is y ∈ Av such that −→g (y) = x.569

Proof of Item 1. By Invariant 1, the co-dimension of Av is exactly the number of equations570

in the system (Mv|zv). By Invariant 3, the number of fixed bits by ρv is exactly the number571

of primary constraints in (Mv|zv). Thus, w
(
C(ρv)

)
≤ co-dim(Av). ◀572

Proof of Item 2. Let x̄ ∈ C(ρv). We will find a solution y to the system (Mv|zv) such that573

−→g (y) = x̄. Thus, by Invariant 1, y ∈ Av.574

First, we set variables of free blocks. Let Bi be a free block. Thus, by Invariant 2, all575

variables of Bi are independent. We set the variables of Bi in a way such that the block Bi576

is mapped to x̄i by the gadget g.577

Now, we set the values of the stifling variables according to αv. By Invariant 4, all578

secondary constraints are satisfied by any extension of αv. Recall that for a fixed block Bi,579

αv[Bi] = δj,xi where j is the index of the marked variable of Bi and x̄i = ρv[i]. Since δj,xi580

is a (j, xi)-stifling pattern, it holds that the block Bi will be always mapped to x̄i by g, no581

matter how we set the marked variables. Thus, the constructed solution y will be mapped582

onto x̄. By Invariant 3, each primary constraint contains a unique marked variable. Thus,583

16 Super-critical Trade-offs in Resolution over Parities Via Lifting

we can set a value to each marked variable a in such a way the primary constraint containing584

a is satisfied. ◀585

Proof of Theorem 13. By Item 1 of Lemma 14, the width of a cube C(ρv) in a time of586

checking whether a vertex v is a leaf is at most co-dimension of Av. Thus, the width of the587

constructed FDT T ′ is at most the width of T .588

Now, we bound the query depth of T ′. Consider a root-leaf path P of T ′ and let d be the589

number of queries made on P . Note that any time we query a bit of x (Line 9 of Algorithm 2)590

we also pick a subtree with a smaller query size (Line 8 of Algorithm 2). Thus, by each query591

of T ′ we halve the query size of T . Thus, 2d ≤ |T |q.592

It remains to prove the constructed FDT T ′ is correct. Let s be a leaf of T that is reached593

during the simulation and o ∈ O is the output of s. Since T computes R ◦ g, it holds that for594

all y ∈ As we have (y, o) ∈ R ◦ g. Note that the processing phase (Lines 5-8 of Algorithm 1)595

is not executed for any leaf. Thus, the assertion of Lemma 14 holds for the leaf s even at596

the time of output – Line 9 of Algorithm 1. Therefore at the end of the simulation, for any597

x̄ ∈ C(ρs) there is y ∈ As such that −→g (y) = x̄. Since (y, o) ∈ R ◦ g, it holds that (x̄, o) ∈ R598

and the constructed FDT T ′ indeed outputs a correct answer. ◀599

8 Application600

Razborov [24] showed the following trade-off between width and size of tree-like resolution.601

▶ Theorem 15 (Theorem 3.1, Razborov [24]). Let k = k(n) ≥ 4 be any parameter and let602

ε > 0 be an arbitrary constant. Then, there exists a k-CNF contradiction τ ′ over n variables603

such that there is a resolution refutation for τ ′ with width at most O(k), but for any tree-like604

resolution refutation Π for τ ′ with w(Π) ≤ n1−ε/k, we have the bound |Π| ≥ exp(nΩ(k)).605

By our simulation, given by Theorem 13, we can lift the trade-off (given by the previous606

theorem) to tree-like Res(⊕) and prove Theorem 3.607

▶ Theorem 3. Let k = k(n) ≥ 12 be any parameter and let ε > 0 be an arbitrary constant.608

Then, there exists a k-CNF contradiction τ over n variables such that there is a resolution609

refutation for τ with width at most O(k), but for every tree-like Res(⊕) refutation Π for τ610

with w(Π) ≤ n1−ε/k, we have the bound |Π| ≥ exp(nΩ(k)).611

Proof. Let g : {0, 1}3 → {0, 1} be a strongly stifled gadget – such functions exist as observed612

in Section 5. Let k′ := ⌊k/3⌋, and τ ′ be a k′-CNF contradiction given by Theorem 15. We613

set τ := τ ′ ◦ g that is a k-CNF contradiction. Since there is a resolution refutation for τ ′ with614

width at most O(k′), then there is a resolution refutation for τ with width at most O(k).615

Now, let Π be a tree-like Res(⊕) refutation for τ with w(Π) ≤ n1−ε/k. By Observation 4,616

let T be a canonical FPDT corresponding to Π that computes Search(τ). Thus, we have617

w(T) ≤ w(Π) + 1 and |T |q ≤ |Π|. We change T to compute Search(τ ′) ◦ g. Let s be a leaf618

of T outputting a clause D of τ ′ ◦ g. The clause D has to appear in a set of clauses D′ ◦ g619

for a clause D′ of τ ′. We change the output of s to be the clause D′ instead of D. By620

Observation 6, the tree T now computes Search(τ ′) ◦ g.621

By Theorem 13, there is FDT T ′ computing Search(τ ′) with dq(T ′) ≤ log |T |q and622

w(T ′) ≤ w(T). Let Π′ be the resolution refutation for τ ′ corresponding to the succinct form623

of T ′. Thus, w(Π′) = w(T ′) and |Π′| ≤ 3 · 2dq(T ′) (by Observation 5). Since624

w(T ′) ≤ w(T) ≤ n1−ε/k + 1 ≤ n1−ε/k′, (1)625

A. Chattopadhyay and P. Dvořák 17

we have that |Π′| ≥ exp(nΩ(k′)) by Theorem 15. The last inequality in (1) holds if k ≤ 2n1−ε,626

which holds as we suppose that 1 ≤ w(Π) ≤ n1−ε/k. Putting everything together, we have627

|Π| ≥ |T |q ≥ 2dq(T ′) ≥ 1
3 · |Π

′| ≥ exp(nΩ(k′)) = exp(nΩ(k)).628

◀629

Acknowledgment630

We would like to thank an anonymous reviewer for pointing out the short and elegant proof631

of Thoerem 10 that we include here. Our original proof was complicated.632

References633

1 Yaroslav Alekseev and Dmitry Itsykson. Lifting to regular resolution over parities via games.634

Electron. Colloquium Comput. Complex., TR24-128, 2024. URL: https://eccc.weizmann.ac.635

il/report/2024/128/, arXiv:TR24-128.636

2 Sepehr Assadi, Gillat Kol, and Zhijun Zhang. Rounds vs communication tradeoffs for maximal637

independent sets. In 63rd IEEE Annual Symposium on Foundations of Computer Science,638

FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1193–1204. IEEE, 2022.639

URL: https://doi.org/10.1109/FOCS54457.2022.00115.640

3 Paul Beame, Christopher Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:641

superpolynomial lower bounds for superlinear space. In Howard J. Karloff and Toniann642

Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference,643

STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 213–232. ACM, 2012. URL:644

https://doi.org/10.1145/2213977.2213999.645

4 Paul Beame and Sajin Koroth. On disperser/lifting properties of the index and inner-product646

functions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science647

Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume648

251 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL:649

https://doi.org/10.4230/LIPIcs.ITCS.2023.14, doi:10.4230/LIPICS.ITCS.2023.14.650

5 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial651

calculus: extended abstract. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,652

Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,653

2013, pages 813–822. ACM, 2013. URL: https://doi.org/10.1145/2488608.2488711.654

6 Eli Ben-Sasson. Size space tradeoffs for resolution. In John H. Reif, editor, Proceedings on655

34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,656

Canada, pages 457–464. ACM, 2002. URL: https://doi.org/10.1145/509907.509975.657

7 Christoph Berkholz, Moritz Lichter, and Harry Vinall-Smeeth. Supercritical size-width tree-like658

resolution trade-offs for graph isomorphism, 2024. URL: https://arxiv.org/abs/2407.17947,659

arXiv:2407.17947.660

8 Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolution.661

SIAM J. Comput., 49(1):98–118, 2020. doi:10.1137/16M1109072.662

9 Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. Exponential Separ-663

ation Between Powers of Regular and General Resolution over Parities. In Rahul Santhanam,664

editor, 39th Computational Complexity Conference (CCC 2024), volume 300 of Leibniz Interna-665

tional Proceedings in Informatics (LIPIcs), pages 23:1–23:32, Dagstuhl, Germany, 2024. Schloss666

Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/667

document/10.4230/LIPIcs.CCC.2024.23, doi:10.4230/LIPIcs.CCC.2024.23.668

10 Mark Braverman and Rotem Oshman. A rounds vs. communication tradeoff for multi-party669

set disjointness. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of670

Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 144–155.671

IEEE Computer Society, 2017. URL: https://doi.org/10.1109/FOCS.2017.22.672

https://eccc.weizmann.ac.il/report/2024/128/
https://eccc.weizmann.ac.il/report/2024/128/
https://eccc.weizmann.ac.il/report/2024/128/
https://arxiv.org/abs/TR24-128
https://doi.org/10.1109/FOCS54457.2022.00115
https://doi.org/10.1145/2213977.2213999
https://doi.org/10.4230/LIPIcs.ITCS.2023.14
https://doi.org/10.4230/LIPICS.ITCS.2023.14
https://doi.org/10.1145/2488608.2488711
https://doi.org/10.1145/509907.509975
https://arxiv.org/abs/2407.17947
https://arxiv.org/abs/2407.17947
https://doi.org/10.1137/16M1109072
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23
https://doi.org/10.4230/LIPIcs.CCC.2024.23
https://doi.org/10.1109/FOCS.2017.22

18 Super-critical Trade-offs in Resolution over Parities Via Lifting

11 Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting to673

parity decision trees via stifling. In Yael Tauman Kalai, editor, 14th Innovations in The-674

oretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge,675

Massachusetts, USA, volume 251 of LIPIcs, pages 33:1–33:20. Schloss Dagstuhl - Leibniz-676

Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITCS.2023.33,677

doi:10.4230/LIPICS.ITCS.2023.33.678

12 Susanna F. de Rezende, Noah Fleming, Duri Andrea Janett, Jakob Nordström, and Shuo679

Pang. Truly supercritical trade-offs for resolution, cutting planes, monotone circuits, and680

weisfeiler-leman, 2024. URL: https://arxiv.org/abs/2411.14267, arXiv:2411.14267.681

13 Klim Efremenko, Michal Garlík, and Dmitry Itsykson. Lower bounds for regular resolution682

over parities. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the683

56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada,684

June 24-28, 2024, pages 640–651. ACM, 2024. doi:10.1145/3618260.3649652.685

14 Noah Fleming, Toniann Pitassi, and Robert Robere. Extremely Deep Proofs. In Mark686

Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS687

2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages688

70:1–70:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Inform-689

atik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.690

70, doi:10.4230/LIPIcs.ITCS.2022.70.691

15 Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci., 60(2):337–353,692

2000. URL: https://doi.org/10.1006/jcss.1999.1671.693

16 Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space694

lower bounds for satisfiability. J. ACM, 52(6):835–865, 2005. URL: https://doi.org/10.695

1145/1101821.1101822.696

17 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds697

from resolution. Theory Comput., 16:1–30, 2020. Preliminary version in STOC 2018. URL:698

https://doi.org/10.4086/toc.2020.v016a013, doi:10.4086/TOC.2020.V016A013.699

18 Mika Göös, Gilbert Maystre, Kilian Risse, and Dmitry Sokolov. Supercritical tradeoffs for700

monotone circuits, 2024. URL: https://arxiv.org/abs/2411.14268, arXiv:2411.14268.701

19 Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combinations.702

In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical703

Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,704

Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer705

Science, pages 372–383. Springer, 2014. doi:10.1007/978-3-662-44465-8_32.706

20 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann.707

Pure Appl. Log., 171(1), 2020. URL: https://doi.org/10.1016/j.apal.2019.102722.708

21 Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM J.709

Comput., 22(1):211–219, 1993. URL: https://doi.org/10.1137/0222016.710

22 Pavel Pudlák. On extracting computations from propositional proofs (a survey). In Kamal711

Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software712

Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,713

India, volume 8 of LIPIcs, pages 30–41. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,714

2010. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30.715

23 Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of716

bounded-arithmetic. Izvestiya. Math., 59(1):205–227, 1995.717

24 Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. J. ACM,718

63(2):16:1–16:14, 2016. URL: https://doi.org/10.1145/2858790.719

25 Dmitry Sokolov. Dag-like communication and its applications. In Pascal Weil, editor, Computer720

Science - Theory and Applications - 12th International Computer Science Symposium in721

Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings, volume 10304 of Lecture722

Notes in Computer Science, pages 294–307. Springer, 2017. URL: https://doi.org/10.1007/723

978-3-319-58747-9_26.724

https://doi.org/10.4230/LIPIcs.ITCS.2023.33
https://doi.org/10.4230/LIPICS.ITCS.2023.33
https://arxiv.org/abs/2411.14267
https://arxiv.org/abs/2411.14267
https://doi.org/10.1145/3618260.3649652
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.70
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.70
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.70
https://doi.org/10.4230/LIPIcs.ITCS.2022.70
https://doi.org/10.1006/jcss.1999.1671
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.4086/TOC.2020.V016A013
https://arxiv.org/abs/2411.14268
https://arxiv.org/abs/2411.14268
https://doi.org/10.1007/978-3-662-44465-8_32
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1137/0222016
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30
https://doi.org/10.1145/2858790
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26

A. Chattopadhyay and P. Dvořák 19

26 R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Comput.725

Complex., 17(2):179–219, 2008. URL: https://doi.org/10.1007/s00037-008-0248-y.726

https://doi.org/10.1007/s00037-008-0248-y

20 Super-critical Trade-offs in Resolution over Parities Via Lifting

A Appendix727

In this section, we show that the functions IND1 and MAJ3 are strongly stifled and IP2 is728

not strongly stifled.729

▶ Observation 8. The functions IND1 and MAJ3 are strongly stifled.730

Proof. We present collections of (i, b)-stifling patterns P (IND1) and P (MAJ3) for IND1 and731

MAJ3, respectively. It is straight-forward to verify that these collections are converting732

collections of stifling patterns for IND1 and MAJ3.733

i

b 0 1

1 (∗, 0, 0) (∗, 1, 1)
2 (1, ∗, 0) (1, ∗, 1)
3 (0, 0, ∗) (0, 1, ∗)

Table 1 P (IND1)

i

b 0 1

1 (∗, 0, 0) (∗, 1, 1)
2 (0, ∗, 0) (1, ∗, 1)
3 (0, 0, ∗) (1, 1, ∗)

Table 2 P (MAJ3)

◀734

▶ Observation 9. The function IP2 is not strongly stifled.735

Proof. The only (1, 1)-stifling pattern for IP2 : {0, 1}4 → {0, 1} is δ1 := (∗, 1, 0, 1). Similarly,736

the only (2, 1)- and (4, 1)-stifling patterns for IP2 are δ2 := (1, ∗, 1, 0), and δ4 := (1, 0, 1, ∗),737

respectively. Now, let D = {2, 4}. There is no j ∈ D such that δ1[
D \ {j}

]
= δj

[
D \ {j}

]
as738

required to be a strongly stifled function. ◀739

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

