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Abstract

We present the first explicit construction of two-sided lossless expanders in the unbalanced setting
(bipartite graphs that have many more nodes on the left than on the right). Prior to our work, all known
explicit constructions in the unbalanced setting achieved only one-sided lossless expansion.

Specifically, we show that the one-sided lossless expanders constructed by Kalev and Ta-Shma
(RANDOM’22)—that are based on multiplicity codes introduced by Kopparty, Saraf, and Yekhanin
(STOC’11)—are, in fact, two-sided lossless expanders.

Using our unbalanced bipartite expander, we easily obtain lossless (non-bipartite) expander graphs
on N vertices with polynomial degree and a free group action. As far as we know, this is the first explicit
construction of lossless (non-bipartite) expanders with N vertices and degree ≪ N .

1 Introduction

Lossless expanders are graphs in which small sets of vertices have almost as many neighbors as possible.
Formally, we say that a d-regular graph G = (V,E) is a (K,A)-expander if for all sets S ⊆ V of size at most
K we have that |Γ(S)| ≥ A |S| where Γ(S) is the neighborhood of S. Generally, we desire thatK is as large as
possible with K = Ω(|V | /d). When A = (1−ε)d for some small ε, we say that G is a (K, ε)-lossless expander
since only a small fraction of the total number of possible neighbors is lost. As with other pseudorandom
objects, it is well-known that a random graph is a lossless expander with high probability [Vad12].

A reasonable question after seeing this definition is whether other notions of expansion, such as spectral or
edge expansion, can be used to derive such graphs. Unfortunately, while Ramanujan graphs (optimal spectral
expanders) do have expansion factor arbitrarily close to A = d/2, there also exist examples of Ramanujan
graphs with expansion factor exactly A = d/2, showing that spectral expansion does not necessarily give rise
to lossless expansion [Kah95].

One can view these graphs as bipartite graphs G = (L⊔R,E) with L = R = V and edges across the two
sets of vertices according to whether two vertices shared an edge in the original graph. This yields a balanced
bipartite graph with expansion from both the left and right sets of vertices. [LH22] showed that such graphs
with constant degree and lossless expansion from both sides that have certain algebraic properties are known
to have applications to good quantum low-density parity check (qLDPC) codes. Moreover, these qLDPC
codes are easier to analyze than the ones of [PK22; DHLV23], which are the only known good qLDPC
constructions known to date. However, current explicit constructions of balanced lossless expanders only
achieve expansion from one side of the bipartite graph [CRVW02; CRT23; Gol24]. In this balanced setting,
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lossless expansion from both the left and right, termed two-sided lossless expansion, is only known for small
sets of size K = Ω(exp(

√
log |V |)) [HMMP24].

Amazingly, lossless expansion is even possible in the unbalanced setting with |L| ≫ |R|. Morally, it is
surprising that lossless expansion is still possible from a much larger set of vertices to a much smaller set
of vertices. Unsurprisingly then, these graphs also find many applications. Often in this setting, lossless
expanders are termed lossless condensers since the neighbor function that takes in a left vertex and the
index of a neighbor and outputs the right vertex has a much shorter output length than input length. In this
context as in the balanced setting, current constructions are similarly only able to achieve lossless expansion
from the left to the right [TU06; TUZ07; GUV09; KT22], with the best parameters achieved by [GUV09;
KT22]. The constructions from these papers have found a wide array of applications in coding theory [SS96],
extractor constructions [TU06; TUZ07; GUV09; DKSS13], derandomization [DT23],1 and probabilistic data
structures [UW87; BMRV02], with the unbalanced nature of the graph being essential.

As our first main result, we fill a gap in this line of work by showing that the unbalanced bipartite graph
of [KT22] based on the multiplicity codes of [KSY14] is a two-sided lossless expander (Theorem 1). We use
this result, in a relatively straightforward way, to obtain two-sided lossless expanders in the balanced setting
and, in fact, non-bipartite lossless expanders with high degree, which is our second main result (Theorem 2).

We now define a two-sided lossless expander as:

Definition 1.1 (Two-sided lossless expander). We say that a (DL, DR)-regular bipartite graph G = (L⊔R,E)
is a two-sided (KL, AL,KR, AR)-expander if for any subset SL ⊆ L such that |SL| ≤ KL we have that
|Γ�(SL)| ≥ AL |SL| and similarly that for any subset SR ⊆ R such that |SR| ≤ KR we have that |Γ�(SR)| ≥
AR |SR|. When AL = (1− εL)DL and AR = (1− εR)DR for small εL, εR > 0, we say that G is a two-sided
(KL, εL,KR, εR)-lossless expander.

With this definition, our main theorem can be informally stated as follows.

Theorem 1 (Informal version of Theorem 5.1). For infinitely many N and all constant 0 < δ ≤
0.99, there exists an explicit biregular, two-sided (KL, εL = 0.01,KR, εR = 0.01) lossless expander
Γ� : [N ] × [DL] → [M ] where DL = poly(logN), N1.01δ−o(1) ≤ M ≤ DL · N1.01δ, KL = Nδ, and
KR = min (O(M/DL), O(N/(MDL))).

Remark 1.2. Because [KT22] has optimal left degree of their bipartite graph (up to polynomial factors), we
achieve optimal left-degree as well and, with respect to this, achieve optimal right degree, optimal expansion
constant, optimal size of sets of vertices on left side that losslessly expand, and optimal size of sets of vertices
on right side that losslessly expand when M ≤

√
N . 2

Remark 1.3. Interestingly, while [GUV09] constructed the first unbalanced one-sided lossless expander, our
methods do not work to show that the [GUV09] also expands losslessly from the right.3 Determining whether
the [GUV09] can also be shown or modified to expand losslessly from the right is an interesting open question.

We obtain our second main result by taking the bipartite half (see Section 2.2 for more details) of the
[KT22] graph, using the fact that it is a two-sided lossless expander:

Theorem 2 (Informal version of Theorem 6.1). For infinitely many N and all constant 0 < δ < 0.99, there
exists an explicit regular (K, ε = 0.01) lossless expander G = (V,E) where |V | = N , the degree is D where
N1−1.01δ ≤ D ≤ N1−1.01δ+o(1) and K = min

(
Nδ, N1−1.01δ−o(1)

)
. Moreover, G with one vertex is removed,

is endowed with a free group action from Fq, where q = poly(logN).

Remark 1.4. When δ ≤ 0.49, the value of K is almost optimal (a trivial upper bound is K ≤ N/D) since

in that regime, K = Nδ ≥ (N/D)
0.99

.

1[DT23] instantiated Goldreich’s PRG [Gol11] with the lossless expander of [KT22].
2To see that this setting of KR is indeed optimal, note that in a (DL, DR)-biregular graph it must be that N ·DL = M ·DR

and so M
DL

= N
DR

. Hence, KR = O(M/DL) = O(N/DR), the largest possible size.
3In fact, the [GUV09] construction is not even right-regular. See Appendix B for details.
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One can show that there exist non-bipartite lossless expanders with even constant degree. So, the degree
of our lossless graph obtained is far from optimal. Nevertheless, as far as we know, this is the first explicit
construction of a regular lossless (non-bipartite) expander apart from trivial constructions which have either
D = 1 or K = O(1).

2 Proof Overview

In this section, we first outline the proof of Theorem 1—our two-sided lossless expander. Using it, we
construct high degree non-bipartite lossless expanders, proving Theorem 2.

2.1 Two-sided lossless expander

We show that the bipartite graph defined in [KT22] based on multiplicity codes is a two-sided lossless
expander. The left-to-right lossless expansion was shown in [KT22]. Our main contribution is showing that
the KT graph also expands losslessly from right to left. To do this, we first show that the KT graph is
right-regular. Second, for any pair of right vertices, we compute the exact number of common left neighbors
they have. Finally, for any not-too-large subset on the right, we lower bound the number of its left neighbors
by using the inclusion-exclusion principle to subtract all possible double counted common left neighbors from
the total number of outgoing edges.

We state an informal version of our result and present details on the strategy sketched above.

Theorem 2.1 (Informal version of Theorem 4.1). For every field Fq and n, s ∈ N with 15 ≤ (s+ 1) < n <
char(Fq), and any δ > 0, there exists an explicit bipartite graph G = (L⊔R,E) with L = Fn

q , R = Fs+2
q with

left degree dL = q and right degree dR = qn−(s+1) such that G is a two-sided (KL, AL,KR, AR) expander

where KL = Ω(qs+1), AL = q − n(s+ 2), KR = δqmin(s+1,n−(s+1)), AR =
(
1−O

(
δ · q−1

q

))
qn−(s+1).

Theorem 1 is obtained from Theorem 2.1 by instantiating the parameters appropriately (see Section 5
for more details). We now define the KT graph and then claim that it is a lossless right expander.

Definition 2.2 (The KT graph [KT22]). Let q, n, s ∈ N be such that q is a prime power, characteristic of
the finite field Fq ≥ n and s ≤ n/2. We define G = (L⊔R,E) where L = Fn

q , R = Fs+2
q . The left degree is q

and for any f ∈ Fn
q and y ∈ Fq, the y’th neighbor of f is defined as follows: Identify f as member of Fq[X]

with degree of f at most n− 1 ; then, the neighbor Γ�(f, y) will be (y, f (0)(y), . . . , f (s)(y)) where f (i) is the
i’th iterative derivative of f .

Theorem 2.3 (The KT graph losslessly expands from the right). The KT graph G is a right (KR, AR)-
lossless expander where KR = δmin(|R| , |L| / |R|), εR = O(δ · q−1

q ) for arbitrary 0 < δ < 1. In other words,

for any subset T ⊆ R, |T | ≤ KR, T has at least (1− εR)dR|T | neighbors on the left.

Theorem 2.1 immediately follows from left expansion shown by [KT22] and Theorem 2.3. For the rest of
this section, we focus on proving Theorem 2.3 that relies on the following two key lemmas.

Lemma 2.4 (Right regularity). The KT graph G is right-regular and has right-degree dR = qn−(s+1).

Lemma 2.5 (Number of common left neighbors). For any pair of right-vertices w1, w2 ∈ Fs+2
q such that

w1 = (y1, z1), w2 = (y2, z2) where y1 ̸= y2 ∈ Fq and z1, z2 ∈ Fs+1
q , we have |Γ�(y1, z1) ∩ Γ�(y2, z2)| =

qn−(2s+2) if n ≥ 2s+ 2 and |Γ�(y1, z1) ∩ Γ�(y2, z2)| ≤ 1 if n ≤ 2s+ 2.

Theorem 2.3 then follows by an application of the inclusion-exclusion principle—subtracting the maximum
number of common neighbors between any pair of vertices in T from the total number of edges leaving T—we
get the required lower bound on the size of T ’s left neighborhood.

We now discuss the proof techniques for showing Lemma 2.4 and Lemma 2.5. We start by making a
simple but useful observation on the structure of the KT graph G.

3



Observation 2.6. Fix w = (y, z0, · · · , zs) ∈ R and let f ∈ L be any left-neighbor of w. Then it must be
the case that w is the y’th neighbor of f . Now for any w′ ∈ R such that w′ = (y, z′0, · · · , z′s), it holds that
f /∈ Γ�(w

′). This is saying that any pair of right vertices (w,w′) that come from the same seed 4 must have
disjoint left neighborhoods.

Central to our analysis of the right degree and the number of common left neighbors are the following
linear maps.

Definition 2.7. For y ∈ Fq, define the map ψy(f) : Fn
q → Fs+1

q as follows: Interpret f ∈ Fq[X] as a degree

≤ n− 1 polynomial and map it to (f (0)(y), . . . , f (s)(y)) where f (i) is the i’th iterative derivative of f .

We note that ψy is a Fq-linear map, for any y ∈ Fq.

Definition 2.8. For y1, y2 ∈ Fq, y1 ̸= y2, define the map ψy1,y2
(f) : Fn

q → F2(s+1)
q as the concatenation of

the respective linear maps, that is, ψy1,y2
(f) = (ψy1

(f), ψy2
(f)).

Observe that the y’th neighbor of a left-vertex f is then given by (y, ψy(f)). Proving the above lemmas
(about the KT graph) now boils down to showing that both ψy and ψy1,y2

are full rank for all y, y1, y2 ∈ Fq.

1. ψy is full rank implies Lemma 2.4: Let w = (y, z0, · · · , zs) ∈ R be any right vertex, then the set
of its left neighbor is {f ∈ L | (y, ψy(f)) = w} = ψ−1

y (z0, · · · , zs). Because of Observation 2.6 and

surjectivity, the right degree DR =
∣∣ψ−1

y (z0, · · · , zs)
∣∣ = qn/qs+1 = qn−(s+1).

2. ψy1,y2
is full rank implies Lemma 2.5: Similar to above, let w1 = (y1, z1) ∈ R and w2 = (y2, z2) ∈ R,

y1 ̸= y2, be any pair of right vertices from different seeds. We extend Observation 2.6 to see that
the number of f ∈ L such that (y1, ψy1

(f)) = w1 and (y2, ψy2
(f)) = w2 is exactly

∣∣ψ−1
y1,y2

(z1, z2)
∣∣. If

n ≥ 2s + 2, then this map is surjective, and the number of left neighbors shared by w1 and w2 is
qn−(2s+2). If n ≤ 2s+ 2, then this map is injective and the number of shared neighbors is at most 1.

To conclude the proof, it remains to show that these linear maps are full rank. For the linear map ψy,
the associated matrix is lower triangular, and we show the determinant is non-zero through straightforward
calculation. Proving that the map ψy1,y2 is full rank requires more work. The main insight for computing
the determinant of the matrix is to factor it into a lower triangular matrix and a matrix, the determinant
of which reduces to computing the determinant of a Vandermonde matrix after a change of basis between
the falling factorial basis and the monomial basis. We refer the reader to Section 3.5 for more details on the
conversion of polynomial basis, and Section 4.3 for the complete proof of Lemma 2.5.

2.2 Non-bipartite lossless expander

We show that the bipartite half of the KT graph (from the previous section) yields a non-bipartite regular
lossless expander. The bipartite half is an operation of bipartite graphs that transforms them into a non-
bipartite graph, and is defined as follows: given a bipartite graph G = (L ⊔R,E), its bipartite half G2[L] is
a graph with vertex set L where there is an edge (u, v) ∈ G2[L] iff u and v share a common neighbor in G.

One nuance of the bipartite half is that applying it to a biregular bipartite graph does not necessarily
mean that the bipartite half will be regular itself. Thus, we must define what it means for a graph to be
lossless in this non-regular setting. A natural definition just involves summing the total number of neighbors
of a set.

Definition 2.9. An irregular graph G = (V,E) is a (K, ε)-lossless expander5 if for any set S ⊆ V of size
at most K we have that |Γ(S)| ≥ (1− ε)

∑
v∈S d(v) where d(v) represents the degree of vertex v.

A stronger notion of lossless expansion is with respect to the highest degree of a node present in a graph.

4We sometimes refer to y ∈ Fq as the “seed”, like in the condensers literature.
5We abuse notation between the regular and irregular cases of graphs since this definition of lossless expansion for an irregular

graph captures our previous definition of lossless expansion for regular graphs.
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Definition 2.10. An irregular graph G = (V,E) is a max-degree (K, ε)-lossless expander if for any set
S ⊆ V of size at most K we have that |Γ(S)| ≥ (1− ε)D |S| where D = maxv∈V d(v), the maximum degree
of any vertex in G.

Using this definition, our main observation is that the bipartite half of any two-sided lossless bipartite
expander yields a non-bipartite, max-degree lossless expander.

Lemma 2.11 (Lemma 6.3 restated). Let G = (L ⊔ R,E) be a (DL, DR)-regular (KL, AL,KR, AR)-two-
sided lossless expander. Then G2[L] is a max-degree (K,A)-expander where each node has a degree in
[DLAR, DLDR], and with K = min(KL,KR/DL) and A = ALAR.

The proof of this lemma essentially follows from expanding twice in the underlying two-sided expander
G. Since we force our initial set to be at most KL and KR/DL, we are guaranteed that we can use the
left-to-right expansion of G and then additionally the right-to-left expansion of G, where at each step we
expand by AL and AR, respectively.

Finally, we use the bipartite two-sided lossless expander from Theorem 1 as the base graph in Lemma 2.11
to obtain Theorem 2. Luckily, if we use the KT graph as our bipartite two-sided lossless expander, then the
resultant graph obtained from taking the bipartite half is indeed regular (see Lemma 6.6 for a proof).

Theorem 2.12 (Informal version of Theorem 6.1). For infinitely many N and all constant 0 < δ < 0.99,
there exists an explicit regular (K, ε = 0.01) lossless expander G = (V,E) where |V | = N , the degree is D
where N1−1.01δ ≤ D ≤ N1−1.01δ+o(1) and K = min

(
Nδ, N1−1.01δ−o(1)

)
. Moreover, G is endowed with a free

group action from Fq where q = poly(logN) if one vertex is removed.

In this setting, A = ALAR ≈ 0.99DLDR, implying G2[L] is indeed a max-degree lossless expander.
Additionally, because the vertices in the bipartite half of the KT graph are elements of Fn

q , we get a free
group action from Fq on them by scalar multiplication. One needs to be careful here since G2[L] contains
the zero polynomial vertex; we remove this vertex and observe that removing one vertex still preserves the
expansion properties.

Organization We use Section 3 to introduce necessary preliminaries. Then in Section 4.1 we show how
our main theorem is proved assuming right regularity and knowing the overlap between two neighborhoods
of right vertices. These facts are then proved in Section 4.2 and Section 4.3, respectively. In Section 5, we
plug in parameters to get our two-sided lossless expander. Finally, in Section 6 we show how the bipartite
half of the KT graph is a non-bipartite lossless expander with a free group action.

We prove that our constructions are explicit in Appendix A, and discuss why we were not able to show
that the [GUV09] graph expands losslessly from the right in Appendix B.

3 Preliminaries

3.1 Notation

For a function f ∈ Fq[X], we we use f (j) to denote the j’th iterated derivative of f . We will often use the
notation bi for i ∈ N to refer to the polynomial xi ∈ Fq[x] and we will often use the fact that (b0, . . . , bn)
form a basis for the polynomials of degree at most n. For a (dL, dR)-biregular bipartite graph G = (L ⊔R),
we use Γ� : L× [DL] → R to be the function that maps vertices in L to their neighbors in R as given by G;
we use Γ� : R× [DR] → L to be the function that maps vertices in R to their neighbors in L as given by G.
Often, we will define graph G by only defining the associated Γ�. When clear from context, we sometimes
abuse notation and use Γ�(w) to denote the right neighborhood of w ∈ L, and similarly Γ�(w) for the left
neighborhood of w ∈ R.
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3.2 Lossless expansion

Throughout this paper, we will be focusing on the notion of vertex expansion as opposed to other definitions
(e.g., edge, spectral) of expansion. Defining vertex expansion of a regular graph is straightforward.

Definition 3.1. A D-regular graph G = (V,E) is a (K,A)-expander if for all S ⊆ V such that |S| ≤ K we
have that |Γ(S)| ≥ A |S|. If A = 1− ε, then we say that G is a (K, ε)-lossless expander.

For biregular bipartite graphs, we must consider the degree of each side to define expansion.

Definition 3.2. A (DL, DR)-biregular graph G = (L ⊔ R,E) is a (KL, AL,KR, AR)-two-sided expander if
for all S ⊆ L of size at most KL we have |Γ�(S)| ≥ AL |S| and for all S ⊆ R of size at most KR we have
|Γ�(S)| ≥ AR |S|. If AL = 1 − εL and AR = 1 − εR, then we call G a (KL, εL,KR, εR)-lossless two-sided
expander.

For irregular graphs, we can generalize Definition 3.1 in two ways. The first way is considering expansion
with respect to the maximum number of neighbors of a set.

Definition 3.3. An irregular graph G = (V,E) is a (K, ε)-lossless expander (where we abuse the word
“expander” for both regular and irregular graphs) if for any set S ⊆ V of size at most K we have that
|Γ(S)| ≥ (1− ε)

∑
v∈S d(v) where d(v) represents the degree of vertex v.

The second, stronger notion of lossless expansion is with respect to the highest degree of a node present
in a graph.

Definition 3.4. An irregular graph G = (V,E) is a max-degree (K, ε)-lossless expander if for any set S ⊆ V
of size at most K we have that |Γ(S)| ≥ (1 − ε)D |S| where D = maxv∈V d(v), the maximum degree of any
vertex in G.

3.3 The KT graph

Throughout the paper, we will use construction of bipartite (left) lossless expanders from [KT22] based on
multiplicity codes from [KSY14]. We will often refer to this graph ‘the KT graph’:

Definition 3.5 (The KT graph). Let q, n, s ∈ N be such that q is a prime power, characteristic of the finite
field Fq ≥ n and s ≤ n/2. Define G = (L ⊔R,E) where L = Fn

q , R = Fs+2
q . The left degree is q and for any

f ∈ Fn
q and y ∈ Fq, the y’th neighbor of f is defined as follows: Identify f as member of Fq[X] with degree

of f at most n− 1 ; then, the neighbor Γ�(f, y) will be (y, f (0)(y), . . . , f (s)(y)) where f (j) is the j’th iterative
derivative of f .

Remark 3.6. In the paper [KT22], the final lossless expander graph construction slightly differs from ours.
While they do construct the KT-graph G defined as above and show it has great (left) expanding properties,
the final (left) lossless expander graph actually is defined as H = (L ⊔ R,E) where L = 2n, R = Fs+2

q and
the left degree is q. H is constructed by considering the subgraph of G induced by vertices on the left side
corresponding to {0, 1}n. For us, the final two-sided lossless expander graph will be G itself. This is why,
our two-sided lossless expander graph has slightly worse parameters (worse constants) compared to the left
lossless expander graph from [KT22].

3.4 A useful inequality

We will use the following inequality based on an application of the Cauchy-Schwarz inequality:

Claim 3.7. Fix n ∈ N, S ∈ R. Let x = (x1, . . . , xn) ∈ Rn be such that
∑

1≤i≤n xi = S. Then,

∑
1≤i<j≤n

xixj ≤
(n− 1)S2

2n

6



Proof. Recall the Cauchy-Schwarz inequality:
(∑

1≤i≤n aibi

)2

≤
(∑

1≤i≤n a
2
i

)(∑
1≤i≤n b

2
i

)
. We apply this

with a1 = x1, . . . , an = xn and b1 = b2 = · · · = bn = 1 to infer that

S2 ≤

 ∑
1≤i≤n

x2i

 · n =

S2 − 2
∑

1≤i<j≤n

xixj

 · n

Rearranging, we infer that ∑
1≤i<j≤n

xixj ≤
(n− 1)S2

2n

as desired.

3.5 Falling factorial basis and Stirling numbers

We will use well known facts regarding converting between falling factorial basis for polynomials and the
standard monomial basis using Stirling numbers. For formal reference of these claims, refer to [AA07]. Our
viewpoint is inspired by an exposition of these results that appeared in a blog post by Terence Tao [Ter19].

We begin by defining falling factorials:

Definition 3.8. The falling factorial of degree n is defined to be the polynomial

xn = (x− n+ 1)(x− n+ 2) · · · (x− 1)x

We record the following well known fact:

Fact 3.9. Falling factorials (xn, . . . , x0) form a basis for the polynomials in Fq[x] of degree at most n.

Falling factorials are related to the monomial basis through Stirling numbers:

Definition 3.10 (Stirling numbers of the first kind). The Stirling number of the first kind st1(n, k) is the
coefficient of xk in the expansion of xn where k, n ∈ N. In particular,

xn =

n∑
k=0

st1(n, k)x
k

. Let

[
n
k

]
denote the number of permutations on n elements with k cycles, then

st1(n, k) = (−1)n−k

[
n
k

]
Definition 3.11 (Stirling numbers of the second kind). The Stirling number of the second kind st2(n, k) is
the coefficient for xk in the expansion of xn where n, k ∈ N are arbitrary. In particular,

xn =

n∑
k=1

st2(n, k)x
k.

Moreover,

st2(n, k) =

k∑
i=0

(−1)k−iin

(k − i)!i!
.
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Fact 3.12. If we let S ∈ Fn×n
q be defined by the Stirling numbers of the second kind as S(i, j) = st2(j, i),

then it is easy to check from Definition 3.11 that (x0, x1, . . . , xn)S = (x0, x1, . . . , xn). Notice that since
st2(j, i) = 0 when i > j, and st2(j, i) = 1 when i = j, the matrix S is upper triangular and its determinant
is the product of its diagonal entries, meaning det(S) = 1.

S =


st2(0, 0) st2(1, 0) st2(2, 0) · · · st2(n, 0)

0 st2(1, 1) st2(2, 1) · · · st2(n, 1)
0 0 st2(2, 2) · · · st2(n, 2)
...

...
...

. . .
...

0 0 0 · · · st2(n, n)


3.6 Free group actions on graphs

Here we recall basic notions about group actions on graphs. First, we define an abstract group notion.

Definition 3.13. Let G be a group and X a set. A group action · : G ×X → X (where we write the · in
infix notation) is a function that has the following two properties:

1. Identity: The identity element 1G of G always acts trivially as 1G · x = x for any x ∈ X.

2. Compatibility: The group action and multiplication of G are compatible. That is, for any g, h ∈ G and
x ∈ X we have (gh) · x = g · (h · x) where gh is the product of g and h in G.

Next, we recall another abstract notion about group actions.

Definition 3.14. We say that a group action of G on X is free if g · x = x for some x ∈ X implies that
g = 1G.

Finally, we consider what it means for a graph to be invariant with respect to a group action.

Definition 3.15. Let G be a group and H = (V,E) a graph with a group action from G. We say that H is
G-invariant if for all (v, w) ∈ E and g ∈ G we have that (g · v, g · w) ∈ E.

4 An Explicit Two-sided Lossless Expander

In this section, we first describe how to prove our main theorem using right regularity and the size of the
overlap in neighborhoods between any two right vertices. Then we prove these two facts in Section 4.2 and
Section 4.3, respectively.

4.1 Main theorem

Putting together all of our results with the left-to-right expansion of [KT22] yields our main theorem.

Theorem 4.1. For all finite fields Fq and n, s ∈ N with 15 ≤ (s + 1) < n < char(Fq), there exists an
explicit bipartite graph G = (L ⊔ R,E) with L = Fn

q , R = Fs+2
q , left degree equal to q and right degree

qn−(s+1) such that G is a two-sided (KL, AL,KR, AR) expander with AL = q − n(s+2)
2 · (qKL)

1/(s+2)
and

AR =
(
1− KR

qmin(s+2,n−s) · q−1
2

)
qn−(s+1).

Proof. The left-to-right expansion follows from Theorem 3 from [KT22]. The right-to-left expansion follows
from Theorem 4.2 below. The explicitness of G follows from Claim A.1.

Our main achievement is showing the right-to-left expansion of the KT graph in Theorem 4.2 below.

Theorem 4.2. If n ≥ s + 1, then the KT graph G in Definition 2.2 is a right (Kmax, ε)-lossless expander

for Kmax = δqs+1 and ε = δ(q−1)
2q · qmax(2s+2−n,0) where 0 < δ < 1 is arbitrary.
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We prove Theorem 4.2 via the following properties of G:

Lemma 4.3. When n ≥ s+ 1, G is right-regular and the right degree is qn−(s+1).

Lemma 4.4. For any pair of right-vertices w1, w2 such that w1 = (y1, z1), w2 = (y2, z2) ∈ Fs+2
q where

y1 ̸= y2 ∈ Fq and z1, z2 ∈ Fs+1
q , we have

|Γ�(y1, z1) ∩ Γ�(y2, z2)| ≤

{
qn−(2s+2) n ≥ 2s+ 2

1 n ≤ 2s+ 2

With the exact right-regularity of G and the number of common left-neighbors shared by any pair of
right-vertices generated by different seeds, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Our goal is to show that any right subset T ⊆ Fs+2
q of size at most δqs+1 has a

neighborhood of size at least (1− ε)qn−(s+1) |T | on the left.
To do this, we consider T as the disjoint union T =

⊔
y∈Fq

Ty of buckets Ty = {(y, α) : α ∈ Fs+1
q } where

|Ty| = ty = δyq
s+1. Let δ =

∑
y∈Fq

δy. So, |T | = δqs+1. By Lemma 4.3, the number of edges leaving T is

|T | · qn−(s+1) = δqn.
We now consider cases on whether n ≥ 2s+ 2 or not:

Case 1. n ≥ 2s+ 2.
In this case, ε = δ(q−1)

2q . By Lemma 4.4, the maximum number of double-counted left vertices is

∑
i,j∈[q]
i<j

titjq
n−2(s+1) =

∑
i,j∈[q]
i<j

δiq
s+1 · δjqs+1 · qn−2(s+1) = qn

∑
i,j∈[q]
i<j

δiδj ≤ qn · q − 1

2q
· δ2

where for the last inequality, we used Claim 3.7. Applying one level of inclusion-exclusion reveals that

|Γ�(T )| ≥ δqn − qn · q − 1

2q
· δ2 =

(
1− δ(q − 1)

2q

)
δqn = (1− ε) qn−(s+1)|T |

where the last equality follows because ε = δ(q−1)
2q .

Case 2. 2s+ 2 ≥ n ≥ s+ 1.
In this case, ε = δ(q−1)

2q · q2s+2−n. By Lemma 4.4, the maximum number of double-counted left vertices
is ∑

i,j∈[q]
i<j

titj =
∑

i,j∈[q]
i<j

δiq
s+1 · δjqs+1 = q2s+2

∑
i,j∈[q]
i<j

δiδj ≤ q2s+2 · q − 1

2q
· δ2

where for the last inequality, we used Claim 3.7. We again apply one level of inclusion-exclusion to
conclude that

|Γ�(T )| ≥ δqn − q2s+2 · q − 1

2q
· δ2 =

(
1− δ(q − 1)

2q
· q2s+2−n

)
δqn = (1− ε) qn−(s+1)|T |

where the last equality follows because ε = δ(q−1)
2q · q2s+2−n.

We prove Lemma 4.3 in Section 4.2, and Lemma 4.4 in Section 4.3
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4.2 Right-regularity

In this subsection, we will show that the KT graph G is right-regular, and that the right-degree is qn−(s+1).
For f ∈ Fn

q and seed y ∈ Fq, recall the linear map ψy(f) = (f (0)(y), . . . , f (s)(y)) where f (i) is the i’th
iterative derivative of f ∈ Fq[X] interpreted as a degree ≤ (n− 1) polynomial.

We will use the following fact regarding linearity of derivatives:

Fact 4.5 ([Rit50]). For all α, β ∈ Fq, f, g ∈ Fq[X] and j ≥ 0, it holds that (αf + βg)(j) = αf (j) + βg(j).

From this fact, we directly obtain that ψy is a linear map:

Corollary 4.6. For all y ∈ Fq, ψy is an Fq-linear map.

Therefore, to show right regularity we show that for all y ∈ Fq, ψy always has full rank.

Claim 4.7. For y ∈ Fq, ψy is a full rank Fq-linear map.

Proof. First, Fq-linearity of ψy follows from Corollary 4.6. Fix the monomial basis b0, . . . , bn−1 ∈ Fq[X] for
degree ≤ n − 1 polynomials over Fq[X] where b0 = x0, b1 = x1, b2 = x2, . . . , bn−1 = xn−1. Now, for any

y ∈ Fq, consider the matrix My ∈ Fn×(s+1)
q where for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ s entry (i, j) is given by

b
(j)
i (y). We claim that My has full rank, i.e., rank(My) = min(s+ 1, n).

This suffices to prove the overall claim as ψy(f) = vfMy where vf ∈ F1×n
q is the unique vector of

coefficients expressing f as Fq-linear combination of the basis vectors (b0, . . . , bn−1).

Let Ny be the matrix induced by taking the first s+1 rows of My. So, Ny ∈ F(s+1)×(s+1)
q . We will show

that Ny has full rank by showing det(Ny) ̸= 0.

We first observe that Ny is lower triangular: For i, j s.t. j > i, entry (i, j) of Ny is b
(j)
i (y). As bi is a

degree i polynomial, b
(j)
i ≡ 0 and hence, b

(j)
i (y) = 0. Moreover, as entry (i, i) in Ny is b

(i)
i (y) and bi = xi,

we compute that b
(i)
i ≡ (i)!. Hence, the entry (i, i) in Ny equals (i)!. So, det(Ny) =

∏s
i=0(i)! as determinant

of a triangular matrix is the product of its diagonal entries. As characteristic of the field Fq is greater than
n > s, det(Ny) is indeed non-zero.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Let w ∈ Fs+2
q be arbitrary. Let w = (y, z0, . . . , zs) where y, z0, . . . , zs ∈ Fq. For every

vertex f ∈ Fn
q with w ∈ Γ�(f), w must be the y’th neighbor of f . As Γ�(f, y) = (y, ψy(f)), the number of

such f is exactly
∣∣ψ−1

y (z0, . . . , zs)
∣∣. By Claim 4.7, ψy is full rank and so the number of such f is qn−(s+1) as

desired.

4.3 All pairs of seeds have full rank

In this section, we bound the number of common left neighbors shared by any pair of right vertices with
different seeds. We do this in a similar fashion as how we proved right-regularity in Section 4.2, namely, we
need the main technical lemma of this section:

Lemma 4.8. For all y1, y2 ∈ Fq with y1 ̸= y2, the linear map ψy1,y2 = (ψy1(f), ψy2(f)) has full rank.

Using this main lemma, Lemma 4.4 directly follows:

Proof of Lemma 4.4. For all f ∈ Fn
q with w1, w2 ∈ Γ�(f), w1 must be the y1’th neighbor of f and w2

must be the y2’th neighbor of f . Observe that Γ�(f, y1) = (y1, ψy1
(f)) and Γ�(f, y2) = (y2, ψy2

(f)). So,
the number of such f is exactly

∣∣ψ−1
y1,y2

(z1, z2)
∣∣. As ψy1,y2

has full rank, the number of such f is equal to

qn−(2s+2) if n ≥ 2s+ 2 and is at most 1 if n ≤ 2s+ 2 as desired.

Now to prove Lemma 4.8, we again associate with ψy1,y2
a matrix and show that it has full rank or,

equivalently, non-zero determinant. More specifically, for z ∈ {1, 2} define the matrix Rz ∈ F(2s+2)×(s+1)
q

where for 0 ≤ i ≤ 2s+ 1 and 0 ≤ j ≤ s entry Rz(i, j) = b
(j)
i (yz) where bi = xi.
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R1 R2 =
0

S(i, j)

=(
i
j

)
yi−j
1

0 U

0

0

T1 T2

i!

Figure 1: Factoring R = ST

Lemma 4.9 (Lemma 1 restated). For all y1, y2, let R = (R1, R2) ∈ F(2s+2)×(2s+2)
q be the matrix associated

with the map ψy1,y2 , then det(R) ̸= 0.

We now focus on computing the determinant of R. To do this, we will factorize R = ST as in Figure 1
and then compute det(R) = det(S) · det(T ) through the following series of claims.

Claim 4.10. R = ST = S(T1, T2) with S, T ∈ F(2s+2)×(2s+2)
q , where

S(i, j) =

(
i

j

)
yi−j
1 =

1

(j!)
· b(j)i (y1)

T (i, j) =

{
T1(i, j) 0 ≤ j ≤ s

T2(i, j − s− 1) s+ 1 ≤ j ≤ 2s+ 1

and matrices T1, T2 ∈ F(2s+2)×(s+1)
q are defined as follows:

T1(i, j) =

{
i! i = j

0 otherwise

T2(i, j) = b
(j)
i (y2 − y1)

.

Observe that S is a lower triangular matrix with every diagonal entry equal to 1, so det(S) = 1.

Corollary 4.11. det(R) = det(S) · det(T ) = det(T )

Claim 4.12. det(T ) =
∏s

i=0(i!) · det(U), where U ∈ F(s+1)×(s+1)
q is the last (s+ 1) rows of T2.

Claim 4.13. det(U) = (y2 − y1)
(s+1)2 · det(V ), where V ∈ F(s+1)×(s+1)

q is defined as follows:

V (i, j) =

(
(s+ 1) + i

j

)
· (j!) = (s+ 1 + i)

j

Claim 4.14. det(V ) =
∏

0≤i<j≤s(j − i)

We now prove Lemma 4.9.

Proof of Lemma 4.9. By Claim 4.10, Claim 4.12, Corollary 4.11, Claim 4.13, Claim 4.14, and since y1 ̸= y2,
we have

det(R) =
∏

0≤i≤s

[
(i!) · (y2 − y1)

(s+1)2
]
·

∏
0≤i<j≤s

(j − i) ̸= 0
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It remains to prove the series of claims we made above. We do that here one by one, utilizing various
properties of the determinant.

Proof of Claim 4.10. We want to show that R = ST = (ST1, ST2). For 0 ≤ i ≤ 2s + 1 and 0 ≤ s ≤ j, we

indeed have that ST1(i, j) =
(
i
j

)
· (j!) · yi−j

1 = b
(j)
i (y1) = R(i, j). For 0 ≤ i ≤ 2s+ 1 and 0 ≤ s ≤ j, we have

that

ST2(i, j) =

2s+1∑
k=0

(
i

k

)
yi−k
1 b

(j)
k (y2 − y1)

=

2s+1∑
k=0

(
i

k

)
yi−k
1 ·

(
k

j

)
· j! · (y2 − y1)

k−j

=

i∑
k=j

(
i

k

)
·
(
k

j

)
· (j!) · yi−k

1 · (y2 − y1)
k−j

=

(
i

j

)
· (j!) · yi−j

2

= b
(j)
i (y2)

= R(i, (s+ 1) + j)

where the third to last equality follows by differentiating both sides of the binomial theorem j times with
respect to y2. Hence, indeed R = ST as claimed.

Proof of Claim 4.12. Observe that the matrix T is in fact a 2 × 2 block matrix with the lower left block
being 0, therefore det(T ) is the product of the determinants of the upper left and lower right blocks. Moreover,
the upper left block is a diagonal matrix. As a result, det(T ) =

∏s
i=0(i!) · det(U).

Proof of Claim 4.13. By definition, for 0 ≤ i, j ≤ s, U(i, j) = T (s + 1 + i, s + 1 + j) =
(
s+1+i

j

)
(j!)(y2 −

y1)
s+1+i−j , and V (i, j) =

(
s+1+i

j

)
(j!). In other words, V can be obtained by factoring out (y2 − y1)

s+1−j

from each column, and then factoring out (y2 − y1)
i from each row. According to the property of the

determinant, this means

det(U) =
∏

0≤j≤s

(y2 − y1)
s+1−j ·

∏
0≤i≤s

(y2 − y1)
i · det(V ) = (y2 − y1)

(s+1)2 · det(V )

as claimed.

Proof of Claim 4.14. V is a Vandermonde matrix in disguise, (to be precise, it is exactly the Vandermonde
matrix over the falling factorial basis from Fact 3.9). Thus, by the change of basis from Fact 3.12 we have that
V S = Ṽ where Ṽ is defined as Ṽ (i, j) = (s+1+ i)j and is a Vandermonde matrix in the standard monomial
basis. Furthermore, since det(S) = 1 by Fact 3.12, we have that det(V ) = det(Ṽ ) · det(S) = det(Ṽ ) · 1 =
det(Ṽ ). Thus, we finish by recalling the standard equation for the determinant of a Vandermonde matrix
and computing

det(V ) = det(Ṽ )

=
∏

0≤i<j≤s

((s+ 1 + j)− (s+ 1 + i))

=
∏

0≤i<j≤s

(j − i),

giving us our claimed result.
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5 Plugging in the Parameters

We record our main results regarding two sided lossless expanders:

Theorem 5.1 (Formal version of Theorem 1). For infinitely many N and all 0 < δ < 0.99, there exists an
explicit biregular two-sided (KL, εL = 0.01,KR, εR = 0.01) lossless expander Γ� : [N ] × [DL] → [M ] where
DL ≤ O(log204(N)), N1.01·δ−o(1) ≤M ≤ DL ·N1.01·δ, KL = Nδ, KR = 1

50 · (1/DL) ·min(M,N/M).

These will follow from the following technical lemma:

Lemma 5.2. Let α, εL, εR ∈ (0, 1) and KR, n, kL, q ∈ N be such that q is a prime number, h1+α

2 ≤ q ≤ h1+α

where h = (4nkL/εL)
1/α and such that both 4

kL
log(2n/εL) ≤ α and kL(1 + α) ≤ n. Then, there exists an

explicit biregular (KL, εL,KR, εR) two-sided lossless expander Γ� : [N ] × [DL] → [M ] where N = qn,KL =

qkL ,K
1+α−1/ log(h)
L ≤M ≤ DL ·K1+α

L , DL ≤ O(log(N) log(KL)/εL)
1+1/α+o(1), KR

qmin(s+2,n−s) · q−1
2 ≤ εR where

s+ 2 = ⌈kL/ logq(h)⌉.

We will instantiate this lemma using simple parameters to obtain our main theorems:

Proof of Theorem 5.1. We plug in α = 0.01, εL = 0.01, εR = 0.01, kL = δn in Lemma 5.2 to obtain the
desired lossless expander.

We finally prove our main technical lemma using two-sided expander from Theorem 4.1:

Proof of Lemma 5.2. As s+ 2 = ⌈kL/ logq(h)⌉, we have that hs+1 ≤ KL ≤ hs+2. Observe that

s+ 1 <
kL log(q)

log(h)
≤ kL(1 + α) ≤ n

So, we can apply Theorem 4.1 and infer that there exists a graph Γ� : Fn
q × Fq → Fs+2

q that is a (≤
hs+2, AL) left expander and (≤ KR, AR) right expander where AL = q − n(s+2)

2 · (qhs+2)1/(s+2) and AR =(
1− KR

qmin(s+2,n−s) · q−1
2

)
qn−(s+1). Notice that as KL ≤ hs+2, Γ� is indeed a (KL, AL) expander.

• We first bound the left degree DL:

DL = q ≤ h1+α = (4nkL/εL)
1+1/α = (4 log(N) log(KL)/ log

2(q)εL)
1+1/α

= (4 log(N) log(KL)/εL)
1+1/α · log2+2/α(q)

This implies that

DL = q ≤ (4 log(N) log(KL)/εL)
1+1/α (log (8 log(N) log(KL)/εL))

2+2/α

Then indeed, DL ≤ O(log(N) log(KL)/εL)
1+1/α+o(1).

• We now bound the number of right vertices M :

M = qs+2 ≤ q · h(1+α)(s+1) ≤ q ·K1+α
L

Additionally,

M = qs+2 ≥ qKL log(q)/ log(h) ≥ qKL((1+α)(log h)−1)/ log(h) = qKL(1+α)−KL/ log(h)

• We now show lossless expansion from the right side:

AR =

(
1− KR

qs+2
· q − 1

2

)
qn−(s+1) ≥ (1− εR)DR

where the last inequality follows because KR

qmin(s+2,n−s) · q−1
2 ≤ εR.
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• We finally show lossless expansion from the left side: First, we note that s + 2 ≤ 2kL. Indeed,

s+ 2 ≤ kL logq(h) + 1 = kL
log(h)
log(q) + 1 ≤ kL(1 + α) + 1 ≤ 2kL. Then,

AL = q − n(s+ 2)

2
· (qhs+2)1/(s+2)

= q − n(s+ 2)h

2
· (q)1/(s+2)

≥ q − nkLh · (q)1/(s+2) (since s+ 2 ≤ 2kL)

= q − εL · hα

4
· h · (q)1/(s+2) (since nkL = (εL · hα)/4)

= q − εL · h
1+α

4
· (q)1/(s+2)

≥ q − εL
2

· q · (q)1/(s+2) (since h1+α/2 ≤ q)

= q

(
1− εL · (q)

1/(s+2)

2

)
≥ q(1− εL)

The last inequality (q)1/(s+2) ≤ 2 follows because we claim that s+ 2 ≥ log(q). This suffices to prove
the last inequality since then (q)1/(s+2) ≤ q1/ log(q) ≤ 2. We indeed compute that

s+ 2 ≥ kL
logq(h)

≥ kL((1 + α) log(h)− 1))

log(h)
≥ kL

Moreover, as α ≥ 4
kL

log(2n/εL), we infer that kL ≥ 4
α · log(2n/εL). Hence indeed,

s+ 2 ≥ 4

α
· log(2n/εL) ≥

2

α
· log(2nkL/εL) ≥ 2 log(h) ≥ (1 + α) log(h) ≥ log(q)

6 Non-Bipartite Lossless Expander

Here, we show how to transform a two-sided lossless expander into an undirected graph (that is not necessarily
bipartite) while retaining lossless expansion. We then apply this transformation to the KT graph to obtain
our main theorem.

Theorem 6.1 (Formal version of Theorem 2). For infinitely many N and all 0 < δ < 0.99, there exists
an explicit regular (K, ε = 0.01) lossless expander G = (V,E) where |V | = N , the degree is D where
N1−1.01δ ≤ D ≤ N1−1.01δ+o(1) and K = min

(
Nδ, N1−1.01δ−o(1)

)
. Moreover, G with one vertex removed, is

endowed with a free group action from Fq, where q = poly(logN).

6.1 Expansion from the bipartite half

Given a two-sided lossless expander, we show how to obtain a (not necessarily bipartite) graph that is also
a losslesss expander while inheriting the expansion of this graph. We use the bipartite half transformation
defined as follows.

Definition 6.2 (Bipartite half). Let G = (L ⊔ R,E) be a (DL, DR)-regular bipartite graph. Then the
bipartite half G2[L] = (L,E2[L]) is defined as E2[L] = {(v, w) ∈ L× L | w ∈ Γ�(Γ�(v))}.

14



Next, we show how this transformation retains lossless expansion. For the sake of clarity, we will use
Γ� and Γ� for the left-to-right and right-to-left neighborhood functions of G and Γ as the neighborhood
function of G2[L].

Lemma 6.3. Let G = (L ⊔R,E) be a (DL, DR)-regular (KL, AL,KR, AR)-two-sided lossless expander with
DL ≤ KR. Then G2[L] is a max-degree (K,A)-expander where each node has a degree in [DLAR, DLDR]
and with K = min(KL,KR/DL) and A = ALAR.

Remark 6.4. While G2[L] may not be exactly regular, since AL = (1 − εL)DL and AR = (1 − εR)DR, we
see that A = ALAR = (1 − εL)(1 − εR)DLDR, meaning that our expansion is with respect to the highest
possible degree DLDR of any individual vertex.

Proof of Lemma 6.3. We begin by showing that each node v ∈ L of G2[L] has degree in [DLAR, DLDR].
By assumption, we have that |Γ�(v)| = DL ≤ KR. Thus, by the right-to-left expansion of G, we have that
|Γ�(Γ�(v))| ≥ DLAR. The upper bound is immediate given that the right degree is DR so |Γ�(Γ�(v))| ≤
DR |Γ�(v)| = DRDL.

Next, we prove expansion. Let S ⊆ L be a set of size at most K. Then, because K ≤ KL, the left-to-right
expansion of G gives us that |Γ�(S)| ≥ AL |S|. To expand a second time, we recall that K ≤ KR/DL, so
|Γ�(S)| ≤ DL |S| ≤ DLK ≤ KR, meaning that we can apply the right-to-left expansion of G. This yields
|Γ�(Γ�(S))| ≥ AR |Γ�(S)| ≥ ARAL |S|, as claimed.

In the special case of the KT graph, the bipartite half is regular. To show this, we make the following
observation.

Remark 6.5. The bipartite half of the KT graph G from Definition 3.5 has a succinct representation as
G2[L] = (L,E2[L]) where E2[L] = {(f, g) | ∃y ∈ Fq, ψy(f) = ψy(g)}.

This allows us to prove the following regularity lemma.

Lemma 6.6. Let G2[L] be the bipartite half of the KT graph. Then G2[L] is regular.

Proof. Let Tn
a [f ](x) =

∑n
i=0

f(n)(a)
i! (x − a)i be the n-th Taylor polynomial of f at a. Then we claim that

ψy(f) = ψy(g) for any y ∈ Fq if and only if T s
y [f ](x) = T s

y [g](x) as polynomials. For the forward direction,

we note that ψy(f) = ψy(g) exactly gives us that f (i)(y) = g(i)(y) for i ∈ {0, . . . , s}, immediately implying
that T s

y [f ](x) = T s
y [g](x). Conversely, if T

s
y [f ](x) = T s

y [g](x) as polynomials, then their coefficients must be

equivalent. Thus, f (i)(y) = g(i)(y) for i ∈ {0, . . . , s}, meaning that ψy(f) = ψy(g).
With this claim in hand, we can use Remark 6.5 to see that (f, g) is an edge in G2[L] if and

only if there exists some y ∈ Fq such that T s
y [f ](x) = T s

y [g](x). In other words, the neighbors of
f must have the same s-th Taylor polynomial at some y ∈ Fq. More formally, the neighbor set of

f is Γ(f) =
{
T s
y [f ](x) +

∑n−1
i=s+1 ai(x− y)i | as+1, . . . , an, y ∈ Fq

}
. Thus, the number of neighbors is

|Γ(f)| =
∣∣∣{∑n−1

i=s+1 ai(x− y)i | as+1, . . . , an, y ∈ Fq

}∣∣∣, which does not depend on f . Therefore, the degree of

any vertex is the same and G2[L] is regular.

6.2 Free group action on the bipartite half

Now that we have shown that the bipartite half generally preserves lossless expansion, we will consider it
instantiated with the KT graph and show that multiplication by elements of Fq constitutes a free group
action on this resulting graph (with one node removed).

Our action of Fq on the bipartite half of the KT graph is directly by multiplication in Fq.

Definition 6.7. Let G = (L ⊔ R,E) be the KT graph and G2[L] be its bipartite half. We define the action
of Fq on G2[L] as follows: for any α, y ∈ Fq we have (α · f)(y) = α · f(y) where the latter multiplication is
in Fq.

15



We now show that G2[L] without the zero polynomial is Fq-invariant and that this is a free group action.

Lemma 6.8. Let G = (L⊔R,E) be the KT graph and H = G2[L] \ {0} be its bipartite half without the zero
polynomial. Consider the action of Fq on G2[L] as defined in Definition 6.7. Then G2[L] is Fq-invariant
and this action is free.

Proof. To show that H is Fq-invariant, we must prove that for any (f, g) ∈ E2[L] and α ∈ Fq we have
(α · f, α · g) ∈ E2[L]. From Remark 6.5 we know that E2[L] = {(f, g) | ∃y ∈ Fq, ψy(f) = ψy(g)}. Thus, we
must equivalently show that if ψy(f) = ψy(g) for some y ∈ Fq, then ψy(α · f) = ψy(α · g). This is immediate
by Corollary 4.6 because ψy being Fq-linear allows us to compute

ψy(α · f) = αψy(f) = αψy(g) = ψy(α · g),

showing that (α · f, α · g) ∈ E2[L].
Next, we will show that this is a free group action. Consider any f in the vertices of H and α ∈ Fq.

Since H does not contain the zero polynomial, we know that f is not identically zero. Thus, if α · f = f , it
must be that α = 1, showing that the action is indeed free.

6.3 Plugging in parameters

Finally, we plug in our two-sided lossless expander result from the KT graph to get Theorem 6.1.

Proof of Theorem 6.1. We invoke Lemma 5.2 with α = 0.01, εL = 0.001, εR = 0.001 to obtain a (DL, DR)-
biregular two-sided (KL = Nδ, εL = 0.001,KR = 0.002·(1/DL)·min(M,N/M), εR = 0.001) lossless expander
Γ� : [N ] × [DL] → [M ] where DL ≤ O(log204(N)) and N1.01δ−o(1) ≤ M ≤ DL · N1.01δ. We then apply
Lemma 6.3 to conclude the claim about expansion (since ε ≥ (1 − εL)(1 − εR)) and the degree bound. We
then apply Lemma 6.6 to show the bipartite half is regular. The claim about the free Fq action comes from
Lemma 6.8 by removing the vertex corresponding to the zero polynomial from the bipartite half of the KT
graph. Lastly, we compute that:

K = min (KL,KR/DL)

= min
(
KL, (1/500) · (1/D2

L) ·M, (1/500) · (1/D2
L) · (N/M)

)
= min

(
Nδ, (1/500) · ·N1.01δ−o(1), (1/500) ·N1−1.01δ−o(1)

)
= min

(
Nδ, (1/500) ·N1−1.01δ−o(1)

)
= min

(
Nδ, N1−1.01δ−o(1)

)

and the bound on maximum size of sets that expand follows. Explicitness of this graph follows from
Claim A.2.

7 Open Questions

We list some open questions that are natural next steps.

1. It would be interesting to see if any of the techniques here can be used construct lossless expanders
with polylogarithmic degree.

2. We are unable to show that the one-sided lossless expander constructed in [GUV09] is also a two-sided
lossless. However, the graph in [GUV09] is not right-regular (see Appendix B), but can it be modified
to be so in a way such that it attains lossless expansion from the right as well?

3. Expander graphs have found important uses in constructions of error-correcting codes. Thus, we
wonder if there are applications of our results to coding theory.
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A Explicitness

Claim A.1. The KT graph G as defined in Definition 3.5 is explicit, i.e., the left neighborhood function

Γ� : Fn
q × Fq → Fs+2

q and right neighborhood function Γ� : Fs+2
q × Fn−(s+1)

q → Fn
q can be computed in

poly(n, log(q)) time.

Proof. To compute Γ�(f, y), we treat f as an element of Fq[X] of degree at most n − 1, and map it to
(y, f (0)(y), . . . , f (s)(y)). We can compute derivatives of f and evaluate it at y in time poly(n, log(q)) and
hence explicitly compute Γ�(f, y).

To compute Γ�(z, t), we proceed as follows. Let z = (y, w) where y ∈ Fq and w ∈ Fs+1
q . Then, we need

to find f such that Γ�(f, y) = z. Define ψy : Fn
q → Fs+1

q as ψy(f) = (f (0)(y), . . . , f (s)(y)). By Claim 4.7,
ψy is a full rank Fq-linear map. As n > s + 1, kernel of ψy has dimension n − (s + 1) > 0. By considering
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the matrix associated with ψy and using standard linear algebra algorithms, we construct an injective linear

map Ky : Fn−(s+1)
q → Fn

q in poly(n, log(q)) time such that the image of Ky is exactly the kernel of ψy.
Furthermore, using Gaussian elimination on the matrix associated with ψy, we can, in poly(n, log(q)) time,
find some g ∈ Fn

q such that ψy(g) = w. Finally, we let Γ�(z, t) = Ky(t) + g. By linearity of ψy, we have
that ψy(Ky(t) + g) = ψy(g) = w. As Ky is injective, for a fixed z, our computed function maps different t
to different outputs as desired.

Note that given any n, k, ε, α, Lemma 5.2 sets q = poly(n, k, 1/ε), so we can deterministically find such
a prime q satisfying the requirements in poly(n, 1/ε) time as well.

Explicitness of the KT graph also implies explicitness of our non-bipartite lossless expander obtained by
taking the bipartite half of the KT graph (and removing the zero vertex):

Claim A.2. The non-bipartite graph H = G2[L \ {0}] as constructed in Theorem 6.1 is explicit. I.e., the

neighborhood function Γ : (Fn
q \ {0})× (Fq × Fn−(s+1)

q ) → Fn
q can be computed in poly(n, q) time.

Proof. Note that since G is not necessarily regular, Γ may sometimes output ⊥. The guarantee that we will

have is that for all f, g ∈ Fn
q that are neighbors in H, there will exist unique y, t ∈ Fq × Fn−(s+1)

q such that
Γ(f, y, t) = g.

Let Γ�,Γ� be the explicit left and right neighborhood functions of the KT graph as defined in Claim A.1.
To compute Γ(f, y, t), we first compute g = Γ�(Γ�(f, y), t). If g = 0, then we output ⊥. Then, for all y′ < y,
we check whether Γ�(f, y

′) = Γ�(g, y
′). If they are equal for any such y′, we output ⊥. Otherwise, we

output g. This last check is done so that we only output g once as a neighbor of f and otherwise output ⊥.
Explicitness of Γ follows because of explicitness of Γ�,Γ� and because the last check has to be done O(q)
times.

B The [GUV09] Graph is Not Right Regular

One may naturally try to show that the predecessor to the KT graph, the [GUV09] graph, is also a two-sided
lossless expander. However, it turns out that the [GUV09] graph is not even right regular. To see why, we
give the definition of the [GUV09] graph which is similar to the KT graph.

Definition B.1 (The GUV graph, [GUV09]). Let q, n,m, h ∈ N be such that q is a prime power greater
than h, characteristic of the finite field Fq ≥ n and m < n. We define G = (L ⊔ R,E) where L =
Fn
q

∼= Fq[x]/(z(x)) for some irreducible polynomial z(x) ∈ Fq(x) of degree n and R = Fm+1
q . The left

degree is q and for any f ∈ Fq[x]/(z(x)) and y ∈ Fq, the y’th neighbor of f is defined as Γ�(f, y) =(
y, f(y), (fh mod z(x))(y), (fh

2

mod z(x))(y), . . . , (fh
m−1

mod z(x))(y)
)
.

Our proof of right-regularity for Lemma 4.3 relied on the fact that the map ψy(f) 7→ (f (0)(y), . . . , f (s)(y))

is full rank over Fq, as shown in Claim 4.7. The analogous GUV map φy(f) = (f(y), fh(y), . . . , fh
m−1

(y))
does not have this property because of two issues. First, it is not necessarily linear over Fq, although it can
be made linear over F2 when q is a power of 2. Second, even over F2, it does not necessarily have full rank,
meaning we cannot guarantee right regularity.

Simulations bear this out. The GUV graph with q = 24, n = 4, m = 2, and h = 2 has 3072 right
vertices with degree 256, 64 with degree 4096, and 960 isolated vertices. For more examples of parameter
settings where the GUV graph is not right-regular, we invite the reader to run simulations with our code at
https://github.com/mjguru/GUV-Expander.
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