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Abstract

We study the challenge of derandomizing constant-width standard-order read-once branching programs
(ROBPs). Let c ∈ [1, 2) be any constant. We prove that if there are explicit pseudorandom generators

(PRGs) for width-6 length-n permutation ROBPs with error 1/n and seed length Õ(logc n), then there are
explicit hitting set generators (HSGs) for width-4 length-n ROBPs with threshold 1/ polylog(n) and seed

length Õ(logc n).
For context, there are known explicit PRGs that fool constant-width permutation ROBPs with error

ε and seed length O(log n · log(1/ε)) (Koucký, Nimbhorkar, and Pudlák STOC 2011; De CCC 2011;
Steinke ECCC 2012). When ε = 1/n, there are known constructions of weighted pseudorandom generators

(WPRGs) that fool polynomial-width permutation ROBPs with seed length Õ(log3/2 n) (Pyne and Vadhan
CCC 2021; Chen, Hoza, Lyu, Tal, and Wu FOCS 2023; Chattopadhyay and Liao ITCS 2024), but
unweighted PRGs with seed length o(log2 n) remain elusive. Meanwhile, for width-4 ROBPs, there are no
known explicit PRGs, WPRGs, or HSGs with seed length o(log2 n).

Our reduction can be divided into two parts. First, we show that explicit low-error PRGs for width-6
permutation ROBPs with seed length Õ(logc n) would imply explicit low-error PRGs for width-3 ROBPs

with seed length Õ(logc n). This would improve Meka, Reingold, and Tal’s PRG (STOC 2019), which has
seed length o(log2 n) only when the error parameter is relatively large. Second, we show that for any w, n,
s, and ε, an explicit PRG for width-w ROBPs with error 0.01/n and seed length s would imply an explicit
ε-HSG for width-(w + 1) ROBPs with seed length O(s+ log n · log(1/ε)).

1 Introduction

One of the classic goals of computational complexity theory is to clarify the relationship between two
fundamental computational resources: randomness and space complexity. The “L = BPL” conjecture asserts
that if a language can be decided by a randomized algorithm that uses S bits of space and always halts,
where S ≥ log n, then it can also be decided by a deterministic algorithm that uses O(S) bits of space. A
particularly satisfying way to prove L = BPL would be to design a suitable pseudorandom generator (PRG),
defined next.

Definition 1.1 (PRGs). Let F be a class of functions f : {0, 1}n → R, let ε > 0, and let X be a distribution
over {0, 1}n. We say that X ε-fools F , or fools F with error ε, if

|E[f ]− E[f(X)]| ≤ ε.

Here E[f ] is shorthand for E[f(Un)], where Un denotes the uniform distribution over {0, 1}n. An ε-PRG for
F , or a PRG that fools F with error ε, is a function G : {0, 1}s → {0, 1}n such that G(Us) fools F with error
ε. The parameter s is called the seed length of the PRG.

∗Part of this work was done while the author was a graduate student at the University of Texas at Austin, supported by the
NSF GRFP under grant DGE-1610403 and by a Harrington Fellowship from UT Austin. Part of this work was done while the
author was visiting the Simons Institute for the Theory of Computing.
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To simulate a randomized algorithm, we would like a PRG that fools some model F that captures the
behavior of the algorithm on a fixed input as a function of its random bits. In the case of space-bounded
algorithms, we can take F to be the class of functions computable by polynomial-width standard-order
read-once branching programs (ROBPs), defined below.

Definition 1.2 (ROBPs). Let w, n ∈ N. A width-w length-n standard-order ROBP1 is a directed graph
in which the vertices are arranged in layers V0, V1, . . . , Vn satisfying |Vi| ≤ w for every i. For every
i ∈ {0, 1, . . . , n − 1} and every v ∈ Vi, there are two outgoing edges leading from v to Vi+1, labeled 0 and
1 (the “0-edge” and the “1-edge” respectively). There is a designated “start vertex” v0 ∈ V0. Each input
x ∈ {0, 1}n defines a walk through the program: we start at v0, and in step i ∈ [n], we traverse the outgoing
xi-edge of our current vertex. In this manner, we arrive at a final vertex vn ∈ Vn. Each vertex in Vn is
labeled either “accept” or “reject,” and the program accepts or rejects x based on the label of vn. In this
way, the program defines a function f : {0, 1}n → {0, 1}.

For each fixed input, the output of a space-S algorithm can be computed by a width-w length-n standard-
order ROBP that reads the n random bits used by the algorithm, where w and n are both bounded by
2O(S). Consequently, if we could design an explicit2 PRG for width-w length-n standard-order ROBPs with
the optimal seed length O(log(wn/ε)), then we could derandomize BPL by deterministically simulating the
randomized algorithm on all possible outputs of the generator.

Decades ago, Nisan designed an explicit PRG for width-w length-n standard-order ROBPs with non-
optimal seed length O(log(wn/ε) · log n) [Nis92]. To this day, Nisan’s PRG is the best PRG known for
polynomial-width standard-order ROBPs.

1.1 Regular and permutation branching programs

Because it has turned out to be extremely difficult to design better PRGs for polynomial-width standard-
order ROBPs, researchers have investigated ROBPs with additional structural restrictions. Two of the most
well-studied classes are regular ROBPs and permutation ROBPs, defined next.

Definition 1.3 (Regular and permutation ROBPs). An ROBP with layers V0, V1, . . . , Vn is regular if every
vertex v ∈ V1 ∪ · · · ∪ Vn has precisely two incoming edges. If these two incoming edges have distinct labels (0
and 1) for each v, then we say that the program is a permutation ROBP.

Braverman, Rao, Raz, and Yehudayoff showed that there is an explicit PRG that ε-fools width-w length-n
standard-order regular ROBPs with seed length Õ(log(w/ε) · log n) [BRRY14]. This beats Nisan’s seed
length [Nis92] provided that w ≪ n and ε ≫ 1/n. Their PRG construction consists of an appropriately-
parameterized version of the so-called Impagliazzo-Nisan-Wigderson (INW) generator [INW94]. For constant-
width standard-order permutation ROBPs, the seed length can be improved to O(log n · log(1/ε)) [KNP11;
De11; Ste12]. However, we emphasize that when ε = 1/n, there are still no known explicit PRGs with seed
length o(log2 n), even for the case of constant-width standard-order permutation ROBPs.

1.2 Width-2, width-3, and width-4 branching programs

There has also been some success at beating Nisan’s PRG in the case of extremely narrow ROBPs, with no
structural restrictions. In the 1990s, Saks and Zuckerman showed that any “small-bias distribution” [NN93]
fools width-2 branching programs, and consequently, there is an explicit PRG that fools width-2 programs
with the optimal seed length O(log(n/ε)) [SZ95; BDVY13; HH24].

Width-3 programs turned out to be much more challenging. Nevertheless, Meka, Reingold, and Tal
managed to construct an explicit PRG for width-3 standard-order ROBPs with seed length Õ(log n ·
log(1/ε)) [MRT19]. Meka, Reingold, and Tal’s PRG [MRT19] follows the “iterated restrictions with early

1The qualifier “standard-order” is often omitted; it emphasizes the fact that the program reads the input bits from left to
right.

2I.e., the space complexity of the generator should be proportional to its seed length.
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termination” paradigm. First, they show how to assign pseudorandom values to a pseudorandom subset
of a width-3 ROBP’s input variables in such a way that the expectation of the program is approximately
preserved. Second, they show that after several such rounds of pseudorandom restrictions, the program
simplifies with high probability, in the sense that it “almost” becomes a permutation ROBP. Finally, they
show that the INW generator fools this “near-permutation program” with a good seed length.

For width-4 standard-order ROBPs, no explicit PRGs are known with seed length o(log2 n). The width-4
case brings new challenges that are not present in the width-2 and width-3 cases. For example, width-4
ROBPs can compute read-once “AND ◦OR ◦PARITY” formulas, which have been highlighted as a challenging
case for the “iterated restrictions with early termination” paradigm [Hoz22]. These formulas are provably
not “simple” enough to be fooled by the INW generator with seed length o(log2 n) [BV10; HPV24], and they
apparently do not get any “simpler” under restrictions, due to the layer of parity gates at the bottom. That
being said, one can use small-bias distributions to ε-fool read-once AND ◦OR ◦ PARITY formulas with a seed
length of O(log n · log(1/ε)).3 This perhaps suggests that we can be optimistic about fooling all width-4
ROBPs with a similar seed length.

1.3 Hitting set generators

Another approach for making progress on the L vs. BPL problem is to look at relaxations of the PRG concept.
The most famous such relaxation is the classic hitting set generator (HSG) concept, defined next.

Definition 1.4 (HSGs). Let F be a class of functions f : {0, 1}n → {0, 1} and let ε > 0. An ε-hitting set for
F is a set H ⊆ {0, 1}n such that for every f ∈ F , if E[f ] > ε, then there is some x ∈ H such that f(x) = 1.
An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that the image of G is an ε-hitting set for F .

Every ε-PRG for a class F is also an ε-HSG, but not vice versa. By working through the definitions,
one can easily show that explicit HSGs for polynomial-width ROBPs with seed length O(log n) would imply
L = RL, where RL is the variant of BPL in which we only allow algorithms with one-sided error. In fact,
it turns out that such HSGs would imply L = BPL [CH22; PRZ23]. Constructing HSGs is thus a route to
proving L = BPL that is potentially easier than constructing PRGs. However, despite the extra flexibility of
the HSG definition, we would like to highlight the fact that there are currently no known explicit HSGs for
width-4 standard-order ROBPs with seed length o(log2 n).

1.4 Our contributions

In this work, we establish new connections between the problems discussed above. Our main result says that
if we could construct improved explicit PRGs for constant-width standard-order permutation ROBPs in the
low-error regime, then we would get improved explicit HSGs for width-4 standard-order ROBPs.

Theorem 1.5 (PRGs for width-6 permutation programs =⇒ HSGs for width-4 programs). Let c ∈ [1, 2) be
any constant. Assume that for every n ∈ N, there exists an explicit (1/n)-PRG for width-6 length-n standard-
order permutation ROBPs with seed length Õ(logc n). Then for every n ∈ N and every ε ∈ (0, 1), there exists
an explicit ε-HSG for width-4 length-n standard-order ROBPs with seed length Õ(logc n+ log n · log(1/ε)).

For context, prior work has shown that improved PRGs for regular ROBPs of polynomial width would
have huge implications [RTV06; BHPP22; LPV23]. Indeed, Lee, Pyne, and Vadhan showed that every
function computable by a width-w length-n standard-order ROBP can also be computed by a standard-order
regular ROBP of width O(wn) [LPV23]. Our new reduction shows that improved PRGs for standard-order
permutation ROBPs of constant width (a much weaker model) would already have significant consequences.

Our reduction can be divided into two parts, each of which is interesting in its own right. First, we revisit
Meka, Reingold, and Tal’s reduction from the problem of fooling width-3 ROBPs to the problem of fooling
“near-permutation” programs [MRT19]. We show a reduction to the problem of fooling programs that exactly
satisfy the permutation condition, albeit of width 6 instead of 3:

3After applying the parity gates, the resulting distribution still has small bias, and every δ-biased distribution fools read-once
CNFs with error exp(−Ω(log(1/δ)/ logn)) [CRS00; DETT10].
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Theorem 1.6 (Fooling width-6 permutation programs =⇒ fooling width-3 programs). There exists a
constant C > 0 such that the following holds. Assume that for every n ∈ N and δ ∈ (0, 1), there exists an
explicit δ-PRG for width-6 length-n standard-order permutation ROBPs with seed length s(n, δ). Then, for
every n ∈ N and ε ∈ (0, 1

log logn), there exists an explicit ε-PRG for width-3 length-n standard-order ROBPs

with seed length s(n, δ) + Õ(log(n/ε)), where δ = εC·log log(n/ε).

Given Theorem 1.6, we can recover Meka, Reingold, and Tal’s Õ(log n · log(1/ε)) seed length for fooling
width-3 standard-order ROBPs [MRT19] (up to log log factors) by plugging in the state-of-the-art seed
length s(n, δ) = O(log n · log(1/δ)) for fooling constant-width standard-order permutation ROBPs [KNP11;
De11; Ste12]. More importantly, Theorem 1.6 shows that hypothetical improved PRGs for constant-width
permutation ROBPs would translate to improved PRGs for width-3 ROBPs.

Second, we show how to convert low-error PRGs for width-w ROBPs into HSGs for width-(w+1) ROBPs,
for any w:

Theorem 1.7 (PRGs for width-w programs =⇒ HSGs for width-(w + 1) programs). Let α > 0 be a
constant such that eα−1 + α < 1/2,4 and let w ∈ N be any constant. Assume that for every n ∈ N, there
exists an explicit PRG for width-w standard-order ROBPs with error α/n and seed length s(n). Then for
every n ∈ N and every ε > 0, there exists an explicit ε-HSG for width-(w + 1) standard-order ROBPs with
seed length O(s(n) + log n · log(1/ε)).

Conceivably, one could hope to strengthen Theorem 1.7 to the point that it could be iterated. By induction
on width, such a strengthened version could imply explicit HSGs for all constant-width standard-order
ROBPs with seed length o(log2 n). We find this idea exciting, even if it is admittedly quite speculative.

Our main result (Theorem 1.5) readily follows from Theorems 1.6 and 1.7, as we now briefly explain.

Proof of Theorem 1.5, given Theorems 1.6 and 1.7. If we truncate a δ-PRG for width-6 standard-order
permutation ROBPs, then we get another δ-PRG for width-6 standard-order permutation ROBPs (of
shorter length). Therefore, the assumption of Theorem 1.5 implies the assumption of Theorem 1.6 with
s(n, δ) = Õ(logc(n/δ)). Therefore, by Theorem 1.6, for every n ∈ N, there exists an explicit PRG that
fools width-3 standard-order ROBPs with error 0.01/n and seed length s′(n) = Õ(logc(n/δ)), where
δ = (0.01/n)C·log log(n2/0.01). Simplifying, we have s′(n) = Õ(logc n). Applying Theorem 1.7 completes
the proof.

1.5 Context: Weighted pseudorandom generators

Theorems 1.5 to 1.7 are especially interesting in light of a recent line of work on weighted pseudorandom
generators (WPRGs), defined next.

Definition 1.8 (WPRGs). Let F be a class of functions f : {0, 1}n → R and let ε > 0. An ε-WPRG for F
is a pair (G, ρ), where G : {0, 1}s → {0, 1}n and ρ : {0, 1}s → R, such that for every f ∈ F , we have∣∣∣∣E[f ]− E

x∼Us

[f(G(x)) · ρ(x)]
∣∣∣∣ ≤ ε.

Weighted PRGs were introduced by Braverman, Cohen, and Garg [BCG20]. The key innovation in
Definition 1.8 is that the weights ρ(x) can be negative. One can show that WPRGs are “intermediate”
between PRGs and HSGs.

The WPRG paradigm has turned out to be especially helpful in low-error regimes. For example, recent
work has shown how to construct explicit WPRGs that fool the following models with error 1/n and seed
length Õ(log3/2 n):

• Constant-width standard-order regular ROBPs [CHLTW23; CL24].

4This is satisfied when α < α∗ ≈ 0.095.
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• Width-3 standard-order ROBPs [CHLTW23; CL24].

• “Unbounded-width” standard-order permutation ROBPs [PV21; CHLTW23; CL24].

In contrast, in all three of the cases listed above, there are no known explicit unweighted PRGs with error
1/n and seed length o(log2 n).5

Unfortunately, our new reductions (Theorems 1.5 to 1.7) require unweighted PRGs. If our reductions could
be adapted to work with negative weights, then we would get an explicit HSG for width-4 standard-order
ROBPs with seed length Õ(log3/2 n+ log n · log(1/ε)).

1.6 Techniques

Our reductions can be broken down into several smaller parts; see Fig. 1. One common theme in our proofs
is that, following prior work [GMRTV12; BHPP22; Mod23], we study modified versions of the ROBP model
in which it is possible to accept or reject “early,” before reaching the end of the computation. We find it
most convenient to work with the following models.

Definition 1.9 (∧-programs and ∨-programs). An ∧-program is a standard-order ROBP in which every edge
is labeled as either “accepting” or “rejecting” (in addition to the usual binary edge label). Given an input
x, if every edge that the ROBP traverses is an accepting edge, then we say that the ∧-program accepts x;
otherwise, we say that the ∧-program rejects x. An ∨-program is defined similarly, except that an ∨-program
accepts if it traverses at least one accepting edge and it rejects otherwise.

An ∧-program or an ∨-program of width w can trivially be simulated by a standard-order ROBP of
width w + 1, but note that (a) the difference between width w and width w + 1 is crucial in this work, and
(b) we are concerned with structural properties such as the permutation condition that are not preserved by
such a trivial simulation.

1.6.1 Near-permutation programs vs. exact permutation programs

As discussed previously, Meka, Reingold, and Tal reduced the problem of fooling width-3 ROBPs to the
problem of fooling “near-permutation” programs [MRT19]. In more detail, by “near-permutation” programs,
we refer to programs that are approximated in a certain sense by programs with few colliding layers. (A
“colliding layer” is a layer that violates the definition of a permutation ROBP.) Later, Chen, Hoza, Lyu, Tal,
and Wu improved the number of colliding layers in this reduction [CHLTW23].

For the proof of Theorem 1.6, our main observation is that any width-w program with t colliding layers
can be written as a sum of wt many width-w permutation ∧-programs. We prove this by a simple “guess
and check” argument; see Lemma 3.3 for details.

The permutation ∧-program model is stronger than the standard-order permutation ROBP model, but
previous work by Bogdanov, Hoza, Prakriya, and Pyne implies that to fool width-w permutation ∧-programs,
it suffices to fool width-(2w) standard-order permutation ROBPs [BHPP22]. Thus, combining their work
with our observation, we see that PRGs for width-6 standard-order permutation ROBPs automatically fool
width-3 programs that have a few colliding layers.

The proof of Theorem 1.6 requires some additional technical details, mainly to handle approximation
errors that arise in Meka, Reingold, and Tal’s framework [MRT19]. See Section 3 for details.

1.6.2 Using a PRG for width w to design an HSG for width w + 1

Let X be a distribution that fools width-w ROBPs with error 0.01/n. The first step in the proof of
Theorem 1.7 is to prove that Supp(X) is a 0.4-hitting set for width-w ∧-programs.

5In fact, in the case of unbounded-width standard-order permutation ROBPs, unweighted PRGs with error 1/n and seed
length o(log2 n) provably do not exist [HPV21].
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Low-error PRG for width-6 permutation programs

Low-error PRG for width-3 permutation ∧-programs

Low-error PRG for width-3 ∧-programs with a few colliding layers

Low-error PRG for (3, t, ε)-programs

Low-error PRG for width-3 ROBPs

High-threshold HSG
for width-3 ∧-programs

Low-threshold HSG for
width-3 ∨-programs

High-threshold HSG for width-4 ROBPs

Medium-threshold HSG for width-4 ROBPs

Lemma 3.1 [BHPP22]

Lemma 3.3

Lemma 3.5

Lemma 3.6 [MRT19; CHLTW23]

Lemma 4.1 and Corollary 4.2 Lemma 4.3

Lemma 4.5

Lemma 4.7

Figure 1: The reductions in this paper. Many of the reductions are slightly stronger than what the diagram
suggests. For example, rather than a low-error PRG, Lemma 4.3 actually requires merely a low-threshold
HSG for width-w ROBPs. Explicit constructions of such generators are known unconditionally in the w = 3
case [GMRTV12]. On the other hand, we highlight the fact that Corollary 4.2 requires an unweighted PRG
with low error. If we could eliminate either one of these requirements, then we could construct explicit HSGs
for width-4 ROBPs with seed length o(log2 n).
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To explain the intuition, let us consider a special case of width-w ∧-programs, namely, a function of the
form f(x) = f1(x) ∧ · · · ∧ ft(x), where f1, . . . , ft are width-w standard-order ROBPs on disjoint variables.
Since we are aiming to construct a 0.4-hitting set, let us assume that E[f ] > 0.4. Letting δi = 1− E[fi], we
have

E[f ] =
t∏

i=1

(1− δi) ≤
t∏

i=1

e−δi = e−
∑t

i=1 δi ,

so
∑t

i=1 δi ≤ ln(1/E[f ]) < 0.92. Therefore,

Pr[f(X) = 0] = Pr[f1(X) = 0 ∨ · · · ∨ ft(X) = 0] ≤
t∑

i=1

Pr[fi(X) = 0] (Union bound)

≤
t∑

i=1

(δi + 0.01/n)

≤ 0.01 +
t∑

i=1

δi

< 0.93.

Thus, indeed, Supp(X) hits f .6

Now suppose more generally that f is a width-w ∧-program. In this case, we let δi be the probability
that f traverses a rejecting edge in step i. By a probabilistic construction (Lemma 4.1), we show that f can
be modified to ensure that

∑n
i=1 δi ≤ ln(1/E[f ]). Consequently, Supp(X) is a 0.4-hitting set for width-w

∧-programs by a similar “union bound” calculation as above.
For the next step in the proof of Theorem 1.7, we build on Gopalan, Meka, Reingold, Trevisan, and

Vadhan’s techniques [GMRTV12]. In our terminology, they show how to convert an explicit ( ε
2

2n)-HSG for
width-w ∧-programs into an explicit ε-HSG for width-(w + 1) standard-order ROBPs [GMRTV12, Theorem
6.5]. They used this reduction to construct a near-optimal HSG for width-3 standard-order ROBPs. We
cannot apply their reduction directly, because it requires a low-threshold HSG and we merely have a 0.4-HSG.
Therefore, we extend their reduction. We show that an explicit ε∧-HSG for width-w ∧-programs can
be combined with an explicit ε∨-HSG for width-w ∨-programs to produce an explicit (ε∧ + ε∨)-HSG for
width-(w + 1) standard-order ROBPs (Lemma 4.5). One can easily show that Supp(X) is a 0.01-hitting set
for width-w ∨-programs (Lemma 4.3), so we get a 0.41-HSG for width-(w + 1) standard-order ROBPs.

Finally, we use an error-reduction technique introduced by Hoza and Zuckerman [HZ20] to construct
an ε-HSG for width-(w + 1) standard-order ROBPs for any ε. This error reduction step blows up the seed
length by a factor of O(log(1/ε)), but we can get a final seed length of O(s + log n · log(1/ε)) instead of
O(s · log(1/ε)) by using the standard “sampler trick.” See Section 4 for details.

1.7 Organization

After some preliminaries in Section 2, we prove Theorem 1.6 in Section 3, and then we prove Theorem 1.7 in
Section 4.

2 Preliminaries

2.1 Subprograms, substrings, hitting sets, and restrictions

Let f be an ROBP with layers V0, V1, . . . , Vn. For each i ∈ {0, 1, . . . , n} and each u ∈ Vi, we define the
“subprogram” fu→ to be a version of f in which u is effectively the new start vertex. More precisely, fu→ is a

6Note that this argument breaks down if we try to replace X with a WPRG, because the union bound no longer holds.
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length-n program on the layers V ′
0 , V

′
1 , . . . , V

′
i , Vi+1, . . . , Vn, where |V ′

0 | = · · · = |V ′
i | = 1. All transitions in the

first i steps lead to u, and after that, the program is identical to f . We furthermore define pu→ = E[fu→].
If x ∈ {0, 1}n and 1 ≤ i ≤ j ≤ n, we use the notation xi...j to denote the string xixi+1 . . . xj .
Let f : {0, 1}n → {0, 1} and H ⊆ {0, 1}n. We say that H “hits” f if there is some x ∈ H such that

f(x) = 1.
A restriction is a string ρ ∈ {0, 1, ⋆}n. If f : {0, 1}n and ρ ∈ {0, 1, ⋆}n, then we define the restricted

function f |ρ : {0, 1}n → {0, 1} by the rule f |ρ(x) = f(x′), where, for every i ∈ [n],

x′i =

{
ρi if ρi ̸= ⋆

xi if ρi = ⋆.

2.2 Probability

We rely on the following standard lemma from the theory of PRGs.

Lemma 2.1 (Sandwiching lemma). Let X be a distribution over {0, 1}n and let f−, f, f+ : {0, 1}n → R.
Assume that f−(x) ≤ f(x) ≤ f+(x) for every x; assume that E[f+ − f−] ≤ ε; and assume that X fools f−
and f+ with error δ. Then X fools f with error ε+ δ.

Proof.
E[f(X)] ≤ E[f+(X)] ≤ E[f+] + δ ≤ E[f ] + ε+ δ,

and
E[f(X)] ≥ E[f−(X)] ≥ E[f−]− δ ≥ E[f ]− ε− δ.

We also rely on the following elementary inequality.

Lemma 2.2 (Reverse union bound). Let E1, E2, . . . , En be events, and let p = Pr[E1 ∧ · · · ∧ En]. Then

n∑
i=1

Pr[¬Ei | E1, E2, . . . , Ei−1] ≤ ln(1/p).

Proof. Let δi = Pr[¬Ei | E1, E2, . . . , Ei−1]. Then

p =

n∏
i=1

(1− δi) ≤
n∏

i=1

exp(−δi) = exp

(
−

n∑
i=1

δi

)
,

and hence
∑n

i=1 δi ≤ ln(1/p).

3 Conditional low-error PRGs for width-3 ROBPs

3.1 Fooling programs that have a few colliding layers

The first step in the proof of Theorem 1.6 is the following lemma from the work of Bogdanov, Hoza, Prakriya,
and Pyne [BHPP22, Lemma 20].

Lemma 3.1 (Fooling permutation ∧-programs [BHPP22]). Let X be a distribution over {0, 1}n. If X fools
width-(2w) standard-order permutation ROBPs with error ε, then X fools width-w permutation ∧-programs
with error 2ε.

Technically, the model that Bogdanov, Hoza, Prakriya, and Pyne study (“unanimity programs”) [BHPP22]
is slightly weaker than our ∧-program model, because they require the two outgoing edges of each vertex to
be either both accepting or both rejecting. However, their proof applies equally well to both models.

Combining the assumption of Theorem 1.6 with Lemma 3.1 gives us a PRG for width-3 standard-order
permutation ∧-programs. The next step is to show that we can fool width-3 standard-order ∧-programs that
have a few colliding layers, defined next.
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Definition 3.2 (Colliding layer). Let f be an ROBP with layers V0, . . . , Vn. We say that layer i is colliding,
where i ∈ {0, 1, . . . , n− 1}, if there exist two edges going from Vi to Vi+1 with the same binary label leading
to the same vertex.

Lemma 3.3 (Fooling ∧-programs with a few colliding layers). Let f be a width-w length-n ∧-program with
at most t colliding layers. Then f can be written as a sum of wt many width-w permutation ∧-programs.

Proof. Let the layers of f be V0, . . . , Vn. Let {i1, i2, . . . , it} be the set of colliding layers. For every v⃗ =
(vi1 , . . . , vit) ∈ Vi1 × Vi2 × · · · × Vit , we will modify f to construct a width-w standard-order permutation
∧-program fv⃗. The construction is as follows.

1. Let R = (Vi1 \ {vi1}) ∪ · · · ∪ (Vit \ {vit}).

2. Redirect the outgoing edges of vertices in R in such a way that there are no remaining collisions, and
re-label them as “rejecting” edges.

Observe that fv⃗(x) = 1 if and only if f(x) visits the vertices vi1 , . . . , vit and accepts. Consequently,
f =

∑
v⃗ fv⃗.

Next, we show how to fool width-3 standard-order ROBPs that are well-approximated by a suffix with
few colliding layers. More precisely, we will fool (3, t, ε)-programs, defined below.

Definition 3.4 ((w, t, ε)-program). Let f be a length-n standard-order ROBP with layers V0, V1, . . . , Vn.
We say that f is a (w, t, ε)-program if f has width at most w and there exists an i ∈ {0, 1, . . . , n} such that:

1. There are at most t colliding layers among layers i, i+ 1, . . . , n− 1.

2. If we sample x ∼ Un, then

Pr
x
[∃u, v ∈ Vi such that fu→(x) ̸= fv→(x)] ≤ ε.

Lemma 3.5 (Fooling ∧-programs with t colliding layers =⇒ fooling (w, t, ε)-programs). Let X be a
distribution over {0, 1}n and let w ≥ 3. If X fools width-

(
w
2

)
∧-programs that have at most t colliding layers

with error δ, then X fools (w, t, ε)-programs with error 2w · (ε+ δ).

Proof. Let f be a (w, t, ε)-program, and let i be as in Definition 3.4. Let u∗ be any element of Vi. For each
v ∈ Vi \ {u∗}, define

hv(x) = fu∗→(x)⊕ fv→(x).

We will use the following two approximators to sandwich f :

f+ = fu∗→ +
∑

v∈Vi\{u∗}

hv

f− = fu∗→ −
∑

v∈Vi\{u∗}

hv,

where the summation is over R. For every x ∈ {0, 1}n, we have

f−(x) ≤ f(x) ≤ f+(x).

To see this, note that f on x either reaches u∗, or else it reaches some v ̸= u∗, and then we can consider the
hv term. Furthermore,

E[f+ − f−] = 2
∑

v∈Vi\{u∗}

E[hv] ≤ 2wε.

Thus, indeed, f is sandwiched between f− and f+ with error 2wε.
Now we will prove that X fools f− and f+. The program fu∗→ can be computed by a width-w standard-

order ROBP with at most t colliding layers. The model of width-
(
w
2

)
∧-programs with at most t colliding

layers is only more general, so X fools fu∗→ with error δ. Now fix v ∈ Vi \ {u∗}; we will show that X fools hv.
We can construct an ∧-program g that computes hv as follows.

9



• Each vertex of g represents an unordered pair of vertices {u′, v′} in the corresponding layer of f .

• Let b ∈ {0, 1} and let u′′, v′′ be the vertices reached from u′, v′ by following the outgoing b-edge. If
u′′ ̸= v′′, then the outgoing b-edge of {u′, v′} leads to {u′′, v′′} and is an accepting edge. If u′′ = v′′,
then the outgoing b-edge of {u′, v′} can lead to an arbitrary vertex and is a rejecting edge.

Observe that g has width
(
w
2

)
. Furthermore, every colliding layer of g is also a colliding layer of f . Therefore,

g has at most t colliding layers. Consequently, X fools hv with error δ. Therefore, X fools f+ and f− with
error wδ. Applying Lemma 2.1 completes the proof.

3.2 Reducing the number of colliding layers in a width-3 program

To complete the proof of Theorem 1.6, we will take Meka, Reingold, and Tal’s approach [MRT19]: we will
apply a few pseudorandom restrictions, and we will argue that with high probability, the restricted program
is “almost” a permutation program. In particular:

Lemma 3.6 (Restrictions for width-3 programs [MRT19; CHLTW23]). For every n ∈ N and ε > 0, there
exists an explicit restriction generator R : {0, 1}s → {0, 1, ⋆}n, with s = Õ(log(n/ε)), such that if f is a
width-3 standard-order ROBP and we sample ρ ∼ R(Us):

1. The restriction ρ preserves the expectation of f up to error ε. That is,∣∣∣∣ Eρ,U[f |ρ(U)]− E[f ]
∣∣∣∣ ≤ ε,

where U is a uniform random string that is independent of ρ.

2. With probability 1− ε over ρ, the restricted function f |ρ can be computed by a (3, t, ε)-program where
t = O((log(1/ε) + log log log n) · log log(n/ε)).

(See Section 2 for the definition of f |ρ.) In Meka, Reingold, and Tal’s original analysis [MRT19], the
number of colliding layers (t) is poly(1/ε) · log logn (and they use a slightly different notion of approximation).
Later, Chen, Hoza, Lyu, Tal, and Wu refined their analysis [CHLTW23]. Their bound on the number of
colliding layers was roughly log5(1/ε), but it turns out that merely fiddling with some parameters in their
analysis is enough to prove the superior Õ(log(1/ε) · log logn) bound stated in Lemma 3.6. We explain some
details below.

Proof sketch of Lemma 3.6. We assume that the reader is familiar with Chen, Hoza, Lyu, Tal, and Wu’s
analysis [CHLTW23], and we merely explain what changes to make to their proofs.

• In their “Claim 7.25,” we should not assume C is a constant. Their proof works for any C, provided
we choose a suitable value p = 1/poly(C).

• In their “Claim 7.30,” we should choose C = 16 ln1/4(1/δ) rather than C = 32. After making this
change, there is no longer any need to assume ℓ ≥ log ln(1/δ); the claim holds provided ℓ ≥ 4.

• In their “Lemma 7.31,” we should not assume p is a constant. The lemma holds for any p that is a
power of 1/2, with a seed length of

s = Õ(w · log(n/δ) · log(1/p)).

• In their “Claim 7.35,” instead of taking p to be a small enough constant, we should pick p =
1/ polylog(1/δ). In the proof, we should pick C = 16 ln1/4(1/δ). We should define ℓj = max{4, ℓj−1/2}
instead of ℓj = ℓj−1/2. That way, at the end, we reach ℓ = 4, m = Cℓ = O(log(1/δ)), and r =
O(log(1/δ) · log log(n/δ)). Applying this modified version of Claim 7.35 with δ = min{ε4, 1/(log log n)5}
completes the proof of Lemma 3.6.
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Figure 2: In Lemma 4.1, we care about the base of the logarithm in the bound ln(1/E[f ]); a bound of
log2(1/E[f ]) would not be good enough. The reason is that down the road, to perform error reduction, we
will need a (1/2− Ω(1))-HSG (see Lemma 4.7). To construct such an HSG, we will use the fact that the
bound ln(1/E[f ]) in Lemma 4.1 is strictly less than one even when E[f ] is slightly less than 1/2, since e > 2.

Proof of Theorem 1.6. Let G be the assumed δ-PRG. Our new PRG samples a restriction ρ using Lemma 3.6
with error ε/16, then samples a pseudorandom string X from G, and finally uses X to fill in the stars of ρ.
The seed length is clearly s(n, δ) + Õ(log(n/ε)).

To prove that this works, let f be a width-3 length-n standard-order ROBP. By Lemma 3.6, ρ preserves
the expectation of f to within ε/16. Furthermore, except with probability ε/16, the restricted function f |ρ
can be computed by a (3, t, ε/16)-program where t = O((log(1/ε) + log log log n) · log log(n/ε)). Since we
have assumed that ε < 1

log logn , the bound simplifies to t = O(log(1/ε) · log log(n/ε)).
By Lemmas 3.1, 3.3 and 3.5, the distribution X fools width-3 standard-order permutation ∧-programs

with error 2δ; it fools width-3 standard-order ∧-programs that have at most t colliding layers with error
2δ · 3t; and it fools (3, t, ε/16)-programs with error 6 · (2δ · 3t + ε/16). (Note that

(
3
2

)
= 3.)

Summing up, our PRG fools f with error ε/16 + ε/16 + 6 · (2δ · 3t + ε/16) = ε/2 + δ · 12 · 3t. If we choose
the constant C in the definition of δ large enough, then δ · 12 · 3t ≤ ε/2, completing the proof.

4 Conditional HSGs for width-4 ROBPs

4.1 Hitting width-w ∧-programs

As discussed in Section 1.6, the first step in the proof of Theorem 1.7 is to show that in a ∧-program f ,
without loss of generality, the expected number of rejecting edges traversed under a uniform random input is
at most ln(1/E[f ]). Constant factors are important here; see Fig. 2. We prove it by using the probabilistic
method to reroute the rejecting edges; the details follow.

Lemma 4.1 (Expected number of rejecting edges traversed in an ∧-program). For every width-w ∧-program
f , there exists another width-w ∧-program g with the following two properties.

1. g computes the same function as f .

2. When g reads a uniform random input, the expected number of rejecting edges that are traversed is at
most ln(1/E[f ]).
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Proof. Let V0, V1, . . . , Vn be the layers of vertices of f . For each string x ∈ {0, 1}≤n, let f [x] be the vertex
that f reaches after reading x. For each i ∈ {0, 1, . . . , n}, let Ai be the set of x ∈ {0, 1}i such that when
f reads x, every edge it traverses is an accepting edge. Furthermore, abusing notation, let Ai denote the
uniform distribution over the set Ai. We construct g using the probabilistic method as follows.

1. For each i ∈ [n] independently, we sample a string X∗
i ∼ Ai.

2. Let g be f , except that for every i ∈ [n], all rejecting edges from Vi−1 to Vi are redirected to point to
f [X∗

i ].

Since we only redirected rejecting edges, g computes the same function as f .
We will prove by induction that for every i ∈ {0, 1, . . . , n}, we have g[Ui] ∼ f [Ai], where Ui denotes a

uniform random i-bit string that is independent of the randomness used to construct g. When i = 0, this is
trivial. Now, assuming it holds for i, we can sample g[Ui+1] by the following steps.

1. Sample X uniformly at random from Ai (note that f [X] ∼ g[Ui]).

2. Sample Y ∈ {0, 1} uniformly at random.

3. If XY /∈ Ai+1, sample X∗
i+1 ∼ Ai+1 and output f [X∗

i+1].

4. If XY ∈ Ai+1, output f [XY ].

Conditioned on the event XY /∈ Ai+1, clearly g[Ui+1] ∼ f [Ai+1]. Meanwhile, conditioned on the event that
XY ∈ Ai+1, the string XY is in fact uniformly distributed over Ai+1, and hence once again g[Ui+1] ∼ f [Ai+1].
This completes the inductive step.

Consequently, if we sample Z ∼ Un, then the expected number of rejecting edges traversed by g(Z) is

n∑
i=1

Pr[g(Z) traverses a rejecting edge in step i] =

n∑
i=1

Pr[Z1...i /∈ Ai | Z1...i−1 ∈ Ai−1] ≤ ln(1/E[f ])

by Lemma 2.2. The best case is at least as good as the average case, so there is some fixing of g such that
the expected number of rejecting edges traversed by g(Z) with respect to the randomness of Z alone is at
most ln(1/E[f ]).

Corollary 4.2 (PRGs for width-w ROBPs are HSGs for width-w ∧-programs). Let w, n ∈ N and β ∈ (0, 1),
and let ε∧ = eβ−1. For every width-w length-n ∧-program f with E[f ] > ε∧, there is a set Af of width-w
standard-order ROBPs such that the following hold.

1. |Af | = n.

2. If X is a distribution over {0, 1}n that (β/n)-fools Af , then Supp(X) hits f .

In particular, if X fools all width-w length-n standard-order ROBPs with error β/n, then Supp(X) hits f .

Proof. Let g be the program from Lemma 4.1. For each i ∈ [n], there is a width-w standard-order ROBP gi
such that gi(x) = 1 if and only if g(x) traverses a rejecting edge in step i. Let Af = {g1, g2, . . . , gn}. Then

Pr[f(X) = 0] = Pr[g1(X) = 1∨· · ·∨gn(X) = 1] ≤
n∑

i=1

E[gi(X)] ≤
n∑

i=1

(E[gi]+β/n) ≤ ln(1/E[f ])+β < 1.
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4.2 Hitting width-w ∨-programs

Lemma 4.3 (HSGs for width-w ROBPs are also HSGs for width-w ∨-programs). For every width-w length-n
∨-program f , there is a width-w length-n standard-order ROBP gf such that gf ≤ f and E[gf ] ≥ E[f ]/n.
Consequently, for every H ⊆ {0, 1}n and every ε∨ > 0, if H is an (ε∨/n)-hitting set for width-w length-n
standard-order ROBPs, then H is also an ε∨-hitting set for width-w length-n ∨-programs.

Proof. For each i ∈ [n], there is a width-w standard-order ROBP fi such that fi(x) = 1 if and only if f(x)
traverses an accepting edge in step i. If we sample X ∼ Un, then

E[f(X)] = E[f1(X) ∨ f2(X) ∨ · · · ∨ fn(X)] ≤
n∑

i=1

E[fi],

so there is some i such that E[fi] ≥ E[f ]/n. We can let gf = fi.

4.3 Hitting width-(w + 1) programs

We define the following associative operation on hitting sets.

Definition 4.4 (The ⊛ operation). For any two sets H,H ′ ⊆ {0, 1}n, we define

H ⊛H ′ = {x1x2 . . . xiyi+1yi+2 . . . yn : x ∈ H, y ∈ H ′, 0 ≤ i ≤ n}.

Furthermore, we define
H⊛t = H ⊛H ⊛ · · ·⊛H︸ ︷︷ ︸

t copies

.

Note that |H⊛t| ≤ (n · |H|)t.

As discussed in Section 1.6, Gopalan, Meka, Reingold, Trevisan, and Vadhan showed how to convert
an ( ε

2

2n)-hitting set H for width-w ∧-programs into an ε-hitting set H ′ for width-(w + 1) standard-order
ROBPs [GMRTV12]. In particular, they showed that one can take H ′ = {0n} ⊛ H. Extending their
techniques, we now show that if H∨ and H∧ are an ε∨-hitting set for width-w ∨-programs and an ε∧-hitting
set for width-w ∧-programs, respectively, then {0n}⊛H∨ ⊛H∧ is an (ε∨ + ε∧)-hitting set for width-(w + 1)
standard-order ROBPs.

Lemma 4.5 (Simulating width-(w + 1) programs using ∨-programs and ∧-programs of width w). Let
ε∨, ε∧ > 0. For every width-(w+1) standard-order ROBP f with E[f ] > ε∨+ ε∧, there is a set B∨

f of width-w
length-n ∨-programs and a set B∧

f of width-w length-n ∧-programs such that the following hold.

1. |B∨
f | = w + 1 and |B∧

f | ≤ n.

2. E[a] > ε∨ for every a ∈ B∨
f and E[h] > ε∧ for every h ∈ B∧

f .

3. For every z ∈ {0, 1}n, for every H∨ ⊆ {0, 1}n such that H∨ hits B∨
f , and for every H∧ ⊆ {0, 1}n such

that H∧ hits B∧
f , the set {z}⊛H∨ ⊛H∧ hits f .

In particular, if H∨ is an ε∨-hitting set for width-w ∨-programs and H∧ is an ε∧-hitting set for width-w
∧-programs, then {0n}⊛H∨ ⊛H∧ hits f .

Proof. Let V0, V1, . . . , Vn be the layers of f . We assume without loss of generality that |Vi| > 1 for every i
and |Vn| = 2, with one accepting vertex and one rejecting vertex in Vn.

For every t ∈ {0, 1, . . . , n}, there is some “good vertex” ut ∈ Vt such that put→ ≥ E[f ] > ε∨ + ε∧. Let
i∗ + 1 be the smallest value such that there is some “bad vertex” vi∗+1 ∈ Vi∗+1 satisfying pvi∗+1→ ≤ ε∨. The
existence of this first bad vertex implies that for every t ∈ {i∗ + 2, . . . , n}, there is another bad vertex vt ∈ Vt

satisfying pvt→ ≤ ε∨.

13



In brief, our strategy is as follows. We will take the first i∗ steps arbitrarily; there is no risk of hitting a
bad vertex during this time. Then, we will use H∨ to reach one of the good vertices (ut). Afterward, we will
use H∧ to avoid the bad vertices (vt).

In more detail, for each v ∈ Vi∗ , define av : {0, 1}n → {0, 1} by letting av(x) = 1 if and only if there is a
value j ∈ {i∗, . . . , n} such that fv→(x) visits the good vertex uj . Note that we think of fv→ as a function on
n bits that ignores its first i∗ many input bits. Observe that av can be computed by a width-w length-n
∨-program. (We can delete the vertices ui∗ , ui∗+1, . . . , un, redirect their incoming edges arbitrarily, and mark
those edges as accepting edges. Layers 0, 1, . . . , i∗−1 can have width 1, because that phase of the computation
is trivial.) The definition of i∗ implies that E[fv→] > ε∧. The final good vertex un is the accepting vertex, so
E[av] > ε∨. Let B∨

f = {av : v ∈ Vi∗}.
Furthermore, for each j ∈ {i∗, i∗ + 1, . . . , n}, define hj : {0, 1}n → {0, 1} by letting hj(x) = 1 if and

only if fuj→(x) avoids all of the bad vertices vj+1, vj+2, . . . , vn. Observe that hj can be computed by a
width-w length-n ∧-program. (We can delete the vertices vj+1, vj+2, . . . , vn, redirect their incoming edges
arbitrarily, and mark those edges as rejecting edges. Layers 0, . . . , j can have width 1, because that phase of
the computation is trivial.) Furthermore,

E[hj ] = Pr
x∼Un

[fuj→(x) does not visit vj+1, . . . , vn]

= Pr
x∼Un

[fuj→(x) = 1 and fuj→(x) does not visit vj+1, . . . , vn]

= puj→ − Pr
x∼Un

[fuj→(x) = 1 and fuj→(x) visits at least one of vj+1, . . . , vn]

= puj→ −
n−1∑

t=j+1

Pr[fuj→(x) = 1 and fuj→(x) visits vt without visiting vj+1, . . . , vt−1]

≥ puj→ −
n−1∑

t=j+1

Pr[fuj→(x) visits vt without visiting vj+1, . . . , vt−1] · ε∨ (1)

≥ puj→ − ε∨

> ε∧.

(Eq. (1) holds because the probability that fuj→(x) accepts conditioned on visiting vt without visiting
vj+1, . . . , vt−1 is precisely pvt→, which is at most ε∨.) Let B∧

f = {hi∗ , . . . , hn}.
Finally, let z ∈ {0, 1}n and let H∨, H∧ ⊆ {0, 1}n be sets that hit B∨

f and B∧
f respectively. We must show

that {z}⊛H∨ ⊛H∧ hits f . Since H∨ hits B∨
f , there is some x ∈ H∨ and some j∗ such that f(z1...i∗xi∗+1...n)

visits uj∗ . Since H∧ hits B∧
f , there is some y ∈ H∧ such that hj∗(y) = 1, i.e., fuj∗→(y) avoids all of the bad

vertices vj+1, . . . , vn. Consequently,

f(z1...i∗xi∗+1...j∗yj∗+1...n) = 1.

4.4 Error reduction

At this point, given an (α/n)-PRG for width-w programs, we have shown how to construct a (1/2−Ω(1))-HSG
for width-(w + 1) programs. To construct an ε-HSG where ε is small, we will use a version of an error
reduction technique introduced by Hoza and Zuckerman [HZ20]. We rely on the following lemma, which
shows how to split a branching program into two subprograms, each of which has much higher acceptance
probability.

Lemma 4.6 (Increasing a branching program’s acceptance probability). Let w, n ∈ N, let K ∈ (1,∞), and
let f be a width-(w + 1) length-n standard-order ROBP with E[f ] = p ≤ 1/K. Let V be the set of vertices in
f and let S be the set of vertices v ∈ V such that pv→ ≥ Kp. For each x ∈ {0, 1}n, let g(x) ∈ {0, 1} indicate
whether f(x) visits at least one vertex in S. Then:

1. The function g can be computed by a width-(w + 1) standard-order ROBP.
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2. E[g] > 1/(2K).

Proof sketch. Observe that if S intersects a layer of f , then S also intersects all subsequent layers of f .
Therefore, to construct a program that computes g, we can redirect all outgoing edges from vertices in S to
other vertices in S, and then in the final layer, label the vertices in S as accepting and all other vertices as
rejecting. Finally, the fact that E[g] > 1/(2K) was proven by Bogdanov, Hoza, Prakriya, and Pyne [BHPP22,
Lemma 25].7

Given Lemma 4.6, the following error reduction lemma readily follows.

Lemma 4.7 (Error reduction). Let w, n ∈ N, let γ ∈ (0, 1/2), let ε ∈ (0, 1), and let t = ⌈ ln(1/ε)2γ ⌉. For every
width-(w+1) length-n standard-order ROBP f such that E[f ] > ε, there is a set Cf of width-(w+1) length-n
standard-order ROBPs such that the following hold.

1. |Cf | ≤ (w + 1) · n.

2. E[g] > 1/2− γ for every g ∈ Cf .

3. For any set H ⊆ {0, 1}n, if H hits Cf , then H⊛t hits f .

In particular, if H is a (1/2− γ)-hitting set for width-(w+ 1) length-n standard-order ROBPs, then H⊛t hits
f .

Proof. Let K = 1
1−2γ . Let V0, V1, . . . , Vn be the layers of f . For every vertex u ∈ V0 ∪ · · · ∪ Vn−1, we will

define a function gu : {0, 1}n → {0, 1}. The definition is as follows.

• First, suppose pu→ > 1− 2γ. In this case, we let gu = fu→.

• Now, suppose pu→ ≤ 1− 2γ. Let S be the set of vertices v in layers beyond u such that pv→ ≥ K · pu→.
Let gu(x) indicate whether fu→(x) visits at least one vertex in S.

Lemma 4.6 ensures that E[gu] > 1/(2K) = 1/2−γ and gu can be computed by a width-(w+1) standard-order
ROBP. Let Cf = {gu : u ∈ V0 ∪ · · · ∪ Vn−1}.

Now let H be a set that hits Cf . We must show that H⊛t hits f . By inductively applying the definition
of Cf , we see that there is some x ∈ H⊛t such that f(x) visits some vertex v such that pv→ ≥ min{1,Kt · ε}.
By our choices of K and t, we have

ε ·Kt ≥ ε ·
(

1

1− 2γ

)ln(1/ε)/(2γ)

≥ ε ·
(

1

e−2γ

)ln(1/ε)/(2γ)

= 1,

so pvt→ = 1. Therefore, f(x) = 1.

4.5 The sampler trick

Combining the lemmas above yields the following.

Theorem 4.8 (If X fools width w, then Supp(X)⊛k hits width w + 1). Let w ∈ N and β > 0 be constants,
and assume eβ−1 + β < 1/2. For every n ∈ N and ε > 0, there is a value k = O(log(1/ε)) such that for
every width-(w + 1) length-n standard-order ROBP such that E[f ] > ε, there is a set Df of width-w length-n
standard-order ROBPs such that the following hold.

1. |Df | ≤ O(n3).

2. If X is a distribution over {0, 1}n that fools Df with error β/n, then Supp(X)⊛k hits f .

7Bogdanov, Hoza, Prakriya, and Pyne state the bound as E[g] ≥ 1/(2K) [BHPP22], but their proof establishes the strict
inequality E[g] > 1/(2K).
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In particular, if X fools all width-w standard-order ROBPs with error β/n, then Supp(X)⊛k hits f .

Proof. Let ε∧ = eβ−1, let ε∨ = β, let γ = 1
2 − ε∧ − ε∨ > 0, and let t = ⌈ ln(1/ε)2γ ⌉. Let Cf be the set from

Lemma 4.7. For each g ∈ Cf , let B∨
g ,B∧

g be the sets from Lemma 4.5. Let B∨ =
⋃

g∈Cf B
∨
g and B∧ =

⋃
g∈Cf B

∧
g .

For every a ∈ B∨, let ga be the program from Lemma 4.3. For every h ∈ B∧, let Ah be the set from
Corollary 4.2. Let Df = {ga : a ∈ B∨} ∪

⋃
h∈B∧

Ah.
Let us confirm the cardinality bound. We have |Cf | ≤ O(n). For each g ∈ Cf , we have |B∨

g | = w + 1
and |B∧

g | ≤ n; therefore, |B∨| ≤ O(wn) and |B∧| ≤ O(n2). For each h ∈ B∧, we have |Ah| = n; therefore,
|Df | ≤ O(wn) +O(n3) = O(n3) since w is a constant.

Now suppose X is a distribution over {0, 1}n that fools Df with error β/n. By Corollary 4.2, Supp(X) is
an ε∧-hitting set for B∧. By Lemma 4.3, Supp(X) is an ε∨-hitting set for B∨. Therefore, by Lemma 4.5,
Supp(X)⊛3 is a (1/2−γ)-hitting set for Cf . Finally, applying Lemma 4.7, we conclude that (Supp(X)⊛3)⊛t) =
Supp(X)⊛3t hits f .

At this point, we are nearly done with the proof of Theorem 1.7. Applying Theorem 4.8 directly would
lead to a seed length of O(s(n) · log(1/ε)). To achieve the superior seed length O(s(n) + log n · log(1/ε)),
we use the so-called “sampler trick.” This trick, which was perhaps first used in the context of PRGs by
Armoni [Arm98], is based on the concept of an averaging sampler, defined as follows.

Definition 4.9 (Sampler). Let ε, δ ∈ (0, 1). An (ε, δ)-sampler is a function Samp : {0, 1}ℓ×{0, 1}d → {0, 1}s
such that for every function ϕ : {0, 1}s → {0, 1}n, we have

Pr
x∼Uℓ

[|E[ϕ]− E[ϕ(Samp(x, Us))]| ≤ ε] ≥ 1− δ.

We need an explicit sampler with good parameters. The following recent construction, by Xun and
Zuckerman [XZ24], is more than sufficient for our purposes.

Theorem 4.10 ([XZ24]). For every s ∈ N and every ε, δ ∈ (0, 1), there exists an explicit (ε, δ)-sampler
Samp : {0, 1}ℓ × {0, 1}d → {0, 1}s with ℓ = O(s+ log(1/δ)) and d = O(log(1/ε) + log log(1/δ)).

Proof of Theorem 1.7. Let G : {0, 1}s → {0, 1}n be the given PRG. Let α′ > 0 be a constant small enough
that eα+α′−1+α+α′ < 1/2,8 and let β = α+α′. Let εSamp = α′/n, and let Samp : {0, 1}ℓ×{0, 1}d → {0, 1}s
be the (εSamp, δSamp)-sampler from Theorem 4.10, where δSamp will be specified later.

Let k = O(log(1/ε)) be the value from Theorem 4.8. For each x ∈ {0, 1}ℓ, let Gx = G(Samp(x, Ud)). Our
hitting set is given by

H =
⋃

x∈{0,1}ℓ
Supp(Gx)

⊛k.

Let us prove that this works. Let f be a width-(w + 1) standard-order ROBP such that E[f ] > ε. Let
Df be the set from Theorem 4.8. For each g ∈ Df , we define ϕg : {0, 1}s → {0, 1} by ϕg(z) = g(G(z)). We
choose δSamp = Θ(1/n3) such that δSamp < 1/|Df |. That way, by the sampler definition and the union bound,
there exists some x∗ ∈ {0, 1}ℓ such that for every g ∈ Df , we have

|E[ϕg]− E[ϕg(Samp(x∗, Us))]| ≤ εSamp = α′/n.

Since G fools g with error α/n, we have |E[ϕg] − E[g]| ≤ α/n. Therefore, Gx∗ fools g with error β/n. By
Theorem 4.8, it follows that Supp(Gx∗)

⊛k hits f .
The seed length of our HSG is ℓ+ k · (d+ log n), which is O(s+ log n · log(1/ε)) as promised.
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