
Distinguishing, Predicting, and Certifying: On the Long Reach of

Partial Notions of Pseudorandomness

Jiatu Li∗

MIT
jiatuli@mit.edu

Edward Pyne†

MIT
epyne@mit.edu

Roei Tell
University of Toronto
roei@cs.toronto.edu

September 11, 2024

Abstract

This paper revisits the study of two classical technical tools in theoretical computer science:
Yao’s transformation of distinguishers to next-bit predictors (FOCS 1982), and the “reconstruc-
tion paradigm” in pseudorandomness (e.g., as in Nisan and Wigderson, JCSS 1994). Recent
works of Pyne, Raz, and Zhan (FOCS 2023) and Doron, Pyne, and Tell (STOC 2024) showed
that both of these tools can be derandomized in the specific context of read-once branching
programs (ROBPs), but left open the question of derandomizing them in more general settings.

Our main contributions give appealing evidence that derandomization of the two tools is
possible in general settings, show surprisingly strong consequences of such derandomization, and
reveal several new settings where such derandomization is unconditionally possible for algorithms
stronger than ROBPs (with useful consequences). Specifically:

• We show that derandomizing these tools is equivalent to general derandomization. Specif-
ically, we show that derandomizing distinguish-to-predict transformations is equivalent to
prBPP = prP, and that derandomized reconstruction procedures (in a more general sense
that we introduce) is equivalent to prBPP = prZPP. These statements hold even when
scaled down to weak circuit classes and to algorithms that run in super-polynomial time.

• Our main technical contributions are unconditional constructions of derandomized versions
of Yao’s transformation (or reductions of this task to other problems) for classes and for
algorithms beyond ROBPs. Consequently, we deduce new results: A significant relaxation
of the hypotheses required to derandomize the isolation lemma for logspace algorithms
and deduce that NL = UL; and proofs that derandomization necessitates targeted PRGs in
catalytic logspace (unconditionally) and in logspace (conditionally).

In addition, we introduce a natural subclass of prZPP that has been implicitly studied in
recent works (Korten FOCS 2021, CCC 2022): The class of problems reducible to a problem
called “Lossy Code”. We provide a structural characterization for this class in terms of de-
randomized reconstruction procedures, and show that this characterization is robust to several
natural variations.

Lastly, we present alternative proofs for classical results in the theory of pseudorandomness
(such as two-sided derandomization reducing to one-sided), relying on the notion of determin-
istically transforming distinguishers to predictors as the main technical tool.

∗Supported by MIT Akamai Presidential Fellowship and NSF grant CCF-2127597.
†Supported by a Jane Street Graduate Research Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 139 (2024)

Contents

1 Introduction 2
1.1 Recent Progress: Derandomizing Yao’s Transformation and Reconstruction Argu-

ments for Read-Once Branching Programs . 3
1.2 Our contributions: A bird’s eye . 4
1.3 Derandomized D2P Transformations and Their Consequences 4
1.4 Certified Derandomization and the Class LOSSY . 8

2 Overview of Proofs 10
2.1 D2P is Equivalent to Derandomization . 11
2.2 D2P for Unique Shortest Paths, and Derandomizing the Path Isolation Lemma . . . 12
2.3 Derandomization Requires Targeted PRGs in Catalytic Logspace and in Logspace . 14
2.4 Certified Derandomization Using Hard Truth-Tables, and the Class LOSSY 16

3 Preliminaries 16

4 Distinguish to Predict is Equivalent to Derandomization 19
4.1 Distinguish to Predict Implies Derandomization . 20
4.2 Derandomization Implies Distinguish to Predict . 21
4.3 Putting it all Together . 23

5 Targeted PRGs in Logspace and Catalytic Logspace 24
5.1 Targeted PRGs in Catalytic Logspace . 24
5.2 Targeted PRGs in Logspace . 27

6 Distinguish to Predict for the Path Isolation Lemma 28
6.1 Constructing the D2P Transformation . 31
6.2 Unique Shortest Paths in Catalytic Logspace . 33
6.3 Making Nondeterministic Linear Space Unambiguous 33
6.4 Making Nondeterministic Logspace Umambiguous 37

7 Certified Derandomization 38
7.1 Definitions of Certified Derandomization and its Variants 38
7.2 Certified Derandomization and prBPP = prZPP . 40
7.3 LossyCode and Certified Derandomization . 42
7.4 Certified Derandomization and Property-Aided Derandomization 46

A D2P Centric Proofs of Classical Results 56

B The Parameters of D2P 64

C Alternate Derandomizations of Yao’s Transformation 72

D Bounded Arithmetic and FLOSSY 77

E A Targeted Generator with Derandomized Reconstruction 78

1

1 Introduction

This paper revisits the study of two classical technical tools in theoretical computer science: Yao’s
transformation of distinguishers to next-bit predictors [Yao82], and the “reconstruction paradigm”,
both of which will be explained next.

More than four decades ago, Yao introduced a very simple probabilistic transformation of any
distinguisher for a distribution into a next-bit predictor for the same distribution; that is:

Definition 1.1 (distinguisher). We say that C : {0, 1}n → {0, 1} is an ε-distinguisher for a distri-

bution D over {0, 1}n if
∣∣∣E[C(Un)]− E[C(D)]

∣∣∣ ≥ ε, where Un is the uniform distribution.

Definition 1.2 (next-bit predictor). For i ∈ [n], we say that P : {0, 1}i−1 → {0, 1} is a δ-next-bit-
predictor for a distribution D over {0, 1}n if Prx←D [P (x<i) = xi] ≥ 1

2 + δ.

Lemma 1.3 (Yao’s next-bit-predictor). For any C : {0, 1}n → {0, 1} and distribution D over
{0, 1}n, if C is an ε-distinguisher for D, then there exists i ∈ [n] and σ1, σ2 ∈ {0, 1} such that
with noticeable probability over z ∈ {0, 1}n−i+1 it holds that P (x<i) = C(x<i ◦ σ1 ◦ z) ⊕ σ2 is a
(1/O(n))-next-bit-predictor for D.

The simplicity and generality of this transformation have made it an invaluable tool, most
prominently in cryptography and in pseudorandomness (expositions appear in standard textbooks,
e.g. [Gol08; AB09; Gol01]). The canonical example for its use is in analyses of pseudorandom
generator constructions: Assuming that the output distribution D of a generator does not “fool”
C (i.e., C is a distinguisher for D), one obtains a next-bit-predictor for D, and the argument uses
the latter to contradict the results or assumptions on which the generator is based.

Another ubiquitous technical tool is the “reconstruction paradigm”, which appeared ex-
plicitly in the works of Nisan and Wigderson [Nis91; NW94] and can be traced back to prior works
(e.g., to [Sip88]). Loosely speaking, this is a general way of constructing algorithms from “hard
strings” (e.g., truth-tables of hard functions, or incompressible strings). One designs an algorithm
that transforms an input string f into the desired object Of , and this algorithm is coupled with a
reconstruction procedure, which supports the following claim: For any string f , if Of does not
have the desired properties, then f is “not hard”. Indeed, the reconstruction procedure outputs an
“easy” representation of f , such as an efficient algorithm or a small circuit.

Our main focus in this context is trying to construct a distribution Of that is pseudorandom
for a class of efficient procedures. The canonical example is the “hardness versus randomness”
paradigm, introduced in [Nis91; NW94]: In this context, the string f represents the truth-table of
a hard function, the algorithm transforms f into a (hopefully pseudorandom) multiset Of , and the
reconstruction procedure shows that if Of is not pseudorandom, then the function represented by
f can be computed efficiently (e.g., by a small circuit).1 Closely related examples exist in numerous
areas, such as extractor theory [Tre01], expanders [TSUZ07], and error-correcting codes [STV01].2

1More recent versions of the “hardness vs randomness” paradigm, following [Gol11b; CT21a], work in an instance-
wise fashion: Given input x, they compute f = g(x) for some function g, and the reconstruction procedure shows
that if Of is not pseudorandom, then g is easy to compute on the specific input x. See, e.g., [CT23a] for more details.

2Many standard reconstruction procedures (e.g., [NW94; TSZS06; SU05; Uma03]) use Yao’s next-bit-predictor
lemma as a key step. This can be viewed as reducing reconstruction to constructing a next-bit-predictor. We further
explain this point in Section 1.4 and Section 7.

2

1.1 Recent Progress: Derandomizing Yao’s Transformation and Reconstruction
Arguments for Read-Once Branching Programs

The computational complexity of these two technical tools is crucial. This is because the tools are
used in analyses that contradict an initial assumption or result, and the higher the complexity of
the tools, the stronger the assumption or result that we need. As an illustrative example, suppose
that we want to use Yao’s transformation to show that a distribution D is pseudorandom for a
class C. In the analysis, we assume towards a contradiction that D is not pseudorandom for some
C ∈ C, and use Lemma 1.3 to obtain a predictor P ; the rest of the argument, which proceeds to
contradict an initial assumption or result, will carry on the overhead of transforming C to P .

In essentially all classical applications we are aware of, both tools are modeled as probabilistic
procedures, or worse, as non-uniform procedures (which are stronger than probabilistic algorithms).
However, very recent works showed that in the specific context of read-once branching programs, we
can do better. To be more concrete, let us recall a definition of Doron, Pyne, and Tell [DPT24]:

Definition 1.4 (D2P, simplified; see Definition 3.7). An algorithm A is a distinguish to predict
(D2P) transformation for a class C if A gets as input a description of a circuit C : {0, 1}n → {0, 1}
from C, and prints a list of circuits P1, ..., Pm : {0, 1}∗ → {0, 1} such that for every distribution D
over {0, 1}n the following holds. If C is an ε-distinguisher for D, then there is an i ∈ [m] such that
Pi is an (ε/O(n))-predictor for D.

Some choices in Definition 1.4 may seem arbitrary at this point (e.g., we could also define a
non-black-box transformation that takes the distribution D as part of its input, or require the
transformation to work only for certain classes of distributions, or consider more general parameter
regimes). Nevertheless, these choices will be justified by showing algorithms that satisfy Defini-
tion 1.4 as well as matching lower bounds (the lower bounds appear in Appendix B).

Indeed, Yao’s transformation (i.e., Lemma 1.3) can be thought of as a probabilistic D2P trans-
formation for general circuits. The works of Pyne, Raz, and Zhan [PRZ23] and [DPT24], building
on [Nis94; CH22; GRZ23], showed that there is a deterministic logspace D2P algorithm for the class
of read-once branching programs (ROBPs). While it is not surprising that their algorithm runs in
logarithmic space (since Lemma 1.3 already yields a probabilistic logspace D2P for ROBPs), the
crucial novel point is that the D2P transformation algorithm can be made deterministic.

As a consequence of their D2P algorithm, they deduced the existence of a derandomized re-
construction procedure for the classical Nisan-Wigderson PRG [NW94] when the distinguisher is
an ROBP.3 This resulted in what they called “certified derandomization”: A deterministic
logspace algorithm that gets as input a truth-table f and an ROBP C, and either confirms that the
PRG instantiated with f is pseudorandom for C, or prints a small circuit whose truth-table is f .

Beyond the ROBP setting, however, the notions of deterministic D2P transformation and cer-
tified derandomization have not been studied in detail. For general circuits, it is not a-priori clear
whether to expect impossibility results (on the one hand) or easy constructions (on the other hand).
In fact, it is not even a-priori clear that non-explicit deterministic D2P transformations exist for
general circuits, since the algorithm in Definition 1.4 is required to work for all distributions D.

3The notion of “derandomized” here means that the procedure uses only O(log(|f |)) random coins, where f is the
truth-table of the function on which the generator is based. Indeed, the reconstruction procedure is deterministic,
but its complexity may be higher than that of computing f to begin with (where the point is that it outputs a small
circuit for f).

3

1.2 Our contributions: A bird’s eye

In this work we give appealing evidence that derandomization of the two tools is possible, show
surprisingly strong consequences of such derandomization, and reveal several new settings where
such derandomization is unconditionally possible for algorithms stronger than ROBPs (and has
useful consequences). Specifically:

• We show that derandomizing these tools is equivalent to general derandomization. In par-
ticular, we show that derandomized D2P is equivalent to prBPP = prP and that certified
derandomization (in a more general sense that we introduce) is equivalent to prBPP = prZPP.
These results appear in Sections 1.3 and 1.4.

• Our main technical contributions are unconditional constructions of derandomized D2P trans-
formations (or reductions of this task to other problems) for classes and for algorithms beyond
ROBPs. Consequently, we deduce new results: A significant relaxation of the hypotheses re-
quired to derandomize the isolation lemma for logspace algorithms and deduce that NL = UL;
and proofs that derandomization necessitates targeted PRGs in catalytic logspace (uncondition-
ally) and in logspace (conditionally). These contributions appear in Sections 1.3.1 and 1.3.2.

In addition, we introduce a natural subclass of prZPP that has been implicitly studied in recent
works on the range avoidance problem [Kor21; Kor22; ILW23]: The class of problems reducible to
a problem called LossyCode (see Problem 1.16). We provide a structural characterization for this
class using the notion of certified derandomization, and show that this characterization is robust
to several natural variations (see Section 1.4).

As a last contribution, we present alternative proofs of two classical results in the theory of pseu-
dorandomness: The reduction of derandomization of prBPP to derandomization of prRP [Sip83;
Lau83; ACR98; ACR+99; GVW11; GZ11; CH22], and the fact that MA ⊆ S2P [RS98]. Our
proofs are technically simple and appealing, and rely on D2P transformations as a main ingredient.
See Appendix A.

1.3 Derandomized D2P Transformations and Their Consequences

Should we expect D2P transformations to exist, and should we expect to explicitly construct them
any time soon? A recent result of Korten [Kor22, Corollary 41] implies the following statement:
If there is a deterministic D2P transformation for general circuits, then BPP ⊆ NP. Moreover, it
was implicitly proved by Goldreich [Gol11b, Appendix A] (following ideas in [GW00]) that D2P
transformation exists with respect to a fixed universal distribution, assuming prBPP = prP. Both
works, however, do not settle the existence of this transformation, even in the non-explicit setting.

The first result, which motivates the result of our work, asserts that a derandomized D2P
algorithm for general circuits follows from general derandomization (i.e., from prBPP = prP), and
is in fact equivalent to it.

Theorem 1.5 (D2P ⇐⇒ derandomization). The following are equivalent:

1. prBPP = prP.

2. There exists a deterministic polynomial-time D2P algorithm for general circuits.

Moreover, there unconditionally exists a polynomial-sized family of non-uniform circuits for D2P
of general circuits.

4

The surprisingly simple proof of Theorem 1.5 combines an idea of Goldreich and Wigder-
son [GW00] with the recent “instance-wise” approach to derandomization (following [Gol11b;
CT21a]).

The equivalence in Theorem 1.5 has a positive aspect and a discouraging one: The result
means that D2P exists under the widely believed conjecture prBPP = prP, but it also means that
constructing a D2P algorithm requires proving this conjecture. We focus on the positive aspect.

A natural challenge: Derandomizing D2P beyond ROBPs. Motivated by Theorem 1.5,
we consider the following challenge:

Open Problem 1.6. Unconditionally construct deterministic D2P transformations (or determin-
istic reductions of D2P to other tasks) for algorithms beyond the ROBP setting, and leverage these
constructions to make progress on long-standing questions.

Our main technical contributions are two solutions to Open Problem 1.6: We construct new
D2P transformations, going beyond the ROBP setting, and leverage them to make progress on
the following two long-standing questions: making nondeterministic logspace unambiguous (Sec-
tion 1.3.1), and reducing targeted PRGs to derandomization (Section 1.3.2). We view these positive
results as suggesting that more positive answers to Open Problem 1.6 may be found.

1.3.1 The Isolation Lemma And Unambiguous Logspace

The isolation lemma of Mulmuley, Valiant, and Vazirani [VV86; MVV87] (see also [CRS95]) gives
a randomized procedure to reduce a search problem with many solutions to one with a single valid
solution. This procedure has found many uses in algorithms and complexity; among the well-
known examples are [Tod91; BDCG+92]. We focus on its application in reducing nondeterminism
to unambiguous nondeterminism, where each “yes” instance has exactly one valid witness (as
in [Val76]).

In the general case, there is evidence that derandomizing the isolation lemma for this purpose
is impossible (since it was shown in [DKM+13] to be equivalent to NP ⊆ P/poly), and even
derandomizing restricted versions of it implies circuit lower bounds [AM08]. Part of the difficulty is
that it is not clear how to identify a good candidate (i.e., an instance that has exactly one satisfying
solution) in an unambiguous way, so even strong PRGs are not known to imply NP = UP.

In the bounded-space setting, however, there is evidence that we can make nondeterminism
unambiguous. In contrast to recognizing circuits with a unique satisfying assignment, recognizing
if a graph has unique shortest paths can be done in UL [RA00; GW96]. Leveraging this fact,
Reinhardt and Allender [RA00] showed that to prove NL = UL, it suffices to construct weight
functions that induce unique shortest paths in UL:

Problem 1.7 (path isolation). Construct in UL a set of weight functions {w1, . . . , wnc} with
wi : E → [n10] such that for every graph G = (V,E) on n vertices, there is some i such that the
weighted graph (G,wi) has unique shortest paths (USPs).

Allender et al. [ARZ99] showed that such a construction is possible assuming strong circuit
lower bounds: in particular, hardness of SPACE[n] for general circuits of size 2εn. Subsequently,
there has been extensive work designing space-efficient unambiguous verifiers for various problems.
In particular, placing connectivity for restricted families of directed graphs in UL [BTV09; KV10;
GST19], reducing the complexity of connectivity for general graphs [MP19; KT16; Hoz19].

The reason prior conditional results of [GW96; ARZ99] required strong circuit lower bounds
is precisely because they apply the generic probabilistic D2P transformation of Yao to the distin-
guisher TG(w) that checks if (G,w) has unique shortest paths.

5

Our results. Motivated by this observation, we unconditionally construct a deterministic logspace
D2P transformation for this particular distinguisher TG:

Theorem 1.8 (Informal, see Theorem 6.8). There is a logspace-computable D2P transformation for
the class of distinguishers {TG}G, where G is a directed graph and TG(w) = I [w induces USPs in G].

We leverage this transformation to significantly weaken the assumptions needed in previous
work [ARZ99] to deduce that non-deterministic bounded-space computation can be made unam-
biguous. Specifically, instead of strong circuit lower bounds, we show that lower bounds for uniform
and deterministic (or near-deterministic) algorithms suffice.

We show two results, one for a “scaled-up” parameter setting, and one for the logspace setting.
For context, recall that [ARZ99] deduced that NL = UL from hardness of SPACE[n] for general
non-uniform circuits of size 2εn (for some ε > 0).

Our first result deduces a scaled-up version of their conclusion from a lower bound for uniform
and deterministic procedures; specifically, from a lower bound for circuits that are printable by a
nondeterministic logspace algorithm, that moreover prints a circuit on only one guess sequence.4

Specifically:

Theorem 1.9 (Informal, see Theorem 6.4). Suppose there exists ε > 0 such that SPACE[n] is hard
for UL-uniform circuits of size 2εn. Then NSPACE[O(n)] = USPACE[O(n)].

We stress that the hypotheses in Theorem 1.9 (and Assumption 1.10) are considerably weaker
than hypotheses that are typically required for hardness-vs-randomness results. In particular,
the latter rely on lower bounds either for non-uniform circuits (as in, say, [NW94; IW97]) or for
probabilistic algorithms (as in, say, [CT21a; CTW23]).5

In fact, our technical result is stronger, and shows that the conclusion of Theorem 1.9 follows
from a weaker hypothesis; namely, from hardness of USPACE[n] against (deterministic, uniform)
TC0 circuits with low-space oracles (see Theorem 6.4).

For our second result, to deduce that NL = UL (i.e., a scaled-down conclusion as in [ARZ99]), we
will assume hardness of functions in NC1 for uniform algorithms that use only polylog(n) random
coins. Specifically:

Assumption 1.10 (hardness in NC1 for uniform near-deterministic algorithms). For every c ∈ N,
there exists C ∈ N and a family of functions {f : {0, 1}n → {0, 1}n}n∈N computable by logspace-
uniform NC1-circuits of size nC , such that there is no time nc algorithm using polylog(n) many
coins that on infinitely many x prints f(x) with probability at least 2/3.

Theorem 1.11. Suppose that Assumption 1.10 holds. Then NL = UL.

The technical contribution underlying the foregoing results is two-fold: Constructing the D2P
transformation stated in Theorem 1.8, and leveraging it via new “hardness-vs-randomness” tradeoffs
to obtain Theorems 1.9 and 1.11. The latter contribution further develops very recent work on
targeted pseudorandom generators with randomness-efficient reconstruction procedures [PRZ23;
DPT24]. In particular, in the proof of Theorem 1.9 we show that such reconstruction procedures
can be made to satisfy UL∩coUL uniformity, and in the proof Theorem 1.11, we construct a version
of the Chen-Tell targeted HSG [CT21a] that works with a hard function in NC1, is computable in
logspace, and has a derandomized reconstruction. See Section 2 for details.

4The uniformity requirement is significantly weaker than the standard requirement that the circuit is printable in
polynomial time (i.e., P-uniformity), let alone from models such as NTIME-uniformity (e.g., as in [SW13; CRT+20]).

5One recent exception is the work of Doron, Pyne, and Tell [DPT24] on derandomizing BPL, and another exception
is the study of pseudorandomness for deterministic observers by Goldreich and Wigderson [GW00]. We build on both
works, and in particular we extend the results of [DPT24] the specific setting of ROBPs to more general settings.
See Section 2 for further details.

6

1.3.2 Derandomization Requires Targeted Generators in CL and in L

Assuming that we can solve CAPP for a class C of circuits,6 can we also output a a distribution
D that fools a given C ∈ C? In particular, do BPP-search problems (a-la [Gol11b]) reduce to the
decision problem CAPP? This question was first posed by Goldreich [Gol11b; Gol11c], who phrased
it as the question of whether derandomization requires targeted PRGs.

Goldreich [Gol11c; Gol11b] proved such a result for prBPP (i.e., when the CAPP algorithm is
a general probabilistic algorithm), and posed the open question of obtaining analogous results for
classes such as AM and L. For recent progress see, e.g., [HU22; MS23a; MS23b; PR23].

We resolve this question for the catalytic logspace (CL) model of Buhrman et al. [BCK+14], and
weaken the assumptions required to resolve this question for L.

Derandomization in CL requires targeted PRGs. In the catalytic logspace model, we are
given O(log n) bits of standard workspace, and a catalytic tape w of length nc, which functions as
follows. The tape w is initialized to an arbitrary value, and we may edit it during the computation,
but must exactly reset the tape to the original configuration at the end. The work of [BCK+14]
proved that logspace-uniform TC1 is contained in CL, so in particular NL ⊆ CL. Since this
intriguing result there has been extensive work on the model [BKL+18; GJS+19; DGJ+12; CM20;
CM23; DPT24; Pyn24; CLM+24] (see the survey of Mertz [Mer23] for an excellent exposition).

Despite extensive recent interest, many basic structural questions remain open. In particular,
prior to this work it was not known whether solving BPP-search problems reduces to CAPP in CL.
As mentioned above, we resolve this question in the affirmative:

Theorem 1.12 (informal, see Theorem 5.4). Suppose that there is a CL-computable CAPP algo-
rithm for a CL-evaluable class of circuits C. Then:

1. There is a CL-computable D2P transformation for C circuits.

2. There is a CL algorithm that, given C ∈ C, outputs a distribution D that (1/3)-fools C.

Our proof proceeds in two steps: We first reduce the task of producing D to D2P in CL, and
then reduce D2P to CAPP in CL. The first and main step combines the “compress or random”
approach in catalytic computation (which tries to use the catalytic tape as a hard truth-table; see,
e.g., [DPT24] and [Mer23, Section 3.2.1]) with ideas from the proof of Theorem 1.5. The second
step shows that the reduction of D2P to CAPP from Theorem 1.5 can be implemented in CL.
Crucially, our proof relies on the fact that our reductions of D2P to CAPP are “instance-wise”, in
the sense that a CAPP algorithm for a fixed circuit C yields a deterministic D2P transformation
for C specifically. Details appear in Section 2.3.

In addition, combining the ideas in the proofs of Theorems 1.8 and 1.12 with the main result
of [BCK+14], we show that we can derandomize the path isolation lemma in CL (Theorem 6.13).
Note that this is the first CL algorithm for a natural problem that combines both main algorithmic
techniques for CL, namely the algebraic computation approach [BCK+14; CM23] and the compress-
or-random approach [Pyn24; DPT24].

Derandomization in L requires targeted PRGs, under weak assumptions. Finally, we
show that derandomization in logspace indeed implies targeted logspace PRGs, assuming lower
bounds against uniform algorithms that use only polylog(n) random coins:

6Recall that CAPP is the promise problem whose “yes” instances are circuits C such that Prr[C(r) = 1] ≥ 2/3
and whose “no” instances are circuits C such that Prr[C(r) = 1] ≤ 1/3. Also recall that CAPP is complete for prBPP
(Definition 3.5).

7

Theorem 1.13 (informal, see Theorem 5.7). Suppose that Assumption 1.10 holds. Let C be an
arbitrary circuit class that is evaluable in L, and suppose there is a logspace CAPP algorithm for C.
Then, there is a logspace algorithm that, given C ∈ C, outputs a distribution D that (1/3)-fools C.

The conditional statement in Theorem 1.13 is the first result indicating that the answer to
the open problem is affirmative (i.e., that logspace derandomization necessitates logspace targeted
PRGs) without relying on assumptions that are sufficiently strong to immediately yield (by them-
selves) logspace targeted PRGs. Further details appear in Sections 2.3 and 5.

1.4 Certified Derandomization and the Class LOSSY

We now turn our attention to a notion of derandomized reconstruction procedures. Specifically, we
focus on what was coined by Pyne, Raz, and Zhan [PRZ23] as certified derandomization: Given
a circuit C : {0, 1}n → {0, 1} and a truth-table f ∈ {0, 1}poly(n), either estimate the acceptance
probability of C to an additive error of 1/6 (i.e. solve CAPP for C), or construct a small circuit
for f . (Indeed, we think of such an algorithm as executing a derandomized version of the clas-
sical reconstruction procedure a-la [NW94]: When the algorithm is unable to use f to obtain a
pseudorandom distribution for C, it deterministically finds a small circuit for f .)

Context: Certified derandomization, derandomized D2P, and reconstruction proce-
dures. Certified derandomization is a natural notion in and of itself, which was constructed for
ROBPs in [PRZ23] and which can be constructed for more general classes (see next).

An additional motivation for studying certified derandomization arises from understanding re-
construction procedures in the “hardness vs randomness” paradigm. Classical reconstruction pro-
cedures (e.g., in [NW94; TSZS06; SU05; Uma03]) use D2P as a key technical step. However, it
is not clear if this approach (i.e., designing reconstruction procedures that go through D2P) is
necessary, or if there are approaches that avoid D2P altogether.7

To be more concrete, we know that certified derandomization deterministically reduces to con-
structing a D2P transformation: Either using the derandomized reconstruction procedure for the
Nisan-Widgerson PRG of [PRZ23], or using our equivalence between derandomizing D2P and
prBPP = prP (the latter trivially implies certified derandomization, as we can simply ignore the
truth-table f provided and solve CAPP). Nevertheless, the characterization of certified derandom-
ization stated below implies that reducing certified derandomization to D2P may be an overkill, as
the latter is equivalent to prBPP = prP (by Theorem 1.5) whereas the former is only equivalent to
prBPP = prZPP (see Theorem 1.15).

A general notion of certified derandomization, and prZPP = prBPP. The certified deran-
domization algorithm of [PRZ23] uses strings f that are truth-tables with high circuit complexity
(i.e., if f has high circuit complexity, then the algorithm estimates the acceptance probability
the given circuit). One can think of the set of truth-tables with high circuit complexity as a
dense property of strings (i.e., inspired by Razborov and Rudich [RR97]), where this property is in
coNP. It is not, however, clear why we should use this specific property for the purpose of certified
derandomization, rather than any other property in coNP.

Accordingly, we define a general notion of certified derandomization using an arbitrary dense
property P ∈ coNP: The certified derandomization algorithm is given C and a string τ , and is

7A closely related question, focusing on the hybrid argument, was studied by Fefferman et al. [FSU+13] motivated
by avoiding the 1/n advantage loss.

8

required to either solve CAPP for C (which it should be able to do whenever τ ∈ P), or provide a
witness w that τ /∈ P (see Definition 7.1).

We prove that certified derandomization in this more general sense is equivalent to prBPP =
prZPP; that is, prBPP = prZPP if and only if there exists a dense property P ∈ coNP and a
certified derandomization algorithm using P (see Theorem 7.4). As explained above, this result
yields a conceptual separation between certified derandomization and D2P.

Definition 1.14 (certified derandomization). For ℓ = ℓ(n) = 2o(n), let P = {Pn ⊆ {0, 1}ℓ}n∈N ∈
coNP such that P∩{0, 1}n ̸= ∅ for every n ∈ N. Let V be a coNP verifier of P. An algorithm A is
a certified derandomization algorithm using P (with respect to the verifier V) if for every linear-size
circuit C : {0, 1}n → {0, 1} and every τ ∈ {0, 1}ℓ,

• If τ ∈ P then A(C, τ) solves CAPP on C.

• If τ /∈ P then either A(C, τ) solves CAPP on C, or A(C, τ) prints w such that V (τ, w) = 0.

Theorem 1.15 (certified derandomization ⇐⇒ prBPP = prZPP; see Theorem 7.4). The follow-
ing statements are equivalent.

• prBPP = prZPP.

• There is a deterministic polynomial-time certified derandomization algorithm using a dense
property P = {Pn ⊆ {0, 1}ℓ}n∈N ∈ coNP, where ℓ = ℓ(n) = poly(n).

The proof of Theorem 1.15 is elementary, and it appears in Section 7.2 (where we show a more
general equivalence; see Theorem 7.4.

The class LOSSY. It turns out, however, that the more restricted notion of certified derandom-
ization with hard truth-tables (as in [PRZ23]) is interesting in and of itself. A recent work of Ko-
rten [Kor22] introduced a search problem called LossyCode, which admits a randomized polynomial-
time zero-error algorithm, and asked what is the set of problems reducible to LossyCode.

Problem 1.16 (LossyCode). Given a pair of circuits C : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n,
where m < n, find a string x ∈ {0, 1}n such that D(C(x)) ̸= x.

We define the subclass LOSSY ⊆ ZPP as the class of languages reducible to LossyCode in
deterministic polynomial time.8 This is an interesting class, with one motivation coming from proof
complexity: Loosely speaking, if a statement of the form “∀x ∃y φ(x, y)” (where φ is a quantifier-
free formula) can be proved in the bounded theory APC1 (see [Jeř04; Jeř07] for the definition and
related discussion), then the corresponding search problem can be solved in FLOSSY (i.e., in the
functional version of LOSSY; see Appendix D for more details).

We provide additional motivation for studying LOSSY, by showing that this class has an in-
teresting structural characterization, which relies on the notion of certified derandomization with
hard truth tables. Specifically, we prove the following:

Theorem 1.17 (informal, see Theorem 7.7). The following statements are equivalent.

(1) prBPP = prLOSSY.

(2) There is a deterministic polynomial-time certified derandomization algorithm using hard truth
tables.

9

prLOSSY prZPP prBPPprP

Certified derand (Theorem 7.4)

Certified derand with hard truth tables
(Theorem 7.7)

Deterministic D2P transformation (Theorem 4.1)

∃ PRG

Black-box derandomization of Yao’s transformation (Theorem C.2)

Figure 1: Characterizations of various types of derandomization of prBPP. Note that black-box
derandomization of Yao’s transformation refers to the problem of finding a suitable suffix z in
Lemma 1.3 that works for every (fixed-size) distributions and every (fixed-size) circuits (see Ap-
pendix C for more details); another notion for “non-black-box” derandomization of Yao’s transfor-
mation is also discussed in Appendix C.2.

In fact, we further extend Theorem 1.17, by showing that the two statements are also equiva-
lent to the existence of a deterministic polynomial-time certified derandomization algorithm using
any property defined by an efficient Range Avoidance problem.9 These equivalences significantly
strengthen results from [Kor22]; see Section 7.2 and Section 7.3 for further details.

For a visual illustration of the connections between the notions presented throughout the intro-
duction, see Figure 1. The illustration also mentions a notion of derandomization of Yao’s transfor-
mation (i.e., deterministically finding a good suffix z such that the conclusion of Lemma 1.3 holds),
which will be discussed in Appendix C.

2 Overview of Proofs

In Section 2.1 we describe the equivalence between D2P and derandomization (i.e., the proof of The-
orem 1.5). Our main technical contributions are described in Sections 2.2 and 2.3:

• In Section 2.2 we explain our construction of a deterministic logspace D2P algorithm for
unique shortest paths (i.e., Theorem 1.8) and how it allows deducing NL = UL and
NSPACE[n] = USPACE[n] from weaker assumptions (i.e., Theorems 1.9 and 1.11).

• In Section 2.3 we explain our reduction of targeted PRGs to CAPP in catalytic logspace
(i.e., Theorem 1.12) and the analogous conditional reduction in L (i.e., Theorem 1.13).

Finally, in Section 2.4 we describe the equivalences between certified derandomization and zero-
error derandomization.

8It turns out that the definition of LOSSY is robust with respect to the type of the reduction. Specifically, we
prove in Lemma 7.9 that any language that is Cook-type reducible to LossyCode (i.e. the reduction could call the
LossyCode oracle multiple times adaptively) is also Karp-type reducible to LossyCode (i.e. the reduction calls the
LossyCode oracle only once).

9That is, any property of strings that are outside the range of an efficiently computable function g : {0, 1}n →
{0, 1}m such that m > n (i.e. a string y ∈ {0, 1}m such that g−1(y) = ∅); see Section 7 for details. For more details
about the range avoidance problem, see [Kor21; RSW22; GLW22; GGN+23; CHL+23; ILW23; CHR24; Li24; CL24].

10

2.1 D2P is Equivalent to Derandomization

Our goal is to show that deterministic D2P implies prBPP = prP, and vice versa. At a high level,
we build on ideas from a sequence of works by Goldreich and Wigderson [GW00; Gol11c; Gol11b],
who examined what they called “deterministic observers”. We prove the equivalence by combining
their ideas with the “instance-wise” approach to derandomization (i.e., derandomization that uses
targeted PRGs instead of classical PRGs), following Goldreich [Gol11b] and Chen and Tell [CT21a].

2.1.1 D2P implies derandomization

Goldreich and Wigderson [GW00] constructed a distribution ensemble D = {Dn}n∈N that is un-
predictable by uniform deterministic Turing machines. In a gist, on input length n they consider
the first (say) n machines, and using a diagonalization-style approach, they build Dn bit-by-bit.

In each iteration the distribution D
(i)
n consists of i-bit strings, and they search a pseudorandom

sample space to find an extension of the strings in D
(i)
n such that none of the n machines can predict

the new distribution D
(i+1)
n .10

At a high level, if deterministic D2P is possible, then any efficient distinguisher yields a deter-
ministic predictor for Dn. Since Dn is unpredictable by such machines (by its construction), we
intuitively expect to deduce that Dn is also pseudorandom.

The only issue is that (in contrast to [GW00]) we are trying to obtain worst-case derandom-
ization. That is, in our setting the machine M that tries to distinguish Dn from uniform also has
access to a (worst-case) input x ∈ {0, 1}n. Hence, instead of trying to construct a distribution that
is unpredictable by such procedures, we simply adapt the approach to yield non-black-box deran-
domization. Specifically, given input x ∈ {0, 1}n, we build Dx that is unpredictable by any efficient
machine that also gets access to x (using the same diagonalization-style approach). Assuming that
deterministic D2P is possible, Dx is indistinguishable from uniform by efficient machines that get
access to x, and in particular by M(x, ·). Indeed, this construction is a targeted PRG, mapping x
to a multiset Dx that is pseudorandom for distinguishers of the form M(x, ·).11

This simple argument is versatile, and yields several interesting corollaries, for instance an
equivalence between D2P and superfast derandomization under OWFs. We present the technical
details as well as extensions and corollaries in Section 4.

2.1.2 Derandomization implies D2P

To discuss the other direction, recall that by Yao’s Lemma, for every circuit C : {0, 1}n → {0, 1}
and distribution Dn that C distinguishes from uniform, there is an index i ∈ [n] and σ ∈ {0, 1}2
such that

E
z

[
Pr

x←Dn

[xi = C(x<i ◦ σ1 ◦ z)⊕ σ2]

]
≥ 1/2 + 1/ poly(n). (2.1)

A natural strategy is to try and find z that approximately achieves this expectation. For exam-
ple, this is indeed the strategy undertaken in all uses of Yao’s transformation in the “hardness vs
randomness” paradigm (see, e.g., [NW94; STV01; CT21a; DPT24], for a collection of arguments

10They show that even a pairwise-independent distribution suffices for this purpose, while we apply stronger tools
to obtain a stronger equivalence, see Remark 4.3.

11The “missing observations” in [GW00] seems to be two-fold: First, clearly defining the notion of D2P and asking
about its implications; and secondly, considering non-black-box derandomization by targeted PRGs, which is a notion
that was introduced in a follow-up work [Gol11b] and extensively studied only recently (following [CT21a]).

11

that all rely on finding such a z). Unfortunately, we show in Theorem C.2 that explicitly construct-
ing a good family of these strings is equivalent to the explicit construction of hitting sets (and thus
circuit lower bounds), and hence we are unlikely to deduce such a result from prBPP = prP.

Intuitively, the key difficulty is that testing whether z maintains the advantage in Eq. (2.1) for
every distributionDn over {0, 1}n for which C is a distinguisher seems to require doubly exponential
time (since there can be doubly exponentially many such distributions). Thus, it is unclear how to
apply a CAPP algorithm to a polynomial-sized circuit to find such a z.

Our key observation is as follows. Instead of trying to use the CAPP algorithm to find a good
z that will be hard-wired into a predictor Pz, we will construct a predictor that uses the CAPP
algorithm to predict the next bit. This way, instead of considering all possible distributions over
inputs x<i to the predictor, we fix an input x<i that is explicitly given to the CAPP algorithm, and
the CAPP algorithm only needs to consider the uniform distribution over suffixes z to approximate
the LHS of Eq. (2.1) on this given prefix. (This approach is technically reminiscent of a proof
in [Gol11b, Appendix A], although the settings and notions are different.)

In more detail, fixing i ∈ [n] and σ ∈ {0, 1}, let us first construct a “non-Boolean predictor”
P̃i,σ. For simplicity of presentation, let us assume that σ = 00, and denote P̃i = P̃i,σ. Given
input x<i, the predictor estimates the value Ez[C(x<i ◦ z)], up to a polynomially small error.12 By
Eq. (2.1) and linearity of expectation, for some i, σ (again, assume σ = 0) we have

1/2 + 1/poly(n) ≤ E
x

[
1[xi = 1] · Pr

z
[C(x<i ◦ z) = 1] + 1[xi = 0] · Pr

z
[C(x<i ◦ z) = 0]

]
≈1/ poly(n) E

x

[
1[xi = 1] · P̃i(x<i) + 1[xi = 0] · (1− P̃i(x<i))

]
; (2.2)

in other words, P̃ computes a real value whose correlation with the event “xi = 1” is non-trivial.
This almost finishes the construction, since now we just need to convert P̃ into a Boolean

predictor. This can be done in a generic way: An elementary argument shows that for any real-
valued function P̃i with correlation as in Eq. (2.2) there is a threshold τ ∈ {i · ε}i=1,...,1/ε (where

ε = 1/poly(n)) such that the Boolean function Pi,τ (x<i) = 1[P̃i(x<i) ≤ τ] has correlation 1/2 +
1/poly(n) with the event “xi = 1′′ (i.e., Prx<i [Pi,τ (x<i) = xi] ≥ 1/2 + 1/ poly(n)).13

Thus, our D2P algorithm outputs the collection {Pi,σ,τ}. This collection is indeed of polynomial
size, and for every distribution Dn for which Eq. (2.1) holds (in particular, for every distribution
for which C is a distinguisher), the collection has a predictor for Dn.

Remark 2.1. Indeed, this direction is a-priori far less obvious than the first one. Note that the
argument is “instance-wise”: Solving CAPP for (prefixes of) a certain circuit C yields a deterministic
D2P transformation for C specifically. We will crucially use this property in Section 2.3.

2.2 D2P for Unique Shortest Paths, and Derandomizing the Path Isolation
Lemma

We now explain how to construct a specific deterministic D2P transformation and use it to de-
duce that NL = UL (or NSPACE[n] = USPACE[n]) from weak hardness assumptions (i.e., for
deterministic uniform algorithms).

Our argument has two parts. We first construct a deterministic logspace-computable D2P for
a distinguisher T = TG that decides whether a weight assignment induces unique shortest paths in

12That is, the predictor constructs the circuit D(z) = C(x<i ◦ z), and outputs the real value obtained by applying
the CAPP algorithm to D (with sufficiently small error 1/poly(n)).

13More generally, for any two random variables x ∈ [0, 1] and y ∈ [−1, 1] such that E[x · y] ≥ δ, there is τ ∈ [1/ε]
such that E[1x≤ε·τ · y] ≥ δ − ε (see Fact 4.8).

12

the graph G. The reason for focusing on this specific T is that finding such a weight assignment
suffices to deduce that UL = NL (see [RA00; GW96]). The second part of our argument “lifts”
this D2P to a proof that UL = NL, under weak assumptions.

A deterministic logspace D2P for unique shortest paths. Consider the function TG that
takes in a weight assignment w : E → [n10] and accepts if the weighted graph (G,w) has unique
shortest paths.14 Note that TG does not seem to be computable by an ROBP (since checking unique
shortest paths between every pair of vertices seemingly requires reading edge weights many times
over), and thus the previously known D2P transformation for ROBPs does not suffice.

In order to obtain our D2P transformation, we first make the distinguisher stricter. We place
a fixed ordering e1, . . . , em on the edges of G = (V,E), define Gi = (V,Ei = {e1, . . . , ei}), and let
wi be the restriction of w : E → [n10] to Ei. Then we define:

TG(w) =
∧

i∈[m]

I [wi induces USPs in Gi] ,

i.e. every prefix of the weight function w likewise induces unique shortest paths. A random weight
assignment still satisfies this stricter condition with high probability (see Lemma 6.9).

Recall that in Section 2.1.2 we showed a construction of D2P that uses a CAPP algorithm;
this can be viewed as a reduction of D2P to CAPP. As mentioned in Remark 2.1, this reduction is
instance-wise, in the sense that solving CAPP for a specific circuit yields D2P for that circuit. We
now use the same instance-wise reduction of D2P to CAPP, while performing the hybrid argument
of Yao (that yields Eq. (2.1)) in the same order as TG reads the edge weights. We deduce that
constructing a D2P transform for TG reduces to solving the following problem:

Given an arbitrary partial assignment wi : Ei → [n10], estimate E
z
[TG(wi ◦ z)].

The key point is that with the stricter distinguisher and the choice of hybrid order, we obtain a
polarization effect. In particular, one of the following holds:

• The partial assignment has already failed to induce USPs in a subgraph Gj for j ≤ i. In this
case, TG(wi ◦ z) = 0 for every z.

• The partial assignment has not already failed to induce USPs in a subgraph. In this case, we
show that almost all suffixes z will successfully induce USPs, no matter the current prefix.

Due to this polarizing effect, we can estimate ρ = Ez[T (wi◦z)] by determining if wi has already failed
to induce USPs (in which case ρ = 0) or not (in which case ρ ≈ 1). Allender and Reinhardt [RA00]
constructed a UL ∩ coUL algorithm for this task (i.e., testing if a fixed assignment induces USPs),
and thus we obtain a deterministic logspace D2P transformation where the predictors it outputs
are UL ∩ coUL algorithms.

From D2P to disambiguation of non-deterministic logspace. Using the D2P above, we
now deduce that NL = UL (and NSPACE[n] = USPACE[n]) from hardness for uniform algorithms
that are either deterministic or use only polylog(n) coins. The idea, following Pyne, Raz, and
Zhan [PRZ23], is to use a (targeted) pseudorandom generator with a near-deterministic recon-
struction procedure conditioned on a deterministic D2P for the relevant distinguisher.

14A simple argument shows that for every graph G, E[TG(U)] ≥ 1− n−8.

13

In our case, we let the distinguisher be the test TG that accepts if the weight set induces unique
shortest paths. Given our deterministic D2P for this distinguisher, such a generator transforms
hardness for near-deterministic procedures into a set of pseudorandom strings for the distinguisher
(which, in our setting, will include a weight assignment that induces unique shortest paths on the
input graph). The original generator of [PRZ23] was based on circuit lower bounds, and later on
Doron, Pyne, and Tell [DPT24] (building on the framework of [CT21a]) constructed a targeted
PRG based on lower bounds for deterministic uniform procedures.

Using these works as our starting point, we will need to construct yet another version of the
targeted PRG of Chen and Tell [CT21a] (following [CRT22; CTW23; CLO+23; DPT24]).15 We
build a logspace-computable targeted PRG that is based on a hard function in logspace-uniform
NC1, where the hardness is for uniform algorithms that use only polylogarithmically many random
coins (and that have access to a deterministic D2P for the relevant distinguisher); for the full
statement see Theorem 5.6. Since the technical details are quite involved (and are not the conceptual
focus of the current paper), let us focus mostly on two key differences, postponing the full details
to Appendix E.

• As in all previous works, our targeted PRG encodes the computation of the hard function as
a sequence of polynomials. Previous works did so relying either on a hard function in TC0; or
on a preprocessing step that incurs a polylog(n) depth blowup (using an idea from [Gol18]),
which would prohibit evaluating the generator in logspace. To resolve this, we preprocess the
circuit in a more careful way, which still incurs a polylog(n) depth blowup but nevertheless
allows us to evaluate the resulting polynomials in logspace (see Claim E.3).

• The conclusion in [DPT24] was average-case derandomization, whereas we are interested in
worst-case derandomization. The reason for their weaker conclusion is that their reconstruc-
tion algorithm was a logspace-uniform circuit, where the logspace machine constructing the
circuit had higher space complexity than that of the hard function; this prohibits making the
assumptions necessary to conclude worst-case derandomization.16 To resolve this, we replace
parts of their argument as follows. Instead of modeling the reconstruction as a logspace-
uniform circuit, we model it as a probabilistic machine; and then, following [PRZ23], we
show how to significantly reduce the randomness complexity of this machine, relying on a
combination of derandomized D2P transformation with standard sampler-based techniques.

2.3 Derandomization Requires Targeted PRGs in Catalytic Logspace and in
Logspace

Next, we focus on the question of whether solving BPP-search problems in a certain class (specifi-
cally, in CL or in L) reduces to solving the decision problem CAPP in that class. Equivalently, we ask
whether derandomization in the class requires targeted PRGs. A straightforward search-to-decision
reduction in [Gol11b] establishes this for P, but it is highly space-inefficient, and thus unsuitable

15Each previous version has shortcomings making it unsuitable for the current purpose. Specifically, the targeted
PRGs of [CT21a; CLO+23] are not evaluable in logspace (even if the hard function is computable in constant depth),
and their reconstruction is probabilistic. The targeted PRG in [CTW23] is logspace-computable, but it is based on
hardness in TC0, and its reconstruction is still probabilistic. The targeted PRG in [DPT24] is also based on hardness
in TC0 rather than in NC1, and does not yield worst-case derandomization (as we explain below).

16Specifically, to deduce worst-case derandomization in their framework (following [CT21a]), we need to assume
hardness on almost all inputs. If the hard function f is computable in space c · log(n), and the machine in the
reconstruction uses C · log(n) space for some C > c, then the machine can hard-wire values of f (e.g., f(1n)) into the
circuit that it prints.

14

for CL and for L, where its existence is an open problem [PR23] (the reduction from [Gol11b] also
fails for AM, due to other reasons; see [Gol11b; MS23a; MS23b]).

For concreteness, throughout this section let us assume that all circuits are in some fixed circuit
class C that can be evaluated in logspace (e.g., C = NC1).

Catalytic logspace. Recall the setting: We are given a circuit C, we can solve CAPP for C, and
we want to construct a distribution D that is pseudorandom for C.17

Our result combines (a modification of) the result of [DPT24] reducing producing a targeted
PRG for C to constructing a D2P transformation for C, with our instance-wise reduction from
constructing a D2P transformation to solving CAPP. In more detail, we first modify the reduction
of [DPT24], which uses the “compress or random” paradigm. They think of the catalytic tape w as
a hard truth table, and instantiate a version of the Nisan-Wigderson generator with this truth table.
Letting the generator be NWw (and note that it has seed length O(log n)), either the generator is
pseudorandom for C (in which case we can let D be its output set, and halt without modifying the
tape), or the D2P transformation can be used to compress the tapew, freeing up polynomially many
bits on the tape. This enables us to use our (space inefficient) reduction from D2P to producing a
targeted PRG (whereas their result used a time-efficient brute force derandomization).

The only missing piece is a D2P transformation in CL (assuming a CAPP algorithm in CL).
Indeed, to obtain such an algorithm, we show that our reduction from D2P to CAPP can be
implemented in catalytic logspace.

Remark 2.2. By combining this search-to-decision reduction with the D2P transformation for the
path isolation lemma (and the main result of [BCK+14], which implies that the algorithm of [RA00]
can be implemented in CL), we unconditionally obtain a CL algorithm that, given a graph G,
outputs a weight assignment w such that (G,w) has unique shortest paths. This constitutes the
first result for CL that is proved by combining the algebraic computation perspective (to evaluate
the D2P transformation) with the compress-or-random perspective (to reduce search to D2P).

Logspace machines. Finally, let us briefly explain how to obtain our conditional result that
derandomization of a class C in L necessitates targeted PRGs for C in L (again, we suggest thinking
of C = NC1 for concreteness). The main technical tool is the new version of the targeted PRG
of [CT21a], which was described in Section 2.2.

Recall that our hardness assumption is a function f : {0, 1}n → {0, 1}n computable by nC size
NC1 circuits, that is hard for nc time algorithms that use only polylog(n) many random coins, for
c < C. Assuming that we have a CAPP algorithm for C-circuits in L, we use the reduction of D2P
to CAPP (from Section 2.1) to obtain a deterministic D2P for C-circuits in L. The key observation
is that this reduction is computable in logspace, and thus the D2P for C is a deterministic logspace
algorithm (and hence is computable time nc for some c).18 Using this D2P, we instantiate our
targeted PRG with this hard function. Supposing the generator is not pseudorandom for C, we
can obtain a predictor for the generator using our deterministic logspace D2P transformation, and
then compute the function quickly using only polylog(n) random coins and nc time, contradicting
the assumption (see Theorem 5.7 for further details).

17A mistaken intuition is that since BPL ⊆ CL, we do not need a derandomization hypothesis. However, crucially,
the derandomization hypothesis only applies to decision problems. Moreover, BPL ⊆ CL only means that CAPP for
ROBPs is in CL, and here we are concerned with richer circuit classes.

18Similarly to [DPT24], our targeted PRG construction uses D2P both when computing the generator and when
computing the reconstruction (see the proof of Theorem 5.6 for details).

15

2.4 Certified Derandomization Using Hard Truth-Tables, and the Class LOSSY

Recall that certified derandomization using a property P refers to a deterministic algorithm that
gets a linear-size circuit C : {0, 1}n → {0, 1} and a string τ ∈ {0, 1}ℓ(n), and either estimates the
acceptance probability of C or provides a witness that τ /∈ P (see Definition 7.1). In Section 7 we
prove that such certified derandomization is equivalent to prBPP = prZPP (see Theorem 1.15 and
Theorem 7.4 for the formal statement).

We now focus on Theorem 1.17 that shows an equivalence between a restricted type of certified
derandomization – namely, when P is the property of truth-tables that do not have small circuits
(e.g., truth-tables of length 2ℓ without circuits of size 2.01·ℓ) – and a simulation of prBPP in the
class LOSSY of problems reducible to LossyCode. Recall that in LossyCode (see Problem 1.16),
we are given a pair of circuits C : {0, 1}n → {0, 1}m (“compression”) and D : {0, 1}m → {0, 1}n
(“decompression”), where m < n, and we want to find a string x ∈ {0, 1}n such that D(C(x)) ̸= x.

We first explain the direction (⇒), which is easier. If there is a certified derandomization
algorithm A using hard truth tables, one can reduce an instance C : {0, 1}n → {0, 1} of CAPP to
the following instance of LossyCode: The compression circuit C ′ takes a candidate hard truth table
τ , simulates the certified derandomization algorithm A(C, τ), and outputs a small circuit for τ if
A(C, τ) fails to estimate E[C(Un)]; the decompression circuit D′ takes the description of a circuit
and outputs its truth table. By definition, any solution τ to the LossyCode instance (C ′, D′) is a
truth-table such that A correctly estimates E[C(Un)].

19

The other direction relies on an idea from [Kor21], which was implicit in earlier results in
bounded arithmetic [Tha02; Jeř04; Jeř07] and cryptography [GGM86]. Korten [Kor21] proved that
LossyCode can be efficiently reduced to the problem of finding truth tables of functions that are not
computable by small circuits (for an explanation, see [ILW23, Appendix C]). The key observation
leading to our results is that the reduction of LossyCode to finding hard truth-table can be thought
of as a certified reduction: It either solves the LossyCode instances, or produces a certificate that
the truth-table is not hard (in the form of a small circuit).20

Assume that prBPP = prLOSSY. Then, there is a polynomial-time algorithm M for CAPP
with a LossyCode oracle. Our certified derandomization algorithm works as follows: Given a circuit
C and a supposedly hard truth table τ , it simulates the algorithm M(x), and attempts to answer
the LossyCode oracle calls using the truth table τ and the certified reduction from LossyCode to
finding hard truth tables. The certified reduction either solves the LossyCode oracle calls, in which
case we can keep simulating M(x), or prints a small circuit for the truth table τ . Therefore, our
algorithm either prints a small circuit for τ , or successfully simulates M(x); in the latter case, it
will solve CAPP(C) by the correctness of M(x).

3 Preliminaries

Throughout the paper we fix a machine model (e.g., the RAM model), except for places where it
is explicitly mentioned otherwise (i.e., except for the models of logspace machines and catalytic
logspace machines). We mention this point because in several places we are concerned with fine-
grained time bounds. For simplicity, we assume throughout the paper that parameters defining
algorithms are time constructive.

19Indeed, this implication does not require that that A will use hard truth-tables, and a more general notion of a
“range avoidance” property suffices; see Theorem 7.7 for details.

20This was also observed (although phrased in a different context) in the literature of bounded arithmetic, see, e.g.,
[Tha02, Lemma 3.7].

16

3.1 Standard Notation

Distributions. Throughout the paper, we will usually denote distributions by boldface. In par-
ticular, we use Un to denote the uniform distribution over {0, 1}n, where n may be omitted if it is
implicit in the context. Generally, we let US be the uniform distribution over the set S.

We will usually think of distributions as being uniform over a multiset. Accordingly, we may
abuse the notation to identify a multiset and the uniform distribution over the multiset. (For
instance, we may say “given a distribution D to an algorithm” meaning that it is given a multiset
and we are referring to the uniform distribution over the multiset.) Similarly, we define the size of
a distribution as the size of the corresponding multiset.

Predictors and prefixes. For x ∈ {0, 1}n, we define x<i ≜ x1,...,i−1, x≤i ≜ x1,...,i, x>i ≜ xi+1,...,n,
and x≥i ≜ xi,...,n. We write P : {0, 1}≤n → {0, 1} to denote a class of functions where for every
P ∈ P, we have P : {0, 1}i → {0, 1} for i ≤ n.

Definition 3.1 (correlation). For vectors x, y ∈ {0, 1}n, we define the relative correlation between
x and y as

Cor(x, y) ≜
1

2n

n∑
i=1

(−1)xi⊕yi ∈
(
−1

2
,
1

2

)
.

Note that

Cor(x, y) =
1

2

(
Pr

i←Un

[xi = yi]− Pr
i←Un

[xi ̸= yi]

)
= Pr

i←Un

[xi = yi]−
1

2
.

Definition 3.2 (prediction advantage). For a distribution D over {0, 1}n and a predictor P :
{0, 1}i−1 → {0, 1} for the i-th bit of D, where i ≤ n, we define its advantage as

advD(P) ≜ Pr
x←D

[P (x<i) = xi]−
1

2
.

Fact 3.3. Let D = {x1, x2, . . . , xm} be a multiset over {0, 1}n. Fix i ∈ [n], and let vi ∈ {0, 1}m be
defined as vij ≜ xji , and pi ∈ {0, 1}m be defined as pij ≜ P (xj<i). Then advD(P) = Cor(vi, pi).

Definition 3.4 (predictor). We say that P is a α-predictor for D if advD(P) ≥ α.

3.2 Time bounds, Circuit classes, and Notions in Pseudorandomness

Throughout the paper, we assume that all time bounds are time constructive, and all space bounds
are space constructive.

Promise problems. A promise problem Π is defined by a pair of disjoint sets Π = (ΠYES,ΠNO),
where ΠYES ⊆ {0, 1}∗ is the set of YES-instances and ΠNO ⊆ {0, 1}∗ is the set of NO-instances. A
string is said to be an instance in the promise (of Π) if it is in ΠYES ∪ ΠNO. An algorithm is said
to decide Π if it accepts every YES-instance and rejects every NO-instance.

Circuit classes. For a circuit C (from some circuit family C), the size of C, denoted size(C), is
defined as the number of gates in C.

17

We say that a circuit class C is typical if it can be evaluated in polynomial time, and it is closed
under negation, Boolean AND, and variable projection. That is, for all C circuits C(x), D(x) of
size s and every b ∈ {0, 1}, there are C circuits of size s computing

¬C(x) C(x1, . . . , xi−1, xi ⊕ b, xi+1, . . . , xn) C(x1, . . . , xi−1, b, xi+1, . . . , xn),

and a circuit of size at most poly(s) computing C(x) ∧ D(x). Moreover, these circuits can be
generated in polynomial time given the description of C (and D).

For a circuit class C, we use Cn to denote the set of circuits with n input gates.
Let C and C′ be two circuit classes, C ◦ C′ is a circuit class consisting of circuits with a top C

circuit whose input gates are connected to C′ circuits.

Distinguishers and hitting-sets. For a distribution D over {0, 1}n and a circuit C : {0, 1}n →
{0, 1}, we say that D ε-fools C if and only if |E[C(D)]− E[C(Un)]| ≤ ε.

For a class of circuits C, we say that a family of subsets {Hn ⊆ {0, 1}n}n∈N is a ε-hitting set
for C if for every C ∈ C on n inputs with E[C(U)] ≥ ε, there is y ∈ Hn such that C(y) = 1. We
say that a family of sets {Sn ⊆ {0, 1}n}n∈N is explicit if there is a deterministic poly(|Sn|) time
algorithm that on input 1n outputs Sn. (We will typically consider explicit families of hitting-sets.)

Definition 3.5. We define the CAPP problem as the promise problem where ΠYES (resp. ΠNO) is
the set of linear-size circuits C : {0, 1}∗ → {0, 1} with E[C(Un)] ≥ 2/3 (resp. E[C(Un)] ≤ 1/3).

Note that CAPP is known to be prBPP-hard, i.e., every problem in prBPP can be (determinis-
tically) polynomial-time reduced to CAPP; in particular, prBPP = prP if and only if CAPP ∈ prP
(see [Gol08, Exercise 6.14]). We further introduce the prefix-CAPP problem, which is a special
case of CAPP that appears as an intermediate problem in our proofs (see Section 4 and Section 5).

Definition 3.6. We say a machine E is an ε-prefix-CAPP (PCAPP) algorithm for C : {0, 1}n →
{0, 1} if for every x ∈ {0, 1}≤n we have∣∣∣E(C, x)− E

r
[C(x ◦ r)]

∣∣∣ ≤ ε.

Observe that if a circuit class is closed under restrictions, PCAPP reduces to CAPP.

3.3 D2P Transformations and Yao’s Lemma

We formally define D2P transformations, both for fixed and arbitrary size.

Definition 3.7. For a circuit C : {0, 1}n → {0, 1}, we say a collection of circuits P : {0, 1}<n →
{0, 1} is an (m,α, δ)-distinguish to predict (D2P) transformation for C if the following holds. For
every distribution D of size at most m that does not δ-fool C, there is P ∈ P such that P is an
α-predictor for D. We will also refer to this notion as a δ-distinguish to α-predict transformation
against m-size distributions.

When m = ∞ (i.e., if this is an (m,α, δ)-D2P for C for every m), we may implicitly drop the
size parameter; and we may also drop δ if δ = 1/3.

We recall the statement of Yao’s lemma that we will actually use:

18

Lemma 3.8 ([Yao82]). Let C : {0, 1}n → {0, 1} be an arbitrary function and D be an arbitrary
distribution that does not ε-fool C. Then there is i ∈ [n] and σ ∈ {0, 1}2 such that, letting Pz,σ,i be
defined as Pz,σ,i(x<i) = C(x<i ◦ σ1 ◦ z)⊕ σ2, we have

E
z←Un−i

[advD(Pz,σ,i)] ≥
ε

n
.

Moreover (by the reverse Markov’s inequality), on at least a 2ε/(3n− ε) fraction of z ∈ {0, 1}n−i,
we have advD(Pz,σ,i) ≥ ε/3n.

3.4 Concentration Bounds

We recall the following two standard concentration bounds.

Theorem 3.9 (Chernoff bound, see [Vad12] Theorem 2.21). Let X1, . . . , Xn be independent random
variables taking values in {0, 1}. Let X ≜ X1+ · · ·+Xn and µ ≜ E[X]. For any δ > 0, Pr[|X−µ| ≥
δµ] ≤ 2 exp(−δ2µ/4).

Theorem 3.10 (Hoeffding’s inequality [Hoe63]). Let X1, . . . , Xn be independent random variables
such that Xi ∈ [ai, bi], where ai, bi ∈ R for every i ∈ [n]. Let X ≜ X1 + · · · +Xn and µ ≜ E[X].
Then for t ≥ 0:

Pr [|X − µ| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

4 Distinguish to Predict is Equivalent to Derandomization

We will prove Theorem 1.5 that distinguish-to-predict transforms and derandomization of prBPP
are equivalent. We formally state this result (recall that δ = 1/3 is dropped for D2P by default):

Theorem 4.1. The following are equivalent:

(1) prBPP = prP.

(2) There is α = n−Ω(1) and a deterministic poly(n)-time (1/3)-distinguish to α-predict transfor-
mation against m-size distributions for general circuits, where m ≥ n/α2.

(3) There is a deterministic poly(n)-time (1/3)-distinguish to (1/10n)-predict transformation for
general circuits.

In addition to the informal statement in the introduction (see Theorem 1.5), Theorem 4.1
further shows that a deterministic D2P transformation that only works for distributions of fixed
size (i.e. (3)) suffices to imply prBPP = prP. Note that (3) ⇒ (2) is trivial, so it suffices to show
that (2) ⇒ (1) and (1) ⇒ (3).

The equivalence of Theorem 4.1 is not completely general (e.g., it does not scale down to
the setting of logspace algorithms or CL, as mentioned after Theorem 1.1221), but it nevertheless
applies to many weak circuit classes. For example, we show that even constructing non-trivial
algorithms for D2P (i.e., just barely improving on the brute-force algorithm) of classes of constant-
depth circuits implies non-trivial CAPP algorithms (and lower bounds) for these circuit classes
(see Appendix B.2).

Furthermore, as mentioned in Section 2.1, D2P algorithms for a fixed circuit imply a polynomial-
time derandomization of that specific circuit. (We crucially use this “instance-wise” connection
when proving the results in Section 5; see that section for details.)

21This is because the derandomization algorithm that we obtain from D2P is space-inefficient.

19

4.1 Distinguish to Predict Implies Derandomization

Our derandomization algorithm is instance-wise, in that it is given an arbitrary circuit C and a
(valid) D2P transformation for C, and will succeed for the specific circuit C.

Lemma 4.2. There is a deterministic algorithm D that, given a δ-distinguish to α-predict trans-
formation P = (P1, . . . , Pt) against m-size distributions for C : {0, 1}n → {0, 1}, where m ≥ n/α2

and t ≤ 2n/5, works as follows.

• D produces a distribution D of size n/α2 such that for every i ∈ [t], advD(Pi) < α. In
particular, by the security of the D2P transformation we have that D δ-fools C.

• D runs in time Õ(Sn/α2) + poly(tn/α), where S =
∑

i size(Pi).

Our proof follows the approach of Goldreich and Wigderson [GW00], where we iteratively
construct D by extending strings, and at each step we choose the next one-bit suffix to ensure no
predictor obtains good correlation. As in [GW00], we reduce finding a good suffix to constructing
a vector with a low correlation with t fixed vectors. As the dimension of the vector is large enough,
a random vector achieves this whp, so it suffices to derandomize this process.

Remark 4.3. Goldreich and Wigderson [GW00] derandomize finding such a vector using a pairwise
independent sample space. Diagonalizing against m predictors in this fashion results in distribution
of size O(m2), which suffices to prove (3) ⇒ (1) in Theorem 4.1. To prove a stronger implication
(2)⇒ (1), i.e., a collection of m predictors secure against distributions of size mε ≪ m still implies
derandomization, we need to use a different approach via a result of Sivkumar [Siv02] that takes
the advantage of an explicit access to the predictors.

We recall the result of Sivkumar [Siv02], which allows fooling a set of read-once branching
programs that are explicitly given.

Theorem 4.4 ([Siv02]). There is a polynomial time algorithm that, given t read-once branching
programs B1, . . . , Bt : {0, 1}m → {0, 1} where E[Bi(Um)] ≥ 1 − 1/t2 for every i ∈ [t], outputs
z ∈ {0, 1}m such that Bi(z) = 1 for every i ∈ [t].

We show that producing such a vector can itself be reduced to this problem.

Lemma 4.5. There is a deterministic polynomial time algorithm that, given α > 0 and (v1, . . . , vt) ∈
{0, 1}m where log(t) ≤ mα2/5, outputs z ∈ {0, 1}m such that for every i ∈ [t] it holds that
Cor(z, vi) ∈ (−α, α).

Proof. For every i ∈ [t], let Bi : {0, 1}m → {0, 1} be defined as Bi(z) = I [Cor(vi, z) ∈ (−α, α)]. Ob-
serve that Bi can be computed by a read-once branching program of width poly(m). By Hoeffding’s
inequality (see theorem 3.10), we can see that

E[Bi(Um)] = Pr
z←Um

[I [Cor(vi, z) ∈ (−α, α)] = 1]

≥ 1− 2 exp(−2mα2) ≥ 1− 1/t2.

Then we can apply Theorem 4.4 and obtain a mutually satisfying vector z ∈ {0, 1}m. The running
time is poly(tm) as claimed.

We can then prove the result:

20

Proof of Lemma 4.2. Without loss of generality let m = n/α2 and set m to be the target size of
D (and note that the D2P transformation is secure against distributions of this size by definition).
We construct D bit-by-bit, iterating i = 1, . . . , n. In stage i, let

Di = (xi1, . . . , x
i
m), where xij ∈ {0, 1}i−1

(where D1 is simply m copies of the empty string). Next let (Q1, . . . , Qr) = P i be the subset of
predictors in P that read the first i − 1 bits and attempt to predict the i-th bit (and note that
r ≤ t), and let (v1, . . . , vr) be the predictions made by each predictor on the current distribution,
i.e.

(vl)j = Ql(x
i
j). (1)

We call the algorithm of Lemma 4.5 with (v1, . . . , vr) and with the parameter α. Observe that
we have log(r) ≤ log(t) ≤ m/5α2 by assumption on the size of t and the D2P parameter m, so
we satisfy the preconditions. Thus we obtain in time poly(tm) a vector z ∈ {0, 1}m. Then letting
Di+1 be the distribution

Di+1 = (xi1 ◦ z1, . . . , xim ◦ zm).

Observe that by the property of z, we have for every j ∈ [r],

(−α, α) ∋ Cor(z, vj) = advDi+1(Ql), (Fact 3.3)

i.e. every P ∈ P i does not predict Di+1 with advantage α. Since fixing future bits does not
change the advantage of previous predictors, Di+1 remains unpredictable to Pj for j ≤ i, and so
by induction after n steps we are done.

It remains to verify the time bound. To construct the vectors vl defined in (1), we need to
run each predictor P1, . . . , Pt exactly m times, which takes time Õ(Sn/α2). The algorithm of
Lemma 4.5 runs in time poly(tm) = poly(tn/α) and is called for n times. The overall running time
is then bounded as claimed.

4.2 Derandomization Implies Distinguish to Predict

We now state the lemma showing that D2P transformation is implied by derandomization. Recall
that δ-PCAPP is the problem where we are given input C : {0, 1}n → {0, 1} and x ∈ {0, 1}k, and
we want to solve CAPP on the circuit C with the first k bits fixed to be x (see Definition 3.6). Note
that δ-PCAPP reduces to CAPP for any circuit class close under restrictions.

Lemma 4.6 (derandomization implies D2P). Fix δ > 0 and an arbitrary circuit C : {0, 1}n →
{0, 1} and function E that is a (δ/3n)-PCAPP algorithm for C. Let α = δ/3n and A = ⌈1/α⌉.
Then the following is a δ-distinguish to α-predict transformation for C:

P def
= {Pτ,σ,i : i ∈ [n], σ ∈ {0, 1}2, τ ∈ {0, . . . , A}}

where
Pτ,σ,i(x<i) = I

[τ
A
≤ E(C, x<i ◦ σ1)

]
⊕ σ2.

Note that the number of predictors is at most n · 4 · (3n/δ + 1) = O(n2/δ).

Proof. In words, Pτ,σ,i uses the prefix-CAPP algorithm to estimate px<i◦σ1 = Er[C(x<i ◦ σ1 ◦ r)],
checks if this value is greater than the threshold τ/A, and returns ¬σ2 or σ2 accordingly.

21

Security of the transformation. Next, we claim that P = {Pτ,σ,i} is a valid δ-distinguish to
α-predict transformation. To show this, fix a distribution D over {0, 1}n (of arbitrary size) such
that

|E[C(D)]− E[C(Un)]| > δ.

By Lemma 3.8, there exist i ∈ [n] and σ ∈ {0, 1}2 such that the following holds:

E
z←Un−i

[advD(Pz,σ,i)] >
δ

n
.

(recall that Pz,σ,i is defined as Pz,σ,i(x) = C(x<i ◦ σ1 ◦ z)⊕ σ2). For the remainder of the proof, fix
this choice of i and σ.

Next, we claim that the expected advantage of Pτ,σ,i over τ is approximately the same as the
expected advantage of the randomzied Yao predictor with this same i and σ. Formally:

Claim 4.7. We have that∣∣∣∣ E
z←Un−i

[advD(Pz,σ,i)]− E
τ←U{0..A}

[advD(Pτ,σ,i)]

∣∣∣∣ ≤ 2δ

3n
.

Intuitively, using a random suffix to approximate the expectation is equivalent to computing
the expectation over a random suffix, then randomly rounding. As expectation is linear, such a
rounding can be coupled for all prefixes.

Proof of Claim 4.7. Notice that

E
z←Un−i

[advD(Pz,σ,i)] = E
z

[
E

x←D
[I [C(x<i ◦ σ1 ◦ z)⊕ σ2 = xi]]−

1

2

]
= E

x←D

[
E
z
[I [C(x<i ◦ σ1 ◦ z)⊕ σ2 = xi]]

]
− 1

2

= E
x←D

[
E
z
[C(x<i ◦ σ1 ◦ z)] · I [σ2 ̸= xi] + (1− E

z
[C(x<i ◦ σ1 ◦ z)])I [σ2 = xi]

]
− 1

2

= E
x←D

[
E
z
[C(x<i ◦ σ1 ◦ z)] · ax + bx

]
− 1

2

where
ax = (−1)I[σ2=xi] ∈ {±1}, bx = I [σ2 = xi] ∈ {0, 1}

are constants that depend on x and σ2. We then compute the expected advantage of the second
distribution.

E
τ
[advD(Pτ,σ,i)] = E

τ

[
E

x←D

[
I
[
I
[τ
A
≤ E(C, x<i ◦ σ1)

]
⊕ σ2 = xi

]
− 1

2

]]
= E

x←D

[
E
τ

[
I
[τ
A
≤ E(C, x<i ◦ σ1)

]]
· ax + bx

]
− 1

2

Finally, note that for every x ∈ {0, 1}n, we have that∣∣∣E
z
[C(x<i ◦ σ1 ◦ z)]− E

τ

[
I
[τ
A
≤ E(C, x<i ◦ σ1)

]]∣∣∣
≤
∣∣∣E
z
[C(x<i ◦ σ1 ◦ z)]− E(C, x<i ◦ σ1)

∣∣∣+ ∣∣∣E(C, x<i ◦ σ1)− E
τ

[
I
[τ
A
≤ E(C, x<i ◦ σ1)

]]∣∣∣
≤
∣∣∣E
z
[C(x<i ◦ σ1 ◦ z)]− E(C, x<i ◦ σ1)]

∣∣∣+ 1

A
(discretization precision of τ)

≤ 2

A

22

where the last inequality holds from the guarantee that E is a (1/A)-PCAPP algorithm. Thus,∣∣∣E
z
[advD(Pz,σ,i)]− E

τ
[advD(Pτ,σ,i)]

∣∣∣
=

∣∣∣∣ E
x←D

[
E
z
[C(x<i ◦ σ1 ◦ z)] · ax − E

τ

[
I
[τ
A
≤ E(C, x<i ◦ σ1)

]]
· ax
]∣∣∣∣

≤ max
x∈D

{
|ax| ·

∣∣∣E
z
[C(x<i ◦ σ1 ◦ z)]− E

τ

[
I
[τ
A
≤ E(C, x<i ◦ σ1)

]]∣∣∣}
≤ 2

A
=

2δ

3n
.

Therefore, we have that Eτ [advD(Pτ,σ,i)] ≥ δ/n − 2/A ≥ α. As at least one element in a
distribution achieves its expectation, we have that there exists τ such that Pτ,σ,i predicts D with
advantage α, i.e. P is a valid D2P transformation for C.

The reader might have noticed that the structure of the proof above is not identical to the one
outlined in Section 2.1. However, both proofs are essentially the same technically. For completeness,
we now include the only missing claim from the description that was presented in Section 2.1:

Fact 4.8. Let x and y be random variables taking values in [0, 1] and [−1, 1], respectively, such
that E[x · y] ≥ δ. Then, there exists τ ∈ [1/ε] such that E[1x≤ε·τ · y] ≥ δ − ε.

Proof. Let ℓ1 = 0 and h1 = ε and I1 = [ℓ1, h1]. For every τ ∈ {2, ..., 1/ε}, let ℓτ = (τ − 1) · ε, let
hτ = τ · ε, and let Iτ = (ℓτ , hτ]. Then, since E[x · y] ≥ δ, we have that

δ − ε ≥
∑

τ∈[1/ε]

E[1x∈Iτ · hτ · y]

= E
τ∈[1/ε]

[τ · E[1x∈Iτ · y]]

= E
τ∈[1/ε]

[E[1x≤hτ · y]] ,

and hence there exists τ ∈ [1/ε] such that E[1x≤hτ · y] ≥ δ − ε.

4.3 Putting it all Together

We now recall the main equivalence and complete the proof.

Theorem 4.1. The following are equivalent:

(1) prBPP = prP.

(2) There is α = n−Ω(1) and a deterministic poly(n)-time (1/3)-distinguish to α-predict transfor-
mation against m-size distributions for general circuits, where m ≥ n/α2.

(3) There is a deterministic poly(n)-time (1/3)-distinguish to (1/10n)-predict transformation for
general circuits.

Proof. (1)⇒ (3). As prBPP = P, there is a deterministic polynomial-time machine D that, given a
circuit C : {0, 1}n → {0, 1} of size n, outputs ρ such that |ρ−E[C]| ≤ 1/10n. Then by transforming
an input (C, x) to the circuit D(r) = C(x< ◦ r) and applying the CAPP algorithm to this circuit
(of size O(n)), there is an explicit (1/10n)-PCAPP algorithm for general circuits of linear size.

23

Then applying Lemma 4.6, we deduce that there is a deterministic D2P transformation for general
circuits of linear size with the claimed parameters.

(3) ⇒ (2) Trivial.
(2)⇒ (1). Recall that CAPP is prBPP-complete, so it suffices to distinguish whether E[C(Un)] ≥

0.9 or E[C(Un)] ≤ 0.1 for C : {0, 1}n → {0, 1} of size n.
Given such a circuit, we use our algorithm to construct a (1/3)-distinguish to α-predict trans-

form againstm-size distributions for C, denoted P = (P1, . . . , Pt), wherem ≥ n/α2 and α = n−Ω(1).
As this transformation runs in polynomial time by assumption, we have t = poly(n). Then we call
the algorithm of Lemma 4.2 on P with parameter values α and m and observe that we satisfy
the precondition. Once we obtain the distribution D in polynomial time, by the postcondition we
have that D (1/3)-fools C, and hence we can use it to estimate the expectation to the required
accuracy.

Remark 4.9. As mentioned in Section 1.4, we also study more restricted notions of derandomizing
Yao’s transformation in Appendix C. Instead of generating a family of candidate predictors as in
a D2P transformation, we require a deterministic algorithm to generate a good suffix z for the
predictors {Pz,σ,i} in Yao’s lemma (see Lemma 3.8), in two settings.

The first setting is black-box derandomization of Yao’s transformation, where the deterministic
algorithm generates a suffix z that works for all distributions of fixed size (see Appendix C.1).
And the second setting is non-black-box derandomization, where the algorithm generates a suffix z
for a given distribution (see Appendix C.2). We prove that the former notion is equivalent to the
existence of hitting sets (which are, in turn, equivalent to circuit lower bounds), whereas the latter
notion is closely related to the collapse prBPP = prLOSSY, where prLOSSY is a natural subclass
of prZPP that will be introduced in Section 7 (see Remark 7.8).

5 Targeted PRGs in Logspace and Catalytic Logspace

In this section, we prove our result that derandomization unconditionally implies targeted PRGs
in CL (Section 5.1) and apply this to unconditionally derandomize the isolation lemma for graphs
in CL, and also prove a conditional analogous statement for L whose assumptions are weaker than
ones previously known to imply that (Section 5.2).

5.1 Targeted PRGs in Catalytic Logspace

Before stating the result, we first recall the formal definition of catalytic computation:

Definition 5.1 (Catalytic Turing Machine [BCK+14]). A Turing machineM is a catalytic machine
using time T (n), workspace S(n), and catalytic space W (n) if it has a work tape, a read-only input
tape, a write-only output tape, and a read/write catalytic tape w ∈ {0, 1}W (n). We require that for
every input x with |x| = n and every w,Mw(x) (where the oracle notation denotes the catalytic
tape) halts in time at most T (n), using at most S(n) cells on the worktape. Moreover, the final
configuration of w must be equal to its initial configuration, for every x and w.

Definition 5.2. Let CTISP [T (n), S(n),W (n)] be the set of languages recognized by catalytic
machines that use O(S(n)) workspace and O(W (n)) catalytic space on inputs of size n, and run in
time O(T (n)) in the worst case. Let CL = ∪cCTISP

[
2n

c
, c log n, nc

]
be catalytic logspace, and let

CLP = ∪cCTISP [nc, c log n, nc] be catalytic logspace where the worst-case runtime is bounded by
a polynomial.

24

Following [Pyn24], we define a notion of search problems in CL. We note that the solution
output by the search algorithm can differ based on the initial catalytic tape.

Definition 5.3 ((total) search-CL). Fix a total R ⊆ {0, 1}∗×{0, 1}∗.22 We say the search problem
defined by f is computable in CL if there is a catalytic machineM using workspace O(log n) and
catalytic space poly(n) such that for every catalytic tape w and x ∈ {0, 1}∗, Mw(x) writes some
y such that (x, y) ∈ R to the write-only output tape, and resets w to its original configuration.

We now formally state our result that derandomization requires targeted PRGs in CL:

Theorem 5.4. For an arbitrary class of circuits C that is evaluable in CL (resp. CLP), suppose
there is a CL-computable (resp. CLP) (1/10n)-PCAPP algorithm for C circuits. Then there is a CL
(resp. CLP) algorithm that, given C ∈ Cn, outputs a distribution D over {0, 1}n that (1/3)-fools C.

We note two features (shared with Theorem 4.1): we only require a prefix-CAPP algorithm, and
only one with a certain fixed polynomial accuracy; we use both of these features in Theorem 6.13.

Proof overview. We give a more detailed proof overview, following the outline given in Sec-
tion 2.3. To prove Theorem 5.4, we combine two techniques: the construction of D2P from CAPP
of Lemma 4.6, and the compress-or-random framework for CL [Pyn24; DPT24], in particular the
use of the catalytic tape as a hard truth table by Doron, Pyne, and Tell [DPT24].

Recall that the task is to reduce producing a targeted PRG to solving CAPP in CL. At a
high-level, given a circuit C, we produce a D2P transformation for C from the CAPP algorithm and
use this transformation to test if a candidate pseudorandom set (constructed using the catalytic
tape) fools C. If the candidate pseudorandom set fails to fool C, we use the D2P transformation
to produce a predictor, which, together with the reconstructive procedure for the pseudorandom
set, compresses the catalytic tape and thus allows us to run a space-inefficient derandomization
algorithm. We stress that such a D2P transformation is useful because the reconstructive procedure
is deterministic only if it is given a predictor rather than a distinguisher.

For the latter step, we use the result of [DPT24] with minor modification, which we describe
below. Following the proof of [DPT24, Theorem 1.5], we treat (a section of) the catalytic tape
w as a hard truth table and apply the Nisan-Wigderson generator [NW94; IW97] with this truth
table, instantiated with the locally-encodable code of [DPT24] (rather than the usual [STV01]).
Denoting the generator as NWw, on an input C, one of two events occur:

1. Case I: “Random”. If NWw(U) is unpredictable by every candidate predictor in the D2P
transformation for C, we conclude that NWw(·) is a correct targeted PRG and simply output
the distribution NWw(U).23

2. Case II: “Compress”. Otherwise, the works of [NW94; IW97] established that if NWw

does not (1/3)-fool C, there is a compressed representation for w with oracle access to C. The
work of [DPT24] established that one can deterministically replace w with such a compressed
representation in place, assuming access to a D2P transformation for C. Specifically, in this
case they identify a subinterval of w of size poly(n) that can be safely erased, and then
compute the exact acceptance probability of C by an exponential-time, polynomial-space
brute-force enumeration using the (erased) subinterval as a work tape.

22The meaning of “total” here is that for every x ∈ {0, 1}∗ there is y ∈ {0, 1}∗ such that (x, y) ∈ R.
23In the proof of [DPT24, Theorem 1.5], they output E[C(NWw(U))] as their goal is to derandomize C instead of

producing a targeted PRG.

25

We modify this component of their algorithm: After erasing the subinterval, we run the
polynomial-time space-inefficient algorithm of Lemma 4.2 using the subinterval as a work
tape to produce a targeted PRG.

We now state our improvement to [DPT24, Theorem 1.5], reflecting the change above.

Theorem 5.5. Suppose a circuit class C satisfies the following.

1. There is a CL (resp. CLP) algorithm that, given C ∈ C and r ∈ {0, 1}n, outputs C(r).

2. There is a CL-computable (resp. CLP-computable) (∞, α = 1/10n)-distinguish-to-predict
transformation for C ∈ C.

Then there is a CL (resp. CLP) algorithm that, given C ∈ C, outputs a distribution D that (1/3)-
fools C.

We highlight the improvements of Theorem 5.5 upon [DPT24, Theorem 1.5]. First, we obtain
a distribution that fools the circuit rather than only outputting the (approximated) acceptance
probability. Second, we ensure that the final algorithm is time efficient if the evaluation algorithm
and the D2P transformation are both time efficient, which is not true for [DPT24, Theorem 1.5]
due to the time-inefficient brute-force search in the “compress” case.

We can then prove the result.

Theorem 5.4. For an arbitrary class of circuits C that is evaluable in CL (resp. CLP), suppose
there is a CL-computable (resp. CLP) (1/10n)-PCAPP algorithm for C circuits. Then there is a CL
(resp. CLP) algorithm that, given C ∈ Cn, outputs a distribution D over {0, 1}n that (1/3)-fools C.

Proof. We will only prove the case for CLP-evaluable C with a C-PCAPP algorithm in CLP. The
result for CL follows the same argument.

Our catalytic machine works as follows. We think of the catalytic tape as comprised of blocks
w1,w2, both of size poly(n). Let E be the CLP machine that computes PCAPP, and initialize it
with catalytic tape w2. Given C ∈ C, consider the D2P transform(

P1, . . . , PO(n2)

)
← C

obtained from applying Lemma 4.6 to C, where the PCAPP oracle is implemented with calls to
E . Note that each element of the D2P transform can be described using O(log n) bits (i.e. by
specifying τ, σ, i), as long as we do not edit w2, and thus we can evaluate each predictor in CLP.
(We need w2 to remain as-is since it is used by E .)

Next, we instantiate the algorithm of Theorem 5.5 with w1, where we give that algorithm
oracle access to the D2P transformation. Every time the algorithm queries for Pσ,τ,i(x), we use
E to evaluate the PCAPP oracle on the prefix x< and return the value. By the correctness of
that algorithm, it returns a distribution D that (1/3)-fools C and resets w1. While that machine
executes, it may call E ,24 which will itself reset w2 to the original configuration after every call.

24As we are fine with paying additively for both machines’ catalytic space, we do not have to deal with calling E
with different initial catalytic tapes (in which case our definition of catalytic search algorithms would permit it to
return different solutions), as would occur if we used the same tape for both machines (as was the case in the more
challenging setting in the work of [Pyn24]).

26

5.2 Targeted PRGs in Logspace

We now state our result for constructing targeted PRGs in logspace. To do so, we formally state
our targeted hitting set (the proof of correctness of which follows in Appendix E).

Theorem 5.6. There exists a universal constant c > 1 such that the following holds. Let f :
{0, 1}n → {0, 1}n be computable by logspace-uniform NC1 circuits of depth d(n) = O(log T) and
size T (n) ≤ 2d(n). Let δ > 0 and let M(n) be such that c log T (n) ≤M(n) ≤ T (n)δ/c. Then there is
a deterministic algorithm Gf and a probabilistic algorithm R that satisfy the following. For every
x ∈ {0, 1}n:

• Generator. The generator Gf gets input x, runs in space O(log T), and outputs d′ =
polylog(T) lists of M -bit strings L1, . . . , Ld′. Moreover, each list can be computed in space
O(log T).

• Reconstruction. When R gets input x and oracle access to (P1, . . . , PM3) : {0, 1}≤M →
{0, 1} such that for every i ∈ [d′], there is j ∈ [M3] such that

advLi(Pj) ≥
1

M2

then R outputs f(x) with probability at least 1− 1/M . The procedure R runs in time T δ · nc

and uses at most polylog(T) random coins.

We now leverage Theorem 5.6 to (conditionally) construct a logspace targeted PRG for any
class for which we have a CAPP algorithm, and which is logspace evaluable (i.e. the function
(C, x)→ C(x) can be computed in logspace).

Theorem 5.7 (reconstructive targeted somewhere-PRG). Suppose that Assumption 1.10 holds.
Then, for every class C of fixed-polynomial size circuits25 that is evaluable in logspace and has a
polynomial time (1/10n)-PCAPP algorithm, there is a logspace algorithm that, on input C ∈ Cn with
E[C] ≥ 1/2, outputs x such that C(x) = 1. Moreover, if the PCAPP algorithm can be computed in
logspace, the algorithm on every C outputs a distribution D that (1/3)-fools C.

Proof. Suppose there is a PCAPP algorithm for C circuits running in time n = mb on circuits
C : {0, 1}m → {0, 1} (recall that such a b exists per the assumption that the PCAPP algorithm in
in polynomial time and the circuits on m bits are of fixed polynomial size) of size at most n.

Denote the function family of Assumption 1.10 as {fn}n∈N, and recall that it can be computed
by circuits of size T (n) = nA and cannot be computed by na-time algorithms using polylog(n)
random coins, where a ≥ 3c+1 and c is the universal constant of Theorem 5.6. We instantiate the
targeted somewhere-PRG of Theorem 5.6 with fn and parameter values

δ = (a/3A), m = M(n) ≤ T δ/c.

Then our algorithm works as follows.

The generator. We are given C : {0, 1}m → {0, 1} of size at most n. If we have a PCAPP
algorithm computable in L, we estimate ρ ≈ E[C(Um)] to error 1/10. We then enumerate over the
lists L1, . . . , Ld′ ⊆ {0, 1}m output by Gf (C) and for the first i where∣∣∣∣ E

x←Li

[C(x)]− ρ

∣∣∣∣ ≤ 1/10 (2)

25That is, every C ∈ C on n inputs has size at most nb, for a fixed constant b.

27

we output Li. Indeed, this list (1/3)-fools C, as required. If we do not have an accessible CAPP
algorithm, we simply output the first element of any list that hits C. The fact that both procedures
are computable in space O(log n) follows from Theorem 5.6.

Proof of Correctness. We claim that for all but finitely many input circuits C, at least one of
the lists satisfies Equation (2).

Suppose that there is a circuit C where Equation (2) does not hold for every i ∈ [d′]. This
implies that Li does not (1/3)-fool C for every i. We show how to compute fn(C) in time na with
polylog(n) random coins, contradicting the hardness of f . To do this, let(

P1, . . . , PO(m2)

)
← C

be the predictors produced by the transformation of Lemma 4.6 applied with the PCAPP algorithm.
Note that each predictor can be evaluated in time Õ(n), and the number of predictors is at most
m3 ≤ n3 (for sufficiently large n). Then we run the reconstruction algorithm of Theorem 5.6, where
every time R queries Pi, we answer in time Õ(n). By that theorem, with probability at least 1−1/n
we compute fn(C), and we use polylog(n) random coins and run in time Õ(n)(nA)δnc ≤ na by our
choice of a.

Thus, if Equation (2) held for infinitely many C, there would be a time na algorithm which
computes f(C) on infinitely many C, contradicting the hardness hypothesis.

6 Distinguish to Predict for the Path Isolation Lemma

In this section we prove Theorem 1.9 and Theorem 1.11. To formally state the results, we first
formally define the relevant classes. Let us start by defining unambiguous nondeterministic small-
space.

Definition 6.1 (unambiguous nondeterministic small-space). A language L is in unambiguous space
S(n), denoted USPACE[S(n)], if there is a nondeterministic space-S machine M(x, g) such that
for every x ∈ L, there is exactly one witness g such thatM(x, g) accepts, and for every x /∈ L and
every witness g,M(x, g) rejects. We let UL = ∪cUSPACE[c · log n].

As in the time-bounded setting, it is immediate that USPACE[S] ⊆ NSPACE[S], as we simply
remove the requirement that the witness is unique.

Next, we introduce a notion of uniform circuits, where the uniform machine printing the circuit
is an unambiguous logspace algorithm.

Definition 6.2 (unambiguous-logspace-uniformity). A family of circuits {Cn : {0, 1}n → {0, 1}}n∈N
of size S(n) is said to be:

• Unambiguous-logspace-uniform (ULU) if there is a nondeterministic machineM that, on input
0n1S(n)⟨i⟩ where i ∈ [S(n)] (and ⟨i⟩ is its binary representation), runs in logspace and satisfies
the following: For every i there is exactly one guess sequence on which M outputs the i-th
bit of the description of Cn, and otherwise it outputs ⊥.26

• Unambiguous-logspace-evaluable (ULE) if there is a nondeterministic machine M′ that, on
input (Cn, x) where x ∈ {0, 1}n, runs in logspace and satisfies the following: There is exactly
one guess sequence on whichM′ outputs Cn(x), and otherwise it outputs ⊥.

26We note that an equivalent definition is that there is a nondeterministic logspace machine that prints a circuit
to a write-only output tape, and on exactly one guess sequence the machine writes the entire circuit without writing
a special abort symbol ⊥.

28

We remark two things. First, UL-uniform circuits are P-uniform. Second, the languages decided
by circuits that are ULU and ULE can be decided in UL ∩ coUL (and in particular are in P).

Proposition 6.3. Let {Cn}n∈N be a family of circuits of size S(n) ≥ n that is ULU and ULE.
Then for the language defined on inputs of length n as x ∈ Ln ⇐⇒ Cn(x) = 1, we have that
L ∈ USPACE[O(logS)] ∩ coUSPACE[O(logS)].

Proof. On input x, we run the machineM′ for ULE on input Cn, x. Every time thatM′ queries
its input tape for the ith bit of Cn , we call the machineM(0n, 1S(n)⟨i⟩). IfM outputs ⊥, we also
output ⊥, and otherwise we continue the execution. Observe that every time M′ reads a bit of
Cn, there is one sequence of guesses for M that does not cause the computation to abort. Thus,
for every x there is a unique guess sequence where we output a value, and this value is L(x) (i.e.,
1 when x ∈ L and 0 when x /∈ L). By the standard composition of space-bounded algorithms, this
algorithm can be implemented in space O(logS).

Given these definitions, we can now formally state Theorem 1.9, and for convenience let us also
restate Theorem 1.11:

Theorem 6.4. There is a universal constant d such that the following holds. Suppose there
exists ε > 0 such that USPACE[n] ∩ coUSPACE[n] is hard for unambiguous-logspace-uniform
(TC0)USPACE[εn]∩coUSPACE[εn] circuits27 of depth d and size 2εn that are unambiguous-logspace-
evaluable. Then NSPACE[O(n)] = USPACE[O(n)].

Theorem 1.11. Suppose that Assumption 1.10 holds. Then NL = UL.

High-level proof overview. Let us first recall the techniques of Reinhardt and Allender [RA00],
who prove that nondeterminism can be made unambiguous in the presence of polynomially many
bits of advice. Recall that the canonical NL-complete problem calls for deciding if there exists an
s → t path in a directed graph G. The following definition refers to weighing the edges in the
graph, and expecting a unique shortest path:

Definition 6.5 (unique shortest paths). Given a directed graph G = (V,E), we say a weight
function w : E → R induces unique shortest paths (USPs) if for every pair of vertices (s, t), if (s, t)
is connected in G, there is exactly one shortest s→ t path under the weight function w.

The work of [RA00] shows that if we consider (weighted) graphs with unique shortest paths,
we can decide the NL-complete problem of st-connectivity unambiguously:

Theorem 6.6 (low-space nondeterminism becomes unambiguous with unique shortest paths [RA00]).
There is a nondeterministic logspace machine U that acts as follows. Given as input a graph
G = (V,E), nodes s, t ∈ V , and a weight function w : E → [n10], the machine makes nondetermin-
istic guesses and outputs a value in {BAD, CONN,⊥} such that:

• If w does not induce unique shortest paths in G, there is exactly one guess sequence on which
U outputs BAD, and on all other sequences it outputs ⊥.

27Formally, the oracle gate of the TC0 circuit decides a language L ∈ USPACE[εn] ∩ coUSPACE[εn], where
n is the input length to the circuit instead of the fan-in m = m(n) of the oracle gate. The description of a
(TC0)USPACE[εn]∩coUSPACE[εn] circuit is defined as the concatenation of an oracle TC0 circuit and an unambiguous
nondeterministic machine M that runs in space εn (on input length m) and decides L (and the size of the description
is the size of the circuit plus the description of M).

29

• If w does induce unique shortest paths in G and there exists an s → t path in G, there is
exactly one guess sequence on which U outputs CONN, and on all other sequences it outputs ⊥.

• If there does not exist an s→ t path, on all guess sequences U outputs ⊥

Thus, making nondeterminism unambiguous reduces to, given a graph G, constructing a se-
quence of weight functions (w(1), . . . , w(t)) such that w(i) induces unique shortest paths in G for
some i ∈ [t]. Finally, it is observed in [RA00] that a random set of poly(n) weightings satisfies this
property, and hence (by wiring in a good PRG as advice), they obtained that NL/poly = UL/poly.

We will use a targeted PRG constructed from a uniform hardness assumption to produce these
weight assignments. Our goal will be to show that, in the case that the targeted PRG is bad, we
can (in unambiguous logspace) obtain a predictor for the PRG, which will enable us to apply the
deterministic and space-efficient reconstruction procedure of [DPT24], contradicting the hardness
assumption.

The crucial part is the D2P transformation for the relevant distinguisher, which tests whether
or not a given weight assignment induces unique shortest paths in G. To do so, we use the fact
that obtaining a D2P transformation for any function T reduces to the task of solving prefix-CAPP,
i.e. estimating Er[T (x< ◦ r)] up to error 1/m, where m = O(n2 log n) is the length of the hybrid
argument (see Lemma 4.2). As explained in Section 2.2, by modifying the distinguisher we get a
“polarization” property, and obtain a (1/m)-PCAPP algorithm for this distinguisher. We note that
our algorithm does not solve CAPP for the general problem of arbitrary (i.e. not prefix-) restrictions
of T , nor can it produce estimates with arbitrarily good error.

We first define the distinguisher we wish to fool, in terms of the graph G. We represent the
weight function as a vector

w = (w1, . . . , wm) ∈ [n10]m

where each wi is represented by a vector of 10 · log(n) bits.28

Definition 6.7. For a directed graph G = (V,E) with n = |V |,m = |E|, let T = TG : [n10]m →
{0, 1} be the function defined as follows. Fixing an arbitrary ordering of the edges (e1, . . . , em), let
Ei ⊆ E be the set containing the first i edges, let Gi = (V,Ei), and let w≤i be the restriction of w
to these edges. Then define

T i(w≤i) ≜ I [w≤i induces USPs in Gi] , T (w) ≜
∧

i∈[m]

T i(w≤i).

As our main technical result, we show that there is a deterministic logspace D2P transformation
for this distinguisher, where the circuits are ULE. Note that here we think of T as a Boolean function
that takes as input m · 10 · log n bits.

Theorem 6.8. There is a deterministic logspace algorithm T that works as follows. Given a
directed graph G with n vertices and m edges, let ℓ = 10 log n and let T : {0, 1}m·ℓ → {0, 1} be
as in Definition 6.7. Then T (G) outputs a (1/2)-distinguish to (1/10mℓ)-predict transformation
(P1, . . . , Pt) for T , where t = Õ(n4). Moreover, there is a USPACE[O(log n)]∩coUSPACE[O(log n)]
machine P that on input (G, i, x), unambiguously computes Pi(x).

The rest of the section is organized as follows. In Section 6.1 we prove Theorem 6.8. In Sec-
tion 6.2 we apply this result to construct unique shortest path weightings in CLP. In Section 6.3
we prove Theorem 6.4, and in Section 6.4 we prove Theorem 1.11.

28We assume n is a power of two for simplicity of presentation.

30

6.1 Constructing the D2P Transformation

Recall that by Lemma 4.6, to construct a D2P transformation for T in which each predictor is
computable in unambiguous logspace, it suffices to create an (unambiguous logspace) algorithm
that, on input w< = (w1, . . . , wi), estimates Er[T (w< ◦ r)] up to error 1/10mℓ (for now we ignore
the minor complication of receiving the input bit by bit). To do so, we show that that for every
prefix w<, the expectation of T over suffixes r polarizes, in the following sense (for now we think
of T as taking m inputs in [n10]):

Lemma 6.9. For every partial weight assignment w<, either:

1. There exists a (possibly non-strict) prefix w′< of w< such that w′< does not induce USPs in
the relevant prefix graph (and hence T (w< ◦ r) = 0 for every r).

2. We have Er[T (w< ◦ r)] ≥ 1− n−6.

Proof. Observe that to establish the claim, it suffices to prove that for every partial assignment
(w1, . . . , wi−1) that does induce USPs in Gi−1

29, when choosing wi uniformly at random over
[n10], the probability that (w1, . . . , wi−1, wi) fails to induce USPs in Gi is at most n−8. Similar
bounds have been used in [RA00; GW96], but we carefully spell out the argument that we obtain
polarization in all cases.

Let d
Gj
uv be the length of shortest paths from u to v in G with respect to the weight assignment

w≤j . Suppose that after setting wi to a value w, there are non-distinct shortest paths in Gi. Let
the mutual start and end vertices of an arbitrary violation be u and v respectively, and let p1 and
p2 be two non-equal shortest paths from u to v. It is easy to see that if neither path traverses
the edge ei, Gi−1 also did not have unique shortest paths (as both would be present in Gi−1 and
removing ei cannot shorten any other path), contradicting the assumption. Furthermore, if both
paths traverse ei = (a, b), then either u→ a or b→ v had non-unique shortest paths in Gi−1, again
a contradiction. Thus, it must be the case that (wlog) p1 contains ei and p2 does not, and moreover
p1 contains as subpaths shortest u→ a and b→ v paths in Gi−1 (as otherwise it would contradict
the minimality of p1). Finally, note that p2 is the shortest u→ v path in Gi−1. But then we have

w + dGi
ua + dGi

bv = dGi
uv = d

Gi−1
uv =⇒ w = d

Gi−1
uv − dGi

va − dGi
vb

as the two paths have the same lengths by assumption. Moreover, we know that dGi
ua = d

Gi−1
ua and

dGi
bv = d

Gi−1

bv . Thus, there is exactly one choice w ∈ [n10] for wi that causes a failure on (u, v). As
there are at most n2 pairs of vertices on which to cause a failure (and at most n2 edges for which
we assign a random weight), the bound follows.

Using Lemma 6.9, we now create an unambiguous logspace algorithm which solves (n−6)-PCAPP
for T , which is smaller than the required threshold for Lemma 4.6.

Lemma 6.10. There is a nondeterministic logspace machine M(G,w<) → {0, 1,⊥} that, given
arbitrary G = (V,E) and a partial weight assignment w< ∈ [n10]i as input, satisfies the following:

1. There is exactly one guess sequence that causesM to not output ⊥.
29Recall that Gk denotes the subgraph of G consisting of all vertices and the first k edges (with respect to an

arbitrary fixed ordering).

31

2. On this guess sequence,M(G,w<) outputs

b ≜
∧
j≤i

T j(w≤j).

and this value satisfies |b− Er[T (w< ◦ r)]| ≤ n−6.

Proof. The machineM iterates over j = 1, . . . , i, and for each j calls the nondeterministic machine
of Theorem 6.6 on (Gj , w≤j , s = u, t = v) where (u, v) are the endpoints of edge e1. Note that if
w≤j does not induce USPs in Gi, there is exactly one guess sequence that outputs BAD and all others
output ⊥ (which we return if so), and if w≤j does induce USPs in Gj , u is obviously connected to
v and so there is exactly one guess sequence that outputs CONN and all others output ⊥ (which we
return if so), so we can unambiguously decide if w≤j induces unique shortest paths. At the first j
where the machine returns BAD, return 0, and if this does not occur, return 1. By Lemma 6.9, this
value b satisfies |b− Er[T (w< ◦ r)]| ≤ n−6.

We can then prove the correctness of the D2P transformation. We first recall the precise
statement:

Theorem 6.8. There is a deterministic logspace algorithm T that works as follows. Given a
directed graph G with n vertices and m edges, let ℓ = 10 log n and let T : {0, 1}m·ℓ → {0, 1} be
as in Definition 6.7. Then T (G) outputs a (1/2)-distinguish to (1/10mℓ)-predict transformation
(P1, . . . , Pt) for T , where t = Õ(n4). Moreover, there is a USPACE[O(log n)]∩coUSPACE[O(log n)]
machine P that on input (G, i, x), unambiguously computes Pi(x).

Proof. We construct a PCAPP machine for T as follows. Represent the input bits as w1, . . . , wm

where wi ∈ {0, 1}ℓ. On input a prefix x = (w1, . . . , wi−1, y), let y ∈ {0, 1}d correspond to the bits
of x that fall into the final block. Then:

1. Enumerate over s ∈ {0, 1}ℓ−d.

2. Run the machineM of Lemma 6.10 on input w< = (x ◦ s) = (w1, . . . , wi−1, y ◦ s) and store
the average of the values returned by these calls.

3. If all calls return a value, return the average, and otherwise return ⊥.

The fact that this algorithm can be computed in UL∩ coUL follows from Lemma 6.10 and the fact
that ℓ = O(log n). We argue correctness:

Claim 6.11. The algorithm above is a (1/100mℓ)-PCAPP algorithm for T .

Proof. For an arbitrary x = (w1, . . . , wi−1, y), note that∣∣∣∣ E
s,r←U

[T (x ◦ s ◦ r)]− E
s
[M(G, x ◦ s)]

∣∣∣∣ ≤ max
s

∣∣∣∣ E
r←U

[T ((x ◦ s) ◦ r)]−M(G, x ◦ s)
∣∣∣∣

≤ n−6 ≤ 1

100mℓ

where the last line follows from Lemma 6.10 (and the notationM(G, x ◦ s) represents the (unam-
biguous) output ofM on valid nondeterministic guesses).

Then applying Lemma 4.6 with δ = 1/2, we have that the transformation exists, and the
number of predictors is t = 12(mℓ)2 = Õ(n4). Moreover, note that the circuits printed Lemma 4.6
can clearly be constructed in logspace, by printing the code forM.

32

Evaluability of the predictor circuits. Given i, σ, τ , to evaluate Pτ,σ,i(x) we call the PCAPP
machine on x<i ◦ σ1 (which can be evaluated unambiguously in the claimed space bound), then
compare to the threshold τ and output accordingly.

6.2 Unique Shortest Paths in Catalytic Logspace

As an immediate corollary of Theorem 6.8, we show that we can derandomize the path isolation
lemma in CLP. Our result is a simple combination of the D2P transformation for the relevant
distinguisher, with the search to decision reduction of Theorem 5.4. Recall that Theorem 6.8 refers
to the test T = TG defined in Definition 6.7, and asserts a D2P transform for T ; then:

Fact 6.12. The predictors produced by the D2P transformation of Theorem 6.8 can be evaluated
in CLP.

Proof. Theorem 6.8 asserts that the function mapping (G, i, x) to Pi(x) (where P1, ..., Pt are the pre-
dictors in the D2P transform T (G) of T) is computable in unambiguous logspaceUSPACE[O(log n)]∩
coUSPACE[O(log n)]. The claim follows since the latter class is contained in CLP [BCK+14].30

Then the result follows by Theorem 5.5:

Theorem 6.13. There is a CLP algorithm that, given a directed graph G = (V,E), outputs a
weighting w : E → [n10] such that all shortest paths in (G,w) are unique.

Proof. Given the graph G, recall from Theorem 6.8 that there is a logspace-computable D2P
transform for the distinguisher TG. We then apply the result of Theorem 5.5, where we provide
oracle access to this transformation, and evaluate all calls to the oracle using Fact 6.12. Finally,
note that we obtain a distribution D that fools the test TG, and that E[TG(U)] = 1 − o(1), so in
particular there is w ∈ D such that TG(w) = 1, i.e., w induces shortest paths in G. We simply test
one-by-one the elements of D (using the argument of Fact 6.12), and return the first such good
weight assignment.

We make two remarks. First, this result is incomparable to the result of [MP19], which gives
a UTISP[nc, O(log3/2 n)] algorithm for the same problem - our result does not use unambiguous
nondeterminism, and uses only O(log n) workspace, but requires a catalytic tape of length poly(n).
Second, this result represents the first problem known to be solvable in CL whose proof uses both
main algorithmic techniques known for CL (i.e., the algebraic computation approach [BCK+14;
CM23] and the compress-or-random approach [Pyn24; DPT24; CLM+24]); all known results so far
relied only on one of the two.

6.3 Making Nondeterministic Linear Space Unambiguous

In this section we prove Theorem 6.4. To do so, let us recall the standard reduction from nonde-
terministic machines to deciding s→ t connectivity.

Theorem 6.14 (st-connectivity is complete for nondeterministic space, Theorem 4.16 [AB09]). For
S ≥ log n, let L0 ∈ NSPACE[S(n)] be decided by a nondeterministic machine N using space S(n).
For x ∈ {0, 1}n, let Gx be the (directed) graph on 2S(n) vertices31 corresponding to the transitions

30It is proved in [BCK+14] that (uniform) TC1 ⊆ CL. By inspection, the algorithm has polynomial runtime for
every initial catalytic tape.

31Technically the number is slightly larger, as we must track the head positions and FSM configuration, but we
ignore this minor technicality for simplicity.

33

made by the machine, and let s and t be the start and accept configurations, respectively. Then,
there is a deterministic space O(S(n)) machine that gets input x and outputs (Gx, s, t), and we
have that:

x ∈ L0 ⇐⇒ s, t are connected in Gx.

Next, we recall the PRG of [DPT24] with deterministic reconstruction:

Theorem 6.15 ([DPT24] Theorem 7.4). There are universal constants d, cNW > 1 such that for
every sufficiently small constant εNW > 0 the following holds. There is an algorithm NW computing

NWf : {0, 1}(cNW/εNW)·logN → {0, 1}M=NεNW

such that for any f ∈ {0, 1}N we have the following.

1. Efficiency. On input s and i ∈ [M], NWf (s)i can be computed in space (cNW/εNW) · logN .

2. Reconstruction. There is a deterministic space O(logN) algorithm R that, given oracle
access to f and oracle access to a (1

M2)-predictor P for NWf , prints a oracle circuit C of
depth d and size M cNW that has majority gates, makes non-adaptive queries, and satisfies the
following: CP (x) = fx.

We can now restate Theorem 6.4 and prove it. Our result closely follows the strategy of [DPT24,
Theorem 6.16], except that we must be careful to achieve the desired uniformity condition (using
the D2P from the previous section).

Theorem 6.4. There is a universal constant d such that the following holds. Suppose there
exists ε > 0 such that USPACE[n] ∩ coUSPACE[n] is hard for unambiguous-logspace-uniform
(TC0)USPACE[εn]∩coUSPACE[εn] circuits27 of depth d and size 2εn that are unambiguous-logspace-
evaluable. Then NSPACE[O(n)] = USPACE[O(n)].

Proof. We first define the relevant nondeterministic machines and languages:

• Let L0 ∈ NSPACE[O(n)] be decided by a nondeterministic machine N using space c0 ·n. For
x ∈ {0, 1}n, let (Gx = (V,E), u, v) be the graph s→ t connectivity instance produced by the
reduction of Theorem 6.14 with S = c0 · n, where |V | = 2c0n and |E| ≤ 22c0n.

• LetH : {0, 1}∗ → {0, 1,⊥} be the nondeterministic machine that decides Lhard ∈ USPACE[n]∩
coUSPACE[n] unambiguously. That is, for every x, there is exactly one guess sequence gx
such that H(x, gx) ̸=⊥, and H(x, gx) = I [x ∈ Lhard].

• Let U be the logspace machine of Theorem 6.6 that unambiguously decides if a graph has
unique shortest paths (and if so decides connectivity).

• Let P be the machine that on input (G = (V,E), i, x) runs in space cp · log V where cp ≥ 1
and unambiguously computes Pi(x), where Pi is the predictor of Theorem 6.8.

Let ε be as in our hypothesis, and let cNW > 1 be the universal constant from Theorem 6.15.
Finally, let

εNW =
ε

2cNW
, c =

8c0(cNW + cp)

ε
, N = c · n.

34

Derandomization algorithm. Recall that we are given x ∈ {0, 1}n, and our goal is to de-
cide N (x), i.e., s → t connectivity in (Gx, s, t), where s and t represent the initial and accept
configurations, respectively.

To produce our sequence of weight functions, we use the PRG from Theorem 6.15, instantiated
with parameter εNW and with a hard truth-table f given by Lhard on inputs of length N . The
output length of the PRG is then

2εNW·N ≥ 24c0·n ≥ |E| · 10 log |V |

and the generator’s seed length is ℓ = O(N). We then compute as follows. We enumerate over
y ∈ {0, 1}ℓ in sequence, and let wy : E → [V 10] be the weight function induced by NWf (y). We
then call the machine U((Gx, s, t), wy) and:

• If U outputs ⊥, we reject.

• If U returns CONN, we return CONN.

• If U returns BAD, we proceed to the next seed y.

If we exhaust all y’s (i.e. every U always returns BAD) we reject, but we will show this does not
occur given the assumption.

We first prove that the algorithm as described is unambiguous:

Claim 6.16. The prior procedure can be implemented by an unambiguous space O(N) machine.

Proof. First, note that NW can be computed in deterministic space O(N) with oracle calls to f .
For each oracle query at index q, we use H to decide Lhard on q, and by assumption there is one
guess sequence where we return the value fq (and otherwise we reject). Note that we may query the
same input bit multiple times, but the procedure remains unambiguous. Finally, for each weight
function wy that we construct, the machine U unambiguously computes BAD or CONN. Thus, there
is at most one guess sequence where we do not reject.

Next, we argue that the algorithm succeeds.

Correctness. We claim that (assuming the derandomization hypothesis) if x ∈ L0 there will
always be at least one seed y such that the call with weight function wy either returns ⊥ or CONN.

Assume for contradiction that there is an x ∈ {0, 1}n where (Gx, s, t) is connected, but every
guess sequence causes the machine to reject. Since there exist guesses for which the derandomization
algorithm correctly computes all queries it makes to f , it must be that even with these guesses, all
guesses made by U cause it to reject. By Theorem 6.6, in this case, for every y ∈ {0, 1}ℓ we have
that wy = NWf (y) does not induce unique shortest paths in G, and therefore

TG(NW
f (Uℓ)) = 0, E[TG(U)] = 1− o(1) (3)

where T is the function of Definition 6.7.
In this case, we show that Lhard can be decided by ULU and ULE circuits of size 2ε·n. Specifi-

cally, we will rely on the following claim:

Claim 6.17. There is an unambiguous space O(N) algorithm R that gets input G such that Equa-
tion (3) holds, and prints a (TC0)USPACE[εN]∩coUSPACE[εN] circuit of depth d (for some universal
constant d ∈ N) and size 2ε·N , whose truth-table is f . Moreover, the circuit is ULE.

35

Proof. We construct a nondeterministic machine that prints the entire circuit to a write-only output
tape, where if we reject before printing the entire circuit, we halt and write a trailing ⊥ to the tape
(and there is at most one guess sequence where this abort symbol is not printed). To see that this
is equivalent to the prior definition of ULU, consider an algorithm which gets an index i in the
output circuit, and maintains a counter for the number of bits output so far (and does not write
them to a tape). If we reach the ith output bit, store it, and continue to attempt to print the
circuit. If we print ⊥ before completing this task, reject, and otherwise return i.

We use the D2P transformation of Theorem 6.8 and the reconstruction algorithm RNW from
Theorem 6.15. First,

(P1, . . . , Pd=Õ(|V |4)) = T (G)

be the (1/2)-distinguish to (1/10|E| log |V |)-predict transformation of Theorem 6.8 for TG. Note
that every circuit Pi can be constructed in space O(N) (given access to G and i) and can be
evaluated in unambiguous space O(N). By the correctness of the transformation, there exists an
i ∈ [d] such that

advNWf (Uℓ)
(Pi) > α. (4)

We enumerate over i ∈ [d] and, for each, compute the advantage of Pi over NW
f . Note that we can

compute this quantity in unambiguous space O(N) by essentially the same strategy of Claim 6.16.
For the first Pi on which the advantage is at least α, we call the reconstruction algorithm R
of Theorem 6.15 (which runs in deterministic space O(N)), and give it oracle access to Pi and f .
Note that every time this machine queries Pi, we use the fact that Pi is ULE to compute the answer
in unambiguous space O(N), and use the machine H to answer queries to f in unambiguous space
O(N). Since the machine R is deterministic, and all oracles are unambiguous machines, there is
exactly one guess sequence where we output the circuit. Finally, when we successfully print the
circuit, we then print the description of the predictor Pi, which is an unambiguous logspace machine
that takes hardwired input (G, i) and computes the map x→ Pi(x) in

USPACE[cp log |V |] ∩ coUSPACE[cp log |V |] ⊆ USPACE[εN/2] ∩ coUSPACE[εN/2].

We can hardwire (G, i) (and the code for the computation of the machine) using |V |2 + Õ(|V |4) ≤
2εN/2 bits.

Circuit properties. Observe that the printed circuit C is a constant-depth TC0 oracle circuit
such that

CPi(x) = fx.

The circuit C has size 2εNWcNWN ≤ 2εN/2 and has fixed constant depth by Theorem 6.15. The circuit
that corresponds to the computation of Pi has size at most 2εN/2, and hence the complete circuit
has size at most 2εN . Finally, the fact that the resulting circuit is ULE follows from the standard
simulation of TC0 in logspace, where we replace the oracle calls to Pi with an actual evaluation
of the unambiguous nondeterministic machine. If such a call returns ⊥ we likewise abort, and
otherwise we successfully compute the circuit.

Finally, let us explain how to use Claim 6.17 to contradict the hardness of Lhard. Assume
towards a contradiction that for a large enough n ∈ N, Equation (3) holds for the configuration
graph Gx generated by N on some input x ∈ {0, 1}n, and let N = c ·n. On input 1N , we construct
a circuit for Lhard ∩ {0, 1}N as follows:

1. Enumerate over x ∈ {0, 1}n.

36

2. Determine if Equation (3) fails for the configuration graph Gx of N on x.

3. If this holds for Gx, run the unambiguous machine of R and print its output (unless it rejects,
in which case write a trailing ⊥ to the tape), and then halt.

By assumption, such an x exists. Thus, it suffices to verify the algorithm runs in unambiguous
space O(N). For the second step, we enumerate over s ∈ {0, 1}ℓ and call the machine of Lemma 6.10
with graph Gx and weight function w = NWf (s) ∈ [|V |10]|E| (to determine TGx(w)). Every time
that machine queries the weight function, we compute f via the unambiguous machine H. If for any
s the machine of Lemma 6.10 returns 1, we proceed to the next x. Otherwise, if the machine returns
0 (i.e. every weight function output by the generator does not induce unique shortest paths), we
have that Equation (3) holds for Gx. This algorithm that tests if the equation holds can be seen to
run in unambiguous space O(N) as claimed. Moreover, note that every time we call Lemma 6.10
the output is either ⊥ (in which case we abort) or a fixed value b, so if at least one x exists such
that Equation (3) holds, we always identify the first such x. We then use the algorithm R as
established in Claim 6.17 with this x. Thus, the overall algorithm runs in space O(N), and there
is exactly one guess sequence where we output the circuit.

6.4 Making Nondeterministic Logspace Umambiguous

We now show how to obtain our scaled-down result. Essentially the same approach as Theorem 5.7
gives the following targeted hitting set reduction for unambiguous logspace:32

Theorem 6.18. Suppose that Assumption 1.10 holds. Then, for every class of circuits C that is
ULE and has a polynomial time (1/10n)-PCAPP algorithm there is a UL ∩ coUL algorithm that,
on input C ∈ Cn with E[C] ≥ 1/2, outputs x such that C(x) = 1.

Proof Sketch. The proof is identical to that of Theorem 5.7, except that we modify the generator
and reconstruction as follows.

The generator. For every x ∈ Li, we determine if C(x) = 1 using our UL ∩ coUL algorithm to
evaluate C, and return the first x where this occurs. As for every x this computation is unambigu-
ous, so is the overall algorithm.

The reconstruction. We pad the input size n such that the circuit C is of linear size, and so
that the algorithm that evaluates C from its description runs in linear time (note that there is a
polynomial time algorithm that computes (C, x) → C(x) as UL ⊆ P), and the PCAPP algorithm
runs in linear time. Then the generator works without modification.

Applying Theorem 6.18 with C being the class of functions TG of Definition 6.7, we obtain the
following corollary:

Corollary 6.19. Suppose that Assumption 1.10 holds. Then, there is a UL∩coUL algorithm that,
on input G = (V,E), outputs a weight function w : E → [n10] such that TG(w) = 1.

Proof. We let the circuit family be {TG}G as defined in Definition 6.7. This circuit family has a
PCAPP algorithm with ε = 1/10n by Lemma 6.10. This algorithm is in P by the fact that UL ⊆ P,
and the circuits are ULE by Lemma 6.10. We then apply Theorem 6.18 and conclude.

32It likewise gives a targeted PRG, but we do not use this property.

37

We can now prove the scaled-down result.

Theorem 1.11. Suppose that Assumption 1.10 holds. Then NL = UL.

Proof. Recall that (Theorem 6.14) a complete problem for NL is to, given (G, s, t) of size n, decide
s → t connectivity in G. Given such input, we run the algorithm of Theorem 6.6 on (G,w) (and
every time the algorithm queries the input weight function w, we query the unambiguous machine
of Corollary 6.19). Correctness follows as w induces USPs, and hence Theorem 6.6 will return
CONN on exactly one guess sequence if s → t is connected and always return ⊥ otherwise, and the
machine is unambiguous as desired.

7 Certified Derandomization

In this section, we explore certified derandomization, a notion that was originally introduced by
Pyne, Ran, and Zhan [PRZ23] in the context of derandomizing BPL.

We first formally define certified derandomization and its variants in Section 7.1. In Sec-
tion 7.2, we prove Theorem 1.15, i.e., the equivalence between certified derandomization and
prBPP = prZPP. In Section 7.3, we explore the connection between a variant of certified de-
randomization (that is more similar to the original definition in [PRZ23]) and the derandomization
of prBPP. Finally, we compare certified derandomization with a relaxed notion called property-
aided derandomization and prove an oracle separation between them in Section 7.4.

7.1 Definitions of Certified Derandomization and its Variants

We start by giving the formal version of the more general definition of certified derandomization
that we suggested in Section 1.4.

Definition 7.1 (certified derandomization). Let ℓ = ℓ(n) = 2o(n),33 s = s(n), δ0 = δ0(n), δ1 =
δ1(n), and P = {Pn ⊆ {0, 1}ℓ}n∈N be a property such that P ∈ coNP and Pn ̸= ∅ for every n.
An algorithm A is said to be a certified (δ0, δ1)-derandomization algorithm for s-size circuits using
P if there exists a verifier V for P such that for every size-s circuit C : {0, 1}n → {0, 1} and every
τ ∈ {0, 1}ℓ,

A(C, τ) =



1 τ ∈ P ∧ Prx[C(x) = 1] ≥ 1− δ1;

0 τ ∈ P ∧ Prx[C(x) = 1] ≤ δ0;

(⊥, w) s.t. V (τ, w) = 0, or 1 τ /∈ P ∧ Prx[C(x) = 1] ≥ 1− δ1;

(⊥, w) s.t. V (τ, w) = 0, or 0 τ /∈ P ∧ Prx[C(x) = 1] ≤ δ0;

0, 1, or (⊥, {0, 1}∗) otherwise.

For simplicity, we may drop the parameter s if s(n) = O(n), and drop the parameter δi if δi = 1/6.

For a typical circuit class C, a certified derandomization algorithm for C is defined as in Defini-
tion 7.1 while the input circuit C is restricted to a C-circuit instead of a general circuit.

33The reason that we force ℓ = 2o(n) is to ensure that the certified derandomization algorithm A runs in non-trivial
time: A brute-force enumeration over all 2n inputs trivially solves CAPP on n-input circuits in 2O(n) time.

38

Two illustrative examples. The formulation of certified derandomization in [PRZ23] uses the
specific property of hard truth-tables. That is, it uses P = Pcc

ε , where

Pcc
ε ≜ {f : {0, 1}m → {0, 1} | f requires 2εm size circuits},

for some m = O(log n).
As a more general example, we can also define P as the solutions to a uniform range avoidance

problem [Kor21; RSW22]. Specifically, let ℓ = poly(n) and let g : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function mapping |x| bits to |x| + 1 bits. We define Pg = {Pn ⊆ {0, 1}ℓ}n∈N as
the strings outside of the range of g, i.e.,

Pg
n ≜ {y ∈ {0, 1}ℓ | g−1(y) = ∅}.

Note that to verify that y /∈ Pg
n, it suffices to find a string x ∈ {0, 1}ℓ−1 such that g(x) = y.

This is a generalization of Pcc, since if we choose ℓ = 2m and g : {0, 1}ℓ−1 → {0, 1}ℓ as the
function that outputs the truth table of a circuit of size at most 2εm, then Pcc

ε = Pg.34 Moreover,
by instantiating g with different functions, we can obtain other properties Pg consisting of objects
typically considered in natural explicit construction problems, such as rigid matrices and strongly
explicit two-source extractors (see [Kor21] for more details).

Certified derandomization without printing certificates. In Definition 7.1, the certified
derandomization algorithm is required to output a certificate w witnessing the fact that τ /∈ P (i.e.,
w such that V (τ, w) = 0). One can also consider a relaxed version, in which finding an explicit
certificate is not necessary – i.e., if τ /∈ P, the algorithm is allowed to simply output ⊥.
Definition 7.2 (certified derandomization without printing certificates). Let ℓ = ℓ(n) = 2o(n),
s = s(n), δ0 = δ0(n), δ1 = δ1(n), and P = {Pn ⊆ {0, 1}ℓ}n∈N be a property such that Pn ̸= ∅
for every n. An algorithm A is said to be a decision certified (δ0, δ1)-derandomization algorithm for
size-s circuits using P if for every size-s circuit C : {0, 1}n → {0, 1} and every τ ∈ {0, 1}ℓ,

A(C, τ) =



1 τ ∈ P ∧ Prx[C(x) = 1] ≥ 1− δ1;

0 τ ∈ P ∧ Prx[C(x) = 1] ≤ δ0;

⊥ or 1 τ /∈ P ∧ Prx[C(x) = 1] ≥ 1− δ1;

⊥ or 0 τ /∈ P ∧ Prx[C(x) = 1] ≤ δ0;

0, 1, or ⊥ otherwise.

As in Definition 7.1, we may drop s when it is linear, drop δi if δi = 1/6, and we define a
decision certified derandomization for a typical class C in the natural way.

One may think of the notion in Definition 7.2 as a relaxed version of certified derandomization,
since the algorithm guarantees that a certificate w exists (even if it does not explicitly print a
certificate). Indeed, this relaxed notion does not depend on a particular verifier V for P.35 Al-
ternatively, one may compare the notion in Definition 7.2 to the definition of prZPP, and think

34This is essentially the reduction from the problem of finding hard truth tables to the range avoidance problem;
see [Kor21; RSW22]. Note that we only need O(2εm · εm)-bits to encode a circuit of size 2εm in the input, and the
function g will simply ignore the last ℓ− 1− 2εm input bits.

35 In fact, the definition does not even require that P ∈ coNP. However, the definition implies that a certain
superset P ′ ⊇ P satisfies P ′ ∈ coNP. To see this, let A and P that satisfy Definition 7.2, and assume for a moment
that for every τ /∈ P there exists C for which A(C, τ) =⊥. Then, P ∈ coNP, since to certify that τ /∈ P it suffices
to provide C such that A(C, τ) =⊥. Now, if the assumption (that for every τ /∈ P there is C for which A(C, τ) =⊥)
does not hold, we can extend P to also include the strings τ that violate the assumption, and this yields the superset
P ′ ∈ coNP such that A is a decision certified derandomization algorithm with P ′. Indeed, it is possible that P ′ is
trivial (i.e., includes all strings), but this means that A is just a CAPP algorithm. The definition is meaningful (i.e.,
does not collapse to solving CAPP) when P ′ ∈ coNP is not trivial.

39

of the notion as imposing stricter conditions than in the definition of prZPP. Specifically, for a
problem Π = (ΠYES,ΠNO) ∈ prZPP, for every input x ∈ {0, 1}∗ there is a dense set Px such that
an algorithm can guess τ , test whether τ ∈ Px, and if the test passes, use τ to decide whether
x ∈ ΠYES or x ∈ ΠNO. The main difference between this view Definition 7.2 is that in the latter we
require a single “global” property P that does not depend on x.

We will show (in Theorem 7.4) that the two notions of certified derandomization are in fact
equivalent, and both are equivalent to prBPP = prZPP.

7.2 Certified Derandomization and prBPP = prZPP

In this subsection, we show that prBPP = prZPP if and only if there is a certified derandomization
algorithm using some dense property. The notion of a dense property P = {Pn ⊆ {0, 1}ℓ}n∈N here
means that there is a constant δ > 0 such that for every n ∈ N it holds that Prz∈{0,1}ℓ [z ∈ Pn] ≥ δ.36

Proof idea. A certified derandomization algorithm using any dense property P ∈ coNP imme-
diately implies that prBPP = prZPP: This is since one can randomly generate strings τ ∈ {0, 1}ℓ
until the certified derandomization algorithm fails to provide a witness for τ /∈ P.37

The main interesting direction is that prBPP = prZPP implies certified derandomization. Since
we have the freedom of choosing the property P for certified derandomization, a natural idea is to
define a property that consists of a pseudorandom distribution D over {0, 1}n of polynomial size
(say |D| = n5) that fools every linear-size circuit C. However, it is unclear how the deterministic
certified derandomization algorithm could identify that a given distribution fails to fool the circuit
it needs to derandomize, let alone provide a witness for the failure (i.e. the non-membership of P).

The key idea to deal with the challenge utilizes the precondition prBPP = prZPP: Observe
that the decision problem of verifying whether a distribution D fools a circuit C is in prBPP,
and thus it is also in prZPP. This means that any random tape that makes the prZPP machine
halt and accept is a witness that D fools C, and the witness can be verified by a deterministic
algorithm. If we define P as the set of pseudorandom distributions D attached with such a witness
of its pseudorandomness, we can then resolve the aforementioned challenge and obtain a certified
derandomization algorithm.

The only remaining issue is that the witness depends on the circuit C, while in certified de-
randomization the property P has to be independent of the circuit we want to derandomize. Nev-
ertheless, as the witness is the random tape of a prZPP algorithm, a random string is likely to
be a correct witness that D fools C for any specific D and C. Therefore, if we randomly sample
w1, w2, . . . , wt for some large t = nO(1), with high probability, there is an i ∈ [t] such that wi is a
witness that D fools C for every D (of size n5) and every linear-size circuit C; that is, (w1, . . . , wt)
serves as a universal witness of pseudorandomness that works for every D and C. By defining P
as the set of pseudorandom distribution D (of size n5) together with such a universal witness, we
can obtain a certified derandomization algorithm using the property P.

Proof of the equivalence. For the proof we will need the following standard encoding of sparse
Boolean strings (see, e.g., [GII+19; Kor21]).

36We could equivalently define a dense property as one with δ = 1/poly(n).
37Indeed, Pyne, Raz, and Zhan [PRZ23] gave a new proof of Nisan’s [Nis93] result that BPL ⊆ ZP∗L, based on this

idea and on their certified derandomization for read-once branching programs (where ZP∗L is the class of zero-error
randomized logspace algorithms with two-way access to the random tape).

40

Lemma 7.3. For any ε ∈ (0, 1/2), there is a pair of maps Φd : {0, 1}n−ε2n+logn → {0, 1}n and
Φe : {0, 1}n → {0, 1}n−ε

2n+logn computable in poly(n) time such that for every string x of Hamming
weight at most n/2− εn, Φd(Φe(x)) = x.

Theorem 7.4 (certified derandomization vs prBPP = prZPP). The following statements are
equivalent.

(1) prBPP = prZPP.

(2) There is a dense property P ∈ coNP and a deterministic polynomial-time certified derandom-
ization algorithm using P with parameter ℓ(n) = poly(n).

(3) There is a dense property P and a deterministic polynomial-time decision certified derandom-
ization algorithm using P with parameter ℓ(n) = poly(n).

Proof. (1)⇒(2). Suppose that prBPP = prZPP, then there is a zero-error polynomial-time algo-
rithm A that solves the following promise problem Π = (ΠYES,ΠNO) ∈ prBPP: Given a circuit
C : {0, 1}n → {0, 1} of linear size and a multiset D ⊆ {0, 1}n,

• (C,D) ∈ ΠYES if |Ex∈{0,1}n [C(x)]− Ex∈D[C(x)]| ≤ 0.01.

• (C,D) ∈ ΠNO if |Ex∈{0,1}n [C(x)]− Ex∈D[C(x)]| ≥ 0.02.

By the definition of zero-error algorithms and Markov’s inequality, we know that there is a
polynomial t = t(n) such that for every input (C,D) ∈ ΠYES ∪ ΠNO of length poly(n), all but a
1/10-fraction of random tapes w ∈ {0, 1}t will make A(C,D;w) halt in time t.

Let ℓ(n) = n6 + n10 · t = poly(n). We define the property P ∈ coNP as follows. Let D ∈
({0, 1}n)n5

be parsed as a sequence d1, . . . , dn5 of n5 length-n strings, and W ∈ ({0, 1}t)n10
be

parsed as a sequence w1, . . . , wn10 of length-t strings. We define (D,W) ∈ P if and only if for every
circuit C : {0, 1}n → {0, 1} of linear size, there is some i ∈ [n10] such that A(C,D;wi) halts in time
t and A(C,D;wi) = 1.

Claim 7.5. P is a 4/5-dense property.

Proof. Fix any circuit C : {0, 1}n → {0, 1}. Let γ = Ex∈{0,1}n [C(x)], and D = (d1, . . . , dn5) ∈
({0, 1}n)n5

be sampled uniformly at random. By Hoeffding’s inequality (i.e., Theorem 3.10), we
know that

Pr
D

[∣∣∣∣ E
x←D

[C(x)]− γ

∣∣∣∣ > 0.01

]
≤ exp

(
−Ω(n5)

)
.

By union bounding over all circuits of linear size, all but a 1/10-fraction of choices for D satisfy
the following: For every linear-size circuit C, it holds that (C,D) ∈ ΠYES.

Now, fix any (C,D) in the promise of Π. If we choose n10 random tapes w1, w2, . . . , wn10 ∈ {0, 1}t
uniformly at random, the probability that A(C,D;wi) does not halt in time t for every i ∈ [n10] is at
most exp(−Ω(n10)). By union bounding over all circuits C of size n2 and all multisets D of size n5,
we deduce that all but a 1/10-fraction of sequences of random tapes w1, w2, . . . , wn10 ∈ {0, 1}t satisfy
the following: For every linear-size circuit C : {0, 1}n → {0, 1} and every multiset D ⊆ {0, 1}n of
size n5, there is an i ∈ [n10] such that A(C,D;wi) halts in time t.

By union bounding over a choice of W and a choice of D, we deduce that at least a 4/5-fraction
of (D,W) are in P.

Given any linear-size circuit C : {0, 1}n → {0, 1} and τ ∈ {0, 1}ℓ, the certified derandomization
algorithm using P works as follows.

41

• Parse τ = (D,W) as described above, where D = (d1, . . . , dn5) and W = (w1, . . . , wn10).

• If for some i ∈ [n10], A(C,D;wi) halts in time t and A(C,D;wi) = 1, the algorithm outputs
1 if and only if Ex∈D[C(x)] ≥ 1/2.

• Otherwise, the algorithm outputs (⊥, C).

The correctness of the algorithm follow from a case analysis:

• If C either accepts at least a 2/3-fraction of its inputs or rejects at least a 2/3-fraction
of its inputs, and A(C,D;wi) halts in time t and A(C,D;wi) = 1 for some i ∈ [n10], we
know by the perfect correctness of the algorithm A that (C,D) /∈ ΠNO. In other words,
|Ex∈{0,1}n [C(x)]−Ex∈D[C(x)]| < 0.02, and therefore the algorithm correctly solves CAPP for
C based on whether Ex∈D[C(x)] ≥ 1/2.

• If C either accepts a 2/3-fraction of its inputs or rejects a 2/3-fraction of its inputs, and there
is no i ∈ [n10] such that A(C,D;wi) halts in time t and A(C,D;wi) = 1, then C is a witness
for (D,W) /∈ P.

(2)⇒(3). Trivial.
(3)⇒(1). Suppose that there is a dense property P and a decision certified derandomization

algorithm using P with parameter ℓ(n) = poly(n). For every promise problem Π = (ΠYES,ΠNO) ∈
prBPP and probabilistic Turing machine M that solves Π, the following probabilistic algorithm
will solve Π with zero error in expected polynomial time:

• Given any x ∈ ΠYES ∩ ΠNO, construct a linear-size circuit Cx : {0, 1}m → {0, 1} for some
m = poly(n) such that

x ∈ ΠYES ⇒ Pr
r
[C(r) = 1] ≥ 2/3,

x ∈ ΠNO ⇒ Pr
r
[C(r) = 0] ≥ 2/3.

• Randomly generate τ ∈ {0, 1}ℓ(m) and simulate the certified derandomization algorithm that
uses P. Repeat until we generate some τ such that the certified derandomization algorithm
outputs b ∈ {0, 1}.

• The algorithm accepts if and only if b = 1.

The correctness follows from the correctness of the certified derandomization algorithm, and the
running time follows from the density of the property P.

7.3 LossyCode and Certified Derandomization

We recall the definition of the problem LossyCode, introduced by Korten [Kor22]. Intuitively,
the problem LossyCode calls for finding incompressible strings, with respect to a fixed efficient
compression algorithm and a fixed efficient decompression algorithm (that tests whether or not the
compression algorithm succeeded).

Problem 1.16 (LossyCode). Given a pair of circuits C : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n,
where m < n, find a string x ∈ {0, 1}n such that D(C(x)) ̸= x.

42

The promise problems reducible to LossyCode are in prZPP, as since m < n a random string x ∈
{0, 1}n satisfiesD(C(x)) ̸= x with probability at least 1/2, and this can be verified deterministically.
Korten [Kor22] observed that if LossyCode is hard for prBPP (under deterministic polynomial-time
reductions), then prBPP = prZPP.38 We show a stronger result, coupled with a converse.

We define the complexity class LOSSY (resp. FLOSSY) as the set of languages (resp. search
problems) that are reducible in deterministic polynomial time to LossyCode. The promise version
prLOSSY is defined analogously.

Definition 7.6 (LOSSY). The class LOSSY (resp., prLOSSY) it the set of languages (resp.,
promise problems) decidable in deterministic polynomial time with oracle access to a function
solving the search problem LossyCode. The class FLOSSY is the set of search problems that can
be solved in deterministic polynomial time with oracle access to a function solving LossyCode.

Definition 7.6 does not place any restrictions on the type of reduction to LossyCode (other than
being in deterministic polynomial time), but it turns out that even a single query to LossyCode
suffices to capture the general case; see Lemma 7.9.

The question of whether LossyCode is prBPP-hard can thus be phrased as asking if prBPP =
prLOSSY. The following theorem asserts that prBPP = prLOSSY if and only if there is an algo-
rithm for certified derandomization using the property of truth tables with high circuit complexity.

Theorem 7.7 (prBPP = prLOSSY ⇐⇒ certified derandomization with hard truth-tables). The
following statements are equivalent.

(1) prBPP = prLOSSY.

(2) There is ε ∈ (0, 1) and a deterministic polynomial-time certified derandomization algorithm
using Pcc

ε .

(3) There is a deterministic polynomial-time certified derandomization algorithm using Pg for
some polynomial-time computable g.

Note that the equivalence between (2) and (3) shows that certified derandomization using hard
truth-tables is implied by certified derandomization using any uniform range avoidance property.
The latter is more general, as explained in Section 7.1. In fact, many well-known explicit construc-
tion problems reduce to the uniform range avoidance problem (see, e.g., [Kor21; RSW22]). The
equivalence between Items (2) and (3) can be viewed as analogous to the FPNP reduction in [Kor21]
of range avoidance to the problem of finding hard truth tables.39

Remark 7.8. Alternatively, we show that prBPP = prLOSSY is also equivalent to “non-black-box”
derandomization of Yao’s transformation in FLOSSY using an idea in [Kor22]; see Appendix C.2
for the definitions and the proof of the result.

Proof of Theorem 7.7. Note that (2) ⇒ (3) is trivial. We will prove that (1) ⇒ (2) and that (3) ⇒
(1), in this order.

38Korten also proved that a version of LossyCode where the compression algorithm is allowed to be randomized,
called R-LossyCode, is indeed hard for prBPP.

39Korten [Kor21] phrases the result as showing that circuit lower bounds (i.e. the problem of constructing hard
truth tables) is the hardest instance for range avoidance, and thus implies solutions to many well-known explicit
construction problems. Certified derandomization models derandomization using a property with a deterministic
reconstructive argument, and thus the equivalence between (2) and (3) shows that in terms of derandomization with
deterministic reconstructive argument, hard truth tables are as useful as any range avoidance property.

43

(1) ⇒ (2). Suppose that there is a polynomial-time oracle machine A that solves CAPP given
oracle access to LossyCode. Consider the following certified derandomization algorithm using Pcc

ε .

Given any linear-size circuit C : {0, 1}n → {0, 1} and a candidate hard truth table τ ∈ {0, 1}2k ,
where k = O(log n), we will simulate ALossyCode, while trying to answer queries to LossyCode using
τ (in a way that will be specified below). The point is that if we succeed in answering all queries,
then we successfully simulated ALossyCode; and if we fail to answer a query, then we will be able to
output a small circuit whose truth-table is τ .

Let us now explain how to use τ in order to try and answer a query q = (C ′, D′) to LossyCode.
Since we can always pad the input and output of C ′, D′ with dummy bits, we can assume without
loss of generality that C ′ : {0, 1}t+1 → {0, 1}t and D′ : {0, 1}t → {0, 1}t+1 are linear-size circuits
for some t = poly(n) being a power of two.

Single-bit to length-doubling compression. Our first step is to reduce LossyCode for C ′ and
D′ compressing and decompressing with one bit, to LossyCode for C ′ and D′ that halve and double
the input length (respecitvely).

Let C ′1 ≜ C ′, D′1 ≜ D′. We define C ′i : {0, 1}t+i → {0, 1}t and D′i : {0, 1}t → {0, 1}t+i inductive
as follows: for x ∈ {0, 1}t+i, b ∈ {0, 1}, and z ∈ {0, 1}t,

C ′i+1(x ◦ b) ≜ C ′(C ′i(x) ◦ b),
D′i+1(z) ≜ D′i(D

′(z)≤t) ◦D′(z)t+1.

Let C ′′ ≜ C ′t and D′′ ≜ D′t. Note that for every string x and b ∈ {0, 1} such that D′i+1(C
′
i+1(x◦b)) ̸=

x ◦ b, denoting x̂ ≜ C ′i(x) ◦ b, either D′(C ′(x̂)) ̸= x̂, or D′i(C
′
i(x)) ̸= x. This is because if none of

the two cases hold, then

D′i+1(C
′
i+1(x ◦ b)) = D′i(D

′(C ′(C ′i(x) ◦ b))≤t) ◦D′(C ′(C ′i(x) ◦ b))t+1

= D′i((C
′
i(x) ◦ b)≤t) ◦ (C ′i(x) ◦ b)t+1

= D′i(C
′
i(x)) ◦ b

= x ◦ b.

Note that, given C ′ and D′, we can compute C ′′ and D′′ in time O(t2). Also, relying on the
property above, given (C ′, D′) and y ∈ {0, 1}2t such that D′′(C ′′(y)) ̸= y, we can find in polynomial
time a string x ∈ {0, 1}t such that D′(C ′(x)) ̸= x.

Reduction to exponentially long strings via a binary tree. Next, we reduce LossyCode on
(C ′′, D′′) to finding a string of length 2k on which an exponential compression and decompression
algorithm (based on C ′′, D′′) fails.

Let C ′′0 ≜ C ′′, D′′0 ≜ C ′′, and let k′ = k − log(t). For i ∈ [k′], we define C ′′i : {0, 1}t·2i → {0, 1}t

and D′′i : {0, 1}t → {0, 1}t·2i inductively as follows: for all x, y ∈ {0, 1}t·2i and z ∈ {0, 1}t,

C ′′i+1(x ◦ y) ≜ C ′′(C ′′i (x) ◦ C ′′i (y)),
D′′i+1(z) ≜ D′′i (D

′′(z)≤t) ◦D′′i (D′′(z)>t).

Note that, given (C ′′, D′′) and i and x ∈ {0, 1}t·2i , we can compute C ′′i (x) in polynomial time;
similarly, given (C ′′, D′′) and i and z ∈ {0, 1}t, we can compute D′′i (z) in polynomial time. Also

note that for every x, y ∈ {0, 1}t·2i such that D′′i+1(C
′′
i+1(x ◦ y)) ̸= x ◦ y, letting z ≜ C ′′i (x) ◦ C ′′i (y),

either D′′(C ′′(z)) ̸= z, or D′′i (C
′′
i (x)) ̸= x, or D′′i (C

′′
i (y)) ̸= y. Hence, there is a polynomial-time

44

algorithm that gets input (C ′′, D′′) and i ∈ [k] and x◦y ∈ {0, 1}t·2i satisfying D′′i (C
′′
i (x◦y)) ̸= x◦y,

and finds a string z ∈ {0, 1}t such that D′′(C ′′(z)) ̸= z (i.e., the algorithm applies the property
above iteratively, and uses the fact that C ′′i and D′′i are efficiently computable).

Simulating the LossyCode oracle with τ . Now we describe how we try to answer a query
(C ′, D′) to LossyCode. We construct Ĉ ′ ≜ C ′′k′ and D̂′ ≜ D′′k′ , where the input length of Ĉ ′ (i.e. the

output length of D̂′) is 2k, and guess τ ∈ {0, 1}2k .
If D̂′(Ĉ ′(τ)) ̸= τ , as explained above, we can find in polynomial time a string x ∈ {0, 1}t such

that D(C(x)) ̸= x; then, we answer the oracle query by x.
Otherwise, we will find in time poly(n) a circuit of size 2ε·k whose truth table is τ . As explained

above, given (C ′, D′) we can compute D′′ and D′′ in time O(t2); thus, our algorithm can construct
a circuit of size Õ(t2) (with D′ hard-wired) computing D′′.

Consider the following circuit E : {0, 1}k → {0, 1}: Given any u = (u1, u2, . . . , uk) ∈ {0, 1}k, it
parses u = v ◦ j, where v ∈ {0, 1}k′ and j ∈ [t], and for i ∈ [k′] it iteratively computes the following
function. Denoting τ̂0 ≜ Ĉ ′(τ) ∈ {0, 1}t, we define

τ̂i+1 ≜

{
D′′(τ̂i)≤t vi = 0,

D′′(τ̂i)>t vi = 1,

Finally, the circuit E outputs the j-th bit of τ̂k′ . Since D̂′(Ĉ ′(τ)) = τ and the circuit simulates the
computation of D̂′, we know that E(u) = τu for every u ∈ {0, 1}k. Moreover, the circuit E is of
size Õ(k′ · t2) = Õ(t2), and can be constructed in polynomial time. If we choose k = O(log n) such
that 2k ≥ t5/ε, then for sufficiently large t, the size of E is at most 2εk.

(3) ⇒ (1). Assume that for some polynomial-time computable function g : {0, 1}ℓ−1 → {0, 1}ℓ,
there is a deterministic polynomial-time certified derandomization algorithm A using Pg. We now
describe a reduction of CAPP to LossyCode.

Let C : {0, 1}n → {0, 1} be a linear-size circuit that either accepts at least 2/3 of its inputs
or rejects at least a 2/3 of its inputs. Consider the following circuits C ′ : {0, 1}ℓ → {0, 1}ℓ−1 and
D′ : {0, 1}ℓ−1 → {0, 1}.

• C ′(τ) simulates the certified derandomization algorithm A(C, τ). If A(C, τ) ∈ {0, 1}, then
C ′(τ) outputs 0ℓ−1. Otherwise, A(C, τ) outputs a witness w ∈ {0, 1}ℓ−1 that τ /∈ Pg

(i.e. g(w) = τ); in this case C ′(τ) outputs w.

• D′(w) ≜ g(w).

Let τ be a solution to the LossyCode instance (C ′, D′), i.e., D′(C ′(τ)) ̸= τ . It follows that A(C, τ) ∈
{0, 1} (since whenever A(C, τ) /∈ {0, 1} we have that D′(C ′(τ)) = D′(w) = g(w) = τ). Since
certified derandomization is always correct if it the circuit is in the promise and it outputs 0 or 1,
we can figure out whether Prx[C(x) = 1] ≥ 2/3 or Prx[C(x) = 1] ≤ 1/3.

A single query suffices for the definition of LOSSY. It is implicit in the proof of Theorem 7.7
that if CAPP polynomial-time reduces to LossyCode, then CAPP reduces to LossyCode in polynomial-
time with a single query.40 As mentioned above, this generalizes to every problem: Every problem
that is polynomial-time reducible to LossyCode is also reducible to LossyCode with a single query.

40Notice that in the proof of (1) ⇒ (2) the reduction can have multiple queries, while in the proof of (3) ⇒ (1) the
reduction we constructed has only one query.

45

Lemma 7.9. For every language L (resp. search problem P), L (resp. P) can be solved in deter-
ministic polynomial time with oracle access to a function solving LossyCode if and only if it can be
solved in deterministic polynomial time with a single oracle query to a function solving LossyCode.

Proof. We only consider the case of a language L, and the proof clearly generalizes to any search
problem. Suppose that there is a polynomial-time Turing machine M deciding L with a LossyCode
oracle. We describe a reduction R from L to LossyCode with a single query.

Given any string x, R(x) outputs a compression circuit C : {0, 1}ℓ → {0, 1}ℓ−1 and a decom-
pression circuits D : {0, 1}ℓ−1 → {0, 1}ℓ that works as follows.

• Let m = m(n) = poly(n) be the maximum input length of the LossyCode oracle queries made
by M(x). Let ℓ = ℓ(n) ≜ m3.

• Let τ1, τ2, . . . , τm2 ∈ {0, 1}ℓ be the input to the compression circuit C. It simulates the oracle
Turing machine M(x). Once there is a query (C ′, D′) to the LossyCode oracle, without loss
of generality say C ′ : {0, 1}m → {0, 1}m−1, D′ : {0, 1}m−1 → {0, 1}m are linear-size circuits,
it considers two cases.

– If D′(C ′(τi)) = τi for every i ∈ [m2], it stops simulating M(x) and outputs (D′, C ′(τ1) ◦
· · · ◦ C ′(τm2)), which can be encoded in O(m) +m3 −m2 ≤ ℓ− 1 bits.

– Otherwise, it continues simulating M(x) by answering τi to the oracle query, where i is
the smallest index such that D′(C ′(τi)) ̸= τi.

• The decompression circuit D parses its input as (D′, y1◦y2◦· · ·◦ym2), where D′ is a linear-size
circuit and y1, . . . , ym2 ∈ {0, 1}m−1. It outputs D′(y1) ◦D′(y2) ◦ · · · ◦D′(ym2) ∈ {0, 1}ℓ.

If we are given a solution τ ∈ {0, 1}ℓ such that D(C(τ)) ̸= τ , then it means if we simulate
M(x) by answering the oracle calls as described in the definition of the compression circuit C, the
simulation will be successful.41

As a consequence, the definition of LOSSY does not change if we limit the type of reduction to
LossyCode even to polynomial-time reduction with only a single query.

7.4 Certified Derandomization and Property-Aided Derandomization

A property-aided derandomization is an algorithm for CAPP given a string that is guaranteed to have
a certain property P; in particular, standard hardness-vs-randomness framework [NW94; IW97]
can be interpreted as a property-aided derandomization algorithm where P is the set of hard truth
tables. Formally:

Definition 7.10. Let ℓ = ℓ(n) = 2o(n) and s = s(n) = poly(n) be parameters, and P = {Pn ⊆
{0, 1}ℓ}n∈N be a property such that P ≠ ∅ for every n. An algorithm A is said to be a P-aided
CAPP algorithm if for every size-s(n) circuit C : {0, 1}n → {0, 1} and every τ ∈ Pn,

A(C, τ) =


1 E[C(Un)] ≥ 2/3;

0 E[C(Un)] ≤ 1/3;

0 or 1 otherwise.
41The proof is more or less utilizing Kraj́ıček’s gadget generator [Kra07]. Alternatively, one can also apply the

binary tree approach in the proof of Theorem 7.7.

46

Property-aided derandomizaiton is similar to, but (possibly) easier than certified derandomiza-
tion, as it does not need to deal with the situation where the given string does not have the property
P. Given that we already know how to construct property-aided derandomization algorithms, while
certified derandomization is equivalent to prBPP = prZPP, it is natural to ask whether there is a
barrier preventing us from improving the property-aided derandomization algorithm into a certified
derandomization algorithm.

In this subsection, we will prove an oracle separation: There is an oracle relative to which
certified derandomization is impossible using any property, while property-aided derandomization
is possible (indeed, the standard hardness-vs-randomness framework [NW94; IW97; KM02] rela-
tivizes).

Property-aided derandomization in relativized worlds. We first introduce the notion of
property-aided derandomization in ideal worlds by relativizing both the CAPP algorithm and the
input circuits.

Definition 7.11. Let ℓ = ℓ(n) = 2o(n) and s = s(n) = poly(n) be parameters, O : {0, 1}∗ → {0, 1}
be an oracle, and P = {Pn ⊆ {0, 1}ℓ}n∈N be a property such that P ≠ ∅ for every n. An oracle
algorithm A is said to be a P-aided CAPP algorithm relative to the oracle O if for every size-s(n)
O-oracle circuit C : {0, 1}n → {0, 1} and every τ ∈ Pn,

AO(C, τ) =


1 E[CO(Un)] ≥ 2/3;

0 E[CO(Un)] ≤ 1/3;

0 or 1 otherwise.

In addition, we can define the (relativized) circuit complexity property POε-cc as

τ ∈ POε-cc ⇐⇒ τ requires O-oracle circuits of size |τ |ε

for some fixed constant ε ∈ (0, 1). It is proved in [KM02] that the constructions of the Nisan-
Wigderson [NW94] and Impagliazzo-Wigderson [IW97] PRGs relativize. Formally:

Theorem 7.12 ([KM02]). The following holds for every oracle O. For every s(n) = poly(n) and
every constant ε ∈ (0, 1), there is an ℓ(n) = poly(n) and a polynomial-time deterministic algorithm
A that is a POε-cc-aided CAPP algorithm relative to O with parameters (ℓ, s).

Certified derandomization in relativized worlds. Similarly, we can define certified deran-
domization in relativized worlds.

Definition 7.13. Let ℓ = ℓ(n) = 2o(n) and s = s(n) = poly(n) be parameters, O : {0, 1}∗ → {0, 1}
be an oracle, and P = {Pn ⊆ {0, 1}ℓ}n∈N be a property such that Pn ̸= ∅ for every n. An oracle
algorithm A is said to be a decisional certified derandomization algorithm using the property P
with respect to the oracle O if for every size-s O-oracle circuit C : {0, 1}n → {0, 1} and every
τ ∈ {0, 1}ℓ,

AO(C, τ) =



1 τ ∈ PO ∧ E[CO(Un)] ≥ 2/3;

0 τ ∈ PO ∧ E[CO(Un)] ≤ 1/3;

⊥ or 1 τ /∈ PO ∧ E[CO(Un)] ≥ 2/3;

⊥ or 0 τ /∈ PO ∧ E[CO(Un)] ≤ 1/3;

0, 1, or ⊥ otherwise.

47

The oracle separation. The following theorem shows that in a relativized world, certified de-
randomization is impossible.

Theorem 7.14. There is an oracle O such that the following holds. For every ℓ = ℓ(n) = 2o(n),
s = s(n) ≥ n2, and any property P = {Pn ⊆ {0, 1}ℓ}n∈N such that Pn ̸= ∅ for every n, there is no
deterministic polynomial-time algorithm AO that is a decisional certified derandomization algorithm
using P relative to the oracle O.

We will use the following oracle construction due to Heller.

Lemma 7.15 (Heller [Hel86]). There is an oracle O such that L ∈ BPTIMEO[n] for some ENPO
-

complete language L.

Proof of Theorem 7.14. Let O be the oracle and L be the language in Lemma 7.15. Suppose,
towards a contradiction, that for some ℓ = ℓ(n) = 2o(n) and property P satisfying P∩{0, 1}ℓ(n) ̸= ∅
for all n, there is a deterministic decision certified derandomization algorithm with respect to O
using P. We will show that L ∈ NTIMEO[2o(n)], leading to the collapse

NTIMEO[2O(n)] ⊆ ENPO
⊆ NTIMEO[2o(n)],

and thus contradicts the nondeterministic time hierarchy that holds relative to any oracle (see, e.g.,
the proof in [AB09, Chapter 3.3].

Recall that L ∈ BPTIMEO[n]. Given any input x ∈ {0, 1}n, the nondeterministic machine
works as follows. It first constructs an oracle circuit C : {0, 1}m → {0, 1} of size Õ(m) ≤ s(m) for
some m = O(n) such that

x ∈ L ⇐⇒ E[CO(Um)] ≥ 2/3, x /∈ L ⇐⇒ E[CO(Um)] ≤ 1/3.

It nondeterministically guesses a string τ ∈ {0, 1}ℓ(m), and accepts if and only if the certified
derandomization algorithm given (C, τ) outputs 1. It is clear that the nondeterministic algorithm
decides L if P is non-empty on every length ℓ, and it runs in time poly(2o(m)) = 2o(n).

By combining Theorem 7.12 and Theorem 7.14, we prove the following oracle separation:

Corollary 7.16. There is an oracle O such that the following properties holds.

• For every ℓ = ℓ(n) = 2o(n), s = s(n), and every property P = {Pn ⊆ {0, 1}ℓ}n∈N such
that Pn ̸= ∅ for every n, there is no deterministic polynomial-time algorithm for decisional
certified derandomization using P with respect to O with parameters (ℓ, s)

• For every s = s(n) = poly(n) and every constant ε ∈ (0, 1), there is an ℓ = poly(n) and a
polynomial-time POε-cc-aided CAPP algorithm relative to O with parameters (ℓ, s).

Acknowledgements

The authors thank Oded Goldreich for a useful conversation about [GW00], and Lijie Chen, Dean
Doron, and Ryan Williams for helpful conversations.

48

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[ACR98] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “A new general
derandomization method”. In: Journal of the ACM 45.1 (1998), pp. 179–213.

[ACR+99] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and Luca Trevisan.
“Weak Random Sources, Hitting Sets, and BPP Simulations”. In: SIAM J. Comput.
28.6 (1999), pp. 2103–2116.

[AM08] Vikraman Arvind and Partha Mukhopadhyay. “Derandomizing the Isolation Lemma
and Lower Bounds for Circuit Size”. In: RANDOM 2008, Boston, MA, USA, August
25-27. Ed. by Ashish Goel, Klaus Jansen, José D. P. Rolim, and Ronitt Rubinfeld.
2008.

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. “Isolation, Matching, and Counting
Uniform and Nonuniform Upper Bounds”. In: J. Comput. Syst. Sci. 59.2 (1999),
pp. 164–181.

[Bar89] David A. Mix Barrington. “Bounded-Width Polynomial-Size Branching Programs
Recognize Exactly Those Languages in NC1”. In: Journal of Computer and System
Sciences 38.1 (1989), pp. 150–164.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.
“Computing with a full memory: catalytic space”. In: Proc. 46 Annual ACM Sym-
posium on Theory of Computing (STOC). 2014, pp. 857–866.

[BDCG+92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michel Luby. “On the theory of
average case complexity”. In: Journal of Computer and System Sciences 44.2 (1992),
pp. 193–219.

[BF99] Harry Buhrman and Lance Fortnow. “One-Sided Versus Two-Sided Error in Proba-
bilistic Computation”. In: Proc. 16th Symposium on Theoretical Aspects of Computer
Science (STACS). 1999, pp. 100–109.

[BKL+18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. “Catalytic
Space: Non-determinism and Hierarchy”. In: Theory Comput. Syst. 62.1 (2018),
pp. 116–135. doi: 10.1007/S00224-017-9784-7.

[BKT14] Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. “Fragments of
Approximate Counting”. In: J. Symb. Log. 79.2 (2014), pp. 496–525. doi: 10.1017/
JSL.2013.37.

[Bra10] Mark Braverman. “Polylogarithmic independence fools AC0 circuits”. In: Journal
of the ACM 57.5 (2010).

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. “Directed Planar Reach-
ability Is in Unambiguous Log-Space”. In: ACM Trans. Comput. Theory 1 (2009).

[Bus97] Samuel R Buss. “Bounded arithmetic and propositional proof complexity”. In: Logic
of computation. Springer, 1997, pp. 67–121.

[CH22] Kuan Cheng and William M. Hoza. “Hitting Sets Give Two-Sided Derandomization
of Small Space”. In: Theory Comput. 18 (2022), pp. 1–32.

49

https://doi.org/10.1007/S00224-017-9784-7
https://doi.org/10.1017/JSL.2013.37
https://doi.org/10.1017/JSL.2013.37

[CHL+23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. “Range Avoidance, Remote
Point, and Hard Partial Truth Table via Satisfying-Pairs Algorithms”. In: STOC.
ACM, 2023, pp. 1058–1066. doi: 10.1145/3564246.3585147.

[CHR24] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. “Symmetric Exponential Time Re-
quires Near-Maximum Circuit Size”. In: Proceedings of the 56th Annual ACM Sym-
posium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28,
2024. Ed. by Bojan Mohar, Igor Shinkar, and Ryan O’Donnell. ACM, 2024, pp. 1990–
1999. doi: 10.1145/3618260.3649624. url: https://doi.org/10.1145/3618260.
3649624.

[CJS+21] Lijie Chen, Ce Jin, Rahul Santhanam, and RyanWilliams. “Constructive Separations
and Their Consequences”. In: Proc. 62nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 2021, pp. 646–657.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. “Optimal Error Pseudodistributions for
Read-Once Branching Programs”. In: Proc. 35th Annual IEEE Conference on Com-
putational Complexity (CCC). 2020, 25:1–25:27.

[CL24] Yilei Chen and Jiatu Li. “Hardness of Range Avoidance and Remote Point for Re-
stricted Circuits via Cryptography”. In: Proceedings of the 56th Annual ACM Sym-
posium on Theory of Computing. 2024, pp. 620–629.

[CLM+24] James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. “The Structure of Catalytic
Space: Capturing Randomness and . . . ” In: Electron. Colloquium Comput. Complex.
TR24-106 (2024). ECCC: TR24-106. url: https://eccc.weizmann.ac.il/report/
2024/106.

[CLO+23] Lijie Chen, Zhenjian Lu, Igor Carboni Oliveira, Hanlin Ren, and Rahul Santhanam.
“Polynomial-Time Pseudodeterministic Construction of Primes”. In: arXiv preprint
arXiv:2305.15140 (2023).

[CM20] James Cook and Ian Mertz. “Catalytic approaches to the tree evaluation problem”.
In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2020. ACM, 2020, pp. 752–760.

[CM23] James Cook and Ian Mertz. “Tree Evaluation is in Space O(log n · log log n)”. In:
Electron. Colloquium Comput. Complex. TR23-174 (2023). ECCC: TR23-174. url:
https://eccc.weizmann.ac.il/report/2023/174.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity.
Cambridge University Press, 2010.

[CRS95] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. “Randomness-optimal unique
element isolation with applications to perfect matching and related problems”. In:
SIAM Journal on Computing 24.5 (1995), pp. 1036–1050.

[CRT+20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. “On Exponential-Time
Hypotheses, Derandomization, and Circuit Lower Bounds”. In: Proc. 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 2020, pp. 13–23.

[CRT22] Lijie Chen, Ron D. Rothblum, and Roei Tell. “Unstructured Hardness to Average-
Case Randomness”. In: Proc. 63rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS). 2022, pp. 429–437.

50

https://doi.org/10.1145/3564246.3585147
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649624
TR24-106
https://eccc.weizmann.ac.il/report/2024/106
https://eccc.weizmann.ac.il/report/2024/106
TR23-174
https://eccc.weizmann.ac.il/report/2023/174

[CT21a] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform, Non-Black-
Box, and Instance-Wise”. In: Proc. 62nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 2021, pp. 125–136.

[CT21b] Lijie Chen and Roei Tell. “Simple and fast derandomization from very hard functions:
Eliminating randomness at almost no cost”. In: Proc. 53st Annual ACM Symposium
on Theory of Computing (STOC). 2021, pp. 283–291.

[CT23a] Lijie Chen and Roei Tell. “Guest column: New ways of studying the BPL = P
conjecture”. In: ACM SIGACT News 54.2 (2023), pp. 44–69.

[CT23b] Lijie Chen and Roei Tell. “When Arthur has Neither Random Coins nor Time to
Spare: Superfast Derandomization of Proof Systems”. In: Proc. 55th Annual ACM
Symposium on Theory of Computing (STOC). 2023, pp. 60–69.

[CTW23] Lijie Chen, Roei Tell, and Ryan Williams. “Derandomization vs Refutation: A Uni-
fied Framework for Characterizing Derandomization”. In: Proc. 64 Annual IEEE
Symposium on Foundations of Computer Science (FOCS). To appear. 2023.

[CW19] Lijie Chen and R. Ryan Williams. “Stronger Connections Between Circuit Analysis
and Circuit Lower Bounds, via PCPs of Proximity”. In: Proc. 34th Annual IEEE
Conference on Computational Complexity (CCC). 2019, 19:1–19:43.

[DGJ+12] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.
“Randomized and Symmetric Catalytic Computation”. In: Computer Science - The-
ory and Applications - 15th International Computer Science Symposium in Russia,
CSR 2020. 2012.

[DKM+13] Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe. “Is
Valiant-Vazirani’s isolation probability improvable?” In: Computational Complexity
22.2 (2013), pp. 345–383.

[DMO+22] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly Optimal
Pseudorandomness From Hardness”. In: Journal of the ACM 69.6 (2022), pp. 1–55.

[DPT24] Dean Doron, Edward Pyne, and Roei Tell. “Opening Up the Distinguisher: A Hard-
ness to Randomness Approach for BPL = L that Uses Properties of BPL”. In: Proc.
56th Annual ACM Symposium on Theory of Computing (STOC). 2024.

[DT23] Dean Doron and Roei Tell. “Derandomization with Minimal Memory Footprint”.
In: Proc. 38 Annual IEEE Conference on Computational Complexity (CCC). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[FSU+13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. “On beat-
ing the hybrid argument”. In: Theory of Computing 9 (2013), pp. 809–843.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random
functions”. In: J. ACM 33.4 (1986), pp. 792–807.

[GGN+23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi.
“Range Avoidance for Constant-Depth Circuits: Hardness and Algorithms”. In: CoRR
abs/2303.05044 (2023). doi: 10.48550/arXiv.2303.05044. arXiv: 2303.05044.
url: https://doi.org/10.48550/arXiv.2303.05044.

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, An-

tonina Kolokolova, and Avishay Tal. “AC0[p] Lower Bounds Against MCSP via the
Coin Problem”. In: 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. 2019.

51

https://doi.org/10.48550/arXiv.2303.05044
https://arxiv.org/abs/2303.05044
https://doi.org/10.48550/arXiv.2303.05044

[GJS+19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. “Unambigu-
ous Catalytic Computation”. In: 39th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2019. Vol. 150.
LIPIcs. 2019, 16:1–16:13.

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-core Predicate for All One-way Func-
tions”. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC).
1989, pp. 25–32.

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. “Range Avoidance for Low-
Depth Circuits and Connections to Pseudorandomness”. In: APPROX/RANDOM.
Vol. 245. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 20:1–
20:21. doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.20.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001. isbn: 0-521-79172-3. doi: 10.1017/CBO9780511546891.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New York,
NY, USA: Cambridge University Press, 2008.

[Gol11a] Oded Goldreich. “A Sample of Samplers: A Computational Perspective on Sam-
pling”. In: 2011.

[Gol11b] Oded Goldreich. “In a World of P = BPP”. In: Studies in Complexity and Cryptog-
raphy. Miscellanea on the Interplay Randomness and Computation. 2011, pp. 191–
232.

[Gol11c] Oded Goldreich. “Two Comments on Targeted Canonical Derandomizers”. In: Elec-
tronic Colloquium on Computational Complexity: ECCC (2011).

[Gol18] Oded Goldreich. “On doubly-efficient interactive proof systems”. In: Foundations
and Trends® in Theoretical Computer Science 13.3 (2018).

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. “Is Untrusted Randomness Helpful?” In: Proc.
14 Conference on Innovations in Theoretical Computer Science (ITCS). Vol. 251.
LIPIcs. 2023, 56:1–56:18.

[GST19] Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari. “Reachability in O(log
n) Genus Graphs is in Unambiguous Logspace”. In: 36th International Symposium
on Theoretical Aspects of Computer Science, STACS 2019. 2019.

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “Simplified derandomization of
BPP using a hitting set generator”. In: Studies in complexity and cryptography.
Vol. 6650. Lecture Notes in Computer Science. Springer, Heidelberg, 2011, pp. 59–67.

[GW00] Oded Goldreich and Avi Wigderson. “On Pseudorandomness with respect to Deter-
ministic Observers”. In: Electron. Colloquium Comput. Complex. TR00-056 (2000).
ECCC: TR00-056. url: https://eccc.weizmann.ac.il/eccc-reports/2000/
TR00-056/index.html.

[GW96] Anna Gál and Avi Wigderson. “Boolean complexity classes vs. their arithmetic
analogs”. In: Random Struct. Algorithms 9.1-2 (1996), pp. 99–111.

[GZ11] Oded Goldreich and David Zuckerman. “Another Proof That BPP subset PH (and
More)”. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation. Ed. by Oded Goldreich. Vol. 6650. Lecture
Notes in Computer Science. Springer, 2011, pp. 40–53.

52

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.1017/CBO9780511546891
TR00-056
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-056/index.html
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-056/index.html

[Hel86] Hans Heller. “On Relativized Exponential and Probabilistic Complexity Classes”.
In: Inf. Control. 71.3 (1986), pp. 231–243.

[HH23] Pooya Hatami and William M. Hoza. “Theory of Unconditional Pseudorandom Gen-
erators”. In: Electronic Colloquium on Computational Complexity: ECCC (2023).

[HIL+99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A Pseudo-
random Generator from any One-way Function”. In: SIAM Journal on Computing
28.4 (1999), pp. 1364–1396.

[Hoe63] Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”.
In: Journal of the American Statistical Association 58 (1963), pp. 13–30.

[Hoz19] William M. Hoza. “Typically-correct derandomization for small time and space”. In:
Proc. 34th Annual IEEE Conference on Computational Complexity (CCC). 2019,
9:1–9:39.

[HU22] William M. Hoza and Chris Umans. “Targeted Pseudorandom Generators, Simula-
tion Advice Generators, and Derandomizing Logspace”. In: SIAM J. Comput. 51.2
(2022), pp. 17–281.

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. “Indistinguishability obfuscation,
range avoidance, and bounded arithmetic”. In: Proc. 55th Annual ACM Symposium
on Theory of Computing (STOC). [2023] ©2023, pp. 1076–1089.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponential circuits:
derandomizing the XOR lemma”. In: Proc. 29th Annual ACM Symposium on Theory
of Computing (STOC). 1997, pp. 220–229.

[Jeř04] Emil Jeřábek. “Dual weak pigeonhole principle, Boolean complexity, and derandom-
ization”. In: Ann. Pure Appl. Log. 129.1-3 (2004), pp. 1–37.

[Jeř07] Emil Jeřábek. “Approximate counting in bounded arithmetic”. In: J. Symb. Log.
72.3 (2007), pp. 959–993.

[KM02] Adam R. Klivans and Dieter van Melkebeek. “Graph Nonisomorphism Has Subex-
ponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses”. In: SIAM
Journal on Computing 31.5 (2002), pp. 1501–1526.

[Kor21] Oliver Korten. “The Hardest Explicit Construction”. In: 62nd IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022. IEEE, 2021, pp. 433–444.

[Kor22] Oliver Korten. “Derandomization from time-space tradeoffs”. In: Proc. 37th Annual
IEEE Conference on Computational Complexity (CCC). 2022.

[Kra07] Jan Krajıcek. “A proof complexity generator”. In: Proc. from the 13th International
Congress of Logic, Methodology and Philosophy of Science (Beijing. 2007.

[Kra95] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. En-
cyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.
isbn: 978-0-521-45205-2.

[KT16] Vivek Anand T. Kallampally and Raghunath Tewari. “Trading Determinism for
Time in Space Bounded Computations”. In: Proc. 41st International Symposium
on Mathematical Foundations of Computer Science. Ed. by Piotr Faliszewski, Anca
Muscholl, and Rolf Niedermeier. 2016.

53

[KV10] Jan Kyncl and Tomás Vyskocil. “Logspace Reduction of Directed Reachability for
Bounded Genus Graphs to the Planar Case”. In: ACM Trans. Comput. Theory 1
(2010).

[Lau83] Clemens Lautemann. “BPP and the polynomial hierarchy”. In: Information Process-
ing Letters 17.4 (1983), pp. 215–217.

[Lev87] Leonid A. Levin. “One-way functions and pseudorandom generators”. In: Combina-
torica 7.4 (1987), pp. 357–363.

[Li24] Zeyong Li. “Symmetric Exponential Time Requires Near-Maximum Circuit Size:
Simplified, Truly Uniform”. In: Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024. Ed.
by Bojan Mohar, Igor Shinkar, and Ryan O’Donnell. ACM, 2024, pp. 2000–2007. doi:
10.1145/3618260.3649615. url: https://doi.org/10.1145/3618260.3649615.

[LP20] Yanyi Liu and Rafael Pass. “On one-way functions and Kolmogorov complexity”. In:
Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS).
[2020] ©2020, pp. 1243–1254.

[Mer23] Ian Mertz. “Reusing Space: Techniques and Open Problems”. In: Bulletin of EATCS
141.3 (2023).

[MP19] Dieter van Melkebeek and Gautam Prakriya. “Derandomizing Isolation in Space-
Bounded Settings”. In: SIAM J. Comput. 48.3 (2019), pp. 979–1021.

[MP20] Moritz Müller and Ján Pich. “Feasibly constructive proofs of succinct weak circuit
lower bounds”. In: Ann. Pure Appl. Log. 171.2 (2020).

[MP23] Noam Mazor and Rafael Pass. “Counting Unpredictable Bits: A Simple PRG from
One-Way Functions”. In: Theory of Cryptography - 21st International Conference,
TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part I.
Ed. by Guy N. Rothblum and Hoeteck Wee. Vol. 14369. Lecture Notes in Computer
Science. Springer, 2023, pp. 191–218. doi: 10.1007/978-3-031-48615-9_7.

[MS23a] Dieter van Melkebeek and Nicollas Sdroievski. “Instance-Wise Hardness versus Ran-
domness Tradeoffs for Arthur-Merlin Protocols”. In: Proc. 38 Annual IEEE Confer-
ence on Computational Complexity (CCC). 2023.

[MS23b] Dieter van Melkebeek and Nicollas M. Sdroievski. “Leakage Resilience, Targeted
Pseudorandom Generators, and Mild Derandomization of Arthur-Merlin Protocols”.
In: 43rd IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science. Ed. by Patricia Bouyer and Srikanth Srinivasan. Vol. 284.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 29:1–29:22.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. “Matching is as easy
as matrix inversion”. In: Comb. 7.1 (1987), pp. 105–113.

[Nis91] Noam Nisan. “Pseudorandom bits for constant depth circuits”. In: Combinatorica
11.1 (1991), pp. 63–70.

[Nis93] Noam Nisan. “On Read-Once vs. Multiple Access to Randomness in Logspace”. In:
Theoretical Computer Science 107.1 (1993), pp. 135–144.

[Nis94] Noam Nisan. “RL ⊆ SC”. In: Computational Complexity 4 (1994), pp. 1–11.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal of Com-
puter and System Sciences 49.2 (1994), pp. 149–167.

54

https://doi.org/10.1145/3618260.3649615
https://doi.org/10.1145/3618260.3649615
https://doi.org/10.1007/978-3-031-48615-9_7

[PR23] Rafael Pass and Oren Renard. “Characterizing the Power of (Persistent) Random-
ness in Log-space”. In: Electronic Colloquium on Computational Complexity: ECCC
(2023).

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. “Certified Hardness vs. Randomness for
Log-Space”. In: 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023. 2023.

[PS21] Ján Pich and Rahul Santhanam. “Strong co-nondeterministic lower bounds for NP
cannot be proved feasibly”. In: STOC ’21. Ed. by Samir Khuller and Virginia Vas-
silevska Williams. 2021.

[Pyn24] Edward Pyne. “Derandomizing Logspace with a Small Shared Hard Drive”. In: 39th
Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor,
MI, USA. Ed. by Rahul Santhanam. Vol. 300. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024, 4:1–4:20.

[RA00] Klaus Reinhardt and Eric Allender. “Making Nondeterminism Unambiguous”. In:
SIAM J. Comput. 29.4 (2000), pp. 1118–1131.

[RR97] Alexander A. Razborov and Steven Rudich. “Natural proofs”. In: Journal of Com-
puter and System Sciences 55.1, part 1 (1997), pp. 24–35.

[RS98] Alexander Russell and Ravi Sundaram. “Symmetric Alternation Captures BPP”. In:
Comput. Complex. 7.2 (1998), pp. 152–162.

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. “On the Range Avoidance Prob-
lem for Circuits”. In: Proc. 63rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS). 2022.

[Sha49] Claude E. Shannon. “The synthesis of two-terminal switching circuits”. In: Bell Sys-
tem technical journal 28.1 (1949), pp. 59–98.

[Sip83] Michael Sipser. “A complexity theoretic approach to randomness”. In: Proc. 15th
Annual ACM Symposium on Theory of Computing (STOC). 1983, pp. 330–335.

[Sip88] Michael Sipser. “Expanders, randomness, or time versus space”. In: Journal of Com-
puter and System Sciences 36.3 (1988), pp. 379–383.

[Siv02] D. Sivakumar. “Algorithmic derandomization via complexity theory”. In: Proceedings
on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002. Ed. by
John H. Reif. ACM, 2002, pp. 619–626.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom generators without
the XOR lemma”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 236–
266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies and
a new pseudorandom generator”. In: Journal of the ACM 52.2 (2005), pp. 172–216.

[Sud97] Madhu Sudan. “Decoding of Reed Solomon Codes beyond the Error-Correction
Bound”. In: J. Complex. 13.1 (1997), pp. 180–193. doi: 10.1006/jcom.1997.0439.
url: https://doi.org/10.1006/jcom.1997.0439.

[SV22] Ronen Shaltiel and Emanuele Viola. “On Hardness Assumptions Needed for “Ex-
treme High-End” PRGs and Fast Derandomization”. In: Proc. 13 Conference on
Innovations in Theoretical Computer Science (ITCS). 2022.

55

https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/jcom.1997.0439

[SW13] Rahul Santhanam and R. Ryan Williams. “On medium-uniformity and circuit lower
bounds”. In: Proc. 28th Annual IEEE Conference on Computational Complexity
(CCC). IEEE, 2013, pp. 15–23.

[Tha02] Neil Thapen. “The weak pigeonhole principle in models of bounded arithmetic”.
PhD thesis. University of Oxford, 2002.

[Tod91] Seinosuke Toda. “PP is as hard as the polynomial-time hierarchy”. In: SIAM Journal
on Computing 20 (1991).

[Tre01] Luca Trevisan. “Extractors and Pseudorandom Generators”. In: Journal of the ACM
48.4 (2001), pp. 860–879.

[TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. “Lossless condensers,
unbalanced expanders, and extractors”. In: Combinatorica 27.2 (2007), pp. 213–240.

[TSZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. “Extractors from Reed-
Muller codes”. In: Journal of Computer and System Sciences 72.5 (2006), pp. 786–
812.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In: Journal of
Computer and System Sciences 67.2 (2003), pp. 419–440.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. Now Publishers, 2012.

[Val76] Leslie G. Valiant. “Relative complexity of checking and evaluating”. In: Information
Processing Letters 5.1 (1976/77), pp. 20–23.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. “NP is as Easy as Detecting Unique Solu-
tions”. In: Theor. Comput. Sci. 47.3 (1986), pp. 85–93.

[Wil13] R. Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial Lower
Bounds”. In: SIAM Journal on Computing 42.3 (2013), pp. 1218–1244.

[Wil16] Richard Ryan Williams. “Strong ETH breaks with Merlin and Arthur: short non-
interactive proofs of batch evaluation”. In: Proc. 31st Annual IEEE Conference on
Computational Complexity (CCC). Vol. 50. 2016, 2:1–2:17.

[Yao82] Andrew C. Yao. “Theory and Application of Trapdoor Functions”. In: Proc. 23rd An-
nual IEEE Symposium on Foundations of Computer Science (FOCS). 1982, pp. 80–
91.

A D2P Centric Proofs of Classical Results

We present new proofs for two classical results in complexity theory. Our proofs are interesting for
two reasons: Conceptually, the main notion in the proofs is a D2P transformation; and technically,
the new proofs are simple and appealing.

Specifically, we present proofs of the following:

1. Derandomization of prBPP reduces to derandomization of prRP. We provide alternative
proofs for both known “flavors” of this result.

2. MA ⊆ S2P (and hence also BPP ⊆ S2P).

56

A.1 Proof overviews

One-sided to two-sided derandomization. Recall that prBPP ⊆ prRPprRP, as proved by [Sip83;
Lau83; BF99; GZ11]. More generally, there are two known types of reductions of derandomization
of BPP to derandomization of RP: The first only relies on the assumption that RP can be deran-
domized, but incurs a large time overhead (in the derandomization of BPP); and the second relies
on the stronger assumption that RP can be derandomized in a black-box way (i.e., using hitting-set
generators), and only incurs a polynomial time overhead. In more detail:

Theorem A.1 (derandomization of BPP using hitting-sets; see [ACR98; ACR+99; GVW11], and
also [NW94; IW97; Uma03]). There is a constant c ≥ 1 such that the following holds for every
time bound T (n) satisfying that T (n)k ≤ T (nO(k)). If there exists a hitting set for circuits of size
n computable in time T (n), then prBPTIME[n] ⊆ prDTIME[T (nc)].42

Theorem A.2 (derandomization of BPP from derandomization of RP; see [Sip83; Lau83; BF99;
GZ11; CH22]). There is a constant c ≥ 1 such that for every time bound T (n) satisfying that
T (n)k ≤ T (nO(k)), if prRTIME[n] ⊆ prDTIME[T (n)] then prBPTIME[n] ⊆ prDTIME[T (T (nc))].

The main idea behind our alternative proofs for both Theorem A.1 and Theorem A.2 is very
simple, as explained next.

(Proof idea of Theorem A.1). Assume that there is a hitting-set generator as in the hypothesis.
Then, given any circuit C, the HSG contains “suffixes” that derandomize Yao’s transformation
of C to predictors (as in Lemma C.4). We can then construct a distribution that isn’t predicted
by these predictors, using efficient diagonalization (i.e., as in Lemma 4.2, following [GW00]).
This distribution is pseudorandom for C by the security of the D2P transformation.

(Proof idea of Theorem A.2). Consider a probabilistic algorithm P1 that gets as input a circuit
C and a distribution D, and tests whether or not Yao’s transformation (applied to C) yields,
whp, a predictor for D. (In particular, when C is a distinguisher for D, the algorithm P1

accepts whp.)

Now, consider inputs (C,D) with the following promise: Either C is a distinguisher for D,
or D is unpredictable by any efficient predictor. Note that in the latter case, P1 rejects with
probability 1;43hence, on inputs satisfying this promise, P1 has one-sided error. Hence, by our
assumption, there is a deterministic algorithm P̃1 that gets as input (C,D) and solves this
promise problem.

Given as input a circuit C and a bit σ ∈ {0, 1}, which we think of as indicating whether the
acceptance probability of C is high, we design a probabilistic algorithm A that decides whether
σ is indeed correct, whp, and that has one-sided error (i.e., when σ is incorrect A always rejects).
Since A has one-sided error, the foregoing problem can also be solved deterministically.

42The reason for crediting [NW94; IW97; Uma03] for this result is that the “hardness vs randomness” framework
can be used to prove the result. Specifically, if there are polynomial-time computable hitting-set generators for
linear-sized circuits, then there is a function in E = DTIME[2O(n)] that is hard for circuits of size 2ε·n (for some
n ∈ N), and hence there exist polynomial-time computable pseudorandom generators for linear-sized circuits (and
thus prBPP = prP). Using the results of [Uma03], this statement also scales smoothly quantitatively (i.e., slower
hitting-set generators yield slower pseudorandom generators).

57

Specifically, given (C, σ), the algorithm A draws a random D and outputs

I
[
|E[C(D)]− σ| < 1/10

]
∧ ¬P̃1(C,D).

For any input (C, σ), almost all distributions D will be both pseudorandom for C and unpre-
dictable by any efficient predictor, and thus A outputs the correct answer whp. On the other
hand, when σ is incorrect, A always rejects: This is since if |E[C(D)]− σ| < 1/10, then Yao’s
transformation succeeds with high probability (since C is a distinguisher for D), in which case
P̃1(C,D) = 1.

Note that the alternative proof of Theorem A.2 above incurs the same overhead as in the pre-
vious proofs of this result. Specifically, the algorithm A runs P̃1, whose running time is T (by the
derandomization assumption), and hence A runs in time poly(T); after invoking the derandomiza-
tion hypothesis on A, we get a deterministic algorithm that runs in time poly(T (poly(T))).

Upper bounds for MA. Finally, we give two simple proofs of the best-known upper bound for
MA (which also yields an upper bound for BPP), originally due to Russell and Sundaram [RS98]:

Proposition A.3. We have that (BPP ⊆)MA ⊆ S2P.

For clarity, we recall the standard definitions of S2P and of MA.

Definition A.4. A language L ∈ S2P if there is a polynomial-time algorithm V (x, g0, g1) (called
the verifier) and a polynomial p(n) such that:

• For x ∈ L, there exists g1 ∈ {0, 1}p(n) (i.e. the strategy of the YES-player) such that for every
g0 ∈ {0, 1}p(n) (i.e. the strategy of the NO-player), V (x, g0, g1) = 1.

• For x /∈ L, there exists g0 ∈ {0, 1}p(n) (i.e. the strategy of the NO-player) such that for every
g1 ∈ {0, 1}p(n) (i.e. the strategy of the YES-player), V (x, g0, g1) = 0.

Definition A.5. A language L ∈MA if there is a polynomial-time algorithm V (x, g, r) (called the
verifier) and a polynomial p(n) such that:

• Completeness. For x ∈ L, there exists g ∈ {0, 1}p(n) (which we call a witness) such that
E[V (x, g,Up(n))] > 9/10.

• Soundness. For x /∈ L, for every g ∈ {0, 1}p(n), we have E[V (x, g,Up(n))] < 1/10.

(Idea of the the first proof). Given a statement x, the “yes” prover PYES is supposed to
provide a proof π and a D2P transformation (i.e., predictors) P for the corresponding distin-
guisher Vx,π(·) = V (x, π, ·), and the “no” prover PNO is supposed to provide a distribution
D unpredictable by all efficient procedures. The verifier checks that the predictors P do not
predict D, and if this is true, it uses D as pseudorandom coins for Vx,π.

When x ∈ L, PYES can provide π and a correct D2P P, in which case any D that is unpre-
dictable by P is pseudorandom for Vx,π (and the verifier can recognize D’s that are predictable
by P, and accept). When x /∈ L, PNO can provide an unpredictable distribution, which is
necessarily pseudorandom for Vx,π (and thus the verifier will not accept any proof of PYES).

43This is because P1 first runs Yao’s transformation (using randomness), and then tests deterministically whether
the resulting procedure is a predictor for D.

58

(Idea of the second proof). Our second proof does not use the notion of D2P, but it was
motivated by the idea of certifying one derandomization with another derandomization. For
the latter, the verifier expects both PYES and PNO to provide distributions DY ,DN that are
pseudorandom for all small circuits. The key observation is that at least one player will always
want the verifier to accurately estimate the acceptance probability of the verifier circuitM(x, ·).
If the two distributions disagree on that expectation, we can duel the distributions against each
other using downward-self reducibility of CAPP on the circuitM(x, ·), and eventually determine
which distribution was not in fact pseudorandom.

A.2 Formal Proofs

We now formalize each argument. We will need the following probabilistic construction:

Fact A.6. There is a constant c > 0 such that for every n, S ∈ N and ε > 0, a random multiset
D ⊆ {0, 1}n of size (nS/ε)c satisfies the following with probability 1 − exp(−Ω(S)): No circuit
of size S on at most n bits predicts D with advantage ε, nor distinguishes D from the uniform
distribution Un with advantage ε.

Proof. Let c be sufficiently large and ℓ ≜ (nS/ε)c. Fix any n, S ∈ N and ε > 0. Let D ⊆ {0, 1}n be
a random multiset of size ℓ, and x(i) ∈ {0, 1}n be the i-th string in D.

• For every i ∈ [n] and every circuit C : {0, 1}i−1 → {0, 1} of size S, we know by the Chernoff
bound (see Theorem 3.9) that the probability that C predicts the i-th bit of D with advantage
ε is at most 2 exp(−ε2ℓ/40). By the union bound, we know that with probability at most

2 exp(−ε2ℓ/40) · 2O(S logS) · n ≤ exp(−Ω(S)),

for every i ∈ [n] and every circuit C of size S, the i-th bit of D cannot be predicted by C
with advantage ε.

• Similarly, we can prove using the Chernoff bound and the union bound that with probability
exp(−Ω(S)), D cannot be distinguished from Un with advantage ε by any circuit of size S.

Thus, by the union bound, we know that with probability 1 − 2 exp(−Ω(S)) = 1 − exp(−Ω(S)),
the distribution D is neither predictable nor distinguishable from Un by circuits of size S.

A.2.1 Black-Box One-Sided to Two-Sided: Proof of Theorem A.1

By standard reductions, we may assume we are given a circuit C : {0, 1}n → {0, 1} of size n,
and wish to estimate E[C] to error (1/3). Let C : {0, 1}n → {0, 1} be the size n circuit to solve
CAPP for. By standard error-reduction results, we have a T (nc)-time computable (1/10n)-hitting
set for circuits of size n4 that read n bits, for some constant c > 0. Let this set be H ⊆ {0, 1}n.
Applying Lemma C.4, we have that H is a (m = 100n3, α = 1/10n)-BB Yao family for general
circuits. Therefore, observe that{

Pz,i,σ(x<i) = C(x<i ◦ σ1 ◦ z>i)⊕ σ2 : z ∈ H, i ∈ [n], σ ∈ {0, 1}2
}
← C

is a (m = 100n3, α = 1/10n)-D2P transformation for circuits of size n, and moreover given C
we can output the predictors P = (P1, . . . , Pt) in time poly(T (nc)). Finally, applying Lemma 4.2
and using that m ≥ n/α2, we have that there is a deterministic polytime algorithm that, given
P, outputs a distribution D of size poly(T (nc)) such that |E[C(D)] − E[C(Un)]| ≤ 1/3 (by the
security of the D2P transformation). Thus, we compute E[C(D)] and return this estimate. The
runtime follows as poly(T (nc)) ≤ T (nc′) for some constant c′.

59

A.2.2 Non-Black-Box One-Sided to Two-Sided: Proof of Theorem A.2

We first define the one-sided promise derandomization problem we consider:

Definition A.7. Let A be a one-sided derandomization algorithm that works as follows. On input
a circuit T : {0, 1}n → {0, 1} of size n:

• If E[T (Un)] = 0, then A(T) = 0.

• If E[T (Un)] ≥ 1/10n, then A(T) = 1.

• Otherwise, A(T) has arbitrary behavior.

Next, we create a test machine that takes in a circuit C of size n and a distribution D of size
nc and attempts to find a predictor for D by applying the one-sided derandomization algorithm
to Yao’s lemma. Then we ask our one-sided derandomization algorithm to find D that cannot be
broken by this machine. Since almost all distributions will have no small predictors, most D satisfy
this property, but any D that induces a bad estimate of the expectation will fail the test.

Algorithm 1: TryBreakD(C,D, e)

1 if |E[C(D)]− e| > 1/5 then
2 return 0
3 end
4 for i ∈ [n], σ ∈ {0, 1}2 do
5 Let TC,D,σ,i(z) be the circuit that accepts if advD(Pz,σ,i) ≥ 1/10n.
6 if A(TC,D,σ,i) = 1 then
7 return 0
8 end

9 end
10 return 1

LetM be the machine implementing Algorithm 1. We first prove some useful claims.

Claim A.8. For every C with E[C] < 1/10 and D supported over {0, 1}n that has no advantage
(1/10n) predictors of size size(C) + 2n, we haveM(C,D, 0) = 1.

Proof. First, by Yao’s lemma (see Lemma 3.8) we have that D has no (1/10)-distinguishers of size
size(C). Thus, we must have |E[C(D)]− E[C(Un)]| ≤ 1/10, and hence

|E[C(D)]− e| ≤ |E[C(D)]− E[C(Un)]|+ |E[C(Un)]− e| ≤ 1

10
+

1

10
,

so we do not reject on the first line. Furthermore, every circuit TC,D,σ,i produced in the loop has
expectation exactly 0 (as any z and TC,D,σ,i such that TC,D,σ,i(z) = 1 would imply a (1/10n)-
predictor for D of size size(C) + 2n), and hence A will return 0 and we will not reject.

Next, depending on e (which we think of as a guess of the expectation of C) the algorithm
either accepts almost all distributions, or no distributions:

Claim A.9. The following holds for an absolute constant c. For every C : {0, 1}n → {0, 1},
if E[C(Un)] < 1/10 then, letting D be a random distribution over {0, 1}n of size nc uniformly
sampled as D← U(({0, 1}n)nc

), we have:

60

• E[M(C,D, 0)] ≥ 1− 1/(10nc+1)

• E[M(C,D, 1)] = 0

And vice-versa if E[C(Un)] > 9/10.

Proof. We only demonstrate the case that E[C(Un)] < 1/10, while it is easy to verify that an
analogous argument holds if E[C] > 9/10.

• For the e = 0 case, we have the following. Choosing c sufficiently large as in Fact A.6, we
have that almost all distributions D of size nc satisfy the condition of Claim A.8, so we obtain
the desired result.

• For the e = 1 case, we assume that E[C(D)] ≥ 8/10 since otherwiseM(C,D, e) returns 0 in
its first line. Then we have

|E[C(Un)]− E[C(D)]| ≥ 8/10− 1/10,

so by Lemma 3.8 there is i ∈ [n] and σ ∈ {0, 1}2 such that with probability 1/10n over z, the
Yao predictor Pz,σ,i satisfies

advD(Pz,σ,i) ≥
1

10n
.

But then the test circuit TC,D,σ,i has expectation at least 1/10n, so the inner algorithm A
will evaluate to 1 on this circuit, and the overall algorithm will return 0.

We can then prove Theorem A.2. By the assumption and standard error reduction results, there
is a machine A running in time T (nO(1)) with the behavior of Definition A.7, where O(1) hides an
absolute constant. We instantiate the algorithmM of Line 1 with this machine, and observe that
M can be represented as a circuit of size poly(T (nO(1))) = T (nO(1)).

Let C : {0, 1}n → {0, 1} be a circuit of size n that we need to estimate the expectation of to error
(1/3). By standard error reduction results, we may assume without loss of generality that either
E[C(Un)] < 1/10 or E[C(Un)] > 9/10. Let T2(D) ≜M(C,D = ·, e = 0) be the circuit obtained
fromM by fixing C and e as inputs. Our derandomization algorithm runs the machine A on this
circuit, and return the negation of A(T2). The correctness of our algorithm follows from Claim A.9:

• if E[C(Un)] < 1/10, T2 will accept all but a 1/|D| fraction of its inputs, and thus A(T2) will
accept and our algorithm will reject;

• if E[C(Un)] > 9/10, T2 will reject all its inputs, and thus A(T2) will reject and our algorithm
will accept.

Moreover, by the runtime bound on A and the bound on the size of T2, our overall runtime becomes
poly(T (poly(T (nO(1))))) ≤ T (T (nc)) for an absolute constant c.

A.2.3 Upper Bounds for MA

Recall that we give two proofs, where the first relies on D2P, and the second is more direct (though
inspired by the same notions).

61

First proof of Proposition A.3 Fix an arbitrary MA language L. For its MA verifier V , we
define Tx,g(r) ≜ V (x, g, r) be the circuit, and without loss of generality (by padding) we assume
that T : {0, 1}n → {0, 1} is of size n. We now give the S2P protocol.

• The YES-player submits a witness g and an (∞, 1/10n)-D2P transformation P for the circuit
Tx,g(r) = V (x, g, r), where the size of each predictor is at most s = nc for a constant c. Note
that such a transformation always exists by Theorem B.1.

• The NO-player submits a distribution DN over {0, 1}n of size poly(n) such that DN has no
(1/10n)-predictors of size s, which always exists by Fact A.6.

Then the verifier works as follows. It first checks if there is a P ∈ P such that advDN
(P) > 1/10n.

In this case, we know that the NO-player did not submit a truly unpredictable distribution, and the
verifier immediately accepts. Otherwise, the verifier uses Er←DN

[Tx,g(r)] to estimate the acceptance
probability of Tx,g(r), and accepts if and only if the estimated acceptance probability of Tx,g(r) is
greater than 2/3.

We now argue correctness of the protocol.

• For x ∈ L, if the YES-player submits a witness g and a D2P transformation P for Tx,g, for
any strategy DN of the NO-player, either DN is predictable by P and the verifier accepts,
or the circuit C fails to (1/10)-distinguish DN and the uniform distribution by Yao’s lemma
(see Lemma 3.8) and then

E
r←DN

[Tx,g(r)] ≥ E
r←UN

[Tx,g(r)]−
1

10
≥ 2

3
.

(The second inequality follows from the completeness of the MA protocol.)

• For x ∈ L, if the NO-player submits a distribution DN with no small predictors, the verifier
will use E[Tx,g(DN)] to estimate the acceptance probability. Note that C fails to (1/10)-
distinguish DN and the uniform distribution by Yao’s lemma (see Lemma 3.8), and then

E
r←DN

[Tx,g(r)] ≤ E
r←UN

[Tx,g(r)] +
1

10
≥ 2

3
.

(The second inequality follows from the soundness of the MA protocol.)

Second proof of Proposition A.3. We rely on the following lemma, which takes two competing
algorithms, one of which is guaranteed to solve PCAPP, and “duels” the algorithms to find the
correct one.

Lemma A.10 (dueling PCAPP algorithms). There is a deterministic polynomial-time algorithm
DUEL that takes in a parameter ε > 0, a circuit C : {0, 1}n → {0, 1} of size n, and two circuits
E0, E1 such that at least one of them is an ε-PCAPP algorithm for circuits of size n, and returns
ρ such that |ρ− E[C]| ≤ (4n+ 2)ε.

Proof. Recall that for x ∈ {0, 1}≤n and b ∈ {0, 1}, Eb(C, x) represents the estimate of Eb on C
with the first bits set to x. Let

gx ≜ |E0(C, x)− E1(C, x)|

be the gap between the estimates under the two machines. In the event that the machines disagree
on the expectation, we recursively identify a prefix under which they continue to disagree, eventually

62

enabling us to falsify the bad machine. Our algorithm works as follows. First, if g∅ ≤ (4n + 1)ε,
we return ρ = E0(C, ∅) and the triangle inequality gives the desired error bound. Otherwise, we
initialize x = ∅ and proceed in n stages. At the current stage with x ∈ {0, 1}i, we first check that
for both b, ∣∣∣∣Eb(C, x)−

Eb(C, x ◦ 0) + Eb(C, x ◦ 1)
2

∣∣∣∣ ≤ 2ε.

If this does not occur for Eb, it is easy to see that Eb cannot actually be an ε-PCAPP algorithm,
so we can reject it and return E¬b(C, ∅). Otherwise, if this holds for both E0 and E1, we have:

gx = |E0(C, x)− E1(C, x)|

≤
∣∣∣∣E0(C, x ◦ 0) + E0(C, x ◦ 1)

2
− E1(C, x ◦ 0) + E1(C, x ◦ 1)

2

∣∣∣∣+ 4ε

≤ gx◦0 + gx◦1
2

+ 4ε

so there is some p ∈ {0, 1} such that gx◦p ≥ gx − 4ε (and we can identify this value by checking
both). We set x ← x ◦ p and continue. Thus, after n steps we have either identified the correct
algorithm, or there is x ∈ {0, 1}n such that gx > ε, at which point we can compute C(x) and
determine which machine is wrong. Thus, we must at some point reject one of the algorithms, and
hence we can return the estimation of Ec(C, ∅) the correct algorithm Ec.

We can then prove the result. Fix any language L ∈ MA. For its MA verifier V , we define
Tx,g(r) ≜ V (x, g, r) be the circuit, and without loss of generality (by padding) we assume that
T : {0, 1}n → {0, 1} is of size n. We now give the S2P protocol for L.

• The YES-player is supposed to send a witness g and a distribution D1 of size nc that cannot
be (1/50n)-distinguished by circuits of size n (which we call a good distribution). Such a
distribution always exists per Fact A.6 for a sufficiently large constant c.

• The NO-player likewise is supposed to send a good distribution D0.

Then the verifier V constructs the circuit Tx,g(r) and applies Lemma A.10, where the machine Eb

simply takes the empirical average over Db, i.e., Eb(C, x≤i) ≜ Ez←Db
[C(x≤i ◦ z>i)]. Then:

V(x, (g,D1),D0) = I [DUEL(Tx,g,D1,D0) > 1/2]

As long as one of the players submits a good distribution, say Db, then Eb will be an (1/50n)-
PCAPP algorithm for circuits of size n. The verifier then estimates E[Tx,g(Un)] to error (1/10)
using the dueling algorithm and thus correctly decide the language. Formally:

• For x ∈ L, let g be a witness of the MA protocol and D1 a good distribution. Then the
YES-player submitting (g,D1) will result in

DUEL(Tx,g,D1,D0) ≥
2

3
− 4(n+ 2)

1

50n
>

1

2

so V will return 1.

• For x /∈ L, the NO-player submitting a good distribution D0 will result in

DUEL(Tx,g,D1,D0) ≤
1

3
+ 4(n+ 2)

1

50n
<

1

2

so V will return 0.

Thus, the S2P protocol correctly decides the language.

63

B The Parameters of D2P

In this section we prove several extensions and corollaries complementing our main equivalence for
D2P. In particular, we focus on understanding the parameters that we can hope to obtain for D2P
transformations.

In Appendix B.1, we prove lower bounds on the parameters achievable by D2P transformations
(even for weak classes of circuits), and provide a nearly-matching non-explicit construction. In
Appendix B.2, we show that a slightly non-trivial D2P transformation (or a slightly non-trivial
certified derandomization) would already lead to circuit lower bounds, following Williams’ algo-
rithmic method [Wil13]. Finally, in Appendix B.3, we study the best possible parameters possible
for explicit D2P transformations, and obtain an equivalence between optimal D2P and superfast
derandomization, assuming the existence of OWFs.

B.1 Existential Bounds on D2P

We first prove that D2P exists for every circuit, following Lemma 4.6. Recall that a majority gate
MAJ(x1, x2, . . . , xm) outputs 1 if and only if x1 + · · ·+ xm ≥ β, where x1, . . . , xm ∈ {0, 1} and β is
the parameter of the gate. Then:

Theorem B.1. For every circuit C : {0, 1}n → {0, 1} of size S, there is a (1/3)-distinguish to
(1/10n)-predict transformation P = (P1, . . . , PO(n2)) for C such that each Pi is an S · O(n4) size
circuit. Moreover, each Pi consists of a top MAJ gate fed by O(n3) circuits obtained from C by fixing
the last n− i input bits. (In particular, each Pi is a (TC0)C circuit of size O(n4).)

Proof. By Lemma 4.6, to construct a D2P transformation for a circuit C : {0, 1}n → {0, 1} of size
S, it suffices to give a circuit E that on input x< ∈ {0, 1}≤n, estimates Er[C(x< ◦ r)] up to error
1/10n. Note that there are at most n · 2n such prefixes, and hence by the Chernoff bound (see
Theorem 3.9) there is a distribution D over {0, 1}n of support size O(n3) such that for every prefix
x<, we have ∣∣∣∣ E

r←U
[C(x< ◦ r)]− E

y←D
[C(x< ◦ y>)]

∣∣∣∣ ≤ 1

10n

where U ≜ Un−|x<| and y> ≜ y>|x<|. Let E be the circuit such that

E(C, x<) = E
y←D

[C(x< ◦ y>)],

then by Lemma 4.6 we have that there exists a (1/3)-distinguish to (1/10n)-predict transformation
for C. The number of predictors is O(n2). Moreover, since the predictors in Lemma 4.6 output 1
if and only if E(C, x<) is larger than a threshold, each predictor Pi consists of a top MAJ gate fed
by O(n3) circuits C(x<i ◦ y≥i), where y ∈ D is of size n, so the size is as claimed.

Note that since we only need our pseudorandom set to fool every restriction of a fixed circuit
C of size S, rather than every restriction of every circuit of size S, we obtain a size blowup (and
number of predictors) that is independent of the size of C.

Next, we show that this construction is essentially tight, up to the polynomial dependence on
n. In particular, a generically valid D2P transformation for a class of circuits that contains AC0

2
44

on n input bits with size S must have the following three properties:

1. It must output Ω̃(n) predictors.

44AC0
d refers to AC0 circuits of depth d.

64

2. The size of the predictors must be Sδ, for a constant δ.

3. The guaranteed advantage must be at most Õ(1/n).

This essentially generalizes the “hybrid argument barrier” for constructing PRGs from hard truth
tables (see, e.g., [FSU+13; SV22]), as every reconstructive argument using D2P must pay for the
cost of each overhead. Finally, we remark that lower bounds hold even if we only consider D2P
with respect to natural and efficiently samplable distributions (as will be evident from the proofs).

For the lower bounds, we relax the definition of D2P transformation, by allowing each predictor
to read all but a single bit and then try to predict that bit.

Definition B.2. We say a set of functions (P1, . . . , Pt) are a weak D2P transformation for C if each
Pi gets as input x[n]\ji and attempts to predict the bit xji .

We prove these properties as follows. For the first and third property, we use the TRIBES
function, which we now define:

Definition B.3. Let TRIBESm,ℓ : {0, 1}m·ℓ → {0, 1} be the function where, on input (x1, . . . , xm)
where xi ∈ {0, 1}ℓ, computes:

TRIBESm,ℓ(x
1, . . . , xm) =

∨
i∈[m]

∧
j∈[ℓ]

xij .

We let Vi denote the bits corresponding to the i-th term of the tribes function for i ∈ [m]. Observe
that

E[TRIBESm,ℓ(U)] = 1− (1− 2−ℓ)m.

Observe that TRIBES can be computed by an AC0
2 circuit with m+ 1 gates and O(mℓ) wires.

A lower bound on the number of predictors. We show that any D2P (even a weak one)
must output Ω̃(n) predictors.

Proposition B.4. For every n ∈ N, there is an AC0
2 circuit C : {0, 1}n → {0, 1} of size n such

that any weak (1/3)-distinguish to α-predict transformation for C with α > 0 must output at least
n/2 log(n) predictors.

Proof. Let C = TRIBESm,2 logm where m = n/2 log(n) (note that indeed 2m log(m) ≤ n).45 Observe
that E[C(Un)] = o(1). Fix an arbitrary weak D2P transformation (P1, . . . , Pt) for C, and assume
towards a contradiction that t < m.

Recall that ji ∈ [n] is the bit that Pi attempts to predict. Since t < m, there is some term V
such that ji /∈ V for every i ∈ [t]. Then let D be the distribution that is uniform on [m] \ V and
equal to 12 logm on V . It is easy to see that C(D) = 1 (and hence C (1/3)-distinguishes D from
Un), yet no predictor attempts to predict an index where D is not uniform, so the transformation
cannot obtain nonzero advantage.

An upper bound on the prediction advantage. We show that any D2P (even a weak one)
cannot output predictors that succeed with advantage more than Õ(1/n).

Proposition B.5. For every n ∈ N, there is an AC0
2 circuit C : {0, 1}n → {0, 1} such that any

weak (1/3)-distinguish to α-predict transformation for C must have α ≤ 2 log n/n.

45For simplicity, we ignore rounding issues, as these do not substantially impact the proof.

65

Proof. We now let C = TRIBES2m,logm where m = n/ log(n) (note that again, 2m log(m) ≤ n).
Observe that now we have E[C(Un)] = 1 − o(1). Let ℓ = logm. In this case, let D be the
distribution that is sampled as follows. We sample the bits of each term independently. For each
term i, sample xi ← Uℓ uniformly at random. If xi = 1⃗ℓ, set the final bit to 0, and otherwise make
no changes. Observe that with this distribution we have E[C(D)] = 0 and hence there must be
a predictor with advantage 1/α. However, even just information-theoretically, every bit of D can
only be predicted with advantage at most 1/2ℓ−1 = 2/m = 2 log(n)/n.

A lower bound on the size of predictors. Finally, we show that a D2P transformation must
output predictors of size that scale with the size of the circuit C. This follows from the standard
analysis of the Nisan-Wigderson generator (see, e.g., [AB09, Chapter 18]). For simplicity, we will
use the stronger version Theorem 6.15 from [DPT24] that has been discussed in Section 6.3.

Fact B.6 ([Sha49]). For every n ∈ N, there is a truth table h on n input bits such that every
circuit computing h has size greater than 2n/O(n).

Proposition B.7. There is a fixed constant δ > 0 such that for every n, S ∈ N where S ≤ 2n,
there is an AC0

2 circuit C : {0, 1}n → {0, 1} of size S such that every weak (1/3)-distinguish to
(1/10n)-predict transformation for C must contain a circuit of size at least Sδ.

Proof. Let s = log(S). Let cNW be the constant of Theorem 6.15, and choose εNW = 1/(4cNW).
Without loss of generality, we assume S ≤ 2n/8cNW

2
(as we can simply set S to this smaller size and

change the constant δ appropriately).
Next, let f ∈ {0, 1}S be a truth table on logS bits that is hard for circuits of size S1/2, which

exists per Fact B.6. Let NWf : {0, 1}t=4cNW
2 logS → {0, 1}n be the PRG of Theorem 6.15 with the

chosen parameters, where we furthermore truncate the output to n bits.46 Observe that the seed
length is t = 4cNW

2 logS ≤ n/2. Next, let C be the AC0
2 circuit of size O(2t) = O(S4cNW

2
) such

that
C(x) =

∧
y∈Im(NWf)

(x = y).

Observe that E[C] ≤ 2−n/2, yet letting D = NWf (Ut) we have E[C(D)] = 1. Thus, every D2P
transformation for C must contain a predictor for D. Now fix an arbitrary weak (∞, 10n)-D2P
transformation P for C. By the above, there must be P ∈ P such that advD(P) ≥ 1/10n.
Applying the reconstruction claim of Theorem 6.15, we have that there is an oracle circuit R of
size ScNW·εNW = S1/4 such that RP (x) = fx. Thus, as f does not have circuits of size S1/2, we have

size(R) size(P) ≥ size(RP) ≥ S1/2

and hence size(P) ≥ S1/4. Finally, we take S ← S1/4cNW
2
(and adjust δ appropriately) and so we

obtain the final result, with δ = 1/16cNW
2.

Remark B.8. We suspect that, under the assumption that one-way functions exist, the constant
δ > 0 in Proposition B.7 can be made arbitrarily close to 1.

B.2 Slightly Non-Trivial D2P and Certified Derandomization Imply Circuit
Lower Bounds

In this section, we show that slightly non-trivial D2P or certified derandomization suffice to imply
circuit lower bounds.

46If the output is less than n bits, we can simply set n to be the output length and apply the subsequent argument.

66

Slightly non-trivial D2P implies circuit lower bounds. The equivalence between D2P trans-
formation and derandomization is tight in parameters. Following Williams’ algorithmic method for
circuit lower bounds [Wil13], we prove that even a slightly non-trivial D2P transformation for a
restricted circuit class would imply lower bounds for that circuit class. Since we want a statement
that holds even for very weak circuit classes (i.e., every typical circuit class; see Section 3), we will
use a version of Williams’ method in [CW19] that is tight with respect to the class.

Theorem B.9 (non-trivial derandomization implies circuit lower bounds; [CW19]). There is an
absolute constant δ > 0 such that for every typical circuit class C, if there is a CAPP algorithm
for C circuits C : {0, 1}n → {0, 1} of size poly(n) with error δ that runs in 2n/nω(1) time, then
NEXP ⊈ C[poly(n)].

Relying on Theorem B.9, we prove the aforementioned connection between non-trivial D2P and
circuit lower bounds:

Theorem B.10 (non-trivial D2P implies circuit lower bounds). There is an absolute constant δ > 0
such that the following holds for every typical circuit class C. Assume that there is a deterministic
algorithm that gets a polynomial-size C-circuit C : {0, 1}n → {0, 1}, runs in time 2n/nω(1), and
outputs a δ-distinguish to α-predict transformation against m-size distributions for C, denoted
P = (P1, . . . , Pt), where α = 2−o(n), t = 2o(n),

∑
i size(Pi) ≤ α2 · 2n/nω(1) and m ≥ n/α2. Then

NEXP ⊈ C[poly(n)].

Proof. Let δ be the constant in Theorem B.9. Suppose that there is a 2n/nω(1) time deterministic
algorithm as described above, by Theorem B.9, it suffices to have a CAPP algorithm with error δ
for C circuits of size poly(n).

Our CAPP algorithm works as follows. We run the algorithm described above to obtain a D2P
transformation P = (P1, . . . , Pt) for C in 2n/nω(1)-time. We then call the algorithm in Lemma 4.2
with the parameter values m and α to produce a distribution D of size n/α2 = 2o(n) such that
for every i ∈ [t], advD(Pi) < α. Since P is a δ-distinguish to α-predict transformation against
m-size distributions for C, it follows that D must δ-fool C. Our CAPP algorithm then outputs
Ex←D[C(x)].

It remains to verify that the algorithm runs in 2n/nω(1) time. Our CAPP algorithm first calls
the algorithm in the assumption, which takes 2n/nω(1) time. The algorithm in Lemma 4.5 runs in
time

Õ

(
n

α2

t∑
i=1

size(Pi)

)
+ poly(tnα) ≤ 2n

nω(1)
,

and outputs a distribution of size |D| = n/α2 = 2o(n). Finally, computing Ex←D[C(x)] only takes
2o(n) time as C is of polynomial size.

This implies, for instance, that a slightly non-trivial D2P transformation for even depth-two
majority circuits would imply NEXP ⊈ THR ◦ THR, a frontier open problem in circuit complexity
(see, e.g., [CW19]).

Slightly non-trivial certified derandomization implies circuit lower bounds. Similarly,
we will show that a slightly non-trivial certified derandomization – even for restricted circuit classes,
and even in the relaxed notion of decision certified derandomization – implies circuit lower bounds.

Let C be a typical circuit class, let s = s(n) be a size bound, and let δ ∈ (0, 1/2) be a constant.
Recall that the problem C-GapUNSAT with parameters (s, δ) is defined as follows: Given a C-
circuit C : {0, 1}n → {0, 1} of size s(n), we should accept if Prr∈{0,1}n [C(r) = 1] = 0, and reject if
Pr[C(Un) = 1] ≥ 1− δ. Then:

67

Proposition B.11 (certified derandomization ⇒ GapUNSAT). Let C be a typical circuit class, let
δ ∈ (0, 1) be constant, and let s(n) = poly(n). Assume that for some ℓ(n) = 2o(n),47 there is a
property P = {Pn ⊆ {0, 1}ℓ}n∈N satisfying Pn ∩ {0, 1}ℓ(n) ̸= ∅ for every n ∈ N, and a decision
certified derandomization algorithm for s-size C-circuits using P with parameters δ0 = 0 and δ1 = δ
that, when given (C, τ) such that C has n input bits, runs in 2n/nω(1) · poly(|τ |).

Then, there is a nondeterministic 2n/nω(1)-time algorithm solving C-GapUNSAT with parameters
(s, δ). Moreover, for every input, for every non-deterministic guess w the algorithm either outputs
the correct answer or outputs ⊥, and there is at least one w such that the algorithm outputs the
correct answer.

Proof. Fix δ, s(n) = poly(n) and ℓ(n) = 2o(n) as described above. Let A be the certified deran-
domization algorithm using P with parameters (ℓ, s, δ). The nondeterministic algorithm works as
follows. Given any C-circuit C : {0, 1}n → {0, 1} of size s(n) that either rejects all inputs or accepts
at least a (1− δ)-fraction of the inputs, it nondeterministically guesses a string τ ∈ {0, 1}ℓ(n), and
if A(C, τ) =⊥ then outputs ⊥, and otherwise outputs ¬A(C, τ).

Observe that for every circuit C : {0, 1}n → {0, 1} in the promise of C-GapUNSAT:

• When τ ∈ Pn, then A(C, τ) =

{
1 Prr[C(r) = 1] ≥ 1− δ

0 Prr[C(r) = 1] = 0
. Thus, whenever the algorithm

guesses τ ∈ Pn, it outputs the correct answer.

• When τ /∈ Pn, then A(C, τ) ∈

{
{1,⊥} Prr[C(r) = 1] ≥ 1− δ

{0,⊥} Prr[C(r) = 1] = 0
. Thus, whenever the algo-

rithm guesses τ /∈ Pn, it either outputs the correct answer or ⊥.

• There is at least one τ ∈ Pn.

The running time of this algorithm is 2n/nω(1) · poly(|τ |) = 2n/nω(1).

Using the algorithmic method (specifically, the results of Chen and Williams [CW19]), a non-
trivial algorithm for certified derandomization implies circuit lower bounds. Specifically, we use the
following result:

Theorem B.12 (Theorem 5 and Remark 7 of [CW19]). There is an absolute constant δ ∈
(0, 1) such that the following holds for every typical circuit class C. Assume that there is a non-
deterministic algorithm that gets as input a C-circuit C : {0, 1}n → {0, 1} of size poly(n), runs in
time 2n/nω(1), and satisfies the following: For every non-deterministic guess the algorithm either
outputs ⊥ or solves GapUNSAT for C ; and there is at least one non-deterministic guess such that
the algorithm solves GapUNSAT for C. Then, NEXP does not have polynomial-sized C-circuits.

Corollary B.13 (certified derandomization implies circuit lower bounds). There is an absolute
constant δ ∈ (0, 1) such that the following holds for every typical circuit class C. If for some
ℓ(n) = 2o(n) and every s(n) = poly(n), there is a property P = {Pn ⊆ {0, 1}ℓ}n∈N satisfying
Pn ∩ {0, 1}ℓ(n) ̸= ∅ for every n ∈ N, and a decision certified derandomization algorithm for s-size
C-circuits using P with parameters δ0 = 0 and δ1 = δ that, when given (C, τ) such that C has n
input bits, runs in 2n/nω(1) · poly(|τ |). Then, NEXP does not have polynomial-sized C-circuits.

47The only reason for the assumption that ℓ(n) = 2o(n) is since we assume that the certified derandomization
algorithm runs in time poly(|τ |).

68

B.3 Near Optimal D2P and Superfast Derandomization

What are the best parameters for derandomized D2P that we can hope for? In Appendix B.1 we
prove lower bounds asserting that, when the number of bits in the unpredictable/pseudorandom
distribution is r, the number of predictors must be at least Ω̃(r) and the advantage can be at most
Õ(1/r) (even if we only focus on natural subclasses of distributions).

Note that the foregoing lower bounds hold with respect to the number of unpredictable or
pseudorandom bits r, but do not take into account the running time (or size) of the distinguisher
or predictor. Moreover, when derandomizing prBPP (or related class), there is usually also an
input x to the problem; that is, the distinguisher is a probabilistic machine that takes an input
x ∈ {0, 1}n and random coins s ∈ {0, 1}r, and tries to predict or distinguish s.

Since we now care about the best possible D2P, we will carefully distinguish between these pa-
rameters. In particular, we think of D2P transformations with respect to problem Π ∈ prBPTIME[T]
(rather than with respect to a fixed distinguisher). We define a notion of near optimal D2P as one
that essentially meets the lower bounds in Appendix B.1 while adding essentially no runtime over-
head:

Definition B.14 (near optimal D2P). Let Π be a promise problem that can be decided by a
probabilistic machine M running in time T = T (n) and using r = r(n) random coins. We say
that Π is admits a near optimal D2P transformation with respect to M if for every constant ε > 0,
there is an algorithm that gets input x ∈ {0, 1}n, runs in time T (n) ·n1+ε · poly(r(n)), and outputs
a (1/3)-distinguish to (1/10r(n))-predict transformation P = {P1, . . . , Pt} for the distinguisher
M(x, ·) : {0, 1}r → {0, 1}, where t = poly(r(n)).

Indeed, our definition allows overhead of poly(r) in the running time and in the number of
predictors (which is why we refer to it as “near optimal”). The reason is that our equivalence
result below tolerates this overhead (since it relies on one-way functions, which allow to reduce r to
r = T o(1); see below). However, we believe that a stricter definition also makes sense and is worth
investigating.

One might wonder, though, why we allow running time ≈ T ·n rather than require running time
≈ T . The reason is that there is a tight equivalence between D2P and derandomization, and under
reasonable assumptions the latter incurs such overhead. In particular, assuming one-way functions,
we prove a tight equivalence between near-optimal D2P and near-optimal derandomization (i.e.,
superfast derandomization). As shown by Chen and Tell [CT21b], following Williams [Wil16],
under the assumption #NSETH, worst-case derandomization of BPP must incur an overhead of
T 7→ n · T . Thus, we do not expect D2P that does not incur this overhead.

Following recent results studying superfast derandomization (see, e.g., [DMO+22; CT21b;
CT21a; CT23b; DT23; DPT24]), we will need to rely on an assumption. In particular, we rely
on the following assumption, which is implied by the existence of (non-uniformly secure) one-way
functions (see, e.g., [CT21b] for a standard explanation):

Assumption B.15 (near-linear-time PRGs with polynomial stretch). For every k ∈ N and ε > 0,

there exists a function Gcry : {0, 1}n → {0, 1}nk
such that for every circuit C : {0, 1}nk → {0, 1} of

size poly(n), we have that Gcry (1/nk)-fools C, and Gcry(x) runs in time nk+ε.

Theorem B.16 (near-optimal D2P is equivalent to near-optimal derandomization, assuming OWFs).
Suppose that Assumption B.15 is true. Then, the following statements are equivalent:

(1) For every polynomial T (n), problem Π ∈ prBPTIME[T (n)], and probabilistic T (n)-time algo-
rithm M for Π, Π admits a near optimal D2P transformation with respect to M .

69

(2) For every polynomial T (n) and every ε > 0, we have prBPTIME[T (n)] ⊆ DTIME[T (n)·n1+ε].

Proof. (1) ⇒ (2). Fix any polynomial T = T (n) and ε > 0. Let Π ∈ prBPTIME[T (n)], let M be a
probabilistic algorithm using r(n) = T (n) random bits, and fix an input x ∈ {0, 1}n. Using naive
error reduction, it suffices to distinguish between E[M(x,Ur)] ≥ 0.9 and E[M(x,Ur)] ≤ 0.1.

Let ε′ ≜ ε/c′ and r′ ≜ T ε′ for some sufficiently large constant c′ > 1 to be determined later,
and M ′(x, ·) : {0, 1}r′ → {0, 1} be the Turing machine defined as M ′(x, u) ≜ M(x,Gcry(u)), where
Gcry : {0, 1}r′ → {0, 1}T is the cryptographic PRG in Assumption B.15. Since the cryptographic
PRG Gcry is (1/T)-pseudorandom for any circuit of size poly(T), the machine M ′ solves the same
promise problem as M .48 Also, since Gcry runs in time T 1+ε′ , the running time of M ′ is O(T 1+ε′).
Since M ′ uses only r′ = T ε′ random coins, by (1), there is a near optimal D2P transformation for Π
with respect to M ′, and therefore we can obtain in time T (n)1+ε′ ·n1+ε′ ·poly(r′) a (1/3)-distinguish
to (1/10r′)-predict transformation P = {P1, . . . , Pt} for M ′(x, ·), where t = poly(r′).

We then apply the result of Lemma 4.2 with the transformation P and the parameter value α.
From this, we obtain a distribution D of size poly(r′) such that D (1/3)-fools M ′(x, ·) in time

Õ(T (n) · n1+ε′ · poly(r′)/α2) + poly(tr′/α) ≤ T (n) · n1+O(ε′).

We then compute ρ = E[M(x,Gcry(D))] in deterministic time T 1+ε′ ·n1+ε′ ·poly(r′) ≤ T (n)·n1+O(ε′)

and return ρ. The desired outcome follows by a sufficiently large choice of c′.
(2) ⇒ (1). Fix any polynomial T = T (n) and ε > 0. Let Π ∈ prBPTIME[T (n)] and M be an

T (n)-time probabilistic algorithm for Π using r = r(n) ≤ T (n) random bits.
Consider the following problem Π′: Given any x ∈ {0, 1}n, a prefix u ∈ {0, 1}≤r, and τ ∈ [10r],

decide whether E[M(x, u ◦ Ur−|u|)] ≥ τ/10r or E[M(x, u ◦ Ur−|u|)] < (τ − 1)/10r. (In other
words, the (1/10r)-PCAPP problem for M(x, ·).) Observe that the problem Π′ can be solved in
probabilistic time O(T (n) · poly(r)), by sampling sufficiently many strings of length r − |u| and
simulating M . The length of an input to Π′ is m = n+ r +O(log(10r)) = O(n+ r), and therefore
Π′ ∈ prBPTIME[T (n) · poly(r(n))] (where we use m to denote the input length of Π′). By our
assumption, Π′ ∈ DTIME[T (n) · poly(r(n)) ·m1+ε] (where m is the input length of Π′).

Now we describe the near optimal D2P transformation with respect to M . Fix any input
x ∈ {0, 1}n and consider the circuit C(·) ≜ M(x, ·) : {0, 1}r → {0, 1}. Using Lemma 4.6, we can
construct a (1/3)-distinguish to (1/10r)-predict transformation for C of size t = poly(r) in time

T (n) ·m1+ε · poly(r(n)) ≤ T (n) · n1+ε · poly(r(n))

by plugging the deterministic algorithm for Π′ (as the (δ/3r)-PCAPP algorithm E for δ = 1/3) into
each predictor in Lemma 4.6.

Universal superfast derandomization. The proof of Theorem B.16 has an interesting corol-
lary: Assuming OWFs, there is a universal two-sided error superfast derandomization algorithm
for any problem. That is, for any Π ∈ prBPP, there is a fixed algorithm such that if OWFs exist
and superfast derandomization is possible, the algorithm is a correct superfast derandomization
algorithm for Π when the input length is sufficiently large.

Note that universal derandomization (not necessarily a superfast one) is implied by the standard
reduction from two-sided error derandomization to one-sided error derandomization. Specifically,

48Recall that the computation of M on any input x as a function of the random coins (i.e., M(x, ·)) can be modeled
as a circuit of size Õ(T) ≤ poly(T).

70

recall that there is a universal one-sided error derandomization algorithm,49 and there is a reduction
of two-sided error derandomization to one-sided error derandomization [Sip83; Lau83; BF99; GZ11].

Relying on the ideas in the proof of Theorem B.16, we show a universal two-sided error deran-
domization algorithm that does not incur overheads. The crucial observation is that we can reduce
CAPP to D2P, and construct a universal D2P algorithm.

Corollary B.17 (universal superfast derandomization). For every polynomial T (n), ε > 0, and
problem Π = (ΠYES,ΠNO) ∈ prBPTIME[T (n)], there is a deterministic Turing machine DΠ running
in time T (n) · n1+O(ε) such that the following holds (where O(·) hides an absolute constant).

There is a polynomial T ′(n) = T (n) · nO(ε) such that if cryptographic OWFs secure against
polynomial-size circuits exist and prBPTIME[T ′(n)] ⊆ DTIME[T ′(n) · n1+ε], then for every suffi-
ciently large n and x ∈ {0, 1}n, DΠ(x) = 1 (resp. DΠ(x) = 0) if x ∈ ΠYES (resp. x ∈ ΠNO).

Proof. Fix any polynomial T (n), ε > 0, and Π ∈ prBPTIME[T (n)]. The algorithm DΠ(x) follows
“(1) ⇒ (2)” in the proof of Theorem B.16 with two exceptions.

• We instantiate a universal pseudorandom generator (i.e. a pseudorandom generator that is
secure as long as OWFs exist). For instance, we can use a universal OWF [Lev87; LP20] and
apply the standard transformation to construct a pseudorandom generator [HIL+99; MP23].
Moreover, we can assume without loss of generality (see, e.g., [Gol01]) that the PRG satisfies
the seed length and running time requirement in Assumption B.15.

• Let M be a probabilistic algorithm for Π, r ≤ T be randomness complexity of M . Assume
without of loss of generality that r = T . Let r′ = rε be the seed length of the cryptographic
PRG Gcry : {0, 1}r′ → {0, 1}r, and M ′ be defined as the proof of Theorem B.16.

To obtain a D2P for M ′, we enumerate the first O(log log n) Turing machines (under any
reasonable encoding), simulate them on input x for T (n) · n1+ε · r′d step for some constant
d to be determined later, and parse the outputs of the Turing machines as candidate (1/3)-
distinguish to (1/10r′)-predict transformations of size t = r′d.

• We then apply Lemma 4.2 with P being the union of all candidate D2P transformations and
with parameter α, to obtain a distribution D over {0, 1}r′ of size poly(r′) that (1/3)-fools
M ′(x, ·) (as long as one of the candidate D2P transformations is correct).

• Our algorithm accepts if and only if E[M ′(x,D)] > 0.51.

It is clear that the algorithm runs in time T (n) ·n1+ε ·r′O(d) = T (n) ·n1+O(ε) (where the constant
in O(·) on the exponent depends on d that will be determined later), and therefore it remains to
argue the correctness. Following “(2) ⇒ (1)” in the proof of Theorem B.16, we know that under
the assumptions of OWFs and superfast derandomization (for T ′(n) = T (n) ·poly(r′) = T (n) ·nO(ε)

time randomized algorithms), there is a deterministic T ′(n) · n1+ε · poly(r′) time algorithm such
that given x, outputs a (1/3)-distinguish to (1/10r′)-predict transformation for the distinguisher
M ′(x, ·) : {0, 1}r′ → {0, 1} of size t = poly(r′). Moreover, it can be verified that poly(r′) above hides
an absolute constant on the exponent that is independent of the assumption prBPTIME[T ′(n)] ⊆
DTIME[T ′(n) · n1+ε].

Therefore, for sufficiently large n, this algorithm will appear as one of the first O(log log n)
Turing machines. By setting d to be a sufficiently large constant (depending on the constant hidden

49Specifically, if prRP = prP then prBPP = prP, which implies the existence of a targeted PRG (see [Gol11b;
Gol11c]). Given input x, the universal derandomization algorithm enumerates the outputs of the first (say) log(n)
machines, trying to find a random string that will make the relevant machine M accept x.

71

in poly(r′) above), DΠ(x) will generate a correct D2P transformation and thus the distribution D
will (1/3)-fool M ′(x, ·). The correctness of DΠ then follows from the security of the pseudorandom
generator Gcry.

Remark B.18. Indeed, it is implicit in the proof of Corollary B.17 that the pseudorandom dis-
tribution D generated by the universal superfast derandomization algorithm DΠ is independent of
the problem Π.

C Alternate Derandomizations of Yao’s Transformation

In this section, we study two alternate notions of derandomization of Yao’s transformation that
are different from D2P and certified derandomization. We prove in Appendix C.1 that “black-
box” derandomization of Yao’s transformation is equivalent to the existence of hitting sets, which
implies (but may not be implied by) prBPP = prP. In Appendix C.2, we prove that a weaker
“non-black-box” derandomization of Yao’s transformation is equivalent to prBPP = prLOSSY,
which is (possibly) stronger than prBPP = prZPP but weaker than prBPP = prP.

C.1 Black-Box Yao Derandomization

We observe that a “maximally black box” derandomization of the Yao transformation is equivalent
to constructing hitting sets. We will first define this notion, which refers to finding a suitable
suffix for Yao’s transformation of distinguishers to predictors (see Lemma 3.8) that works for every
distribution D of fixed size.

Definition C.1 (black-box derandomization of Yao’s transformation). We say {Sn ⊆ {0, 1}n}n∈N
is an (m,α)-black-box Yao family (BB-Yao family) for C circuits if for every C ∈ C of size O(n), and
distribution D over {0, 1}n of size at most m that does not (1/3)-fool C, there is i ∈ [n], σ ∈ {0, 1}2,
and z ∈ Sn such that

Pr
x←D

[C(x<i ◦ σ1 ◦ z>i)⊕ σ2 = xi] >
1

2
+ α.

It is easy to show that (m,α)-BB-Yao family of size poly(m, 1/α) exists for every m = m(n)
and α = α(n) ≥ 1/(10n) using the probabilistic method. We note, however, that it is unclear
whether there is a (m = ∞, α)-BB-Yao family (beyond the trivial construction of including all
possible prefixes).50

This definition captures the most restricted strategy of derandomizing Yao’s transformation,
that of simply producing a set of suffixes that are good for every (fixed-size) bad distribution. We
remark that derandomizing Yao in this fashion has some advantages. In particular, the added
complexity of the predictor is essentially as low as possible (a negation of a projection circuit that
makes a single call to C).

We show that derandomizing Yao in this restricted fashion is equivalent to explicit constructions
of hitting sets.

Theorem C.2. The followings are equivalent for any typical class of circuits C such that (MAJ ◦
C)[s] ⊆ C[poly(s)]. 51

50Our existence proof for a BB-Yao family relies on a union bound over all bad distributions, of which there could
be doubly-exponentially many if m was unbounded.

51Note that MAJ denotes a majority gate with a threshold: Given x = x1 ◦ · · · ◦ xn, it outputs 1 if and only if
x1 + · · ·+ xn ≥ β for a parameter β of the gate.

72

(1) There is an explicit family of (1/2)-hitting sets Hn ⊆ {0, 1}n of size poly(n) for C[n].

(2) There is an explicit (m = 2, α = 1/10n)-BB-Yao family for C[n].

(3) For every k ∈ N, there is an explicit (m = nk, α = 1/10n)-BB-Yao family for C[n].

Observe that (3) immediately implies (2), so to complete the proof it suffices to show (1) ⇒
(3) and (2) ⇒ (1). Note that our assumption that C is typical allows us to assume we have a
(1/ poly(n))-HSG (i.e. reduce the error).

Remark C.3. We note that it is known (following a classic trick, see, e.g., [HH23, Theorem 4.1.2])
that the existence of an explicit family of (1/2)-hitting sets Hn for general Boolean circuits is
equivalent to E ⊈ i.o. SIZE[2Ω(n)], which itself implies an explicit family of (1/2−ε)-pseudorandom
sets for general Boolean circuits [NW94; IW97]. Thus, an explicit BB-Yao family for general circuit
is essentially equivalent to the existence of PRGs. Moreover, this fact holds also for weaker circuit
classes, in fact even for TC0 (see [DT23, Theorem 5.1]).

Proof of the equivalence. We first show that an HSG gives a BB-Yao family.

Lemma C.4. Let C be typical. Suppose H ⊆ {0, 1}n is a (1/10n)-hitting set for MAJ ◦ C circuits of
size 2 · nk+1. Then H is an (m = nk, α = 1/10n)-BB-Yao set for C circuits.

Proof. Fix an arbitrary distribution D ⊆ {0, 1}n of size nk such that D does not (1/3)-fool a
linear-size C circuit C. By Lemma 3.8, there exists i ∈ [n] and σ ∈ {0, 1}2 such that the following
holds:

Pr
z←Un−i

[
advD(Pz,σ,i) ≥

1

10n

]
≥ 1

10n

where Pz,σ,i is the Yao predictor defined as Pz,σ,i(x) = C(x<i◦σ1◦z)⊕σ2. Thus, the circuit TC,D that
takes in z and computes a = advD(Pz,σ,i) and accepts if a ≥ 1/10n satisfies Ez[TC,D(z)] ≥ 1/10n.
Moreover, the circuit has low complexity:

Claim C.5. TC,D is a MAJ ◦ C circuit of size m · size(C) + 1 ≤ 2nk+1.

Proof. Let D = (x1, . . . , xn
k
). The circuit first computes {C(xj<i ◦ z)}j∈[nk] in parallel in size

nk · size(C). Then the circuit uses the top MAJ gate to compute the advantage obtained by z (and
accepts if it is sufficiently high).

Thus, by the properties of the hitting-set there is z ∈ H such that TC,D(z) = 1. But then the
Yao predictor induced by this z predicts D with advantage at least (1/10n), and hence (as D was
arbitrary) we have that H induces a BB-Yao family with the claimed parameters.

Note that this proof requires that H hits circuits that we cannot explicitly construct (as we do
not have access to the bad distribution D), which is the reason why we require a hitting set. Next,
we show that any black-box Yao set implies a (closely related) hitting set.

Lemma C.6. Suppose Sn is a (m = 2, ρ)-black-box Yao family for C circuits, where ρ > 0 is
arbitrary. Then

H =
{
0⃗<i ◦ σ1 ◦ z>i, 1⃗<i ◦ σ1 ◦ z>i : i ∈ [n], σ1 ∈ {0, 1}, z ∈ Sn

}
is a (1/2)-hitting set for C[n].

73

Proof. Assume for contradiction this is not the case, i.e., there is a C circuit C : {0, 1}n → {0, 1}
of size n where E[C(Un)] ≥ 1/2 but C(u) = 0 for every u ∈ H. By construction, this implies
C (⃗1) = C (⃗0) = 0, and hence the distribution

D
def
=
{
1⃗, 0⃗
}

likewise fails to 0.49-fool C. Therefore, by the correctness of the BB-Yao set, there must be i ∈ [n],
σ ∈ {0, 1}2, and z ∈ S such that:

Pr
x←D

[C(x<i ◦ σ1 ◦ z≥i)⊕ σ2 = xi] ≥
1

2
+ ρ.

However, note that we have

C
(
1⃗<i ◦ σ1 ◦ z>i

)
= C

(
0⃗<i ◦ σ1 ◦ z>i

)
= 0

since otherwise H would hit C by construction. Therefore the predictor must predict P (⃗1<i) =
P (⃗0<i) = σ2, i.e. output the same value on both prefixes. But over x ← D, the marginal distri-
bution of the i-th bit is exactly uniform, and hence such a predictor cannot achieve any nonzero
advantage, which contradicts the validity of the BB Yao family. Therefore, H must hit C.

We can then prove the equivalence:

Proof of Theorem C.2. (1) ⇒ (3). Fix arbitrary k and assume that there is an explicit family of
(1/2)-hitting sets Hn of size poly(n) for C[n]. We will show that there is an explicit (1/10n)-hitting
set Ĥn ⊆ {0, 1}n of size poly(n) for MAJ ◦ C[2nk+1]. If this is true, then by applying Lemma C.4 we
will obtain the desired result.

To construct Ĥn, we first apply the hypothesis to n′ = nc · t for t = O(n) and some sufficiently
large constant c to be determined later to obtain a HSG Hn′ ⊆ {0, 1}n′

that fools n′-input C[n′]
circuits. Let Ĥn ⊆ {0, 1}n be the set of size |H ′| ·t obtained as follows: For each string x ∈ {0, 1}nc·t

in H ′, we split x≤nt into t pieces of length-n strings and put them into Ĥn.
Now we prove that Ĥn is a desired hitting set. Towards a contradiction, we assume that there

is a MAJ ◦ C[2nk+1] circuit C : {0, 1}n → {0, 1} that breaks the HSG Ĥn, i.e., E[C(Un)] ≥ 1/10n
but Ĥn does not hit C. Since MAJ ◦ C[2nk+1] ⊆ C[poly(n)], we can construct a C[poly(n)] circuit
C ′ : {0, 1}n → {0, 1} that is equivalent to C. Let C ′′ : {0, 1}n′ → {0, 1} be the following circuit:

• Given any input x ∈ {0, 1}n′
, it splits x≤nt input t pieces of length-n strings u1, u2, . . . , ut

and outputs 1 if C(ui) = 1 for some i ∈ [t].

Clearly, E[C ′′(Un′)] ≥ 1/2 for some t = O(n).
Moreover, this circuit can be implemented by an OR over t copies of C ′, and since an OR gate

can be simulated by a MAJ gate, C ′′ is a MAJ ◦ C circuit of size poly(n), thus it is also a C circuit of
size poly(n). Note that poly(·) hides an absolute constant independent of c, and C ′′ only depends
on its first nt inputs. By setting c to be a sufficiently large constant, C ′′ will be an O(n′)-size
n′-input C circuit, and hence is hit by Hn′ by the assumption. By the definition of Ĥn and C ′′, we
can see that Ĥn hits C, which leads to a contradiction.

(3) ⇒ (2). Trivial.
(2) ⇒ (1). Let S be the explicit black-box Yao family for C circuits of size n. By Lemma C.6,

we have an explicit construction of a hitting set for C circuits of size n, so we are done.

74

C.2 Non-Black-Box Yao Derandomization

We now show that prBPP = prLOSSY if and only if a “non-black-box” derandomization of Yao’s
transformation (i.e., of Lemma 1.3) is possible. We think of the latter as the problem of transforming
a circuit C into a predictor P (x<i) = C(x<i◦z≥i) for a given distributionD, with the main challenge
being finding a suitable suffix z. More formally:

Definition C.7. Let ε = ε(n) ∈ (0, 1) be a parameter. A non-black-box Yao’s transformation is the
following search problem. Given any O(n)-size circuit C : {0, 1}n → {0, 1} and a distribution D
over {0, 1}n that fails to ε-fool C, the solution to the search problem is z ∈ {0, 1}n such that there
is an i ∈ [n] and σ1, σ2 ∈ {0, 1} satisfying that

Pr
x←D

[C(x<i ◦ σ1 ◦ z>i)⊕ σ2 = xi] ≥
1

2
+

ε

5n
.

By default, we use the parameter value ε = 1/3.

This problem serves as an intermediate problem in Korten’s proof for the prBPP-hardness
of R-LossyCode (see [Kor22] for the definition). Korten observed that if there is a deterministic
polynomial-time algorithm for non-black-box Yao transformation, then prBPP ⊆ prNP (see [Kor22,
Corollary 41]). Given that we have nice characterizations for black-box derandomization (see
Theorem C.2) and D2P transformation (see Theorem 4.1), it is natural to ask whether there is a
characterization for non-black-box derandomization of Yao’s transformation.

It turns out that non-black-box derandomization of Yao’s transformation is polynomial-time
reducible to LossyCode (i.e. it is in FLOSSY) if and only if prBPP = prLOSSY.

Theorem C.8. The following statements are equivalent.

(1) prBPP = prLOSSY.

(2) Non-black-box derandomization of Yao’s transformation is in FLOSSY.

Proof. (1) ⇒ (2). Assume that prBPP = prLOSSY, CAPP reduces to LossyCode. Notice that
non-black-box Yao derandomization is a prBPP-search problem (see [Gol11b] for definition). More
formally, we define a promise problem Π = (ΠYES,ΠNO) ∈ prBPP as follows.

• (YES-instance). (C,D, z) ∈ ΠYES ifD fails to ε-fools C, and there is i ∈ [n] and σ1, σ2 ∈ {0, 1}
such that

Pr
x←D

[C(x<i ◦ σ1 ◦ z>i)⊕ σ2 = xi] ≥
1

2
+

ε

3n
.

• (NO-instance). (C,D, z) ∈ ΠNO if D fails to ε-fool C, but for every i ∈ [n] and σ1, σ2 ∈ {0, 1},

Pr
x←D

[C(x<i ◦ σ1 ◦ z>i)⊕ σ2 = xi] <
1

2
+

ε

5n
.

Note that for every (C,D) such that D fails to ε-fool C, (C,D, z) ∈ ΠYES for a constant fraction
of z ∈ {0, 1}n (see Lemma 3.8). By [Gol11b, Theorem 3.5], there is a deterministic algorithm with
a CAPP oracle that (given (C,D)) outputs a z ∈ {0, 1}n such that (C,D, z) /∈ ΠNO, or equiva-
lently, outputs a solution z for non-black-box Yao derandomization. Recall that CAPP reduces to
LossyCode, and therefore there is also an algorithm to output such z using a LossyCode oracle.

75

(2) ⇒ (1). The proof idea is a modification of Korten’s proof of the prBPP-hardness of
R-LossyCode [Kor22, Corollary 41]. Suppose that non-black-box derandomization of Yao’s trans-
formation reduces to LossyCode. By Lemma 7.9, a single oracle query to LossyCode suffices. Let R
be such a reduction.

Now we describe a reduction of CAPP to LossyCode. Given any circuit C : {0, 1}n → {0, 1}, we
construct an instance C ′ : {0, 1}ℓ → {0, 1}ℓ−1, D′ : {0, 1}ℓ−1 → {0, 1}ℓ as follows.

• For any distribution D of size n4, the reduction generates some LossyCode instance C ′′ :
{0, 1}m → {0, 1}m−1, D′′ : {0, 1}m−1 → {0, 1}m given the instance (C,D) of derandomizing
Yao, where m = poly(n, size(C)). Let ℓ ≜ n5 + 2m.

• C ′ parses its input as two components: a distribution D ⊆ {0, 1}n of size n4 encoded as a
string of length n5, and two strings τ1, τ2 ∈ {0, 1}m. It simulates the reduction R on the
instance (C,D) of non-black-box Yao derandomization, which gives a LossyCode instance
(C ′′, D′′). It then outputs at most n5 + 2m bits.

– If D′′(C ′′(τj)) = τj for j ∈ [2], C ′ outputs 0 ◦D ◦ C ′′(τ1) ◦ C ′′(τ2).
– Otherwise, for some j ∈ [2], D′′(C ′′(τj)) ̸= τj . In this case, we solve the LossyCode

instance (C ′′, D′′), and thus by running the reduction R, C ′′ can find a string z for
derandomizing Yao. It then search for an i ∈ [n] and σ1, σ2 ∈ {0, 1} such that

Pr
x←D

[C(x<i ◦ σ1 ◦ z>i)⊕ σ2 = xi] ≥
1

2
+

ε

5n
.

If none of valid (i, σ1, σ2) was found, C
′ outputs 1ℓ−1. Otherwise, it works as follows.

Let D = (d1, d2, . . . , dn
4
), then the vector v ∈ {0, 1}n4

defined as vk ≜ C(x<i ◦σ1 ◦z>i)⊕
σ2 ⊕ dki has Hamming weight at most (1/2− ε/(5n)) · n4 and thus can be encoded as a
string v̂ of length n4 −Ω(n2) by Lemma 7.3. Therefore, we can encode D as a string D̂
of length n5 − Ω(n2) +O(n) by removing {dki }k∈[n4] and adding (z, i, σ1, σ2, v̂). We can

pad D̂ so that it has n5 − 2 bits. The final output of C ′ will be 1 ◦ D̂ ◦ τ1 ◦ τ2.

• D′ first simulates the reduction R, generates C ′′, D′′, and considers the following two cases.

– If the first bit of its input is 0, D′ parses its input as 0 ◦D ◦ z1 ◦ z2, where D ⊆ {0, 1}n5
,

z1, z2 ∈ {0, 1}m−1. It then outputs 0 ◦D ◦D′′(z1) ◦D′′(z2).
– Otherwise, D′ parses its input as 1 ◦ D̂ ◦ τ1 ◦ τ2, where D̂ is a succinct encoding of a

distribution D over {0, 1}n of size n4, as described above. If D′ fails to parse its input
as the form (i.e., its input is 1ℓ−1), it outputs 0ℓ. Otherwise, it recovers the distribution
D and outputs 1 ◦D ◦ τ1 ◦ τ2.

Now it suffices to prove that given a solution π = (D, τ1, τ2) ∈ {0, 1}n
5+2m of the LossyCode in-

stance (C ′, D′), we can solve the CAPP instance C in polynomial time. Note that since D′(C ′(π)) ̸=
π, we know that D′′(C ′′(τj)) ̸= τj for some j ∈ [2], and there is no i ∈ [n] and σ1, σ2 ∈ {0, 1} such
that

Pr
x←D

[C(x<i ◦ σ1 ◦ z>i)⊕ σ2 = xi] ≥
1

2
+

ε

5n
.

This implies that D must ε-fool C: If it is not the case, we know by the correctness of the reduction
R that such i and σ1, σ2 must exist. Therefore, we can approximate the acceptance probability of
C by E[C(D)] up to an additive error ε.

76

Combining Theorem 7.7 and Theorem C.8, we obtain the following characterization of prBPP =
prLOSSY by certified derandomization and non-black-box derandomization of Yao’s transforma-
tion.

Corollary C.9. Let ε ∈ (0, 1) be any constant. The following statements are equivalent.

• prBPP = prLOSSY.

• There is a deterministic polynomial-time certified derandomization using Pcc
ε .

• There is a deterministic polynomial-time certified derandomization algorithm using range
avoidance, i.e., using property Pg for some polynomial-time computable g.

• Non-black-box Yao’s transformation is in FLOSSY.

D Bounded Arithmetic and FLOSSY

In this section, we show that if a sentence of form ∀x ∃y φ(x, y) can be proved in the bounded
theory APC1 (defined in [Jeř04; Jeř07], also see [BKT14]), then the search problem defined by the
relation φ is reducible to LossyCode. This is observed by Jeřábek [Jeř04], while the main idea has
already appeared in earlier work of Wilkie (unpublished, see [Kra95]) and Thapen [Tha02].

We refer interested readers to standard textbooks [Kra95; Bus97; CN10] for the background of
bounded arithmetic (e.g., the theories PV and PV1), and [Jeř04; Jeř07; BKT14] (and the references
therein) for the definition of the theory APC1.

Theorem D.1 (Implicit [Jeř04, Proposition 1.14]). Let ϕ(x, y) be a quantifier-free formula in the
language of APC1 that only has x and y as its open variables. If APC1 ⊢ ∀x ∃y ϕ(x, y), then the
following search problem is in FLOSSY: Given any x ∈ N, output a y ∈ N such that ϕ(x, y) holds.

Proof Sketch. Proposition 1.14 of [Jeř04] shown that if APC1 ⊢ ∀x ∃y ϕ(x, y), then there are PV
functions G, g, h and a constant k such that PV proves:

∀x ∀b ≥ 2|x|
k ∀w < b2 (g(x,w, b) < b ∧ (G(g(x,w, b)) = w ∨ ϕ(x, h(x,w, b)))) .

By the soundness of PV, we know that there are polynomial-time algorithms G, g, h and a constant
k such that for every x ∈ N, b ≥ 2|x|

k
, and w < b2, we will have g(x,w, b) < b, and either

G(g(x,w, b)) = w or ϕ(x, h(x,w, b)).
Our FLOSSY algorithm works as follows. Given any x ∈ N input, let b be the smallest power of

two such that b ≥ 2|x|
k
, it generates the LossyCode instance where G : [b]→ [b2] is the decompression

circuit and g(x, ·, b) : [b2] → [b] is the compression circuit. For every solution w of the LossyCode
instance, we know that G(g(x,w, b)) ̸= w, and therefore ϕ(x, h(x,w, b)) is true. The algorithm then
simply outputs h(x,w, b). It runs in polynomial time as |b| = |x|k and G, g, h are all polynomial-time
algorithms.

We remark that Theorem D.1 can be used as a tool to design FLOSSY algorithms. There are
several weak circuit lower bounds known to be provable in APC1 while it is unclear whether they
are provable in PV1 (see, e.g., Table 1 of [PS21]). As an example, we use the APC1 formalization
of the parity lower bound against AC0 due to Müller and Pich [MP20].

Theorem D.2 (Theorem 3.7 of [MP20], informal). For all constants k, d ∈ N, there is a constant
n0 ∈ N such that APC1 proves the following statement: for all n > n0 and every AC0 circuit
Cn : {0, 1}n → {0, 1} of depth d and size nk, there is a y ∈ {0, 1}n such that Cn(y) ̸=

∑
i yi mod 2.

77

By combining Theorem D.2 and Theorem D.1, we conclude that the following search problem
(usually called the refutation problem of the lower bound, see, e.g., [CJS+21]) is in FLOSSY. Note
that the best known deterministic algorithm runs in quasi-polynomial time (see, e.g., [Bra10]).

Corollary D.3. Let k, d ∈ N be any constants. The following search problem is in FLOSSY: Given
an AC0 circuit Cn : {0, 1}n → {0, 1} of size nk and depth d, output a string y ∈ {0, 1}n such that
Cn(y) ̸=

∑
i yi mod 2.

Proof Sketch. The AC0 lower bound proved in Theorem D.2 is formalized in the form ∀x ∃y ϕ(x, y)
for a quantifier-free ϕ(x, y), where x consists of n and (the description of) an AC0 circuit Cn :
{0, 1}n → {0, 1}, and y is supposed to be an input on which Cn fails to compute parity.52 Thus,
by Theorem D.1, the corresponding search problem is in FLOSSY.

E A Targeted Generator with Derandomized Reconstruction

In this section we prove Theorem 5.6. At a high-level, our construction follows the original strategy
of Chen and Tell [CT21b], with two main differences explained next. (We assume that the reader
has basic familiarity with this construction; for explanations and expositions, see [CT21a, Section
2.2], or the follow-up works [CRT22; CTW23; CLO+23; DPT24].)

• We show that if the hard function is in logspace-uniform NC1, then the generator can be
computed in logspace. This is not immediate from any known version of the generator.
In particular, the original construction uses a preprocessing transformation of the circuit
by Goldreich [Gol18], which incurs a significant overhead: Even for functions computable
by (logspace-uniform) constant-depth circuits, this transformation yields circuits of depth
Ω(log2 n), which do not seem to be evaluable in logspace.

Our key observation is that almost all of the layers added by this transformation are very
simple (i.e., they consist of repeatedly powering the transition matrix of the logspace machine
that outputs the hard function). Hence, we can compute the value of each gate in these levels
in logspace (i.e., without evaluating the entire log2 n depth circuit directly), and this allows
us to compute each output of the targeted generator in logspace.

• Our reconstruction argument takes in a family of candidate next-bit-predictors, rather than a
single distinguisher, and uses only polylog(n) random coins in total. To do so, we must show
that each of the multiple steps in [CT21a] in which randomness is used to decode a code, or
weed a list of possible candidates, can be done using few random bits.

We do so by designing a modified reconstruction procedure. Following the idea of [PRZ23],
who used samplers to obtain a randomness-efficient reconstruction procedure. As a conse-
quence of this change, our reconstruction is not implemented as a small-depth circuit (i.e.,
unlike [CTW23; DPT24]).

The rest of this section is organized as follows. First, in Appendix E.1, we present a construction
of bootstrapping systems for logspace-uniform NC1 circuits. Then, in Appendix E.2, we present a
construction of a targeted generator with randomness-efficient reconstruction from bootstrapping
systems. Finally, in Appendix E.3 we combine these two to prove Theorem 5.6.

52We note that since bounded theories only define efficiently computable functions, one needs to be careful about
formalizing sentences in bounded theories. Nevertheless, one can verify that the formalization in [MP20] is compatible
with Theorem D.1.

78

Throughout the proofs in this section, we will use standard technical tools, such as local list-
decoders for the Hadamard code and for the Reed-Muller code. We defer the (standard) statements
of these tools to Appendix E.4, for readability.

E.1 Bootstrapping Systems Computable in Logspace for Logspace-Uniform NC1

We first define query-aided worst-case to rare-case reducibility. In contrast to the notion in prior
works, we no longer assume that worst-case to rare-case reduction algorithm is given uniform
samples. Instead, we think of the algorithm as having a preprocessing phase where it makes few
queries to f , and then outputs a circuit that is correct on all inputs whp.

Definition E.1. For ρ, ε : N→ (0, 1) and T : N→ N and sequence of alphabets Σ1, . . . and output
lengths w1, . . ., we say that a function f : (Σn)

n → (Σn)
wn is query-aided worst-case to ρ-rare-case

reducible by logspace uniform circuits of size T , randomness complexity r, and query size s if there
is a randomized algorithm M that works as follows.

• M is given oracle access to fn and f̃n ∈ (Σn)
n with agreement ρ with fn, where agreement

denotes relative Hamming distance.

• M runs in time T , uses r random coins, and makes at most s non-adaptive queries to f .

• M outputs a deterministic circuit C such that with probability at least 1− ε, C(x) = fn(x)
for every x ∈ (Σn)

n.

Consider a function computable by a logspace-uniform family of NC1 circuits {Cn}. We will
encode the computation of Cn on any fixed input x as a sequence of polynomials. As in [Gol18;
CT21a], the first step will be to transform the family {Cn} into a circuit family {C ′n} that has even
better uniformity properties, at the cost of increasing the depth (the transformation is identical
to [Gol18; CT21a]). We underline the new properties that we prove for clarity.

Proposition E.2 (polynomial decomposition). There exist two universal constants c, c′ ∈ N such
that the following holds. Let {Cn} be a logspace uniform family of NC1 circuits of size T (n) ≥ n
and depth log(n) ≤ d(n) ≤ O(log T), and let γ ∈ (0, 1) be a constant. Then there exists a logspace-
uniform family of circuits {C ′n} of size T ′ = O(T (n)c) and depth d′ = O(log2(T)) that computes
the same function as {Cn}, such that for every x ∈ {0, 1}n there is a polynomial decomposition
satisfying:

1. Arithmetic setting. The polynomials are defined over F ≜ Fp, where p is the smallest prime
in the interval [T γc, T 2γc]. Set H = [h] ⊆ F, there h is the smallest power of 2 of size at least
T γ/6, and let m be the minimal integer such that hm ≥ 2T c.

2. Faithful representation. For every i ∈ [d′] and w⃗ ∈ Hm representing a gate in the ith
layer, it holds that α̂i(w⃗) is the value of the gate w⃗ in C ′n(x).

3. Layer logspace computability. There is a space O(log T) algorithm that, given x ∈ {0, 1}n
and indices i, j of polynomials, computes α̂i,j (also, given index 0 it computes α̂0).

4. Base Layer Computability. There is a time max{n, t} · t algorithm that computes α̂0.

5. Layer DSR. There is a time hc
′
algorithm that computes α̂i,0 while querying α̂i−1 twice on

inputs in Hm. Lastly, α̂i,2m = α̂i

79

6. Sumcheck DSR. There is a time hc
′
and algorithm that gets input w⃗ ∈ Fm and (σ1, . . . , σ2m) ∈

F2m and j ∈ [2m] and oracle access to α̂i,j−1 and outputs α̂i,j(w⃗, σ1, . . . , σ2m−j).

7. Query-aided worst-case to rare-case reducibility. For each i ∈ [d′] and j ∈ [2m], the
boolean function representing α̂i,j is query-aided worst-case to ρ-rare-case reducible with error
h−100 in time hc

′
with O(log T) random coins, where ρ = h−α polylog(T). The same claim

holds for α̂0.

Proof Sketch. Our construction of the polynomial decomposition is precisely identical to that
in [CT21a, Proposition 4.7]. The only new properties that are claimed are Item (3) and Item (7),
and we now explain why these are true.

Layer logspace computability. For Item (3), we use a more careful analysis of the transfor-
mation of {Cn} to {C ′n}. Specifically, we strengthen [CT21a, Claim 4.7.1] to assert the following:

Claim E.3. There exists a circuit C ′n as above of depth d′(n) = O(d + log2 T) = O(log2 T) and
size T ′ = 2c⌈log T ⌉ for an integer c > 1 such that:

• Adjacency Computability. The layered adjacency relation function Φ′ : [d′]×{0, 1}3 log T ′ →
{0, 1} of C ′n can be decided by a formula that can be constructed in time polylog(T) and space
O(log T). Moreover, Φ′ can be evaluated in space O(log T).

• Logspace Evaluability. There is an O(log T) space algorithm that on input x ∈ {0, 1}n and
j ∈ [d′], prints the values of the gates of C ′(x) at layer j.

Proof. The first property is exactly the same as [CT21a, Claim 4.7.1], (and the fact that Φ′ is
logspace-computable is immediate from examining their proof). For the second property, recall
from [Gol18] that the circuit C ′n has the following properties. It can be divided into d1 = O(log2 T)
initial layers and d2 = O(log(n) + d(n)) final layers.

• In the first d1 layers, the circuit C ′n constructs and repeatedly squares the (T (n))c × (T (n))c

transition matrix M of the space c log(T) machine that, on input ⟨n⟩⟨i⟩, outputs the ith gate
of Cn. This squaring is performed c log T (n) times, where each square is computed by a depth
O(log T) NC1-circuit that is extremely uniform.

• In the final d2 layers, the circuit computes the map (⟨Cn⟩, x) 7→ Cn(x) via the universal NC1

circuit, which has depth O(d(n)).53

On input (x, j) where j ∈ [d′], our logspace evaluation algorithm works as follows.

• If j ≤ d1, we first determine the number of repeated squaring steps have occurred prior to layer
j. Supposing this number was r, the O(log T) layers that contain j correspond to computing
the map M2r →M2r+1

. To compute M2r , for every initial state σ we run the machine from
σ for 2r steps and obtain what state τ it reaches, and then determine

(
M2r

)
σ,τ

= 1. Since

the machine has poly(T) configurations, we can perform this in logspace. We then determine
the values in the next O(log T) layers of C ′n via the DFS simulation of NC1, where each time
the simulation reaches the layer holding M2r , we generate the answer as described above.

53Here we assume that the logspace-uniform circuit for Cn outputs a representation in the form of a width-5
branching program [Bar89], which is without loss of generality since the reduction of [Bar89] can be computed in
logspace. In this case, it is clear that such a universal circuit exists and has depth O(logn).

80

• If j > d1 corresponds to the k-th layer of the universal NC1 circuit Eval on (⟨Cn⟩, x), we use
the fact that we can construct the input ⟨Cn⟩ using the logspace machine (i.e., the machine
that prints Cn). Then we use the standard DFS-style simulation of NC1 to compute the value
in layer j.

Relying on Claim E.3, we now argue that the extension of the circuit-structure function of {C ′n}
is evaluable in logspace. Specifically, we strengthen [CT21a, Claim 4.7.2] as follows. (A similar
strengthening appeared in [CRT22].)

Claim E.4. For i ∈ [d′] there exists Φ̂i : F3 → F that satisfies the following:

• For every (w⃗, u⃗, v⃗) ∈ H3m we have that Φ̂(w⃗, u⃗, v⃗) = 1 iff the gate w⃗ in the i-th layer of C ′n is
fed by gates u⃗, v⃗ in the (i− 1)-th layer.

• The degree of Φ̂i is at most h · polylog(T).

• For a universal constant c1 > 1, there is a time hc1 algorithm that computes Φ̂i.

• Logspace computability. There is a space O(log T) algorithm that computes Φ̂i.

Proof. The construction is identical to [CT21a, Claim 4.7.2]. The only new property follows im-
mediately from the map πj : H → {0, 1} that projects a to the j-th bit in the binary expansion of
a being computable in logspace, and then using Claim E.3.

We now prove that the polynomials α̂i,j and α̂i and α̂0 are computable in logspace. We will do
so separately for each case:

• Recall that α0 : H
m → {0, 1} represents the string x0h

m−n, and to compute α̂0(w⃗), it suffices
to evaluate

α̂0(w⃗) =
∑

0⃗∈Hm′×{0}n′−m′

δ0⃗(w⃗)α̂0(⃗0)

and then the result follows from standard results on arithmetic in logspace.

• For i ≥ 1, recall that to compute α̂i(w⃗) it suffices to compute

α̂i(w⃗) =
∑
v⃗,u⃗

Φ̂(w⃗, u⃗, v⃗)(1− α̂i−1(u⃗)α̂i−1(v⃗))

We can compute Φ̂(w⃗, u⃗, v⃗) in space O(log T) by Claim E.4. By the faithful representation
property, we have that α̂i−1(u⃗) is the value of gate u⃗ in layer i− 1, which we can compute in
space O(log T) by Claim E.3. Then the result follows from standard results on arithmetic in
logspace.

• Finally, for (i, j), recall that to compute α̂i,j(w⃗, σ1, . . . , σ2m−j) it suffices to compute (letting
σ⃗ = σ1, . . . , σ2m−j):

α̂i,j(w⃗, σ1, . . . , σ2m−j) =
∑

β1,...,βj∈Hj

α̂i,0(w⃗, σ⃗ ◦ β⃗)

=
∑

β1,...,βj∈Hj

α̂i−1(w⃗, σ⃗ ◦ β⃗)

Using the fact that we can compute α̂i−1 in space O(log T), we can thus compute this value
in space O(j logH + log T) = O(m logH + log T) = O(log T).

81

Query-aided worst-case to rare-case reducibility. The proof of this result is exactly anal-
ogous to the sample-aided property in [CT21a], except that we appeal to the decoder of Proposi-
tion E.13. Note that the error probability is now |F|−100 ≤ h−100.

Given the polynomial decomposition, we now construct bootstrapping systems for logspace-
uniform NC1 circuits with randomness-efficient reconstruction, as follows.

Proposition E.5 (Bootstrapping system for uniform NC1 circuits). There exist two constants
α ∈ (0, 1) and k > 1 such that the following holds. Let f : {0, 1}∗ → {0, 1}∗ be a length-preserving
function computable by logspace-uniform NC1 circuits {Cn} of size T (n) ≥ n and depth d = d(n)
with log(n) ≤ d ≤ O(log T). Then there exists d′ = O(log2 T) and T ′ ≤ T k such that for every
µ ∈ (0, 1) and t = Tµ, the function has (d′×T ′)-bootstrapping systems with the following properties:

1. There is a logspace algorithm that, given x ∈ {0, 1}n and i ∈ [d′], prints Pi(x).

2. There is a time max{n, t} · n algorithm that computes P0(x).

3. The downward self-reducibility algorithm runs in time t.

4. The query-aided worst-case to ρ-rare-case algorithm supports agreement ρ = t−α polylog(t),
has error t−100α, and is computable by a time t algorithm.

Proof. Let Cn be the logspace-uniform circuit for f on inputs of length n of depth d = d(n) =
O(log T) and of size T = T (n). Let c, c′ be the universal constants from Proposition E.2, let
γ = 5µ/c′, and let C ′n be the corresponding logspace-uniform circuit with

depth d′0 = O(d log(T) + log2 T) = O(log2 T), and size T ′ = O(T (n)c) ≤ T k for any k > c.

Note that |F| ≤ poly(T) and h = O(T 5µ/6c′) and m = O(1/µ). Denote t = hc
′ ≤ Tµ. Next, let

{α̂i : Fm → F}i∈[d′], {α̂i,j : F3m−j → F}i∈[d′],j∈{0..2m−1}

be the corresponding layer polynomials and sumcheck polynomials in the decomposition. We now
view each α̂i and α̂i,j as a Boolean function from 3m log(|F|) = O(log T) bits to F = O(log T) bits
(where we pad all functions to have the same domain).

Defining the bootstrapping system. The bootstrapping system has d′ = d′0(2m + 1) =
O(d′0/µ) layers, each of length |F|3m = poly(T) and over alphabet F. The base layer P0 is the
truth table of α̂0, and hence there is an algorithm that computes it in the claimed space bound
by Item 3. Then for (i, j) ∈ [d′0]× {0, . . . , 2m}, the (i, j)th layer is the truth table of the function
α̂i,j (where we order first in increasing order of i, then increasing order of j).

By Item 3 of Proposition E.2, there is an algorithm that prints each non-base layer in space
O(log T) by Item 3, and thus Item 1 of the current claim follows. Furthermore, the query-aided
worst-case reduction follows from Item 7 of Proposition E.2. All other properties follow without
modification from [CT21a].

E.2 From Bootstrapping to a Targeted HSG

We can now transform the bootstrapping system into a targeted somewhere-PRG. We again closely
follow the transformation of [CT21a, Proposition 4.4], except that the generator is now com-
putable in logspace, and the reconstruction algorithm is now given a set of predictors and uses
only polylog(n) random coins.

82

Proposition E.6. There exist universal constants c′, c′′ > 1 such that the following hold.
Assumption. For d′, t, T ′, A : N → N and α ∈ (0, 1) such that d′ ≤ n and max{n, t, A, d′} ≤ T ′,
let f be a length-preserving function that has (d′ × T ′)-bootstrapping systems with alphabet size A
satisfying the following:

1. There is an O(log T ′) space algorithm that, given x ∈ {0, 1}n and i ∈ [d′], prints Pi(x).

2. There is a time max{n, t} · t algorithm to print P0(x).

3. The downward self-reduction runs in time t.

4. The query-aided worst-case to rare-case algorithm supports agreement tα, has error t−100α,
and is computable in time t.

Conclusion. Then, for every M : N→ N and γ ∈ (0, 1) such that log(T ′) ≤M ≤ min{T ′γ/c′′ , tα/c
′′}

there exists an algorithm Gf and an algorithm R that together obey the following for every x ∈
{0, 1}n:

1. The algorithm Gf (x) runs in space O(log T ′) and computes (L1, . . . , Ld′), where for every
i ∈ [d′], Li is a list of M bit strings.

2. The algorithm R runs in time (d′ · t · T ′γ ·M · n)c′ and uses O(d′ · log(T ′)) random coins.

3. When R is given x and oracle access to P = (P1, . . . , PM3) : {0, 1}≤M → {0, 1} such that for
every i ∈ [d′], there is some j ∈ [M3] such that

advGf,i(x)(U)(Pj) ≥ 1/M2,

then R outputs f(x) with probability at least 1− 3d′/M−100.

The rest of this section will be devoted to the proof of Proposition E.6. For convenience,
throughout the section we denote the size of the bootstrapping system as (d × T) (instead of
(d′ × T ′)).

The Generator Gf . Given x ∈ {0, 1}n, the algorithm enumerates over i ∈ [d]. Fixing i, note
that we can compute Pi(x) in space O(log T) via Item 1. Thinking of Pi(x) ∈ [A]T as a truth table
of a function pi : {0, 1}log T → [A], note that we can compute hi = Had(pi) in space O(log T), where
Had is the encoding of Proposition E.16. Finally, the algorithm outputs

Li = NWhi(U)

where NW is the generator of Theorem E.19 with parameters (ℓ = O(log T),M, γ), answering
queries to hi via composition of space-bounded algorithms. The fact that the overall generator is
computable in space O(log T) is then direct.

The reconstruction argument. Fix x ∈ {0, 1}n and

P = (P1, . . . , PM3) : {0, 1}≤M → {0, 1}

such that for every i ∈ [d′] there is j ∈ [M3] such that advNWhi (U)(Pj) ≥ 1/M2. The algorithm

R gets input x ∈ {0, 1}n and for i = 0, . . . , d, finds a small circuit that computes a function with
truth table Pi. We now describe this iterative process.

83

First, the algorithm constructs a circuit C0 that computes the function with truth table P0. By
assumption, this circuit is of size nt+ t2 and can be constructed in time poly(nt). Next, for i ∈ [d],
we find a small circuit that computes pi = Pi(x). Our proof closely follows that of [CT21a, Lemma
4.10], except that we show that each iteration requires only O(log T) random coins, by applying
the randomness-efficient reconstruction of Theorem E.19 and Propositions E.13 and E.16.

Lemma E.7 (Iteratively Finding a Small Circuit). There exists a universal constant c0 > 1 such
that the following holds. Given the circuit Ci−1 and oracle access to P, we can compute with
probability at least 1 − 3 ·M−100 an oracle circuit Ci that computes pi given oracle access to D.
This can be done in time t2 · T 2γ · (M · size(Ci−1))

c0 using O(log T) many random coins, and the
circuit Ci is of size t ·M c0 · T 2γ.

Proof. The proof follows that of [CT21a, Lemma 4.10], with the following structure:

Claim E.8 (The NW Reconstruction). Given the circuit Ci−1 and oracle access to P, we can
compute with probability at least 1 −M−100 an oracle circuit Ci,1 such that CPi,1 computes hi cor-

rectly on at least a 1/2 + 1/M3 fraction on inputs. Moreover, this step can be performed in time
poly(M, size(Ci−1)) ·T 2γt using O(log T) random coins, and the circuit Ci,1 is of size poly(M) ·T 2γ.

Proof Sketch. The proof is identical to that of [CT21a], except that we use the reconstruction
algorithm of Theorem E.19 that uses few random coins.

Next, we decode the Hadamard code:

Claim E.9 (The GL Reconstruction). Given the circuits Ci−1 and Ci,1 and oracle access to P,
we can compute with probability at least 1−M−100 an oracle circuit Ci,2 such that C

Ci,1

i,2 computes
pi on at least µGL = poly(1/M) of the inputs. Moreover, this step can be performed in time
t · poly(M, size(Ci−1)) using O(log T) random coins, and the circuit Ci,2 is of size poly(M).

Proof Sketch. The proof mirrors that of [CT21a]. We instantiate the decoder of Proposition E.16,
with ε = 1/M3. Let r = O(log T) be the number of random coins used by GL, and let τ =
poly(1/M log(T)) = poly(1/M) be the value τ in Proposition E.16, and let µGL = τ/4. We
instantiate the sampler of Theorem E.12 with

n = r ε = τ/2, δ = M−101

and note that the seed length is O(log T) and the number of samples is poly(M/δ) = poly(M).
Letting the samples be S1, for every s ∈ S1 we let Cs be the circuit of Proposition E.16 with random
coins s. Note that with probability at least 1−M−101, at least one of these circuits C = Cs satisfies

Pr
x∈{0,1}log T

[CCi,1(x) = pi(x)] ≥ τ/2.

Finally, we weed the list by instantiating Theorem E.12 with

n = log T, ε = τ/8, δ = M−101/|S1|

Note that the seed is of length O(log T) and the number of points is poly(M). Then we estimate
the agreement of each circuit Cs with pi by computing the empirical accuracy on the queried points.
With probability M−101, all of these estimates will be correct to accuracy τ/8, and so if we return
the most accurate it will satisfy the desired property. Finally, the bounds on the size of the circuit
and runtime follow from Proposition E.16.

84

Finally, we consider the worst-case to rare-case step:

Claim E.10. Given the circuits Ci−1 and Ci,2 and oracle access to P, we can compute with prob-

ability at least 1 −M−100 a circuit Ci,3 such that C
Ci,2

i,3 computes pi. Moreover, this step can be

performed in time t2 poly(M, size(Ci−1)) with O(log T) random coins, and Ci,3 is of size t·poly(M).

Proof Sketch. Recall that pi : {0, 1}log T → [A] is sample-aided worst-case to ρ-rare-case reducible
(with |F| = A) with ρ = h−α polylog(T), and note that

ρ = h−α polylog(T) ≤M−k = µGL

by our assumption on M , and finally we use that A ≤ T . Then the proof is again identical
to [CT21a], except that we the query-aided worst-case to rare-case reduction follows from Propo-
sition E.13.

Lemma E.7 follows by combining Claims E.8 to E.10 in a straightforward way. Each of the
three steps articulated in the latter claims uses O(log T) coins, the final circuit that is produced is of
size t ·poly(N) ·T 2γ , and the runtime of the three steps combined is at most poly(M, t, size(Ci−1)) ·
T 2γ .

Finally, the reconstruction applies Lemma E.7 for d′ times, and thus its randomness complexity,
running time, and success probability are as claimed.

E.3 Putting it all together

Finally, let us recall the result statement, and present the proof:

Theorem 5.6. There exists a universal constant c > 1 such that the following holds. Let f :
{0, 1}n → {0, 1}n be computable by logspace-uniform NC1 circuits of depth d(n) = O(log T) and
size T (n) ≤ 2d(n). Let δ > 0 and let M(n) be such that c log T (n) ≤M(n) ≤ T (n)δ/c. Then there is
a deterministic algorithm Gf and a probabilistic algorithm R that satisfy the following. For every
x ∈ {0, 1}n:

• Generator. The generator Gf gets input x, runs in space O(log T), and outputs d′ =
polylog(T) lists of M -bit strings L1, . . . , Ld′. Moreover, each list can be computed in space
O(log T).

• Reconstruction. When R gets input x and oracle access to (P1, . . . , PM3) : {0, 1}≤M →
{0, 1} such that for every i ∈ [d′], there is j ∈ [M3] such that

advLi(Pj) ≥
1

M2

then R outputs f(x) with probability at least 1− 1/M . The procedure R runs in time T δ · nc

and uses at most polylog(T) random coins.

Proof. Let c′, c′′ be the universal constants from Proposition E.6, and let α, k be the universal
constants from Proposition E.5. We instantiate the bootstrapping system for f from Proposition E.5
with γ = δ/5c′. This yields a bootstrapping system of dimension

(d′ × T ′), d′ = O(log2 T) and T ′ = T k

85

where the algorithm that prints each Pi(x) runs in space O(log T), the algorithms computing the two
reductions (i.e., downward self-reducibility and worst-case to rare-case reducibility) are logspace-
uniform circuits of size t = T δ/5c′ , and there is a logspace uniform circuit of size max{n, t} · t that
computes P0(x).

We now plug this system into Proposition E.6 with parameters n, T ′, d′, t and with

γ = δ/(5kc′)

and observe that we have A(n) = O(log T) ≤ T as required. The constraint in its conclusion that

log(T ′) ≤M ≤ min{T kγ/c′′ , Tαδ/5c′c′′}

is satisfied by our choice of a sufficiently large universal constant c.

Generator. By the conclusion of Proposition E.6, we have that the lists output by the generator
are computable in space O(log T ′) = O(log T).

Reconstruction. The reconstruction algorithm R runs in time

(tT kγMnd′)c
′
= (T (δ/5c′)T k(δ/(5kc′))Mnd′)c

′ ≤ T δ · nc

for a sufficiently large constant c (so that M c′ ≤ T δ), and the number of random coins used is
polylog(T ′) = polylog(T). The probability thatR fails to compute f(x) is at mostO(log2(T)/M100) ≤
1/M as claimed.

E.4 Technical Tools

The proofs in this section relied on randomness-efficient versions of standard technical results. We
now recall these results, and for completeness include proofs of the randomness-efficient versions.

E.4.1 Samplers

We recall the standard definition of a sampler:

Definition E.11 (sampler). A function Samp : {0, 1}m×[t]→ {0, 1}n is an (ε, δ) (oblivious) sampler
if for any H ⊆ {0, 1}n it holds that

Pr
x←{0,1}m

[∣∣∣∣ Pri←[t]
[Samp(x, i) ∈ H]− |H|

2n

∣∣∣∣ ≤ ε

]
≥ 1− δ.

The parameter ε is the accuracy parameter of the sampler, and δ is its confidence parameter.
We recall the following strong sampler.

Theorem E.12 ([Gol11a; CL20]). For every n ∈ N and ε, δ > 0, there exists an explicit (ε, δ)
sampler Samp : {0, 1}m × [t] → {0, 1}n where t = poly(log(1/δ)/ε) and m = n + O(log(1/εδ)).
Moreover, given x ∈ {0, 1}m and y ∈ [t], Samp(x, y) is computable in space O(m) and time poly(m).

86

E.4.2 Reed-Muller Decoding

We recall that Reed-Muller codes are list-decodable with the following parameters. Note that [CT21a]
constructed a logspace-uniform probabilistic NC circuit for this task, whereas we compute the func-
tion (not with a low depth circuit) using polylog(n) coins.

Proposition E.13. Let q : N → N be a function mapping integers to primes, let ℓ : N → N be
such that n ≥ ℓ(n) log(q(n)), and let d : N → N. Let {fn}n∈N be a sequence of functions such

that f computes a polynomial Fℓ(n)
n → F of degree d(n) where |F| = q(n). Then f is query-aided

worst-case to ρ-rare-case reducible by a time poly(q, ℓ) algorithm that uses O(ℓ log q) random coins,
makes poly(q) queries, and has error 1− q−100, where ρ = 10

√
d/q.

We prove this following the proof of [CT21a] (using the randomness reduction idea of [PRZ23]),
again proving that all steps can be implemented randomness-efficiently. We first recall the unique
decoder from agreement (.97), where use the the decoder of [PRZ23] to do the final error-reduction
via majority step efficiently.

Theorem E.14 (Lemma 4.6 [PRZ23]). For every prime field F and integer ℓ ≥ 1 there is an
algorithm RMUniqueDec that gets as input a degree parameter d ≤ |F|/2 and a vector x ∈ Fℓ,
and gets oracle access to f : Fℓ → F, and satisfies the following:

1. If f agrees with a degree-d polynomial P : Fℓ → F on a (.97) fraction of the inputs, then

Pr[RMUniqueDecf (x) = P (x)] ≥ 1− |F|−100. (5)

2. The algorithm runs in time poly(|F|, ℓ) and uses O(ℓ log |F|) random coins.

Next, we recall the RM list decoder (with a modification to use fewer random coins):

Theorem E.15. For every prime field F and integer ℓ ≥ 1, there is an algorithm RMListDec
that gets as input a degree parameter d ≥ 1, a pair (x0, y0) ∈ Fℓ × F, a vector x ∈ Fℓ, and oracle
access to a function f : Fℓ → F, and satisfies the following:

1. If f agrees with a degree-d polynomial P : Fℓ → F on 10
√

d/|F| of inputs, then with probability
at least δ = 1/ poly(|F|) over the random pair (x0, y0) ,

Pr[RMListDecf ((x0, y0), x) = P (x)] ≥ 1− |F|−100 for every x ∈ Fℓ. (6)

2. The algorithm runs in time poly(|F|, ℓ) and uses O(ℓ log |F|) random coins.

Proof. By inspection, the proof of Theorem B.15 [CT21a] uses O(ℓ log |F|) random coins except in
two places. First, their algorithm uses randomness in a final step of using a unique decoder for the
Reed-Muller code; we implement this step using the unique decoder of Theorem E.14 from [PRZ23].
Second, it uses a randomized list-decoding algorithm for Reed-Solomon codes (to obtain a decoder
in NC). Since we do not aim to obtain an NC circuit and can tolerate runtime poly(|F|), we can
use the deterministic decoder of [Sud97].

We then combine the two decoders to prove the final result, in exactly the same fashion
as [CT21a].

Proof of Proposition E.13. We construct a probabilistic oracle algorithm that gets input 1n and
oracle access to fn and f̃n with agreement ρ(n) with fn, uses O(ℓ log |F|) random coins, makes
poly(1/ρ) queries to fn, and with probability 1− q−100 outputs a deterministic circuit C : Fℓ → F
such that C f̃ computes f . The algorithm D works as follows:

87

1. We use the sampler of Theorem E.12 with

ε = 1/2 poly(|F|), δ = q−101, n = O(ℓ log |F|),

where 2ε = 1/ poly(|F|) is the value δ in Theorem E.15, so the seed length is O(log q+ℓ log |F|)
and the number of queried points is poly(q). Letting the set of sampled points be S1, for
every s ∈ S1 we let Cs be a circuit implementing the algorithm of of Theorem E.15, where
we use the random string s to hardwire (x0, y0) and the internal coins of C.

2. By Theorem E.15 and Markov, at least a δ = 1/ poly(|F|) fraction of these circuits Cs (over
a random s) satisfy

Pr
x

[
C f̃
s (x) = f(x)

]
≥ .99

we call such a circuit a good circuit. By our choice of sampler error, with probability at least
1− q−101, there will be s ∈ S1 such that Cs is good.

3. Next, we use a second application of Theorem E.12 with

ε = .01, δ = q−101/|S1|, n = ℓ · log |F|,

so the seed length is O(log q + ℓ log |F|) and the number of queried points is poly(q). Letting
the set of sampled points be S2 ⊆ Fℓ, for every s ∈ S1 we compute an estimate of the
agreement of Cs with f , i.e.

a(Cs)
def
= Pr

x∈S2

[
C f̃
s (x) = f(x)

]
.

With probability at least 1 − q−101, all these empirical estimates are within .01 of the true
value, and if this occurs the circuit with the largest empirical agreement has agreement at
least .97 with f .

4. Finally, we take this best circuit C = Cs and compose it with the decoder of Theorem E.14,
which is a probabilistic circuit Dv using |v| = O(ℓ log |F|) random coins that computes f on
each point with probability 1−|F|−100. For the third time, we instantiate Theorem E.12, now
with

ε = 0.1, δ = q−100/|F|ℓ = q−100−ℓ, n = |v|

so the seed length is O(log q + ℓ log |F|) (and note that the number of sampled points is now
poly(ℓ log |F|), which we can tolerate as we do not use this sampler to query f). Letting the
sampled points be S3, our final algorithm D computes:

D(x) = MAJv∈S3{DC
v (x)}.

With probability at least q−100, for every x ∈ Fℓ the sampler will output a set of points where
taking the average over the decoding circuits correctly computes f(x), and hence we will have
D(x) = f(x). Note that the final algorithm runs in time |S3| · size(D) size(C) = poly(|F|, ℓ)
as claimed.

Finally, observe that the number of queries to f is bounded by poly(q) as claimed, and the number of
random coins used is O(ℓ log |F|). Furthermore, all queries to f are simply obtained by enumerating
over sampler seeds, so the queries are non-adaptive.

88

E.4.3 The Hadamard Code

We require the Hadamard code, where we use (essentially) the randomness-efficient reconstruction
of [DPT24, Theorem 5.16].

Proposition E.16 ([GL89; PRZ23; DPT24]). For every a : N → N satisfying a(n) ≤ n and
ε : N → (0, 1/2), there exists a function Had that maps g : {0, 1}ℓ → {0, 1}a(ℓ) to a function
Had(g) : {0, 1}ℓ+a(ℓ) → {0, 1} such that the following holds.

1. For every x ∈ {0, 1}ℓ and z ∈ {0, 1}a(ℓ), we have Had(g)(x, z) = ⟨g(x), z⟩.

2. There exists a logspace algorithm GL that gets input 1ℓ, uses O(ℓ) random coins, and outputs
a deterministic oracle circuit C of size poly(ℓ/ε) such that for every g̃ that agrees with Had(g)
in 1/2 + ε of positions, the probability over x ∈ {0, 1}ℓ and the coins used to produce C that
C g̃(x) = g(x) is at least τ = poly(ε/ℓ).

Proof. We can assume log(1/ε) ≤ ℓ as otherwise the decoding algorithm can output a circuit with
a fixed random output and be correct with sufficient probability. We will use the decoder DecGL
of [DPT24, Theorem 5.16]. Specifically, for every fixed x ∈ {0, 1}ℓ, we consider g(x) ∈ {0, 1}k where

k = a(ℓ), and consider the string H(x) ∈ {0, 1}2k such that H(x)z = Had(g)(x, z). The string H(x)
is the encoding of g(x) by the (Hadamard) code referred to in [DPT24, Theorem 5.16].

Now, fix an arbitrary g̃ that has agreement 1/2 + ε with Had(g). We call x ∈ {0, 1}ℓ good if

Pr
p∈a(ℓ)

[g̃x,a = Had(g)x,a] ≥ 1/2 + ε2

and note that at least a poly(ε) fraction of x are good. For an arbitrary good x, the decoder DecGL,
instantiated with confidence δ = 1/2 and accuracy ε2, uses O(k + log(1/δ)) = O(ℓ) random coins,
and outputs L = O(k · log(1/δ)/ε2) = poly(ℓ/ε) oracle circuits C1, ..., CL : [k] → {0, 1} such that

with probability at least 1− δ = 1/2 there is i ∈ [L] for which C g̃
i (z) = H(x)z for all z ∈ [k].

Note that the circuits C1, ..., CL do not depend on x. Our algorithm GL runs DecGL with
parameters as above, chooses i ∈ [L] at random, and outputs Ci.

54 With probability poly(ε) we
have that x is good, and with probability 1/2L = poly(ε/ℓ) we chose the correct i ∈ [L].

E.4.4 The NW Generator

Let us recall the standard definition of combinatorial designs, and the fact that logspace-uniform
designs exist with good parameters:

Definition E.17. A family of sets S1, . . . , SM ⊆ [d] is an (ℓ, ρ) design if each of the sets is of size
ℓ, and any two distinct sets satisfy |Si ∩ Sj | ≤ log ρ. The computational complexity of the design
is the complexity of the function that gets input i ∈ [M] and outputs the set Si.

Theorem E.18 ([CT21a], Lemma A.3). There is a universal constant c ≥ 1 such that for any
α ∈ (0, 1) the following holds for sufficiently large ℓ. There is an algorithm that outputs an (ℓ, ρ)
design S1, ..., SM ⊆ [d], where M ≥ 2αℓ/c and d ≤ cℓ/α and log(ρ) = αℓ, and the algorithm runs in
space O(logM).

The following version of the Nisan-Wigderson generator [NW94] uses samplers to increase the
success probability of the reconstruction procedure in a randomness-efficient way.

54A minor technical issue is that Ci – as defined and analyzed in [DPT24] with respect to a fixed x – gets oracle
access not to g̃, but only to the part of g̃ that refers to x (i.e., to the partial function g̃x(z) = g̃(x, z)). The final
circuit that GL outputs gets input x and oracle g̃, and simulates Ci when the latter is given oracle access to g̃x.

89

Theorem E.19. There exists a universal constant cNW > 1, an oracle machine NW, and a proba-
bilistic oracle machine R that work as follows for every constant γ.

1. Generator. When given input (1ℓ, 1M , γ) such that M ≤ 22(γ/cNW)ℓ and oracle access to
h : {0, 1}ℓ → {0, 1} the machine NW runs in space O(ℓ) and outputs a set of strings in
{0, 1}M .

2. Reconstruction. When given input (1ℓ, 1M , γ) and oracle access to h and P = (P1, . . . , PM3),
where there is i ∈ [M3] such that

advNWh(U)(Pi) ≥
1

M2
,

the reconstruction R runs in time (ℓM)cNW2γℓ, uses O(ℓ) random coins, makes non-adaptive
queries, and outputs a circuit C such that with probability at least 1−M−100:

Pr
i∈{0,1}ℓ

[CP(i) = h(i)] ≥ 1

2
+

1

M3
.

Moreover, the circuit that R outputs is deterministic and makes just one oracle query.

Proof Sketch. The generator is exactly the standard NW generator (with a logspace-computable
design), which we recall so that we have consistent terminology.

The generator. The machine constructs the design of Theorem E.18, with M sets S1, . . . , SM ⊆
[d] with size ℓ and pairwise intersection at most γℓ, with d = O(ℓ/γ). Then for z ∈ {0, 1}d we
define

G(z) = (h(Des(z, 1)), . . . , h(Des(z,M)))

and the fact that the generator is computable in the claimed space bound follows from the explic-
itness of Theorem E.18.

The reconstruction. We define a trial reconstruction which uses O(ℓ) random bits and succeeds
with probability at least 1/ poly(M).

1. Draw j ∈ [M3] and z′ ∈ {0, 1}[d]\Si , where Pj : {0, 1}i → {0, 1} predicts bit i. (We denote
the randomness used as r = (j, z′).) We then query h on all points in Si ∩ Sl for every l ̸= i,
which takes M · 2αℓ queries.

2. Create the circuit Cr that, on input x ∈ {0, 1}ℓ, combines x with z′ to form z ∈ {0, 1}d (where
x specifies the points in Si and z′ specifies the other points), and outputs

Pj(h(Des(z, 1), . . . , h(Des(z, i− 1)).

By the standard NW reconstruction argument (and the fact that there is at least one good predic-
tor), on at least a ρ = 1/ poly(M) fraction of strings r ∈ {0, 1}O(ℓ), the above procedure produces a
circuit that computes h on at least a 1/2+2/M3 fraction of inputs (which we call a good circuit). To
perform this construction in a randomness-efficient fashion, we apply the sampler of Theorem E.12
with

n = O(ℓ) ε = ρ/2 δ = M−101.

90

With these parameters, the seed is of length O(ℓ) and the number of queries is poly(M). Letting
the queried points be S1, the probability that for every s ∈ S1, Cs is not a good circuit is at most
M−101.

We next probabilistically weed this list using a second sampler. We apply the sampler of The-
orem E.12 with

n = ℓ, ε = 1/2M3, δ = M−101/|S1|

where the seed is again O(ℓ). Letting the queried points be S2 ⊆ {0, 1}ℓ, we test the agreement of Cs

for every s ∈ S1 and return the circuit with largest estimated agreement. The probability that we
fail to estimate the agreement of any circuit up to error 1/2M3 is at most |S1|·M−101/|S1| = M−101,
and if this failure does not occur (and a good circuit is present in the list) we succeed. The time is
dominated by constructing the circuits Cs, of which there are poly(M) for a fixed polynomial, so
the runtime is as claimed by taking cNW sufficiently large.

91
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

