
Almost-catalytic Computation

Sagar Bisoyi* Krishnamoothy Dinesh† Bhabya Deep Rai‡ Jayalal Sarma‡.

September 11, 2024

Abstract

Designing algorithms for space bounded models with restoration requirements on (most
of) the space used by the algorithm is an important challenge posed about the catalytic compu-
tation model introduced by Buhrman et al. (2014). Motivated by the scenarios where we do not
need to restore unless w is useful, we relax the restoration requirement: only when the content
of the catalytic tape is w ∈ A ⊆ Σ∗, the catalytic Turing machine needs to restore w at the end
of the computation. We define, ACL(A) to be the class of languages that can be accepted by
almost-catalytic Turing machines with respect to A (which we call the catalytic set), that uses at
most c log n work space and nc catalytic space. We prove the following for the almost-catalytic
model.

• We show that if there are almost-catalytic algorithms for a problem with catalytic set as
A ⊆ Σ∗ and its complement respectively, then the problem can be solved by a zero-error
randomized algorithm that runs in expected polynomial time. More formally, for any lan-
guage A ⊆ Σ∗, ACL(A)∩ ACL(A) ⊆ ZPP. In particular, when A ∈ L, ACL(A)∩ ACL(A) =

CL. This leads to newer algorithmic approaches for designing catalytic algorithms.

• Using the above, we derive that to design catalytic algorithms for a language, it suffices
to design almost-catalytic algorithms where the catalytic set is the set of strings of odd
weight (PARITY). Towards this, we consider two complexity measures of the set A which
are maximized for PARITY. One is the random projection complexity (denoted by R(A))
and the other is the subcube partition complexity (denoted by P(A)). We show that, for all
k ≥ 1, there exists a language Ak ⊆ Σ∗ such that DSPACE(nk) ⊆ ACL(Ak) where for every
m ≥ 1, R(Ak∩{0, 1}m) ≥ m

4 and P(Ak∩{0, 1}m) = 2m/4. This is in contrast to the catalytic
machine model where it is unclear if it can accept all languages in DSPACE(log1+ϵ n) for
any ϵ > 0.

• Improving the partition complexity of the restoration set A further, we show that for all
k ≥ 1, there exists Ak ⊆ {0, 1}∗ such that DSPACE(logk n) ⊆ ACL(Ak) where for every
m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4+Ω(logm). Our main new
technique for the last two items is the use of error correcting codes to design almost-
catalytic algorithms.

• We also show that, even when there are more than two alphabet symbols, if the catalytic
set A does not use one of the alphabet symbols, then efficient almost-catalytic algorithms
with A as the catalytic set can be designed for any language in PSPACE.

*Work was done while the the author was a masters student at IIT Madras. Email: sagarbisoyi@gmail.com
†Indian Institute of Technolgy, Palakkad, India. Email: kdinesh@iitpkd.ac.in
‡Indian Institute of Technology Madras, Chennai, India. Email: {cs21d200|jayalal}@cse.iitm.ac.in, The

fourth author’s work is also supported by SERB-CRG Grant No : CRG/2020/003553 by Govt of India.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 140 (2024)

Contents

1 Introduction 2

2 Preliminaries 6
2.1 Bounds on the Complexity Measures . 6
2.2 Lower Bounds on the Measures for Union of Hypercubes 7

3 Almost-catalytic Turing Machines 8

4 An Upper Bound on Almost-catalytic Computation 10

5 Almost-catalytic Computation via Error Correcting Codes 11

6 An Improvement on the Subcube Partition Complexity of the Catalytic Set 12

A Appendix 16
A.1 Proof of Lemma 2.2 . 16
A.2 Proof of Proposition 3.3 . 17
A.3 Proof of Proposition 3.4 . 17

1 Introduction

The catalytic Turing machine model (originally proposed by [BCK+14]) involves a Turing machine
that is equipped with an input tape, a work tape and a special tape called the catalytic tape. Let
s, c : N −→ N be non-decreasing functions. A language L is said to be decided by a catalytic
Turing machine M in space s(n) and using catalytic space c(n) if on every input x of length n and
arbitrary string w ∈ {0, 1}c(n) of length c(n) written on the catalytic tape, the machine halts with w

on its catalytic tape. During the computation, M uses at most s(n) tape cells on the work tape and
c(n) cells on its catalytic tape, and M correctly outputs whether x ∈ L. CL is the class of languages
that can be accepted by catalytic Turing machines that use at most O(log n) work space, and O(nc)

catalytic space.
In addition to its theoretical appeal, the motivation for this model (c.f. [BCK+14,BKLS18]) also

comes from practically relevant contexts - where the memory that algorithms need is all used up to
store otherwise useful data. In such situations, catalytic algorithms (and more formally, catalytic
Turing machines) that guarantee restoration of the content of their catalytic tape to the original
content, are arguably useful.

A natural question is whether this extra space (which needs to be restored to its original content
at the end of the computation) helps at all. Quite surprisingly, [BCK+14] showed that L-uniform
TC1 ⊆ CL. The fact that NL ⊆ TC1 makes this immediately surprising for a space complexity
theorist, because it implies that the directed graph reachability problem has a deterministic algo-
rithm in the above model that uses O(log n) space in the worktape and at most poly(n) space in its
catalytic tape.

[BCK+14] also showed that CL is contained in ZPP. The main observation that leads to this up-
per bound is that two computations starting with different initial catalytic tape contents, say w and

2

w′ cannot reach the same configuration at any point in their computations on the same input. In a
subsequent work, [BKLS18] explore the power of non-determinism in catalytic space. CNL is the
class of problems solvable by non-deterministic logspace catalytic Turing machines. Using similar
ideas from [BCK+14], it was shown [BKLS18, DGJ+20] that the ZPP upper-bound holds even for
non-deterministic and randomized variants of catalytic logspace classes. [BKLS18] showed that
under a plausible hardness assumption, CNL = coCNL. In a work by [DGJ+20], it is shown that
under the same hardness assumption and using very similar techniques, CBPL = CSL = CSC1 =

CL. Recently, [CLMP24] completely removed the need for any hardness assumption and showed
that CBPL = CL unconditionally. Here CBPL and CSL are sets of languages solvable by logspace
randomized and symmetric catalytic Turing machines, respectively. CSC1 denotes the set of lan-
guages solved by catalytic log-space machines that run in polynomial time. [GJST19] showed that
under the same hardness assumption CNL = CUL. For more details, the reader is referred to the
following surveys: [Kou16, Mer23]. Algorithmic techniques that were used to design catalytic al-
gorithms has also been proven helpful in designing non-trivial space efficient algorithms for the
Tree evaluation problem (proposed in [CMW+12]). For more details, see [CM24] and the refer-
ences therein.

Our Results: Motivated by the scenarios where we do not need to restore unless w is useful, we
relax the restoration requirement: only when the content of the catalytic tape is w ∈ A ⊆ Σ∗,
the catalytic Turing machine needs to restore w at the end of the computation. Indeed, A ⊆ Σ∗

represents the set of “useful” w’s. We call such Turing machines as almost-catalytic Turing machines
and the languages accepted by such machines, using logarithmic work space and polynomial
catalytic space as ACL(A) (See Section 2 for a formal definition). We call the set A to be the
catalytic set.

Thus, the major challenge in this context is to design algorithms for useful catalytic sets. We
first consider two ways of exploring the almost-catalytic in terms of the catalytic set A. Firstly in
terms of the cardinality of A and secondly in terms of the complexity of A. To start with, observe
that ∀A ⊆ Σ∗, ACL(A) ⊆ PSPACE. In addition, it is easy to observe that ACL(Σ∗) = CL and
ACL(∅) = PSPACE. Given this, one natural way to work towards catalytic logspace algorithms
for PSPACE from almost-catalytic algorithms is to parameterize based on the size of A. Defining
f(n) = |A ∩ {0, 1}n| to be a measure of sparsity of A, we are interested to see how close can
the function f(n) be to 2n, such that we have almost-catalytic algorithms for every language in
PSPACE.

In this direction, it is easy to see that if A is a tally set (A ⊆ {1}∗), then PSPACE = ACL(A).
Such a consequence is unclear if A is only known to be polynomially sparse. However, if A is
polynomially sparse with low space complexity, then, we can simulate the whole of PSPACE using
almost-catalytic Turing machines. That is, for any sparse set A ∈ L, ACL(A) = PSPACE (see
Proposition 3.4). Indeed, it is more challenging to design ACL(A) algorithms for every language
in PSPACE when A is large in size.

However, we note that there is a set A with exponential density for which we can design
almost-catalytic algorithms to accept any language in DSPACE(nk) (see Proposition 3.3). This
implies that |A ∩ {0, 1}n| is not a good parameter to measure our progress towards designing
catalytic algorithms by this approach.

To make further progress, we turn to the structural front. We show a limitation of the almost-

3

catalytic Turing machines with respect to A by showing the following upper bound.

Theorem 1.1. For any A ⊆ Σ∗, ACL(A) ∩ ACL(A) ⊆ ZPP. If A ∈ L then ACL(A) ∩ ACL(A) = CL.

The first part of the above theorem and the argument is a generalization of the idea in [BCK+14]
which shows CL ⊆ ZPP. In particular, when A = Σ∗ or A = ∅, we recover their result. We
remark that this generalization is different from the compress-or-random method that appear
in [CLMP24, Pyn24]. The second part of the above theorem can also be viewed as a method of
obtaining catalytic algorithms by designing almost-catalytic algorithms with respect to an appro-
priate set A. We also remark that, unlike the arguments in [BCK+14], the Theorem 1.1 or the proof
of it, does not imply for any almost-catalytic Turing machine runs in expected polynomial time.

A notable example of such a set is the language PARITY consisting of strings over {0, 1}∗ with
an odd number of ones. Indeed, PARITY ∈ L. However, if we have an almost-catalytic algorithm
for a language L with the catalytic set being PARITY, then there is an almost-catalytic algorithm
with respect to PARITY as well (See Proposition 3.5). Hence, ACL(PARITY) = CL. Thus, it suffices
to design almost-catalytic algorithms with respect to PARITY and we set this as the target.

To measure our progress towards the set PARITY, we define two measures for the set A, defined
below, which are maximised for parity.

Random Projection Complexity: For an A ⊆ {0, 1}m , we define, for an ϵ ≥ 0, the random pro-
jection complexity, Rϵ(A) as the largest ℓ ≥ 0 such that: PrT⊆[m]

|T |=ℓ

[
|AT | ≥ 2ℓ−1

]
≥ 1− ϵ where

AT denotes the set of strings in A projected to the indices in T . Observe that R0(PARITYm) =

m− 1. Thus, in order to approach A = PARITY, we will design almost-catalytic computation
with respect to set A, where Rϵ(A) is as large as possible where ϵ is close to 0, say 2−αm for
some small constant 0 ≤ α < 1. In this case, we use R(A) to denote R2−αm(A).

Subcube Partition Complexity: A subcube C of the cube {0, 1}m is given by a mapping (partial
assignment) α : [n] → {0, 1, ∗} and is defined to be the set of all vectors in the Boolean
hypercube on n bits, Bn, that agree with α on coordinates that are assigned a non-∗ value
by α. More precisely the subcube Cα is the set {x ∈ {0, 1}m : α(i) ̸= ∗ =⇒ xi = α(i)}.
For a set A, a partition C = {C1, . . . , Ct} of A into subcubes Ci such that Ci ⊆ A is called a
subcube partition of A. We denote by P(A) the minimum number of subcubes in a subcube
partition of A. Observe that P(PARITYm) = 2m−1. Thus, in order to approach A = PARITY,
we propose to design almost-catalytic algorithms for sets with high partition complexity.

We remark about the choice of the above two measures in our journey towards achieving
PARITY as our catalytic set. As noted earlier, there are specific catalytic sets (see Proposition 3.3)
A ⊆ {0, 1}∗ which are of exponential density for which PSPACE ⊆ ACL(A). However, it can be
shown (see Proposition 2.1) that this catalytic set A has a subcube partition complexity P(A) of 1
and small random projection complexity R(A). Hence, it is natural to look for other catalytic sets
A such that ACL(A) is powerful enough to simulate polynomial space bounded computation, and
which possess larger values for one or both of these measures.

As our next result, we show the following simulation of DSPACE(nk) almost-catalytically for
set A with a large P(A) and R(A).

4

Theorem 1.2. For all k ≥ 1, there exists a language Ak ⊆ Σ∗ such that DSPACE(nk) ⊆ ACL(Ak) where
for every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4.

When we need to simulate only polylogarithmic space, the partition complexity of the catalytic
set A for which we restore can be improved. We prove the following theorem in this direction:

Theorem 1.3. For all k ≥ 1, there exists Ak ⊆ {0, 1}∗ such that DSPACE(logk n) ⊆ ACL(Ak) where for
every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4+Ω(logm).

We remark that this is in contrast to the catalytic machine model where it is unclear if it can
accept all languages in DSPACE(log1+ϵ n) for any ϵ > 0. In addition, note that, if Theorem 1.3 holds
when Ak ∩ {0, 1}m covers the whole of {0, 1}m, then it would imply that DSPACE(logk n) ⊆ CL.
Since CL ⊆ ZPP [BCK+14], this would show that DSPACE(logk n) ⊆ ZPP, which in-turn would
separate L and ZPP.

Exploring the power of additional alphabets, we show that even if the catalytic tape alphabet
has even a single symbol that is not included in the alphabet for the catalytic set (irrespective of
the size), the almost-catalytic machine can simulate the whole of PSPACE (See Proposition 3.6).

Our Techniques: Our technique starts with a novel approach towards designing almost-catalytic
algorithms using codes that can be decoded space efficiently. At a high level, the idea is as follows:
let us say we want to design a catalytic Turing machine accepting a language L which has a Turing
machine that runs in space c(n). For the catalytic Turing machine, the given content of the catalytic
tape can be treated as the codeword (for a fixed code), the Turing machine proceeds to modify the
content of the tape according to its computational needs. The modification of the work tape during
computation can be seen as introducing “errors” to the codeword. Finally we use the decoding
algorithm to correct the “errors” and finally obtain the original codeword we started with, thus
achieving the restoration condition.

Indeed, there are a number of challenges in implementing the above plan. The first limitation
is that the number of bits modified to the initial string on the catalytic tape must be such that the
modified string (after computation) is still within a decodable distance from the original word.
Thus, if c(n) is the catalytic space available, we can hope to allow the catalytic TM to use only
strictly o(c(n)) bits in the catalytic tape during the computation. Thus, an interesting target is to
simulate normal Turing machines that use an asymptotically smaller amount of space.

A second challenge is that the code must be decodable in deterministic logarithmic space,
as we have only so much work space. Fortunately, there are codes that have constant rate and
constant relative distance, for which logspace decoding algorithms are known (See Theorem 19
in [Spi97] and Theorem 14 in [GK06]). Using additional decodability properties of Spielman
codes, we show that the set A can be expanded to achieve larger random projection complex-
ity and larger subcube partition complexity, thus progressing towards A = PARITY. In order to
establish the progress in terms of measures of the catalytic sets, we also employ techniques from
basic combinatorics of codes, and Fourier analysis of Boolean functions to estimate the partition
complexity of the catalytic set in our algorithms.

5

2 Preliminaries

We begin by defining catalytic computation as described by [BCK+14]. We refer the reader to stan-
dard references [Gol08, AB09] for definitions of the complexity classes not defined in this paper.

A catalytic Turing machine is a Turing machine with a read-only input tape, a work tape of size
s(n), and a catalytic tape of size c(n) initially containing some w ∈ {0, 1}c(n), where n is the size of
the input. The machine M is said to decide a language L if (1) x ∈ L if and only if M accepts on
input x for all possible initial catalytic content w and (2) For each input x ∈ {0, 1}n and any initial
catalytic tape content w, M halts with w on its catalytic tape. We shall use the term catalytic space
to denote the space in the catalytic tape. The class CSPACE(s(n), c(n)) is the set of all languages
decided by a catalytic Turing machine with work space s(n) and catalytic space c(n). The class CL
denotes CSPACE(O(log n), poly(n)).

2.1 Bounds on the Complexity Measures

Recall, from the introduction, that for a set A ⊆ {0, 1}m, we use R(A) to denote its Random pro-
jection complexity and P(A) to denote its Subcube partition complexity. For an integer b dividing
m, let Ab = {w | w is of the form 0m/b(0 + 1)m−m/b} ⊆ {0, 1}m.

Proposition 2.1. For the set Ab defined above, P(Ab) = 1 and for a constant b, R(Ab) = O(1).

Proof. The subcube partition complexity P(Ab) is 1 as the entire set is contained in the subcube C

with the first m/b coordinates set to 0 and it cannot be any smaller.
We need an upper bound on the random projection complexity R(Ab). Towards this, let ℓ be

the smallest value for which PrT⊆[m]
|T |=ℓ

[
|(Ab)T | ≥ 2ℓ−1

]
< 1 − ϵ, where ϵ is a small constant. It can

seen that this probability is lower bounded by αℓ for a constant α that depends on b. Hence for a
constant b, ℓ is bounded by a constant.

We now establish a lower bound for the measure for another set A which we use as a catalytic
set later. We quickly recall linear codes, and related parameters below.

A linear code over a q-ary alphabet of length m and dimension k is a linear subspace C with
dimension k of the vector space Fm

q . The distance d of a linear code C is the minimum Hamming
distance between any two codewords in C, where Hamming distance between two codewords is
the number of locations where they differ. Furthermore, C is said to be an [m, k, d]q code if it has
length m, dimension k, distance d and alphabet size q. The relative distance of a [m, k, d]q code, δ
is defined as δ = d

m . The covering radius of a code C is the minimum D such that for all w ∈ Fm
q

there exists a codeword c ∈ C such that d(c, w) ≤ D. We will have the following bounds on the
measure.

Proposition 2.2. If A is a set of codewords for an [m, k, δm]2 code with δ being a constant, then Rϵ(A) ≥ k

for ϵ = 2−2k.

The proof of the above Lemma is a standard application of codes. We reproduce the argument
in Appendix A.1 for completeness.

6

2.2 Lower Bounds on the Measures for Union of Hypercubes

We identify Fm
2 with {0, 1}m. For two strings, x, y ∈ {0, 1}m, the Hamming distance, is denoted

by ∆(x, y). The same definition can be extended to subsets as follows: for any A,B ⊆ {0, 1}m,
∆(A,B) = min{∆(a, b) | a ∈ A, b ∈ B}.

A set H ⊆ {0, 1}m is said to be a Hamming ball if and only if there exists a k ≥ 0 and a
z ∈ {0, 1}n such that for every h ∈ H , ∆(h, z) ≤ k. We call k as the radius of the Hamming ball H
and z to be its center.

Proposition 2.3. Let A ⊆ Σ∗ be such that for any m ≥ 1, Am := A ∩ {0, 1}m can be expressed as a
union of Hamming balls H1, H2, . . . ,Ht over {0, 1}m such that for any i ̸= j, ∆(Hi, Hj) > 1. Then,
P(Am) =

∑t
i=1 P(Hi).

Proof. Consider any partition of Am into t subcubes given by C1, C2, . . . , Ct. Suppose that there
exists a subcube Ck, such that it contains points from Hi and Hj for some i ̸= j. As it is a partition,
every point in the subcube must belong to some Hamming ball and hence there exists two strings
x, y ∈ Ck that differ in one bit with x ∈ Hi and y ∈ Hj . But this contradicts ∆(Hi, Hj) > 1. Hence,
each Ci can contain at most one Hamming ball. With no sub cube partition of Am intersecting two
Hamming balls, we conclude P(Am) ≥

∑t
i=1 P(Hi).

On the other hand, since a sub cube partition of the Hamming balls gives a sub cube partition
of Am, P(Am) ≤

∑t
i=1 P(Hi).

We now claim that any Hamming ball over {0, 1}m with radius strictly less than m/2 centered
at 0m, must have a subcube partition complexity of Ω(

√
m).

Proposition 2.4. Let H be a Hamming ball over {0, 1}m of radius k < m/2 centered at 0m. Then
P(H) = Ω(

√
m).

Proof. Define the Boolean function Thm,k : {0, 1}n → {−1, 1} as for any x ∈ {0, 1}m, Thm,k(x) =

−1 if and only if |x| ≤ k. We start with the observation that a Hamming ball of radius k centered
at 0m are precisely the set of inputs on which the threshold Boolean function Thm,k evaluates to
−1.

It is known that the partition complexity of a Boolean function f on m bits is lower bounded
by

∑
S⊆[m] |f̂(S)| where f̂(S) is the Fourier coefficient of f (cf. Lemma 3.8 of [CKLS16]). We show

that this quantity grows about linear in
√
m.

Towards arguing this, we use a known result due to Gotsman and Linial [GL94] on the spectral
properties of threshold functions.

Proposition 2.5 ([GL94]). For any threshold function f on m bits, f̂(∅)2 +
∑

i∈[m] f̂({i})2 ≥
1
2 .

Since f = Thm,k is a symmetric function, the value of f̂(S) depends only on |S|. Moreover, for
the choice of k, |f̂(∅)| < 1/2. Hence, by Proposition 2.5, for any i ∈ [m], m · f̂({i})2 ≥ 1/4. This
implies that

P(H) ≥
∑
S

|f̂(S)| ≥
∑
i∈[m]

|f̂({i})| = Ω(
√
m)

The main lemma that we will need in later sections is the following:

7

Lemma 2.6. Let A ⊆ Σ∗ such that for every m ≥ 1, Am is a disjoint union of Hamming balls H1, . . . ,Ht

of radius k < m/2 over {0, 1}m such that for every i, j ∈ [t], ∆(Hi, Hj) > 1. Then for every m ≥ 1,
P(Am) = Ω(t

√
m).

Proof. For a contradiction, suppose that P(Am) = o(t
√
m). By Proposition 2.3, which says P(Am) =∑t

i=1 P(Hi), there exists an Hi centered at some z ∈ {0, 1}m such that P(Hi) = o(
√
m). Consider

the set H ′ := Hi ⊕ z = {h ⊕ z | h ∈ Hi} obtained by taking the bitwise XOR of each string in
Hi by z. Observe that H ′ is a Hamming ball centered at 0m of same radius as that of Hi since the
operation performed does not alter the relative Hamming distance between the points. With the
subcubes shifted by z also forming a partition of H ′, we have P(H ′) = o(

√
m) which contradicts

Proposition 2.4. This completes the proof.

3 Almost-catalytic Turing Machines

In this section, we present the definition and our results on Almost-catalytic Turing machines. We
begin with the following definition.

Definition 3.1 (Almost-catalytic Computation with respect to A : ACSPACEA and ACL(A)). Let
A ⊆ Σ∗, a language L is said to be in the class ACSPACEA(s(n), c(n)) if there is a Turing machine
M which on inputs of length n uses a work tape of size s(n) and catalytic tape of size c(n) (over
an alphabet set of size 2) such that, (1) for all x ∈ Σ∗, x ∈ L if and only if the Turing machine M

accepts x. (2) for all w ∈ A, if the machine M starts the computation with content of the catalytic
tape as w, then at the end of the computation w will be restored back in the tape. Furthermore we
define ACL(A) to denote the class ACSPACEA(O(log n), O(nc)) for some constant c.

We make some preliminary observations about almost-catalytic computation. Indeed, by def-
inition, CL = ACL(Σ∗), and PSPACE = ACL(∅). In general, for any A ⊆ Σ∗, CL ⊆ ACL(A) ⊆
PSPACE. Moreover, there are languages A ⊊ Σ∗ for which the ACL(A) can simulate the whole of
PSPACE. The following proposition is also easy to see.

Proposition 3.2. If A = {1n | n ≥ 0}, then PSPACE = ACL(A)

The above proposition is true since the catalytic tape can be filled with 1n at the end of the
computation irrespective of the original content. However, it is a challenge to show the above for
an arbitrary singleton set A.

A natural question is about the density of the catalytic set. We establish (see Appendix A.2 for
a proof) that for every k, there are sets with high density with respect to which every language in
DSPACE(nk) admits almost-catalytic algorithms.

Proposition 3.3. For any k ≥ 1, there exists a language A ⊆ {0, 1}∗ with DSPACE(nk) ⊆ ACL(A) via
an almost-catalytic logspace machine using m = bnk catalytic space for some constant b ≥ 1, such that for
any m ≥ 1, |A ∩ {0, 1}m| ≥ 2m−m/b.

At the other extreme, if |A ∩ {0, 1}n| = poly(n) i.e. A is sparse, we ask the question if it is true
that for all sparse A, ACL(A) = PSPACE? We observe that the answer is affirmative when the
sparse set A under consideration is in L.

8

Proposition 3.4. Let A ⊆ Σ∗ be a language in L. Then if A is sparse then ACL(A) = PSPACE.

The proof for the above theorem can be found in Appendix A.3. We now show the following
proposition for PARITY which is logspace decidable but is not sparse.

Proposition 3.5. ACL(PARITY) = ACL(PARITY).

Along with Theorem 1.1, this shows that it suffices to design almost-catalytic logspace algo-
rithms for A = PARITY to show membership in CL.

Proof. It suffices to show that if L ∈ ACL(PARITY), then L ∈ ACL(PARITY). Let L ∈ ACL(PARITY)

via an almost-catalytic machine M . Consider an almost-catalytic machine M ′ which works by
first checking if the catalytic content w belongs to PARITY. If yes, it flips the first bit of the catalytic
content (which makes the catalytic content to be in PARITY), runs M , flips the first bit of catalytic
tape and accepts iff M accepts x. The simulation of M will correctly decide L and restore the
catalytic content which is the same as w except for the first bit. The final step of M ′ will restore the
first bit. Hence M ′ restores all strings in PARITY and accepts L.

It is important that the definition of almost-catalytic space (Definition 3.1) use a catalytic tape
alphabet set of size 2. A larger alphabet set can dramatically increase the power of almost-catalytic
space. Suppose we let the almost-catalytic machine with catalytic alphabet over a larger Γ with
{0, 1} ⊊ Γ and make the machine restore any set A ⊆ {0, 1}∗. More precisely, let ACLΓ(A) denote
the languages decidable by almost-catalytic logspace machines working over the catalytic tape
alphabet Γ with A ⊆ Γ∗ as the catalytic set. Observe that for any A ⊆ Γ∗, ACLΓ(A) ⊆ PSPACE.

We now show that even if the catalytic tape alphabet has even a single symbol that is not
included in the alphabet for the catalytic set, the almost-catalytic machine can simulate the whole
of PSPACE.

Proposition 3.6. Let Σ be an input alphabet set and Γ be a catalytic tape alphabet with |Γ| > |Σ|. Then
for any A ⊆ Σ∗, PSPACE = ACLΓ(A). In particular, for Σ = {0, 1} and any Γ with |Γ| ≥ 3, PSPACE =

ACLΓ(Σ∗)

Proof. Without loss of generality, assume Σ = {0, 1} by suitably fixing a binary encoding for the
input alphabets. Let A ⊆ Σ∗. It suffices to show that PSPACE ⊆ ACLΓ(A).

Consider a language L in PSPACE via a p(n) space bounded deterministic Turing machine M

where p(n) is a fixed polynomial in n. Also, without loss of generality, let the work tape of M use
the alphabet set {0, 1, }.

An almost-catalytic machine M ′ using catalytic tape alphabet Γ having {0, 1, 0̂} ⊆ Γ accepting
L with a catalytic tape of length 4p(n) is described as follows: Scan across the catalytic tape and
check if the initial catalytic content w contains a 0̂ symbol. If there is no occurrence of 0̂, then w can
be a member of A and in particular consists of 1s and 0s alone. Using the work tape, M ′ counts
the number of 0s in w denoted by m.

We now describe how M ′ simulates M . Suppose that the number of 0s is more than the number
of 1s. Then m ≥ 1

2 × 4p(n) = 2p(n). The machine M ′ uses the first 2p(n) cells out of the m cells
containing 0 of the catalytic tape to simulate the workspace of M . Note that M is over alphabet set
{0, 1, } while the catalytic tape of M ′ is over the alphabet set Γ. To handle the work tape symbols

9

of M correctly during the simulation, M ′ uses the following encoding E : {0, 1, } → Γ defined as
E(0) = 00, E(1) = 00̂ and E() = 0̂0. More precisely, if M reads (or writes) a symbol α ∈ {0, 1, }
at position i of its tape, M ′ proceeds to read (or write) E(α) at the 2i and 2i + 1th cells having 0

or 0̂ counted from the left end on the catalytic tape. Once the computation ends, restoration of w
is achieved (irrespective of whether w ∈ A or not) by replacing all the 0̂ with 0 at the end of the
simulation. Now, if the number of 1’s are more than the number of 0s, then M ′ uses an encoding
E(0) = 11, E(1) = 10̂ and E() = 0̂1 and repeat the above simulation of M with 0 replaced by 1 in
the above text.

If w contains a 0̂, then w ̸∈ A and therefore M ′ is not required to restore the catalytic tape.
In such a case, M ′ erases the catalytic tape and simulates M on it. Clearly, if M uses poly(n)

workspace, M ′ can simulate M using O(log n) work space and 4 · poly(n) catalytic space. Hence
L ∈ ACLΓ(A) which completes the proof.

4 An Upper Bound on Almost-catalytic Computation

In this section, we show that for any language A ⊆ Σ∗, languages computable by almost-catalytic
Turing machines with respect to A which are also computable by catalytic Turing machines with
respect to A, both using are contained in ZPP.

Lemma 4.1. Define for any almost-catalytic Turing machine M restricted to A, Ct(x,w) to be the config-
uration with input x and catalytic tape content w at time t. For all x, for all w,w′ ∈ A such that w ̸= w′

and for all t, t′ Ct(x,w) ̸= Ct′(x,w
′).

Proof. Assume there exists an x and there exists w,w′ ∈ A such that Ct(x,w) = Ct′(x,w
′). Now,

from that point onward the computation would be the same and the restoration part would be
incorrect for one of w or w′, a contradiction. This justifies our lemma.

Theorem 1.1. For any A ⊆ Σ∗, ACL(A) ∩ ACL(A) ⊆ ZPP. If A ∈ L then ACL(A) ∩ ACL(A) = CL.

Proof. First, we argue that for any A ⊆ Σ∗, ACL(A) ∩ ACL(A) ⊆ ZPP. Let L ∈ ACL(A) via Turing
machine M1 and L ∈ ACL(A) via Turing machine M2. Algorithm 1 describes the ZPP machine M ′

for L.

Algorithm 1 Description for Machine M ′ on input x and initial catalytic tape content w

1: Choose a w ∈ {0, 1}poly(n) u.a.r.
2: Perform steps (3) and (4) in a time shared fashion till one of them halts
3: Run M1 on x with w on a catalytic tape
4: Run M2 on x with w on a separate catalytic tape
5: Accept if and only if the machine that halted accepted.

Correctness follows since M ′ either simulates M1 or M2 both of which correctly accepts L.
We now analyze the run time of M ′ and show that it runs in expected polynomial time (w.r.t.

w). Let t(x,w) denote the total number of steps M ′ makes on x and w. Let t1(x,w) denote the
running time of machine M1 on input w in Step 4. Let t2(x,w) denote the number of steps taken in
Step 6. Observe that t(x,w) = O(min{t1(x,w), t2(x,w)}). For a fixed x, the expected running time

10

(over the random choices of w) of M ′ can be obtained as E[t(x,w)] = E[min{t1(x,w), t2(x,w)]. We
now bound the expectation.

E[t(x,w)] = E[t(x,w)|w ∈ A]× Pr[w ∈ A] + E[t(x,w)|w ∈ A]× Pr[w ∈ A]

≤ E[t1(x,w)|w ∈ A]× Pr[w ∈ A] + E[t2(x,w)|w ∈ A]× Pr[w ∈ A] (1)

≤
∑

w∈A t1(x,w)

|A|
× |A|

2|w| +

∑
w∈A t2(x,w)

|A|
× |A|

2|w|

≤ 2|w| × nc

|A|
× |A|

2|w| +
2|w| × nc

|A|
× |A|

2|w| = O(nc) (2)

Note that Eq. 1 follows as t(x,w) is the minimum among t1(x,w) and t2(x,w) and Eq. 2 follows
from Lemma 4.1 where c is some absolute constant. Thus it follows that E[t(x,w)] ≤ poly(n).
Hence, the overall running time of M ′ will be polynomial on expectation.

We now argue that for any A ∈ L, ACL(A) ∩ ACL(A) = CL.
For any L ∈ CL, L ∈ ACL(A) ∩ ACL(A) as any catalytic machine always restores the catalytic

content (irrespective of the choice of A). On the other hand, suppose that L ∈ ACL(A) ∩ ACL(A)

via an almost-catalytic machine M1 with restoration for A and via an almost logspace catalytic
machine M2 with restoration for A. Since A can be decided in logspace, the catalytic algorithm
first checks if the catalytic content belongs to A and runs M1 and runs M2 otherwise. The result-
ing machine is indeed catalytic as it restores irrespective of the catalytic content and uses only
logarithmic work space. Hence L ∈ CL.

5 Almost-catalytic Computation via Error Correcting Codes

We observed for any A ⊆ Σ∗, ACL(A) ⊆ PSPACE. We now show that there exists A ⊆ Σ∗ such that
PSPACE ⊆ ACL(A). We prove this by showing that there exists an A ⊆ Σ∗ such that for any k and
for any L ∈ DSPACE(nk), L ∈ ACL(A). This suffices since PSPACE = ∪k≥0DSPACE(n

k) ⊆ ACL(A).
Our intuition is the following : any computation can be seen as “corrupting” the catalytic tape

content making the restoration difficult. With this view, it is natural to set A to be codewords from
an error correcting code of good distance. In addition, the code should be decodable in O(log n)

space. In the following Theorem, we choose A to be one such code.

Theorem 1.2. For all k ≥ 1, there exists a language Ak ⊆ Σ∗ such that DSPACE(nk) ⊆ ACL(Ak) where
for every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4.

Proof. Fix any k ≥ 0. Let L ∈ DSPACE(nk) via a Turing machine M using a work space of cnk

for some constant c > 0. The goal is to construct a catalytic logspace Turing machine M ′ such
that L(M ′) = L and it always restores the catalytic content w if w ∈ A. We choose our A such
that An := A ∩ {0, 1}n consists of codewords of an explicit [n, n4 , αn]2 linear code constructed by
Spielman [Spi97]. Here, α (a constant, independent of n) is the relative distance of the code (as
described in Theorem 19 of [Spi97]). In their work, it was shown that these codes can be decoded
in deterministic logspace. Let D be such a logspace decoding machine.

We now describe a machine M ′ (shown in Algorithm 2) accepting L. With x ∈ Σ∗ of length n,
let the length of the catalytic tape be bnk where b is at least 2c

α . We work with the set Abnk (where

11

An is as defined above). Let D be the logspace decoder, given access to a string of length bnk, can
correct it using O(log n) space provided the string is within the decoding limit of some codeword
in Abnk .

Algorithm 2 Description of M ′ on input x and initial catalytic tape content w

1: On input x, run M on x using the first cnk cells of the catalytic tape as the work tape for M .
2: Using the work tape as the work space for D, decode the content of the catalytic tape.
3: Accept if M accepted x
4: Else reject

Since M ′ simulates M , L(M ′) = L(M) = L. Let w be the initial content of the catalytic tape
with |w| = bnk. Let w′ be its content at the end of the computation in Step 1 of M ′. Observe
that w and w′ can differ in at most cnk bits as M uses only the first cnk bits of the catalytic tape.
If w ∈ Abnk , then w is a codeword and w′ must fall in the Hamming ball of radius α

2 bn
k since

∆(w′, w) ≤ cnk ≤ α
2 bn

k by the choice of b. Hence upon running D on w′ in Step 2 of M ′, will
restore the catalytic tape content to w. Observe that this step uses O(log n) work tape cells. Thus,
the above arguments imply that L ∈ ACL(A) via the machine M ′.

The lower bound on R(Ak) follows Proposition 2.2 since the set Ak is exactly the set of code-
words of Spielman codes that have δ = O(1) [Spi97]. The lower bound on P(Ak) follows from the
minimum distance of the set Ak is d > 1, and hence no two elements of Ak can be covered by the
same subcube. Hence P(Ak) ≥ |Ak| which is at least 2m/4.

We remark that it also suffices if the code used has a rate that is a polynomial in n (message
length), a good distance that is logspace constructible and decodable. In addition to the Speilman
codes [Spi97], logspace decodable codes from [GK06] also suffice for the above theorem.

6 An Improvement on the Subcube Partition Complexity of the Cat-
alytic Set

In Theorem 1.2, we showed that any PSPACE algorithm can be simulated in almost-catalytic
logspace by restoring catalytic content w that are codewords of a carefully defined code as the
set A. The ideal case would be to cover every such w that appears as catalytic content. With this
motivation, in the main result of this section (Theorem 1.3), we attempt to cover strings that are
not codewords as well at the expense of using less space. This allows the set A to be larger than
the one in Theorem 1.2 and also has a better subcube partition complexity.

Theorem 1.3. For all k ≥ 1, there exists Ak ⊆ {0, 1}∗ such that DSPACE(logk n) ⊆ ACL(Ak) where for
every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4+Ω(logm).

Proof. Let L ∈ DSPACE(logk n) via a Turing machine M . Let m = nk and C be an [m,m/4, αm]2
logspace decodable Spielman code where α > 0 is a constant [Spi97]. We crucially use the
existence of the family of functions (fm) (Theorem 19 of [Spi97]) in our algorithm defined as:
fm : {0, 1}m × {0, 1}logm → {0, 1} is a Boolean function that takes in word w ∈ {0, 1}m such
that ∃y ∈ {0, 1}m/4 with d(C(y), w) ≤ αm−1

2 and an index j ∈ [m] and outputs 1 if and only if

12

wj ̸= C(y)j . If wj ̸= C(y)j , then we shall denote them as corrupted bits/indices of w. Here d

denotes the Hamming distance between two binary strings.
In addition, these functions can be computed by a log-space uniform family of bounded fan-in

log-depth polynomial size circuits. Note that these circuits can be evaluated in O(log n) space.
Hence for any given w ∈ {0, 1}m and j ∈ [m], f(w, j) can be computed in O(log n) space.

We define Tm to be the set of all strings that are uniquely decodable to some codeword in C.
More precisely, Tm =

{
z ∈ {0, 1}m | ∃y ∈ {0, 1}m/4, d(z, C(y)) ≤ αm−1

2

}
. Define Ak =

⋃
m≥1 Tm.

Since ℓ is asymptotically smaller than α·m, the set Tm must also contain words that are at a distance
of at most ℓ from some codeword in C. This gives the desired lower bound on the |Ak ∩ {0, 1}m|.

The description of an ACL machine M ′ simulating M is given in Algorithm 3.

Algorithm 3 Description of M ′ on input x and catalytic tape content w with |w| = m.

1: Partition [m] into disjoint contiguous blocks B1, B2, . . . Bℓ each of size b = logk n.
2: Using the function fm, find i ∈ [ℓ] in w such that |{j ∈ Bi | fm(w, j) = 1}| ≤ logn

log(logk n)

3: If such an i does not exist, set i = ℓ, E = ∅, and go to line 6. //in this case w /∈ Ak

4: Store the start and end indices of the block Bi. Call them p and q respectively.
5: Let E = {i ∈ [b] | fm(w, p+ i) = 1} be the corrupted bits of Bi.
6: Run M on x using catalytic tape cells indexed by Bi as work space for M and accept if and

only if M accepts.
7: Restoration: Let w′ be the content of the catalytic tape at the end of the computation.

For each j ∈ Bi, if [fm(w′, j) = 1)]⊕ [j ∈ E], flip w′
j .

We argue correctness first. Irrespective of whether w ∈ Ak or not, there will be an index Bi that
is identified in step 3 of the algorithm and the cells of the catalytic tape indexed by Bi will be used
to correctly simulate M on x which requires only O(logk n) space. Hence correctness follows.

We argue now that the above algorithm restores w at the end of the computation if w ∈ Ak.
w ∈ A implies that there is a codeword γ ∈ {0, 1}m that is at a Hamming distance of at most

m
logk n

× logn

log(logk n)
from w. By averaging, there must be a block Bi with at most logn

log(logk n)
errors.

Since |Bi| ≤ O(logk n), we still have that d(w′, γ) ≤ d(w, γ) + O(logk n) ≤ m
logk n

× logn

log(logk n)
+

O(logk n) ≤ αm−1
2 for large enough n. Hence the word w′ is still within the decoding radius of the

code that we started with.
Let Bi be the block chosen by the algorithm in step 2. If j /∈ Bi, step 6 does not change j and

hence w′
j = wj . If j ∈ Bi, then wj may get changed during the simulation of the machine M in

step 6. We argue now that these bits also get restored. We do this in two cases.

Case 1: w′
j = γj . This implies that j-th bit in w′

j is not corrupted. If in addition, j ∈ E, that
implies wj ̸= γj . Hence wj ̸= w′

j . Hence when the algorithm flips w′
j in line 7, it makes it

equal to wj . In case, j /∈ E, we have that wj = γj = w′
j , and hence no flipping is required in

line 7 of the algorithm.

Case 2: w′
j ̸= γj . This implies that j-th bit in w′

j is corrupted. If in addition, j ̸∈ E, that implies
wj = γj . Hence wj ̸= w′

j . Hence when the algorithm flips w′
j in line 7, it makes it equal to wj .

In case, j ∈ E, we have that wj ̸= γj and hence wj = w′
j , and hence no flipping is required

in line 7 of the algorithm.

13

We now argue the space bound for M ′. The indices p, q ∈ [m] and i, j ∈ [ℓ] can all be stored in
O(log n) space. Note that we store E ⊆ [b], which can be done using |E| log b many bits. Since the
number of corrupted bits |E|, is at most logn

log(logk n)
, we can store E in the work tape using O(log n)

bits. As mentioned above, the function fm can also be computed in O(log n) space as needed in
lines 2, 5 and 7 of the algorithm. This establishes the space bound.

The lower bound on R(Ak) follows Proposition 2.2 since the set Ak is exactly the set of code-
words of Spielman codes that have δ = O(1) [Spi97] and that Rϵ(A) is a monotone property with
respect to A. The lower bound on P(Ak) follows from Lemma 2.6 noting that the set Ak is defined
to the union of Hamming balls of radius m

(logk−1 n) log(logk n)
.

Two Limitations of the Approach towards DSPACE(logk n) ⊆ ACL(Σ∗) We first note a limitation
of the approach due to the fact that there is a direct simulation of the DSPACE(logk n) machine
in the argument. [BCK+14] observed that there cannot be a step-by-step simulation of Turing
machines that use ω(s(n)) space by using catalytic Turing machines that uses s(n) work space
and even 2s(n) catalytic space. We note that this also implies a limitation of our approach towards
almost-catalytic Turing machines as well.

Consider the following family of algorithms that attempts to show DSPACE(logk(n)) ⊆ CL via
error correcting codes as follows: Let L belongs to DSPACE(logk(n)) via machine M . Then we
construct a catalytic machine as follows: (1) Apply logspace computable transformations to the
initial catalytic tape content to make it “recoverable” from O(logk n) errors. (2) Run the machine
M on input x on the catalytic tape. (3) Correct the O(logk n) errors on the catalytic tape and restore
w. (4) Accept if M accepts and reject otherwise.

Proposition 6.1. There is no simulation of determinisitic polylogarithmic space in catalytic logspace via
direct simulation and using logspace decodable error correcting codes.

Proof. We argue that the direct simulation cannot work as it is. Indeed, it implies that the machine
M must necessarily run in expected polynomial time (with respect to choice of initial catalytic
content). In other words, every O(logk n) machine must run in polynomial time - a statement
which can be proved to be false. We argue the same below.

Consider the case when machine M is constructed as follows: M visits all its configurations
before halting. There are O(exp(logk n)) many configurations to the machine and thus it takes
time at least O(exp(logk n)) to run. In step 2 of our algorithm, we run the machine M directly (i.e.
step-by-step). So our algorithm too runs in time at least O(exp(logk n)). The initial content w does
not affect step 2, so the average running time (over the choice of w) is still super-polynomial which
is a contradiction to the fact that any CL machine takes polynomial running time on average over
the choice of w.

We observe a second limitation of the approach due to the fact that we cannot expect linear
codes to have a covering radius as low as required for the algorithm. More precisely, for the ap-
proach, we need the covering radius of the code C ⊆ {0, 1}m to be at most m

(logm)k−1 log logn
. How-

ever, for every code with rate r, the covering radius is known [CKMS85] to be at least m
(
1
2 −

√
r

23/2

)
which is at least Ω(n) even for constant rate codes.

14

Acknowledgments We would like to thank the anonymous reviewers for pointing out that The-
orem 1.1 works for any A ⊆ Σ∗ (previous versions stated restrictions on A) and for pointing out
Proposition 3.3.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, USA, 1st edition, 2009. pages 6

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.
Computing with a full memory: Catalytic space. In Proceedings of the Forty-Sixth An-
nual ACM Symposium on Theory of Computing, STOC ’14, page 857–866, New York, NY,
USA, 2014. Association for Computing Machinery. pages 2, 3, 4, 5, 6, 14

[BKLS18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic space:
Non-determinism and hierarchy. Theory of Computing Systems, 62(1):116–135, jan 2018.
pages 2, 3

[CKLS16] Sourav Chakraborty, Raghav Kulkarni, Satyanarayana V. Lokam, and Nitin Saurabh.
Upper bounds on fourier entropy. Theoretical Computer Science, 654:92–112, 2016. Com-
puting and Combinatorics. pages 7

[CKMS85] G. Cohen, M. Karpovsky, H. Mattson, and J. Schatz. Covering radius—survey and
recent results. IEEE Transactions on Information Theory, 31(3):328–343, 1985. pages 14

[CLMP24] James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. The structure of catalytic space:
Capturing randomness and time via compression. Electron. Colloquium Comput. Com-
plex., TR24-106, 2024. pages 3, 4

[CM24] James Cook and Ian Mertz. Tree evaluation is in space o(log n · log logn). In Pro-
ceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, page
1268–1278, New York, NY, USA, 2024. Association for Computing Machinery. pages
3

[CMW+12] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul San-
thanam. Pebbles and branching programs for tree evaluation. ACM Trans. Comput.
Theory, 3(2), jan 2012. pages 3

[DGJ+20] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.
Randomized and symmetric catalytic computation. In Henning Fernau, editor, Com-
puter Science – Theory and Applications, pages 211–223, Cham, 2020. Springer Interna-
tional Publishing. pages 3

[GJST19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambigu-
ous catalytic computation. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, (FSTTCS 2019), volume 150 of LIPIcs, pages 16:1–16:13, 2019. pages 3

15

[GK06] Venkatesan Guruswami and Valentine Kabanets. Hardness amplification via space-
efficient direct products. In Proceedings of the 7th Latin American Conference on Theo-
retical Informatics, LATIN’06, page 556–568, Berlin, Heidelberg, 2006. Springer-Verlag.
pages 5, 12

[GL94] Craig Gotsman and Nathan Linial. Spectral properties of threshold functions. Combi-
natorica, 14(1):35–50, March 1994. pages 7

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008. pages 6

[Kou16] Michal Koucký. Catalytic computation. Bull. EATCS, 118, 2016. pages 3

[Mer23] Ian Mertz. Reusing space: Techniques and open problems. Bull. EATCS, 141, 2023.
pages 3

[Pyn24] Edward Pyne. Derandomizing logspace with a small shared hard drive. Electron.
Colloquium Comput. Complex., TR23-168, 2024. pages 4

[Spi97] Daniel A. Spielman. The complexity of error-correcting codes. In Bogdan S. Chlebus
and Ludwik Czaja, editors, Fundamentals of Computation Theory, pages 67–84, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg. pages 5, 11, 12, 14

A Appendix

A.1 Proof of Lemma 2.2

Proof. Let E : {0, 1}k → {0, 1}m be the encoding associated with the given C = (m, k, δm)2 code.
Let ℓ be the random projection complexity of the set of codewords. We show that when ϵ = 1/22k,
Rϵ(C) ≥ k.

Consider any set S ⊆ {0, 1}k such that |S| ≥ 2ℓ−1. We will fix S later. Firstly notice that,

Pr
T⊆[m]
|T |=ℓ

[
∀x ̸= y ∈ S such that E(x)T ̸= E(y)T

]
≤ Pr

T⊆[m]
|T |=ℓ

[∣∣A|T ∩ {0, 1}ℓ
∣∣ ≥ 2ℓ−1

]
Our goal is to show a lower bound of 1− ϵ for the term in the left-hand size. Instead, we start by
analysing the complementary event and show that its probability is upper bounded by ϵ. For any
distinct pair x, y ∈ S,

Pr
T⊆[m]
|T |=ℓ

[
E(x)T = E(y)T

]
≤ (1− δ)ℓ

The above follows from the fact that since A is a code of distance δm, the probability for E(x)

and E(y) to be same at a random index in T is at most 1− δ. Thus, we have,

Pr
T⊆[m]
|T |=ℓ

[
∃x ̸= y ∈ S such that E(x)T = E(y)T

]
≤ (1− δ)ℓ

(
|S|
2

)

16

Choosing S to be any subset of {0, 1}k of size 2k−1, we want (1− δ)ℓ
(
2k−1

2

)
≤ ϵ. This means that

ℓ ≥ 2k − log(1/ϵ)

log(1/(1− δ))

In addition, since |S| ≥ 2ℓ−1, we have k ≥ ℓ. For our choice of ϵ all values of ℓ up to k are
feasible. Since we need the maximum possible ℓ, we choose ℓ = k. This completes the proof.

A.2 Proof of Proposition 3.3

Proof. Consider a language L that can be decided by a machine M in nk space. Now, we shall
construct an almost-catalytic Turing machine M ′ deciding L using m = bnk catalytic space for
some b ≥ 1. We shall define the catalytic set A used by M ’ as {w | w is of the form 0n

k
(0+1)(b−1)nk |

n ≥ 1}.
The machine M ′ works as follows: Simulate M on input x using the first nk many bits of the

catalytic tape. Now, for restoration, we set the first m many bits back to 0, which belongs to the
set A. Finally, we observe that |A ∩ {0, 1}m| = 2(b−1)nk

= 2m−m/b.

A.3 Proof of Proposition 3.4

Proof. Let L ∈ PSPACE via a Turing machine ML. We want to show that we can construct a ACL(A)

machine M ′ such that it decides L. Say A ∈ L via the machine MA. Following is the description of
M ′ (Algorithm 4) with catalytic tape initialized with w ∈ {0, 1}poly(n):

Algorithm 4 Machine M ′ on x ∈ {0, 1}n and w ∈ {0, 1}poly(n)

1: Check if w ∈ A using the work space to run the machine MA. If not, run the machine ML on
the catalytic space. Accept if ML accepts, Rejects if ML rejects.

2: Initialize count = 0
3: repeat
4: Run machine MA on w:
5: if w ∈ A then
6: Increment count.
7: Update w = w − 1.
8: end if
9: until w becomes all 0’s

10: Run ML on catalytic tape. If ML accepts, set flag = true, else flag = false
11: repeat
12: Run machine MA on w:
13: if w ∈ A then
14: Decrement count.
15: Update w = w + 1
16: end if
17: until count = 0
18: If flag = true then Accept, otherwise Reject and halt.

Because A is in L, we can compute the membership of w in A using only the work space, which

17

is logarithmic in size. If w ̸∈ A, it is not essential to restore the catalytic tape hence we simply run
the machine ML on the catalytic tape without restoring w. Next, if A is sparse there are only poly(n)

many strings that the machine MA would accept. A counter that remembers the position of such
a string in a lexicographically ordered A, would need only O(log n) many bits for its storage. So if
w ∈ A, we start “decrementing” the string while incrementing the counter, until when w becomes
all 0’s, count stores exactly the position of the string in a lexicographically ordered A. Finally,
we can simply run the machine ML on the catalytic tape, and knowing the position of w (in the
lexicographically ordered A) stored by count helps us restore w at the end.

18
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

