
Almost-catalytic Computation

Sagar Bisoyi* Krishnamoothy Dinesh† Bhabya Deep Rai‡ Jayalal Sarma‡.

November 22, 2024

Abstract

Designing algorithms for space bounded models with restoration requirements on (most
of) the space used by the algorithm is an important challenge posed about the catalytic compu-
tation model introduced by Buhrman et al. (2014). Motivated by the scenarios where we do not
need to restore unless w is useful, we relax the restoration requirement: only when the content
of the catalytic tape is w ∈ A ⊆ Σ∗, the catalytic Turing machine needs to restore w at the end
of the computation. We define, ACL(A) to be the class of languages that can be accepted by
almost-catalytic Turing machines with respect to A (which we call the catalytic set), that uses at
most c log n work space and nc catalytic space. We prove the following for the almost-catalytic
model.

• We show that if there are almost-catalytic algorithms for a problem with catalytic set as
A ⊆ Σ∗ and its complement respectively, then the problem can be solved by a zero-error
randomized algorithm that runs in expected polynomial time. More formally, for any lan-
guage A ⊂ eqΣ∗, ACL(A)∩ACL(A) ⊆ ZPP. In particular, when A ∈ L, ACL(A)∩ACL(A) =

CL. This leads to newer algorithmic approaches for designing catalytic algorithms.

• Using the above, we derive that to design catalytic algorithms for a language, it suffices
to design almost-catalytic algorithms where the catalytic set is the set of strings of odd
weight (PARITY). Towards this, we consider two complexity measures of the set A which
are maximized for PARITY. One is the random projection complexity (denoted by R(A))
and the other is the subcube partition complexity (denoted by P(A)). We show that, for all
k ≥ 1, there exists a language Ak ⊆ Σ∗ such that DSPACE(nk) ⊆ ACL(Ak) where for every
m ≥ 1, R(Ak∩{0, 1}m) ≥ m

4 and P(Ak∩{0, 1}m) = 2m/4. This is in contrast to the catalytic
machine model where it is unclear if it can accept all languages in DSPACE(log1+ϵ n) for
any ϵ > 0.

• Improving the partition complexity of the catalytic set A further, we show that for all
k ≥ 1, there exists Ak ⊆ {0, 1}∗ such that DSPACE(logk n) ⊆ ACL(Ak) where for every
m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4+Ω(logm). Our main new
technique for the last two items is the use of error correcting codes to design almost-
catalytic algorithms.

• We also show that, even when there are more than two alphabet symbols, if the catalytic
set A does not use one of the alphabet symbols, then efficient almost-catalytic algorithms
with A as the catalytic set can be designed for any language in PSPACE.

*Work was done while the the author was a masters student at IIT Madras. Email: sagarbisoyi@gmail.com
†Indian Institute of Technolgy, Palakkad, India. Email: kdinesh@iitpkd.ac.in
‡Indian Institute of Technology Madras, Chennai, India. Email: {cs21d200|jayalal}@cse.iitm.ac.in, The

fourth author’s work is also supported by SERB-CRG Grant No : CRG/2020/003553 by Govt of India.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 140 (2024)

1 Introduction

The catalytic Turing machine model (originally proposed by [2]) involves a Turing machine that
is equipped with an input tape, a work tape and a special tape called the catalytic tape. Let
s, c : N −→ N be non-decreasing functions. A language L is said to be decided by a catalytic
Turing machine M in space s(n) and using catalytic space c(n) if on every input x of length n and
arbitrary string w ∈ {0, 1}c(n) of length c(n) written on the catalytic tape, the machine halts with w

on its catalytic tape. During the computation, M uses at most s(n) tape cells on the work tape and
c(n) cells on its catalytic tape, and M correctly outputs whether x ∈ L. CL is the class of languages
that can be accepted by catalytic Turing machines that use at most O(log n) work space, and O(nc)

catalytic space.
In addition to its theoretical appeal, the motivation for this model (c.f. [2], [3]) also comes

from practically relevant contexts - where the memory that algorithms need is all used up to store
otherwise useful data. In such situations, catalytic algorithms (and more formally, catalytic Turing
machines) that guarantee restoration of the content of their catalytic tape to the original content,
are arguably useful.

A natural question is whether this extra space (which needs to be restored to its original content
at the end of the computation) helps at all. Quite surprisingly, [2] showed that L-uniform TC1 ⊆
CL. The fact that NL ⊆ TC1 makes this immediately surprising for a space complexity theorist,
because it implies that the directed graph reachability problem has a deterministic algorithm in
the above model that uses O(log n) space in the worktape and at most poly(n) space in its catalytic
tape.

[2] also showed that CL is contained in ZPP. The main observation that leads to this upper
bound is that two computations starting with different initial catalytic tape contents, say w and w′

cannot reach the same configuration at any point in their computations on the same input. In a
subsequent work, [3] explores the power of non-determinism in catalytic space. CNL is the class of
problems solvable by non-deterministic logspace catalytic Turing machines. Using similar ideas
from [2], it was shown in [3], [9] that the ZPP upper-bound holds even for non-deterministic and
randomized variants of catalytic logspace classes. [3] showed that under a plausible hardness as-
sumption, CNL = coCNL. In a work by [9], it is shown that under the same hardness assumption
and using very similar techniques, CBPL = CSL = CSC1 = CL. Recently, [6] completely removed
the need for any hardness assumption and showed that CBPL = CL unconditionally. Here CBPL
and CSL are sets of languages solvable by logspace randomized and symmetric catalytic Turing
machines, respectively. CSC1 denotes the set of languages solved by catalytic log-space machines
that run in polynomial time. [11] showed that under the same hardness assumption CNL = CUL.
For more details, the reader is referred to the following surveys: [14], [15]. Algorithmic tech-
niques that were used to design catalytic algorithms have also been proven helpful in designing
non-trivial space efficient algorithms for the Tree evaluation problem (proposed in [8]). For more
details, see [7] and the references therein.

Our Results: Motivated by the scenarios where we do not need to restore unless w is useful, we
relax the restoration requirement: only when the content of the catalytic tape is w ∈ A ⊆ Σ∗,
the catalytic Turing machine needs to restore w at the end of the computation. Indeed, A ⊆ Σ∗

represents the set of “useful” w’s. We call such Turing machines as almost-catalytic Turing machines

2

and the languages accepted by such machines, using logarithmic work space and polynomial
catalytic space as ACL(A) (See Section 2 for a formal definition). We call the set A to be the
catalytic set.

Thus, the major challenge in this context is to design algorithms for useful catalytic sets. We
first consider two ways of exploring the almost-catalytic in terms of the catalytic set A. Firstly in
terms of the cardinality of A and secondly in terms of the complexity of A. To start with, observe
that ∀A ⊆ Σ∗, ACL(A) ⊆ PSPACE. In addition, it is easy to observe that ACL(Σ∗) = CL and
ACL(∅) = PSPACE. Given this, one natural way to work towards catalytic logspace algorithms
for PSPACE from almost-catalytic algorithms is to parameterize based on the size of A. Defining
f(n) = |A ∩ {0, 1}n| to be a measure of sparsity of A, we are interested to see how close can
the function f(n) be to 2n, such that we have almost-catalytic algorithms for every language in
PSPACE.

In this direction, it is easy to see that if A is a tally set (A ⊆ {1}∗), then PSPACE = ACL(A).
Such a consequence is unclear if A is only known to be polynomially sparse. However, if A is
polynomially sparse with low space complexity, then, we can simulate the whole of PSPACE using
almost-catalytic Turing machines. That is, for any sparse set A ∈ L, ACL(A) = PSPACE (see
Proposition 3.4). Indeed, it is more challenging to design ACL(A) algorithms for every language
in PSPACE when A is large in size.

However, we note that there is a set A with exponential density for which we can design
almost-catalytic algorithms to accept any language in DSPACE(nk) (see Proposition 3.3). This
implies that |A ∩ {0, 1}n| is not a good parameter to measure our progress towards designing
catalytic algorithms by this approach.

To make further progress, we turn to the structural front. We show a limitation of the almost-
catalytic Turing machines with respect to A by showing the following upper bound.

Theorem 1.1. For any A ⊆ Σ∗, it holds that ACL(A) ∩ ACL(A) ⊆ ZPP. If A ∈ L then ACL(A) ∩
ACL(A) = CL.

The first part of the above theorem and the argument is a generalization of the idea in [2] which
shows CL ⊆ ZPP. In particular, when A = Σ∗ or A = ∅, we recover their result. We remark that
this generalization is different from the compress-or-random method that appears in [6, 17]. We
also remark that, unlike the arguments in [2], the Theorem 1.1 or the proof of it, does not imply
for any almost-catalytic Turing machine runs in expected polynomial time. The second part of
the above theorem can also be viewed as a method of obtaining catalytic algorithms by designing
almost-catalytic algorithms with respect to an appropriate set A.

A notable example of such a set is the language PARITY consisting of strings over {0, 1}∗ with
an odd number of ones. Indeed, PARITY ∈ L. However, if we have an almost-catalytic algorithm
for a language L with the catalytic set being PARITY, then there is an almost-catalytic algorithm
with respect to PARITY as well (See Proposition 3.5). Hence, ACL(PARITY) = CL. Thus, it suffices
to design almost-catalytic algorithms with respect to PARITY and we set this as the target.

To measure our progress towards the set PARITY, we define two measures for the set A, defined
below, which are maximized for parity.

Random Projection Complexity: For an A ⊆ {0, 1}m , we define, for an ϵ ≥ 0, the random pro-
jection complexity, Rϵ(A) as the largest ℓ ≥ 0 such that: PrT⊆[m]

|T |=ℓ

[
|AT | ≥ 2ℓ−1

]
≥ 1− ϵ where

3

AT denotes the set of strings in A projected to the indices in T . Observe that R0(PARITYm) =

m− 1. Thus, in order to approach A = PARITY, we will design almost-catalytic computation
with respect to set A, where Rϵ(A) is as large as possible where ϵ is close to 0, say 2−αm for
some small constant 0 ≤ α < 1. In this case, we use R(A) to denote R2−αm(A).

Subcube Partition Complexity: A subcube C of the cube {0, 1}m is given by a mapping (partial
assignment) α : [n] → {0, 1, ∗} and is defined to be the set of all vectors in the Boolean
hypercube on n bits, Bn, that agree with α on coordinates that are assigned a non-∗ value
by α. More precisely the subcube Cα is the set {x ∈ {0, 1}m : α(i) ̸= ∗ =⇒ xi = α(i)}.
For a set A, a partition C = {C1, . . . , Ct} of A into subcubes Ci such that Ci ⊆ A is called a
subcube partition of A. We denote by P(A) the minimum number of subcubes in a subcube
partition of A. Observe that P(PARITYm) = 2m−1. Thus, in order to approach A = PARITY,
we propose to design almost-catalytic algorithms for sets with high partition complexity.

We remark about the choice of the above two measures in our journey towards achieving
PARITY as our catalytic set. As noted earlier, there are specific catalytic sets (see Proposition 3.3)
A ⊆ {0, 1}∗ which are of exponential density for which PSPACE ⊆ ACL(A). However, it can be
shown (see Proposition 2.1) that this catalytic set A has a subcube partition complexity P(A) of 1
and small random projection complexity R(A). Hence, it is natural to look for other catalytic sets
A such that ACL(A) is powerful enough to simulate polynomial space bounded computation, and
which possess larger values for one or both of these measures.

As our next result, we show the following simulation of DSPACE(nk) almost-catalytically for
set A with a large P(A) and R(A).

Theorem 1.2. For all k ≥ 1, there exists a language Ak ⊆ {0, 1}∗ such that DSPACE(nk) ⊆ ACL(Ak)

where for every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m
4 and P(Ak ∩ {0, 1}m) = 2m/4.

An important challenge in designing catalytic algorithms is the incompressibility of the string
w. However, in our context, the set Ak in the above theorem may be viewed as compressible since
the set of codewords can be represented by the set of messages. But note that this compressibility
is not directly useful for designing the almost-catalytic algorithm since the message length can
also be linear in n and hence cannot be stored in the logarithmic work space.

Going further, when we need to simulate only polylogarithmic space, the partition complexity
of the catalytic set A for which we restore can be improved. We prove the following theorem in
this direction:

Theorem 1.3. For all k ≥ 1, there exists Ak ⊆ {0, 1}∗ such that DSPACE(logk n) ⊆ ACL(Ak) where for
every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4+Ω(logm).

We remark that this is in contrast to the catalytic machine model where it is unclear if it can ac-
cept all languages in DSPACE(log1+ϵ n) for any ϵ > 0. At the other end of the spectrum, note that,
if Theorem 1.3 holds when Ak ∩ {0, 1}m covers the whole of {0, 1}m (or even the set PARITY),
then it would imply that DSPACE(logk n) ⊆ CL. Since CL ⊆ ZPP [2], this would show that
DSPACE(logk n) ⊆ ZPP, which in-turn would separate L and ZPP by the space hierarchy theo-
rem.

4

Exploring the power of additional alphabets, we show that even if the catalytic tape alphabet
has even a single symbol that is not included in the alphabet for the catalytic set (irrespective of
the size), the almost-catalytic machine can simulate the whole of PSPACE (See Proposition 3.6).

Our Techniques: Our technique starts with a novel approach towards designing almost-catalytic
algorithms using codes that can be decoded space efficiently. At a high level, the idea is as follows:
let us say we want to design a catalytic Turing machine accepting a language L which has a Turing
machine that runs in space c(n). For the catalytic Turing machine, the given content of the catalytic
tape can be treated as the codeword (for a fixed code), the Turing machine proceeds to modify the
content of the tape according to its computational needs. The modification of the work tape during
computation can be seen as introducing “errors” to the codeword. Finally we use the decoding
algorithm to correct the “errors” and finally obtain the original codeword we started with, thus
achieving the restoration condition.

Indeed, there are a number of challenges in implementing the above plan. The first limitation
is that the number of bits modified to the initial string on the catalytic tape must be such that the
modified string (after computation) is still within a decodable distance from the original word.
Thus, if c(n) is the catalytic space available, we can hope to allow the catalytic TM to use only
strictly o(c(n)) bits in the catalytic tape during the computation. Thus, an interesting target is to
simulate normal Turing machines that use an asymptotically smaller amount of space.

A second challenge is that the code must be decodable in deterministic logarithmic space,
as we have only so much work space. Fortunately, there are codes that have constant rate and
constant relative distance, for which logspace decoding algorithms are known (See Theorem 19 in
[18] and Theorem 14 in [13]). Using additional decodability properties of Spielman codes, we show
that the set A can be expanded to achieve larger random projection complexity and larger subcube
partition complexity, thus progressing towards A = PARITY. In order to establish the progress
in terms of measures of the catalytic sets, we also employ techniques from basic combinatorics
of codes, and Fourier analysis of Boolean functions to estimate the partition complexity of the
catalytic set in our algorithms.

Related Work: In a simultaneous work, [12], considers the model of lossy catalytic computation
which is a catalytic Turing machine with an O(log n)-sized work tape and polynomial-sized cat-
alytic tape where the restoration condition is weaker - only all except a constant number of bits are
needed to be restored. They show that this relaxation does not add any power to the model -
such catalytic Turing machines can only accept languages accepted by standard catalytic Turing
machines with the same amount of catalytic space and work space. The technique that they use is
to hash the first bits of the configuration spaces when the number of changes are limited. We re-
mark that this is incomparable with the relaxation that we impose where for some strings (strings
outside the set A) it is not even needed to be restored, while for some other strings (that is, strings
in A), they need to be restored without a loss. Our techniques and motivating questions are also
different from the work of [12].

5

2 Preliminaries

We begin by defining catalytic computation as described by [2]. We refer the reader to standard
references [1, 10] for definitions of the complexity classes not defined in this paper.

A catalytic Turing machine is a Turing machine with a read-only input tape, a work tape of size
s(n), and a catalytic tape of size c(n) initially containing some w ∈ {0, 1}c(n), where n is the size of
the input. The machine M is said to decide a language L if (1) x ∈ L if and only if M accepts on
input x for all possible initial catalytic content w and (2) For each input x ∈ {0, 1}n and any initial
catalytic tape content w, M halts with w on its catalytic tape. We shall use the term catalytic space
to denote the space in the catalytic tape. The class CSPACE(s(n), c(n)) is the set of all languages
decided by a catalytic Turing machine with work space s(n) and catalytic space c(n). The class CL
denotes CSPACE(O(log n), poly(n)).

2.1 Bounds on the Complexity Measures

Recall, from the introduction, that for a set A ⊆ {0, 1}m, we use R(A) to denote its Random pro-
jection complexity and P(A) to denote its Subcube partition complexity. For an integer b dividing
m, let Ab = {w | w is of the form 0m/b(0 + 1)m−m/b} ⊆ {0, 1}m.

Proposition 2.1. For the set Ab defined above, P(Ab) = 1 and for a constant b, R(Ab) = O(1).

Proof. The subcube partition complexity P(Ab) is 1 as the entire set is contained in the subcube C

with the first m/b coordinates set to 0 and it cannot be any smaller.
We need an upper bound on the random projection complexity R(Ab). Towards this, let ℓ be

the smallest value for which PrT⊆[m]
|T |=ℓ

[
|(Ab)T | ≥ 2ℓ−1

]
< 1 − ϵ, where ϵ is a small constant. It can

be seen that this probability is lower bounded by αℓ for a constant α that depends on b. Hence for
a constant b, ℓ is bounded by a constant.

We now establish a lower bound for the measure for another set A which we use as a catalytic
set later. We quickly recall linear codes, and related parameters below.

A linear code over a q-ary alphabet of length m and dimension k is a linear subspace C with
dimension k of the vector space Fm

q . The distance d of a linear code C is the minimum Hamming
distance between any two codewords in C, where Hamming distance between two codewords is
the number of locations where they differ. Furthermore, C is said to be an [m, k, d]q code if it has
length m, dimension k, distance d and alphabet size q. The relative distance of a [m, k, d]q code, δ
is defined as δ = d

m . The covering radius of a code C is the minimum D such that for all w ∈ Fm
q

there exists a codeword c ∈ C such that d(c, w) ≤ D. We will have the following bounds on the
measure.

Proposition 2.2. If A is a set of codewords for an [m, k, δm]2 code with δ being a constant, then Rϵ(A) ≥ k

for ϵ = 2−2k.

The proof of the above Lemma is a standard application of codes. We reproduce the argument
in Appendix A.1 for completeness.

6

2.2 A Lower Bound on the partition complexity for Union of Hamming Balls

As a part of showing improved partition complexity lower bound in Theorem 1.3, in this section,
we outline the tools and ideas from the area of Fourier representation of Boolean functions that
we used. The reader is referred to [16] for a comprehensive background on this subject.

For two strings, x, y ∈ {0, 1}m, the Hamming distance, denoted by ∆(x, y), is the number of
locations in which x and y differ. The same definition can be extended to subsets as follows: for
any A,B ⊆ {0, 1}m, ∆(A,B) = min{∆(a, b) | a ∈ A, b ∈ B}. A set H ⊆ {0, 1}m is said to be a
Hamming ball if and only if there exists a k ≥ 0 and a z ∈ {0, 1}n such that for every h ∈ H ,
∆(h, z) ≤ k. We call k as the radius of the Hamming ball H and z to be its center.

The catalytic set considered in Theorem 1.3 is a union of Hamming balls centered on logspace
decodable codewords. As a first step, we show that the partition complexity of this set is precisely
the sum of partition complexity of the individual Hamming balls.

Proposition 2.3. (See Proposition A.1, Appendix A.3) Let A ⊆ {0, 1}∗ be such that for any m ≥ 1,
Am := A ∩ {0, 1}m can be expressed as a union of Hamming balls H1, H2, . . . ,Ht over {0, 1}m such that
for any i ̸= j, ∆(Hi, Hj) > 1. Then, P(Am) =

∑t
i=1 P(Hi).

Define the Boolean function Thm,k : {0, 1}m → {−1, 1} as for any x ∈ {0, 1}m, Thm,k(x) = −1

if |x| ≤ k and 1 if |x| > k.
Now, it remains to compute the partition complexity of a Hamming ball. The starting obser-

vation is that a Hamming ball of radius k centered at 0m is precisely the set of inputs on which the
threshold Boolean function Thm,k evaluates to −1. The next observation, due to [4] (Lemma 3.8),
is that the partition complexity of a set viewed as a Boolean function is lower bounded by the sum
of absolute values of its Fourier coefficients.

In Proposition A.2 and Proposition A.3 (both appearing in Appendix A.3), we obtain closed-
form expressions for Fourier coefficients of Thn,k. Using this, we show the following lower bound
on the partition complexity of a Hamming ball.

Proposition 2.4. (See Proposition A.4, Appendix A.3) Let H be a Hamming ball over {0, 1}m of radius
k < m/2−

√
m centered at 0m. Then P(H) = Ω(k).

The main lemma that is used in Section 6 for arguing the improved bound on subcube com-
plexity in Theorem 1.3 is the following.

Lemma 2.5. (See Lemma A.5, Appendix A.3) Let A ⊆ {0, 1}∗ such that for every m ≥ 1, Am is a disjoint
union of Hamming balls H1, . . . ,Ht of radius k < m/2 −

√
m over {0, 1}m such that for every i, j ∈ [t],

∆(Hi, Hj) > 1. Then for every m ≥ 1, P(Am) = Ω(tk).

Due to space constraints, detailed proofs of these statements are moved to Appendix A.3.

3 Almost-catalytic Turing Machines

In this section, we present the definition and our results on Almost-catalytic Turing machines. We
begin with the following definition.

7

Definition 3.1 (Almost-catalytic Computation with respect to A : ACSPACEA and ACL(A)). Let
A ⊆ Σ∗, a language L is said to be in the class ACSPACEA(s(n), c(n)) if there is a Turing machine
M which on inputs of length n uses a work tape of size s(n) and catalytic tape of size c(n) (over
an alphabet set of size 2) such that, (1) for all x ∈ Σ∗, x ∈ L if and only if the Turing machine M

accepts x. (2) for all w ∈ A, if the machine M starts the computation with content of the catalytic
tape as w, then at the end of the computation w will be restored back in the tape. For all w ̸∈ A,
the algorithm need not restore the catalytic tape.

Furthermore we define ACL(A) to denote the class ACSPACEA(O(log n), O(nc)) for some con-
stant c.

We make some preliminary observations about almost-catalytic computation. Indeed, by def-
inition, CL = ACL(Σ∗), and PSPACE = ACL(∅). In general, for any A ⊆ Σ∗, CL ⊆ ACL(A) ⊆
PSPACE. Moreover, there are languages A ⊊ Σ∗ for which the ACL(A) can simulate the whole of
PSPACE. The following proposition is also easy to see.

Proposition 3.2. If A = {1n | n ≥ 0}, then PSPACE = ACL(A)

The above proposition is true since the catalytic tape can be filled with 1n at the end of the
computation irrespective of the original content. However, it is a challenge to show the above for
an arbitrary singleton set A.

A natural question is about the density of the catalytic set. We establish that for every k, there
are sets with high density with respect to which every language in DSPACE(nk) admits almost-
catalytic algorithms.

Proposition 3.3. For any k ≥ 1, there exists a language A ⊆ {0, 1}∗ with DSPACE(nk) ⊆ ACL(A) via
an almost-catalytic logspace machine using m = bnk catalytic space for some constant b ≥ 1, such that for
any m ≥ 1, |A ∩ {0, 1}m| ≥ 2m−m/b.

Proof. Consider a language L that can be decided by a machine M in nk space. Now, we shall
construct an almost-catalytic Turing machine M ′ deciding L using m = bnk catalytic space for
some b ≥ 1. We shall define the catalytic set A used by M ’ as {w | w is of the form 0n

k
(0+1)(b−1)nk |

n ≥ 1}.
The machine M ′ works as follows: Simulate M on input x using the first nk many bits of the

catalytic tape. Now, for restoration, we set the first m many bits back to 0, which belongs to the
set A. Finally, we observe that |A ∩ {0, 1}m| = 2(b−1)nk

= 2m−m/b.

At the other extreme, if |A ∩ {0, 1}n| = poly(n) i.e. A is sparse, we ask the question if it is true
that for all sparse A, ACL(A) = PSPACE? We observe that the answer is affirmative when the
sparse set A under consideration is in L.

Proposition 3.4. Let A ⊆ Σ∗ be a language in L. Then if A is sparse then ACL(A) = PSPACE.

The proof for the above theorem can be found in Appendix A.2. We now show the following
proposition for PARITY which is logspace decidable but is not sparse.

Proposition 3.5. ACL(PARITY) = ACL(PARITY).

Along with Theorem 1.1, this shows that it suffices to design almost-catalytic logspace algo-
rithms for A = PARITY to show membership in CL.

8

Proof of Proposition 3.5. It suffices to show that if L ∈ ACL(PARITY), then L ∈ ACL(PARITY). Let
L ∈ ACL(PARITY) via an almost-catalytic machine M . Consider an almost-catalytic machine M ′

which works by first checking if the catalytic content w belongs to PARITY. If yes, it flips the first
bit of the catalytic content (which makes the catalytic content to be in PARITY), runs M , flips the
first bit of catalytic tape and accepts iff M accepts x. The simulation of M will correctly decide L

and restore the catalytic content which is the same as w except for the first bit. The final step of M ′

will restore the first bit. Hence M ′ restores all strings in PARITY and accepts L.

It is important that the definition of almost-catalytic space (Definition 3.1) uses a catalytic tape
alphabet set of size 2. A larger alphabet set can dramatically increase the power of almost-catalytic
space. Suppose we let the almost-catalytic machine with catalytic alphabet over a larger Γ with
{0, 1} ⊊ Γ and make the machine restore any set A ⊆ {0, 1}∗. More precisely, let ACLΓ(A) denote
the languages decidable by almost-catalytic logspace machines working over the catalytic tape
alphabet Γ with A ⊆ Γ∗ as the catalytic set. Observe that for any A ⊆ Γ∗, ACLΓ(A) ⊆ PSPACE.

We now show that even if the catalytic tape alphabet has even a single symbol that is not
included in the alphabet for the catalytic set, the almost-catalytic machine can simulate the whole
of PSPACE.

Proposition 3.6. Let Σ be an input alphabet set and Γ be a catalytic tape alphabet with |Γ| > |Σ|. Then
for any A ⊆ Σ∗, PSPACE = ACLΓ(A). In particular, for Σ = {0, 1} and any Γ with |Γ| ≥ 3, PSPACE =

ACLΓ(Σ∗)

Proof. Without loss of generality, assume Σ = {0, 1} by suitably fixing a binary encoding for the
input alphabets. Let A ⊆ Σ∗. It suffices to show that PSPACE ⊆ ACLΓ(A).

Consider a language L in PSPACE via a p(n) space bounded deterministic Turing machine M

where p(n) is a fixed polynomial in n. Also, without loss of generality, let the work tape of M use
the alphabet set {0, 1, }.

An almost-catalytic machine M ′ using catalytic tape alphabet Γ having {0, 1, 0̂} ⊆ Γ accepting
L with a catalytic tape of length 4p(n) is described as follows: Scan across the catalytic tape and
check if the initial catalytic content w contains a 0̂ symbol. If there is no occurrence of 0̂, then w can
be a member of A and in particular consists of 1s and 0s alone. Using the work tape, M ′ counts
the number of 0s in w denoted by m.

We now describe how M ′ simulates M . Suppose that the number of 0s is more than the number
of 1s. Then m ≥ 1

2 × 4p(n) = 2p(n). The machine M ′ uses the first 2p(n) cells out of the m cells
containing 0 of the catalytic tape to simulate the workspace of M . Note that M is over alphabet set
{0, 1, } while the catalytic tape of M ′ is over the alphabet set Γ. To handle the work tape symbols
of M correctly during the simulation, M ′ uses the following encoding E : {0, 1, } → Γ defined as
E(0) = 00, E(1) = 00̂ and E() = 0̂0. More precisely, if M reads (or writes) a symbol α ∈ {0, 1, }
at position i of its tape, M ′ proceeds to read (or write) E(α) at the 2i and 2i + 1th cells having 0

or 0̂ counted from the left end on the catalytic tape. Once the computation ends, restoration of w
is achieved (irrespective of whether w ∈ A or not) by replacing all the 0̂ with 0 at the end of the
simulation. Now, if the number of 1’s are more than the number of 0s, then M ′ uses an encoding
E(0) = 11, E(1) = 10̂ and E() = 0̂1 and repeat the above simulation of M with 0 replaced by 1 in
the above text.

9

If w contains a 0̂, then w ̸∈ A and therefore M ′ is not required to restore the catalytic tape.
In such a case, M ′ erases the catalytic tape and simulates M on it. Clearly, if M uses poly(n)

workspace, M ′ can simulate M using O(log n) work space and 4 · poly(n) catalytic space. Hence
L ∈ ACLΓ(A) which completes the proof.

4 An Upper Bound on Almost-catalytic Computation

In this section, we show that for any language A ⊆ Σ∗, languages computable by almost-catalytic
Turing machines with respect to A which are also computable by catalytic Turing machines with
respect to A are contained in ZPP.

Lemma 4.1. Define for any almost-catalytic Turing machine M restricted to A, Ct(x,w) to be the config-
uration with input x and catalytic tape content w at time t. For all x, for all w,w′ ∈ A such that w ̸= w′

and for all t, t′ Ct(x,w) ̸= Ct′(x,w
′).

Proof. Assume there exists an x and there exists w,w′ ∈ A such that Ct(x,w) = Ct′(x,w
′). Now,

from that point onward the computation would be the same and the restoration part would be
incorrect for one of w or w′, a contradiction. This justifies our lemma.

Theorem 1.1. For any A ⊆ Σ∗, it holds that ACL(A) ∩ ACL(A) ⊆ ZPP. If A ∈ L then ACL(A) ∩
ACL(A) = CL.

Proof. First, we argue that for any A ⊆ Σ∗, ACL(A) ∩ ACL(A) ⊆ ZPP. Let L ∈ ACL(A) via Turing
machine M1 and L ∈ ACL(A) via Turing machine M2. Algorithm 1 describes the ZPP machine M ′

for L.

Algorithm 1 Description for Machine M ′ on input x and initial catalytic tape content w

1: Choose a w ∈ {0, 1}poly(n) u.a.r.
2: Perform steps (3) and (4) in a time shared fashion till one of them halts
3: Run M1 on x with w on a catalytic tape
4: Run M2 on x with w on a separate catalytic tape
5: Accept if and only if the machine that halted accepted.

Correctness follows since M ′ either simulates M1 or M2 both of which correctly accepts L.
We now analyze the run time of M ′ and show that it runs in expected polynomial time (w.r.t.

w). Let t(x,w) denote the total number of steps M ′ makes on x and w. Let t1(x,w) denote the
running time of machine M1 on input w in Step 4. Let t2(x,w) denote the number of steps taken in
Step 6. Observe that t(x,w) = O(min{t1(x,w), t2(x,w)}). For a fixed x, the expected running time
(over the random choices of w) of M ′ can be obtained as E[t(x,w)] = E[min{t1(x,w), t2(x,w)]. We

10

now bound the expectation.

E[t(x,w)] = E[t(x,w)|w ∈ A]× Pr[w ∈ A] + E[t(x,w)|w ∈ A]× Pr[w ∈ A]

≤ E[t1(x,w)|w ∈ A]× Pr[w ∈ A] + E[t2(x,w)|w ∈ A]× Pr[w ∈ A] (1)

≤
∑

w∈A t1(x,w)

|A|
× |A|

2|w| +

∑
w∈A t2(x,w)

|A|
× |A|

2|w|

≤ 2|w| × nc

|A|
× |A|

2|w| +
2|w| × nc

|A|
× |A|

2|w| = O(nc) (2)

Note that Eq. 1 follows as t(x,w) is the minimum among t1(x,w) and t2(x,w) and Eq. 2 follows
from Lemma 4.1 where c is some absolute constant. Thus it follows that E[t(x,w)] ≤ poly(n).
Hence, the overall running time of M ′ will be polynomial on expectation.

We now argue that for any A ∈ L, ACL(A) ∩ ACL(A) = CL.
For any L ∈ CL, L ∈ ACL(A) ∩ ACL(A) as any catalytic machine always restores the catalytic

content (irrespective of the choice of A). On the other hand, suppose that L ∈ ACL(A) ∩ ACL(A)

via an almost-catalytic machine M1 with restoration for A and via an almost logspace catalytic
machine M2 with restoration for A. Since A can be decided in logspace, the catalytic algorithm
first checks if the catalytic content belongs to A and runs M1 and runs M2 otherwise. The result-
ing machine is indeed catalytic as it restores irrespective of the catalytic content and uses only
logarithmic work space. Hence L ∈ CL.

5 Almost-catalytic Computation via Error Correcting Codes

We observed for any A ⊆ Σ∗, ACL(A) ⊆ PSPACE. We now show that there exists A ⊆ Σ∗ such
that PSPACE ⊆ ACL(A). We prove this by showing that there exists an A ⊆ Σ∗ such that for any
k and for any L ∈ DSPACE(nk), L ∈ ACL(A). This suffices since PSPACE =

⋃
k≥0DSPACE(n

k) ⊆
ACL(A).

Our intuition is the following : any computation can be seen as “corrupting” the catalytic tape
content making the restoration difficult. With this view, it is natural to set A to be codewords from
an error correcting code of good distance. In addition, the code should be decodable in O(log n)

space. In the following Theorem, we choose A to be one such code.

Theorem 1.2. For all k ≥ 1, there exists a language Ak ⊆ {0, 1}∗ such that DSPACE(nk) ⊆ ACL(Ak)

where for every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m
4 and P(Ak ∩ {0, 1}m) = 2m/4.

Proof. Fix any k ≥ 0. Let L ∈ DSPACE(nk) via a Turing machine M using a work space of cnk

for some constant c > 0. The goal is to construct a catalytic logspace Turing machine M ′ such
that L(M ′) = L and it always restores the catalytic content w if w ∈ A. We choose our A such
that An := A ∩ {0, 1}n consists of codewords of an explicit [n, n4 , αn]2 linear code constructed
by Spielman [18]. Here, α (a constant, independent of n) is the relative distance of the code (as
described in Theorem 19 of [18]). In their work, it was shown that these codes can be decoded in
deterministic logspace. Let D be such a logspace decoding machine.

We now describe a machine M ′ (shown in Algorithm 2) accepting L. With x ∈ Σ∗ of length n,
let the length of the catalytic tape be bnk where b is at least 2c

α . We work with the set Abnk (where

11

An is as defined above). Let D be the logspace decoder, given access to a string of length bnk, can
correct it using O(log n) space provided the string is within the decoding limit of some codeword
in Abnk .

Algorithm 2 Description of M ′ on input x and initial catalytic tape content w

1: On input x, run M on x using the first cnk cells of the catalytic tape as the work tape for M .
2: Using the work tape as the work space for D, decode the content of the catalytic tape.
3: Accept if M accepted x
4: Else reject

Since M ′ simulates M , L(M ′) = L(M) = L. Let w be the initial content of the catalytic tape
with |w| = bnk. Let w′ be its content at the end of the computation in Step 1 of M ′. Observe
that w and w′ can differ in at most cnk bits as M uses only the first cnk bits of the catalytic tape.
If w ∈ Abnk , then w is a codeword and w′ must fall in the Hamming ball of radius α

2 bn
k since

∆(w′, w) ≤ cnk ≤ α
2 bn

k by the choice of b. Hence upon running D on w′ in Step 2 of M ′, will
restore the catalytic tape content to w. Observe that this step uses O(log n) work tape cells. Thus,
the above arguments imply that L ∈ ACL(A) via the machine M ′.

The lower bound on R(Ak) follows Proposition 2.2 since the set Ak is exactly the set of code-
words of Spielman codes that have δ = O(1) [18]. The lower bound on P(Ak) follows from the
minimum distance of the set Ak is d > 1, and hence no two elements of Ak can be covered by the
same subcube. Hence P(Ak) ≥ |Ak| which is at least 2m/4.

We remark that it also suffices if the length of the codewords is a polynomial in n (message
length) and has a good distance that is logspace constructible and decodable. In addition to the
Speilman codes [18], logspace decodable codes from [13] also suffice for the above theorem.

6 An Improvement on the Subcube Partition Complexity of the Cat-
alytic Set

In Theorem 1.2, we showed that any PSPACE algorithm can be simulated in almost-catalytic
logspace by restoring catalytic content w that are codewords of a carefully defined code as the
set A. The ideal case would be to cover every such w that appears as catalytic content. With this
motivation, in the main result of this section (Theorem 1.3), we attempt to cover strings that are
not codewords as well at the expense of using less space. This allows the set A to be larger than
the one in Theorem 1.2 and also has a better subcube partition complexity.

Theorem 1.3. For all k ≥ 1, there exists Ak ⊆ {0, 1}∗ such that DSPACE(logk n) ⊆ ACL(Ak) where for
every m ≥ 1, R(Ak ∩ {0, 1}m) ≥ m

4 and P(Ak ∩ {0, 1}m) = 2m/4+Ω(logm).

Proof. Let L ∈ DSPACE(logk n) via a Turing machine M . Let m = nk and C be an [m,m/4, αm]2
logspace decodable Spielman code where α > 0 is a constant [18]. We crucially use the existence
of the family of functions (fm) (Theorem 19 of [18]) in our algorithm defined as: fm : {0, 1}m ×
{0, 1}logm → {0, 1} is a Boolean function that takes in word w ∈ {0, 1}m such that ∃y ∈ {0, 1}m/4

with d(C(y), w) ≤ αm−1
2 and an index j ∈ [m] and outputs 1 if and only if wj ̸= C(y)j . If

12

wj ̸= C(y)j , then we shall denote them as corrupted bits/indices of w. Here, d(·, ·) denotes the
Hamming distance between two binary strings.

In addition, the function fm can be computed by a log-space uniform family of bounded fan-
in log-depth polynomial size circuits. Note that these circuits can be evaluated in O(logm) =

O(log n) space. Hence for any given w ∈ {0, 1}m and j ∈ [m], f(w, j) can be computed in O(log n)

space.
We define Tm to be a subset of all strings that are uniquely decodable to some codeword in C.

More precisely, Tm =
{
z ∈ {0, 1}m | ∃y ∈ {0, 1}m/4, d(z, C(y)) ≤ ∆

}
where ∆ := m

logk n
× logn

log(logk n)
.

Define Ak =
⋃

m≥1 Tm. The description of an ACL machine M ′ simulating M is given in Algo-
rithm 3.

Algorithm 3 Description of M ′ on input x and catalytic tape content w with |w| = m.

1: Partition [m] into disjoint contiguous blocks B1, B2, . . . Bℓ each of size b = logk n.
2: Using the function fm, find the first i ∈ [ℓ] in w such that |{j ∈ Bi | fm(w, j) = 1}| ≤ logn

log(logk n)

3: If such an i does not exist, set i = ℓ, E = ∅, and go to line 6. //in this case w /∈ Ak

4: Store the start and end indices of the block Bi. Call them p and q respectively.
5: Let E = {i ∈ [b] | fm(w, p+ i) = 1} be the corrupted bits of Bi.
6: Run M on x using catalytic tape cells indexed by Bi as work space for M and accept if and

only if M accepts.
7: Restoration: Let w′ be the content of the catalytic tape at the end of the computation.

For each j ∈ Bi, if [fm(w′, j) = 1)]⊕ [j ∈ E], flip w′
j .

Firstly, we argue the correctness of the above algorithm. To see this, irrespective of whether
w ∈ Ak or not, steps 2 and 3 of Algorithm 3 will find a block Bi of size O(logk n) such that the cells
of the catalytic tape indexed by Bi will be used to correctly simulate M on x which requires only
O(logk n) space.

We argue now that the above algorithm restores w at the end of the computation if w ∈ Ak. If
w ∈ Ak, then there is a codeword γ ∈ {0, 1}m within a Hamming distance of ∆ = m

logk n
× logn

log(logk n)

from w. Since there are ℓ = m
logk n

blocks, by averaging, there must be a block with at most logn

log(logk n)

errors. Let Bi be the first such block. Note that step 2 of Algorithm 3 will indeed find such a Bi.
Since |Bi| ≤ O(logk n), we still have that d(w′, γ) ≤ d(w, γ) + O(logk n) ≤ m

logk n
× logn

log(logk n)
+

O(logk n) ≤ αm−1
2 for large enough n. Hence the word w′ is still within the decoding radius of the

codeword that we started with.
Recall that w and w′ are content of the catalytic tape, respectively, at the beginning and end of

step 6. For j /∈ Bi, step 6 does not change wj and hence w′
j = wj . We show that the bits indexed

by Bi get restored. If j ∈ Bi, then wj may get changed during the simulation of the machine M in
step 6. Recall that the step 5 computes the set of corrupted indices in block Bi as the set E. For a
j ∈ Bi, there are two cases:

Case 1: w′
j = γj . This implies that j-th bit in w′

j is not corrupted. If in addition, j ∈ E, we have
wj ̸= γj which implies wj ̸= w′

j . Hence when the algorithm flips w′
j in line 7, it makes it

equal to wj . For j /∈ E, we have that wj = γj = w′
j , and hence no flipping is required in line

7 of the algorithm.

13

Case 2: w′
j ̸= γj . This implies that j-th bit in w′

j is corrupted. If in addition, j ̸∈ E we have
wj = γj which implies wj ̸= w′

j . Hence when the algorithm flips w′
j in line 7, it makes it

equal to wj . In case, j ∈ E, we have that wj ̸= γj and hence wj = w′
j . Hence no flipping is

required in line 7 of the algorithm.

We now argue the space bound for M ′. The indices p, q ∈ [m] as well as i, j ∈ [ℓ] can be stored
in O(log n) space. Note that we store E ⊆ [b], taking |E| log b many bits. Since the number of
corrupted bits |E|, is at most logn

log(logk n)
, we can store E in the work tape using O(log n) bits. As

mentioned above, the function fm can also be computed in O(log n) space as needed in lines 2, 5
and 7 of the algorithm. This establishes the space bound.

The lower bound on R(Ak) follows Proposition 2.2 since the set Ak is exactly the set of code-
words of Spielman codes that have δ = O(1) [18] and that Rϵ(A) is a monotone property with
respect to A. We now prove the improvement on P(Ak).

The lower bound on P(Ak) follows from a careful analysis of the Fourier coefficients of the
Threshold function (See Lemma A.5 presented in Appendix A.3) noting that the set Ak is defined
to the union of Hamming balls of radius ∆ = m

(logk−1 n) log(logk n)
and that for large enough m,

∆ < m/2−
√
m.

Two Limitations of the Approach towards DSPACE(logk n) ⊆ ACL(Σ∗) We first note a limitation
of the approach due to the fact that there is a direct simulation of the DSPACE(logk n) machine in
the argument. [2] observed that there cannot be a step-by-step simulation of Turing machines
that use ω(s(n)) space by using catalytic Turing machines that uses s(n) work space and even
2s(n) catalytic space. We note that this also implies a limitation of our approach towards almost-
catalytic Turing machines as well.

Consider the following family of algorithms that attempts to show DSPACE(logk(n)) ⊆ CL via
error correcting codes as follows: Let L belongs to DSPACE(logk(n)) via machine M . Then we
construct a catalytic machine as follows: (1) Apply logspace computable transformations to the
initial catalytic tape content to make it “recoverable” from O(logk n) errors. (2) Run the machine
M on input x on the catalytic tape. (3) Correct the O(logk n) errors on the catalytic tape and restore
w. (4) Accept if M accepts and reject otherwise.

Proposition 6.1. There is no simulation of deterministic polylogarithmic space in catalytic logspace via
direct simulation and using logspace decodable error correcting codes.

Proof. We argue that the direct simulation cannot work as it is. Indeed, it implies that the machine
M must necessarily run in expected polynomial time (with respect to choice of initial catalytic
content). In other words, every O(logk n) machine must run in polynomial time - a statement
which can be proved to be false. We argue the same below.

Consider the case when machine M is constructed as follows: M visits all its configurations
before halting. There are O(exp(logk n)) many configurations to the machine and thus it takes
time at least O(exp(logk n)) to run. In step 2 of our algorithm, we run the machine M directly (i.e.
step-by-step). So our algorithm too runs in time at least O(exp(logk n)). The initial content w does
not affect step 2, so the average running time (over the choice of w) is still super-polynomial which
is a contradiction to the fact that any CL machine takes polynomial running time on average over
the choice of w.

14

We observe a second limitation of the approach due to the fact that we cannot expect linear
codes to have a covering radius as low as required for the algorithm. More precisely, for the
approach, we need the covering radius of the code C ⊆ {0, 1}m to be at most m

(logm)k−1 log logn
.

However, for every code with rate r, the covering radius is known [5] to be at least m
(
1
2 −

√
r

23/2

)
which is at least Ω(n) even for constant rate codes.

Acknowledgments We would like to thank the anonymous reviewers for pointing out that The-
orem 1.1 works for any A ⊆ Σ∗ (previous versions stated restrictions on A), for pointing out
Proposition 3.3 and for pointing out an issue in earlier proof of Proposition A.4.

References

[1] Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, USA, 1st edn. (2009) pages 6

[2] Buhrman, H., Cleve, R., Koucký, M., Loff, B., Speelman, F.: Computing with a full mem-
ory: Catalytic space. In: Proceedings of the Forty-Sixth Annual ACM Symposium on The-
ory of Computing. p. 857–866. STOC ’14, Association for Computing Machinery, New York,
NY, USA (2014). https://doi.org/10.1145/2591796.2591874, https://doi.org/10.1145/
2591796.2591874 pages 2, 3, 4, 6, 14

[3] Buhrman, H., Koucký, M., Loff, B., Speelman, F.: Catalytic space: Non-determinism and
hierarchy. Theory of Computing Systems 62(1), 116–135 (jan 2018) pages 2

[4] Chakraborty, S., Kulkarni, R., Lokam, S.V., Saurabh, N.: Upper bounds on fourier entropy.
Theoretical Computer Science 654, 92–112 (2016). https://doi.org/10.1016/j.tcs.2016.05.006,
computing and Combinatorics pages 7, 18, 21

[5] Cohen, G., Karpovsky, M., Mattson, H., Schatz, J.: Covering radius—survey
and recent results. IEEE Transactions on Information Theory 31(3), 328–343 (1985).
https://doi.org/10.1109/TIT.1985.1057043 pages 15

[6] Cook, J., Li, J., Mertz, I., Pyne, E.: The structure of catalytic space: Capturing randomness and
time via compression. Electron. Colloquium Comput. Complex. TR24-106 (2024), https:
//eccc.weizmann.ac.il/report/2024/106 pages 2, 3

[7] Cook, J., Mertz, I.: Tree evaluation is in space o(log n · log logn). In: Proceed-
ings of the 56th Annual ACM Symposium on Theory of Computing. p. 1268–1278.
STOC 2024, Association for Computing Machinery, New York, NY, USA (2024).
https://doi.org/10.1145/3618260.3649664, https://doi.org/10.1145/3618260.

3649664 pages 2

[8] Cook, S., McKenzie, P., Wehr, D., Braverman, M., Santhanam, R.: Pebbles and
branching programs for tree evaluation. ACM Trans. Comput. Theory 3(2) (jan 2012).
https://doi.org/10.1145/2077336.2077337, https://doi.org/10.1145/2077336.

2077337 pages 2

15

https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1145/2591796.2591874
https://eccc.weizmann.ac.il/report/2024/106
https://eccc.weizmann.ac.il/report/2024/106
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/2077336.2077337
https://doi.org/10.1145/2077336.2077337

[9] Datta, S., Gupta, C., Jain, R., Sharma, V.R., Tewari, R.: Randomized and symmetric catalytic
computation. In: Fernau, H. (ed.) Computer Science – Theory and Applications. pp. 211–223.
Springer International Publishing, Cham (2020) pages 2

[10] Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University
Press (2008) pages 6

[11] Gupta, C., Jain, R., Sharma, V.R., Tewari, R.: Unambiguous catalytic computation. In: Chat-
topadhyay, A., Gastin, P. (eds.) 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, (FSTTCS 2019). LIPIcs, vol. 150, pp. 16:1–16:13
(2019) pages 2

[12] Gupta, C., Jain, R., Sharma, V.R., Tewari, R.: Lossy catalytic computation (2024), https:
//arxiv.org/abs/2408.14670 pages 5

[13] Guruswami, V., Kabanets, V.: Hardness amplification via space-efficient direct products. In:
Proceedings of the 7th Latin American Conference on Theoretical Informatics. p. 556–568.
LATIN’06, Springer-Verlag, Berlin, Heidelberg (2006) pages 5, 12

[14] Koucký, M.: Catalytic computation. Bull. EATCS 118 (2016) pages 2

[15] Mertz, I.: Reusing space: Techniques and open problems. Bull. EATCS 141 (2023) pages 2

[16] O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (June 2014),
http://dx.doi.org/10.1017/CBO9781139814782 pages 7

[17] Pyne, E.: Derandomizing logspace with a small shared hard drive. Electron. Colloquium
Comput. Complex. TR23-168 (2024), https://eccc.weizmann.ac.il/report/2023/
168 pages 3

[18] Spielman, D.A.: The complexity of error-correcting codes. In: Chlebus, B.S., Czaja, L. (eds.)
Fundamentals of Computation Theory. pp. 67–84. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1997) pages 5, 11, 12, 14

A Appendix

A.1 Proof of Lemma 2.2

Proof. Let E : {0, 1}k → {0, 1}m be the encoding associated with the given C = (m, k, δm)2 code.
Let ℓ be the random projection complexity of the set of codewords. We show that when ϵ = 1/22k,
Rϵ(C) ≥ k.

Consider any set S ⊆ {0, 1}k such that |S| ≥ 2ℓ−1. We will fix S later. Firstly notice that,

Pr
T⊆[m]
|T |=ℓ

[
∀x ̸= y ∈ S such that E(x)T ̸= E(y)T

]
≤ Pr

T⊆[m]
|T |=ℓ

[∣∣A|T ∩ {0, 1}ℓ
∣∣ ≥ 2ℓ−1

]
Our goal is to show a lower bound of 1− ϵ for the term in the left-hand size. Instead, we start by
analyzing the complementary event and show that its probability is upper bounded by ϵ. For any

16

https://arxiv.org/abs/2408.14670
https://arxiv.org/abs/2408.14670
http://dx.doi.org/10.1017/CBO9781139814782
https://eccc.weizmann.ac.il/report/2023/168
https://eccc.weizmann.ac.il/report/2023/168

distinct pair x, y ∈ S,
Pr

T⊆[m]
|T |=ℓ

[
E(x)T = E(y)T

]
≤ (1− δ)ℓ

The above follows from the fact that since A is a code of distance δm, the probability for E(x)

and E(y) to be the same at a random index in T is at most 1− δ. Thus, we have,

Pr
T⊆[m]
|T |=ℓ

[
∃x ̸= y ∈ S such that E(x)T = E(y)T

]
≤ (1− δ)ℓ

(
|S|
2

)

Choosing S to be any subset of {0, 1}k of size 2k−1, we want (1− δ)ℓ
(
2k−1

2

)
≤ ϵ. This means that

ℓ ≥ 2k − log(1/ϵ)

log(1/(1− δ))

In addition, since |S| ≥ 2ℓ−1, we have k ≥ ℓ. For our choice of ϵ all values of ℓ up to k are
feasible. Since we need the maximum possible ℓ, we choose ℓ = k. This completes the proof.

A.2 Proof of Proposition 3.4

Proof. Let L ∈ PSPACE via a Turing machine ML. We want to show that we can construct a ACL(A)

machine M ′ such that it decides L. Say A ∈ L via the machine MA. Following is the description of
M ′ (Algorithm 4) with catalytic tape initialized with w ∈ {0, 1}poly(n):

Algorithm 4 Machine M ′ on x ∈ {0, 1}n and w ∈ {0, 1}poly(n)

1: Check if w ∈ A using the work space to run the machine MA. If not, run the machine ML on
the catalytic space. Accept if ML accepts, Rejects if ML rejects.

2: Initialize count = 0
3: repeat
4: Run machine MA on w:
5: if w ∈ A then
6: Increment count.
7: Update w = w − 1.
8: end if
9: until w becomes all 0’s

10: Run ML on catalytic tape. If ML accepts, set flag = true, else flag = false
11: repeat
12: Run machine MA on w:
13: if w ∈ A then
14: Decrement count.
15: Update w = w + 1
16: end if
17: until count = 0
18: If flag = true then Accept, otherwise Reject and halt.

Because A is in L, we can compute the membership of w in A using only the work space, which

17

is logarithmic in size. If w ̸∈ A, it is not essential to restore the catalytic tape hence we simply run
the machine ML on the catalytic tape without restoring w. Next, if A is sparse there are only poly(n)

many strings that the machine MA would accept. A counter that remembers the position of such
a string in a lexicographically ordered A, would need only O(log n) many bits for its storage. So if
w ∈ A, we start “decrementing” the string while incrementing the counter, until when w becomes
all 0’s, count stores exactly the position of the string in a lexicographically ordered A. Finally,
we can simply run the machine ML on the catalytic tape, and knowing the position of w (in the
lexicographically ordered A) stored by count helps us restore w at the end.

A.3 Omitted Proofs from Section 2.2 : A Lower Bound on the partition complexity for
Union of Hamming Balls

This section details the proofs of statements given in Section 2.2. For convenience of the reader,
some of the terminologies defined there are repeated in this section.

For two strings, x, y ∈ {0, 1}m, the Hamming distance, is denoted by ∆(x, y). The same defi-
nition can be extended to subsets as follows: for any A,B ⊆ {0, 1}m, ∆(A,B) = min{∆(a, b) | a ∈
A, b ∈ B}.

A set H ⊆ {0, 1}m is said to be a Hamming ball if and only if there exists a k ≥ 0 and a
z ∈ {0, 1}n such that for every h ∈ H , ∆(h, z) ≤ k. We call k as the radius of the Hamming ball H
and z to be its center.

Proposition A.1. Let A ⊆ {0, 1}∗ be such that for any m ≥ 1, Am := A ∩ {0, 1}m can be expressed as
a union of Hamming balls H1, H2, . . . ,Ht over {0, 1}m such that for any i ̸= j, ∆(Hi, Hj) > 1. Then,
P(Am) =

∑t
i=1 P(Hi).

Proof. Consider any partition of Am into t subcubes given by C1, C2, . . . , Ct. Suppose that there
exists a subcube Ck, such that it contains points from Hi and Hj for some i ̸= j. As it is a partition,
every point in the subcube must belong to some Hamming ball and hence there exists two strings
x, y ∈ Ck that differ in one bit with x ∈ Hi and y ∈ Hj . But this contradicts ∆(Hi, Hj) > 1. Hence,
each Ci can contain at most one Hamming ball. With no sub cube partition of Am intersecting two
Hamming balls, we conclude P(Am) ≥

∑t
i=1 P(Hi).

On the other hand, since a sub cube partition of the Hamming balls gives a sub cube partition
of Am, P(Am) ≤

∑t
i=1 P(Hi).

We now set up the necessary tools to obtain a lower bound on the subcube partition complexity
of Hamming balls. [4] showed that the partition complexity of a set viewed as a Boolean function
is lower bounded by the sum of absolute values of its Fourier coefficients.

Define the Boolean function Thm,k : {0, 1}m → {−1, 1} as for any x ∈ {0, 1}m, Thm,k(x) = −1

if |x| ≤ k and 1 if |x| > k. We start with the observation that a Hamming ball of radius k centered
at 0m are precisely the set of inputs on which the threshold Boolean function Thm,k evaluates to
−1.

In Proposition A.2 and Proposition A.3, we obtain closed-form expressions for Fourier coeffi-
cients of Thn,k.

Proposition A.2. For any 1 ≤ i ≤ k < n/2 and S ⊆ [n] with |S| = i, T̂ hn,k(S) =
1

2n−1

(
n−2i+1
k−i

)
18

Proof. Since the Threshold function is symmetric, T̂ hn,k(S) is the same for all S ⊆ [n] of size i.
Hence, without loss of generality, we assume that S = {1, 2, . . . , i}.

We argue this by induction on n+ |S|. For the base case n+ 1, let S ⊆ [n] with S = {1}. Then,
T̂ hn,k({1}) is the fraction of edges in the Boolean hypercube such that it evaluates to different

values at the two ends. Hence, T̂ hn,k({1}) =
n(n−1

k−1)
n2n−1 =

(n−1
k−1)
2n−1 as desired.

For the induction case, let n + |S| = n + j with S = {1, 2, . . . , j} for some 1 ≤ j ≤ k. Suppose
that the result holds for all values strictly smaller than n + j. We now claim that T̂ hn,k(S) =
1
2(

̂Thn−1,k(S \ {j})− ̂Thn−1,k−1(S \ {j})). To see this,

T̂ hn,k(S) =
1

2n

∑
x∈{0,1}n

Thn,k(x)(−1)x1+...+xj

=
1

2n

 ∑
x∈{0,1}n : xj=0

Thn,k(x)(−1)x1+...+xj−1 −
∑

x∈{0,1}n : xj=1

Thn,k(x)(−1)x1+...+xj−1

=

1

2n

 ∑
x∈{0,1}n−1

Thn−1,k(x)(−1)x1+...+xj−1 −
∑

x∈{0,1}n−1

Thn−1,k−1(x)(−1)x1+...+xj−1

=

1

2

(
̂Thn−1,k(S \ {j})− ̂Thn−1,k−1(S \ {j})

)
.

Applying induction hypothesis, we get T̂ hn,k(S) as

1

2 · 2n−1−1

((
n− 1− 2(j − 1) + 1

k − (j − 1)

)
−
(
n− 1− 2(j − 1) + 1

k − 1− (j − 1)

))
=

1

2n−1

(
n− 2j + 1

k − j

)
The last equality follows, since for positive integers m and r,

(
m
r

)
−
(

m
r−1

)
=

(
m−1
r−1

)
. This completes

the induction.

We now consider the case when i > k.

Proposition A.3. For any 1 ≤ i < n/2 and k < n/2, S ⊆ [n] with |S| = k + i, the value of ̂Thn,k(S) is
as follows.

(a) For i = 1, with |S| = k + 1

T̂ hn,k(S) =

{
0 if k is even

1/2n−1 if k is odd

(b) For i = 2 with |S| = k + 2

T̂ hn,k(S) =

{
− k/2

2n−1 if k is even
(k+1)/2
2n−1 if k is odd

(c) For i ≥ 2 with |S| = k + i,

|T̂ hn,k(S)| ≥
k/2

2n−1

19

Proof. Part (a): By induction on k. There are two base cases to consider: k = 1 and k = 2.
For the base case, k = 1 we have |S| = 2. Without loss of generality, let S = {1, 2}. Then,

T̂ hn,1({1, 2}) = 1
2

(
̂Thn−1,1({1})− ̂Thn−1,0({1})

)
. The first term is 1/2n−2 by Proposition A.2 and

the second term is zero as Thn−1,0 is a constant function. Hence, T̂ hn,1({1, 2}) = 1/2n−1.
For k = 2 we have |S| = 3. Without loss of generality, let S = {1, 2, 3}. Then, T̂ hn,2({1, 2, 3}) =

1
2

(
̂Thn−1,2({1, 2})− ̂Thn−1,1({1, 2})

)
. The first term is 1/2n−2 by Proposition A.2 and the second

term is also 1/2n−2 by case k = 1. Hence, T̂ hn,2({1, 2, 3}) = 0 as desired.
We are now ready to argue the induction case. Suppose k is odd with S = {1, 2, . . . , k + 1}.

Then,

T̂ hn,k(S) =
1

2

(
̂Thn−1,k(S \ {k + 1})− ̂Thn−1,k−1(S \ {k + 1})

)
. (3)

By Proposition A.2, the first term of Eq. (3) is 1/2n−2 and the second term, by induction is 0 (as
k − 1 is even). Hence, T̂ hn,k(S) = 1/2n−1.

For the case of an even k, the first term of Eq. (3) is 1/2n−2 as before and the second term is also
1/2n−2 by induction (as k − 1 is odd). Hence, T̂ hn,k(S) = 0. This completes the proof of part (a).

Part (b): By induction on k. There are two base cases k = 1 and k = 2 similar to Part (a).
For the base case, k = 1, we have |S| = 3. Without loss of generality, let S = {1, 2, 3}. Then,

T̂ hn,1({1, 2, 3}) = 1
2

(
̂Thn−1,1({1, 2})− ̂Thn−1,0({1, 2})

)
. The first term is 1/2n−2 by part (a) and

the second term is 0. Hence, T̂ hn,1({1, 2, 3}) = 1
2n−1 as desired.

For the base case, k = 2, we have |S| = 4. Without loss of generality, let S = {1, 2, 3, 4}. Then,
T̂ hn,2({1, 2, 3, 4}) = 1

2

(
̂Thn−1,2({1, 2, 3})− ̂Thn−1,1({1, 2, 3})

)
. The first term is 0 by part (a). The

remaining term is −1
2

̂Thn−2,1({1, 2}) (by a similar reasoning as done for Part (b) k = 1). By Part
(a) base case k = 1, ̂Thn−2,1({1, 2}) is 1/2n−3. Hence, T̂ hn,2({1, 2, 3, 4}) = − 1

2n−1 as desired.
We are now ready to argue the induction case. Suppose k is odd with S = {1, 2, . . . , k + 2}.

Then,

T̂ hn,k(S) =
1

2

(
̂Thn−1,k(S \ {k + 2})− ̂Thn−1,k−1(S \ {k + 2})

)
. (4)

By Part (a), the first term of Eq. (4) is 1/2n−2 (as k is odd) and the second term, by induction
hypothesis, is − (k−1)/2

2n−2 (as k − 1 is even). Hence, T̂ hn,k(S) =
(k+1)/2
2n−1 as desired.

For the case of an even k, the first term in Eq. (4) is 0 (as k is even) and the second term, by
induction hypothesis, is k/2

2n−2 . Hence, T̂ hn,k(S) = − k/2
2n−1 as desired. This completes the proof of

part (b).
Part (c): We argue the following for |S| = k + i with i ≥ 2.

T̂ hn,k(S)

{
≤ − k/2

2n−1 if k is even

≥ k/2
2n−1 if k is odd

Proof is by induction on |S|. The base case of i = 2 holds by Part (b). Suppose S = {1, 2, . . . , k+
i} for some i ≥ 2. Then,

T̂ hn,k(S) =
1

2

(
̂Thn−1,k(S \ {k + i})− ̂Thn−1,k−1(S \ {k + i})

)
. (5)

20

Suppose k is odd. Consider Eq. (5). For the first summand, with S′ = S \ {k+ i} of size strictly
smaller than k+i has k′ = k which is odd. By induction, ̂Thn−1,k′(S

′) = ̂Thn−1,k(S\{k+i}) ≥ k/2
2n−2 .

For the second summand, the set S′ = S \{k+ i} has k′ = k−1 which is even. With k′ being even,
induction tells that ̂Thn−1,k′(S

′) = ̂Thn−1,k−1(S \ {k + i}) ≤ − (k−1)/2
2n−2 . Hence, by Eq. (5),

T̂ hn,k(S) ≥
1

2

(
k/2

2n−2
+

(k − 1)/2

2n−2

)
=

k − 1/2

2n−1
≥ k/2

2n−1

The last inequality follows since k ≥ 1.
Suppose k is even. For the first summand, with S′ = S \ {k + i} of size strictly smaller than

k + i has k′ = k which is even. By induction, ̂Thn−1,k′(S
′) = ̂Thn−1,k(S \ {k + i}) ≤ − k/2

2n−2 . For
the second summand, the set S′ = S \ {k + i} with k′ = k − 1 which is odd. With k′ being old,
induction tells that ̂Thn−1,k′(S

′) = ̂Thn−1,k−1(S \ {k + i}) ≥ (k−1)/2
2n−2 . Hence, by Eq. (5),

T̂ hn,k(S) ≤
1

2

(
− k/2

2n−2
− (k − 1)/2

2n−2

)
=

−k + 1/2

2n−1
≤ − k/2

2n−1

The last inequality follows since k ≥ 1. This completes the induction.

We now argue below (in Proposition A.4) that any Hamming ball over {0, 1}m with radius k

strictly less than m/2−
√
m centered at 0m, must have a subcube partition complexity of Ω(k).

Proposition A.4. Let H be a Hamming ball over {0, 1}m of radius k < m/2−
√
m centered at 0m. Then

P(H) = Ω(k).

Proof. It is known that the partition complexity of a Boolean function f on m bits is lower bounded
by

∑
S⊆[m] |f̂(S)| where f̂(S) is the Fourier coefficient of f (cf. Lemma 3.8 of [4]). Hence to lower

bound the partition complexity of a Hamming ball, it suffices to compute
∑

S |T̂ hm,k(S)|.
Every S ⊆ [m] of the same size i, has the same value for |T̂ hm,k(S)| which is at least k/2 by

Proposition A.3 when i ≥ k + 2. Hence,

∑
S

|T̂ hm,k(S)| ≥
m/2−1∑
i=k+2

∑
S : |S|=i

|T̂ hm,k(S)| ≥
m/2−1∑
i=k+2

1

2m−1

(
m

i

)
k

2

≥
m/2−1∑

i=m/2−
√
m

1

2m−1

(
m

i

)
k

2
=

k

2m

m/2−1∑
i=m/2−

√
m

(
m

i

)
= Ω(k)

The binomial sum in the last inequality can be shown to be a constant fraction of 2m by a standard
application of Chebyshev’s inequality. This yields the desired lower bound of Ω(k).

Lemma A.5. Let A ⊆ Σ∗ such that for every m ≥ 1, Am is a disjoint union of Hamming balls H1, . . . ,Ht

of radius k < m/2−
√
m over {0, 1}m such that for every i, j ∈ [t], ∆(Hi, Hj) > 1. Then for every m ≥ 1,

P(Am) = Ω(tk).

Proof. For a contradiction, suppose that P(Am) = o(tk). By Proposition A.1, which says P(Am) =∑t
i=1 P(Hi), there exists an Hi centered at some z ∈ {0, 1}m such that P(Hi) = o(k). Consider

the set H ′ := Hi ⊕ z = {h ⊕ z | h ∈ Hi} obtained by taking the bitwise XOR of each string in

21

Hi by z. Observe that H ′ is a Hamming ball centered at 0m of same radius as that of Hi since the
operation performed does not alter the relative Hamming distance between the points. With the
subcubes shifted by z also forming a partition of H ′, we have P(H ′) = o(k) which contradicts
Proposition A.4. This completes the proof.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

