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Abstract

Assume we are given sample access to an unknown distribution D over a large domain
[N ]. An emerging line of work has demonstrated that many basic quantities relating to the
distribution, such as its distance from uniform and its Shannon entropy, despite being hard to
approximate through the samples only, can be efficiently and verifiably approximated through
interaction with an untrusted powerful prover, that knows the entire distribution [Herman
and Rothblum, STOC 2022, FOCS 2023]. Concretely, these works provide an efficient proof
system for approximation of any label-invariant distribution quantity (i.e. any function over the
distribution that’s invariant to a re-labeling of the domain [N ]).

In our main result, we present the first efficient public coin AM protocol, for any label-
invariant property. Our protocol achieves sample complexity and communication complexity of
magnitude Õ(N2/3), while the proof can be generated in quasi-linear Õ(N) time.

On top of that, we also give a public-coin protocol for efficiently verifying the distance a
between a samplable distribution D, and some explicitly given distribution Q.
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1 Introduction

Given sample access to a distribution, what can we learn about the distribution, and what is the
complexity of learning? These questions are central to computer science and statistics and have
guided a rich body of work with applications ranging many fields. An emerging line of work asks
the following question:

What is the complexity of verifying claims about a samplable distribution?

That is, suppose there exists a powerful yet untrusted prover that claims to have drawn many
samples from a distribution D, and concluded that it satisfies some condition, e.g. its support is
of size at most K, its Shannon entropy is h, etc. Can a verifier interacting with the prover be
convinced that the claim is (approximately) correct, while taking fewer samples and running in less
time than required to compute these measures directly from samples?

This question was raised by Chiesa and Gur [CG18], and recently Herman and Rothblum
[HR23] showed that a rich family of distribution properties, namely label-invariant distribution
properties - those distribution measures that remain unchanged after permuting the domain (such
as the distribution’s support size and Shannon entropy) - have (doubly) efficient proof systems,
that for natural problems, allow verification that is significantly faster than computation from
samples only. These protocols are private-coin protocols, in which the verifier can draw samples
from D, toss random coins, and choose whether to send them to the prover, or keep them hidden
from it. Indeed, the protocols in [HR23] rely heavily on the fact that the verifier hides its random
coin-tosses in order to perform the verification. In this work we explore public-coin protocols for
verifying distribution properties, in which the verifier reveals to the prover every coin it tosses
immediately upon drawing it. We construct efficient public-coin proof systems for label-invariant
distribution properties, and more.

More concretely, we follow the definition of public-coin proof systems for distribution properties
from Chiesa and Gur [CG18], in which the verifier can only send random coin tosses to the prover,
and the samples they draw from D are independent from the transcript of the protocol, and are
drawn only after the communication phase.

Our work studies the power of public-coin proof systems in the context of verifying properties
of an unknown samplable distribution. We find this to be a foundational question: indeed, the
power of public-coin proof systems has been a central question since they were first introduced
[GMR85, BM88]. In the classical setting (verifying the membership of a fixed and known input in a
language), Goldwasser and Sipser [GS86] showed how to convert general protocols into public-coin
ones (albeit their transformation does not preserve the honest prover’s running time [Vad00, AR21]).
In our context, where the verifier only has sampling access to the unknown distribution, no such
general transformation is known. Chiesa and Gur showed upper and lower bounds for public-coin
interactive proofs for distribution properties. Beyond the foundational importance of public-coin
protocols, they are also important for removing interaction using the Fiat-Shamir paradigm [FS86]
and for transforming general protocol into zero-knowledge ones [GMW91, BGG+88]

1.1 This Work: Public-coin Protocols for Label-Invariant Distribution Properties

Our main result is a new public-coin protocol for label-invariant distribution properties. We proceed
to present this result, and put it into context with the private-coin setting of [HR23], and the other
public-coin distribution verification protocols of [CG18].
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A distribution property P = (PN )N∈N is an ensemble such that PN is a set of distributions
over domain [N ]. We consider the distance of a distribution D over domain [N ] from the property
by the total variation of D from the closest distribution to it in PN . A distribution property is
said to be label-invariant if permuting the domain doesn’t change P. This family of distribution
properties contains many natural properties, such as the property of being close to uniform over
some subset of the domain, or having Shannon entropy roughly k.

Theorem 1.1 (Main result: public-coin IPs for label-invariant properties, informal). For every
label-invariant distribution property P with a doubly-efficient approximate decision procedure,1 there
exists a 2-message public-coin interactive protocol as follows. The prover and the verifier both get
as input an integer N and proximity parameters εc, εf ∈ [0, 1] where εc < εf , as well as sampling
access to an unknown distribution D over support [N ], and the following properties hold:

• Completeness: if D is εc-close to the property (its total variation distance from the closest
distribution in the property is at most εc), and the prover follows the protocol, then w.h.p. the
verifier accepts.

• Soundness: if D is εf -far from the property (its total variation distance from every distribution
in the property is at least εf ), then w.h.p. no matter how the prover cheats, the verifier rejects.

• Doubly-efficient prover: Taking ρ = εf−εc, the honest prover’s runtime and sample complexity

are Õ(N) · poly(1/ρ).

• Efficient verification: the communication complexity and the verifier’s sample complexity and
runtime are all Õ

(
N2/3

)
· poly(1/ρ).

Public-coin verification vs. testing of label-invariant distribution properties. Observe
that the protocol above allows us to efficiently approximate the distance of D from P, by running
a binary search with different values for εc, εf . Raskhodnikova et al. [RRSS09], and Valiant
and Valiant [VV11] showed that approximating the distance between D and natural label-invariant
distribution properties, given only black-box sample access to the distribution, requires Θ(N/ logN)
samples. This includes approximating the distance from being uniform over the entire domain, from
having entropy k, and more. Thus, our result demonstrates that public-coin verification can be
more efficient than stand-alone computation with no access to a prover for these natural distribution
problems.

Comparison to the secret-coin setting of [HR23]. Herman and Rothblum provided a secret-
coin interactive proof for verifying membership in any label-invariant distribution property (that
admits an efficient approximate decision procedure) with verifier sample complexity, runtime,

communication complexity of magnitude Õ
(√

N
)
, and only two messages. The first message in

their protocol contains a tuple of elements in [N ], where each element was sampled with probability
1
2 from the distribution D, and with probability 1

2 was drawn uniformly from [N ]. Crucially for

1See Definition 4.16. In a nutshell, these are label-invariant properties that can be efficiently decided from the
τ -approximate bucket-histogram of the distribution, i.e. by only knowing how many elements have probability roughly
(1+τ)j

N
for all j, see Definition 2.2. [HR22] showed that this assumption is quite mild, and many natural distribution

properties admit such a procedure, the reader is referred to [HR22] for a deeper exploration of this notion.
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their argument, the verifier doesn’t share with the prover which samples were drawn according to
which distribution, and later capitalizes on that fact to reject dishonest prover behavior.

In our public-coin protocol not only is the verifier required to share the random coin tosses,
it also cannot send samples from D as part of the communication. Thus, theorem 2.1 achieves a
similar result qualitatively to theirs, but using only public coins, at the cost of more samples and
communication.

Comparison with Chiesa and Gur [CG18]. Chiesa and Gur provided public-coin protocols

for any property with communication c = Õ(N), and verifier sample complexity s = O
(√

N
)
, by

having the prover send an explicit description of the distribution, and the verifier use an identity
tester from the distribution testing literature to check that the description matches the samplable
distribution. Then, the verifier accepts if D is both close to the explicit distribution provided,
and if this description is of a distribution inside the property. Moreover they also proved that for
a distribution property that requires Ω(t) samples to test, any public-coin proof system for this
property must satisfy s · c = Ω(t). As mentioned above, verifying the distance from uniformity
or approximating the entropy of a distribution requires Ω̃(N) samples, and so, every AM protocol
that verifies this property must also satisfy s · c = Ω̃(N). Our protocol for this problem achieves
c · s = Õ(N4/3), and the question of whether there exists a more efficient public-coin proof system
for this problem remains open.

Obtaining approximate tags of elements in [N ]. The method through which our protocol
allows the verifier to verify any label invariant distribution property is by having the verifier
uniformly draw elements from [N ], and verifiably obtain an approximation of the probability of each
element according to D, that is correct on average (we call this a uniformly drawn approximate
tagged sample). Formally, for some accuracy parameter σ ∈ (0, 1), and a tuple (zi) ∈ [N ]s, we
define:

Definition 1.2 (σ-approximate tags for (zi) with respect to D). σ-approximate tags for (zi) with
respect to D is a tuple (πi)i∈[s] ∈ [0, 1]s that satisfies the following inequality:

1

s

∑
i∈[s]

(
1−min

{
D(zi)

πi
,

πi
D(zi)

})
≤ σ (1)

In other words, on average, πi ∈ [1± σ]D(zi). A uniformly drawn approximate tagged sample
allows to approximate the probability histogram of a distribution, as explained in the following
sections. Note that in [HR22] and [HR23] the authors obtain an approximate tagged sample
drawn according to D, rather than from a uniformly drawn sample, and use it to approximate
the probability histogram of D. Thus, upon obtaining the probability histogram, our approaches
converge, and we follow these works to bridge the gap between obtaining a probability histogram of
a distribution and the estimation of distance from a label-invariant property. Note that the main
difficulty is obtaining the tagged sample, a task that without communication would’ve required
Ω̃(N) samples, and so, this paper will focus on this point.

Moreover, [HR22, HR23] not only contain secret coins, but also rely on the fact that the verifier
can send samples from D to the prover. In this work, we allow the verifier to only send random
coins, not even samples from D. This choice is justified in Chiesa and Gur [CG18], and allows
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our protocol to utilize properties of public-coin protocols over other objects with different access
models.

We also show that a uniformly drawn approximate tagged-sample can also be used to verify
distribution properties that are not label-invariant. Specifically, we also show that for the well-
studied problem of approximating the distance ofD from an explicit distribution Q, an approximate
tagged uniform sample is sufficient:

Theorem 1.3 (Tolerant Verification of Identity). Given an explicit description of distribution
Q over [N ], parameters 0 < εc < εf <, and sample access to distribution D over domain [N ],
there exists a 2-message public-coin protocol, with verifier sample complexity and communication
complexity Õ(N2/3) · poly( 1

εf−εc
) such that:

• If ∆SD(D,Q) ≤ εc, the verifier accepts with high probability.

• If ∆SD(D,Q) ≥ εf , the verifier rejects with high probability.

1.2 Further Related Works

Interactive proof systems were introduced in the seminal work of Goldwasser, Micali and Rackoff
[GMR85] in the context of proving computational statements about an input that is fully known
to the prover and the verifier. In our work, the distribution can be thought of as the input,
but it is not fully known to the verifier, and is accessed implicitly through samples. We aim for
verification without examining the distribution in its entirety, using minimal resources (samples,
communication, runtime, etc.).

Our work builds on a line of work that studied the power of sublinear time verifiers, who cannot
read the entire input [EKR04, RVW13, GR18], on verifying properties of distributions using a small
number of samples [CG18, HR22, HR23], and the rich literature of distribution testing, of which
most notably, we extensively use the ideas of Batu and Canonne in [BC17], as explained in the
technical overview. We also note that Herman and Rothblum [HR24] recently showed that a very
rich family of distribution properties, those that can be decided by a small circuit from an explicit
description of the distribution, can be doubly-efficiently verified with asecret-coin protocol.

2 Technical Overview

As discussed in the introduction above, the protocol behind Theorem 1.1 is based on obtaining
verified Θ(ρ)-approximate tags with respect to D for a sample uniformly drawn from [N ]. In this
section, we describe the public-coin protocol for obtaining this object. We then detail how this
tagged sample can be leveraged to verify membership in label-invariant distribution properties.

Theorem 2.1. [Informal] There exists a 2-message public-coin interactive protocol between a
verifier and a (potentially malicious) prover, where the verifier receives as input parameters σ ∈
(0, 0.1) and N ∈ N, as well as sample access to a distribution D over domain [N ]. The communication
complexity, verifier sample complexity, and verifier runtime are all s = Õ

(
N2/3

)
poly(σ−1), the

honest prover with the same input as the verifier has sample complexity and runtime Õ(N)poly(σ−1).
At the end of the interaction, the verifier rejects or outputs (Si) ∈ [N ]s that is drawn uniformly
from [N ], and (πi) ∈ [0, 1]s such that:
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• If the prover is honest, for all i ∈ [s], πi = D(Si), and with probability at least 0.75, the
verifier doesn’t reject.

• Whatever strategy a dishonest prover follows, with probability at most 0.25 over the verifier’s
coin tosses and samples, the verifier accepts and outputs (πi) such that doesn’t satisfy Inequality
(1).

We outline the protocol behind Theorem 2.1. We highlight that some details are swept under
the rug for sake of simplicity. In particular, we assume that D(x) ≤ 1

s for all x ∈ [N ]. After we
present the protocol under this assumption, we discuss how to remove this assumption.

The communication phase. The verifier draws an i.i.d. sample S = (Si) of size s = Õ
(
N2/3

)
·

poly
(
σ−1

)
uniformly from [N ], and sends the sample the prover. For each sample Si received, the

prover replies with πi such that πi = D(Si). Note that with high probability, due to the choice of
s, there doesn’t exist an element in x ∈ [N ] that was sampled more than 3 times,2 and in general,
the fraction of elements that were sampled twice or three times is very small with respect to s.
Therefore, for sake of simplicity, assume that S contains only unique elements.

Moreover, since we assumed D(x) ≤ 1
s for all x ∈ [N ], by choice of s, the sample S contains

with overwhelming probability many samples uniformly distributed inside Supp(D).

Verifing the prover’s message. The verifier divides the samples in S into buckets according to
their alleged probability, where inside each bucket all the samples are claimed to have roughly the
same mass. Concretely, for τ = O(σ3), and for every j, denote by BS

j ⊆ [s] the collection of indices

in S that the prover claimed have probability in the range
[
(1+τ)j

N , (1+τ)j+1

N

]
. The verifier then tests

for every such j that the average probability of the elements in BS
j is indeed roughly (1+τ)j

N , and

that D
∣∣
BS

j
is close to uniform:

• Checking that the average mass is correct. The verifier draws a fresh sample T , and

checks that the empirical mass of BS
j in T is roughly s ·

∣∣∣BS
j

∣∣∣ · (1+τ)j

N , and rejects otherwise.

Observe that for any distribution D, the true mass of BS
j is

∑
k∈BS

j
D(Sk). And so, by choice

of s, since the empirical mass of BS
j in T is strongly concentrated around its mean, if the test

passes, then with high probability:

s ·
∑
k∈BS

j

D(x)
τ
≈ s ·

∣∣BS
j

∣∣ · (1 + τ)j

N

Where for α ∈ (0, 1) we use the notation a
α
≈ b to indicate that a ∈ (1 ± α)b. We conclude

that with high probability:

E
k
uni∼ BS

j

[D(Sk)]
O(τ)
≈ (1 + τ)j

N
(2)

2The probability that 4 samples collide is
∑

x∈[N ] D(x)4 = 1
N3 while there are only

(
s
4

)
= O(N8/3) possible 4-tuples

in the sample S.
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• Verifying that D
∣∣
BS

j
is close to uniform. The verifier draws another fresh D-sample T ′

of size s, and counts how many 3-way collisions occur between elements in BS
j and the two

samples T, T ′, i.e. the number of 3-tuples (k, r, r′) ∈ [s]3 satisfy k ∈ BS
j , Sk = Tr = T ′

r′ . If this

quantity is far from s2 ·
∣∣∣BS

j

∣∣∣·( (1+τ)j

N

)2
, the verifier rejects. Similar to before, for any fixed pair

of entries in T, T ′, (r, r′) ∈ [s]2, the true expected number of k ∈ BS
j for which Sk = Tr = Tr′

is
∑

k∈BS
j
(D(Sk))

2. The total expected number of such 3-tuples is s2 ·
∑

k∈BS
j
(D(Sk))

2. This

quantity is also strongly concentrated around its mean by choice of s = Θ(N2/3)poly(σ−1).
We conclude that if this test passed, then with high probability:

s2 ·
∑
k∈BS

j

(D(Sk))
2 O(τ)

≈ s2
∣∣BS

j

∣∣ · ((1 + τ)j

N

)2

And equivalently:

E
k
uni∼ BS

j

[
(D(Sk))

2
] O(τ)

≈
(
(1 + τ)j

N

)2

(3)

We are thus left to argue that Equations (2) and (3) imply that D
∣∣
BS

j
is close to uniform.

Following Batu and Canonne [BC17], observe that:

Var
k
uni∼ BS

j

[D(Sk)] = E
k
uni∼ BS

j

[
(D(Sk))

2
]
−
(
E
k
uni∼ BS

j

[D(Sk)]

)2

And so, assuming Equations (2) and (3) hold, we get that Var
k
uni∼ BS

j

[D(Sk)] = O (τ) (E [D(x)])2.

Using Chebychev’s Inequality:

Pr
k
uni∼ BS

j

(∣∣∣∣D(Sk)− E
k
uni∼ BS

j

[D(Sk)]

∣∣∣∣ ≥ O

(√
τ

σ

)
· E

k
uni∼ BS

j

[D(Sk)]

)
≤ O(σ) (4)

From which we conclude all but σ-fraction of entries i ∈ BS
j satisfy:

πi
O(τ)
≈ (1 + τ)j

N

O(τ)
≈ E

k
uni∼ BS

j

[D(Sk)]
O(
√

τ/σ)
≈ D(Si)

Where the first inequality stems from the definition of Bs
j , the second from Equation (2), and

the last from Inequality (4). Plugging in τ = O(σ3), we get: πi
O(σ)
≈ D(Si).

We thus showed that if both verifier tests pass, then with high probability over the randomness
of the verifier, it holds that for every j, the tags over BS

j are σ-approximately correct, from which
Inequality (1) is inferred.
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Assuming D contains no heavy elements. Observe that the probability of all elements with
probability larger than 1/s can be well-approximated through their empirical mass in a sample of
size Θ̃(s) from D. Therefore, we can think of a verifier that estimates without need of a prover the
mass of all such elements. This process is described in detail in [HR22], and we describe it shortly
here. The reader is referred to their work for further detail. After receiving the prover’s tags,
the verifier performs the following step: the verifier draws a fresh D-sample, denoted H, of size
Õ(s)poly(σ−1) from D. With high probability, by a coupon-collector argument, this set contains all
elements with probability at least 1

s (if any exist).
The verifier tests the mass of H be drawing a fresh sample and examining the empirical mass

of H in that new sample. If it is significant, i.e. Ω(σ), the verifier “learns” D
∣∣
H up to σ distance

by subsampling from this distribution and running a folklore distribution learner (see Theorem
2.1). This requires Õ(s)poly(σ−1) samples from D, and thus doesn’t incur significant overhead
to the sample complexity of the protocol. Thus, the verifier obtains an explicit description of the
distribution PH, which is O(σ)-close toD

∣∣
H. SinceH is a set of size at most s, and the sample S was

drawn drawn i.i.d. from [N ], with overwhelming probability it holds that |S ∩H| = O(N1/3) = o(s),
and in order to verify the prover’s answer’s in the protocol described above, the verifier can just
“erase” every element in S that appeared in H, and run the protocol presented above over just
elements guaranteed with high probability to be of probability at most 1/s, without affecting the
correctness of the protocol. Thus, the verifier obtains full tags for H, and tags for S \H. Later, the
verifier can “fill-in” the missing parts in S to obtain a full tagged sample. If D is entirely supported
over heavy elements, then the protocol can be avoided all together by also checking the mass of H
is larger than 1−O(σ), and ignoring the prover’s message.

Verifying label-invariant distribution properties. In order to verify label-invariant distribution
properties, it suffices to know the probability histogram of the distribution, i.e., how many elements
have probability p for every p ∈ [0, 1]. Herman and Rothblum [HR22] observed that for many
natural properties an approximation of this histogram is sufficient, and define the τ -bucket histogram
as follows:

Definition 2.2 (τ -bucket histogram of D). For any j ∈ {. . . ,−1, 0, 1, . . . , logNτ }, the j’th bucket
of D over domain [N ] is:

BD
j =

{
x :∈ Supp(D) : D(x) ∈

[
(1 + τ)j

N
,
(1 + τ)j+1

N

)}
The τ -bucket histogram of D is the tuple

(
(j,D(BD

j ))
)
j:BD

j ̸=ϕ
.

In [HR22] the authors focus their attention on those label-invariant distribution properties

for which the information
(
(j,D(BD

j ))
)
j:BD

j ̸=ϕ
is sufficient in order to efficiently approximate the

distance (in total-variation) of D from the property. They say that such properties admit an
efficient approximate decision procedure, and show that many natural label-invariant problems are
of this type, including the property of having Shannon entropy roughly k, or being close to uniform
over some set of size M ≤ N .

In our protocol the verifier obtains a uniformly drawn tagged sample3. We argue that this
tagged sample allows the verifier to compute an approximation of the bucket histogram of D: if our

3Here we differ from [HR22] that obtain a D-sampled tagged sample, i.e. (zi) in their case was drawn from D.
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protocol didn’t end in rejection, then with high probability, the tags are roughly correct. In other

words, for every j,
|BS

j |
s is the empirical mass of BD

j in the uniform sample S. Since we expect

there to be about
|BD

j |
N -fraction of samples in S that landed in BD

j , we conclude that:∣∣∣BS
j

∣∣∣
s

≈

∣∣∣BD
j

∣∣∣
N

And since D(BD
j ) ≈

∣∣∣BD
j

∣∣∣ · (1+τ)j

N , if we set pj =

(
|BS

j |
s ·N

)
· (1+τ)j

N , then D(BD
j ) ≈ pj , and we

get with high probability, a τ -histogram which is O(σ) close to the true histogram of D in the
following sense: there exists a distribution D′ with histogram exactly ((j, pj)) that is O(σ)-close
to D in total variation distance. Thus, using the decision procedure, the verifier decides whether
((j, pj)) is consistent with some distribution close to P, and thus, conclude whether D is far from
the property, or close to it.

3 Preliminaries

For an integer n ∈ N, we use [n] to denote the set {1, . . . , n}.

Definition 3.1. The total variation distance (alt. statistical distance) between distributions P and
Q over a finite domain X is defined as:

∆SD(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)|

Theorem 3.2 (Folklore distribution learner [Gol17]). There exists an algorithm that given sample
access to a distribution P over the domain [N ], and an accuracy parameter α ∈ (0, 1), it runs in
time Õ(N/α2), takes O(N/α2) samples, and with probability at least 0.99 outputs a full description
of a distribution Papprox such that ∆SD(P, Papprox) ≤ α.

Definition 3.3 (Distribution property). We say the P = (PN )N∈N is a distribution property if
PN ⊆ ∆N , where ∆N is the set of all distributions over domain [N ].

Definition 3.4 (Distribution tester for property P). Let P be a distribution property. A tester
T of property P is a probabilistic oracle machine, that on input parameters N and ε, and oracle
access to a sampling device for a distribution D over a domain of size [N ], outputs a binary verdict
that satisfies the following two conditions:

1. If D ∈ PN , then Pr(TD(N, ε) = 1) ≥ 2/3.

2. If ∆SD(D,PN ) > ε, then Pr(TD(N, ε) = 0) ≥ 2/3.

In the context of this work, the relevant distance measure is statistical distance as defined above.
An extension of this definition, introduced by Parnas, Ron, and Rubinfeld [PRR06] is the following:

Definition 3.5 ((εc, εf )-tolerant distribution property tester). For parameters εc, εf ∈ [0, 1] such
that εc < εf , a (εc, εf )-tolerant tester T of property Π is a probabilistic oracle machine, that on
inputs N, εc, εf and given oracle access to a sampling device for distribution D over a domain of
size N , outputs a binary verdict that satisfies the following two conditions:
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1. If δ(D,ΠN ) ≤ εc, then Pr(TD(N, εc, εf ) = 1) ≥ 2/3.

2. If δ(D,ΠN ) ≥ εf , then Pr(TD(N, εc, εf ) = 0) ≥ 2/3.

Note that a tolerant distribution test is for some property Π is at least as hard as a standard
non-tolerant tester for the same property.

Definition 3.6 (Proof system for tolerant distribution testing problems). A proof system for a
tolerant distribution testing problem P with parameters εc and εf is a two-party game, between a
verifier executing a probabilistic polynomial time strategy V , and a prover that executes a strategy
P . Given that both V and P have black-box sample access to distribution D over the domain [N ],
and are given N , the interaction should satisfy the following conditions:

• Completeness: For every D over domain of size at most N , such that ∆SD(D,PN ) ≤ εc,
the verifier V , after interacting with the prover P , accepts with probability at least 2/3.

• Soundness: For every D over domain of size at most N such that ∆SD(D,PN ) ≥ εf , and
every cheating strategy P ∗, the verifier V , after interacting with the prover P ∗, rejects with
probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier as
as the honest prover (strategy P), the communication complexity, the runtime of both agents, and
the round complexity (how many messages were exchanged).

Definition 3.7 (Label invariant distribution property). A distribution property P is called label
invariant if for all N ∈ N, it holds that any permutation σ over N elements satisfies that D ∈ PN

if and only if σ(D) ∈ PN .

4 Public Coin Protocol for Verified Tagged Sample

Using the same approach as Herman and Rothblum [HR22], we provide an algorithm to obtain
a tagged sample assuming that the samplable distribution D satisfies that for every x ∈ [N ],

D(x) ≤ 1
s , where s = O

(
logN
ε5

·N2/3
)
. In Section 2 we discuss why we can assume this without

loss of generality.

Theorem 4.1. There exists 2-message AM interactive protocol between an honest verifier and a
(potentially malicious) prover, where the verifier receives as input parameters σ ∈ (0, 0.1) and

100 < N ∈ N, as well as sample access to a distribution D over domain [N ]. Set τ = σ3

8000 . Assume

D(x) ≤ 1
s for s = O

(
logN
ε5

·N2/3
)
. The communication complexity, verifier sample complexity,

and verifier runtime are all s. Given sample access to the distribution D, the honest prover requires
with high probability Õ (N) poly(σ−1) samples and runtime.

At the end of the interaction, the verifier rejects or outputs ((zi, πi))i∈[s] where (zi)i∈[s] is a
sample of size s drawn uniformly i.i.d. from [N ] and:

• Completeness. If the prover is honest, then with probability at least 0.75, the verifier doesn’t

reject, and ((zi, πi))i∈[s′] satsifies 1
s

∑
i∈[s]:πi≥ σ

1000N

(
1−min

{
πi

D(zi)
, D(zi)

πi

})
= O(τ), while

1
s

∑
i∈[s]:πi≤ σ

1000N
D(zi) ≤ σ

50N .

9



• Soundness. Whatever strategy a dishonest prover follows, with probability at most 0.25 over
the verifier’s coin tosses and samples, they accept and ((zi, πi))i∈[s′] satisfies:

1

s

∑
i∈[s]:πi≥ σ

1000N

(
1−min

{
πi

D(zi)
,
D(zi)

πi

})
≥ σ (5)

or

1

s

∑
i∈[s]:πi≤ σ

1000N

D(zi) ≥
σ

10N
(6)

Note that we use the convention that min
{

πi
D(zi)

, D(zi)
πi

}
= 1 if πi = 0 and D(zi) ̸= 0, or πi ̸= 0 and

D(zi) = 0.

We show that Protocol 4.1.1 satisfies the conditions of Theorem 4.1.

Protocol 4.1.1: Public-Sample Tagged Sample Retrieval Protocol

Input: parameters N ∈ N, σ ∈ (0, 1), as well as sample access to distribution D over domain [N ] such

that for all x ∈ [N ], D(x) ≤ 1
s for s = O

(
logN
ε5 N2/3

)
.

1. V: draw s uniformly from [N ]. Denote the sample (Si)i∈[s]. Reject if there exists x ∈ [N ] such that
x appears more than logN times in S. Otherwise, send (Si) to P.

2. P: set τ = σ3

80000 . For every i ∈ [s], if D(Si) ≥ σ
100N , send πi such that πi = D(Si), otherwise, send

πi = 0.

3. V: for every j set Sj =
{
i ∈ [s] : πi ∈

[
ejτ

N , e(j+1)τ

N

)}
. Draw two fresh samples of size s from D,

T = (Ti)i∈[s] and T ′ = (T ′
i )i∈[s]. For every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN and ejτ

N ≥ σ
1000N , set:

C̃pair
j =

∣∣{(k, r) ∈ [s]2 : k ∈ Sj , Sk = Tr

}∣∣
C̃triple

j =
∣∣{(k, r, r′) ∈ [s]3 : k ∈ Sj , Sk = Tr = T ′

r

}∣∣
Reject unless for all such j: ∣∣∣∣C̃pair

j − s ·
∣∣Sj
∣∣ · ejτ

N

∣∣∣∣ ≤ 4τ · s ·
∣∣Sj
∣∣ · ejτ

N
(7)

And ∣∣∣∣∣C̃triple
j − s2 ·

∣∣Sj
∣∣ · (ejτ

N

)2
∣∣∣∣∣ ≤ 4τ · s2 ·

∣∣Sj
∣∣ · (ejτ

N

)2

(8)

4. V: denote S−∞ = {i ∈ [s] : πi = 0}. Reject unless C̃pair
−∞ ≤ s · |S−∞| · σ

50N .

5. V: Output ((Si, πi))i∈[s]

10



4.1 Protocol 4.1.1 is Complete

We first show that Step 1 of Protocol 4.1.1 does not result in rejection.

Claim 4.2. With probability at least 0.99 over the choice of S, there doesn’t exist an element
x ∈ [N ] that was sampled more than 3 times in S, and the verifier doesn’t reject after Step 1 of
Protocol 4.1.1.

Proof. Fix x ∈ [N ] and i1, i2, i3, i4 ∈ [s] such that for all k, k′ ∈ [logN ], ik ̸= ik′ . Note that:

Pr
S
(Si1 = Si2 = Si3 = Si4) =

(
1

N

)4

There are
(
s
4

)
possible choices for i1, i2, i3, i4 ∈ [s]. Therefore, the probability that there exists some

set of 4 indices whose respective samples equal x is at most:(
s

4

)
· 1

N4
≤
( s

N

)4
≤ 1

N4/3

Taking the union bound over all possible x ∈ [N ] yields the desired result.

Next, we argue that if the prover is honest, with high probability, the verifier collision tests
don’t result in rejection.

Claim 4.3. Assuming the verifier didn’t reject after Step 1 and that the prover is honest, then with
probability at least 0.8 over the choice of T, T ′ the verifier doesn’t reject.

Proof. For every j such that ejτ

N ≥ σ
1000N and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN by Propositions A.1 and A.2
and choice of s, it also holds that:

E
[
C̃pair
j

]
= s

∑
i∈Sj

D(Si)

 ≥ s ·
∣∣Sj
∣∣ · ejτ

N
≥ 300 log2N

τ3

E
[
C̃triple
j

]
≥ s2

∑
i∈Sj

(D(Si))
2 = s2 ·

∣∣Sj
∣∣ · (ejτ

N

)3

≥ 300 log2N

τ3

And so, since there are at most 2 logN/τ buckets for which ejτ

N ≥ σ
1000N , we conclude from

Propositions A.1 and A.2 that with probability at least 0.8 over the choice of T, T ′ for all j as
described in statement it holds that:∣∣∣C̃triple

j − E
[
C̃triple
j

]∣∣∣ ≤ E
[
C̃triple
j

]
·

√√√√ 300 log2N

τ · E
[
C̃triple
j

] ≤
(
e2τ − 1

)
s2
∣∣Sj
∣∣ (ejτ

N

)2

·τ ≤ 4τs2
∣∣Sj
∣∣ (ejτ

N

)2

And similarly:

∣∣∣C̃pair
j − E

[
C̃pair
j

]∣∣∣ ≤ E
[
C̃pair
j

]
·

√√√√ 300 log2N

τ · E
[
C̃

pair]
j

] ≤ (eτ − 1) s
∣∣Sj
∣∣ ejτ
N

· τ ≤ 4τs
∣∣Sj
∣∣ ejτ
N

11



Claim 4.4. If the prover is honest, with high probability over T , the final verifier test passes with
high probability, and:

1

s

∑
i∈[s]:πi<

σ
1000N

D(Si) ≤
σ

10N
(9)

Proof. Since the prover is honest, E
[
C̃−∞

]
= s ·

∑
i∈S−∞ D(Si) ≤ s · |S−∞| · σ

1000N , and so, by

Markov’s Inequality, with probability at least 0.95, C̃−∞ ≤ s · |S−∞| · σ
50N , and the final test passes.

Moreover, Inequality (9) holds.

Remark 4.5 (Honest prover complexity). For sake of simplicity we assume the honest prover in
Protocol 4.1.1 knows D(Si) exactly. However, this is not necessary. A prover that approximates
this quantity for every sample up to sufficient accuracy using only Õ(N)poly(τ−1) samples suffices.
See Remark 4.14 in [HR23] for a detailed discussion.

4.2 Protocol 4.1.1 is Sound

Note that by Claim 4.2, regardless of the prover’s response, the verifier rejects after Step 1 with
probability at most 0.01, and so, throughout this section, we assume that Step 1 passed, and S
doesn’t contain elements appearing more than 4 times, even when not stated explicitly.

First, we address the last verifier test:

Claim 4.6. For every index j such that ejτ

N ≥ σ
1000N and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN , with probability

at least 0.98 over the choice of T and T ′, either the verifier rejects, or it holds that:

E
[
C̃pair
j

]
≥ 300 log2N

τ3
(10)

and

E
[
C̃triple
j

]
≥ 300 log2N

τ3
(11)

Proof. Fix some j0 such that
∣∣Sj0

∣∣ ≥ s · ετ
100 logN , ej0τ

N ≥ ε
100N , and also E

[
C̃triple
j0

]
< 300 log2 N

τ3
. By

Markov’s Inequality, with probability at least 0.99:

C̃triple
j0

≤ 100E
[
C̃triple
j0

]
≤ 30000 log2N

τ3

However, the verifier rejects unless:

C̃triple
j0

≥ (1− 4τ) s2
∣∣Sj0

∣∣ (ej0τ

N

)2

≥ 1

2
s3· τε

100 logN
·
( σ

1000N

)2
≥ s3· τε3

2 · 1003N3 logN
>

30000 log2N

τ3

Where the last inequality is justified since s ≥ 300 logN
τ4/3ε

N2/3. We thus conclude that for every j such

that vj0 ≥ ετ
100 logN , ej0τ

N ≥ ε
100N , either E

[
C̃triple
j

]
≥ 300 log2 N

τ3
or the verifier reject with probability

at least 0.99. An analogous argument can be made w.r.t. to C̃pair
j . Taking the union bound over

both these events yields the required result.
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Claim 4.7. With probability at least 0.8 over the choice of T and T ′, for every j such that
∣∣Sj
∣∣ ≥

e−jτ · s · ε·τ
100 logN and ejτ

N ≥ σ
1000N , and for which Inequalities (10) and (11) hold, it further holds

that: ∣∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣∣ ≤ 4τ · s
∑
i∈Sj

D(Si) (12)

As well as: ∣∣∣∣∣∣C̃triple
j − s2

∑
i∈Sj

(D(Si))
2

∣∣∣∣∣∣ ≤ 4τ · s2
∑
i∈Sj

(D(Si))
2 (13)

Proof. By Propositions A.1 and A.2 it holds that with probability 0.8 over the choice of T and T ′

for every j such that
∣∣Sj
∣∣ ≥ s · ε·τ

100 logN and ejτ

N ≥ ε
100N , the following holds:

∣∣∣C̃pair
j − E

[
C̃pair
j

]∣∣∣ ≤ E
[
C̃pair
j

]
·

√√√√ 300 log2N

τ · E
[
C̃pair
j

]
∣∣∣C̃triple

j − E
[
C̃triple
j

]∣∣∣ ≤ E
[
C̃triple
j

]
·

√√√√ 300 log2N

τ · E
[
C̃triple
j

]
Moreover, from the same propositions we know that:

E
[
C̃pair
j

]
= s

∑
i∈Sj

D(Si)

E
[
C̃triple
j

]
= s2

∑
i∈Sj

(D(Si))
2

We thus conclude that for all the j as specified above:∣∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣∣ ≤ E
[
C̃pair
j

]
·

√√√√ 300 log2N

τ · E
[
C̃pair
j

] ≤ τs
∑
i∈Sj

D(Si)

Where the last inequality above stems from the assumption that Inequality (11) holds. Similarly:∣∣∣∣∣∣C̃triple
j − s2

∑
i∈Sj

(D(Si))
2

∣∣∣∣∣∣ ≤ τs2
∑
i∈Sj

(D(Si))
2

Claim 4.8. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice of T
and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN and ejτ

N ≥ σ
1000N , and for which Inequalities

(10) and (11) hold. It further holds that:

1

|Sj |
∑
i∈Sj

D(Si) ∈
ejτ

N
[1− 10τ, 1 + 10τ ] (14)
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1

|Sj |
∑
i∈Sj

(D(Si))
2 ∈

(
ejτ

N

)2

[1− 10τ, 1 + 10τ ] (15)

Proof. By Claim 4.7, with probability at least 0.8 over the choice of T and T ′, for every j such
that and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN and ejτ

N ≥ σ
1000N , and for which Inequalities (10) and (11) hold,

Inequalities (12) and (13) hold.
Furthermore, if the verifier didn’t reject, for all such j, Inequalities (7) and (8) holds as well for

all such j. Putting it all together, we get that:∣∣∣∣∣∣s · ∣∣Sj
∣∣ · ejτ

N
− s

∑
i∈Sj

D(Si)

∣∣∣∣∣∣ ≤
∣∣∣∣s · ∣∣Sj

∣∣ · ejτ
N

− C̃pair
j

∣∣∣∣+
∣∣∣∣∣∣C̃pair

j − s
∑
i∈Sj

D(Si)

∣∣∣∣∣∣ (16)

≤ 4τs ·
∣∣Sj
∣∣ · ejτ

N
+ 4τs

∑
i∈Sj

D(Si) (17)

Rearranging Inequality (16):

s
∑
i∈Sj

D(Si) ∈ s ·
∣∣Sj
∣∣ · ejτ

N

[
1− 4τ

1 + 4τ
,
1 + 4τ

1− 4τ

]
Likewise:∣∣∣∣∣∣s2 · ∣∣Sj

∣∣ (ejτ

N

)2

− s2
∑
i∈Sj

(D(Si))
2

∣∣∣∣∣∣ ≤ +4τs2 ·
∣∣Sj
∣∣ (ejτ

N

)2

+ 4τs2
∑
i∈Sj

(D(Si))
2 (18)

Similarly, for Inequality (18):

s2
∑
i∈Sj

(D(Si))
2 ∈ s2 ·

∣∣Sj
∣∣ (ejτ

N

)2 [
1− 4τ

1 + 4τ
,
1 + 4τ

1− 4τ

]

And through the relation 1−4τ
1+4τ ≥ 1− 10τ and 1+4τ

1−4τ ≤ 1 + 10τ that holds for all τ > 0, we get the
desired result.

Definition 4.9. Define the distribution USj to be the uniform distribution over Sj.

Claim 4.10. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice of T
and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN and ejτ

N ≥ σ
1000N , and for which Inequalities

(10) and (11) hold. It further holds that:

Ei∼U
Sj [D(Si)] ∈

ejτ

N
[1− 10τ, 1 + 10τ ]

Vari∼U
Sj [D(Si)] ≤ 60τ

(
Ei∼U

Sj [D(Si)]
)2

14



Proof. With high probability, for all j as specified in the claim statement, by Claim 4.8:

Ei∼U
Sj [D(Si)] =

∑
i∈Si

1

|Sj |
D(Si) ∈

ejτ

N
· [1− 10τ, 1 + 10τ ]

Furthermore:

Ei∼U
Sj

[
(D(Si))

2
]
=

1

|Sj |
∑
i∈Sj

(D(Si))
2 (19)

≤ (1 + 10τ)

(
ejτ

N

)2

(20)

≤ (1 + 10τ)
(
Ei∼U

Sj [D(Si)]
)2 1

(1− 10τ)2
(21)

≤ (1 + 40τ)
(
Ei∼U

Sj [D(Si)]
)2

(22)

And so, we conclude that:

Vari∼U
Sj [D(Si)] = Ei∼U

Sj

[
(D(Si))

2
]
−
(
Ei∼U

Sj [D(Si)]
)2

≤ (1 + 40τ)
(
Ei∼U

Sj [D(Si)]
)2

− (1− 20τ)
(
Ei∼U

Sj [D(Si)]
)2

≤ 60τ
(
Ei∼U

Sj [D(Si)]
)2

Claim 4.11. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice of T
and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN and ejτ

N ≥ σ
1000N , and for which Inequalities

(10) and (11) hold, it further holds that:

Ei∼U
Sj

[
min

{
D(Si)

πi
,

πi
D(Si)

}]
≥ 1− σ

50
(23)

Proof. By Claim 4.10, for every j as specificied in the claim statement, it holds that:

Ei∼U
Sj [D(Si)] ∈

ejτ

N
[1− 10τ, 1 + 10τ ]

Vari∼U
Sj [D(Si)] ≤ 60τ

(
Ei∼U

Sj [D(Si)]
)2

Therefore, through Chebychev’s Inequality:

Pr
i∼U

Sj

(
|D(Si)− E [D(Si)]| ≥

√
6000τ

σ
· E [D(Si)]

)
≤

60τ
(
Ei∼U

Sj [D(Si)]
)2

(
Ei∼U

Sj [D(Si)]
)2

· 6000τ/σ

≤ σ

100

15



Observe that with probability at least 1− σ
100 over the choice of i ∼ USj it holds that:

|D(Si)− πi| ≤ |D(Si)− E [D(Si)]|+
∣∣∣∣E [D(Si)]−

ejτ

N

∣∣∣∣+ ∣∣∣∣ejτN − πi

∣∣∣∣
≤
√

6000τ

σ
· E [D(Si)] +

∣∣∣∣E [D(Si)]−
ejτ

N

∣∣∣∣+ (eτ − 1) · e
jτ

N

≤
√

6000τ

σ
· e

jτ

N
(1 + 10τ) + 12τ · e

jτ

N

≤

(
2

√
6000τ

σ
+ 12τ

)
ejτ

N

≤ eτ

(
2

√
6000τ

σ
+ 12τ

)
πi

≤

(
3

√
6000τ

σ
+ 12τ

)
πi

Where the second to last inequality stems from the fact that by definition for all i ∈ Sj , πi ∈[
ejτ

N , e
(j+1)τ

N

]
. We conclude that for all such i it holds that:

D(Si)

πi
∈

[
1− 3

√
6000τ

σ
− 12τ, 1 + 3

√
6000τ

σ
+ 12τ

]

By choice of τ , this implies that with probability at least 1 − 1
100σ over the choice of i ∼ USj , it

holds that:
D(Si)

πi
∈
[
1− σ

100
, 1 +

σ

100

]
Next, since for all i by definition min

{
D(Si)
πi

, πi
D(Si)

}
≤ 1, we get that for all j as specified in the

claim statment, with probability at least 0.8 over the choice of T and T ′ if the verifier didn’t reject,
it holds that:

Ei∼U
Sj

[
min

{
D(Si)

πi
,

πi
D(Si)

}]
≥ σ

100
+
(
1− σ

100

)(
1− σ

100

)
≥ 1− σ

50

Claim 4.12. Assume the prover’s tags satisfy the following inequality:

1

s

∑
i∈[s]:πi≥ σ

1000N

(
1−min

{
πi

D(zi)
,
D(zi)

πi

})
≥ σ (24)

Then, there exists some j0 such that
∣∣Sj0

∣∣ ≥ s · e−j0τ · ε·τ
100 logN and ej0τ

N ≥ ε
100N , and:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi
D(Si)

}]
≤ 1− 0.7σ (25)
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Proof. We decompose the sum in Inequality (5) according to alleged buckets as follows:

σ ≤ 1

s

∑
i∈[s]:πi≥ σ

1000N

(
1−min

{
πi

D(zi)
,
D(zi)

πi

})

=
1

s

∑
j:|Sj |̸=ϕ

∑
i∈Sj

(
1−min

{
πi

D(zi)
,
D(zi)

πi

})

=
∑

j:|Sj |̸=ϕ

∣∣Sj
∣∣

s
· 1

|Sj |
∑
i∈Sj

(
1−min

{
πi

D(zi)
,
D(zi)

πi

})

=
∑

j:|Sj |̸=ϕ

∣∣Sj
∣∣

s
· Ei∼U

Sj

[
1−min

{
D(Si)

πi
,

πi
D(Si)

}]

Define J =
{
j :
∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 logN , e
jτ

N ≥ σ
1000N

}
, and denote

∑
j /∈J

|Sj|
s = α. Define next

Jc =
{
j : 0 <

∣∣Sj
∣∣ < e−jτ · s · ε·τ

100 logN , e
jτ

N ≥ σ
1000N

}
. Observe that:

∑
j∈Jc

∣∣Sj
∣∣

s
≤ 1

s

∑
j∈Jc

1

e−jτ · s · ε · τ
100 logN

≤
∑
j∈Jc

1

100

σ
· ε · τ
100 logN

≤ σ

20

Then: ∑
j∈J

∣∣Sj
∣∣

s
· Ei∼U

Sj

[
1−min

{
D(Si)

πi
,

πi
D(Si)

}]
≥ 0.7σ

Consider thus the distribution B that assigns to every j ∈ J the probability
∣∣∣ Sj

s·(1−α)

∣∣∣, and 0

otherwise. Then:

Ej∼B

[
Ei∼U

Sj

[
1−min

{
D(Si)

πi
,

πi
D(Si)

}]]
≥ σ − σ

20
≥ 0.9σ

And so it must hold that there exists some j0 ∈ J such that:

Ei∼U
Sj0

[
1−min

{
D(Si)

πi
,

πi
D(Si)

}]
≥ 0.9σ

Finally, this implies that for j0:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi
D(Si)

}]
≤ 1− 0.9σ

Claim 4.13. With high probability over the choice of S, T, T ′, if Inequality (5) holds, then, with
high probability, the verifier rejects.
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Proof. Assume the prover’s response (πi)i∈[s] satisfies Inequality (24). Then, by Claim 4.12, it holds

that there exists some j0 such that
∣∣Sj0

∣∣ ≥ s · ε·τ
100 logN and ej0τ

N ≥ ε
100N , and for which:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi
D(Si)

}]
≤ 1− 0.9σ (26)

Next, by Claim 4.6, with probability at least 0.98 over the choice of T, T ′, Inequalities (10) and (13)
hold for j0. Then, assuming the verifier didn’t reject, by Claim 4.11 it holds that with probability
at least 0.8 over the choice of T, T ′ that:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi
D(Si)

}]
≥ 1− σ

50
(27)

Note that Inequality (26) and Inequality (27) contradict one another, from which we conclude that
if the prover’s response satisfies Inequality (24), then with probability at least 0.75 over the choice
of S, T, T ′, the verifier should reject.

Finally, concerning the final verifier test:

Claim 4.14. If the prover’s answer didn’t result with the verifier rejecting the test in Step 4 of
Protocol 4.1.1, then with probability at most 0.01, Inequality (6) holds.

Proof. By Proposition A.1 E
[
C̃−∞

]
= s

∑
i:πi<

σ
1000N

D(x). Thus, assuming that Inequality (6)

holds, every entry in T has probability at least
∑

i∈[s]:πi<
σ

1000N
D(x) ≥ s · σ

10N of landing on S−∞,

and by Hoeffdings Inequality, this will yield:

C̃−∞ ∈ (1 +
1√
s
)s2 · σ

10N
> s ·

∣∣S−∣∣ · σ

50N

And the verifier rejects with high probability.

4.3 From verified uniform tagged sample to property verification

Lemma 4.15. Fix two distributions D,Q over domain [N ], and parameter σ ∈ (0, 1). Let (zi)i∈[s]
be a sample of size s = Õ(N2/3)poly(σ−1) drawn uniformly from [N ]. There exists an algorithm

that runs in time O(s) and outputs δ ∈ [0, 1], such that |δ −∆SD(Q,D)| = O
(
σ + 1√

s

)
, given the

following input:

• The sample (zi)i∈[s].

• (πi)i ∈ [0, 1]s, that satisfy the following two inequalities:

1

s

∑
i∈[s]:πi≥ σ

1000N

(
1−min

{
πi

D(zi)
,
D(zi)

πi

})
≤ σ (28)

1

s

∑
i∈[s]:πi≤ σ

1000N

D(zi) ≤
σ

10N
(29)
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• Q(zi), for all i ∈ [s].

Proof. Consider the following algorithm: for every i ∈ [S], set θ′zi = |πi−Q(zi)|
2 , and output δ =

1
s

∑
i∈[s] θ

′
zi . We show that this algorithm satisfies the conditions of the lemma.

For every x ∈ [N ] define θx = |D(x)−Q(x)|
2 . Observe that by definition, ∆SD(D,Q) = Ex∼U[N ]

[θx].
Since the sample (zi) was drawn i.i.d., the collection (θx) is independent. By Hoeffding’s Inequality:

Pr
S

∣∣∣∣∣∣1s
∑
i∈[s]

θzi −∆SD(D,Q)

∣∣∣∣∣∣ > 2√
s

 ≤ 2e−8 < 0.01

And so, with probability at least 0.99 over the choice of (zi):∣∣∣∣∣∣1s
∑
i∈[s]

θzi −∆SD(D,Q)

∣∣∣∣∣∣ ≤ 2√
s

(30)

By assumption over (πi) and the Triangle Inequality:∣∣∣∣∣∣1s
∑
i∈[s]

θzi −
1

s

∑
i∈[s]

θ′zi

∣∣∣∣∣∣ ≤ 1

s

∣∣∣∣∣∣
∑
i∈[s]

(
|D(zi)−Q(zi)|

2
− |πi −Q(zi)|

2

)∣∣∣∣∣∣ (31)

≤ 1

2s

∑
i∈[s]

|(|D(zi)−Q(zi)| − |πi −Q(zi)|)| (32)

≤ 1

2s

∑
i∈[s]

|(D(zi)−Q(zi))− (πi −Q(zi))| (33)

=
1

2s

∑
i∈[s]

|D(zi)− πi| (34)

For every i such that D(zi) ̸= 0, it holds that save for at most σ-fraction of i ∈ [s], πi ∈
(1±O(σ))D(zi), and for every i such that D(zi) ̸= 0, it must hold that 1

s

∑
i∈[s]:D(zi)=0 πi ≤ σ.

And so:

1

2s

∑
i∈[s]

|D(zi)− πi| ≤
1

2s

∑
i∈[s]:D(zi )̸=0

D(zi)

∣∣∣∣1− πi
D(zi)

∣∣∣∣+ 1

2s

∑
i∈[s]:D(zi)=0

πi (35)

≤ 1

2

1

s

∑
i∈[s]:D(zi)

O(σ)
≈ πi

D(zi)

∣∣∣∣1− πi
D(zi)

∣∣∣∣+ 1

s

∑
i∈[s]:D(zi)

O(σ)

̸≈ πi

D(zi)

∣∣∣∣1− πi
D(zi)

∣∣∣∣+ σ


(36)

≤ 1

2
(O(σ) +O(σ) + σ) (37)

= O(σ) (38)

We thus conclude that with high probability over (zi), the algorithm yields δ such that: |δ −∆SD(D,Q)| =
O(σ + 1√

s
)
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An immediate corollary of this lemma is Theorem 1.3. We note here that this method can also
be leveraged to achieve an efficient protocol for identity testing from an approximate tagged sample
drawn according to D, and so, can be also implemented on the output of [HR23] without incurring
further overhead.

We now address the question of verification of label-invariant distribution problems. First, we
recall the following definition:

Definition 4.16 (Efficient approximate decision procedure, [HR22]). A distribution property P
has a µ-efficient approximate decision procedure if there exists a polynomial-time procedure A as
follows. A gets as input the domain size N , a distance parameter σ ∈ (0, 1), and a histogram (mj)j

satisfying
∑

j

∣∣∣mj −Q(BQ
j )
∣∣∣ ≤ µ. For every integer N , every distribution D over [N ] and every

σ > 0:

• If Q is in P, then A accepts the (mj)j.

• A rejects every (mj)j histogram that is consistent with a distribution that is not σ-close to P.

Corollary 4.17. Let P be a label-invariant distribution property, 0 ≤ εc < εf ≤ 1 distance
parameters, and assume P admits an efficient τ -approximate decision procedure, where τ = O (εf − εc)

3.
Given sample access to distribution D over domain [N ], there exists a 2-message public-coin protocol
with verifier sample complexity and communication complexity Õ(N2/3) · poly(τ−1), such that:

• Completeness. If ∆SD(D,P) ≤ εc, the verifier accepts with high probability.

• Soundness. If ∆SD(D,P) ≥ εf , the verifier rejects with high probability.

We outline how to obtain a protocol for every label-invariant distribution property admitting
an efficient decision procedure from a uniform verified tagged sample. Generally, we follow [HR22].
The reader is referred to their work for further detail on efficient decision procedures, as well
as examples for such procedures for natural label-invariant properties, such as those relating to
Shannon entropy, support size, and distance from uniformity. We note that the main obstacle in
the protocol behind the above corollary, addressed by this paper in a novel way, is obtaining a
good approximation of the probability according to D of randomly chosen elements in the domain.
Recall that without communication, this task requires Õ(N) samples and runtime from the verifier.

We provide an outline the protocol behind Corollary 4.17. The verifier and the prover run
Protocol 4.1.1 over distribution D with distance parameter σ =

εf−εc
3 , and with the following

addition: the prover also sends, alongside (πi)i∈[s], the tags (qi)i∈[s], such that for all i ∈ [s],
qi = Q(i), for some distribution Q ∈ P. The verifier performs the following checks:

• The verifier runs the tests outlined in Protocol 4.1.1 with respect to (πi), and rejects w.h.p.
if prover tags satisfy Inequalities (5) or (6).

• The verifier uses (qi) to compute the bucket histogram of distribution Q. This is done by
noting that the size of every bucket of significant mass j of Q can be approximated to high
accuracy from a uniform tagged sample (qi). Then, the mass of each bucket be approximated

as well by multiplying the size by ejτ

N . Note that this process yields a probability histogram
for Q that is accurate with high probability up to τ multiplicative factor. Then, the verifier
runs the τ -approximate decision procedure with distance parameter σ, to check that indeed
Q ∈ PN , and reject if it’s far. Note that if indeed Q ∈ PN , and since the histogram is τ
accurate, the verifier accepts with high probability, and rejects if Q is not inside the property.
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• If non of the above tests failed, the verifier estimates the distance between Q and D using (πi)
and (qi) as outlined in Lemma 4.15, and rejects unless this estimate is smaller than εc+O(τ).

If the all tests passed, then with high probability it holds that Q is τ -close to P, and that
∆SD(Q,D) ≤ εc+O(τ), and the conditions of Corollary 4.17 hold. If D is εf far from the property,
and the histogram of Q is consistent with a histogram that passes the efficient decision procedure,
then by assumption, it holds that Q is εf −τ far from D, and so the distance test will fail. We omit
further detail, as the process of verifying membership in distribution property from approximate
histogram is outlined in [HR22].
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A Collision Tests Analysis

A.1 Twoway Collisions

Proposition A.1. Assume that for every x ∈ [N ], D(x) ≤ 1
s . For every sample S such that for

every i ∈ [s], the element Si appears at most logN times in S, with probability at least 1− τ
100 logN

over the choice of the sample T , it holds that:

E
[
C̃pair
j

]
= s

∑
i∈Sj

D(Si)

As well as: ∣∣∣C̃pair
j − E

[
C̃pair
j

]∣∣∣ ≤ E
[
C̃pair
j

]
·

√√√√ 300 log2N

τ · E
[
C̃pair
j

]
Proof. For every k, r ∈ [s] denote by Ck,r the indicator of the event {Sk = Tr}. Observe that

C̃pair
j =

∑
k∈Sj

∑
r∈[s]Ck,r, and that ET [Ck,r] = D(Sk). By the linearity of expectation:

E
[
C̃pair
j

]
=
∑
k∈Sj

∑
r∈[s]

E [Ck,r] =
∑
k∈Sj

∑
r,r′∈[s]

D(Sk) = s
∑
k∈Sj

D(Sk) (39)

In order to prove concentration we show that VarT

[
C̃pair
j

]
is small. Note that:

VarT

[
C̃pair
j

]
=

∑
(k,r)∈[s]2

∑
(k′,r′)∈[s]2

Cov
[
Ck,r, Ck′,r′

]
In order to bound the variance consider the following case analysis for Cov

[
Ck,r, Ck′,r′

]
:

• Type I. Assume Sk ̸= Sk′ . Then, if r ̸= r′, the random variables Ck,r and Ck′,r′ are
independent, and Cov

[
Ck,r, Ck′,r′

]
= 0; otherwise, r = r′, in which case, it cannot be that

Ck,r = Ck′,r′ = 1 simultaneously, and Cov
[
Ck,r, Ck′,r′

]
< 0.

• Type II. Assume Sk = Sk′ . Then, if r = r′ we get that Cov
[
Ck,r, Ck′,r′

]
= PrT (Sr = Sk) =

D(Sk) = E [Ck,r]. Otherwise, if r ̸= r′, Cov
[
Ck,r, Ck′,r′

]
= PrT (Sr = Sr′ = Sk) = (D(Sk))

2 ≤
1
sD(Sk)

Where the last inequality stems from the assumption that D(x) ≤ 1
s for all x ∈ [N ]. We thus

conclude that:

Var
[
C̃j

]
≤
∑
k∈Sj

∑
k′∈Sj :Sk=Sk′

∑
r∈[s]

E [Ck,r]+
∑
k∈Sj

∑
k′∈Sj :Sk=Sk′

∑
r ̸=r′∈[s]

1

s
D(Sk) ≤ logN

∑
k∈Sj

∑
r∈[s]

E [Ck,r] = logNE
[
C̃j

]
The desired result is thus achieved through Chebychevs’ Inequality.
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A.2 Threeway Collisions

Proposition A.2. Assume that for every x ∈ [N ], D(x) ≤ 1
s . For every sample S = (Si)i∈[s] such

that for every i ∈ [s], the element Si appears in at most logN locations in S, with probability at
least 1− τ

100 logN over the choice of the samples T, T ′, it holds that for any set of bucket indices J

of size at most 2 logN
τ , for every j ∈ J :

E
[
C̃triple
j

]
= s2

∑
i∈Sj

(D(x))2

As well as: ∣∣∣C̃triple
j − E

[
C̃triple
j

]∣∣∣ ≤ E
[
C̃triple
j

]
·

√√√√ 300 log2N

τ · E
[
C̃triple
j

]
Proof. For every k, r, r′ ∈ [s] denote by Ck,r,r′ the indicator of the event

{
Sk = Tr = T ′

r′
}
. Observe

that C̃triple
j =

∑
k∈Sj

∑
r,r′∈[s]Ck,r,r′ , and that ET,T ′

[
Ck,r,r′

]
= (D(Sk))

2. By the linearity of
expectation:

E
[
C̃triple
j

]
=
∑
k∈Sj

∑
r,r′∈[s]

ET,T ′
[
Ck,r,r′

]
=
∑
k∈Sj

∑
r,r′∈[s]

(D(Sk))
2 = s2

∑
k∈Sj

(D(Sk))
2 (40)

Next, we show that for every j ∈ J the random variable C̃triple
j is well concentrated around its

mean. In order to do so, we bound the variance of C̃triple
j . Note that:

Var
[
C̃triple
j

]
=

∑
(k0,r0,r′0)∈[s]3
(k1,r1,r′1)∈[s]3

Cov
[
Ck0,r0,r′0

, Ck1,r1,r′1

]

And so, in order to bound the variance, consider the following case analysis for the pair ((k0, r0, r
′
0), (k1, r1, r

′
1)):

• Type I. Sk0 ̸= Sk1 , then: either r0 ̸= r1 and r′0 ̸= r′1 in which case Cov
[
Ck0,r0,r′0

, Ck1,r1,r′1

]
=

0 as the variables are independent; or r0 = r1 or r′0 = r′1, in which case since Sk0 ̸=
Sk′1

, it cannot be that Ck0,r0,r′0
= 1 and Ck1,r1,r′1

= 1 simultaneously, which means that

Cov
[
Ck0,r0,r′0

, Ck1,r1,r′1

]
< 0.

• Type II. Sk0 = Sk1 and (r0, r
′
0) = (r1, r

′
1), then Cov

[
Ck0,r0,r′0

, Ck1,r1,r′1

]
= V ar

[
Ck0,r0,r′0

]
≤

E
[
Ck0,r0,r′0

]
.

• Type III.:

– Type IIIa. Sk0 = Sk1 and r0 = r1 = r, however r′0 ̸= r′1, then:

Cov
[
Ck0,r,r′0

, Ck1,r,r′1

]
≤ E

[
Ck0,r,r′0

· Ck1,r,r′1

]
= (D(Sk0))

3
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– Type IIIb. Sk0 = Sk1 and r′0 = r′1 = r′, however r0 ̸= r1, then:

Cov
[
Ck0,r,r′0

, Ck1,r,r′1

]
≤ E

[
Ck0,r0,r′ · Ck1,r1,r′

]
= (D(Sk0))

3

Since all pairs of indicators of Type I do not contribute to the variance, we are left to quantify
how many pairs of indicators are there of Type II and Type III. Fix k0 ∈ [s], and denote Ak0 =
{i ∈ [s] : Si = Sk0}.

• Type II. By assumption over S, |Ak0 | ≤ logN , and so, there are at most logN options for
k1. Then, there are s2 ways to pick (r, r′). Therefore, k0 participates in at most s2 · logN
pairs of Type II.

• Type III. This type is divided into two symmetric sub-types. As above, for a fixed k0, there
are at most logN possible values for k1. Then, there are s3 ways to pick r, r′0, r

′
1. Therefore,

k0 participates in at most 2 · s3 · logN pairs of Type IIIa. Type IIIb is the symmetric where
both triplets agree on r′, but have two different values r0 and r1.

First, we calculate the contribution of all the Type II pairs to the variance:∑
(k0,r,r′)∈[s]3

∑
k1∈Ak0

Cov
[
Ck0,r,r′ , Ck1,r,r′

]
≤

∑
(k0,r,r′)∈[s]3

∑
k1∈Ak0

E
[
Ck0,r,r′

]
(41)

≤ logN
∑

(k0,r,r′)∈[s]3
E
[
Ck0,r,r′

]
(42)

= logN · E

 ∑
(k0,r,r′)∈[s]3

Ck0,r,r′

 (43)

= logN · E
[
C̃triple
j

]
(44)

As for the Type IIIa pairs:∑
(k0,r,r′0,r

′
1)∈[s]4

∑
k1∈Ak0

Cov
[
Ck0,r,r′0

, Ck1,r,r′1

]
≤

∑
(k0,r,r′0,r

′
1)∈[s]4

∑
k1∈Ak0

(D(Sk0))
3 (45)

≤ logN
∑

(k0,r,r′0,r
′
1)∈[s]4

(D(Sk0))
3 (46)

≤ s · logN
∑

(k0,r,r′0,)∈[s]3
(D(Sk0))

3 (47)

≤ s · logN
∑

(k0,r,r′0,)∈[s]3
(D(Sk0))

2 · 1
s

(48)

≤ logN
∑

(k0,r,r′0,)∈[s]3
E
[
Ck0,r,r′0

]
(49)

= logN · E
[
C̃triple
j

]
(50)

Similarly, all Type IIIb contribute at most logN · E
[
C̃triple
j

]
to the variance as well. We thus

conclude that:
Var

[
C̃triple
j

]
≤ 3 logN · E

[
C̃triple
j

]
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Therefore, using Chebichev’s Inequality:

Pr
T,T ′

∣∣∣C̃triple
j − E

[
C̃triple
j

]∣∣∣ ≥
√

300 log2N

τ
· E
[
C̃triple
j

] ≤
3 logN · E

[
C̃triple
j

]
300 log2 N

τ · E
[
C̃triple
j

] (51)

≤ τ

100 logN
(52)

Taking union bound over all j ∈ J yields the desired result.
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