
The Orthogonal Vectors Conjecture
and Non-Uniform Circuit Lower Bounds*

Ryan Williams†

MIT

Abstract

A line of work has shown how nontrivial uniform algorithms for analyzing circuits can be used to derive non-
uniform circuit lower bounds. We show how the non-existence of nontrivial circuit-analysis algorithms can also imply
non-uniform circuit lower bounds. Our connections yield new win-win circuit lower bounds, and suggest a potential
approach to refuting the Orthogonal Vectors Conjecture in the O(logn)-dimensional case, which would be sufficient
for refuting the Strong Exponential Time Hypothesis (SETH). For example, we show that at least one of the following
holds:

• There is an ε > 0 such that for infinitely many n, read-once 2-DNFs on n variables cannot be simulated by
non-uniform 2εn-size depth-two exact threshold circuits. It is already a notorious open problem to prove that
the class ENP does not have polynomial-size depth-two exact threshold circuits, so such a lower bound would
be a significant advance in low-depth circuit complexity. In fact, a stronger lower bound holds in this case:
the 2n × 2n Disjointness Matrix (well-studied in communication complexity) cannot be expressed by a linear
combination of 2o(n) structured matrices that we call “equality matrices”.

• For every c ≥ 1 and every ε > 0, Orthogonal Vectors on n vectors in c logn dimensions can be solved in n1+ε

uniform deterministic time. This case would provide a strong refutation of the Orthogonal Vectors conjecture,
and of SETH: for example, CNF-SAT on n variables and O(n) clauses could be solved in 2n/2+o(n) time.
Moreover, this case would imply non-uniform circuit lower bounds for ENP, against Valiant series-parallel
circuits.

Inspired by this connection, we give evidence from SAT/SMT solvers that the first item (in particular, the Disjointness
lower bound) may be false in its full generality. In particular, we present a systematic approach to solving Orthogonal
Vectors via constant-sized decompositions of the Disjointness Matrix, which already yields interesting new algo-
rithms. For example, using a linear combination of 6 equality matrices that express 26 × 26 Disjointness, we derive
an Õ(n · 6d/6) ≤ Õ(n · 1.35d) time and n · poly(logn, d) space algorithm for Orthogonal Vectors on n vectors in d
dimensions. We show similar results for counting pairs of orthogonal vectors.

*This is the full version of a paper that will appear in FOCS 2024.
†Work was supported in part by NSF CCF-2127597 and a Frank Quick Faculty Research Innovation Fellowship.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 142 (2024)



1 Introduction
The Orthogonal Vectors problem is a simple task about finding disjoint vectors in a given collection:

ORTHOGONAL VECTORS (OV)
Given: n vectors v1, . . . , vn ∈ {0, 1}d
Decide: Are there i, j such that ⟨vi, vj⟩ = 0?

The obvious algorithm for OV takes O(n2 · d) time. Folklore O(n · 2d · d)-time and Õ(n + 2d)-time algorithms
are also known (for a reference, see [CST17]). For larger dimensions, truly subquadratic-time algorithms have also
been developed: the best known result in this direction is that for all constants c ≥ 1, OV with d = c log n dimensions
can be solved in n2−1/O(log c) time [AWY15, CW21]. Note that the running time degrades to n2 as c increases;
the conjecture that there is no universal ε > 0 such that OV can be solved in n2−ε time (for all c) is known as the
Orthogonal Vectors Conjecture, one of the major hypotheses in fine-grained complexity (see [Vas18] for a survey).

Conjecture 1 (Orthogonal Vectors Conjecture (OVC) [AVW14, BI15, ABV15]). For every constant ε > 0, there is a
constant c ≥ 1 such that OV cannot be solved in n2−ε time on instances with d = c log n.

In other words, OVC states that OV requires n2−o(1) time on instances of super-logarithmic dimension.
Why might OVC be true? It is known that faster algorithms for OV in c log n dimensions imply faster algorithms

for several other apparently harder problems on collections of vectors, such as finding a pair with minimum inner
product [CW19]. Another major piece of evidence for OVC is that the Strong Exponential Time Hypothesis (on the
time complexity of SAT) implies that OVC is true [Wil04, WY14]:

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH) [IP01, CIP09]). For every constant δ > 0, there is a
constant k ≥ 3 such that k-SAT cannot be solved in 2(1−δ)n time.

For this reason, and the fact that OV is simple to work with, the OVC has been the engine under the hood of many
conditional lower bounds in fine-grained complexity (such as [RV13, AVW14, Bri14, ABV15, BI15, BK15, BM16,
BI16, ABH+16, BBK+16, GIKW17, BRSV17, WY14, AVW16, CDHL16, APRS16, ED16, IR16, CGR16, KPS17]).

Circuit Lower Bounds from Falsifying OVC. SETH and its relatives also play a major role in a line of work on
proving non-uniform circuit lower bounds (where we are allowed a separate algorithm for each input length) from
uniform (deterministic) Circuit SAT algorithms (cf. [Wil10, Wil11, JMV15, Wil18c, AC19, Che19]). For this reason,
it is known that if SETH is false for deterministic algorithms, the algorithm’s existence would resolve some non-
uniform circuit lower bound problems which have remained open for decades. The strongest known circuit lower
bound consequences (for refuting OV) follow from results of [Val77, CDL+12, JMV15, ABDN18]:

Theorem 1 ([Val77, CDL+12, JMV15, ABDN18]). If OVC is false, then ENP does not have O(n)-size Valiant series
parallel circuits. If a weaker version of OVC is false, where the dimension of vectors is 2O(logn)ε for some arbitrarily
small ε > 0, then ENP does not have O(n)-wire O(log n)-depth circuits of constant fan-in. If a still weaker version of
OVC is false, where the dimension of vectors is nε for some arbitrarily small ε > 0, then ENP does not haveO(n)-wire
O(log n)-depth circuits composed of threshold gates of arbitrarily large fan-in.

Therefore, if OVC is false and OV could indeed be solved in n1.99 time, the resulting algorithm would be powerful
enough to prove breakthrough non-uniform circuit lower bounds.

Could the OVC itself imply non-uniform lower bounds? Could the assumption that OV has no subquadratic-
time algorithms also imply interesting circuit complexity lower bounds? Any such result would immediately imply a
“win-win” circuit lower bound: either lower bounds hold because OVC is false, or they hold because OVC is true.

A priori, it looks unlikely that one might obtain circuit lower bounds from OVC. While OVC is clearly a lower
bound statement, it is a uniform lower bound, an impossibility claim about algorithms. We would have to show
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that lower bounds on algorithms imply lower bounds on non-uniform algorithms, i.e., circuits. It is well-known that
(for example) lower bounds on circuits of size T imply lower bounds on algorithms (specifically, multitape Turing
machines) running in time T 1−o(1) [PF79]. But a generic connection in the opposite direction (where time lower
bounds for algorithms imply circuit size lower bounds) is provably impossible: small non-uniform circuits can decide
some undecidable problems, and there is no algorithm whatsoever for such problems.

In this paper, we exploit the structure of the Orthogonal Vectors problem, as well as structure within low-depth
circuit complexity, to show that the OVC indeed implies non-uniform circuit lower bounds of particular varieties which
are longstanding open problems. Investigating deeper into this connection, we exploit the contrapositive: we are able
to show upper bounds on such circuits in particular settings, which in turn lead to new combinatorial algorithms for
solving the Orthogonal Vectors problem.

The Setup. In a win-win argument proving a claim ϕ, one finds a proposition ψ and shows both ψ ⇒ ϕ and ¬ψ ⇒ ϕ
are true. The most general way of expressing our proposition ψ is in terms of certain representations of Disjointness
matrices. For d ≥ 1, the Disjointness matrix DISJd is a 2d × 2d Boolean matrix, with rows and columns indexed by
all vectors in {0, 1}d; DISJd(i, j) = 1 if and only if the i-th vector is orthogonal to the j-th vector (they share no ones,
so they are “disjoint”). Observe that OV is equivalent to the following task:1

Given a submatrix of DISJd specified by n rows L and n columns R, determine if the submatrix of entries
L×R contains a 1.

We consider two generic ways of expressing DISJd as sums of other matrices. For simplicity, we will consider only
one type of DISJd matrix representation here, but our results can be generalized much further (see section 7 at the end
of the paper). We say that a 0-1 m × n matrix A is an equality matrix if there exist defining vectors u ∈ Nm and
v ∈ Nn such that for all i, j, A[i, j] = 1 if and only if u[i] = v[j].2 Without loss of generality, we may assume all
entries in u and v are in the range {1, . . . ,m + n}.3 The equality rank of a matrix A is defined to be the smallest
number r of equality matrices M1, . . . ,Mr such that there are constants α1, . . . , αr satisfying A =

∑
i αiMi. For a

Boolean matrix A, we define the weak equality rank of A to be the smallest number of equality matrices M1, . . . ,Mr

such that there are constants α1, . . . , αr satisfying the conditions:

• A[i, j] = 0 implies that
∑

i αk ·Mk[i, j] = 0.

• A[i, j] = 1 implies that
∑

i αk ·Mk[i, j] ̸= 0.

These rank generalizations are of interest to researchers in circuit complexity, due to their connections to low-
depth circuit lower bounds [Wil18b, Wil18c, HHH23]. An exact threshold function f : {0, 1}n → {0, 1} is defined
by weights α1, . . . , αn, t ∈ R, so that for all x = (x1, . . . , xn) ∈ {0, 1}n, f(x) = 1 if and only if

∑
i αixi = t. An

ETHR ◦ ETHR circuit of size s(n) is a depth-two circuit where the bottom layer consists of s(n) exact threshold
gates over variables x1, . . . , xn, and the top layer is a single exact threshold gate which takes the outputs of the s(n)
bottom layer as inputs. A SUM ◦ ETHR circuit of size s(n) is similar, except the top layer is simply a linear
combination (over the rationals) of the s bottom layer gates. For over 30 years, it has been a notorious open problem
to find efficient functions exhibiting super-polynomial lower bounds on SUM ◦ ETHR circuits [ROS94], and an
open problem since 2010 to find super-polynomial lower bounds for ETHR ◦ETHR circuits [HP10, Wil18c]. (See
Section 2 for more discussion on the history of these low-depth threshold circuits.) It is only known that ETHR ◦
ETHR circuits require Ω(n1.5−o(1)) size for some functions in P [KW16], and that for every k there are functions in
NP without nk-size SUM ◦ETHR circuits [Wil18c]. These circuit classes are naturally connected to equality-rank
decompositions, in the following way:

Theorem 2 ([Wil18b, Wil18c, HHH23]). Let f : {0, 1}2n → {0, 1} and let Mf be a 2n × 2n matrix indexed by n-bit
strings such that for all x, y, Mf (x, y) = f(xy). Let ¬Mf (x, y) = 1−Mf (x, y).

1OV is fine-grained equivalent to the following variant: given “red” vectors u1, . . . , un and “blue” vectors v1, . . . , vn, determine if there is a
red-blue orthogonal pair.

2Such matrices have been given other names in the literature, such as equivalence graphs [Alo86], fat matchings [PR94, Juk06], the adjacency
matrices of P4-free bipartite graphs [BBM+21], and blocky matrices [HHH23, PSS23, AY24]. We find the name “equality matrix” more natural.

3We could sort the entries of the defining vectors, and replace each entry by its rank in sorted order.
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• If f has an ETHR ◦ETHR circuit of size s, then ¬Mf has weak equality rank at most s+ 1.

• If f has a SUM ◦ETHR circuit of size s, then Mf has equality rank at most s.

(See the Preliminaries in Section 2 for a proof.) We say a function f : N → N is subexponential if for all ε > 0
and all sufficiently large d ∈ N, f(d) ≤ 2εd. Our connection to solving OV shows that, if the Boolean Inner Product
function (

∨d
i=1(xi ∧ yi)) has subexponential-size non-uniform ETHR ◦ETHR circuits, then the OV Conjecture is

false: in fact there is a nearly-linear time algorithm for OV. More generally, our main technical result is:

Theorem 3 (Subexponential Weak Equality Rank Refutes OVC). Suppose there is a subexponential function f(d)
such that for all d, DISJd has weak equality rank at most f(d). Then for every c ≥ 1 and every ε > 0, OV on n vectors
in c log n dimensions can be solved in n1+ε deterministic time. (As a consequence, k-SAT can be solved in 2n/2+o(n)

deterministic time, for all constants k.)

The consequence of Theorem 3 is a deterministic k-SAT algorithm which would be nearly as fast as the best-known
quantum algorithm (based on Grover search [Gro96, ACL+20, BPS21]). Note that the complement of DISJd, i.e., the
2d × 2d INTERSECTION matrix (i.e. the matrix of Boolean Inner Product) has weak equality rank d.4 Theorem 3’s
hypothesis is that DISJd itself has weak equality rank 2o(d). This would follow for example, if ETHR ◦ ETHR
circuits were efficiently closed under complement.

The most striking aspect of Theorem 3 is that the hypothesis is a non-uniform upper bound. We do not place
any computational bounds on how difficult it might be to produce the rank decomposition for DISJd. However, we
are still able to obtain a uniform algorithm for OV, from the hypothesis. The contrapositive of Theorem 3 states that a
uniform time lower bound on OV implies an exponential non-uniform size lower bound on ETHR ◦ETHR circuits
computing the Boolean Inner Product, by Theorem 2. Furthermore, a strengthening of Theorem 3 to equality rank
would imply faster algorithms for counting the number of orthogonal pairs.

Theorem 4 (Subexponential Equality Rank Counts OV Pairs). Suppose that there is a subexponential function f(d)
such that for all d, DISJd has equality rank at most f(d). Then for every c ≥ 1 and every ε > 0, the number
of orthogonal pairs among n vectors in {0, 1}c logn can be counted in n1+ε deterministic time. (As a consequence,
#k-SAT can be solved in 2n/2+o(n) deterministic time, for all constants k.)

In fact, even if DISJd has 2o(d) equality rank over some finite field, we would still obtain a randomized nearly-linear
time algorithm for OV in c log n dimensions for all constants c ≥ 1.

Theorems 3 and 4 provide an intriguing path to win-win lower bounds. (In fact, the hypotheses required are
even weaker: we just need low equality rank rigidity; see Section 5.1.) On the one hand, if the Disjointness matrix
does not have subexponential weak equality rank, then Theorem 2 implies that Boolean Inner Product does not have
subexponential-size ETHR ◦ ETHR circuits: this would be a significant advance in depth-two circuit complexity.
On the other hand, if the Disjointness matrix does have subexponential weak equality rank, then Theorem 3 implies
that the Orthogonal Vector Conjecture is false, implying another kind of circuit lower bound via SAT algorithms!

Corollary 1 (Win-Win Circuit Lower Bounds). At least one of the following non-uniform circuit lower bounds is true:

• ENP does not have O(n)-size Valiant series parallel circuits.
(Lower bounds of this type have been open for decades; see [Val77] and [AB09], Chapter 14, Frontier 3.)

• There is an ε > 0 such that Boolean Inner Product on n-bit vectors does not have 2εn-size ETHR ◦ ETHR
circuits.

Applying Theorem 4, we can prove more non-uniform lower bounds from assuming the number of OV pairs cannot
be counted efficiently, for example:

Theorem 5. The Orthogonal Vectors Conjecture implies that the inner product of n-bit vectors modulo 2 cannot be
expressed by SUM ◦ETHR circuits of size 2o(n).

Theorem 5 directly implies another win-win circuit lower bound, with “Inner Product Mod 2” replacing “Boolean
Inner Product” in the second bullet of Corollary 1, and “SUM ◦ETHR” replacing “ETHR ◦ETHR”.

4To compute
∨d

i=1(xi ∧ yi), each of the d equality matrices in the rank decomposition can handle an xi ∧ yi term.
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New Algorithms for OV, and the Prospect of Refuting OVC(?!). The connections given by Theorem 2 and The-
orem 4 are general enough to provide templates for designing faster algorithms for detecting and counting orthogonal
pairs: for a fixed constant k, we can search for succinct equality-rank decompositions of the 2k × 2k Disjointness ma-
trix DISJk, and use these constant-sized decompositions to construct OV algorithms for all dimensions d≫ k. That is,
we can “bootstrap” from a constant-sized decomposition on constant-sized DISJ matrices, to get good decompositions
for all DISJ matrices. This situation is similar to that of matrix multiplication, where one finds a good algorithm for
constant-sized matrices, and applies it recursively to design an algorithm for all n×n matrices (a la Strassen [Str69]).

Encoding the search for efficient equality-rank decompositions in the SAT solvers Minisat [SE05], and CaDiCaL
and Kissat [BFFH20], as well as the SMT solver Z3 [dMB08], we discovered surprisingly small rank decompositions
for DISJk for small constant k. Applying our algorithmic results, we obtain new combinatorial OV algorithms.

Theorem 6 (Section 6). The weak equality rank of 26 × 26 Disjointness is 6. Applying Theorems 8 and 9 directly,
there is a randomized algorithm for OV that runs in Õ(n · 6d/6) ≤ Õ(n · 1.35d) time and n · poly(log n, d) space.

Theorem 7 (Section 6). The equality rank of 25×25 Disjointness is (at most) 5. Applying Theorem 8 and Theorem 14
directly, there is a deterministic algorithm for counting OV pairs (a.k.a. #OV) that runs in Õ(n ·5d/5) ≤ Õ(n ·1.38d)
time and n · poly(log n, d) space.

Unlike the n2−1/O(log c)-time algorithm for OV with c log n dimensions [AWY15, CW21] which relies on fast
rectangular matrix multiplication, the above algorithms admit very simple implementations. Our algorithm is faster
than all folklore algorithms for d ∈ [1.76 log(n), 2.3 log(n)].5

Our computer searches found that for every k ∈ {1, . . . , 6}, the equality rank and weak equality rank of DISJk
are never more than k. Recall Theorems 3 and 4 say that if these rank measures are subexponential in k, then the
Orthogonal Vectors Conjecture is false. These findings lead us to believe that, if these rank measures are actually
exponential, they must be rather low exponentials. Indeed, work of Jukna [Juk06] implies that DISJd requires an OR of
Ω(1.08d) equality matrices (see Appendix A for a proof). However, an “OR of equality matrices” seems significantly
weaker than a linear combination of equality matrices which is nonzero on the ones of the matrix (the notion of weak
equality rank). At any rate, an exponential lower bound on weak equality rank would imply exponential-size lower
bounds against ETHR ◦ETHR circuits for a simple function, by Theorem 2!

To summarize, our results from SAT/SMT solvers indicate that linear combinations of equality matrices are sur-
prisingly powerful, in that they can represent DISJ in unexpectedly succinct ways; we believe that Theorems 6 and 7
are just the beginning of a new approach to solve the OV problem.

Fine-Grained Complexity Need Not Despair. It is worth pointing out that, even if DISJd did turn out to have weak
equality rank 2o(d), that would only refute the “standard” (and strongest) form of the Orthogonal Vectors Conjecture
(Conjecture 1), which is the case where the vector dimension is O(log n) (Theorem 3). While refuting Conjecture 1
would be enough to refute SETH, many fine-grained lower bounds on problems in P in the literature only require a
weaker form of Conjecture 1 to be true: that OV requires n2−o(1) time in the case where the vector dimension is nε

for small ε > 0 (see for example, [GIKW17, ABDN18]). This weaker “moderate dimension” Orthogonal Vectors
Conjecture could still be refuted by the approach in this paper, if DISJd has weak equality rank poly(d) with a rank
decomposition that is itself uniformly computable in poly(d) time (that is, the rank decomposition is “explicit” in the
sense of Definition 1). However, such a small decomposition seems to be a less likely prospect at this time.

2 Preliminaries
We assume basic familarity with computational complexity theory [AB09] and circuit complexity [Vol99]. We will be
particularly interested in depth-two circuits of certain kinds.

5Recall the folklore algorithms take time O(n2d), O(n · 2d · d) time, and Õ(n+2d) time. Note the latter algorithm requires space complexity
Ω(2d), larger than ours for d > log(n). When we limit the space complexity to n·poly(logn), our algorithm is faster for d ∈ [log(n), 2.3 log(n)].
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Sums of Thresholds. We let SUM ◦ THR be linear combinations (over the rationals) of linear threshold func-
tions (LTFs). Such circuits are also known in the machine learning literature as depth-two neural networks with sign
activation functions. By results of [HP10], every s-size SUM ◦ THR can be expressed as an (s · poly(n))-size
SUM ◦ ETHR, i.e., a linear combination of exact threshold functions, and every s-size SUM ◦ ETHR can be
expressed as a 2s-size SUM ◦THR, so the two representations are essentially equivalent.

Thirty years ago, Roychowdhury, Orlitsky, and Siu [ROS94] noted that no interesting size lower bounds were
known for computing Boolean functions with SUM◦THR circuits, beyond the few that are/were known for THR◦
THR [HMP+93, ROS94, KW16, CSS16, Tam16, ACW16]. (By “computing” a function f : {0, 1}n → {0, 1},
we mean that we want the linear combination of LTFs to evaluate to the 0-1 value f(x) on all x ∈ {0, 1}n.) The
problem was raised again more recently by Hansen and Podolskii [HP10]. It remains largely open to find an efficiently
computable f that does not have poly(n)-size SUM ◦ THR circuits; the best-known result in this direction shows
that for every k, there is a function in NP which does not have nk-size SUM ◦THR circuits [Wil18c]. Our results
(Theorem 4) show that poly(n)-size non-uniform SUM ◦THR circuits for very simple functions such as CNFs and
DNFs would already refute the Orthogonal Vectors Conjecture in a strong way.

The problem of proving lower bounds on the (presumably more expressive) class of ETHR◦ETHR circuits was
first explicitly raised in a work of Hansen and Poldoskii [HP10]. In particular, they asked whether ETHR ◦ETHR
circuits are efficiently closed under complement: whether the negation of an ETHR◦ETHR circuit of size s can be
computed by an ETHR◦ETHR of size (say) 2o(s). Our work (combining Theorem 2 and Theorem 3) implies that if
the answer is yes, then the Orthogonal Vectors Conjecture would be false, even if the negation circuit is non-uniform.

For completeness, we show here how “small” depth-two exact threshold circuits for a function f imply “small”
equality rank for the matrix of the function f . The proof follows readily from observations in prior work [Wil18b,
Wil18c, HHH23].

Reminder of Theorem 2. Let f : {0, 1}2n → {0, 1} and let Mf be a 2n × 2n matrix indexed by n-bit strings such
that for all x, y ∈ {0, 1}n, Mf (x, y) = f(xy). Let ¬Mf (x, y) = 1−Mf (x, y).

• If f has an ETHR ◦ETHR circuit of size s, then ¬Mf has weak equality rank at most s+ 1.

• If f has a SUM ◦ETHR circuit of size s, then Mf has equality rank at most s.

Proof. We prove the first item; the second has an analogous proof. Let f : {0, 1}2n → {0, 1} have an ETHR ◦
ETHR circuit of size s, and let g1, . . . , gs be the bottom-layer gates of the circuit, each taking 2n variables.

Fix a gate gi defined by weights α1, . . . , αn, β1, . . . , βn, t, so that gi(x1, . . . , xn, y1, . . . , yn) = 1 if and only if∑n
j=1(αjxj + βjyj) = t. We claim that the 2n × 2n matrix Mgi corresponding to gi is an equality matrix. Letting

x, y ∈ {0, 1}n, we define 2n-length vectors u(i) and v(i) as:

u(i)[x] =
∑
j

αjxj , v(i)[y] =

t−∑
j

βjyj

 .

For every x, y, we have gi(x, y) = 1 if and only if u(i)[x] = v(i)[y]. Therefore the matrix Mgi is an equality matrix.
Now let γ1, . . . , γs, t′ be the weights defining the output gate of the ETHR ◦ ETHR circuit for f , so that the

output gate returns 1 if and only if (
∑

i γigi) = t′. Let J denote the 2n × 2n all-ones matrix. Define the linear
combination of s+ 1 equality matrices

N =

s∑
i=1

γi ·Mgi − t′ · J.

(Note J is an equality matrix: set the defining vectors u, v to have u[i] = 1 and v[i] = 1 for all i.) Finally, observe that
for all x, y, f(x, y) = 1 implies that N(x, y) = (

∑
i γi · gi(x, y)) − t′ = 0, and f(x, y) = 0 implies N(x, y) ̸= 0.

That is, the matrix N is a weak representation of ¬Mf : the two matrices share exactly the same positions of zeroes
(and nonzeroes).
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2.1 More Related Work
Jukna [Juk06] shows that Disjointness (expressed as

∧
i=1n(xi ∨ yi) over 2n variables x1, . . . , xn, y1, . . . , yn) does

not have OR ◦ AND ◦ MOD2 circuits of size 1.08n. However his proof actually shows the 2n × 2n Disjointness
matrix cannot be represented by an OR of 1.08n equality matrices, which implies OR ◦ ETHR lower bounds, by a
similar argument as in Theorem 2. (We give a self-contained exposition of this result in Appendix A.) Diamond and
Yehudayoff [DY22] also give an exponential lower bound for computing Disjointness with an OR of ETHR gates.

In the classic paper of Babai, Frankl, and Simon [BFS86] introducing communication complexity classes, they
consider the problem of “reducing” Disjointness to Equality in a communication complexity sense. Their results
imply that any decision tree for Disjointness with oracle calls to Equality at each node requires depth Ω(

√
n). The

Ω(n) bound on the randomized complexity of Disjointness of Kalyanasundaram and Schintger [KS92] implies an
Ω(n/ log n) depth bound, which was recently sharpened to an asymptotically tight lower bound of Ω(n) by Chat-
topadhyay, Lovett, and Vinyals [CLV19].

Prior algorithms for OV in restricted settings consider the Disjointness matrix. Nederlof and Wegrzycki [NW21]
show that certain subrectangles of the disjointness matrix (where the vectors have at most d/4 ones) can be efficiently
expressed as the OR of a “low exponential” number of rank-one matrices. They use this (and other properties) to
obtain a new OV algorithm for “sparse” vectors, which in turn implies a more space-efficient Subset Sum algorithm.
It would be interesting if our new approach to designing OV algorithms (Section 6) via equality matrices could be
useful here.

In terms of related work that also uses computer searches to obtain better complexity upper bounds, Amano [AM05,
Ama10, Ama20] has used computer search to construct improved depth-two threshold circuits for the inner product
modulo 2 function, as well as prove lower bounds by a linear programming representations.

3 From Weak Equality Rank to Algorithms for Orthogonal Vectors
In this section, we prove the main result of the paper:

Reminder of Theorem 3. Suppose there is a subexponential function f(d) such that for all d, DISJd has weak
equality rank at most f(d). Then for every c ≥ 1 and every ε > 0, OV on n vectors in c log n dimensions can be
solved in n1+ε deterministic time.

The first step of the proof is to use the non-uniform hypothesis in Theorem 3 to obtain an efficiently computable
rank decomposition for DISJd for sufficiently large d.

Definition 1. Consider a rank decomposition
∑r

k=1 αkMk of 2d × 2d equality matrices, where the αk are rationals,
and each equality matrix Mk is defined by the 2d-length vectors u(k) and v(k). We say that the rank decomposition
is explicit if there is a poly(d)-time algorithm that, given (i, j, k) ∈ [2d] × [2d] × [r], the algorithm outputs u(k)[i],
v(k)[j], and αk.

Our first theorem says that, given a small (constant-sized) equality-rank decomposition for DISJk for constant k,
there is an “efficient” rank decomposition for DISJd for all large d: the number of matrices in the decomposition is
nontrivial, and the decomposition is also uniform, i.e., efficiently computable. This is the key step which lets us start
with a non-uniform rank decomposition (or non-uniform ETHR ◦ETHR circuit family), and obtain a uniform rank
decomposition.

Theorem 8 (Uniformization). Suppose for some fixed k, r, DISJk has (weak) equality rank r. Then for all d ≥ k,
DISJd has (weak) equality rank at most O(rd/k) with an explicit rank decomposition.

Proof. First we assume d is divisible by k, then we show how to remove this assumption. We also just prove the below
for weak equality rank; the proof for equality rank is analogous.

By hypothesis, the 2k × 2k matrix DISJk has weak equality rank r. Let M1, . . . ,Mr be equality matrices defined
by the respective vector pairs u(1), v(1), . . . , u(r), v(r), and let α1, . . . , αr ∈ Q be weights, so that DISJk[x, y] = 0
implies

∑
i αiMi[x, y] = 0, and DISJk[x, y] = 1 implies

∑
i αiMi[x, y] ̸= 0. Note that all entries in all u(i) and v(i)
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can be assumed to be integers in {1, . . . , 2k+1}. Without loss of generality, the numerators and denominators of all
weights αi are bounded by a function of the constants k and r.6

Now consider the Disjointness function on 2d bits. For u, v ∈ {0, 1}d, we have:

DISJd(u, v) =

n∧
i=1

(¬ui ∨ ¬vi).

Recall the Kronecker power A⊗t of an N × N matrix A is an N t × N t matrix whose entries are indexed by
(i1, . . . , it), (j1, . . . , jt) ∈ [N ]t and

A⊗t((i1, . . . , it), (j1, . . . , jt)) =

t∏
k=1

A[ik, jk].

It is a well-known property of the Disjointness matrix (see for example [Alm21]) that

DISJd = (DISJk)
⊗d/k.

Intuitively, DISJk computes disjointness on k-bit vectors, and their d/k-th tensor power computes disjointness of d-bit
vectors by computing disjointness on k-bit parts (out of d/k total parts), then taking the product of the results. If any
one of the parts is not disjoint (some entry is 0) then the product is 0. If all parts are disjoint (all entries are 1) then the
product is 1.

Replacing DISJk with its assumed rank decomposition, let M = (
∑

i αiMi)
⊗d/k, where the 2k × 2k equality

matrixMi is defined by the vectors u(i) and v(i). Since DISJk[i, j] = 0 implies
∑

k αk ·Mk[i, j] = 0, and DISJk[i, j] =
1 implies

∑
k αk ·Mi[i, j] ̸= 0, we have that:

• DISJd[i, j] = 0 implies that M [i, j] = 0.

• DISJd[i, j] = 1 implies that M [i, j] ̸= 0.

Therefore, the matrix M models DISJd precisely as we would like in the notion of weak equality rank. We claim that
M can be written as a linear combination of rd/k equality matrices.

Consider an entry indexed by (i1, . . . , id/k), (j1, . . . , jd/k) ∈ [2k]d/k of the matrix M . By definition, this entry
equals

d/k∏
m=1

(
r∑

ℓ=1

αℓ ·
[
u(ℓ)[im] = v(ℓ)[jm]

])
,

where here we use the Iverson bracket notation [P ] to output 1 when P is true, and 0 otherwise. The idea now is to
apply distributivity to the product of sums, to get a sum of rd/k equality matrices. In particular, indexing the equality
matrices in our desired decomposition by q = (q1, . . . , qd/k) ∈ [r]d/k, the coefficient of the q-th matrix is

d/k∏
m=1

αqm .

For (i1, . . . , id/k), (j1, . . . , jd/k) ∈ [2k]d/k, the (i1, . . . , id/k), (j1, . . . , jd/k) entry in the (q1, . . . , qd/k)-th matrix is 1
if and only if

d/k∏
m=1

[
u(qm)[im] = v(qm)[jm]

]
= 1.

6Fixing the matrix DISJk and the specific Boolean equality matrices Mi, the problem of finding suitable αi’s for a weak equality rank decom-
position can be posed as a system of 22k linear inequalities in the r < 22k variables α1, . . . , αr , with 0/1 coefficients. In particular, for each
x, y ∈ {0, 1}k , we include the equation

∑
i αiMi[x, y] = 0 in the system when DISJk[x, y] = 0, and we include either

∑
i αiMi[x, y] ≥ 1

or
∑

i αiMi[x, y] ≤ 1 when DISJk[x, y] = 1. (We are already assuming there is a valid solution of αi’s, so we already know which of the two
inequalities to choose, to get a feasible solution. By scaling, we can choose 1 as a suitable cut-off for the threshold.) By standard arguments in
linear programming (for example, Theorem 4.4 in [KV11]), the numerators and denominators of all αi’s may be bounded by functions of k and r.
An analogous argument holds for equality rank decompositions (in which case systems of linear equations are solved).
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DefineU (q)(i1, . . . , id/k) to be the concatenation of u(qm)(im) over allm = 1, . . . , d/k, and define V (q)(j1, . . . , jd/k)

to be the concatenation of v(qm)(jm) over all m. Then, the vectors U (q) and V (q) define the q-th matrix as an equality
matrix. Therefore M can be written as a linear combination of rd/k equality matrices.

Finally, we show that the rank decomposition can be computed uniformly. Note that given any i = (i1, . . . , id/k), j =

(j1, . . . , jd/k) ∈ [2k]d/k and q = (q1, . . . , qd/k) ∈ [r]d/k, we can compute U (q)(i1, . . . , id/k), V (q)(j1, . . . , jd/k), and
the coefficient

∏d/k
m=1 αqm for the q-th matrix, all in poly(d) time, by hard-coding the constant-sized vectors u(i), v(i)

as well as the constant-sized values αi, in the algorithm. Observe that the bit complexity of each coefficient is only
O(d).

In the above, we assumed that d is divisible by k. If that is not the case, then we let d′ ≥ d be the smallest integer
that is at least d and is divisible by k, and perform the above with d′ in place of d. This yields a weak equality-rank
decomposition of rd

′/k ≤ rd/k+1 ≤ O(rd/k) equality matrices.

We remark that we do not require k to be constant, in order to get an explicit rank decomposition: for small
but unbounded k(d), we could still brute-force search for a weak equality-rank decomposition for DISJk(d), using
the fact that the coefficients of the decomposition are functions of k(d). This observation will be useful in a later
uniformization result (Theorem 12).

Now we demonstrate how explicit rank decompositions of equality matrices can be algorithmically useful. Here,
we state the results in more generality, to illustrate how powerful the paradigm can be. For a family M = {Md} of
matrices, where Md is 2d × 2d, we define a general “satisfying pairs problem”:

M-Satisfying-Pairs
Input: integer d ≥ 1 and two sets L,R ⊆ [2d].
Decide: if there are i ∈ L and j ∈ R such that Md[i, j] = 1.

Observe that for the family of DISJ matrices, the DISJ-Satisfying-Pairs problem is exactly the Orthogonal Vectors
problem. First, we show that any matrix family that has “small” weak equality rank has a fast randomized satisfying
pairs algorithm. This version, where the running time is linear in the rank r, will be useful for our concrete algorithms
for solving OV.

Theorem 9 (Randomized Algorithm for Satisfying Pairs). Suppose a family M = {Md} of matrices, where Md is
2d × 2d, has weak equality rank at most r with an explicit rank decomposition. Then the M-Satisfying-Pairs problem
with |L| = |R| = n and dimension d can be solved in randomized r · n · poly(d, log n) time and n · poly(log n, d)
space.

Proof. Let us index the rows and columns of Md by d-bit vectors. Since Md has weak equality rank at most r, let
E1, . . . , Er be 2d × 2d equality matrices, where each Ek is defined in terms of the vectors u(k), v(k) of length 2d, so
that Ek[i, j] = 1 if and only if u(k)[i] = v(k)[j]. Since the decomposition is assumed to be explicit, each entry u(k)[i]
and v(k)[i] can be computed in poly(d) time given i, k, and there are poly(d)-time computable coefficients α1, . . . , αr

such that:

• Md[i, j] = 0 implies
∑r

k=1 αkEk[i, j] = 0, and

• Md[i, j] = 1 implies
∑r

k=1 αkEk[i, j] ̸= 0.

Now suppose we are given two sets of n Boolean vectors U = {a1, . . . , an} ⊆ {0, 1}d and V = {b1, . . . , bn} ⊆
{0, 1}d, and we wish to efficiently determine if there is an i, j such that Md[ai, bj ] = 1. (Here, U just corresponds to
a relabeling of the set of integers L, and V corresponds to R.) By the above properties, we have:

(1) If there is a satisfying pair, then there is an i, j such that Md[ai, bj ] = 1, and
∑r

k=1 αkEk[ai, bj ] ̸= 0.

(2) If there is no satisfying pair, then for all i, j we have Md[ai, bj ] = 0, then for all i, j,
∑r

k=1 αkEk[ai, bj ] = 0.
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Consider the following degree-two polynomial in 2n variables x1, . . . , xn, y1, . . . , yn:

S(x1, . . . , xn, y1, . . . , yn) :=

n∑
i=1

n∑
j=1

(
r∑

k=1

αkEk[ai, bj ]

)
· xi · yj .

By properties (1) and (2), there is no satisfying pair if and only if S is identically zero.
LetN be a sufficiently large (constant) positive integer. Choosing uniform and independent random values si, ti ∈

{0, 1, . . . , N} for each variable xi and yi respectively, the DeMillo-Lipton-Schwartz-Zippel Lemma [DL78, Sch80,
Zip79] implies that if there is a satisfying pair, then

S(s1, . . . , sn, t1, . . . , tn) ̸= 0

with probability at least 1 − 2/N .7 (Otherwise, S(s1, . . . , sn, t1, . . . , tn) = 0 with probability 1.) Note that, since
the polynomial S is only degree-two, N is a constant, and each αk is at most poly(d) bits long, the magnitude of
S(s1, . . . , sn, t1, . . . , tn) is at most n2 · r · 2poly(d), i.e., the value can be stored in O(log(nr)) + poly(d) bits.

We can efficiently evaluate the polynomial S on the points s1, . . . , sn, t1, . . . , tn, as follows. Rearranging the order
of summation for S, we have:

S(s1, . . . , sn, t1, . . . , tn) =

r∑
k=1

αk ·

 n∑
i=1

n∑
j=1

si · tj ·
[
u(k)[ai] = v(k)[bj ]

] .

Thus we can think of computing S with r calls to certain double sums over all i, j.
For k ∈ [r], define the double-sum

Tk = αk ·
n∑

i=1

n∑
j=1

si · tj ·
[
u(k)[ai] = v(k)[bj ]

]
.

We show how to quickly compute each Tk. Since the rank decomposition is explicit, each entry u(k)[ai] and v(k)[bj ]
takes only poly(d) time to compute, and thus also has only poly(d) bit complexity. For a fixed k, we sort the list of all
2n relevant u(k)[ai] and v(k)[bj ] in n log n · poly(d) time, putting equal u(k)[ai]’s before equal v(k)[bj ]’s in the sorted
order. We also store the index i of each u(k)[ai] and the index j of each v(k)[bj ] as a secondary key in our sorted
order. To compute Tk, we can sweep through the sorted order in one pass. In particular, the sorted order gives us a
sequence of equivalence classes of those u(k)[ai]’s and v(k)[bj ]’s that are all equal. (One could also use a union-find
data structure to build the equivalence classes, if one cares about polylog factors [TvL84].) For each equivalence class
C of equal values, we add the quantity  ∑

i : u(k)[ai]∈C

si

 ·

 ∑
j : v(k)[bj ]∈C

tj


to a running sum, using the secondary keys i and j of each u(k)[ai] and v(k)[bj ] to determine the appropriate si and tj .
Finally, we multiply the resulting sum by αk. This evaluates Tk, since

Tk = αk ·
∑
i

∑
j

si · tj · [u(k)[ai] = v(k)[bj ]]

= αk ·
∑

equivalence
classes C

∑
i:u(k)[ai]∈C

∑
j:v(k)[bj ]∈C

si · tj

= αk ·
∑

equivalence
classes C

 ∑
i : u(k)[ai]∈C

si

 ·

 ∑
j : v(k)[bj ]∈C

tj

 .

7We could also draw si, ti uniformly and independently from {0, 1}, and appeal to another folklore PIT theorem which says that the probability
of nonzero evaluation (of a nonzero degree-d) polynomial is at least 1/2d.
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Counting the cost of multiplying αk with the sum, it takes at most O(n log n) · poly(d) · r time to compute Tk, for all
k ∈ [r]. The space complexity is at most n · poly(log n, d), as we only need to keep a counter for k ∈ [r] to remember
the current Tk we are computing, and r ≤ 2d.

The randomized algorithm given in Theorem 9 relies on polynomial identity testing, which in general we do not
know how to derandomize in nearly-linear time (even in the simple setting we use). However, by a slight modification
of the above proof, we can obtain a deterministic algorithm with a quadratic dependence on the rank r, which will be
useful for proving circuit lower bounds when the matrix family is DISJ .

Theorem 10 (Deterministic Algorithm for Satisfying Pairs). Suppose a family M = {Md} of matrices, where Md is
2d × 2d, has weak equality rank at most r with an explicit rank decomposition. Then the M-Satisfying-Pairs problem
with |L| = |R| = n and dimension d can be solved in deterministic r2 · n · poly(d, log n) time.

Proof. We proceed as in the proof of Theorem 9: given two sets of n Boolean vectors U = {a1, . . . , an} ⊆ {0, 1}d
and V = {b1, . . . , bn} ⊆ {0, 1}d, we want to quickly determine if there are i, j satisfying Md[ai, bj ] = 1.

Instead of the polynomial S in Theorem 9, we use a sum-of-squares trick. (This will increase the dependence on
the rank r in our algorithm, but will yield a deterministic procedure.) Consider the following expression S′, borrowing
notation from the proof of Theorem 9:

S′ :=

n∑
i=1

n∑
j=1

(
r∑

k=1

αkEk[ai, bj ]

)2

.

Observe that if there is no satisfying pair then S′ = 0, and if there is a satisfying pair then S′ > 0. Thus it suffices to
evaluate S′. We have(

r∑
k=1

αkEk[ai, bj ]

)2

=
∑
k,k′

αk · αk′ · Ek[ai, bj ] · Ek′ [ai, bj ]

=
∑
k,k′

αk · αk′ ·
[
u(k)[ai] = v(k)[bj ]

]
·
[
u(k

′)[ai] = v(k
′)[bj ]

]
.

Let us define r2 equality matrices indexed by (k, k′) ∈ [r]2, where the (k, k′)-th equality matrix has defining vectors

U (k,k′)[i] = (u(k)[i], u(k
′)[i]), V (k,k′)[j] = (v(k)[j], v(k

′)[j])

for all i, j ∈ [2d]. Furthermore, let us define β(k,k′) = αk · αk′ . Then(
r∑

k=1

αkEk[ai, bj ]

)2

=
∑
k,k′

β(k,k′) ·
[
U (k,k′)[ai] = V (k,k′)[bk]

]
.

Now we can write

S′ =
∑

k,k′∈[r]

β(k,k′) ·

 n∑
i=1

n∑
j=1

[
U (k,k′)[ai] = V (k,k′)[bj ]

]
and the r2 double-sums T(k,k′) =

∑n
i=1

∑n
j=1

[
U (k,k′)[ai] = V (k,k′)[bj ]

]
can each be evaluated in n · poly(d, log n)

deterministic time, by sorting the U (k,k′)[ai]’s and V (k,k′)[bj ]’s, and passing through the sorted order, analogously as
in the proof of Theorem 9.

We can now conclude Theorem 3.

Reminder of Theorem 3. Suppose there is a subexponential function f(d) such that for all d, DISJd has weak
equality rank at most f(d). Then for every c ≥ 1 and every ε > 0, OV on n vectors in c log n dimensions can be
solved in n1+ε deterministic time.
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Proof. Fix c ≥ 1, so that d = c log n. Let ε > 0 be an arbitrarily small constant in the following, and let ε′ = ε/(2c).
Choose k to be a sufficiently large constant, so that by assumption, DISJk has weak equality rank at most 2ε

′k. Then
by Theorem 8, for d ≥ k, we can obtain an explicit weak equality-rank decomposition for DISJd, which is a linear
combination of O((2ε

′k)d/k) ≤ O(2ε
′d) ≤ O(2εd/(2c)) ≤ O(nε/2) equality matrices. Applying Theorem 10 to the

rank decomposition of DISJd matrices, it follows that OV on n vectors and dimension d = c log n can be solved in
deterministic time

n log n · nε · poly(log n) ≤ n1+ε · poly(log n).

Since ε > 0 can be made arbitrarily small, the theorem follows.

4 Win-Win Circuit Lower Bounds
Given the results of the previous section, we can prove our win-win circuit lower bound:

Reminder of Corollary 1. At least one of the following non-uniform circuit lower bounds is true:

• ENP does not have O(n)-size Valiant series parallel circuits.

• There is an ε > 0 such that Boolean Inner Product on n-bit vectors does not have 2εn-size ETHR ◦ ETHR
circuits.

Proof. We consider two cases.
1. Suppose for every ε > 0 and all sufficiently large d, DISJd has weak equality rank at most 2εd. Then by

Theorem 3, for every c ≥ 1 and ε > 0, OV on n vectors in c log n dimensions can be solved in n1+ε deterministic
time. By the fine-grained reduction from CNF-SAT to OV [Wil04, WY14], this implies that CNF-SAT on cn clauses
and n variables can be solved in 2n/2+εn time, for every c ≥ 1 and ε > 0. By results of [CDL+12], this algorithm for
CNF-SAT implies that the satisfiability problem for Valiant series-parallel circuits of cn size and n inputs can also be
solved in 2n/2+εn time. Finally, by results of [JMV15], the obtained SAT algorithm implies that there are functions in
ENP that do not have Valiant series-parallel circuits of O(n). That is, bullet 1 in the theorem statement holds.

2. Suppose there is an ε > 0 such that for infinitely many d, DISJd has weak equality rank at least 2εd. By Theo-
rem 2, it follows that there is an ε > 0 so that for infinitely many d, the Boolean Inner Product function

∨d
i=1(xi ∧ yi)

does not have ETHR ◦ETHR circuits of size 2εd. That is, bullet 2 in the theorem statement holds.

4.1 Stronger OV Algorithms From Polynomial-Size ETHR of ETHR circuits
The second bullet in Corollary 1 is a rather strong circuit lower bound, compared to the first bullet which is a fairly
weak lower bound. We consider what happens when we relax the lower bound in the second bullet to merely be
super-polynomial. This improves the resulting OV algorithm obtained in the first bullet, but (as far as we know) it
does not yet yield a better ENP lower bound. The main theorem we can prove along these lines is the following.

Theorem 11. Suppose there is a polynomial p such that for all d, the Boolean Inner Product function
∨d

i=1(xi ∧ yi)
has an ETHR ◦ ETHR circuit of size p(d). Then there is an α > 0 such that for all ε > 0, OV on n vectors in
(log n)1+α dimensions can be solved in n1+ε deterministic time.

For the purposes of this section, we say that a function f : {0, 1}⋆ → {0, 1} has uniform ETHR ◦ ETHR
circuits of size s(m) if there is an algorithm that, given 1m, prints a description of a ETHR ◦ ETHR circuit on m
inputs that computes f restricted to m-bit inputs, and does so in time s(m) · poly(log s(m)) time.

Assuming a stronger non-uniform circuit upper bound on the Boolean Inner Product function, we can obtain a
slightly stronger “uniformization” of those non-uniform circuits.

Theorem 12 (Uniformization). Suppose there is a c such that all k, the Boolean Inner Product function
∨k

i=1(xi∧yi)
has an ETHR ◦ ETHR circuit of size at most ckc. Then there is an α > 0 such that for all ε > 0 and for all
sufficiently large n and d = (log n)1+α, the function

∨d
i=1(xi ∧ yi) on 2d inputs has uniform ETHR ◦ ETHR

circuits of size at most no(1).
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Proof. Given the hypothesis of the theorem, the idea is to simply brute-force search for an ETHR◦ETHR circuit for
Boolean Inner Product on 2k-bit input. There are multiple ways we might do this; here is one simple way. It is known
that every exact threshold function on 2k variables can be represented with integer weights in [−kk, kk] [BHPS10].
Thus for a given circuit, there are kO(k2) choices for the weights of a 2k-input exact threshold function on the bottom
layer [BHPS10], and there are sO(s2) choices for the weights of the exact threshold function on the output layer,
yielding sO(s2) ·kO(sk2) total ways to choose the weights of our ETHR◦ETHR circuit. For s(k) = ckc, the bound
is kO(k2c). Setting k = (log n)1/(3c), we have that for all sufficiently large n, the total number of choices is no(1).
Given such a circuit, an analogous argument as in Theorem 8 shows that we can obtain a circuit for

∨d
i=1(xi ∧ yi) of

size O((ckc)d/k) time (no(1) + (ckc)d/k) · poly(d) for k = (log n)1/(3c). Let α = 1/(4c). For d = (log n)1+α, the
running time for producing the circuit is still no(1) · poly(d).

Applying Theorem 12 to the proof of Theorem 10, and using the reduction from ETHR◦ETHR circuits to weak
equality rank Theorem 2, we obtain an improved OV algorithm from polynomial-size ETHR ◦ETHR circuits.

Theorem 13. Suppose there is a c such that all k, the Boolean Inner Product function
∨k

i=1(xi∧yi) has an ETHR◦
ETHR circuit of size at most ckc. Then there is an α > 0 such that OV on n vectors in (log n)1+α dimensions can
be solved in n1+o(1) deterministic time.

We believe that this connection from circuits to OV algorithms should be further improvable. The primary bottle-
neck is in the new uniformization (Theorem 12), where we brute-force a small ETHR ◦ETHR circuit for Boolean
Inner Product. We could obtain a stronger OV algorithm if we had a more efficient way of generating such circuits
(assuming that the circuits exist non-uniformly). There are other situations where more efficient uniformization is pos-
sible: for example, Santhanam and Williams [SW13] build on Allender and Koucky [AK10] to show that if Boolean
formulas can be simulated by polynomial-size non-uniform O(1)-depth threshold circuits of unbounded fan-in, then
for every ε > 0, there are algorithms running in 2O(nε) time which, given a Boolean formula, output an equivalent
O(1)-depth threshold circuit.

5 From Equality Rank to Algorithms for Counting Orthogonal Pairs
In this section, we prove that equality rank upper bounds on DISJ imply non-trivial algorithms for counting the number
of orthogonal pairs.

Reminder of Theorem 4. Suppose that there is a subexponential function f(d) such that for all d, DISJd has equality
rank at most f(d). Then for every c ≥ 1 and every ε > 0, the number of orthogonal pairs (#OV) among n vectors
in {0, 1}c logn can be counted in n1+ε deterministic time. (As a consequence, #k-SAT can be solved in 2n/2+o(n)

deterministic time, for all constants k.)

The proof is analogous to that of Theorem 3, and is relatively straightforward in comparison. We first recall the
relevant “uniformization” result:

Reminder of Theorem 8. Suppose for some fixed k, r, DISJk has equality rank r. Then for all d ≥ k, DISJd has
equality rank at most O(rd/k) with an explicit rank decomposition.

Next, for a family M = {Md} of matrices, where Md is 2d × 2d, we define a general “counting satisfying pairs
problem”:

#M-Satisfying-Pairs
Input: integer d ≥ 1 and two sets L,R ⊆ [2d].
Output: the number of pairs (i, j) ∈ L×R such that Md[i, j] = 1.

For the family of DISJ matrices, the #DISJ-Satisfying-Pairs problem is exactly the #OV (Counting Orthogonal
Vectors) problem. Analogously to Theorem 10, one can show that any matrix family that has “small” equality rank
has a fast deterministic algorithm for counting satisfying pairs.
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Theorem 14 (Counting Satisfying Pairs). Suppose a family M = {Md} of matrices, whereMd is 2d×2d, has equality
rank at most r with an explicit rank decomposition. Then the #M-Satisfying-Pairs problem with |L| = |R| = n and
dimension d can be solved in r · n · poly(d, log n) time and n · poly(log n, d) space.

Proof. Index the rows and columns of Md by d-bit vectors. Assuming Md has equality rank at most r, let E1, . . . , Er

be 2d × 2d equality matrices, and for all k = 1, . . . , r let u(k), v(k) be vectors of length d defining Ek. By hypothesis,
there are poly(d)-time computable α1, . . . , αr such that for all a, b ∈ {0, 1}d,

Md[a, b] =

r∑
k=1

αk · Ek[a, b] =

r∑
k=1

αk ·
[
u(k)[ai] = v(k)[bj ]

]
.

Now suppose we have an instance of #M-Satisfying-Pairs, with vectors L = {a1, . . . , an} ⊆ {0, 1}d and R =
{b1, . . . , bn} ⊆ {0, 1}d. We wish to count the number of (i, j) ∈ [n]2 such that Md[ai, bj ] = 1. Observe that, since
M [a, b] ∈ {0, 1} for all a, b ∈ {0, 1}d, the expression

S :=

n∑
i=1

n∑
j=1

(
r∑

k=1

αkEk[ai, bj ]

)

counts exactly the number of (i, j) such that Md[ai, bj ] = 1. Rearranging the order of summation,

S =

r∑
k=1

αk ·

 n∑
i=1

n∑
j=1

[
u(k)[ai] = v(k)[bj ]

] ,

and we can compute each inner sum Tk = αk

∑n
i=1

∑n
j=1

[
u(k)[ai] = v(k)[bj ]

]
in n · poly(log n, d) time by sorting

the values of u(k)[ai] and v(k)[bj ] as in the proof of Theorems 9 and 10, and passing through the sorted order.

Theorem 4 directly follows from Theorem 8 and Theorem 14, mimicking the proof of Theorem 3.
The counting reduction of Theorem 14 can be used to show that other families of matrices must also have high

equality rank, or the OVC (Conjecture 1) is false. For example, the 2d × 2d Walsh-Hadamard transform (the matrix of
the Inner Product Mod 2 function) cannot have equality rank 2o(d), under the Orthogonal Vectors Conjecture:

Reminder of Theorem 5. The Orthogonal Vectors Conjecture (Conjecture 1) implies that the inner product of n-bit
vectors modulo 2 cannot be expressed by SUM ◦ETHR circuits of size 2o(n).

Proof. In fact we show a stronger lower bound follows from OVC: namely, the matrix of the inner product mod 2
function requires exponential equality rank.

Let M = {Md} be the family of Boolean matrices, where Md is 2d × 2d, the rows and columns are indexed
by x, y ∈ {0, 1}d, and Md(x, y) = 1 if and only if the inner product of x and y mod 2 equals 1. Suppose M has
equality rank at most 2o(d). (Note this would follow, if the inner product of d-bit vectors mod 2 had a SUM◦ETHR
circuit of size 2o(d), by Theorem 2.) Then by an analogous uniformization argument as in Theorem 8, the family M
has an explicit rank decomposition of 2o(d) size, where each entry of each matrix can be computed in poly(d) time.
In particular, by re-scaling the linear combination of equality matrices so that they are 1/ − 1 valued rather than 0/1
valued, then the product of d/k copies of the linear combination of equality matrices for Mk will compute the XOR
of d/k copies of Mk, rather than the AND of d/k copies (as was needed for DISJd). More precisely, suppose we
replace all 1-entries in Md with −1, and replace all 0-entries with 1, yielding the Walsh-Hadamard matrix Hd. Then
the (d/k)-th Kronecker power of Hk is precisely Hd, i.e.,

Hd = (Hk)
⊗d/k.

(This is a standard property of the Walsh-Hadamard transform.) Hence we can “hard-code” (or brute-force) an equality
rank decomposition of Mk for constant (or small) k, translate the decomposition into one for Hk by adding one more
matrix to the decomposition, and use Hk to obtain a uniform rank decomposition of Hd of size 2o(d), precisely as was
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done in Theorem 8. Finally, we can translate an equality rank decomposition for Hd into one for Md, by adding one
more matrix to the decomposition.

Applying Theorem 14 on the family M, we can thereby count the number of pairs of (c log n)-dimensional vectors
with odd inner product in n1+o(1) time, for any constant c ≥ 1. Finally, this counting algorithm implies that the
original #OV problem can also be solved under the same parameters (d = c log n for any constant c ≥ 1) in n1+o(1)

time ([Wil18a], Corollary 6).

5.1 Extension to Low-Rank Rigidity Decompositions
To conclude this section, we briefly point out one more extension of our method which may prove interesting for
future work. For the OV algorithm consequence of Theorem 3 and Theorem 4, we do not require an exact equality-
rank decomposition for DISJd. Indeed, it would suffice if for all ε > 0 and all sufficiently large d that there is a
uniformly-computable linear combination of 2εd equality matrices, along with a 2d × 2d sparse matrix, the sum of
which equals DISJd. In particular, the only requirement on the sparse matrix needed is that in each row, there are at
most 2εd nonzeroes. That is, we only require that DISJd has low equality rank rigidity: that 2εd entries in each row of
DISJd can be perturbed to reduce its equality rank down to 2εd, and that given an x ∈ {0, 1}d, the entries in the x-th
row can be computed in 2εd+o(d) time.

To see why this is true, recall that when we solve OV, we are specifying n rows and n columns of DISJd, and
we are trying to detect if any entry in the subrectangle specified by the rows and columns is 0. By our reduction to
sorting (Theorem 4), given an equality-rank decomposition, we can compute the sum over all n rows and all n columns
of all the entries in the matrix specified by that rank decomposition. If we can also efficiently compute the relevant
O(n · 2εd) nonzero entries of the sparse matrix as well, then we can add their contribution to the sum over all n rows
and n columns, exactly calculating the sum of ones in the given subrectangle of DISJd.

6 Explicit Decompositions of the Disjointness Matrix
We now present our new combinatorial algorithms for OV, proving the following theorems claimed in the introduction.

Reminder of Theorem 6. The weak equality rank of 26 × 26 Disjointness is (at most) 6. Applying Theorems 8 and 9
directly, there is a randomized algorithm for OV that runs in Õ(n · 6d/6) ≤ Õ(n · 1.35d) time and n · poly(log n, d)
space.

Reminder of Theorem 7. The equality rank of 25 × 25 Disjointness is (at most) 5. Applying Theorem 8 and
Theorem 14 directly, there is a deterministic algorithm for counting OV pairs (a.k.a. #OV) that runs in Õ(n ·5d/5) ≤
Õ(n · 1.38d) time and n · poly(log n, d) space.

To establish these theorems, we simply provide the rank decompositions found using SAT and SMT solvers. The
claimed randomized algorithms follow directly from the statements of Theorems 8,9, and 14.

6.1 Weak Equality-Rank Decomposition for Disjointness
Our decomposition for the 26 × 26 Disjointness matrix is in fact an OR of 6 equality matrices, whose ones cover
exactly the ones of the Disjointness matrix. Since Jukna [Juk06] proved that such an OR must have at least 1.08d

equality matrices in general (see Appendix A for a self-contained exposition), in general we cannot expect an OR of
equality matrices to give a subexponential-size decomposition of Disjointness. We only searched for an OR of equality
matrices because the task is significantly easier for SAT/SMT solvers (compared to the search for an arbitrary linear
combination of equality matrices, which is nonzero in exactly those entries where Disjointness is 1).

For each of the six equality matrices, we give the pair of defining vectors for the matrix, as well as images of the
matrices. (A light cell indicates 0, while a dark cell indicates 1.)

1. u = [23, 41, 18, 41, 25, 52, 53, 41, 25, 41, 41, 68, 23, 105, 41, 41, 18, 17, 18, 68,

89, 52, 53, 22, 68, 116, 68, 68, 53, 87, 53, 99, 90, 97, 90, 47, 13, 65, 94, 54, 26,

20, 68, 68, 57, 87, 48, 64, 68, 52, 68, 68, 113, 52, 53, 4, 53, 79, 68, 68, 53, 87,
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53, 4]

v = [68, 53, 23, 23, 68, 18, 20, 121, 52, 18, 52, 55, 18, 18, 17, 122, 41, 90, 25, 25,

26, 90, 26, 84, 94, 13, 97, 13, 43, 90, 97, 75, 41, 23, 25, 89, 18, 18, 17, 55, 18,

18, 17, 89, 18, 18, 17, 15, 41, 23, 23, 23, 9, 82, 28, 121, 0, 21, 73, 55, 50, 75, 30,

38]

2. u = [111, 115, 30, 103, 67, 86, 70, 70, 115, 115, 127, 14, 71, 62, 71, 71, 115, 86,

127, 113, 83, 83, 70, 70, 127, 115, 127, 113, 3, 83, 78, 47, 107, 115, 127, 39, 99,

70, 70, 70, 115, 14, 14, 14, 17, 3, 94, 98, 123, 115, 127, 70, 27, 70, 94, 70, 115,

115, 127, 31, 41, 19, 124, 48]

v = [115, 127, 115, 17, 115, 127, 115, 123, 70, 111, 86, 49, 123, 111, 107, 123, 67,

107, 99, 99, 14, 30, 107, 118, 99, 111, 67, 67, 126, 30, 107, 107, 30, 30, 83, 67, 113,

87, 63, 102, 86, 111, 67, 67, 103, 111, 122, 108, 71, 95, 67, 67, 30, 30, 20, 111, 103,

111, 67, 67, 103, 4, 51, 111]

3. u = [112, 112, 112, 112, 50, 34, 50, 32, 59, 34, 59, 96, 58, 34, 64, 95, 53, 99, 50,

96, 50, 99, 43, 103, 115, 51, 115, 96, 99, 99, 5, 96, 112, 112, 112, 112, 61, 61, 43,

103, 119, 83, 91, 20, 58, 23, 27, 81, 78, 99, 110, 48, 48, 99, 14, 48, 119, 27, 48,

49, 99, 99, 85, 109]
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v = [112, 59, 99, 119, 112, 91, 78, 119, 112, 43, 61, 21, 112, 78, 53, 53, 112, 59,

34, 58, 112, 59, 83, 0, 112, 41, 61, 41, 112, 16, 93, 69, 96, 50, 34, 80, 59, 115, 51,

123, 50, 50, 53, 53, 53, 22, 53, 53, 34, 64, 34, 87, 59, 88, 123, 57, 32, 1, 6, 55,

111, 97, 56, 90]

4. u = [68, 68, 112, 67, 65, 65, 65, 44, 112, 23, 48, 67, 112, 65, 112, 36, 1, 65, 65,

6, 65, 65, 65, 65, 1, 65, 65, 36, 65, 65, 65, 0, 49, 87, 35, 117, 112, 44, 112, 44,

112, 61, 112, 121, 112, 116, 112, 36, 57, 51, 35, 110, 10, 10, 35, 116, 57, 42, 121,

106, 26, 102, 2, 2]

v = [65, 112, 1, 26, 61, 57, 49, 1, 35, 35, 68, 4, 6, 49, 68, 49, 112, 112, 68, 32,

48, 103, 87, 13, 44, 49, 49, 49, 87, 91, 68, 11, 65, 48, 68, 100, 68, 48, 1, 1, 68,

69, 68, 4, 68, 24, 68, 63, 67, 48, 68, 20, 67, 48, 17, 83, 68, 66, 115, 104, 68, 122,

68, 55]

5. u = [86, 63, 123, 119, 110, 63, 103, 119, 86, 87, 127, 103, 90, 90, 54, 103, 110, 87,

127, 119, 110, 119, 54, 119, 87, 87, 54, 55, 94, 31, 54, 94, 110, 90, 71, 78, 110, 90,

71, 103, 91, 90, 91, 103, 90, 90, 62, 103, 110, 95, 95, 95, 110, 30, 30, 46, 92, 126,

26, 127, 78, 94, 46, 96]

v = [90, 110, 110, 110, 127, 86, 87, 86, 110, 110, 110, 110, 95, 102, 15, 53, 103, 86,
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90, 86, 86, 91, 86, 86, 63, 71, 63, 39, 34, 40, 70, 0, 86, 54, 87, 86, 87, 86, 86, 86,

119, 102, 63, 34, 38, 104, 79, 0, 86, 86, 86, 86, 86, 86, 86, 86, 63, 23, 63, 57, 123,

123, 109, 73]

6. u = [24, 61, 17, 49, 17, 45, 17, 36, 18, 61, 36, 49, 18, 45, 36, 36, 18, 37, 37, 37,

16, 16, 53, 21, 18, 49, 49, 109, 18, 113, 68, 36, 121, 77, 125, 41, 36, 45, 36, 36,

121, 45, 8, 73, 45, 45, 36, 36, 77, 77, 125, 93, 36, 36, 36, 36, 109, 97, 88, 96, 36,

36, 36, 36]

v = [36, 24, 45, 18, 37, 121, 24, 121, 37, 17, 77, 24, 37, 125, 77, 24, 45, 17, 121,

121, 61, 24, 61, 121, 17, 17, 24, 24, 52, 24, 13, 24, 18, 18, 18, 18, 49, 24, 61, 24,

53, 53, 16, 24, 37, 5, 29, 24, 17, 17, 9, 51, 61, 24, 61, 51, 17, 17, 24, 24, 67, 24,

24, 74]

We observe that the OR of these 6 matrices yields the 26 × 26 Disjointness matrix:
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6.2 Equality-Rank Decomposition for Disjointness
Our decomposition for the 25 × 25 Disjointness matrix is in fact an disjoint-OR of 5 equality matrices, whose ones
form a partition the ones of the Disjointness matrix. As in the previous subsection, we searched for a disjoint-OR of
equality matrices because the task is far easier for SAT/SMT solvers.

Here are the defining vectors, as well as explicit figures of the matrices. (A white cell indicates 0, while a black
cell indicates 1.)

1. u = [1, 1, 3, 5, 16, 10, 16, 9, 16, 14, 16, 11, 10, 14, 16, 2, 1, 1, 7, 2, 6, 14, 4,

4, 12, 14, 4, 9, 12, 14, 2, 9]

v = [16, 16, 14, 12, 1, 7, 1, 8, 1, 3, 1, 6, 7, 3, 1, 15, 16, 16, 10, 15, 11, 3, 13,

13, 5, 3, 13, 8, 5, 3, 15, 8]

2. u = [1, 9, 6, 5, 11, 11, 3, 4, 7, 9, 5, 9, 9, 15, 4, 9, 8, 4, 2, 10, 12, 10, 4, 10,

6, 14, 6, 4, 4, 4, 4, 4]

v = [1, 8, 11, 12, 6, 6, 14, 13, 10, 8, 12, 8, 8, 2, 13, 8, 9, 13, 15, 7, 5, 7, 13,

7, 11, 3, 11, 13, 13, 13, 13, 13]
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3. u = [1, 16, 16, 16, 3, 12, 7, 7, 14, 14, 5, 13, 1, 9, 13, 2, 8, 16, 3, 16, 3, 12, 3,

11, 10, 2, 13, 11, 11, 13, 11, 13]

v = [16, 1, 1, 1, 14, 5, 10, 10, 3, 3, 12, 4, 16, 8, 4, 15, 9, 1, 14, 1, 14, 5, 14,

6, 7, 15, 4, 6, 6, 4, 6, 4]

4. u = [1, 1, 3, 3, 15, 3, 7, 3, 14, 10, 9, 2, 11, 5, 11, 4, 14, 9, 16, 2, 16, 4, 16, 4,

16, 2, 16, 2, 16, 11, 16, 9]

v = [16, 16, 14, 14, 2, 14, 10, 14, 3, 7, 8, 15, 6, 12, 6, 13, 3, 8, 1, 15, 1, 13, 1,

13, 1, 15, 1, 15, 1, 6, 1, 8]
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5. u = [1, 11, 6, 3, 14, 16, 9, 16, 8, 16, 3, 16, 16, 16, 12, 16, 16, 11, 3, 15, 11, 16,

13, 16, 11, 16, 12, 16, 11, 16, 12, 16]

v = [16, 6, 11, 14, 3, 1, 8, 1, 9, 1, 14, 1, 1, 1, 5, 1, 1, 6, 14, 2, 6, 1, 4, 1, 6,

1, 5, 1, 6, 1, 5, 1]

Observe that these matrices are disjoint in that for every pair of matrices in the above, no cell (i, j) is black (i.e.,
1) in both matrices. The OR of these 5 matrices yields the 25 × 25 Disjointness matrix:
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7 Discussion
We have shown how non-uniform circuit lower bounds are implied by uniform conjectures such as the Orthogonal
Vectors Conjecture. We have also seen how the notions of “weak equality rank” and “equality rank” have close
connections to algorithms for Orthogonal Vectors. Let us conclude with a discussion on other rank notions that could
also lead to faster OV algorithms.

A Little More Skepticism of the OV Conjecture. One may view our algorithms for solving OV as reductions from
OV to a cd-size collection of #2SUM instances, each of which can be solved in n · poly(log n) time. One could
choose other target problems to reduce to, which would result in different algorithmic approaches (and different win-
win lower bounds). We studied other rank notions beyond those described in this paper, but we have chosen not to
include formal results on them, because they do not seem to enjoy a “uniformization” lemma. Here are two:

1. One could study “less-than-or-equal-to” (LEQ) matrices, where the defining vectors u, v are like that of equality
matrices, but we put a 1 in the i, j if and only if u[i] ≤ v[j] (rather than u[i] = v[j]). It is not hard to show
that a sum of LEQ matrices can be efficiently expressed as a sum of equality matrices, so if there was a 2o(d)-
size uniformly computable sum of LEQ matrices computing 2d × 2d Disjointness, we would still refute the OV
Conjecture. Our SAT/SMT searches found interesting decompositions of constant-size Disjointness matrices
into sums of LEQ matrices, but as far as we can tell, the corresponding uniformization lemma for such matrices
is too weak to yield better OV algorithms.

2. We also considered sums of what we call “ReLU matrices”: these matrices have defining vectors u, v over the
integers, where the (i, j) component of the matrix is defined to be max{0, u[i]+v[j]}. It is not hard to show that
sums of such ReLU matrices can simulate the truth tables of depth-two neural networks with a ReLU activation
function, similarly to how weak equality rank captures the truth tables of depth-two exact threshold circuits. As
in the case of LEQ matrices, we can prove that an explicit (uniformly computable) subexponential-size sums of
ReLU matrices computing Disjointness would also refute the OV Conjecture.

In summary, the OV Conjecture implies a variety of uniform circuit lower bounds, but this is perhaps to be expected
(a uniform conjecture ought to imply uniform circuit lower bounds of some kind). We hope that future work will better
clarify the reach of the OV Conjecture with respect to circuit complexity.
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[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems and
dynamic time warping. In FOCS, pages 79–97, 2015.

[BM16] Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance. JoCG, 7(2):46–
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A Simplified version of Jukna’s argument
Here we give a self-contained proof that no OR of a “small” number of equality matrices can represent the Disjointness
matrix.

Theorem 15 ([Juk06]). Any OR of t equality matrices computing DISJd requires t ≥
(

3
23/2

)d ≥ 1.08d.

Proof. WLOG, let d be even. First, we observe that the 2d × 2d Disjointness matrix does not contain a 1-rectangle of
size 2d/2+1 × 2d/2+1. That is, for any collection D of 2d/2 +1 subsets of [d], and any collection C of 2d/2 +1 subsets
of [d], there must be a set C ∈ C and D ∈ D which intersect. Contrapositively, in order for every pair of sets in C and
D to be disjoint, it must be that all sets in C are subsets of some S ⊆ [d] and all sets in D are subsets of some T ⊆ [d]
such that S ∩ T = ∅. A collection C of subsets of S must have cardinality at most 2|S|, and similarly D must have at
most 2|T | subsets. If S ∩ T = ∅ then we must have |S|+ |D| ≤ d. Therefore if C and D both have 2d/2 + 1 subsets,
then such S and T cannot exist, so some pair of sets in C and D are not disjoint.

Since Disjointness does not contain a 1-rectangle of size (2d/2 + 1) × (2d/2 + 1), any equality matrix whose
1-entries are contained in the 1-entries of Disjointness must also not contain such a rectangle. Therefore, in each
equality matrix M1, . . . ,Mt in our OR of equality matrices for Disjointness, each number appearing in the defining
vectors for Mi can only appear either at most 2d/2 times in the left defining vector, or at most 2d/2 times in the right
defining vector. Thus, the maximum number of 1-entries of Disjointness that could possibly be covered by an equality
matrix is at most (2d/2d/2) · (2d/2)2 = 23d/2: this would be achieved by having 2d/2d/2 separate numbers, each of
which appear 2d/2 times in both defining vectors.

There are 3d ones in the Disjointness matrix we have to cover. So our OR must contain at least 3d/23d/2 equality
matrices to cover them all.
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