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Abstract

We initiate a study of doubly-efficient interactive proofs of proximity, while focusing on
properties that can be tested within query-complexity that is significantly sub-linear, and seeking
interactive proofs of proximity in which

1. The query-complexity of verification is significantly smaller than the query-complexity of
testing.

2. The query-complexity of the honest prover strategy is not much larger than the query-
complexity of testing.

We call such proof systems doubly-sublinear IPPs (dsIPPs).
We present a few doubly-sublinear IPPs. A salient feature of these IPPs is that the hon-

est prover does not employ an optimal strategy (i.e. a strategy that maximizes the verifier’s
acceptance probability). In particular, the honest prover in our IPP for sets recognizable by
constant-width read-once oblivious branching programs uses a distance-approximator for such
sets.
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1 Introduction

This work combines the mind-frames of interactive proofs of proximity (i.e., IPPs) and doubly-
efficient interactive proofs (de-IPs), while giving the notion of doubly-efficient a new meaning that
focuses on the query-complexity of the honest prover strategy. Specifically, we focus on properties
that can be tested by reading a small portion of the input (equiv., have query-complexity that is
significantly sub-linear), and seek interactive proofs of proximity in which

1. The query-complexity of verification is significantly smaller than the query-complexity of
testing.

2. The query-complexity of the honest prover strategy is not much larger than the query-
complexity of testing.

In addition, we may seek analogous relations for the time-complexities; yet, we recall that, in the
context of property testing, time-complexity is secondary to query-complexity (see [4, Sec. 1.3.1]).

A salient feature of (almost all) the IPPs that we present is that the honest prover does not
employ an optimal strategy, because it cannot afford to read the entire input (per the second
query-complexity condition). In particular, while an optimal prover strategy for the verifiers that
we present achieves perfect completeness, our honest provers don’t.

1.1 Our focus: query-efficient generation of proofs of proximity

Focusing on properties that can be tested in sub-linear query-complexity, we initiate a study of in-
teractive proofs of proximity in which verification requires less queries than testing whereas proving
does not require much more queries than testing. We recall the wider context first.

Property testing. The focus of property testing [6, 22] is on approximate decision procedures
that read small portion of their input (see [4] for an introduction to the subject). For a predeter-
mined property (i.e., a set of valid objects), approximate decision means distinguishing between
objects that have the property and objects that are far from any object having this property.1

Such procedures, called testers, are probabilistic and obtain local views of the object by performing
queries; that is, the object is seen as a function and the testers get oracle access to this function
(and thus may be expected to read only part of the object).

The insistence on procedures that read a small portion of the input reflects envisioning applica-
tions in which the input is huge and fetching it entirely is infeasible. In some of these applications,
one may afford computation time that is almost linear in the size of the input, although fetching
the entire input is still deemed infeasible.

Proofs. A generic question is whether proofs can offer verification that is more efficient than
the corresponding decision. In the context of property testing, this refers to interactive proofs
of proximity (IPPs) [3, 21]. In such proof systems, verification should require significantly less
queries than testing, and suitable notions of completeness and soundness should hold.2 Specifically,
completeness means that inputs that have the property should be accepted with high probability

1Distances are measured according to the relative Hamming measure; that is, x ∈ {0, 1}n is considered ε-far from
y ∈ {0, 1}n if x and y differ on more than ε · n locations.

2In addition, one requires low communication complexity. In particular, this does not allow the prover to send
the entire input to the verifier (a possibility that is not relevant in the context of double-efficiency that we consider
here).
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(when the prover uses an adequate strategy), whereas soundness means that inputs that are far
from the property should be rejected with high probability (no matter what strategy is employed
by the prover). Indeed, in the completeness condition we consider a honest prover, whereas in the
soundness condition we consider a cheating one.

Doubly-efficient proofs. Seeking to utilize proof systems in reality prohibits the use of arbitrary
honest provers. Such applications require that the honest prover strategy be relatively efficient,
a requirement that is captured by the term double-efficiency, which refers to the complexities of
both the verifier and the honest prover. Given our postulate that it is infeasible to fetch the
entire input and our focus on query complexity, this means that the honest prover strategy should
also have query complexity that is significantly smaller than linear. We call such proof systems
doubly-sublinear IPPs (dsIPPs).

Note that dsIPPs may exist only for properties that can be tested using small query complexity.
This is the case because the interaction between the verifier and the honest prover (along with the
queries they make) can be emulated by the tester. Hence, we focus on properties that can be tested
using small query complexity and ask for which of these properties we can obtain dsIPPs?

We stress that the notion of double-efficiency employed here is different of the notion employed
in the context of IPs (see [10, 19, 5]) and also in studies of IPPs that made reference to doubly-
efficient IPPs (e.g. [20]). In these prior cases, the reference was to polynomial running time of the
honest prover, whereas we focus on its query complexity and on the case that it is small (and in
particular is sub-linear).

1.2 Our Main Results

We construct doubly-sublinear IPPs (dsIPPs) for several problems. Specifically, for any property
that can be decided by a constant-width read-once oblivious branching program (ROOBP), for
approximating the input’s Hamming weight, for telling whether a given function is a permutation,
and for a relaxation of the graph bipartiteness problem in the bounded-degree model.

As mentioned earlier, the honest prover strategies in (almost all) the dsIPPs that we present do
not employ an optimal strategy, because they cannot afford to read the entire input. In particular,
while optimal prover strategies for these IPPs achieves perfect completeness (i.e., the verifier always
accepts inputs that have the property), our honest provers do not achieve perfect completeness.

1.2.1 Protocol for Read-Once Oblivious Branching Programs

We construct a dsIPP for any property that can be decided by constant-width read-once oblivious
branching programs (ROOBPs). Recall that in such branching programs, in each layer, all vertices
are labelled by the same input variable (which is the one being read), and each input variable labels
the vertices of at most one layer. A branching program decides a property Π if it accepts all inputs
in the property and rejects all inputs that are not in the property. See Section 4.1 for a fuller
discussion on ROOBPs.

Newman [16] showed that any property that can be decided by a constant-width ROOBP has
a tester that makes poly(1/ε) queries, where the exponent of the polynomial is linear in the width
of the branching program. We construct a dsIPP for any such property, where the verifier’s query
complexity is only O(1/ε), which is optimal.3

3Consider the set property {0i1n−i : i ∈ [n]}, the input x = 0n/21n/2 and a honest prover strategy that refers to
the input x but is also invoked as a cheating strategy on a random input r that is at Hamming distance 2ε from x.
Then, an o(1/ε)-query verifier cannot distringuish the two cases.
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Theorem 1.1 (dsIPP for ROOBPs, informal) Let Π be a property that can be decided by a
constant-width ROOBP, and let n and ε denote the input length and the proximity parameter.
Then, for every r : N → N, there exists an r(n)-round dsIPP for Π such that the verifier has
query complexity O(1/ε), the honest prover has query complexity Õ(n1/r(n)) · poly(r(n)/ε), and the
communication complexity is O(n1/r(n) · r(n) · (log n)/ε).

See Corollary 4.11 for a full and formal statement. Evidently, our protocol allows for a trade-off
between the number of rounds (on one hand) and the query complexity of the prover and the
communication (on the other hand). In particular, a logarithmic number of rounds suffices for
getting the prover’s query complexity and the communication to depend only poly-logarithmically
on n. The verifier’s runtime can be linear in the communication complexity assuming access to
a suitable procedure specifying the structure of the ROOBP (see below).4 The prover’s runtime
depends on the computational complexity of tolerant testing for properties decided by ROOBPs,
see below.

Our protocol builds on an IPP of Goldreich, Gur and Rothblum [7], in which the honest prover
reads the entire input. On the other hand, the IPP of [7] works also for unbounded width (but
its communication complexity grows logarithmically with the width). We note that our dsIPP is
actually tolerant (see below), whereas this was not the case for the protocol of [7] (or the tester of
[16], see below).

A reduction to tolerant testing. An interesting feature of our IPP is that the honest prover
strategy is reduced to tolerant testing (or distance approximation) for a property that can be decided
by an ROOBP of (at most) the same width and length. A tolerant tester [17] for a property Π
gets proximity parameters εc < εf and is supposed to accept (w.h.p.) if the input is εc-close to the
property, and to reject (w.h.p.) if the input is εf -far from the property. The complexity is usually
measured as a function of the gap εf − εc (and possibly also of the input length).

Theorem 1.1 follows by plugging any tolerant tester for constant-width ROOBPs into our gen-
eral reduction (which is stated in Theorem 1.2). While, as noted above, Newman’s tester for
ROOBPs [16] is not tolerant, we show that that it can be made tolerant. This contribution of the
current work is presented in Appendix A.

Our reduction of the prover’s startegy to tolerant testing ROOBPs actually gives a tolerant dsIPP
of ROOBPs, where Tolerant IPPs are defined analogously to tolerant testers.5 Fixing the ROOBP
under consideration, the reduction assumes that the honest prover has access to a distance approx-
imator that gets an ROOBP of (at most) the specified width and length, and approximates the
distance of an input from the corresponding property (i.e., the property decided by the ROOBP).
We need the deviation of the distance approximation to be O((εf −εc)/r), and its error probability
to be sufficiently small. The approximator only needs to operate on “sub-ROOBPs” of the original
ROOBP.

Before stating the reduction, we also specify the access the verifier and the prover need to
the ROOBP in order to get sublinear runtimes. We assume that the prover and the verifier have
(unit cost) access to two procedures that specify the structure of the ROOBP as follows. The first

4We remark that for a general non-uniform ROOBP no verifier can have a sublinear running time: for example,
one layer in the ROOBP might make it go into a state that rejects all inputs. Without reading the entire ROOBP,
the verifier has no hope of detecting whether there is a “universal rejection” layer.

5Specifically, if the input is εc-close to the property, then the honest prover should convince the verifier to accept
(w.h.p.); but if the input is εf -far from the property, then the verifier should reject (w.h.p.) regardless of the prover’s
strategy. We stress that, while in the context of testing, tolerant testing and distance approximation are equivalent
(under suitable parameters), this is not the case for dsIPPs (see Section 2 and Remark 2.2).
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procedure, given two nodes u and v in the ROOBP, returns a bit indicating whether there is a path
from u to v. The second procedure gets as input the index i of a layer and returns the vertices in
that layer. (We emphasize that these procedures do not depend on the input to the ROOBP: they
ignore edge labels and refer to the ROOBP as a directed graph.)

Theorem 1.2 (Reducing tolerant dsIPP to distance approximation for ROOBPs, informal)
For any constant w, let Πw be a property that can be decided by a width w ROOBP, and let εc, εf
denote the proximity parameters. Suppose that there exists a distance approximator for w-width
ROOBP (and its subgraphs) with query-complexity Qw(δ, η, n) and time-complexity Tw(δ, η, n), when
δ denotes the approximation parameter, η denotes the error probability bound, and the ROOBP has
length n. Then, for every r : N→ N, there exists an r(n)-round tolerant dsIPP for Πw such that

� The verifier’s query-complexity is O(1/δ), and the honest prover’s query-complexity is O(n1/r(n)·
Qw(δ, η)/δ), where δ = (εf − εc)/3r(n) and η = δ/O(n1/r(n)).

� The communication complexity is O(n1/r(n) · r(n) · (log n)/δ).

� Assuming that the verifier and the prover have access to procedures specifying the structure
of the ROOBP (see above), the verifier’s runtime equals the communication complexity (up
to constant factors), and the honest prover’s runtime is O(n1/r(n) · r(n) ·Tw(δ, η, n)) · Õ(1/δ).

See Theorem 4.10 for a full and formal statement. As discussed above, Theorem 1.1 is obtained
from the above reduction by plugging in a distance approximator for constant-width ROOBPs,
which we construct based on Newman’s (non-tolerant) property tester. While the reduction of
Theorem 1.2 only has polynomial dependence on the width of the ROOBP, Newman’s tester and
our tolerant version of it have an exponential dependence on the width of the ROOBP (which is
the reason that Theorem 1.1 holds only for constant width).6 See the details in Section 4.6.

1.2.2 Protocol for Hamming Weight

We construct adsIPP for the Hamming weight (HW) problem, where the input is a string x ∈ {0, 1}n
and a claim about its Hamming weight. Note that Hamming weight cannot be computed by
constant-width ROOBP [18], so the results of Section 1.2.1 do not give a dsIPP for HW.

Approximating the (relative) Hamming weight up to distance ε requires O(1/ε2) queries in the
standalone setting. We construct a dsIPP with O(1/ε) verifier queries (which is optimal).

Theorem 1.3 (dsIPP for Hamming weight, informal) Let n and ε denote the input length and
the proximity parameter for the Hamming weight problem (HW). Then, for every r : N→ N, there
exists an r(n)-round dsIPP for HW such that the verifier has query complexity O(1/ε) and the
honest prover’s query complexity and its runtime are both Õ(n1/r(n) · r3(n)/ε3). Furthermore, the
verifier’s runtime and the communication complexity are both O(n1/r(n) · r(n) · Õ(1/ε)).

See Theorem 3.2 for a full and formal statement. This protocol also obtains a trade-off between the
number of rounds and the honest prover’s runtime. Taking the number of rounds to be logarithmic
in n gives a honest prover with query complexity and runtime that are poly-logarithmic in n. The
honest prover’s query complexity and runtime grow cubically with (the reciprocal of) the proximity
parameter. We wonder whether this dependence can be improved to quadratic (which would be
optimal [1]).

6In contrast, Theorem 1.2 holds also for varying width, but in that case the complexities have a multiplicative
facor of poly(w).
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Rothblum, Vadhan and Wigderson [21] also constructed an IPP for Hamming weight, but did
not have a sub-linear honest prover. Our HW protocol borrows ideas from the IPP for ROOBP
of [7]. Indeed, one can get an IPP for HW directly from their ROOBP protocol, by applying it to
the O(n)-width ROOBP that computes HW. However, their protocol does not have a sub-linear
prover.

1.2.3 Protocol for PERM

For n ∈ N, the set PERM consists of all permutations over [n]. Here we consider the problem of
testing (resp., verifying) whether a function f : [n] → [n] is in PERM. Note that PERM has a tester
of complexity O(

√
n/ε), which we outline below, whereas a query lower bound of Ω(

√
n) follows

from [13].7 Furthermore, PERM has two different (1-round) IPPs, which were presented in [13]
and [7], respectively. We review them next:

1. In the IPP of [13] the verifier selects uniformly at random a point r ∈ [n], and sends r to
the prover, who is supposed to return its f -preimage; the verifier accepts if and only if the
prover’s answer is mapped by f to r.

2. In the IPP of [7], the verifier selects uniformly at random a point r ∈ [n], queries f on it, and
sends y ← f(r) to the prover, who is supposed to return its f -preimage; the verifier accepts
if and only if the prover’s answer equals r.

(This IPP, unlike the previous one, utilizes prover-oblivious queries.)

In both cases, f ∈ PERM is always accepted, whereas functions that are ε-far from PERM are rejected
with probability Ω(ε). (In both cases, the protocol is repeated O(1/ε) times to yield an IPP.)

More importantly, in both cases, the honest prover finds the required f -preimage by querying
f on all points (or practically so). Our initial conjecture was that an IPP for PERM cannot have
a verifier that uses o(

√
n) queries and a honest prover that makes o(n) queries. Interestingly, this

“working conjecture” is wrong.

Theorem 1.4 (dsIPP for PERM) For every α ∈ (0, 0.5), there exists a 1-round IPP for PERM that
has a verifier that uses O(n/ε)0.5−α queries and an honest prover that uses O(n/ε)0.5+α queries.

The communication and time complexity of both parties is Õ((n/ε)0.5+α).

Sketch of the proof of Theorem 1.4. The straightforward tester for PERM consists of selecting
q = O(

√
n/ε) random points in [n], querying the function f : [n] → [n] on them, and rejecting if

and only if collisions are found (among the f -images).
Evidently, any f ∈ PERM is accepted with probability 1, whereas (as can be seen later) any f that

is ε-far from PERM is rejected with high constant probability. A similar analysis for the soundness
case implies that for any f that is ε-far from PERM, if we select O(n/ε)0.5+α) random points, then
we expect to see Ω(n2α) collisions and that these collisions involve Ω(n2α) disjoint pairs of points.
This leads us to the following protocol.

1. The verifier selects p = O(n/ε)0.5+α (distinct) random points in [n], denoted s1, ..., sp, and
sends them to the prover,

7See also a direct proof in [23, Apdx A].

5



2. The prover queries the input f : [n] → [n] on these p sample points, and sends the answers
(a1, ..., ap)← (f(s1), ..., f(sp)) to the verifier.

3. The verifier rejects if it sees a collision (i.e., if ai = aj for some i ̸= j).

4. Otherwise, it sub-samples m = O(n/ε)0.5−α of the original points, queries f on each of these
m samples, and accept if and only if all answers match the prover’s answers (i.e., if f(si) = ai
for the i’s it sub-sampled).

Clearly, f ∈ PERM is always accepted. Turning to the soundness analysis, we fix an arbitrary

function f that is ε-far from PERM and let C
def
= {x∈ [n] : |f−1(f(x))| > 1} denote the set of points

that form collisions under f . Then, |C| > ε · n; actually, |C| − |f(C)| > ε · n, because modifying f
to a permutaion requires changing its value on all but a single point in f−1(y) for every y ∈ f(C).

An analogous consideration applies to the sample of p points, denoted S = {s1, ..., sp}, that is
sent to the prover. Specifically, the answers provided by the prover must disagree with the values
of f on at least |S|−|f(S)| points, because for each s ∈ S the prover must provide different answers
to all the other points in S that are in f−1(f(s)) (since otherwise the verifier rejects in Step 2).
Towards upper-bounding |f(S)|, we observe that it is upper-bounded by |f ′(S)|, where f ′ : [n]→ [n]
is defined such that for every x, x′ ∈ [n] it holds that (i) f ′(x) ̸= f ′(x′) whenever f(x) ̸= f(x′) and
(ii) for each x that forms a collision under f , the restriction of f ′ to f−1(f(x)) is 2-to-1 except on
at most one element (in case |f−1(f(x))| is odd). Now, we lower-bound |S|− |f ′(S)| by the number
of collisions of S under f ′ (i.e., |{{i, j}∈([p]2 ) :f ′(si) = f ′(sj)}|)

First note that the number of collisions of [n] under f ′ is at least
∑

y∈f(C) ⌊|f−1(y)|/2⌋, which is

at least |C|/3 > εn/3. Hence, with high probability over the choice of S ∈ ([n]
p ), we get Ω(ε ·p2/n) =

Ω((n/ε)2α) collisions of S under f ′. In this case, there are Ω((n/ε)2α) disjoint pairs of points in S
such that the elements in each pair have the same f ′-image (and hence alsdo the same f -image).

Wishing to avoid rejection in Step 2, the prover must cheat on the values of the Ω((n/ε)2α)
foregoing points (in S), but (with high probability) at least one of these points will appear in the
sub-sample that the verifier selects in Step 4 (since the sub-sample rate is m/p = O(ε/n)2α). Hence,
in Step 4, when quering the function f on this sub-sample, the verifier detects this cheating and
rejects (w.h.p.). This completes the proof of Theorem 1.4.

1.2.4 Protocol for Bipartiteness

We construct a dsIPP for a relaxation of graph bipartiteness in the bounded degree model. In this
model (see, e.g., [4, Sec. 9.1]), the input is an undirected n-vertex graph of constant maximum
degree d. The input graph is represented by its incidence function g : [n]× [d]→ [n]∪{0} such that
g(v, i) is the i-th neighbor of the vertex v (or 0 if v has less than than i neighbors). The prover
and the verifier have query access to this function. The distance between two n-vertex graphs is
the ratio (over dn/2) of the number of edges on whose presence or absence they disagree.

The promise problem we consider is that the input graphs are rapidly-mixing graphs; that is,
graphs in which a random lazy walk of logarithmic length starting at any vertex eaches any other
vertex with probability Θ(1/n). (An ℓ-step lazy walk is described by a ℓ-long sequence over [2d]
such that i ∈ [2d] indicates a step that moves from the current vertex v to its ith neighbor (in case
v has at least i neighbors) and staying in place if v has less than i neighbors.)

Theorem 1.5 (dsIPP for bipartiteness) Let n and ε denote the number of vertices and the prox-
imity parameter. Then, there exists a 1-round dsIPP for bipartiteness on rapidly-mixing graphs in
the bounded-degree graph model in which the verifier’s query complexity is O(log(n)/ε), and the
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honest prover’s query and time complexity are Õ(
√
n/ε). Furthermore, the verifier’s runtime is

polylog(n)/ε, and the communication complexity is O(log(n)/ε).

Related work. Goldreich and Ron [9] showed a Ω(
√
n) lower bound on the query complexity of

testing bipartiteness.8 A later work of the same authors [8] shows a tester with Õ(
√
n) · poly(1/ε)

query complexity. We remark that their tester works for general graphs, without needing the
rapidly-mixing condition. Rothblum, Vadhan and Wigderson [21] constructed an IPP for an inter-
mediate relaxation of bipartiteness, where the YES case includes all the bipartite graphs, but the
NO case includes only the graphs that are both far from bipartite and rapidly-mixing. In their IPP,
the verifier’s query complexity is O(log(n)/ε), but the honest prover is not sub-linear: it has to
read the entire graph. Our proof of Theorem 1.5 uses the [21] protocol, but shows a sublinear-time
implementation for the honest prover, where the implementation works for graphs that are both
rapidly-mixing and bipartite.

Proof of Theorem 1.5: The sublinear-time honest prover. We first recall the [21] protocol.
In the basic test, the verifier picks a random vertex s, and performs a lazy random walk of length
ℓ = O(log(n)), which is long enough to guarantee the “rapidly-mixing” condition (see above),
reaching a vertex t. The verifier sends s and t to the prover, asks the prover to recover the parity
of a (simple) path that leads from s to t, and accepts if and only if the answer equals the parity
of the number of “real moves” in the lazy walk (i.e., moves in which the walk did not stay in the
current vertex). If the graph is bipartite, then the prover, who can read the entire graph, can
always answer correctly by checking whether s and t are on the same side of the bipartition. As
shown in [21], if the graph is rapidly mixing and ε-far from bipartite, then a cheating prover will
fail with probability Ω(ε). In order to reduce the soundness error (from 1−Ω(ε) to 1/3), this basic
test is repeated r = O(1/ε) times in parallel (and the verifier accepts if and only if it accepted in
all invocations of the basic test).

We construct a sub-linear time honest prover for the basic test. Upon receiving the vertices s
and t, the prover performs w = O(

√
n · log(1/ε)) independent random walks of length ℓ starting

at s, as well as w independent random walks of length ℓ starting at s. Let Ws (resp., Wt) denote
the set of vertices traversed in (the union of all) the walks that started at s (resp., t). The prover
checks if there is a vertex v in the intersection of Ws and Wt (i.e., a vertex encounted in a walk
that started at s as well as in a walk that started at t). If so, then the prover has found a walk
from s to t (going through v), and it replies with the parity of the number of real moves on this
walk.

Soundness follows directly from the soundness of the [21] protocol (since we did not change the
verifier). We now argue for completeness (alas not perfect completeness). If the graph is bipartite,
then all paths from s to t have the same parity. Thus, whenever the prover finds a path from s to
t (i.e., when the intersection is non-empty), then it returns the correct parity. It remains to show
that in each of execution of the basic test (i.e., for each s and t sent by the verifier), the intersection
of Ws and Wt is non-empty with probability at least 1−(1/3r). We show this in Claim 1.6, which is
where we use the condition that the graph is rapidly-mixing, and it follows that the verifier accepts
in all r repetitions with probability at least 2/3.

8Their lower bound, which is stated for general 3-regular graphs, also holds under the additional promise that
the graphs are rapidly-mixing (see the exposition in [4, Sec. 9.3.1]). In particular, the distribution of NO cases is
concentrated on expander graphs (see [4, Clm. 9.18.1]). A similar analysis shows that the YES cases are bipartite
expanders (w.h.p.)
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Claim 1.6 If the graph is rapidly-mixing, then, for every two vertices s, t ∈ [n], the probability,
over the honest prover’s random walks, that Ws ∩Wt = ∅ is at most 1/3r.

Proof: We focus on the sets W ′
s ⊂ Ws and W ′

t ⊂ Wt of terminal vertices reached by the
random walks (i.e., the final vertex in each walk), and show that these subsets intersect with
probability at least 1 − (1/3r). Using the rapidly-mixing condition, observe first that taking w =
O(
√
n · log(1/ε)) = O(

√
n log r) independent walks from s, with probability at least 1− (1/6r), the

number of distinct vertices reached (i.e., the size of the set W ′
s) is Ω(

√
n). Assuming that this event

occurs, and recalling that each of the random walks starting at t is rapidly-mixing, we infer that,
with probability at least Ω(1/

√
n), such a walk terminates in a vertex that resides in W ′

s. Recalling
that there are O(

√
n · log r) walks starting at t, the probability that they all land outside of W ′

s is
thus at most 1/6r. The claim follows.

1.3 Further Related Work

Goldwasser, Rothblum, Shafer and Yehudayoff [11] studied interactive proofs for approximate ver-
ification of the results of a machine-learning computation on an unknown underlying distribution.
The verifier and the honest prover both have sampling access to the unknown distribution (in some
of their results the honest prover also has membership queries, see also [12]). While their model is
quite different from ours, there is a similarity in spirit: if we think of the unknown distribution as a
“huge input” to the proof system, then they are also concerned with proof systems where verifica-
tion is more efficient than the computation being verified (a learning problem), and proving is not
much more expensive than performing the same computation. In particular, proving is sub-linear
in the size of the “input” (the unknown distribution). The settings, however, are quite different:
both in the access to the input (querying an unknown function vs. sampling from an unknown
distribution), and in the types of tasks studied (approximate decision vs. machine learning). We
stress that other recent works on verifying properties of unknown distributions [2, 14, 15] do not
study honest provers with sublinear sample complexity.

1.4 Technical Overview

In this section provide overviews of our dsIPPs for Hamming Weight and for properties that are
decidable by ROOBPs. Recall that the dsIPPs for PERM and for a relaxed version of Bipartiutness
were sketched in prior sections.

We start by outlining our IPPs for Hamming Weight (HW), and then extend its underlying ideas
to obtain IPPs for ROOBPs. Both IPPs follow an abstract idea that underlies the IPPs of [21, 7],
but deviate from it in a significant manner. Loosely speaking, the IPPs of [21, 7] rely on partitioning
the original property to sub-properties that refer to parts of the original input. However, while the
IPPs of [21, 7] call for an honest prover strategy that finds optimal partitions of the property to
sub-properties, we shall use partitions that are sub-optimal, because these sub-optimal partitions
can be found more efficiently (by the honest prover).

IPPs for Hamming Weight (HW). Our r-round IPPs proceed by recursion, where for a
parameter k (to be set to n1/r), the current input x is partitioned to k equal-length blocks, denoted
x1, ..., xk. Clearly, the Hamming weight of x, denoted wt(x), equals the sum of the Hamming
weights of the xi’s (i.e.,

∑
i∈[k] wt(xi)). Hence, wishing to prove that wt(x) equals w, an optimal

prover determines the corresponding weights of the xi’s, denoted w1, ..., wk, sends the wi’s to the
verifier, who selects a random i, and the parties proceed to prove that the weight of xi equals wi.
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(Indeed, after r iterations, the verifier can check the claim, which refers to a single bit, by making
a single query.) Needless to say, determining these wi’s requires reading the entire input x, which
we want to avoid. Instead, we consider a query-efficient honest prover that obtains approximations
of the desired wi’s (or obtains the exact value when |x| = k, which happens after r − 1 recursion
steps). This requires relaxing the verification procedure so that it does not reject in case the sum∑

iwi does not equal w (but is rather only close to it).
As in [21], the soundness analysis relies on the fact that if |wt(x) − w| > ∆, then, for every

sequence of wi’s such that
∑

i∈[k]wi = w, it holds that
∑

i∈[k] |wt(xi) − wi| > ∆; equivalently, if
x is ε-far from having weight w, then, for every sequence of wi’s such that

∑
i∈[k]wi = w, on the

average, xi is ε-far from having weight wi. Note, however, that if we allow
∑

i∈[k]wi to deviate from

w by say ε′ · |x|, then, on the average, xi is (ε−ε′)-far from having weight wi. Hence, at the bottom
of the recursion, the expected distance of single bits from their claimed weight is ε − r · ε′, which
means that the verifier rejects with such probability. Using ε′ = ε/2r and repeating the protocol
O(1/ε) times, we obtain the desired IPP.

IPPs for constant-width ROOBP. As in the case of HW, we wish to proceed by recursion.
Indeed, in the r-round IPP of [7], on current input x, an optimal prover determines the path in the
current ROOBP that accepts x, which (as before) is partitioned to equal-length strings x1, ..., xk.
This path defines k sub-ROOBPs that each accept the corresponding xi’s. Alas, determining these
sub-ROOBPs requires reading the entire input x, which we want to avoid.

Using the fact that the ROOBP has bounded width, it follows that, for each i ∈ [k], there is a
bounded number of sub-ROOBPs (i.e., the square of the width bound) such that xi is accepted by
(at least) one of them. Using a distance approximator for (constant-width) ROOBPs, the honest
prover can find, for each i ∈ [k], a sub-ROOBP such that xi is close to being accepted by this sub-
ROOBP. This means that the foregoing description has to be modified: In subsequent iteration of
the recursion it does not necessarily hold that the current x is accepted by the current ROOBP;
it is only the case that the current x is close to being accepted by the current ROOBP. But in
this case, for x = (x1, ..., xk), it does not necessarily hold that each xi is close to being accepted
the corresponding sub-ROOBPs, but it is rather the case that their average distance from these
sub-ROOBPs is small; that is, if x is ε-close to the current ROOBP, then for some ε1, ..., εi such
that

∑
i∈[k] εi/k = ε, each xi is εi-close to a corresponding sub-ROOBP, but it is not necessarily

the case that εi ≈ ε for each i ∈ [k].
Recall that the honest prover does not find these εi’s, but rather finds their approximate values

(as well as the corresponding sub-ROOBPs). Specifically, for width bound b, the honest prover
considers an auxilary graph G with k + 1 layers, index 0, 1, ..., k, such that the ith layer of G
contains the vertices that are at the i · k layer of the current ROOBP. Each pair of vertices in
adjacent layers of G represents a possible sub-ROOBP, where pairs in layers i − 1 and i of G
represent a sub-ROOBP that reads xi. For each such pair, the honest prover estimates the distance
of xi from being accepted by the corresponding sub-ROOBP, where these estimates are obtained
by invoking the distance-approximator (for ROOBPs). Using a shortest path algorithm, the honest
prover finds sequence of intermediate vertices (v1, ..., vk−1) in G such that the average distance of the
xi’s from the corresponding sub-ROOBPs, denoted (B1, ..., Bk), is minimal, and sends (v1, ..., vk−1)
to the verifier along with the corresponding distances. (As in the case of HW, the verifier will select
i ∈ [k] uniformly at random, and the parties will proceed to prove the corresponding claim (i.e.,
that xi is εi-close to being accepted by the corresponding sub-ROOBP).)
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2 Preliminaries and Definitions

For strings x, y ∈ {0, 1}n, the relative Hamming distance between x and y is the fraction of coordi-
nates in which they disagree (we often refer to this as the distance for short). If this distance is at
most ε, then we say that x is ε-close to y, and otherwise we say that x is ε-far from y. We define
the distance of x from a (non-empty) set S ⊆ {0, 1}n as its distance from the closest y in S, and
we define the string being ε-close and ε-far from the set analogously. We extend these definitions
from strings to functions by identifying a function with its truth table.

A property Π (or a language) is a set of strings of varying lengths (i.e. in {0, 1}∗). The
approximate decision problem for Π is deciding, for specified proximity parameters, whether an
input string is close or far from the property. See [4] for an introduction to property testing: the
field that studies algorithms of sublinear query complexity for such approximate decision problems.

Definition 2.1 (Interactive Proof of Proximity (IPP, tolerant)) An IPP is a protocol between
two probabilistic parties, a prover P and a verifier V who both get an input length n and a joint
input x ∈ {0, 1}n. The verifier has query access to x (and explicit access to the input length n).
The parties interact and at the end of the interaction the verifier accepts or rejects. The protocol
is a (tolerant) IPP for a property Π and for proximity parameters εc, εf : N→ R if for every input
length n and every input x ∈ {0, 1}n:

� Completeness: If x is εc(n)-close to the property Π (in relative Hamming distance), then
the verifier, after interacting with the prover P , accepts with probability at least 2/3 (the
probability is over the prover’s and the verifier’s coin tosses). If the verifier, interacting with
the honest prover, accepts every input in the language with probability 1 then we say that the
IPP has perfect completeness.

In this work we focus on IPPs where the honest prover only has query access to the input x
(similarly to the verifier, it gets the input length n as an explicit input).

� Soundness: If x is εf (n)-far from the property Π, then for every cheating strategy P ∗,
the verifier V , after interacting with the prover P ∗, rejects with probability at least 2/3 (the
probability is over the verifier’s coin tosses, w.l.o.g. the cheating prover can be taken to be
deterministic, and can have explicit access to the entire input).

A non-tolerant IPP is one where εc = 0. In this case, we refer to a single proximity parameter
ε = εf (the parameter εc is implicit). Testers are viewed as a special case of IPPs in which there is
no prover (or no interaction with it).

The protocol’s complexity measures include the (honest) prover’s and the verifier’s query com-
plexities and runtimes, the communication complexity and the round complexity (the number of
back-and-forth communication rounds). These complexities are typically measured as a function
of the gap (εf (n)− εc(n)) between the proximity parameters and of the input length.

Our focus in this work is on protocols where the query complexities of the verifier and the
honest prover are as small as possible. In particular, we focus on properties that have testers of
sublinear query complexity and require that the verifier’s query complexity should be smaller than
the tester’s. The prover’s query complexity should be as close as possible to the tester’s. We refer
to these as doubly sub-linear IPPs (dsIPPs, see the discussion in the Introduction).

Remark 2.2 We emphasize that, while in the context of testing, tolerant testing and distance ap-
proximation are equivalent [17] (under suitable parameters), this is not the case for IPPs. The

10



reason for this divergence is that a tolerant IPP only provides a one-sided guarantee: it can affirma-
tively convince the verifier of upper bounds on the input’s distance from the property, but it does
not convince the verifier of a lower bound on the distance.

Remark 2.3 We remark that in the study of standard IPPs (where the honest prover can read the
entire input), if we allow linear communication complexity, then the query complexity can always
be tiny. This is because the prover can send the entire input to the verifier. The verifier receives
this alleged input and verifies that it is close to the real input by checking consistency for a few
random locations (these are the only queries made to the real input). If the alleged input is close
to the real input, then the verifier can simply check if the alleged input is in the property (or, for
tolerant protocols, that it is at the appropriate distance from the property). For dsIPPs it is not clear
that linear communication always allows for a sublinear verifier. In particular, the aforementioned
strategy cannot be utilized because the honest prover doesn’t know the entire input and cannot send
it. Thus, dsIPPs with linear (or even polynomial) communication may be an interesting object for
further study.

3 ds-IPP for the Hamming Weight Problem

In this section, we present a doubly sub-linear IPP (ds-IPP) for the Hamming Weight Problem.
Specifically, given a claimed weight σ ∈ N, a proximity parameter ε > 0 and an oracle access
to an input x ∈ {0, 1}n, we present an r-round IPP, with r = log(n) and with poly-logarithmic
communication complexity, in which V verifies that wt(x) = σ using query complexity of O(1ε ), the
honest prover P uses poly-logarithmic query complexity. We note that we use r to represent the
number of (pairs) of message exchanges (and not the total number of messages sent).

First, in Section 3.1, we present a standard IPP for the Hamming Weight Problem. This
IPP (which is not doubly sub-linear) uses a divide-and-conquer approach, and in it the prover P
computes exact weights for sub-sequences of the input x. Then, in Section 3.2, we present a warm-
up towards a ds-IPP: We amend the standard IPP by allowing P to approximate the Hamming
weight of the sub-sequences, and relaxing the accepting conditions of V in a way that doesn’t
compromise the completeness and soundness of the protocol. Unfortunately, in this IPP the prover
P still has query complexity of Ω(n). Lastly, in Section 3.3, we present the actual ds-IPP, which
applies the IPP presented in Section 3.2 recursively, thus improving the query complexity of P
without compromising the query complexity of V.

3.1 The Standard IPP

Given some σ, we want to verify that wt(x) = σ. First, we observe that when we partition x to k
consecutive equally-length parts, x1, ..., xk, the following holds:

� On the one hand, if wt(x) = σ, then
∑

i wt(xi) = σ.

� On the other hand, if |wt(x)− σ| > εn, then for any (σ1, ..., σk) such that
∑

i σi = σ, it holds
that

∑
i|wt(xi)− σi| > εn.

Given the above, we consider the following IPP: P sends (σ1, ..., σk) ← (wt(x1), ..., wt(xk)) to V.
Then, V verifies that

∑
i σi = σ, and if so, selects at random i ∈ [k], and verifies that wt(xi) = σi

(by reading the entire xi). Note that if wt(x) = σ and V interacts with P, then for every i, it holds
that wt(xi) = σi, and the verifier always accepts. However, if |wt(x) − σ| > εn and

∑
i σi = σ,
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it holds that
∑

i
wt(xi)−σi

k > ε · nk . Then, the average deviation of the claimed weight of x from
the actual weight of x translates to a deviation on a corresponding fraction of random i’s, hence
guarantees that the verifier rejects with probability at least ε. To increase the rejection probability,
we can repeat this procedure for O(1ε ) times.

The query complexity of the verifier is the length of a single xi times the number of repetitions,
which gives O( n

ε·k ). However, to compute (wt(x1), ..., wt(xk)), the prover must access to the entire
input x, which yields query complexity of n.

3.2 A Warm-Up towards a ds-IPP

In this section, we aim to achieve poly-logarithmic query complexity for the honest prover P without
compromising the query complexity of the verifier V: We amend the interaction described in Section
3.1 by allowing P to approximate the Hamming weight of the sub-parts of x. However, at the end
of this section, we explain why P still has query complexity of Ω(n). In Section 3.3, we show how
to solve this issue and present the actual ds-IPP.

First, we observe that for a deviation parameter δ > 0 and an error probability parameter
η > 0, there exists a (δ, η)-approximator for the Hamming weight of x ∈ {0, 1}n with query

complexity O(
log( 1

η
)

δ2
) and error probability η: Given the input x and the deviation parameter δ, the

approximator chooses, uniformly at random, O(
log( 1

η
)

δ2
) indices of x, and outputs the (normalized)

number of indices i for which x[i] = 1. Using Chernoff bound, we can show that with probability
at least 1− η, the output of the approximator deviates from wt(x) by at most δn.

Based on this approximator, we amend the interaction such that the prover provides approx-
imated weights to the verifier, by using the approximator with some predefined error probability
η > 0 and deviation parameter δ > 0 (we fix both parameters later). That is, P sends (σ1, ..., σk)
to V, such that for every i ∈ [k], σi is a (δ, η)-approximation for wt(xi). We also change the ver-
ifier’s accepting conditions in the interaction, so that V allows this deviation (and doesn’t reject
P’s approximations). That is, V now verifies that |σ −

∑
i σi| ≤ δn, chooses i ∈ [k] uniformly at

random, and verifies that |wt(xi) − σi|≤ δ·n
k (by reading the entire xi). Similar to the standard

IPP, we repeat the protocol for O(1ε ) times.

3.2.1 Correctness

The completeness of the protocol still holds (but with a completeness error): If wt(x) = σ and
we interact with P, then for a single invocation of the protocol the following holds: For every
i ∈ [k], with probability at least 1 − k · η, it holds that |σi − wt(xi)| ≤ δ·n

k , and therefore also∑
i|wt(xi) − σi| ≤ δn, and the verifier accepts. Since we invoke the protocol for O(1ε ) times, then

the verifier accepts in all invocations with probability at least 1−t ·η where t = O(kε ). Thus, we can
set η ≤ 0.01 · 1t = O( εk ), and the verifier accepts with high constant probability in all invocations.

To show the soundness of the protocol also holds, we observe that if |wt(x) − σ| > εn, then
for any (σ1, ..., σk) such that |σ −

∑
i σi| ≤ δn, it holds that

∑
i|wt(xi) − σi| > (ε − δ)n. Then,

the average deviation of the claimed weight of x from the actual weight of x, beyond the allowed
deviation, translates to a deviation on a corresponding fraction of random i’s. Since the verifier
rejects if |wt(xi) − σi| > δn

k , we can set δ = ε
3 < ε

2 and infer that the verifier still rejects with
probability at least Ω(ε) in a single invocation. Since we invoke the protocol for O(1ε ) times, we
get that the verifier rejects with high constant probability in at least one of the invocations.
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3.2.2 Query Complexity

Now, let us analyze the query complexity of V and P:

� The query complexity of V is O( n
εk ), because we read a sub-sequence of the input of length

n
k for O(1ε ) repetitions.

� The query complexity of P is O(
k·log( k

ε
)

ε·δ2 ), since we invoke the approximator with error prob-
ability parameter η = O( εk ) for k times in each of the O(1ε ) repetitions.

Since we can (δ, 0.1)-approximate the Hamming weight of x without any interaction using query
complexity O( 1

δ2
), we can perform ε-test for the Hamming weight of x using query complexity

O( 1
ε2
). Therefore, for the IPP to be meaningful, we want the query complexity of V to be o( 1

ε2
). To

achieve this in our setting, we must require k = ω(ε ·n). However, this causes the query complexity
of P to be Ω(n), whereas we want our IPP to be doubly sub-linear. In the next section, we extend
the foregoing IPP by applying it recursively, and show that we can get both query complexity of
o( 1

ε2
) for V, and poly-logarithmic query complexity for P.

3.3 The Actual ds-IPP

In Section 3.2, we aim to achieve poly-logarithmic query complexity for the honest prover P,
without compromising the query complexity of the verifier V. Unfortunately, for reasons explained
at Section 3.2.2, P still has query complexity of Ω(n).

To solve this, we extend the IPP presented in Section 3.2 by applying it recursively: That
is, after V selects at random i ∈ [k], instead of directly computing the Hamming weight of xi,
both parties recursively run the protocol on xi with the claimed Hamming weight σi, and do it
for r rounds. Only in the base of the recursion, V computes the Hamming weight of the input (at
this level), and accepts accordingly. This gives us an improvement in the query complexity of the
verifier, as the length of the input after r rounds is ( n

kr ), while the number of times the prover
needs to run the approximator grows only to k · r (in every repetition). To make sure that the

query complexity of V is o( 1
ε2
), we set k = n

1
r .

Indeed, we now allow the prover to deviate from the claimed weight for r times: At each of the
recursion levels, as well as in the base level. Thus, to make sure that soundness still holds (i.e. the
total allowed deviation is not too big), we set the verifier’s allowed deviation (i.e. δ) to be smaller
(by a factor of r).

To make sure that completeness still holds, we first change the error probability parameter of
the approximator. P now runs the approximator for a total of t = O(k·rε ) times, and so we set
η = 0.01 · 1t = O( ε

k·r ). In addition, we observe the following: Assume V interacts with P, with
input x and weight parameter σ, such that wt(x) = σ. Then, when we are not in the first recursion
level, then the weight parameter provided to the protocol is the approximated weight provided
by P in the previous recursion level. Therefore, the weight parameter in the current recursion
level might deviate from the actual weight of the input in this level. Since P also performs weight
approximations in the current recursion level, we need to account for both deviations. Details
follow.

Protocol 3.1 ds-IPP for the Hamming Weight Problem

� Query Access Input: x ∈ {0, 1}n

� Deviation Parameter: ε > 0
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� Other Parameters: Weight σ ∈ N, initial number of rounds r0 and remaining number of
rounds r

1. Set k = n
1
r0 , δ = ε

3r0
, and η = O( ε

k·r0 ).

2. V: If r = 0 then accept iff |wt(x)− σ| ≤ δn
2 .

3. P:
(a) For every i ∈ [k], approximate wt(xi) up to a deviation factor of δ

2 with probability

at least 1− η: Choose uniformly at random m = O(
log( 1

η
)

δ2
) indices of xi and set the

approximation σi as the estimated fraction of indices j for which xi[j] = 1.

(b) Send (σ1, ..., σk) to V.
4. V:

(a) Verify that |σ −
∑

i σi| ≤ δn, otherwise reject.

(b) Choose uniformly at random i ∈ [k] and send i to P.
5. Both parties recursively invoke the protocol with input xi, deviation parameter ε, weight

σi, and remaining number of rounds r − 1.

Repeat the protocol for O(1ε ) times, and accept iff V accepts in all repetitions.

We show that Protocol 3.1 is a ds-IPP for the Hamming Weight Problem: In Section 3.3.1, we
show the correctness of the protocol, and in Section 3.3.2, we present the query complexity of the
protocol.

3.3.1 Correctness

Completeness: Assume wt(x) = σ and V interacts with P. We observe that at any recursion level
(but the base level), the following claim holds: If our input is x′ and our weight parameter is σ′

such that |wt(x′)−σ′| ≤ δ|x′|
2 , then with probability at least 1−η ·k, the prover P sends (σ′

1, ..., σ
′
k)

to V such that the following holds:

1. The verifier doesn’t reject in Step 4(a) (i.e., |σ′ −
∑

i σ
′
i| ≤ δ|x′|).

2. The protocol is recursively invoked with some x′i and σ′
i for which |wt(x′i)− σ′

i| ≤
δ|x′|
2 .

The claims follows from the fact that P runs the approximator on every x′i with deviation param-
eter δ

2 and error probability parameter η. Then, since we start with wt(x) = σ, with probability at
least 1−η ·k · r0, the verifier doesn’t reject in Step 4(a) in all the r0 recursion levels. By the second
item of the claim, the base of the recursion is also invoked with an input x′ and weight parameter

is σ′ such that |wt(x′)− σ′| ≤ δ|x′|
2 , and the verifier accepts. Since we repeat the protocol for O(1ε )

times, we get that the verifier accepts in all invocations with probability at least 1 − t · η where
t = O(k·r0ε ). Then, since we set η = 0.01 · 1t = O( ε

k·r0 ), we get that V accepts with high constant
probability in all invocations.

Soundness: Assume |wt(x)−σ| > εn. We observe that in each recursion level, we lose at most an
additive factor of δ. Since we set δ = ε

3r0
, we get that after r0 rounds, we are still at distance at least

ε
2 from a valid assertion. Thus, the verifier rejects with probability at least Ω(ε) in each invocation,
and therefore rejects with high constant probability in at least one of the O(1ε ) invocations.
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3.3.2 Computational Complexity

We present the query, communication and time complexity of Protocol 3.1. Let us start by analyzing
the query complexity of V (denoted QV) and P (denoted QP):

� QV = O( n
εkr0 ) = O(1ε ), because we read a sub-sequence of the input of length n

kr0 = 1 for
O(1ε ) times.

� QP is the query complexity of the approximator times the number of calls P makes to the
approximator in all repetitions:

– The query complexity of the approximator is O(
r20 ·log(

k·r0
ε

))

ε2
), because P invokes the

approximator with error probability parameter η = O( ε
k·r0 ) and deviation parameter

δ = O( ε
r0
).

– P calls the approximator for k · r0 times in each of the O(1ε ) repetitions.

Since we set k = n
1
r0 , we get that QP = Õ(

n
1
r0 ·r30
ε3

).

Hence, regardless of how we set r0, the query complexity of the verifier is O(1ε ) = o( 1
ε2
). Indeed, the

larger we set r0, the smaller QP gets, but this causes the round complexity to grow. Specifically,

to minimize QP , we can set r0 = log(n), and we get QP = Õ( log
3(n)
ε3

).

Now, the communication of Protocol 3.1 is O(k·r0ε · log(
r0
ε )): In each of the O(1ε ) repetitions

there are r0 rounds, and in each round the prover P sends k weight approximations that can be
represented by O(log( r0ε )) bits (because the approximations are up to a factor of δ = O( ε

r0
)). Again,

since we set k = n
1
r0 , we can set r0 = log(n) and get poly-logarithmic communication complexity.

Lastly, the time complexity of the honest prover (denoted TP) is the same as its query complexity
(i.e., TP = QP), whereas the time complexity of the verifier (denoted TV) is O(k·r0ε ·log(

r0
ε )), because

in each of the O(1ε ) repetitions there are r0 rounds, and in each round the verifier performs simple
calculations on O(k) values that can be represented by O(log( r0ε )) bits.

We conclude with the following theorem, that summarizes what we achieved in this section.

Theorem 3.2 For every function r : N → N, there exists an r(n)-round ds-IPP for the Ham-

ming Weight Problem with QV = O(1ε ), QP = Õ(n
1

r(n) ·r(n)3
ε3

) and communication complexity

of O(
n

1
r(n) ·r(n)·log( r(n)

ε
)

ε ). In addition, the time complxity of the ds-IPP is TP = QP and TV =

O(
n

1
r(n) ·r(n)·log( r(n)

ε
)

ε ).

4 Tolerant ds-IPP for ROOBPs of Constant Width

In this section, we present a tolerant ds-IPP for ROOBPs of constant width. Before we review our
plan in Section 4.2, let us recall some standard definitions related to ROOBPs.

4.1 Definitions

Definition 4.1 (ROOBP) A branching program (BP) on n variables is a directed acyclic
graph that has a unique source vertex (denoted s) with in-degree 0 and a unique sink vertex (denoted
t) with out-degree 0. Each non-sink vertex is labeled by an index i ∈ [n], and has 2 outgoing edges,
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which are labeled by either 0 or 1. An input x ∈ {0, 1}n defines a walk on B starting at the source
vertex, such that at every vertex labeled by i ∈ [n], the step taken is on the edge labeled by xi. The
output of the branching program B on input x ∈ {0, 1}n, denoted B(x), is defined as 1 if the walk
reached the sink vertex, and 0 if it got ”stuck” before reaching it (i.e., the walk reached vertex labeled
by i ∈ [n], and there was no outgoing edge labeled by xi).

An oblivious BP is a BP in which the nodes are partitioned into levels, L0, ..., Ln, and edges
are going only from one level to nodes in the consecutive level. In addition, all the vertices of some
level are associated with the same index. Therefore, we can say that the level itself is associated
with some index. A read-once oblivious BP (ROOBP) is a BP in which no two levels are
associated with the same index. An ROOBP of constant width w is an ROOBP in which every
level has at most w vertices.

From now on, let B be an ROOBP with n variables and width at most w.

Remark 4.2 By the above, there’s a 1-1 correspondence between an s ⇝ t path in B and an
accepting input for B. In that case, we say that the s⇝ t path is associated with the accepting
input.

Remark 4.3 We say that two vertices u ∈ Ll and v ∈ Ll′ in B are connected only if they are
connected via a directed path. If l < l′, we say that u is forwards-connected to v, and v is
backwards-connected to u.

Remark 4.4 Without loss of generality, we assume:

1. For every i ∈ {0, ..., n − 1}, Li is associated with the index i. Otherwise, we can change the
input x to an input x′ by reordering its indices accordingly.

2. B depends on the entire input. Otherwise, we can change the input to x′ ∈ {0, 1}n′
, and then

B will depend on every index of x′.

3. There exists a path between the source and the sink of B; this is equivalent to assuming there
exists an x ∈ {0, 1}n accepted by B.

Definition 4.5 (Absolute and Relative Distance) We denote the absolute distance between
two strings x, x′ ∈ {0, 1}n by ∆(x, x′) = |{x[i] ̸= x′[i] : i ∈ [n]|, and their relative distance by

∆(x, x′) = ∆(x,x′)
n .

Assume there exist an accepting input for B, an ROOBP of length n. We denote the absolute
distance of a string x ∈ {0, 1}n from B by ∆(x,B) = min{∆(x, x′) : x′ ∈ {0, 1}n, B(x′) = 1}.
Similarly, the relative distance of x from B is denoted by ∆(x,B) = min{∆(x, x′) : x′ ∈
{0, 1}n, B(x′) = 1}.

4.2 Our Plan

For a fixed ROOBP B of width w, proximity parameters εf > εc ≥ 0, and oracle access to an input
x ∈ {0, 1}n, we present an r-round IPP, with r = log(n) and with poly-logarithmic communication
complexity, in which V uses query complexity ofO( 1

εf−εc
), the honest prover P uses poly-logarithmic

query complexity, and the following holds:

� If ∆(B, x) ≤ εc, then when communicating with P, with probability at least 2/3 the verifier
V accepts x.
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� If ∆(B, x) > εf , then when communicating with any prover P∗, with probability at least 2/3
the verifier V rejects x.

We note that we use r to represent the number of (pairs) of message exchanges (and not the total
number of messages sent).

Our plan is as follows: First, in Section 4.3, we present a standard tolerant IPP for the ROOBP
Problem. This IPP (which is not doubly sub-linear) uses a divide-and-conquer approach, and in it
the prover P partitions the ROOBP to a sequence of k sub-ROOBPs (see Definition 4.6) according
to the accepting path associated with an accepting input that minimizes the distance to x in B
(see Definition 4.7). Then, in Section 4.4, we present a warm-up towards the tolerant ds-IPP:
We amend the standard tolerant IPP by allowing P to partition the ROOBP according to an
approximated path, and relaxing the accepting conditions of V in a way that doesn’t compromise
the completeness and soundness of the protocol. Unfortunately, in this IPP the prover P still has
query complexity of Ω(n). Lastly, in Section 4.5, we present the actual tolerant ds-IPP, which
applies the IPP presented in Section 4.4 recursively, thus improving the query complexity of P
without compromising the query complexity of V.

4.3 The Standard Tolerant IPP

Given some ROOBP B, and proximity parameters εf > εc ≥ 0, we want to verify that ∆(B, x) ≤ εc.
In the following tolerant IPP, that adapts the non-tolerant IPP from [7], we decompose B to k
consecutive equally-length sub-ROOBPs, B1, ..., Bk. Therefore, we start with defining the notion
of a sub-ROOBP.

Definition 4.6 (sub-ROOBP) For 0 ≤ i ≤ j ≤ n, let u ∈ Li and v ∈ Lj. We define B[u, v] as
a sub-ROOBP of B, with the following properties:

� The source (resp., sink) vertex of B[u, v] is u (resp., v).

� B[u, v] is of length j − i.

� If x ∈ {0, 1}n is the input for B, then x[i + 1, j] = x[i + 1] · x[i + 2] · · · ·x[j] is the input for
B[u, v].

Indeed, there is more than one way we can decompose B to k consecutive equally-length sub-
ROOBPs, because for each sub-ROOBP there could be up to w2 possible source-sink pairs. There-
fore, we continue with defining the notion of (what we consider) a valid decomposition of B to
k sub-ROOBPs: A decomposition that doesn’t cause us to ”lose” any distance (i.e. the average
distance of x from all the sub-ROOBPs in the decomposition is at least the distance of x from
B). We can achieve this by enforcing the decomposition to follow some path associated with some
accepting input for B, since for any accepting input x′ we have ∆(x, x′) ≥ ∆(x,B).

Definition 4.7 ((k, π)-Decomposition) Let B be an ROOBP, and let π be an accepting path
in B. The (k, π)-decomposition of B is a sequence of k sub-ROOBPs of B, denoted Bk,π =

(B1, ..., Bk), such that for every i ∈ [k], the source of Bi is the (i−1)·n
k ’th vertex in π, and the sink

of Bi is the i·n
k ’th vertex in π.

Now, we observe that when we partition x to k consecutive equally-length parts, x1, ..., xk, the
following holds:

17



� On the one hand, if x is εc-close to B, then for (B1, ..., Bk), the (k, π)-decomposition of B
constructed according to an accepting input that minimizes the distance to x, it holds that∑

i
∆(Bi,x)

k ≤ εc.

� On the other hand, if ∆(B, x) > εf , then for any (B1, ..., Bk), a (k, π)-decomposition of B

constructed according to some accepting path in B, it holds that
∑

i
∆(Bi,xi)

k > εf .

Given the above, we consider the following IPP: The prover P finds the (k, π)-decomposition of B
constructed according to an accepting input that minimizes the distance to x, checks the distance
of xi from each of the sub-ROOBPs in the decomposition, and sends V a succinct representation of
the decomposition (for example, the sink of every sub-ROOBP), as well as the obtained distances.
After V receives some decomposition (B1, ..., Bk) and claimed distances (ε̂1, ..., ε̂k), V verifies that
(B1, ..., Bk) is a valid (k, π)-decomposition of B, and that the average of the claimed distances is at
most εc. Lastly, V selects at random i ∈ [k], and verifies that ∆(Bi, xi) = ε̂i (by reading the entire
xi).

Note that if x is εc-close to B and V interacts with P, then
∑

i
ε̂i
k ≤ εc, and for every i ∈ [k], it

holds that ∆(Bi, xi) = ε̂i, and the verifier always accepts. However, if ∆(B, x) > εf , then for any
valid decomposition (B1, ..., Bk) and claimed distances (ε̂1, ..., ε̂k) sent by some prover P∗ such that∑

i
ε̂i
k ≤ εc, it holds that

∑
i
∆(Bi,xi)−ε̂i

k > εf−εc. Then, the average deviation of the actual distance
of x from B, from the claimed distance of x from B, translates to a deviation on a corresponding
fraction of random i’s, which guarantees that the verifier rejects with probability at least εf − εc.
To increase the rejection probability, we can repeat this procedure for O( 1

εf−εc
) times.

We stress that V can verify the validity of a (k, π)-decomposition without any query access to
the input x. Thus, the query complexity of the verifier is the length of a single xi times the number
of repetitions, which gives O( n

(εf−εc)·k ). However, to find an accepting input that minimizes the

distance to x, the prover must access to the entire input x, which yields query complexity of Ω(n).

4.4 A Warm-Up towards a tolerant ds-IPP

In this section, we aim to achieve poly-logarithmic query complexity for the honest prover P without
compromising the query complexity of the verifier V: We amend the interaction described in Section
4.3 by allowing P to divide the ROOBP B according to an accepting input that approximates the
distance of x to B. However, at the end of this section, we explain why P still has query complexity
of Ω(n). In Section 4.5, we show how to solve this issue and present the actual tolerant ds-IPP.

In Appendix A, we show the existence of a δ-distance-approximation algorithm for ROOBPs of
constant width with query complexity that is independent of the length of the input, n. That is, we
show there exists an algorithm that given an ROOBP B of width w, an input x ∈ {0, 1}n, deviation
parameter δ > 0 and error probability parameter η > 0, outputs ε̂ such that with probability at least

1− η it holds that |ε̂−∆(B, x)| ≤ δ, and this algorithms has query complexity of (
log( 1

η
)·2w

δ )O(w).
Based on this distance-approximation algorithm, we amend the interaction as follows: P per-

forms distance approximation (with parameters δ and η we fix later) for every (k, π)-decomposition
(constructed according to every accepting path π). Since P performs distance approximation also
for the decomposition of B constructed according to an accepting input that minimizes the distance
to x, P can just choose the the (k, π)-decomposition which yields the minimal (average) distance

approximation. That is, P chooses Bk,π∗ = (Bπ∗
1 , ..., Bπ∗

k ) for which
∑

i
ε̂π

∗
i
k is minimal.

Even though there could be many possible (k, π)-decompositions, the total number of sub-
ROOBPs in all the (k, π)-decompositions is upper-bounded by w2 · k: For every i ∈ [k], there are
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at most w2 possible source-sink pairs for the i’t sub-ROOBP. Thus, using the union bound, with
probability at least 1−w2 · k · η, all approximations deviate from the actual distance by at most δ,
and the following holds:

� For every i ∈ [k], it holds that ∆(Bπ∗
i , xi) ≤ ε̂π

∗
i + δ.

� If ∆(B, x) ≤ εc, then since P chooses the (k, π)-decomposition which yields the minimal

(average) distance approximation, we get that
∑

i
ε̂π

∗
i
k ≤ εc + δ.

Lastly, we also change V’s accepting conditions in the interaction, so that V allows the deviation.
That is, after V receives (B1, ..., Bk) and (ε̂1, ..., ε̂k), in addition to verifying that (B1, ..., Bk) is a
valid decomposition, V verifies that

∑
i
ε̂i
k ≤ εc+δ, and after V chooses i ∈ [k] uniformly at random,

V verifies that ∆(Bi, xi) ≤ ε̂i+ δ (by reading the entire xi). Similar to the standard IPP, we repeat
the protocol for O( 1

εf−εc
) times.

4.4.1 Correctness

We claim that the completeness of the protocol still holds (but with a completeness error). If
V interacts with P, then for a single invocation of the protocol, using the union bound, with
probability at least 1− η · k · w2, all approximations deviate from the actual distances by at most

δ. Then, if ∆(B, x) ≤ εc, it holds that
∑

i
ε̂π

∗
i
k ≤ εc + δ, and for every i ∈ [k] it holds that

∆(Bπ∗
i , xi) ≤ ε̂π

∗
i + δ, and the verifier accepts. Since we invoke the protocol for O( 1

εf−εc
) times,

then for t = O( k·w2

εf−εc
), the verifier accepts in all invocations with probability at least 1−η · t. Thus,

we can set η ≤ 0.01 · 1t = O(
εf−εc
k·w2 ), and the verifier accepts with high constant probability in all

invocations.
To show the soundness of the protocol also holds, assume ∆(B, x) > εf , and let (B1, ..., Bk)

be a decomposition that P∗ sends, along with the respective claimed distance approximations

(ε̂1, ..., ε̂k). If the decomposition is valid, then
∑

i
∆(Bi,xi)

k > εf . Thus, if
∑

i
ε̂i
k ≤ εc + δ, we get

that
∑

i
∆(Bi,xi)−ε̂i

k > εf − εc − δ. Then, the average deviation of the actual distance of x from B,
from the claimed distance of x from B, beyond the allowed deviation, translates to a deviation on
a corresponding fraction of random i’s. Since the verifier rejects if ∆(Bi, xi) > ε̂i + δ, we can set
δ =

εf−εc
3 , and infer that the verifier still rejects with probability at least Ω(εf − εc) in a single

invocation. Since we invoke the protocol for O( 1
εf−εc

) times, we get that the verifier rejects with

high constant probability in at least one of the invocations.

4.4.2 Query Complexity

Now, let us analyze the query complexity of V and P:

� Because V can verify that the (k, π)-decomposition that P sends is valid without any query
access to the input x, the query complexity of V is O( n

(εf−εc)·k ): V reads a sub-sequence of

the input of length n
k for O( 1

εf−εc
) repetitions.

� The query complexity of P is k · (
log( k

εf−εc
)·2w

εf−εc
)O(w), because the distance approximation

algorithm with deviation parameter δ = O(εf − εc) and error probability parameter η =

O(
εf−εc
w2·k ) has query complexity of (

log( k
εf−εc

)·2w

εf−εc
)O(w), and P invokes the algorithm for w2 · k

times in each of the O( 1
εf−εc

) repetitions.
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Since we can δ-approximate ∆(B, x) without any interaction using query complexity (2
w

δ )O(w), we

can perform tolerant (εf , εc)-test for ROOBPs using query complexity ( 2w

εf−εc
)O(w). Therefore, for

the IPP to be meaningful, we want the query complexity of V to be o(( 2w

εf−εc
)O(w)). To achieve this

in our setting, we must require k = ω((
εf−εc
2w )O(w)) · n). However, this causes the query complexity

of P to be Ω(n), whereas we want our IPP to be doubly sub-linear. In the next section, we extend
the foregoing IPP by applying it recursively, and show that we can get both query complexity of
o(( 2w

εf−εc
)O(w)) for V, and poly-logarithmic query complexity for P.

4.5 The Actual ds-IPP

In Section 4.4, we aim to achieve poly-logarithmic query complexity for the honest prover P,
without compromising the query complexity of the verifier V. Unfortunately, for reasons explained
at Section 4.4.2, the prover P still has query complexity of Ω(n).

To solve this, we extend the IPP presented in Section 4.4 by applying it recursively: That is,
after V selects at random i ∈ [k], instead of directly checking the distance of xi from Bi, both
parties recursively run the protocol on xi with Bi, and do it for r rounds. Only in the base of the
recursion, assuming the input is x′ and the ROOBP is B′, V checks the distance of x′ from B′ and
accepts accordingly. This gives us an improvement in the query complexity of the verifier, as the
length of the input after r rounds is ( n

kr ), while the number of times the prover needs to run the
distance approximation algorithm grows only to w2 · k · r (in every repetition). In order to make

the query complexity of V independent of the input length, we set k = n
1
r .

Now, we observe the following: Assume V interacts with P, with input x and ROOBP B, such
that ∆(B, x) ≤ εc. Then, since we are only guaranteed that

∑
i
ε̂i
k ≤ εc + δ, when both parties

recursively apply the protocol with input xi and ROOBP Bi, we can’t guarantee that ∆(Bi, xi) ≤ εc
(or even guarantee that ∆(Bi, xi) ≤ εc + δ).

Therefore, we amend the protocol as follows: In addition to the input x and the ROOBP B,
we add a claimed distance parameter, ε̂, that represents P’s claim regarding the distance of x from
B. In the first recursion level, we set ε̂ = εc, since P claims that ∆(B, x) ≤ εc. Then, at each
recursion level, assume our input x′, our ROOBP is B′, our (new) claimed distance parameter is ε̂′,
and P sends the decomposition (B1, ..., Bk) and the respective approximations (ε̂′1, ..., ε̂

′
k). Then, V

verifies that (B1, ..., Bk) is a valid decomposition and that
∑

i
ε̂′i
k ≤ ε̂′ + δ (i.e., we replace εc in the

previous condition with the new parameter ε̂′). Lastly, for some i ∈ [k] both parties recursively run
the protocol on x′i with B′

i and the claimed distance ε̂′i, and at the base of the recursion, V verifies
that the distance of the input from the ROOBP does not exceed the claimed distance by more
than δ.

Now, on every recursion level, P only claims that the average distance doesn’t grow too much
with respect to the approximated distance in the previous recursion level. Since P uses
a distance approximation algorithm with some error probability parameter η > 0, and chooses the
(k, π)-decomposition of B that yields the minimal average distance approximation from x, the claim
holds for all recursion levels with probability at least 1 − η · k · w2 · r0, and at the base level, the
verifier accepts. Since P invokes the protocol for O( 1

εf−εc
) times, then for t = O(w

2·k·r
εf−εc

), the verifier

accepts in all invocations with probability at least 1−η ·t. Thus, we can set η = 0.01 · 1t = O(
εf−εc
w2·k·r ),

and the verifier accepts with high constant probability in all invocations. Lastly, we note that at
each recursion level, we want V to account for two possible deviations: In the approximation that
P provides for the previous recursion level (i.e. ε̂), and in the approximations that P performs in
the current recursion level (i.e. (ε̂1, ..., ε̂k)).
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For soundness, we observe that V allows the prover to exceed from the initial claimed distance
(i.e., εc) by at most δ for r times: At each of the recursion levels, as well as in the base level. Thus,
to make sure that soundness still holds (i.e. V does not allow the prover to exceed too much in
distance), we set δ to be smaller (by a factor of r). Details follow.

Protocol 4.8 Tolerant ds-IPP for the ROOBP Problem

� Query Access Input: x ∈ {0, 1}n

� Proximity Parameters: εf > εc ≥ 0

� Massive Parameter: ROOBP B of width w

� Other Parameters: Claimed distance ε̂ (initialized to εc in the first round), initial number
of rounds r0 and remaining number of rounds r

1. Set k = n
1
r0 , δ =

εf−εc
3r0

, and η = O(
εf−εc
r0·k·w2 ).

2. V: If r = 0 then accept iff ∆(B, x) ≤ ε̂+ δ
2 .

3. P:
(a) For every i ∈ [k], and for every u ∈ L (i−1)·n

k

and v ∈ L i·n
k
, approximate the distance

of xi from B[u, v] with deviation parameter δ
2 and error probability parameter η.

(b) For every (k, π)-decomposition of B, Bk,π = (Bπ
1 , ..., B

π
k ), let (ε̂

π
1 , ..., ε̂

π
k) be the re-

spective distance approximations obtained in the previous step.

(c) Find a decomposition Bk,π∗ for which
∑

i ε̂
π∗
i is minimal, and send (a succinct rep-

resentation of) Bk,π∗, along with (ε̂π
∗

1 , ..., ε̂π
∗

k ), to V.
4. V:

(a) Verify that Bk,π∗ is a valid (k, π)-decomposition, and that
∑

i
ε̂π

∗
i
k ≤ ε̂+δ. Otherwise,

reject.

(b) Choose uniformly at random i ∈ [k] and send i to P.
5. Both parties recursively invoke the protocol with input xi, ROOBP Bπ∗

i , claimed distance
ε̂π

∗
i , and remaining number of rounds r − 1.

Initiate the protocol with ε̂ = εc, repeat the protocol for O( 1
εf−εc

) times, and accept iff V accepts

in all repetitions.

Remark 4.9 P can efficiently find a decomposition in Step 3(c) as follows: Construct a graph
G = (V,E) with V being all the vertices of B in the levels (L0, Ln

k
, L 2n

k
..., L k·n

k
), and u, v ∈ V are

connected in G with edge-weight ε̂u,v if P performs distance approximation for B[u, v] in Step 3(a)
and it results in ε̂u,v. Then, every (k, π)-decomposition considered in Step 3(b) has a corresponding
s⇝ t path in G, and the weight of the s⇝ t path equals the sum of distance approximations for the
sub-ROOBPs in the decomposition. Thus, P can choose the decomposition with the shortest s⇝ t
path in G.

We show that Protocol 4.8 is a ds-IPP for ROOBPs: In Section 4.5.1, we show the correctness of
the protocol, and in Section 4.6.1, we present the query complexity of the protocol.
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4.5.1 Correctness

Completeness: Assume ∆(B, x) ≤ εc and V interacts with P. We observe that at any recursion
level (but the base level), the following claim holds: If our input is x′, our ROOBP is B′ and
our claimed distance parameter is ε̂′ such that ∆(B′, x′) ≤ ε̂′ + δ

2 , then with probability at least
1− η · k · w2, the prover P sends (B′

1, ..., B
′
k) and (ε̂′1, ..., ε̂

′
k) to V such that the following holds:

1. The verifier doesn’t reject in Step 4(a) (i.e.,
∑

i
ε̂′i
k ≤ ε̂′ + δ).

2. The protocol is recursively invoked with some x′i, B
′
i and ε̂′i for which ∆(B′

i, x
′
i) ≤ ε̂′i +

δ
2 .

The claims follows from the fact that P runs the distance approximation algorithm with deviation
parameter δ

2 and with error probability parameter η. Since we start with ∆(B, x) ≤ εc = ε̂, then
with probability at least 1−η ·k ·w2 ·r0, the verifier doesn’t reject in Step 4(a) in all the r0 recursion
levels. By the second item of the claim, the base of the recursion is also invoked with an input x′,
ROOBP B′ and claimed distance parameter ε̂′ such that ∆(B′, x′) ≤ ε̂′+ δ

2 , and the verifier accepts.

Since we repeat the protocol for O( 1
εf−εc

) times, we get that for t = O(k·w
2·r0

εf−εc
), the verifier accepts

in all invocations with probability at least 1− η · t. Then, since we set η = 0.01 · 1t = O(
εf−εc
k·w2·r0 ), we

get that V accepts with high constant probability in all invocations.
Soundness: Assume ∆(B, x) > εf . We observe that in each round, we lose at most an additive
factor of δ in distance (i.e. we allow the prover to ”exceed” the claimed distance up to an additive
δ factor). Since we start with claimed distance εc, and since we set δ =

εf−εc
3r0

, we get that after

r0 rounds, we are still at distance at least
εf−εc

2 from a valid assertion. Hence, the verifier rejects
with probability at least Ω(εf − εc) in each invocation, and rejects with high constant probability
in at least one of the O( 1

εf−εc
) invocations.

4.6 Computational Complexity (of Protocol 4.8)

The query and communication complexity of our tolerant ds-IPP are our main complexity measures.
Indeed, the communication complexity is O(k·log(w·n)·r0

εf−εc
), because in each of the O( 1

εf−εc
) repetitions

there are r0 rounds, and in each round the prover P sends k vertices and k distance approximations

to V that can be represented by O(k · log(w ·n)) bits. Since we set k = n
1
r0 , we can set r0 = log(n)

and get poly-logarithmic communication complexity.
We continue in Section 4.6.1, where we calculate the query complexity of both the verifier and

the prover. We show that if we set r0 = log(n), then V uses query complexity of O( 1
εf−εc

), and the

honest prover P uses poly-logarithmic query complexity.
We finish by calculating the time complexity of our tolerant ds-IPP. We show that, if we set

r0 = log(n), and assume both V and P have black-box access to two procedures that refer to
the input ROOBP (see Section 4.6.2 for more details), then the verifier V has time complexity

of O( log
2(n)

εf−εc
). In addition, if the honest prover P uses a distance approximation algorithm for

ROOBPs with time complexity TA, then P has time complexity of O( log
2(n)·TA
εf−εc

).

4.6.1 Query Complexity

Let us analyze the query complexity of V (denoted QV) and P (denoted QP):

� Because V can verify that the (k, π)-decomposition P sends in every round is valid without any
query access to the input x, we have QV = O( n

(εf−εc)·kr0 ) = O( 1
εf−εc

): V reads a sub-sequence

of the input of length n
kr0 = 1 for O( 1

εf−εc
) times.
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� P uses a distance approximation algorithm A with deviation parameter δ = O(
εf−εc
r0

) and

error probability parameter η = O(
εf−εc
r0·k·w2 ), with query complexity QA(δ, η, w). Then, the

query complexity of QP is QA(δ, η, w) times the number of calls P makes to A in all the
repetitions. Since P calls the approximator for w2 · k · r0 times in each of the O( 1

εf−εc
)

repetitions, and we set k = n
1
r0 , we get that QP = O(w

2·n
1
r0 ·r0

εf−εc
·QA(δ, η, w)).

Hence, regardless of how we set r0, the query complexity of the verifier is O( 1
εf−εc

). Indeed, the

larger we set r0, the smaller QP gets, but this causes the round complexity to grow. To minimize

QP , we can set r0 = log(n), and we get QP = O(w
2·log(n)
εf−εc

·QA(δ, η, w)).

In Section A.6.1, we show that the query complexity of the distance approximation algorithm

presented in Appendix A is QA(δ, η, w) = (
log( 1

η
)·2w

δ )O(w). If P uses this distance approximation

algorithm, we get QP = Õ(n
1
r0 ) · ( r0·2w

εf−εc
)O(w). Again, we can set r0 = log(n), and if we assume w

is constant, we get poly-logarithmic query complexity.

4.6.2 Time Complexity

Indeed, assuming a standard access to the input ROOBP B (i.e. the ”Massive Parameter”), the
time complexity of both the verifier (denoted TV) and the honest prover (denoted TP) is Ω(n):

� Given a sub-sequence of vertices (v0, ..., vk) in B, the verifier V has to verify that every vi is
in the i·k

n ’th level of B, and that vi ⇝ vi+1. Since v0 ∈ L0 and vk ∈ Ln, this requires accessing
the entire ROOBP, thus yields time complexity of Ω(n).

� P approximates the distance of sub-parts of x from sub-ROOBPs of B of length n
k for w2 · k

times. Using the distance approximation algorithm in Appendix A, this also yields time
complexity of Ω(n).

However, we can take an alternative approach in the analysis: Assume both V and P have black-
box access to the following two procedures, that refer to the structure of the input ROOBP, and
are independent of the specific input x:

1. Given two vertices u and v, determine whether u⇝ v in B.

2. Given i ∈ {0, ..., n}, list the (up to w) vertices that are in level i of B.

In addition, assume P uses a distance approximation algorithm A with deviation parameter
δ = O(

εf−εc
r0

) and error probability parameter η = O(
εf−εc
r0·k·w2 ), with time complexity TA(δ, η, n, w)

(where n is the length of the input and w is the width of the ROOBP).

Now, for i ∈ [r0], we can analyze the time complexity of V and P in the i’th round of the protocol :

� V calls the first two procedures for O(k) times, obtains values that can be represented by
O(k · log(w · n)) bits, and performs simple calculations on the obtained values.

� P calls the first procedure for k times, and calls the distance approximation algorithm for at
most w2 · k times on inputs of length n

ki
. By doing the foregoing, P obtains values that can

be represented by O(w2 · k · log(w ·n)) bits, and performs simple calculations on the obtained
values. This yields time complexity of O(w2 · k · (log(w · n) + TA(δ, η,

n
ki
, w))).
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Since V and P perform the foregoing for every i ∈ [r0] in each of the O( 1
εf−εc

) invocations of the

protocol, and since we set k = n
1
r0 , we get that:

� TV = O(n
1
r0 ·r0·log(w·n)

εf−εc
)

� TP = O(
w2·n

1
r0 ·(r0·log(w·n)+

∑r0
i=1 TA(δ,η,n

r0−i
r0 ,w))

εf−εc
)

To minimize the time complexity, we can set r0 = log(n), and assuming w is constant, we get

TV = O( log
2(n)

εf−εc
) and TP = O( log

2(n)+log(n)·TA(δ,η,n,w)
εf−εc

). We conclude with the following theorem and

corollary.

Theorem 4.10 For every function r : N → N, there exists an r(n)-round tolerant ds-IPP for
ROOBPs of width w with proximity parameters εf > εc ≥ 0. In the tolerant ds-IPP, the honest

prover P uses a distance approximation algorithm A with deviation parameter δ = O(
εf−εc
r(n) ) and

error probability parameter η = O(
εf−εc

r(n)·n
1

r(n) ·w2

) such that the query complexity of A is QA(δ, η)

and the time complexity of A is TA(δ, η, n, w). Then, the computational complexity of the tolerant
ds-IPP is as follows:

� Query Complexity: QV = O( 1
εf−εc

) and QP = O(w
2·n

1
r(n) ·r(n)

εf−εc
·QA(δ, η)).

� Communication Complexity: O(n
1

r(n) ·r(n)·log(w·n)
εf−εc

).

� Time Complexity: If both V and P have black-box access to procedures that refer to the
structure of the input ROOBP, then:

– TV = O(n
1

r(n) ·r(n)·log(w·n)
εf−εc

)

– TP = O(
w2·n

1
r(n) ·(r(n)·log(w·n)+

∑r(n)
i=1 TA(δ,η,n

r(n)−i
r(n) ,w))

εf−εc
)

In Section A.6.2, we show that the time complexity of the distance approximation algorithm

presented in Appendix A is TA(δ, η, n, w) = (
log( 1

η
)·2w

δ )O(w) ·n. If P uses this distance approximation
algorithm, we get the following corollary.

Corollary 4.11 For every function r : N → N, there exists an r(n)-round tolerant ds-IPP for

ROOBPs of width w with QV = O( 1
εf−εc

), QP = Õ(n
1

r(n) ) · ( r(n)·2
w

εf−εc
)O(w), and communication

complexity of O(n
1

r(n) ·r(n)·log(w·n)
εf−εc

). If both V and P have black-box access to procedures that refer to

the structure of the input ROOBP, then TV = O(n
1

r(n) ·r(n)·log(w·n)
εf−εc

) and TP = ( r(n)·2
w·log(n)

εf−εc
)O(w) · n.
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A δ-Distance-Approximation Algorithm for an ROOBP of Con-
stant Width

A.1 Introduction

In the next sections we present and analyze a distance-approximation algorithm for ROOBPs of
constant width. We refer the reader to some standard definitions related to ROOBPs in Section
4.1. Here, we define the notion of a distance-approximation algorithm for ROOBPs.

Definition A.1 (δ-Distance-Approximation Algorithm for B) A δ-distance approxima-
tion algorithm for B is an algorithm that is given ”free” access to the ROOBP B, query access
to the input x ∈ {0, 1}n, a deviation parameter δ > 0 and error probability η, and outputs ε̂ such
that ε̂ ∈ (∆(x,B)± δ) with probability at least 1− η.

Note: Our goal is to find such an algorithm A while minimizing its query complexity. We show
that our algorithm, assuming the width of the ROOBP and the error probability is constant, has
query complexity poly(1/δ). We defer the complexity discussion to Section A.6.

The following is our high-level plan for doing so:

1. We present a δ-distance-approximation algorithm for the case w = 1. This is our base case,
so we can assume we have a δ-distance-approximation algorithm for any ROOBP of width at
most w − 1, and provide an approximation for width at most w.

2. We show that if B is ”w-sparse” (see Definition A.3), then we can reduce the problem of
distance approximation for it, to approximating the distance of not-too-many simplified sub-
ROOBPs (see Definition A.7) of B, each of width at most w − 1.

3. Building on 2, we show that if B is ”locally w-sparse” (see Definition A.19), then we can reduce
the problem of distance approximation for it, to approximating the distance of not-too-many
sparse simplified sub-ROOBPs of it.

4. We construct an ”approximating locally w-sparse” decomposition of B to sub-ROOBPs,
{B1, ..., Bh}. The decomposition has the following properties:

(a) Each Bi is either ”locally w-sparse”, or relatively small.

(b) Approximating the distance from B can be reduced to approximating the distance from
each sub-ROOBP in a not-too-big subset of {B1, ..., Bh}.

5. Lastly, we show a δ-distance-approximation algorithm for B using the above decomposition.

A.2 δ-Distance-Approximation Algorithm for a ROOBP of width 1

In the case B is of width 1, we can assume without loss of generality that B has n′ ≤ n levels,
such that each level i ”verifies” that xi is equal to some predefined σi ∈ {0, 1} (see Figure A.2).
This is true for every level with a single outgoing edge, and for a level with two outgoing edges, we
can simply remove the level, because it doesn’t affect our computation. Using Remark 4.4, we can
assume n′ = n.

In other words, B verifies that an input x ∈ {0, 1}n equals some predefined string σ ∈ {0, 1}n.
For this property, we can perform δ-distance-approximation with error probability η by choosing
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Figure 1: An ROOBP of width 1

uniformly at random O(
log( 1

η
)

δ2
) indices of x, and outputting the (normalized) number of indices i

for which xi = σi. Using Chernoff Bound, we can show that the procedure δ-approximates, with
probability at least 1− η, the distance of x to σ.

A.3 δ-Distance-Approximation Algorithm for a w-sparse ROOBP

As mentioned in the introduction, we want to reduce the distance approximation from a w-sparse
ROOBP B to approximating the distance from narrower (of width at most w− 1) sub-ROOBPs of
B. For that sake, we do the following:

� Define some notions such as a w-sparse ROOBP and a sub-ROOBP.

� Show that in a w-sparse B, there are sub-ROOBPs that yield the aforementioned reduction,
and show how these sub-ROOBPs can be efficiently found.

� Assume we have a δ′-Distance Approximation Algorithm (denoted Aw−1
δ′,η′ ) for δ

′ > 0 and B′ of

length n′ and width at most w − 1 with error probability η′. Using Aw−1
δ′,η′ and our reduction,

we construct a δ-Distance Approximation Algorithm for δ > 0 and a w-sparse B of length n
and width at most w with error probability η.

A.3.1 Definitions

We start with the definitions related to sparsity:

Definition A.2 (w-connectivity) For l ̸= l′ ∈ {0, ..., n}, a vertex v ∈ Ll is w-connected to Ll′

if there are w vertices in Ll′, and v is connected (via a directed path) to each of them. If l > l′, then
v is backwards-w-connected to Ll′, and if l < l′, then v is forwards-w-connected to Ll′. The
levels Ll and Ll′ are w-connected if there are w vertices in Ll, and each of them is w-connected
to Ll′. In other words, each of the w vertices of Ll is connected to each of the w vertices of Ll′.

Definition A.3 (w-sparse ROOBP) B is considered w-sparse if for every l ̸= l′ ∈ {0, ..., n},
Ll and Ll′ are not w-connected .

We continue by defining the notion of a sub-ROOBP:

Definition A.4 (sub-ROOBP) For 0 ≤ i ≤ j ≤ n, let u ∈ Li and v ∈ Lj. We define B[u, v] as
a sub-ROOBP of B, with the following properties:

� The source (resp., sink) vertex of B[u, v] is u (resp., v).

� B[u, v] is of length j − i.
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� If x ∈ {0, 1}n is the input for B, then x[i+ 1, j] = xi+1 · xi+2 · · · ·xj is the input for B[u, v].

Remark A.5 For simplicity, we sometimes refer to the input of B[u, v] as x, since the actual input
to B[u, v] is implied by the levels of u and v.

In the algorithm that we present in this section, we modify sub-ROOBPs of B in order to make
them narrower (of width at most w − 1). The modification consists of deleting vertices that don’t
affect the function that the sub-ROOBP computes.

Definition A.6 (Redundant Vertices) A vertex v in B is redundant if it is not connected (via
a directed path) to either the source (i.e. s) or the sink (i.e. t) of B.

Definition A.7 (Simplified ROOBP) If we remove all redundant vertices from B, then we get
B′, which we call the simplified version of B. We call this procedure simplification, denoted by
B′ ← Simplify(B).

Since our simplification process relies only on deleting redundant vertices, we know that an ROOBP
and its simplified version compute the same function.

Now, we assume B is w-sparse and simplified, and that after the simplification process it is still
of width w; that is, there still exists l ∈ {0, ..., n} such that there are w (non-redundant) vertices
in Ll. Therefore, we cannot apply Aw−1

δ′,η′ on B. However, we show there exist pairs of connected
vertices (u, v) that ”dissect” B to sub-ROOBPs such that B[s, u] and B[v, t] are narrower, and thus
applicable for Aw−1

δ′,η′ (we select u and v to be relatively close and neglect the effect of B[u, v]).

Definition A.8 (Narrowing Pair) Let (u, v) be a pair of vertices in B such that u is before v.
Then (u, v) is considered a narrowing pair if after simplification, B[s, u] and B[v, t] are of width
at most w − 1.

However, this is not enough for us, since the distance of x from B[s, u] and B[v, t] might not reflect
the distance of x from B. Hence, we want to find pairs that do reflect the aforementioned distance.

Definition A.9 (δ-Approximating Pair) Let (u, v) be a pair of vertices in B such that u is
before v. Then (u, v) is considered a δ-approximating pair for B if performing distance ap-
proximation for B is reducible to performing distance approximation for B[s, u] and B[v, t]. That
is:

∆(x,B[s,u])+∆(x,B[v,t])
n ∈ (ε± δ)

In Section A.3.2 we show how we can achieve this by requiring that u an v are relatively close and
reside on the s ⇝ t path associated with the accepting input that minimizes the distance to the
input x.

Note: We will allow u = s (resp., v = t), and in this case B[s, u] (resp., B[v, t]) is of length
0. This is not problematic for us, because this implies that the sub-ROOBP is of width 1 and
always accepts its input (the empty string). Thus, its distance approximation is always ε̂ = 0.

If we find a pair in B that is both narrowing and δ-approximating, then we can perform dis-
tance approximation for B: Apply Aw−1

δ′,η′ on B[s, u] and B[v, t], and output the value specified in
Definition A.9.

Definition A.10 (δ-Good Pair) Let (u, v) be a pair of vertices in B such that u is before v.
Then (u, v) is considered a δ-good pair for B if it is both narrowing and δ-approximating.

In Section A.3.2 we show how to find a δ-good pair in a simplified w-sparse ROOBP, and in Section
A.3.3 we show how to find one efficiently.
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A.3.2 Finding of a δ-Good Pair

We first describe a method to find narrowing pairs in a simplified, w-sparse B. We then describe
a method to find δ-approximating pairs in any ROOBP. Then, we show how to combine these
methods to find at least one pair that is both narrowing and δ-approximating (i.e. a δ-good pair).

Finding Narrowing Pairs We first observe the following: For any ROOBP B of width w > 1,
there is a trivial narrowing pair: (s, t), since B[s, s] and B[t, t] are both of width 1. However, we
show that in a simplified, w-sparse B, we can also find non-trivial narrowing pairs. Moreover,
we find narrowing pairs that are relatively close (we need to show there exist a pair that is also
δ-approximating).

We continue with showing the following two claims, which state that a sub-ROOBP of B is
narrower then B, if some assumption regarding its start or end vertex holds.

Claim A.11 Let v ∈ Ll be a vertex in an ROOBP B. If v is not w-connected to any level in
B[s, v] (resp., B[v, t]), then the simplified B[s, v] (resp., B[v, t]) is of width at most w − 1.

Proof: If v is not w-connected to some Ll′ in B[s, v] (resp., B[v, t]), then either there’s a redundant
vertex in Ll′ , or Ll′ is already of width at most w−1. Therefore, after simplification, Ll′ is of width
at most w − 1.

Claim A.12 Let v ∈ Ll be a vertex in a w-sparse B. If v is backwards-w-connected to some level
Ll′, then the simplified B[v, t] is of width at most w − 1.

Proof: We claim that v isn’t w-connected to any level in B[v, t]: If there is a level Ll′′ in B[v, t]
(i.e. l′′ > l) such that v is w-connected to Ll′′ , then it means that Ll′ and Ll′′ are w-connected
(see Figure 2), which contradicts the hypothesis that B is w-sparse. Therefore, by Claim A.11, the
simplified B[v, t] is of width at most w − 1.

Figure 2: Ll′ and Ll′′ are w-connected via v

We now define the set P as the set of all vertices that are backwards-w-connected to some level.
We use P to find non-trivial narrowing pairs in a w-sparse, simplified B as follows.

Claim A.13 Let B be a w-sparse ROOBP of width w. Let (u, v) be a pair of vertices in B such
that u is before v. If u /∈ P and v ∈ P , then (u, v) is a narrowing pair in B.

Proof: Since u /∈ P , u is not backwards-w-connected to any level, thus not w-connected to any
Ll in B[s, u]. By Claim A.11, the simplified B[s, u] is of width at most w − 1. Since v ∈ P , v is
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backwards-w-connected to some level. By Claim A.12, the simplified B[v, t] is of width at most
w − 1.

Now, if we assume B is simplified, then Claim A.13 is consistent with (s, t) being a narrowing pair
: s /∈ P , since there is no level before s, and t ∈ P , since B is simplified and of width w, so t must
be backwards-w-connected to some level in B. However, using Claim A.13 and the following claim,
we can find non-trivial narrowing pairs in B.

Claim A.14 Let B be an ROOBP of width w. Let v ∈ Ll such that v ∈ P . Then, for any v′ ∈ Ll′

that is backwards-connected to v, we have that v′ ∈ P .

Proof: Let v′ ∈ Ll′ that is backwards-connected to v. Since v ∈ P , we know v is backwards-w-
connected to some level Ll

′′ . Let v′′ ∈ Ll
′′ . Then, v′′ is connected to v, so there exists a v′′ ⇝ v ⇝ v′

path in B. Therefore, v′ is connected to each of the w vertices in Ll′′ (see Figure 3), and so v′ ∈ P .

Figure 3: v′ is w-connected to Ll′′

We can now describe our method for finding narrowing pairs in a simplified, w-sparse B: Since
t ∈ P , we know that P is not empty. So let v∗ ∈ Ll∗ be a vertex in P such that l∗ is minimal (i.e.
there is no vertex u ∈ Ll′′ in P such that l′′ < l∗). Then, for any u before v∗, and for any v that is
backwards-connected to v∗, we have that (u, v) is a narrowing pair. Note that by the minimality
of l∗ we know that u /∈ P and by Claim A.14 we know that v ∈ P . Hence, by Claim A.13, (u, v) is
a narrowing pair.

Note that at least one of the narrowing pairs in B found by the method above are in adjacent
levels, thus are not trivial. We use a similar observation later in this section to find narrowing pairs
that are relatively close, and thus can be δ-approximating.

Finding δ-Approximating Pairs We start with the following observation: Let x′ ∈ {0, 1}n
be an accepting input that minimizes the distance to the input x; that is, ∆(x′, B) = 0 and
∆(x,B) = ∆(x, x′) = εn. Let (u0 = s, u1, ...un−1, un = t) be the s ⇝ t path associated with x′.
Since the distance of x to B is defined by the distance of x to x′, it holds that for any 0 ≤ i < j ≤ n:

∆(x,B) = ∆(x,B[s, ui]) + ∆(x,B[ui, uj ]) + ∆(x,B[uj , t])

Therefore, any pair (ui, uj) along the path such that 0 ≤ j − i ≤ δn is a δ-approximating pair: We
can just omit the distance that B[ui, uj ] contributes, because it is at most δ (in relative distance).
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Finding δ-Good Pairs We now combine the two methods shown in Sections A.3.2 to find δ-good
pairs in a simplified, w-sparse ROOBP B.

As shown in Section A.3.2, any pair (ui, uj) along the path associated with x′ (an accepting
input that minimizes the distance to the input x) such that 0 ≤ j − i ≤ δn is a δ-approximating
pair. We also know that s = u0 /∈ P and t = un ∈ P . Thus we can look at the minimal j∗ > 0 such
that uj∗ ∈ P , and we get:

� For any i < j∗, by the minimality of j∗, we know that ui /∈ P .

� For any j ≥ j∗, uj is backwards-connected to uj∗ , since they are part of the path associated
with x′. By Claim A.14, uj ∈ P .

Then, by Claim A.13, the simplified B[s, ui] and B[uj , t] are both of width at most w−1. Restricting
i and j such that j ≤ i + δn, which means that (j − δn) ≤ i < j∗ ≤ j, will give us narrowing,
δ-approximating pairs (which are δ-good pairs).

A.3.3 The Actual Algorithm

In Section A.3.2, we show how to find a δ-good pair in a w-sparse, simplified B. Recall that if
we find a δ-good pair in B, we can perform distance approximation for B: We apply Aw−1

δ′,η′ on
B[s, u] and B[v, t], and output the value specified in Definition A.9. However, since we don’t know
x′ (since our algorithm cannot look at the entire input x), we can’t use the method described in
Section A.3.2 for finding a δ-good pair. In this section, we show how we can efficiently find a
δ-good pair, and use it to present our δ-approximation algorithm for a w-sparse ROOBP.

We can try to overcome the above problem by using the following observation: In every s⇝ t
path, associated with any x′′, there are narrowing pairs (ui, uj) that reside on this path, such that
(j − δn) ≤ i < j. The method to finding them is similar to the one described in in Section A.3.2.
For every such pair, we know that ∆(x, x′′) ≥ ∆(x, x′), and therefore:

∆(x,B) ≤ ∆(x,B[s, ui]) + ∆(x,B[ui, uj ]) + ∆(x,B[uj , t])

Thus, we can apply the reduction for such a pair in every possible path from s to t, and since
we also try a pair which belongs to x′, we can just choose the minimal value obtained by the
reduction. But still, we can’t use the above method, since there could be too many such paths.

Our solution is to restrict the vertex pairs to be in small number of special levels that are of
distance δn from each other. Instead of choosing a narrowing pair for each s⇝ t path, we choose
every possible pair in these levels such that the pair (u, v) is:

� Narrowing, so simplifying B[s, u] and B[v, t] yields width w − 1.

� Connected, so (u, v) is part of some s⇝ t path.

� In adjacent special levels, so (u, v) will be at distance at most δn.

Since all paths go through all levels, the above guarantees that we choose at least one pair for each
path. Specifically, we show that we choose at least one δ-good pair in the path associated with
x′. Since the number of special levels is small (and w is constant), we can afford to perform the
reduction to all possible pairs, and output the minimum value.

Indeed, we might ”pay” in distance per the deviation that Aw−1
δ′,η′ may have (in the distance

approximation of x from B[s, u] and B[v, t]). Therefore, we set a different deviation parameter (i.e.

32



δ′) for the recursive calls than our input parameter, δ. In addition, we want that with probability
at least 1 − η, all the calls to Aw−1

δ′,η′ are successful (i.e. the distance approximation for each sub-

ROOBP provided by Aw−1
δ′,η′ does not deviate by more than δ′). Therefore, we set a different error

probability parameter (i.e. η′) for the recursive calls than our input error probability parameter,
η. Details follow.

Algorithm A.15 δ-Distance Approximation Algorithm for w-sparse ROOBP

� Input (Query Access): x ∈ {0, 1}n

� Massive Parameter: A w-sparse, simplified B of length n, width at most w, source vertex
s and sink vertex t

� Deviation Parameter: δ > 0

� Error Probability: η > 0

1. Define δ′ = δ
2 and η′ = η·δ′

w2 = η·δ
2w2 . Add (u, v) to a list of pairs, S, if the following holds:

� There exists i ∈ [ 1δ′ ] such that u ∈ L(i−1)δ′n and v ∈ Liδ′n.

� (u, v) is a narrowing pair (determining whether a pair is narrowing can be done using
Algorithm A.37, see more details in Section A.7).

� u is connected to v.

2. For every (u, v) ∈ S, do the following:

(a) Approximate the distance of x from B[s, u], denoted ε̂1, by applying Aw−1
δ′,η′ on the input

x, with the the simplified B[s, u], deviation parameter δ′ and error probability η′.

(b) Approximate the distance of x from B[v, t], denoted ε̂2, by applying Aw−1
δ′,η′ on the input

x, with the the simplified B[v, t], deviation parameter δ′ and error probability η′.

(c) Calculate the weighted distance approximation:

i. Define l1 = (i− 1)δ′n as the length of B1, and l2 = n− iδ′n as the length of B2.

ii. ε̂(u,v) =
ε̂1l1+ε̂2l2

n .

3. Return min {ε̂(u,v) : (u, v) ∈ S}

Remark A.16 The conditions of Step 1 depend only on the structure of B and therefore can be
tested without any query access to the input x. Thus, the query complexity of Algorithm A.15
depends only on the query complexity of Aw−1

δ′,η′ and on the number of recursive calls we make to

Aw−1
δ′,η′ , which is bounded by O( w

δ2
).

We show the algorithm above is a δ-approximation algorithm for a w-sparse and simplified ROOBP:
First, since every pair (u, v) ∈ S is narrowing, we can indeed apply Aw−1

δ′,η′ on B[s, u] and B[v, t].

Then, we observe that we only use randomization via the recursive calls to Aw−1
δ′,η′ . Since we call

Aw−1
δ′,η′ for at most w2

δ′ times, and since η′ = δ′·η
w2 , we get that with probability at least 1 − η, all

the calls to Aw−1
δ′,η′ are successful (i.e. provide distance approximation for each sub-ROOBP with

deviation of at most δ′). Therefore, all we have left is to show that, assuming all the calls to Aw−1
δ′,η′

are successful, the approximation that Algorithm A.15 provides deviates by at most δ.
We claim that one of the pairs in S is a δ′-good pair: Let (u0 = s, u1, ...un−1, un = t) be the

s ⇝ t path associated with x′ (an accepting input that minimizes the distance to the input x).
Recall that in Section A.3.2, we showed the following:
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� There exists minimal j∗ > 0 such that uj∗ ∈ P (on the path associated with x′).

� Any (ui, uj) such that i < j∗ ≤ j and (j − δ′n) ≤ i < j is a δ′-good pair.

Now, let i ∈ {0, ..., n} be the minimal such that j∗ ≥ iδ′n. If j∗ = iδ′n, then the pair (u(i−1)δ′n, uiδ′n)
is a δ′-good pair in S. Else, the pair (uiδn, u(i+1)δ′n) is a δ′-good pair in S. Then, for this pair, we
have:

∆(B, x) = ∆(B[s, u], x) + ∆(B[u, v], x) + ∆(B[v, t], x)

Since any other pair (u, v) ∈ S is connected, there exists an s⇝ u⇝ v ⇝ t path in B. Therefore:

∆(B, x) ≤ ∆(B[s, u], x) + ∆(B[u, v], x) + ∆(B[v, t], x)

Thus, by taking the minimal approximated distance obtained in Step 2, our approximation de-
viates from ε only by the following additive factors:

1. The deviation in the approximation of Aw−1
δ′,η . By the correctness of Aw−1

δ′,η this deviation is at
most δ′.

2. The deviation due the fact that we don’t approximate ∆(B[u, v], x). Since the distance
between u and v is δ′n, the deviation is bounded by δ′.

Hence, our approximation deviates by a factor of at most 2δ′ = δ. We conclude with the following
theorem, that summarizes what we achieved in this section.

Theorem A.17 δ-distance-approximation for w-sparse ROOBPs with error probability η reduces
to O(w

2

δ ) calls to δ
2 -distance-approximation for ROOBPs of width w − 1 with error probability

O( δ
2w2 · η).

A.4 δ-Distance-Approximation Algorithm for a (α, β, w)-locally-sparse ROOBP

In this section, we present a relaxation of the sparsity requirement (see Definition A.19). We show
that we can still perform distance approximation for an ROOBP that satisfies the relaxed sparsity
requirement, by decomposing the ROOBP to sub-ROOBPs, and performing distance approximation
for each sub-ROOBP using Algorithm A.15 as a black box.

In Section A.5, we decompose any ROOBP to sub-ROOBPs that satisfy the relaxed requirement,
and perform distance approximation for each sub-ROOBP using the algorithm we present in this
section.

We start with definitions related to the relaxed sparsity requirement.

Definition A.18 (d-Close Levels) Let B be an ROOBP. We say that Ll and Ll′ are d-close if
|l − l′| < d.

Our relaxed notion of sparsity is to require sparsity only locally. In addition, we allow some slackness
in the first levels of the ROOBP. We need this slackness in Section A.5.1, where we show that we
can decompose any ROOBP to sub-ROOBPs that satisfy the relaxed sparsity requirement.

Definition A.19 ((α, β, w)-locally-sparse ROOBP) Let B be an ROOBP of width w and length
n. Then B is considered (α, β, w)-locally-sparse if every pair of αn-close levels (Ll, Ll′) with
l, l′ > βn is not w-connected.
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In the δ-approximation algorithm that we present in this section, we require that α = Ω(δ2), to
make sure the locality (defined by α) is not too granular (see Section A.5.1). In addition, we require
that β ≤ δ

2 , to make sure we can neglect the effect of the first βn levels of B (in case they don’t
follow the local-sparsity requirement).

We continue with defining notions related to decomposing an ROOBP. We first present a general
notion of a decomposition.

Definition A.20 (Decomposition and Dissection Levels) Let B be an ROOBP. A decom-
position of B is a set of sub-ROOBPs of B, denoted B = (B1, ..., Bh), such that:

� The source of B1 is s, and the sink of Bh is t.

� For every i ∈ [h], the source and sink of Bi are connected.

� For every i ∈ [h − 1], the sink of Bi and the source of Bi+1 are in the same level. That is,
the sub-ROOBPs in the set are consecutive.

For every i ∈ [h], the level of the sink of Bi is called the dissection level of Bi.

We continue by defining a special notion of a decomposition.

Definition A.21 (Connected Decomposition) We say that a decomposition B = (B1, ..., Bh)
is connected if for every i ∈ [h− 1] the sink of Bi equals the source of Bi+1. That is, the sources
and sinks of all Bi’s reside on an s⇝ t path in B.

In this section, all decompositions we use are connected. This is because we use the decompositions
to perform distance approximation (i.e. we perform distance approximation to the ROOBP by
performing distance approximation to the sub-ROOBPs in the decomposition), and we can ensure
we don’t lose distance by using a connected decomposition. In contrast, in Algorithm A.33, we
use a decomposition that isn’t necessarily connected. In Section A.5.2, we show how to avoid the
condition of having the decomposition connected by using the fact that every dissection level (but
the last) is backwards-w-connected to a relatively close level. We show that this implies that the
decomposition is not far in distance from some connected decomposition (see Claim A.31 for more
details).

Now, we observe that if B is (α, β, w)-locally-sparse, we can construct a decomposition of B,
denoted B′ = (B′

1, ..., B
′
h), with h = O( 1α) = O( 1

δ2
), such that:

� B′
1 contains the first βn levels of B. That is, the dissection level of B′

1 is Lβn.

� For each i ∈ {2, ..., h}, B′
i is of length αn. That is, the dissection level of B′

i is Lβn+(i−1)αn.

Then, for every i ∈ {2, ..., h}, B′
i is w-sparse regardless of the specific source and sink we choose.

This is because every level of B′
i is after Lβn, and every pair of levels in B′

i is αn-close (since B′
i is

of length αn). Thus, for an (α, β, w)-locally-sparse B, every pair of levels in B′
i is not w-connected.

Now, we want to define the source and sink of every B′
i ∈ B′ such that performing distance ap-

proximation to B is reducible to performing distance approximation for every Bi ∈ B′. To achieve
this, we can define the source and sink of every B′

i according to the s⇝ t path associated with x′, an
accepting input that minimizes the distance to the input x. That is, let (u0 = s, u1, ...un−1, un = t)
be the s ⇝ t path associated with x′. We define B′

1 = B[s, uβn], and for every i ∈ {2, ..., h}, we
define B′

i = B[uβn+(i−2)αn, uβn+(i−1)αn]. Since the distance of x to B is defined by the distance of
x to x′, we get that:
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∑
i∈[h]∆(x,B′

i) = ∆(x,B)

Therefore, if we assume that β ≤ δ
2 and α ≥ poly(δ), we can perform distance approximation

for B: For every i ∈ {2, ..., h}, we perform distance approximation for the simplified B′
i using

Algorithm A.15, and we output the average of all distance approximations. Since β ≤ δ
2 , we can

afford to neglect the effect of B′
1, and since h = O( 1α) = O( 1

δ2
), we can afford to perform distance

approximation for all the other sub-ROOBPs.
We still face a similar issue we faced in Section A.3.3: We cannot construct B′ since we don’t

know x′.
We can overcome this problem by using the following observation: For every accepting input

x′′, we can construct a new connected decomposition by changing the source and sink of every B′
i

according to the accepting path associated with x′′, and get a new decomposition, (B′′
1 , ..., B

′′
h).

Then, since we don’t change the decomposition’s dissection levels, every B′′
i is w-sparse. Since

∆(x, x′′) ≥ ∆(x, x′), we get that: ∑
i∈[h]∆(x,B′′

i ) ≥ ∆(x,B)

Thus, we can perform distance approximation for every connected decomposition (with the same
dissection levels) constructed according to every accepting input. Since we also try a connected
decomposition constructed according to x′, we can just choose the minimal value obtained by the
reduction. Now, even though there could be many such paths, the number of sub-ROOBPs in all
possible connected decompositions (with the same dissection levels) is upper-bounded by w2h: For
every dissection level, there are at most w2 possible source-sink pairs for the sub-ROOBP with this
dissection level.

Indeed, we might ”pay” in distance per the deviation that A.15 may have. Therefore, we set
a different deviation parameter (i.e. δ′) for the recursive calls than our input parameter, δ. In
addition, we want that with probability at least 1−η, all the calls to Algorithm A.15 are successful
(i.e. the distance approximation for each sub-ROOBP provided by Algorithm A.15 does not deviate
by more than δ′). Therefore, we set a different error probability parameter (i.e. η′) for the recursive
calls than our input error probability parameter, η. Details follow.

Algorithm A.22 δ-Distance Approximation Algorithm for (α, β, w)-locally-sparse ROOBP

� Input (Query Access): x ∈ {0, 1}n

� Massive Parameter: An (α, β, w)-locally-sparse B of length n, width at most w, source
vertex s and sink vertex t.

� Deviation Parameter: δ > 0

� Error Probability: η > 0

� Additional Parameters: α and β such that α = Ω(δ2) and β ≤ δ
2 .

1. Define δ′ = δ
2 and the dissection levels (Lβn, Lβn+αn, Lβn+2αn, ..., Ln) = (Lr1 , ..., Lrh).

2. Add B[u, v] to a list of sub-ROOBPs, R, if the following holds:

� There exists i ∈ {2, ..., h} such that u ∈ Lri−1 and v ∈ Lri.
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� u is connected to v.

3. Define η′ = η·α
w2 , and for every B[u, v] ∈ R, approximate the distance of x from B[u, v] by

applying Algorithm A.15 on the input x, with the simplified B[u, v], deviation parameter δ′

and error probability η′.

4. For every connected decomposition (B1, ..., Bh) such that B2, ..., Bh ∈ R, let
∑

i≥2 ε̂i be the
sum of the distance approximations for (B2, ..., Bh) obtained in the previous step. Return
the minimum of all such sums.

Remark A.23 The conditions of Step 2 depend only on the structure of B and therefore can be
tested without any query access to the input x. Thus, the query complexity of Algorithm A.22
depends only on the query complexity of Algorithm A.15 and on the number of recursive calls we
make to Algorithm A.15, which is bounded by w2(h− 1) = w2

α = O(w
2

δ2
).

Remark A.24 We can efficiently calculate the minimum sum in Step 4 as follows: We construct
a graph G = (V,E) with V being all the vertices of B in the levels (L0, Lr1 , ..., Lrh), and u, v ∈ V
are connected in G with edge-weight ε̂u,v if we perform distance approximation for B[u, v] in Step 3
and it results in ε̂u,v. In addition, s is connected to every v ∈ Lr1 with edge-weight 0. Then, every
set B2, ..., Bh ∈ R considered in Step 4 has a corresponding s ⇝ t path in G, and the weight of
the s ⇝ t path equals the sum of distance approximations for B2, ..., Bh. Thus, we can output the
weight of the shortest s⇝ t path in G.

We now show the algorithm above is a δ-approximation algorithm for a (α, β, w)-locally-sparse
ROOBP:

We observe that we only use randomization via the recursive calls to Algorithm A.15. Since
we call Algorithm A.15 for at most w2

α times, and since η′ = η·α
w2 , we get that with probability at

least 1− η, all the calls to Algorithm A.15 are successful (i.e. provide distance approximation with
deviation of at most δ′ for each sub-ROOBP). Therefore, all we have left is to show that, assuming
all the calls to Algorithm A.15 are successful, the approximation that Algorithm A.22 provides
deviates by at most δ.

Since in Step 4 we consider all possible connected decompositions (with the dissection levels
(Lr1 , ..., Lrh)), one of the sums belong to the connected decomposition constructed according to x′

(an accepting input which minimizes the distance to the input x). Thus, by taking the minimum
sum in Step 4, our approximation only deviates from ε by the following additive factors:

� The deviation in the approximation of Algorithm A.15. By the correctness of Algorithm A.15,
this deviation is at most δ′.

� The deviation due to the fact that we don’t approximate the first sub-ROOBP in the de-
composition. Since the length of the first sub-ROOBP is βn, the deviation is bounded by
β ≤ δ

2 = δ′.

Hence, our approximation deviates by a factor of at most 2δ′ = δ. We conclude with the following
theorem, that summarizes what we achieved in this section.

Theorem A.25 For β ≤ δ
2 and α = Ω(δ2), δ-distance-approximation for (α, β, w)-sparse ROOBPs

with error probability η reduces to O(w
2

α ) calls to δ
2 -distance-approximation for w-sparse ROOBPs

with error probability O( α
w2 · η).
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A.5 δ-Distance-Approximation Algorithm for an ROOBP of Constant Width

In this section, we present our main algorithm: a δ-distance-approximation algorithm for an
ROOBP B of constant width (see Algorithm A.33). In our main algorithm, we use Algorithm
A.22 to perform distance-approximation for not-too-many locally-sparse sub-ROOBPs of B. We
now explain how we choose these sub-ROOBPs.

We first construct a decomposition for B, denoted the final decomposition Bf , such that every
Bi ∈ Bf is (( δ2)

2, δ2 , w)-locally-sparse (see Definition A.19), and that δ-distance-approximation for B
reduces to δ-distance-approximation for all Bi ∈ Bf . We stress that in contrast to the decomposition
we use in Section A.4, the dissection levels of Bf are not predefined, and so the sub-ROOBPs in
Bf are not necessarily of the same size, and there might be many sub-ROOBPs in Bf . Moreover,
Bf is not necessarily connected. We show how to handle both issues in Sections A.5.3 and A.5.2,
respectively.

We note that the local sparseness of the sub-ROOBPs in the decomposition is dependent only
on the decomposition’s dissection levels, and not on the specific sources and sinks we choose (this
is because local sparseness only restricts pairs of w-connected levels, and the first and last levels
of every sub-ROOBP (after dissection) contains only the source and the sink, respectively, and
therefore are never part of a w-connected pair). Thus, we separate the construction of Bf to the
following two steps:

� In Section A.5.1, we choose the dissection levels of Bf . We allow ourselves to address Bf as
a decomposition already at this step, even though Bf is not a valid decomposition according
to Definition A.20 until we choose the source and sink for every sub-ROOBP in Bf ). This
is because the selection of the specific source and sink does not affect the local sparsity of a
sub-ROOBP. Then, we show that every Bi ∈ Bf is (( δ2)

2, δ2 , w)-locally-sparse.

� In Section A.5.2, we choose the specific source and sink for each sub-ROOBP in Bf (according
to the dissections levels we choose in the previous step) such that we don’t lose too much in
distance. That is, δ-distance-approximation for B reduces to δ-distance-approximation for all
Bi ∈ Bf .

Since the number of sub-ROOBPs in Bf might be large, we cannot afford to perform distance
approximation for all the sub-ROOBPs in Bf . To solve this, in Section A.5.3, we show how to
choose a small set of sub-ROOBPs (taken from Bf ) such that the aforementioned reduction still
holds.

Lastly, in Section A.5.4, we use the above to present our main algorithm: a δ-distance-approximation
algorithm for an ROOBP of constant width.

A.5.1 Choosing the Dissection Levels of the Final Decomposition

In this section, we show how we choose the dissection levels L = (Lr1 , ..., Lrhf
) for Bf , such that

every Bi ∈ Bf is (( δ2)
2, δ2 , w)-locally-sparse (see Definition A.19). Indeed, for every Bi ∈ Bf , we

need to show that the local sparsity conditions for Bi apply (with respect to the length of Bi).

Remark A.26 Actually, we show that every Bi ∈ Bf that is not too small is (( δ2)
2, δ2 , w)-locally-

sparse. In the case that Bi is small, we can afford to perform distance approximation to Bi by
simply reading the entire input for Bi (see more details in Section A.5.4).

We choose the dissection levels L iteratively: we go through the levels ofB, (L0, ..., Ln), in iterations,
and in the l’th iteration, we decide whether Ll should be a dissection level for Bf based on some
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greedy condition. We start with presenting the condition for choosing the first dissection level,
Lr1 , and then we present the generalization for choosing any dissection level, Lri . We only prove
correctness for the case of the first dissection level, since the proof of the other levels is very similar.

Definition A.27 (γ-good Level) Let γ > 0. We say that Ll is γ-good if Ll is backwards-w-
connected to some γl-close level.

Now, assume Ll is the first γ-good level in B. Indeed, it must be that l > 1, because there is only
one vertex in L0 (the sink s), and therefore L1 cannot be backwards-w-connected to L0. Moreover,
it must be that l > 1

γ , since no level is w-connected to itself. In the next claim, we use Ll as the

dissection level of B1, and we assume that l > 1
γ2 (to make sure that any level Ll′ after Lγl has

l′ > 1
γ ). Then, we use the fact that every Ll′ in the range γl < l′ < l is not γ-good, to show that

B1 is (γ2, γ, w)-locally-sparse. Details follow.

Claim A.28 Let Ll be the first level of B that is γ-good, and assume l > 1
γ2 . If we choose the

dissection level of B1 as Ll, then B1 is (γ2, γ, w)-locally-sparse.

Assuming Claim A.28, we can choose γ = δ
2 , and B1 is (( δ2)

2, δ2 , w)-locally-sparse.

Proof: First, we observe that Definition A.19 depends on the length of the ROOBP, and in
our case the length of B1 is l (since we choose Ll as the dissection level of B1). That is, to
show that B1 is (γ2, γ, w)-locally-sparse, we need to show that for every pair Ll′ , Ll′′ such that
γl < l′′ < l′ < l, if Ll′ and Ll′′ are w-connected, then Ll′ and Ll′′ are not γ2l-close. But this is true
by the fact that we don’t choose Ll′ as the dissection level of B1. Then, we know that Ll′ is not
γ-good, which by Definition A.27 implies that Ll′ is not backwards-w-connected to any γl′-close
level. Specifically, if Ll′ is backwards-w-connected to Ll′′ , then l′ − l′′ ≥ γl′ > γ2l, and Ll′ and Ll′′

are not γ2l-close.

We now generalize Claim A.28 to choose the dissection level for every Bi ∈ Bf : We set Lr0 = L0,
and we assume we already chose dissection levels (Lr1 , ..., Lri−1). Then, if we choose Ll as the i’th
dissection level for some l > ri−1, then the length of Bi is l − ri. This leads us to the following
claim.

Definition A.29 ((γ, ri−1)-good Level) Let γ > 0. We say that Ll is (γ, ri−1)-good if Ll is
after Lri−1, and Ll is backwards-w-connected to some γ(l − ri−1)-close level.

Claim A.30 Let Ll be the first level of B that is (γ, ri−1)-good, and assume l − lri−1 > 1
γ2 . If we

choose the dissection level of Bi as Ll, then Bi is (γ2, γ, w)-locally-sparse.

Thus, to choose the dissection levels of Bf , we do the following: We iterate through l ∈ {0, ..., n},
and for i ≥ 1, we choose Lri as the first level which is ( δ2 , ri−1)-good. Then, by Claim A.30,

every (not too small) Bi ∈ Bf is (( δ2)
2, δ2 , w)-locally-sparse. Lastly, we add Ln = Lhf

as the last
dissection level of Bf , to make sure Bf is a valid decomposition of B. Then, all levels of the last
sub-ROOBP Bhf

are not ( δ2 , hf )-good. Using a similar argument to the one we made in Claim

A.28, this sub-ROOBP is either relatively small, or is (( δ2)
2, δ2 , w)-locally-sparse.

A.5.2 Choosing the Sources and Sinks of the Final Decomposition

Let L = (Lr1 , ..., Lrhf
) be the dissection levels we choose for Bf according to the method described

in Section A.5.1. That is, let L be the dissection levels we get by choosing the i’th dissection level
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as the first level that is ( δ2 , ri−1)-good, and add Lrhf
= Ln to L. Since we choose the dissection

levels according to the structure of B, there could be many dissection levels in L. Thus, we cannot
afford to choose the source and sinks for all sub-ROOBPs in Bf . To solve this, we show that we
can choose the source and sink of each Bi ∈ Bf independently. That is, for i ̸= j, the source and
sink selection for Bi is not dependent on the source and sink selection for Bj .

Specifically, for each Bi ∈ Bf , we choose the source and sink that yields the minimal distance of
x from Bi. In Claim A.31, we show a lower bound for the distance of x from all the sub-ROOBPs in
Bf . That is, we show that, although the decomposition that we choose is not necessarily connected,
we still don’t lose too much in distance of x from B.

The high level idea is as follows: by the way we constructed L, we know that for every i ∈ [hf−1],
the dissection level of Bi is backwards-w-connected to a relatively-close level (relatively to the length
of Bi). This implies that the possible sinks of Bi are interchangeable: That is, we can change the
sink of Bi to any other sink in that level without paying too much in distance. Specifically, we
show that we can change the sink of Bi to the source of Bi+1, and get a new sub-ROOBP B′

i, such
that the distance of B′

i from x is not ”much” more than the distance of Bi from x. Then, if we do
so for every Bi (but the last), we get that (B′

1, ..., B
′
hf−1, Bhf

) is a connected decomposition (see

Figure 4). Since any connected decomposition is of distance at least ε from x, we know that our
original decomposition, Bf , cannot be too close to x. Details follow.

Claim A.31 If for every Bi ∈ Bf , we choose the source and sink that yields the minimal distance
of x from Bi, then: ∑

i ∆(x,Bi)
n ≥ ε− δ

2

Proof: For i ∈ [hf − 1], we make the following notations:

� Let uri−1 ∈ Lri−1 and vri ∈ Lri be the source and sink that yields the minimal distance of x
from Bi.

� Let xmin
i be an accepting input for Bi which minimizes the distance to the input x

� Let Pmin
i be the uri−1 ⇝ vri path associated with xmin

i .

� Denote the length of Bi by ρi = ri − ri−1.

By the way we construct L, we know that the dissection level of Bi is backwards-w-connected to
some δ

2ρi-close level, denoted Lr′i
. This means that any vertex in Lr′i

is connected to any vertex

in Lri . Specifically, denote the vertex in Pmin
i that resides in Lr′i

as wr′i
, and we get that wr′i

is
connected to uri (the source of Bi+1). Therefore, there exists a uri−1 ⇝ wr′i

⇝ uri path, denoted

P ′min
i , that is different from Pmin

i only in the last ri − r′i ≤ δ
2ρi steps (at most). Denote the input

associated with P ′min
i as x′min

i . Then, we can define a new sub-ROOBP B′
i = B[uri−1 , uri ], for

which x′min
i is an accepting path. Thus, by the triangle inequality, we get:

∆(x,Bi) = ∆(x, xmin
i ) ≥ ∆(x, x′min

i )−∆(xmin
i , x′min

i ) ≥ ∆(x,B′
i)− δ

2ρi

If we do so for every Bi ∈ Bf (but the last), we get that (B′
1, ..., B

′
h−1, Bh) = (B′

1, ..., B
′
h) is a

connected decomposition, and so:∑
i
∆(x,Bi)

n ≥
∑

i
∆(x,B′

i)−
δ
2
ρi

n ≥
∑

i
∆(x,B′

i)
n − δ

2 ≥ ε− δ
2
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Figure 4: We can change the sink of every sub-ROOBP to the source of the next sub-ROOBP and
get a connected decomposition, without paying too much in distance.

Remark A.32 Indeed, for every Bi, we don’t actually know which source and sink yield the mini-
mal distance from x. However, we can approximate it by using Algorithm A.22 to perform distance
approximation for every possible source-sink pair, and choose the one that yields the minimal dis-
tance approximation.

A.5.3 Choosing sub-ROOBPs from the Final Decomposition

In the previous sections we show that every (not too small) Bi ∈ Bf is (( δ2)
2, δ2 , w)-locally-sparse,

so we can use Algorithm A.22 to perform distance approximation for it. In addition, we show that
distance approximation for B reduces to distance approximation for every Bi ∈ Bf . The problem
is there could be many sub-ROOBPs in Bf , so we cannot afford to perform distance approximation
for every Bi ∈ Bf .

Assuming our error probability parameter is η, we solve this by choosing m = O(
log( 1

η
)

δ2
) sub-

ROOBPs from Bf with probability proportional to their length, and performing distance approxi-
mation for each of the chosen sub-ROOBPs (with every possible source and sink) using Algorithm
A.22, with error probability parameter η

2mw2 . Then, for each sub-ROOBP, we take the minimal
distance approximation obtained, and we output the average for all the chosen sub-ROOBPs (here,
we take a simple average without length normalization, since the normalization is reflected in the
length-proportional probability).

The above guarantees that with probability at least 1− η
2 , all the calls to Algorithm A.22 are

successful (i.e. for each sub-ROOBP, the distance approximation provided by Algorithm A.22 does
not deviate by more than δ′). Then, assuming all the calls are successful, we can use Chernoff
Bound to show that with probability at least 1− η

2 , the average distance approximation for all the
chosen sub-ROOBPs is a δ-distance approximation for B, and we get an overall success probability
of 1− η.

A.5.4 The Actual Algorithm

Let B be an ROOBP of width w. In Sections A.5.1, A.5.2 and A.5.3, we show that if we do the
below steps:

� Choose Bf ’s dissections levels as (Lr1 , ..., Lrhf−1
, Ln), such that for every i ∈ [hf − 1], Lri is

the first level that is ( δ2 , ri−1)-good.
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� Define the source and sink of every Bi ∈ Bf as the pair which yields the minimal distance of
x from Bi.

� Independently choose m = O(
log( 1

η
)

δ2
) sub-ROOBPs from Bf with probability proportional to

their length.

Then, if we output the average distance of all sub-ROOBPs chosen above, we get a δ-distance
approximation for B. If Bi ∈ Bf is relatively small (i.e. ρi ≤ O( 1

δ2
) where ρi is the length of Bi),

then we can afford to read the entire input for Bi and compute the exact distance for the pair
which yields the minimal distance from Bi, whereas if ρi > O( 1

δ2
), we can use Algorithm A.22 to

approximate the distance for each source and sink, and choose the source and sink which yield the
minimal distance approximation for Bi.

Indeed, we might ”pay” in distance per the deviation that Algorithm A.22 may have. Therefore,
we set a different deviation parameter (i.e. δ′) for the recursive calls than our input parameter, δ.
In addition, as explained in Section A.5.3, we need to set a different error probability parameter
(i.e. η′) for the recursive calls than our input error probability parameter, η. Details follow.

Algorithm A.33 δ-Distance-Approximation Algorithm for an ROOBP of Constant Width

� Input (Query Access): x ∈ {0, 1}n

� Massive Parameter: An ROOBP B of length n, width at most w, source vertex s and sink
vertex t

� Deviation Parameter: δ > 0

� Error Probability: η > 0

1. Define δ′ = δ
3 , m = O(

log( 1
η
)

δ′2 ) = O(
log( 1

η
)

δ2
) and η′ = η

2mw2 .

2. Iterate through the levels of B, and (sequentially) define the dissection levels (Lr1 , ..., Lrhf−1
, Ln)

as follows: For every i ∈ [hf − 1], set Lri as the first level that is ( δ
′

2 , ri−1)-good. This can be
done using Algorithm A.37 (see more details in Section A.7).

3. For m times, independently choose at random an index i ∈ [hf ] with probability proportional
to Bi’s length (denoted ρi = ri − ri−1). Define the set of indices chosen as I = (i1, ..., im).

4. For every i ∈ I:

(a) For every u ∈ Lri−1 , v ∈ Lri, approximate the distance of x from B[u, v] as follows:

i. If ρi < O( 1
δ′2 ), then determine the distance of x from B[u, v] by reading the entire

input for B[u, v] (i.e. reading xi = x[ri−1, ri]) and finding the minimal distance of
xi from an accepting input for B[u, v] (i.e. finding the minimal ∆(xi, x

′
i) over all x′i

for which B[u, v](x′i) = 1).

ii. Otherwise (i.e. ρi ≥ O( 1
δ′2 )), apply Algorithm A.22 on the input x, with B[u, v],

deviation parameter δ′ and error probability η′.

(b) Define the minimum approximation obtained in the previous step as ε̂i.

5. Return 1
m

∑
i ε̂i
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Remark A.34 The conditions of Step 2 depend only on the structure of B and therefore can be
tested without any query access to the input x. Thus, the query complexity of Algorithm A.33
depends only on the query complexity of Step 4(a). The query complexity of Step 4(a)(ii) depends
only on the query complexity of Algorithm A.22 and on the number of recursive calls we make to

Algorithm A.22, which is bounded by m ·w2 = O(
w2log( 1

η
)

δ2
). The query complexity of Step 4(a)(i) is

upper bounded by m ·w2 ·O( 1
δ2
) = O(

w2·log( 1
η
)

δ4
). Since w > 1, and we make at least O(

log( 1
η
)

δ2
) queries

in the base algorithm, the number of queries of Step 4(a)(ii) dominates the number of queries of
Step 4(a)(i).

We show the algorithm above is a δ-approximation algorithm for an ROOBP of width w. Indeed,
as shown in Section A.5.1, every sub-ROOBP in Step 4(b) is (( δ

′

2 )
2, δ

′

2 , w)-locally-sparse, therefore
we can apply Algorithm A.22 on it. Then, our estimation only deviates from ε by the following
additive factors:

1. The deviation due to the fact that we use only m sub-ROOBPs. Then, since we choose I
independently, and we choose each i ∈ I with probability proportional to the sub-ROOBP’s
length, we can use Chernoff’s bound to show that with probability at least 1− η

2 , this deviation
is at most δ′.

2. The deviation due to the fact that we use Algorithm A.22 to find the minimal distance
approximation for every sub-ROOBP. As shown in Section A.5.3, since we use Algorithm A.22
with deviation parameter δ′ and error probability parameter η′, we know that with probability
at least 1 − η

2 our approximation for every sub-ROOBP deviates from the minimal-distance
one by at most δ′.

3. The deviation due to the fact that we use the minimal approximation in each sub-ROOBP
independently, out of every possible source-sink pair (this could cause us to under-estimate
the distance, since we don’t enforce the decomposition to be connected). By Claim A.31,
since we choose the parameter for the dissection levels as γ = δ′

2 , this deviation is at most δ′

2 .

Hence, with probability at least 1−η, our approximation deviates by a factor of at most δ′+δ′+ δ′

2 <
δ. We conclude with the following theorem, that summarizes what we achieved in this section.

Theorem A.35 δ-distance-approximation for ROOBPs of width w with error probability η reduces

to O(
w2log( 1

η
)

δ2
) calls to δ

3 -distance-approximation for (( δ6)
2, δ6 , w)-locally-sparse ROOBPs with error

probability O( δ2

w2·log( 1
η
)
· η).

A.6 Computational Complexity (of Algorithm A.33)

We start with calculating the query complexity of Algorithm A.33, which is our main complexity
measure. We show that it is independent of the length of the input x. Additionally, if we assume
the width of the ROOBP and the error probability are constant, we show that the query complexity
of Algorithm A.33 is polynomial in the distance parameter, δ.

Then, we finish with calculating the time complexity of Algorithm A.33, which we show is linear
in the input length, n.
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A.6.1 Query Complexity

We start by summarzing what we have showed so far:

� In Theorem A.35, we showed that δ-distance-approximation for ROOBPs of width w with

error probability η reduces to O(
w2log( 1

η
)

δ2
) calls to δ

3 -distance-approximation for (( δ6)
2, δ6 , w)-

locally-sparse ROOBPs with error probability O( δ2

w2·log( 1
η
)
· η).

� In Theorem A.25, we showed that δ-distance-approximation for (α, β, w)-sparse ROOBPs

(with α = O(δ2) and β ≤ δ
2) with error probability η reduces to O(w

2

α ) calls to δ
2 -distance-

approximation for w-sparse ROOBPs with error probability O( α
w2 · η).

� In Theorem A.17, we showed that δ-distance-approximation for w-sparse ROOBPs with error
probability η reduces to O(w

2

δ ) calls to δ
2 -distance-approximation for ROOBPs of width w−1

with error probability O( δ
2w2 · η).

Hence, δ-distance-approximation for ROOBP of width w with error probability η reduces to

poly(
log( 1

η
)·w

δ ) calls to δ
12 -distance-approximation for ROOBP of width w − 1 with error proba-

bility poly( δ
w·log( 1

η
)
) · η.

Letting Qw(δ, η) denote the query complexity of Algorithm A.33, we get that:

Qw(δ, η) = poly(
log( 1

η
)·w

δ ) ·Qw−1(
δ
12 , poly(

δ
w·log( 1

η
)
) · η)

Then, for every η′ used throughout the algorithm, we have η′ = O(( δ
log( 1

η
)·2w )

O(w) · η), thus we

get:

poly(
log( 1

η′ )·w
δ ) = poly(

log( 1
η
)·w

δ )

Thus, using Q1(δ, η) = O(
log( 1

η
)

δ2
), the solution to the recursion yields:

Qw(δ) =
∏

i∈[w] poly(
log( 1

η
)·w

δ/12i−1 ) = (
log( 1

η
)·2w

δ )O(w)

Indeed, if we assume η and w are constant, we get a query complexity that is polynomial in
1
δ .

A.6.2 Time Complexity

As shown in Section A.6.1, we call each of our algorithms for at most (
log( 1

η
)·2w

δ )O(w) times. Let us
review the computations that our algorithms make when initiated:

� In Algorithm A.15, we look at at most w2

δ pairs of distance δ · n, and for each pair, we check
whether the pair is connected and narrowing. Checking the connectivity of all pairs can be
done in time O(w2 · n), whereas checking whether all pairs are narrowing is done by using
Algorithm A.37, which gives time complexity of O(2w · w · n).

� In Algorithm A.22, we look at at most O(w
2

δ2
) pairs, of distance δ2 · n and for each pair, we

check whether the pair is connected. Again, checking the connectivity of all pairs can be done
in time O(w2 · n).
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� In Algorithm A.33, we use Algorithm A.37 to define the dissection levels of the final decom-
position, which gives time complexity of O(2w · w · n).

All the above yields time complexity of O(2w · w · n). We need to performs these computations
every time we call one of the algorithms above, since B might be different in every such call. Using
Algorithm A.37 (see Remark A.38), the overall time complexity of Algorithm A.33 is upper-bounded

by (
log( 1

η
)·2w

δ )O(w) · n.

A.7 Finding Significant Levels

Given a ROOBP B of width w, the task we face is to find, for every level Lj in B, a maximum i < j
such that Li has w vertices and each vertex in Li is connected to each vertex in Lj (or determine
that no such i exists).

The key observation is that it suffices to determine for each vertex v ∈ Lj a maximum i < j
such that Li has w vertices and each vertex in Li is connected to v (or determine that no such i
exists). Whenever such a level exists, we call it the significant level of v and denote it by σ(v); that
is, for v ∈ Lj , we denote by σ(v) the maximal i < j such that Li has w vertices and each vertex in
Li is connected to v. If no such level exists, we define σ(v) = 0. Our observation that it suffices to
determine the significant levels of all vertices is supported by the following claim.

Claim A.36 (significant levels and connectivity) Let i
def
= minv∈Lj{σ(v)} > 0. Then, every

vertex in Lj is connected to all vertices in Li.

Hence, the foregoing task is solved by finding, for each j ∈ [n], the value of minv∈Lj{σ(v)}.

Proof: Let i be as in the hypothesis, u ∈ Lj be such that σ(u) = i, and consider an arbitrary
v ∈ Lj such that σ(v) > i. Then, the paths connecting u to all vertices in Li pass through Lσ(v),
and so their prefixes can be used to connect v to all vertices in Li (i.e., for every x ∈ Li, the path
from u to x passes through some w ∈ Lσ(v), and yields a path from v to w and then to x).

We extend the notion of significant levels to subsets of vertices as follows. For a non-empty set
S ⊆ Lj , the significant level of S, denoted σ(S), is the maximum i < j such that Li has w vertices
and each vertex in Li is connected to some vertex in S (and σ(S) = 0 if no such i exists). Letting
t ∈ [n] be the minimum level that has w vertices, we find the significant levels of all subsets of all
levels j > t.

Algorithm A.37 (finding significant levels) We proceed in iterations from j = t+1 to j = n.
For j ∈ [t+ 1, n] and every non-empty S ⊆ Lj, we proceed as follows.

1. Determine the set S′ of vertices in Lj−1 that are connected to some vertices in S; that is, S′

is the maximal set such that for every v′ ∈ S′ there exists a vertex v ∈ S that has an incoming
edge from v′.

2. If |S′| = w, then let σ(S)← j − 1.

3. Otherwise (i.e., |S′| < w), let σ(S)← σ(S′).

It can be shown by induction on j that for every non-empty S ⊆ Lj the setting of σ(S) is indeed
correct. Evidently, the algorithm has running time O(n · 2w · w), whereas the results we seek are
the significant levels of all singletons.
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Remark A.38 We use the algorithm above in Algorithms A.15 and A.33, as follows:

� For Algorithm A.15, we can determine whether a pair (u, v) is narrowing by checking if
σ(u) = 0 and σ(v) > 0. This is immediate from Claim A.13.

� For Algorithm A.33, we can determine whether a level Lri is (γ, ri−1)-good (see Def A.29)
by checking that Lri has w vertices, and that minv∈Lri

{σ(v)} > ri − γ(ri − ri−1). This is
immediate from the key observation at the beginning of the current section.
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