
Consumable Data via Quantum Communication

Dar Gilboa∗ Siddhartha Jain† Jarrod McClean
Google Quantum AI UT Austin Google Quantum AI

Abstract

Classical data can be copied and re-used for computation, with adverse consequences eco-
nomically and in terms of data privacy. Motivated by this, we formulate problems in one-way
communication complexity where Alice holds some data and Bob holds m inputs, and he wants
to compute m instances of a bipartite relation on Alice’s data and each of his inputs. We call
this the asymmetric direct sum question for one-way communication. We give a number of
examples where the quantum communication complexity of such problems scales polynomially
with m, while the classical communication complexity depends at most logarithmically on m.

For these examples, data behaves like a consumable resource when the owner stores and
transmits it as quantum states. We show an application to a strategic data-selling game, and
discuss other potential economic implications.

1 Introduction

As statistical models fitted to large datasets are being usefully applied to problems in various fields
of science and engineering [13, 16, 38], the use of proprietary data for training or inference raises
concerns of data privacy and adequate compensation for the data owner. The destructive nature of
measurement in quantum mechanics has the potential to change this picture. In order to model this
scenario we introduce the asymmetric direct sum question in one-way communication complexity.
Informally we say a relation R has an asymmetric direct sum property for communication model M
if the communication complexity of computing R(x, y1) · R(x, y2) · . . . · R(x, ym) is Ω(m) times the
communication complexity of computing R(x, y). One would expect examples of this in quantum
communication when the state Alice sends to Bob undergoes destructive measurement, and may not
be copyable. As such, we refer to problems exhibiting this property as consumable data problems1.
To our knowledge, for communication complexity such a model is studied here for the first time.
The work of Hazan & Kushilevitz [26] is superficially similar but the crucial difference is that in
our work Alice receives only one input whereas in theirs Alice has m independent instances.

This consumable data property is easily seen to not hold for all relations when M corresponds
to deterministic one-way communication. Since Alice’s message depends only on x, Bob can copy
the message m times and solve each of his instances. On the other hand, we show that for quantum
communication there is a scaling of Ω̃(

√
m) for the Hidden Matching problem in Section 5.1.

We conjecture this can be improved to Ω(m) for m not too large. Our results in Sections 5.2
and 5.3 get a scaling of Ω̃(m) for the problems of sampling from a solution of a linear system
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1To make our definition robust, we precisely define consumable data probltems to be those where the scaling is

polyomial in m.
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and estimating the expectation values of two-outcome observables in a multi-party setting, when
the parties holding the observables are restricted to using classical communication and performing
single-copy measurements of Alice’s messages. For these problems, we also show that classical one-
way communication does not exhibit this scaling. Note that the quantum asymmetric direct sum
property only holds for relations which have a Ω(m) separation between quantum and deterministic
communication complexity, otherwise the quantum protocol could mimic the deterministic one.

Our results have an interesting economic interpretation, specifically in a setting where a data
holder wishes to maximize the payoff of selling data that other parties wish to use for computa-
tion, or prevent unauthorized re-use. Models of markets are concerned chiefly with goods that
are consumed during the process of economic production, known as rival goods. However, for al-
most a century it has been recognized that data and information also play a vital role in economic
processes [47]. The ability to cheaply replicate data has long been recognized as its chief distin-
guishing characteristics compared to other economic resources, and this nonrivality has dramatic
consequences [8, 45]. It essentially implies that the (albeit idealized) equilibrium known as perfect
competition, in which the price of every good on the market is set by its capacity for increasing
output, cannot hold once data is involved. In some sense, one cannot “get their money’s worth”
when data is traded, unless there is some external enforcement mechanism that sets prices. Such
a mechanism may lead to suboptimal resource allocations, and requires trust between the parties
involved. Examples of this can be seen in recent proposals for data markets [5, 31]. Nonrivality of
data may also disincentivise the creation of novel datasets, which could be of particular concern
as the production rate of public high-quality data in certain modalities is far outstripped by the
growth rate of training sets for large models [50].

In contrast to the classical picture, the fragile nature of quantum states suggests that classical
data encoded in the amplitudes of a quantum state may be destroyed upon use for computation.
For this to be the case, one must first show that a problem of interest can be solved with data
encoded in this way. In addition, one must argue that the resulting states cannot be replicated
in a similar manner to classical data. There is an inherent tension between these two goals, since
while no-cloning is trivial for general quantum states [42], this is no longer the case once states
are structured. As a simple example, given a computational basis state, it can be measured in the
computational basis without disturbing it and subsequently copied, and thus acts analogously to
classical data. A less trivial example is that states encoding boolean functions may also be copied
in some cases [1]. It is therefore a priori not obvious whether any problems satisfy these competing
demands. The nuanced nature of clonability for both the state and the task motivates the formal
study of this problem.

For any relation which exhibits a quantum asymmetric direct sum property, the state(s) sent
by Alice satisfy both of the requirements outlined above. In Section 6.1 we illustrate the economic
consequences of this within the framework of production theory, and show that consumability
implies the possibility of perfect competition, which cannot be achieved when unencrypted classical
data is used. Additionally, in Section 6.2 we formulate a data market as a strategic game, and show
that consumability implies potentially larger payoffs for the data seller.

The problems we consider are based on ones that exhibit exponential quantum communication
advantages. One may wonder whether such an advantage immediately implies the asymmetric
direct sum property. In Section 5.3 we show that this is not the case, by considering the problem
of observable estimation in a two-party setting [32, 43], and using shadow tomography [2].
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2 Related Work

2.1 Destructive measurement as a resource

The idea of using uncloneability of quantum states as a feature has a long history, starting with
the seminal work of Weisner [51] that introduced the notion of quantum money. However, the
states used in construction of quantum money schemes typically do not encode or transmit useful
information and can benefit from the computational power of pseudo-randomness in quantum
state [30]. While no-cloning is easy to show for states with little or no structure, this notion
becomes more subtle for structured states, and in particular ones that might be useful in performing
computation. Aaronson considered the question of uncloneablity of states that encode classical
boolean functions, a problem known as quantum software copy-protection [1, 3]. He showed that
the presence of structure enables such states to be cloned unless computational assumptions are
made, and even then cannot be ruled out for states that encode functions that can be efficiently
learned. The setting we consider can be seen as a distributed generalization of this problem. In the
simplest case, evaluating the function of interest requires not only a quantum state in the possession
of one player (or the equivalent classical description), but also an observable in the possession of
another player.

2.2 Secure Multi-Party Computation

The ability to prevent the re-use of data for computation can in principle be achieved classically
using the tools of secure multi-party computation (MPC). The principal objective of line of work
is the evaluation of a function f(x, y) where Alice holds x and Bob holds y, in a manner that
ensures the security of each player’s input and reveals only f(x, y) to both players. There has been
extensive work on this problem in various forms since its formulation by Yao [52, 53] (see [21] for
a review). Elegant solutions to this problem are known that involve obfuscating (or garbling) the
circuit describing f one gate at a time so as to obscure the inputs of each player [23] (which can be
achieved using standard cryptographic primitives such as public-key cryptography) or alternatively
based on fully homomorphic encryption [9]. Using MPC, the players can run a protocol that enables
the evaluation of f(x, y) for a single pair of inputs. However, if Bob wanted to evaluate f(x, y′)
for some y′ ̸= y, the validity of any MPC scheme implies that this would generally be impossible
without rerunning the protocol. Since this requires the cooperation of both parties, it could allow
one party to control the number of times another party can compute functions of their joint inputs.

MPC is incomparable to the consumability of data studied in this work, which relies on the
properties of quantum mechanics. MPC has the benefits of being generic and not requiring the
constant overheads associated with fault-tolerant quantum computation. However, MPC has a
number of drawbacks compared to consumable data, namely (i) it requires multiple rounds of two-
way communication [22] whereas our notion of consumable data requires only a single round of
one-way communication, (ii) it requires cryptographic assumptions while we give unconditional
results and (iii) it requires coordination between parties e.g. in choosing a cryptosystem to use,
while our construction requires no such coordination. The best known classical techniques also
have overheads associated with them due to the need to encrypt data, which however may not be
fundamental.
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3 Preliminaries & Notation

We denote by D→ deterministic classical one-way communication complexity. R→
ε denotes ran-

domized one-way classical communication complexity with error probability at most ε, in which
players are allowed to share an unlimited number of public random bits that are independent of
their inputs. We similarly define by Q→

ε one-way quantum communication complexity with error
probability at most ε. In all cases the one-way restriction implies that only Alice is allowed to send
messages to Bob (if there are multiple Bobs, they can communicate among themselves and we do
not consider this as part of the complexity of the problem). When the error is a nonzero constant
(say 1/3) we omit the subscript. For formal definitions we refer the reader to textbooks by Nisan
& Kushilevitz [35], and Lee & Shraibman [36].

We also consider sampling problems, where the goal is for Bob to produce a sample from a
target distribution (or some distribution close to it) given some inputs to Alice and Bob. For
this type of problem, we define analogously SR, SQ for the classical (randomized) and quantum
communication complexity respectively (with the superscript → denoting one-way communication
as before).

Definition 3.1 (TV Distance). The total variation distance between two distributions p, q supported
on X is given by

dT V (p, q) = sup
S⊆X

|p(S) − q(S)|

When we consider sampling problems, we allow constant error in TV distance between the target
distribution and the one sampled by the algorithm. Finally, we denote by A+ the pseudoinverse of
A.

4 Consumable data

We now define the notion of consumable or rival data. Denote by X ,Y,O the space of Alice’s
inputs, Bob’s inputs (or those of a single Bob in case there is more than one), and a space of
outputs. Below, we use P = (R,PP , q) to denote a family of relational problems R ⊆ X × Y × O
and a set of protocols PP . We informally use problem to refer to tuples of this kind. Note that one
can construct a similar definition for sampling problems, where for each input the goal is for Bob
to output a sample from a specific distribution.

We use Rm ⊆ X ×Ym ×Om to denote the m-Bob relational problem where Alice’s input is kept
constant but all the m Bobs have distinct inputs. The goal is to solve the relation on all of Bob
instances with 2/3 probability2. Similarly, we use Pm

P to denote the set of protocols where Alice
sends one message and the Bobs are allowed to communicate classically if q = 0 and quantumly if
q = 1. So Pm = (Rm,Pm

P , q).
For a problem P , denote c(P ) to be the one-way communication complexity of the minimum

cost protocol in the set PP which solves R. Since we will be modeling scenarios where Alice is
selling her data to the Bobs who will be using it for computation, the cost here will be in terms of
communication between Alice and the Bobs only.

2If R was a decision problem that could be solved with failure probability δ, one could solve Rm with failure
probability δ as well by simple repetition, incurring a multiplicative overhead logarithmic in m. However, this is no
longer the case when considering relations, so this notion of complexity is not finite in general.
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Definition 4.1 (Consumable data problem). A problem P is said to be a consumable data problem
if

c(Pm)
c(P ) = mΩ(1)

Definition 4.2 (Nonconsumable data problem). A problem P is said to be a nonconsumable data
problem if

c(Pm)
c(P ) = mo(1)

We refer to the quantity appearing in the lower bound in Definition 4.1 as the consumability rate
of P . In other words, we can say that a problem P is a consumable data problem if its consumability
rate is polynomial, and it is nonconsumable otherwise. There is a subtlety in this definition, in the
sense that the benefit of consumability arises when Alice chooses to use a particular communication
protocol (typically a quantum one over a classical one) but the definition itself does not specify
why she would have such a preference. A natural way to introduce a preference is by formulating
a strategic game that involves communication. We provide an example in Section 6.2.

Note that any problem involving only deterministic classical communication must be noncon-
sumable – every Bob can just copy Alice’s message into his own working space. We also show in
Section 5.3 that if P corresponds to a decision problem, then even with quantum communication it
must be a nonconsumable data problem. This is because the Bobs can apply the Shadow Tomogra-
phy protocol [2] (unless the Bobs are only allowed classical communication between themselves and
limited quantum memory). Nevertheless, consumability can be proved for certain search problems
(with many solutions) solved using randomised or quantum communication. There are a few cases
where consumability or nonconsumability can be characterized, which we discuss below:

Lemma 1. For any relational problem R and resource q, if the protocol is deterministic one way
classical communication, P = (R, D→, q), then c(P m)

c(P ) = 1 and the data is nonconsumable.

Proof. For the m-Bob problem, Alice sends the same message as the protocol for the original
problem. Since her message depended only on her input, and must enable Bob to solve the problem
for any possible input of his, the message can be re-used m times and the correctness guarantee
holds for every instance on Bob’s end.

Similarly,

Lemma 2. For any relational problem R ⊆ X ×Y ×O, with |O| = K and resource q, if the protocol
is randomized one-way classical communication, P = (R, R→, q), then c(P m)

c(P ) = O(K logm).

Proof. This can be achieved by learning the distribution of Bob’s output under the randomness of
Alice’s message. Using folklore results (see [15]) this can be done using K logm times the amount
of communication, by learning the K-outcome distribution up to error 1/m.

Lemma 3. For any relation with an output space of size K, R ⊆ X × Y × O, with |O| = K, if the
protocol is one way quantum communication P = (R, Q→, q = 1) then c(P m)

c(P ) = Õ(K log2m)c(P ).

Proof. Akin to Lemma 2, we want to give a protocol for for Pm using a protocol for P as a
subroutine. We do this by relying on the work of Gong & Aaronson [24] who proved that the
distribution of K-outcome POVMs on logN qubits can be learned to constant additive error in
Õ(K log2m logN) copies.
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All of these lemmas can be generalised to the setting where PP is a strict subset of one of these
sets, which applies to the sampling models.

We note that we restricted our definition of consumable data to a non-interactive setting of
one-way communication. We also focus on unconditional results. If we allow interactivity and
computational assumptions, then an analogous capabilities can be (conditionally) achieved by clas-
sical communication using Secure Multiparty Communication protocols as outlined in Section 2.2.
Our results do not contradict such constructions since in a single application of an MPC protocol,
Alice’s messages will not allow Bob to solve the problem for any inputs.

5 Examples of consumable quantum data

5.1 Hidden Matching

Hidden matching is a famous example of a relation that exhibits an exponential separation between
quantum and classical one-way communication complexity [10]. We prove that for the asymmet-
ric direct sum version of the Hidden Matching problem, quantum data behaves as a consumable
resource (while classical data does not).

The original problem is defined as follows:

Problem 1 (Hidden Matching [10]). Alice is given a string x ∈ {0, 1}N . Bob is given a perfect
matching M over [N ]. Their goal is for Bob to output (i, j, xi ⊕ xj) where (i, j) ∈ M . Only Alice
is allowed to send messages to Bob.

One can naturally generalize this problem to the setting of multiple matchings as follows:

Problem 2 (Multiple Hidden Matchings (MHMN,m)). Alice is given a string x ∈ {0, 1}N . Each
of the m Bobs is given m perfect matchings {Mk} over [N ]. Their goal is to output (i, j, xi ⊕ xj)
where (i, j) ∈ Mk for all k. Only Alice is allowed to send messages to Bob.

A tight lower bound shows that classical communication indeed acts like a nonrival good for this
problem. While it is known that R→(HMN ) = Ω(

√
N) [10], we believe this is the first characteri-

zation of the deterministic complexity of the Hidden Matching problem. The results are consistent
with Lemma 1.

Lemma 4. D→(MHMN,m) = D→(HMN ) = N/2 + 1.

Proof: Appendix A.
Now we note that even with randomized communication, this relation does not possess the

consumable data property.

Lemma 5. R→(MHMN,m) = O(logm)R→(HMN ) = O(
√
N logm)

Proof. We adapt the upper bound for HMN . Alice sends the values of randomly chosenO(
√
N logm)

nodes, which by a birthday paradox style calculation and union bound has a constant probability
of containing one edge from each matching.

There is a quantum algorithm that solves this problem with probability 1 using m logN qubits
of communication, which is a trivial repetition of the algorithm of [10]:

Lemma 6. Q→(MHMN,m) = O(m logN).
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Proof. Alice sends Bob a copy of the state |ψ⟩ = N−1/2 ∑N
i=1(−1)xi |i⟩ over logN qubits. Denoting

the k-th pair in Bob’s a matching that Bob holds by (ik, jk), Bob measures the state using the N -
outcome POVM defined by Ek,b = 1

2

(
|ik⟩ + (−1)b |jk⟩

) (
⟨ik| + (−1)b ⟨jk|

)
for k ∈ [N/2], b ∈ {0, 1}.

This process is repeated for every matching.

It is clear that the states in the algorithm above cannot be re-used after a measurement to solve
the problem for multiple matchings. Since each POVM has N possible outcomes, approaches based
on gentle measurement that are discussed in Section 5.3 should not be applicable to this problem
without requiring poly(N) copies of the state.

We also have the following lower bound on the quantum communication required to solve the
problem:

Lemma 7. Q→(MHMN,m) = Ω(
√
m) for m ≤ N/2.

Proof. Let us consider the distributional complexity of MHMN,m where Alice’s input is a uniform
random string X ∼ U({0, 1}N ). The Bobs have a deterministic input Y, where M1 is just the
matching {(i, i + 1)|i odd, i < N}. The matching Mk is just the kth cyclic permutation on nodes
on the left. The Bobs output random variables ok = (ik, jk, xik

⊕ xjk
) as their respective solutions.

For notational convenience, we define O = o1o2 . . . om. Note that since m ≤ N/2, each matching
consists of N/2 edges that do not appear in any other matching. It follows that for any choice of
O, no edge (as defined by the first two entries of each ok) will be repeated.

Let ρX be density matrix corresponding to the message of length l sent by Alice, of dimension
2l. By Holevo’s theorem, I(X : O) ≤ l. We will show that if the Bobs solve MHMN,m then
I(X : O) ≥ Ω(

√
m). This gives us the required lower bound.

I(X : O) = H(O) −H(O|X). Note that H(O|X) = 0 since every Bob’s output is deterministic
given the input X. Thus, I(X : O) = H(O). To make this tuple amenable to analysis, we
remove dependencies in the output by considering a spanning forest of the graph induced by V =
∪k{ik, jk} = ∪k{ik} ∪ ∪k{jk}. We have that |V | ≥

√
m since we had a graph with m distinct edges

by construction. Therefore, we get a lower bound of Ω(
√
m) by Lemma 8.

Lemma 8. If we have a tree T on n vertices labelled with variables x1 . . . xn, then if x is a uniform
random string then the set of random variables PT = {buv|(u, v) ∈ T} where each buv = xu ⊕ xv

with probability at least 2/3 has total entropy at least Ω(n).

Proof. We prove this by induction on the height of the tree T , say h. If h = 0, then we have only
1 vertex and the set of parities is empty so the entropy is 0. In the inductive step, we assume that
for all trees of height h− 1, the statement is true. Now, consider any tree T on n vertices of height
h. Let L be the set of leaves of this tree, and set k = |V (T ) \ L|. We know that the subtree of T
up to height h− 1 has total entropy on the set PT,h−1 at least k− 1. For any vertex v ∈ L, let p(v)
be its parent. Then since xv is a uniform random bit and v does not appear in any other parities,
H(xv ⊕ xp(v)|PT,h−1) = 1. Since buv = xu ⊕ xv with probability 2/3, by concavity of entropy we
have that H(buv|PT,h−1) = Ω(1). We now iterate this argument over all leaves, adding the parities
at the leaves to the conditioning. We thus prove our claim.

Combining Lemma 6 and Lemma 7 gives for m ≤ N/2

Q→(MHMN,m)
Q→(MHMN,1) = Ω̃(

√
m). (5.1)

This implies that Multiple Hidden Matchings is a consumable quantum data problem, with con-
sumability rate ≈

√
m. We believe this result can probably be sharpened to Ω̃(m) for m ≪ N .
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Note that this is not the case classically. The deterministic lower bound in Lemma 4 also illustrates
explicitly that the message sent by Alice to solve a single matching, if composed of raw bits of her
input, can be immediately re-used to solve the problem for all possible matchings (since N + 1 bits
will contain the end-points of an edge of any possible perfect matching).

5.2 Linear regression sampling

Another key problem type for which it is possible to transform data into a rival good is sampling
problems with a quantum communication advantage. In this type of problem, Alice sends Bob a
message, which Bob uses to sample from a target distribution with high accuracy. The essence of
the construction is that the quantum communication advantage allows Alice to reveal only a tiny
fraction of the original data while allowing Bob to solve the problem, and the method by which he
solves it destroys the data that was sent, not allowing it to be reused to generate more samples.
We consider here a sampling variant of linear regression introduced by Montanaro et al. [39]:

Problem 3 (Linear Regression Sampling [39] (LRSN )). Alice is given a vector x ∈ SN−1. Bob is
given a matrix B. The goal is for Bob to produce a sample from the distribution P over [N ] defined
by

pi =
∣∣∣[B+x

]
i

∣∣∣2 / ∥∥∥B+x
∥∥∥2

2
. (5.2)

One can naturally generalize this problem to the setting of multiple samples as follows:

Problem 4 (Multiple Linear Regression Sampling (MLRSN,m)). Alice is given a vector x ∈ SN−1.
Bob is given m matrices Bk. The goal is for Bob to produce one sample from each distribution Pk

over [N ] defined by
p

(k)
i =

∣∣∣[B+
k x

]
i

∣∣∣2 / ∥∥∥B+
k x

∥∥∥2

2
. (5.3)

Note that solving the above problem with some inaccuracy η corresponds to sampling from
some distribution with total variation error at most η with respect to Pk. In order to consider the
communication complexity of these problems, we must first discretize the inputs so that they have
finite size. We thus assume all real number are specified to logN bits of precision. We then have

Lemma 9 ([39]). For constant total variation distance error η in the sampled distribution,

i) SR→
η (MLRSN,1) = Ω(N logN).

ii) For any m, SR→
η (MLRSN,m) = O(N logN).

Lemma 10. i) For TV error η ≤ 1/4, SQ→
η (MLRSN,m) = Ω(m log(N/m)).

ii) For constant TV error η, SQ→
η (MLRSN,m) = O(m log(N)max

k
(
∥∥∥B+

k

∥∥∥2
/

∥∥∥B+
k x

∥∥∥2

2
)).

Proofs: Appendix A.
While these upper and lower bounds match in terms of their N dependence if

∥∥∥B+
k x

∥∥∥
2

is
relatively large (and in particular does not decay with N), they do not match in terms of their
m dependence. One example is when the features of x that different samples are sensitive to are
in some sense uniformly distributed, as in the construction used to obtain the lower bound in
Lemma 10. In this case, we have max

k

∥∥∥B+
k

∥∥∥2
/
∥∥∥B+

k x
∥∥∥2

2
= O(m). It follows that, restricting to such

inputs, we have
SQ→

1/4(MLRSN,m)
SQ→

1/4(MLRSN,1) = Ω̃(m). (5.4)
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Based on the definitions of Section 4, we obtain that MLRSN,m is a consumable data problem for
quantum data, with consumability rate m.

5.3 Two-outcome observable estimation

In the previous examples, we considered problems that exhibit exponential quantum communication
advantages. It is natural to ask if such an advantage implies consumability in some generic sense.
We will see that this is not the case when Bob’s task is a decision problem.

The examples we discuss here are based on the following problem:

Problem 5 (Vector In Subspace (VSN,θ) [32]). Alice is given a vector x ∈ SN−1. Bob is given
two orthogonal subspaces of dimension N/2 specified by projection operators M (1),M (2). Under the
promise that either

∥∥∥M (1)x
∥∥∥

2
≥

√
1 − θ2 or

∥∥∥M (2)x
∥∥∥

2
≥

√
1 − θ2 for θ < 1/

√
2, determine which

is the case.

It is known that Vector in Subspace exhibits an exponential advantage in quantum communi-
cation with respect to randomized classical communication complexity [44]. Consider the following
generalization:

Problem 6 (Vector In Multiple Subspaces (VMSN,θ,m)). Alice is given a vector x ∈ SN−1. Bob is
given m pairs of orthogonal subspaces M (1)

j ,M
(2)
j . Given a similar promise to the vector in subspace

problem for each pair of subspaces, the goal is to determine which subspaces x has large overlap
with.

The exponential advantage in quantum communication might suggest that for this problem as
well, classical data will behave like a nonrival good while the quantum analog might behave like a
rival good. This is because even for m = 1, Alice must send a significant portion of her input to
Bob, and thus she may not be able to derive value that is polynomial in m for larger m. However,
the problem can still be solved with relatively little quantum communication, since data states can
be re-used in a manner that allows Bob to solve the problem for m > 1 with Alice communicating
a number of qubits that is only logarithmic in m. This can be achieved via shadow tomography:

Theorem 1 (Shadow Tomography [2] solved with Threshold Search [14]). For an unknown state |ψ⟩
of logN qubits, given m known two-outcome measurements Ei, there is an explicit algorithm that
takes |ψ⟩⊗k as input, where k = Õ(log2m logN log(1/δ)/ε4), and produces estimates of ⟨ψ|Ei |ψ⟩
for all i up to additive error ε with probability greater than 1 − δ. Õ hides subdominant polylog
factors.

VMSN,θ,m is a problem of estimating m expectation values up to some constant error (due to
the constraint on θ) on a target state. If polynomial error is required, it is known that Ω(N) qubits
of communication may be needed, and hence quantum communication is essentially equivalent to
classical communication (from e.g. lower bounds on estimating inner products [18]). Allowing
constant error, Theorem 1 says that polylog(m) qubits of communication suffice to solve the prob-
lem. This directly implies that, at least if Alice sends multiple copies of her state, a lower bound
analogous to Lemma 10 is impossible, as Bob does not require a number of qubits polynomial in m.
This shows that an exponential communication advantage is not a sufficient condition for quantum
data to behave like a rival good.

Given that multiple entangled copies of a quantum state are known to be a more powerful
resource than single copies [27], it would also be interesting to consider a setting where Alice sends
only single copies of her data states. One way to do this is by introducing assumptions about
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the computation Bob is allowed to perform with his message. It may be possible to remove this
assumption by utilizing certified deletion [12]. While requiring additional encryption, this could
enable Alice to only send a copy of her state after receiving a certificate that Bob has deleted the
previous copy, ensuring that multi-copy measurements cannot be performed.

A key difference between the Vector-in-Subspace problem and the other problems we consider is
that the former is a decision problem (a two-outcome measurement), while the latter are sampling
problems or relations. This difference was already captured by Lemma 3, where we showed that if
the number of outcomes are small then the problem does not exhibit consumability for a large range
of parameters. In the next section, we get around this limitation by considering the multiparty
setting.

5.4 Multiple Bobs: A communication arms race

The above picture changes when more than two parties are involved. Consider a setting where Alice
has a vector which she can encode in a quantum state |x⟩ and each of m Bobs has an observable
Oi, Alice is only willing to send the Bobs copies of |x⟩ (when using quantum communication),
and the Bobs cannot (i) store multiple copies of |x⟩ or (ii) communicate quantum states between
them, this is equivalent to the setting of learning without quantum memory that is studied in [17].
More precisely, this is a setting where each Bob can perform a POVM on a single copy of |x⟩ only,
and exchange classical messages which correspond to the classical memory used in this setting. In
contrast, the setting of learning with quantum memory (as per [17]) is one where the Bobs are
allowed quantum communication (but still can measure only a single copy of |x⟩ each), with the
content of the quantum communication channel corresponding to the quantum memory. In both
cases, Alice’s messages correspond to samples of a quantum state (unknown to Bob) as is standard
in learning problems. While the results of [17] apply to samples of a mixed state described by a
density matrix ρ, they also apply to a purification of ρ in a larger space. This will not affect the
scaling with m which is the main object of interest for our purposes.

Define by O an ensemble of two-outcome POVMs given by Oi = UiZnU
†
i for 0 ≤ i < m/2 and

Oi = −Ui−m/2ZnU
†
i−m/2 for m/2 ≤ i < m, where the Ui are drawn i.i.d. from the Haar measure

and Zn acts only on the last qubit.
When only classical communication is used between Alice and the Bobs, an optimal lower bound

of Ω(
√
N) for estimating the expectation value of a single two-outcome observable with constant

probability is applicable [25]. Lemma 1 of that paper also provides a matching upper bound in the
m-observable case (up to logarithmic factors). Namely, estimating m expectation values of unit
norm observables to constant error can be done with probability 2/3 by sending Õ(log(m)

√
N)

bits from Alice to Bob (where Õ hides polylog(N) factors). Alice requires no knowledge of the
observables themselves. This protocol is based on sending O(log(m)) random stabilizer sketches
of Alice’s input state |x⟩. Each sketch involves Alice drawing a Clifford unitary C from a uniform
distribution over the Clifford group Cn (n = logN), and computing

〈
0⊗(n−k)z

∣∣C∣∣x〉
for all z ∈

|0, 1⟩k for 2k = Õ(
√
N). Alice generates O(log(m)) i.i.d. sketches in this way and sends both the

measurement results and a description of the Clifford unitaries to the Bobs. Each Clifford unitary
is defined by specifying O(n2) one or two-qubit gates from a small set, and thus has an efficient
classical description.

If Alice instead sends copies of her input encoded in the amplitudes of a quantum state |x⟩ to
the Bobs, but we allow classical communication only between the Bobs, and restrict the Bobs to
performing single-copy measurements, the number of samples of |x⟩ required is linear in m [17]:

Theorem 2 (Corollary 5.7, [17]). With constant probability over Oi drawn i.i.d. from O, estimating
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(Qu)bits sent from Alice to the Bobs

Classical A → Bs, Classical Bs ↔ Bs Θ̃(N1/2) [25]

Quantum A → Bs, Classical Bs ↔ Bs Θ̃(m logN) [28]

Quantum A → Bs, Quantum Bs ↔ Bs O((log(m) log(N))2) [14]

Table 1: A communication arms race in estimating expectation values of two-outcome observables
to within constant error: Data behaves as a consumable resource if Alice is only willing to send
quantum states encoding her data, while the Bobs can only communicate classically. This ceases
to be the case if only classical communication is used, or if the Bobs can communicate quantum
states. Θ̃ hides factors of logm.

the expectation values of all Oi w.r.t. |x⟩ without quantum communication between Bobs with success
probability at least 2/3 requires Ω

(
min {m/ log(m), N} /ε2)

copies of |x⟩.

Note that this is worst-case over |x⟩ (if |x⟩ was uniformly random Bobs could just guess 0).
Note also that the Oi are chosen so that classical shadows do not help (for the operators in question
the Hilbert-Schmidt norm is ||O2

i || = N , which is roughly equivalent to the shadow norm that sets
the sample complexity of classical shadows [28]). A matching upper bound (up to log(m) factors,
as long as m < N) is obtained by the straightforward approach in which Alice sends each Bob
O(1/ε2) copies of her state.

When the Bobs are allowed to use quantum communication, we are essentially back to the two-
party version of the problem, since they can jointly use shadow tomography [2, 14] to estimate all
the expectation values using a logarithmic number of copies of |x⟩. These results are summarized
in Table 1.

6 Economic implications of consumable data

6.1 Data as an economic resource in production theory

Production theory [34] is one of the principal frameworks for the quantitative study of economic
systems. A fundamental object of interest within this framework is the production function F :
RM

+ → R+ that quantifies in some form the output of an economic agent, for example the goods
produced by a firm. The inputs to F denote the resources required to produce said goods, such as
labor, capital and raw materials. For conventional goods of this form, which cannot be replicated at
zero cost (and are referred to as rival goods), it is known that the production function is typically
a degree 1 homogeneous function of its inputs (at least locally when restricted to some set S):

F (λx) = λF (x) (6.1)

for any λ ≥ 03. This captures the notion that e.g. doubling the number of raw materials will
double a firm’s output. It follows directly from Euler’s theorem for homogeneous functions that
within the interior of S,

F (x) = x · ∂F
∂x

. (6.2)

3Strictly speaking, this relationship holds only if each good can serve as a substitute for another, which is a
standard assumption.
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Since the output of the production function is a measure of the firm’s capacity to pay for the needed
resources, we see that if the price of resource i, denoted pi, is set according to

pi = ∂F

∂xi
, (6.3)

for all i ∈ [M ], then the output of the firm suffices exactly to purchase all the resources required,
and there is no surplus profit. This is known as competitive equilibrium, which maximizes social
welfare in the sense that the price of each good is commensurate to its usefulness in increasing the
total output [7, 19].

While it has long been understood at a qualitative level that data is an inherently different
resource than the ones considered above due to the ability to copy it for free [47, 8], the quantitative
form of this statement was realized decades later by the seminal work of Romer [45]. If we include
data y as an input into the production function, we instead have

F (λx, y) = λF (x, y) (6.4)

rather than the expected need to double each input proportionate to match production as in
F (λx, λy) = λF (x, y). This is because the data used by one process can be copied and used by
several with negligible additional cost. Euler’s theorem once again gives

F (x, y) = x · ∂F
∂x

. (6.5)

However, since increasing the amount of data will generally increase the output (say by improving
the quality of inference), we have ∂F

∂y > 0. It follows that

F (x, y) < x · ∂F
∂x

+ y
∂F

∂y
. (6.6)

Due to this inequality, it is impossible to set prices according to Eq. (6.3). If this were done for all
inputs including data, the total output would be insufficient to pay for all the required resources. As
a result, markets involving data must be inherently inefficient in the sense that one must underpay
for some resource, or must include some external mechanism to enforce adequate compensation for
resources that can be freely replicated. Mechanisms such as patent law or subsidies that incentivize
innovation are all examples of this. Other examples are afforded by the trusted third parties
that are introduced in proposals for data markets and handle the data in lieu of the data buyers
themselves [5]. In the context of strategic games that model data selling, the ability to copy data is
also manifest in the payoff for the data seller being independent of the number of buyers, unless a
mechanism is put in place by which the data buyers all agree to pay in advance for their data [40].

6.1.1 Consumable data as a factor of production

We can interpret the results of Section 5 within this framework (at the limit of large m,N so that
m can be considered to be a continuous variable, and computing derivatives with respect to it
becomes meaningful). Taking the linear regression sampling problem as an example, the solution
of MLRSN,m is analogous to the output of a production function, with the number of samples m
and Alice’s message equivalent to λ and y respectively. The result of Lemma 9 is then analogous to
Eq. (6.4). Up to constant factors, this is an example of the well-known nonrival nature of classical
data. Alice must send a significant portion of her input to Bob for him to produce even a single
sample, and once Alice sends her full input he can produce an unlimited number of samples in this
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way. If Alice were to sell Bob her data in the setting of a strategic game, her potential payoff will
be essentially independent of the value that Bob can derive (since this is proportional to m).

On the other hand, Lemma 10 indicates that if Alice insists on using quantum communication,
the data is analogous to a rival good as described by Eq. (6.1). Bob can still produce m samples,
but this requires that Alice sends at least a number of qubits proportional to m. If Alice were to
charge Bob for each qubit sent for example, she would obtain a payoff proportional to the Bob’s
output m (as long as m < N). The lower bound indicates that this scaling holds regardless of the
strategy Alice uses to encode her input into the message, and of the strategy Bob uses to process
this message. Using classical resources alone this would be impossible to achieve. We make these
notions more precise in the context of a strategic game that models a data market in Section 6.2.

A similar analogy can be made with respect to the Multiple Hidden Matching problem and the
multi-party observable estimation problem.

6.2 A posted price data auction with consumable data

We would like to identify more concretely the economic consequences of the consumable nature of
quantum data. We consider a formulation naturally related to auction theory [33, 46]. Alice’s action
space AA = R+ is the set of prices she charges for a single bit or qubit of her input. Once Alice
fixes a price p, Bob is free to purchase as many bits/qubits as he wants. Bob’s action space is thus
AB = N, and we denote the number he purchases by b. This is known as a posted price auction with
only a single bidder and multiple items (or a particularly simple combinatorial auction). Assume
the number of samples m takes values in [m] and Alice has no knowledge of it (say she holds a
uniform prior). We also assume the matrices Bi are chosen in a worst-case fashion (in order for our
communication lower bounds to be applicable).

For any values of m, p, b, the payoffs of the two players are

vA(m, p, b) = pb, vB(m, p, b) = #S(m, b) − pb, (6.7)

where #S(m, b) represents the number of samples Bob can produce using a message of b bits/qubits,
given that he holds m such Bi).

Consider first the quantum communication case. We know from our lower bound Lemma 10
that for sufficiently large m, there is an absolute constant C such that, if Bob were to purchase b
qubits produced by Alice, then

#SQ(m, b) ≤ Cb

log(N/#SQ(m, b))
≈ Cb

log(N) (6.8)

for some absolute constant C. We also assume N ≫ m which allows us to use the approxima-
tion logN − log #SQ(m, b) ≈ logN since this slightly simplifies the analysis. Since additionally
#S(m, b) ≤ m by definition, we have the upper bound

vQ
B(m, p, b) ≤ min

{
Cb

logN ,m

}
− pb. (6.9)

If we also assume that Bob’s payoff is maximized at the point b⋆ that maximizes this upper bound,
he is interestsed in solving

max
b

min
{

Cb

logN ,m

}
− pb =

{
m(1 − p log N

C ) 0 ≤ p < C
log N (b⋆ = m log N

C )
0 p ≥ C

log N (b⋆ = 0) (6.10)
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with the corresponding value of b⋆ in the right column. Alice’s payoff is maximized by thus choosing
p as close as possible to C/ logN from below without exceeding it, and will be equal to b⋆(m, p)p =
mp log(N)/C = Ω̃(m). This holds for any m for which Lemma 10 holds, even though Alice has no
knowledge of m.

In the classical case, we know the problem is nonconsumable from Lemma 2. This implies that
for m = 1, there is a message of length κ independent of m which Alice can send, which Bob can
then re-use to produce say ρm samples with some constant probability, for some ρ ≤ 1.

This implies
vC

B(m, p, b) = 1 [b ≥ κ] ρm− pb. (6.11)

Bob thus solves

max
b

1 [b ≥ κ] ρm− pb =
{
ρm− pκ 0 ≤ p < ρm

κ (b⋆ = κ)
0 p ≥ ρm

κ (b⋆ = 0) (6.12)

Note that unlike the quantum case, Alice has no way of knowing how to choose p appropriately
ahead of time, since the critical value below which she receives no payoff depends on m. If she
wants to guarantee a nonzero payoff she has to choose p = ρ/κ (i.e. assume m = 1) in which case
her payoff is independent of m.

7 Discussion

We demonstrated that there exist problems for which encoding classical data into quantum states
leads to behavior that is akin to that of rival, or consumable, goods, which is generally not possible
using classical data alone. The inherent privacy benefits of amplitude-encoded data might also facil-
itate computation with proprietary data, giving users fine-grained control over the dissemination of
their private data without the need for additional encryption. The setup we consider also does not
require end-users to possess a quantum computer in order to be valuable. Instead, the user must
simply trust an entity possessing a networked quantum computer to distribute data states on their
behalf. This is similar to entrusting a bank to distribute funds on the behalf of an account holder.
While our results are based on communication complexity, they rely on the properties of the data
encoding itself, and thus are also relevant in a scenario where different parties are provided access
to the same quantum memory at different times, without requiring networked quantum computers.

Being a preliminary investigation into the possibility of using quantum networks in this manner,
our results do not immediately apply to problems with clear economic value. If this were the case,
it could enable novel types of data markets and incentive structures for the production of data. It
is worth noting however that our results for the linear regression sampling problem apply also to a
related problem in which Bob obtains a state that encodes the solution to a linear system rather
than a classical sample. Such states are known to be strictly more powerful resources than classical
samples [6], and could potentially be useful in learning tasks such as updating the value of a linear
estimator with new data (which is typically achieved with the recursive least squares algorithm).

The form of the quantum communication lower bound that indicates the rival behavior of
quantum data is reminiscent of a direct sum theorem. Direct sum theorems demonstrate that the
complexity of solving m independent instances of certain problems scales linearly with m. They
have been studied extensively in both the classical [48, 11, 37] and quantum [49, 29] setting. These
results are not directly applicable since in our setting the inputs to Alice are not independent.
Thus, this work motivates an asymmetric direct sum result for classes of communication relations.

In analogy to the potential clonability of quantum states with structure, there is a sense in
which any non-consumable data may be cloned with respect to a particular task sample efficiently,
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even when cloning the overall state containing the information remains sample inefficient. This is
exemplified by the shadow tomography task above in which the task is solved via the creation of a
classical representation of a hypothesis ρT , such that r̃(EiρT ) ≈ r̃(Eiρ) for all i for the ground truth
state ρ. This classical representation ρT need not be close in trace distance such that ||ρ − ρT ||tr
is small, as would be required for a high fidelity cloning of the true state. However it suffices
for the task of shadow tomography, and admits an entirely classical representation that may be
cloned through classical communication at will, making the data non-consumable, hence this task
is clonable even when the underlying states might not be.

In restricting access to data that is used for computation, the setting we consider bears some
resemblance to that of differential privacy [20, 4]. In differential privacy, a query is promised not to
reveal too much about individual datapoints. This is typically achieved classically by adding noise
to data, while we achieve a similar capability in spirit by using a noiseless encoding into quantum
states.

7.1 Open questions

Our work raises the following open questions in communication complexity:

1. Can the lower bound on the one-way quantum communication complexity of MHMN,m be
improved to Ω(m) or even Ω(m logN) for m ≪

√
N?

2. Can the class of problems with a quantum asymmetric direct sum property be characterized
in some generality?

3. Are there explicit problems with asymmetric direct sums for randomized communication?
For decision problems, the scaling can be at most O(logm). Can we get a Ω(m) scaling for
relations?

A remark regarding question 3 is that for a random relation, it is actually impossible to get
a constant probability of success for superconstant number of instances because we do not have
amplification of success probability. This is why we ask for explicit examples.

Our results are unconditional but restricted to specific problems and one-way communication.
By making additional assumptions or utilizing the strategic nature of the problems we consider,
it may be possible to extend the class of problems that enable consumable data. Some possible
directions are outlined below

Computational assumptions: A setting we have not yet considered, that is touched upon by
the task of shadow tomography, is one where the computational power of Bob is restricted. It
has been noted that general shadow tomography procedures are expected to scale polynomially
with the dimension of the Hilbert space of ρ or the trial state ρT . If Bob is restricted to polylog
computational time, then the creation of the clonable hypothesis state may become impossible.
This is analogous to the effect in cryptographic no-cloning theorems on pseudorandom quantum
states [30], where even when sample efficient cloning is possible, no computationally efficient scheme
can be used to clone the states of interest. In this context, it is worth noting that learning of
certain states that have efficient descriptions, such as pseudorandom states [54], is known to be
computationally hard. The addition of computational restrictions on Bob hence potentially widens
the class of consumable data tasks, but requires moving beyond a communication complexity model
that permits unbounded computation.

Communicating mixed states: Moreover, in the above schemes we have focused on cases where
the data is provided as pure states and when the only advantage examined otherwise is communi-
cation complexity. When data is transmitted as a pure state, it is known that classical shadows
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have the potential to remove strict communication advantages when the circuits are too simple,
but reconstruction can still be challenging computationally based on arguments from quantum
pseudorandom states [54]. An interesting direction could be to enhance some of the features of the
example problems here by providing the data as a mixed state, such that it is more difficult for an
adversary to learn under certain assumptions such as lack of a substantial quantum memory. We
leave these directions for future work.
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A Omitted Proofs

Proof of Lemma 4. We begin by proving D→(MHMN,1) ≥ N/2 + 1.
A deterministic protocol P for MHMN,1 is defined by a matrix with 2N rows denoting the

inputs to Alice and (N − 1)!! columns denoting the inputs to Bob ((N − 1)!! is the number of
perfect matchings over [N ]). The entry in the matrix corresponding to inputs (x,M) is a tuple
(i, j, b) such that (i, j) ∈ M and b = xi ⊕ xj . Define by τ a message sent by Alice, and by Sτ the
subset of the rows for which Alice sends τ to Bob. The choice of (i, j, b) depends on x only through
the message τ . Since the protocol is deterministic, for a given column, the entries in each column
of Sτ must have the same value since they share the same τ,M , so we may write (with slight abuse
of notation)

P(x,M) = P(τ,M) = (i, j, b), (i, j) ∈ M. (A.1)

Thus the rows of Sτ are all identical, and we can view each entry as a constraint that each vector
x for which Alice sends the message τ must obey. We will bound the maximal possible size of Sτ

by bounding the number of xs that can satisfy all these constraints.
The constraints on the bits can be thought of as edges on a graph G = (V,E) with nodes V

indexed by [N ]. We begin with E = ∅ and choose a sequence of matchings M = {M ℓ}. For every
matching, P must produce a valid output that selects an edge from the matching and constrains
the corresponding entries of x. While we have no control over which edge is chosen, we will choose
M in such a way that at each step of the algorithm, the size of the connected components in G
increases for any edge output by P.

Denote by {Cℓ
i } the connected components of G at step ℓ, and Cℓ = ∪

i
Cℓ

i . Initially we thus
have

∣∣C0∣∣ = 0.

i) |Cℓ| ≤ N/2
We start with an arbitrary matching M1. For any x for which Alice communicates τ , the

entries in Sτ in the column corresponding to M1 is Sτ must contain an edge (i, j) ∈ M1, hence
after adding (i, j) to E and M1 to M we have |C1| = 2. Denoting by Dℓ the disconnected
nodes, we next define a matching M2 that pairs each node in C1 with some node in D1. The
remaining nodes of D1 are paired among themselves. Note that M2 cannot be equal to M1,
since M1 contained an edge between two nodes that are both in C1 while M2 does not. We
add (i, j) to E where P(τ,M2) = (i, j, b). If the edge connects C1 and D1, then |C2| = 3.
Otherwise, |C2| = 4.

We pick M3, . . . in the same fashion, defining M ℓ+1 by pairing each node in Cℓ with
a node in Dℓ (and pairing the remaining nodes arbitrarily). This can be done as long as
|Cℓ| ≤ N/2. At every stage, we are guaranteed that M ℓ+1 /∈ M by the same argument used
for M2, hence we are assured that it is a valid choice.

After at most N/2 − 1 such steps, we have either |Cℓ| = N/2 + 1 or |Cℓ| = N/2 + 2. From
this point a different strategy is required, since there are not enough disconnected nodes in
Dℓ to pair with all the nodes in Cℓ. Subsequently, we order the nodes in Cℓ by first ordering
the connected components {Cℓ

i } by size, with Cℓ
0 being the largest (or tied for the largest,

breaking ties arbitrarily), and then arbitrarily ordering the nodes within each Cℓ
i .

ii) |Cℓ| > N/2 and |Cℓ
0| ≤ N/2

Order the nodes in Cℓ in the manner specified above. Denote by Rℓ
− the first N/2 nodes

in this ordering, and by Rℓ
+ the remaining |Cℓ| − N/2 nodes. Define the matching M ℓ+1

by first pairing each node in Rℓ
+ with a node in Rℓ

− in descending order (i.e. starting with
the nodes in Cℓ

0). Note that two nodes in the same connected component cannot be paired
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in this way. This is because, if this occurred for some connected component Ci, this would
imply that either |Ci| > |Cℓ

0| (since Ci must have a node in Rℓ
−, the boundary between Rℓ

−
and Rℓ

+ divides Ci, so every node in the matching so far is in Ci, and we started the pairing
in Rℓ

− with the nodes in Cℓ
0 and went through all of them and reached Ci) contradicting the

imposed ordering, or else Ci = Cℓ
0, in which case since some nodes in Cℓ

0 are also in Rℓ
+, we

have |Cℓ
0| > N/2 and we terminate the algorithm. Having thus paired all the nodes in Rℓ

+
(we can always do this since |Rℓ

+| ≤ N/2), we complete M ℓ+1 by pairing the remaining nodes
in Rℓ

− with the unconnected nodes Dℓ in an arbitrary way. Note that M ℓ+1 does not contain
any edge between two nodes that are in the same connectivity component. Thus it is distinct
from all of the matchings already in M (since by construction each one contained such an
edge) and we can add it to M. We add (j, k) to E where P(τ,M ℓ+1) = (j, k, b).

For the same reason specified above, the edge from M ℓ+1 that is selected by P will either
connect two previously unconnected components in Cℓ hence Cℓ+1

k = Cℓ
i ∪Cℓ

j for some i, j, k,
or else connect some Cℓ

i with a previously unconnected edge (meaning |Cℓ+1| = |Cℓ| + 1).
We run the above algorithm until some step ℓ̃ when either (a) |C ℓ̃| = N or (b) C ℓ̃

0 > N/2.

The algorithm is guaranteed to terminate in O(N) steps. If (a) occurs, then either (a1) there
are strictly less than N/2 connectivity components or (a2) there are exactly N/2 connectivity
components, since each one contains at least two nodes. In case (a1), there are strictly less than
N/2 independent degrees of freedom in the choice of the bits of any x for which Alice sends the
message τ , since each connectivity component C ℓ̃

i implies |C ℓ̃
i | constraints of the form xj ⊕ xk = b

where P(τ,M) = (j, k, b), (j, k) ∈ M connects two nodes in C ℓ̃
i . In case (a2), there are N/2

connectivity components of size 2. We then consider a final matching M ℓ̃+1 that first divides {C ℓ̃
i }

into groups of two {Ki} and then pairs each node to a node in a different connectivity component
within the same Ki. As before, this matching is valid since M ℓ̃+1 /∈ M. After including the edge
in P(τ,M ℓ̃+1) into E, G will contain N/2 − 1 connected components. As before, there are strictly
less than N/2 degrees of freedom in choosing x. In case (b), there is a single component of size
strictly larger than N/2. Thus even if all the remaining nodes are disconnected, there are strictly
less than N/2 degrees of freedom once again.

In conclusion, in all cases we obtain that the number of rows of Sτ is at most 2N/2−1. The
number of possible messages Alice must send is therefore at least 2N/2N/2−1 = 2N/2+1 and thus
the number of bits Alice must send in order to solve MHMN,1 is at least N/2 + 1. Since this bound
is valid for the multi-Bob version of the problem as well, we have D→(MHMN,m) ≥ N/2 + 1.

The upper bound is trivial: Alice sends the Bobs the first N/2 + 1 bits of her input. These
are sufficient for the Bobs to compute the output for all m matchings simultaneously. The result
follows.

Proof of Lemma 9. i) Theorem 9 of [39], applied to square matrices. The proof is based on
lower bounds for distributed Fourier sampling.

ii) It follows from the ability of Alice to send her whole input to Bob to complete the task.

Proof of Lemma 10. i) Say Alice is given a binary vector y of length m log(N/m) and there
are m Bobs. Each Bob uses the matrix

Bj =
(N/m)(j+1)∑
i=(N/m)j

|i⟩ ⟨i| . (A.2)
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Alice then divides her bits into m sets of size log(N/m) and treats the bits in each set as an
integer rj ∈ [N/m]. She creates a vector x of length N by concatenating a unary encoding of
these numbers, meaning

[x[(N/m)j:(N/m)(j+1)]]i =
√

1
m
δirj , (A.3)

where we used x[l:m] denotes the subset of the entries of a vector ranging from [l,m).
Suppose Alice and the Bobs manage to solve MLRSN,m with inaccuracy η. This means

that Bob produces a sample from a distribution that is at most η in TV from each of his
target distributions Pj . From the definition of x and the B(j), Pj is be a delta function
at rj . This means that with probability at least 1 − 2η, Bob recovers the log(N/m) bits
of rj by performing a computational basis measurement. It follows that Alice’s message to
Bob is a random-access encoding of m log(N/m) bits. From known lower bounds on the
number of qubits needed for random access coding [41], if 2η < 1/2, Alice must send at least
Ω(m log(N/m)) qubits to the Bobs.

ii) This follows immediately from the bound of Theorem 4 of [39] with an additional factor of
m due to the number of samples, and using ||x||2 = 1. The bound uses an amplitude-encoding
of x, followed by the application of B+

k using block-encoding. If two-way communication is
allowed, the complexity can be improved to O(m log(N)max

k

∥∥∥B+
k

∥∥∥ / ∥∥∥B+
k x

∥∥∥
2
) since Alice and

Bob can run amplitude amplification.
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