
Provability of the Circuit Size Hierarchy and Its Consequences

Marco Carmosino* Valentine Kabanets† Antonina Kolokolova‡

Igor C. Oliveira§ Dimitrios Tsintsilidas¶

October 2, 2024

Abstract

The Circuit Size Hierarchy (CSHa
b) states that if a > b ≥ 1 then the set of functions on n variables

computed by Boolean circuits of size na is strictly larger than the set of functions computed by circuits
of size nb. This result, which is a cornerstone of circuit complexity theory, follows from the non-
constructive proof of the existence of functions of large circuit complexity obtained by Shannon in 1949.

Are there more “constructive” proofs of the Circuit Size Hierarchy? Can we quantify this? Motivated
by these questions, we investigate the provability of CSHa

b in theories of bounded arithmetic. Among
other contributions, we establish the following results:

(i) Given any a > b > 1, CSHa
b is provable in Buss’s theory T2

2.

(ii) In contrast, if there are constants a > b > 1 such that CSHa
b is provable in the theory T1

2, then
there is a constant ε > 0 such that PNP requires non-uniform circuits of size n1+ε.

In other words, an improved upper bound on the proof complexity of CSHa
b would lead to new lower

bounds in complexity theory.
We complement these results with a proof of the Formula Size Hierarchy (FSHa

b) in PV1 with pa-
rameters a > 2 and b = 3/2. This is in contrast with typical formalizations of complexity lower bounds
in bounded arithmetic, which require APC1 or stronger theories and are not known to hold even in T1

2.

*IBM Research, USA. E-mail: marco@ntime.org
†Simon Fraser University, Canada. E-mail: kabanets@cs.sfu.ca
‡Memorial University of Newfoundland, Canada. E-mail: kol@mun.ca
§University of Warwick, UK. E-mail: igor.oliveira@warwick.ac.uk
¶University of Warwick, UK. E-mail: dimitrios.tsintsilidas@warwick.ac.uk

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 145 (2024)

Contents

1 Introduction 3
1.1 Context and Motivation . 3
1.2 Results . 3
1.3 Techniques . 5

2 Preliminaries 6
2.1 Complexity Theory . 6
2.2 Bounded Arithmetic . 7

2.2.1 Logical Theories . 7
2.2.2 The KPT Witnessing Theorem . 8

3 Circuit Size Hierarchies in Bounded Arithmetic 9
3.1 Explicit Circuit Lower Bounds from Provability in PV1 and T1

2 9
3.2 Extracting All the Hardness from Proofs of a Succinct Hierarchy Theorem 11
3.3 Formalization in T2

2 . 12
3.4 On the Gap Between T1

2 and T2
2 . 13

4 Provability of Formula Size Bounds in PV1 14
4.1 Subbotovskaya’s Lower Bound . 14

4.1.1 High-Level Details of the Formalization . 14
4.1.2 On the Low-Level Details of the Formalization . 19

4.2 Upper Bound . 20
4.3 Formula Size Hierarchy . 23

A Proof of the KPT Theorem for ∀∃∀∃ Sentences 25

2

1 Introduction

1.1 Context and Motivation

The existence of Boolean functions requiring large circuits can be shown by a non-constructive counting
argument, as established by Shannon in 1949 [Sha49]. It follows from Shannon’s seminal result and a simple
padding argument that if a > b ≥ 1 there are functions computable by circuits of size na that cannot be
computed by circuits of size nb. In other words, the classification of Boolean functions by their minimum
circuit size forms a strict hierarchy.

Obtaining a “constructive” form of these results has been a holy grail in computational complexity
theory for several decades due to its connections to derandomization and as an approach to separating P
and NP. For instance, if there is a polynomial-time algorithm that given 1n outputs the truth-table of a
function f : {0, 1}logn → {0, 1} that requires circuits of size nΩ(1), then P = BPP [IW97]. In results of
this form, a constructive form of the (non-constructive) proof of the existence of hard functions is interpreted
computationally as the existence of an algorithm of bounded complexity that computes a hard function.

In this paper, rather than focusing on the existence of algorithms to capture the constructiveness of a
statement, we explore this notion from the perspective of mathematical logic, specifically concerning its
provability in certain mathematical theories. We are interested in identifying the weakest theory capable of
establishing the aforementioned circuit size hierarchy for Boolean circuits and related results.

As one of our contributions, we present a tight connection between the computational and proof-theoretic
perspectives. We demonstrate that proving the non-uniform circuit size hierarchy in a theory known as T1

2

implies the existence of a function in PNP that requires Boolean circuits of size at least n1+ε. The latter is
a frontier question in complexity theory (see, e.g., [CMMW19]). Thus, in a precise sense, developing more
constructive proofs of the circuit size hierarchy would lead to significant progress on explicit circuit lower
bounds.

We now proceed to describe this result and other contributions of this work in detail.

1.2 Results

We will be concerned with standard theories of bounded arithmetic. These theories are designed to
capture proofs that manipulate and reason with concepts from a specified complexity class. Notable exam-
ples include Cook’s theory PV1 [Coo75], which formalizes polynomial-time reasoning; Jeřábek’s theory
APC1 [Jeř04, Jeř05, Jeř07], which extends PV1 by incorporating the dual weak pigeonhole principle for
polynomial-time functions and formalizes probabilistic polynomial-time reasoning; and Buss’s theories Ti

2

[Bus86], which incorporate induction principles corresponding to various levels of the polynomial-time
hierarchy.

For an introduction to bounded arithmetic, we refer to [Bus97]. For its connections to computational
complexity and a discussion on the formalization of complexity theory, we refer to [Oli24].1 Here we only
recall that theory PV1 corresponds essentially to T0

2 [Jeř06], and that T0
2 ⊆ T1

2 ⊆ T2
2 correspond to the first

levels of Buss’s hierarchy. A brief overview of the theories is provided in Section 2.
For a given n ∈ N, we use CIRCUIT[s(n)] to denote the set of Boolean functions f : {0, 1}n → {0, 1}

computed by circuits of size at most s(n). Similarly, we write FORMULA[s(n)] when referring to formula
size. We use SIZE[s(n)] to denote the set of languages L ⊆ {0, 1}∗ that admit a sequence of circuits of size
at most s(n).

1In particular, the reference [Oli24] contains a detailed discussion of some aspects of the formalization of the statements ap-
pearing below.

3

Circuit Size Hierarchy. For rationals a > b ≥ 1 and n0, we consider the following sentence:2

CSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ circuit D : {0, 1}n → {0, 1} of size ≤ na,

∀ circuit C : {0, 1}n → {0, 1} of size ≤ nb, ∃x ∈ {0, 1}n such that D(x) ̸= C(x).

In other words, CSH[a, b, n0] states that CIRCUIT[na] ⊈ CIRCUIT[nb] whenever n ≥ n0.

Next, we state our first result.

Theorem 1. The following results hold:

(i) For every choice of rationals a and b with a > b > 1, and for every large enough n0 ∈ N,

T2
2 ⊢ CSH[a, b, n0] .

(ii) If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ PNP such that L /∈ SIZE[n1+ε].

(iii) Similarly to the previous item, if PV1 ⊢ CSH[a, b, n0], there is L ∈ P such that L /∈ SIZE[n1+ε].

To put it another way, we can establish a circuit size hierarchy within the theory T2
2. If this result could

also be proven in the theory T1
2, it would lead to a significant breakthrough in circuit lower bounds. Thus, by

enhancing the proof complexity upper bound for the provability of the circuit size hierarchy, we can achieve
new circuit lower bounds.

Note that in Theorem 1 Items (ii) and (iii) we obtain a lower bound against circuits of size n1+ε, where
the constant ε > 0 depends on the proof of CSH[a, b, n0] in the corresponding theory. In other words, while
the sentence claims the existence of hardness against circuits of size nb, we are only able to extract a weaker
lower bound for an explicit problem.

In our next result, we describe a setting where we can extract all the hardness from a proof of the
corresponding sentence.

Succinct Circuit Size Hierarchy. For rationals a > b ≥ 1 and n0, we consider the following sentence:

SCSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ collection {(x1, b1), . . . , (xℓ, bℓ)} of size ℓ ≤ na with

|xi| = n ∧ |bi| = 1 for each i ∈ [ℓ] and xi ̸= xj for distinct i, j ∈ [ℓ] ,

∀ circuit C : {0, 1}n → {0, 1} of size ≤ nb, ∃i ∈ [ℓ] such that C(xi) ̸= bi.

In other words, SCSH[a, b, n0] states that for every n ≥ n0 there is a collection of ℓ ≤ na labelled examples
such that every circuit of size at most nb disagrees with at least one of its labels.

We obtain the following results on the proof complexity of the succinct circuit size hierarchy.

Theorem 2. The following results hold:

2The abbreviation n ∈ Log denotes that n is the length of a variable N (see, e.g., [Oli24] for more details).

4

(i) For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

T2
2 ⊢ SCSH[a, b, n0] .

(ii) If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ SCSH[a, b, n0] ,

then there is a language L ∈ PNP such that L /∈ SIZE[nb].

In our final result, we investigate the provability of size hierarchies for more restricted computational
models in T1

2 and weaker theories.

Formula Size Hierarchy. For rationals a > b ≥ 1 and n0, we consider the following sentence:

FSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ formula F : {0, 1}n → {0, 1} of size ≤ na,

∀ formula G : {0, 1}n → {0, 1} of size ≤ nb, ∃x ∈ {0, 1}n such that F (x) ̸= G(x).

In other words, FSH(a, b, n0) states that FORMULA[na] ⊈ FORMULA[nb] whenever n ≥ n0.

We establish that for some parameters a formula size hierarchy is provable already in PV1.

Theorem 3. Consider rationals a > 2 and b = 3/2, and let n0 be a large enough positive integer. Then

PV1 ⊢ FSH[a, b, n0] .

While many lower bounds can be proven in APC1 and stronger theories (see [MP20, Oli24, CLO24] and
references therein), Theorem 3 provides an example of a non-trivial lower bound (under a “Log” formaliza-
tion; see [Oli24, Section 4.1]) that can be established in PV1, which might be of independent interest.

1.3 Techniques

The proofs of Items (ii) and (iii) in Theorem 1 are inspired by arguments from [KO17, Kra21] that
rely on a combination of a witnessing theorem with a term elimination strategy. Recall that the witnessing
theorem allows us to extract computational information from a proof of the sentence in the theory. Roughly
speaking, in our context this implies that the first existential quantifier in the sentence CSH[a, b, n0], which
corresponds to a circuit computing a hard function, can be witnessed by a finite number of terms t1, . . . , tk
of the corresponding theory. In PV1, a term yields a polynomial-time function, while in T1

2 a term yields
a polynomial-time function with access to an NP oracle. The main difficulty is that (1) for a given input
length n it is not clear which term among t1, . . . , tk succeeds in constructing a hard function, and (2) for a
term to succeed we must provide counter-examples to the candidate witnesses provided by previous terms.

As in previous papers, we assume that the conclusion of the theorem does not hold, and use this assump-
tion to rule out the correctness of each term. This leads to a contradiction, meaning that the original sentence
is not provable in the corresponding theory. Implementing this plan requires a careful argument, and we are
currently only able to carry it out under a complexity inclusion in SIZE[n1+ε] as opposed to SIZE[nb]. The
proof of the result is given in Section 3.1.

On the other hand, in the case of the succinct circuit size hierarchy, the argument for Item (ii) of Theo-
rem 2 is simpler and allows us to start with the weaker assumption that PNP ⊆ SIZE[nb]. Without getting

5

into the technical details, the main reason for not losing hardness in this result is that given a labelled list of
examples and access to an NP oracle, we can efficiently compute a minimum size circuit that agrees with
this list of inputs. Consequently, we can check if a candidate labelled list provided by a term is indeed hard,
or produce a counter-example when this is not the case. The same computation is not available in the case
of Theorem 1, since it is not clear how to efficiently compute with access to an NP oracle if a given circuit
admits a smaller equivalent circuit. The proof of Item (ii) of Theorem 2 appears in Section 3.2.

The proofs of Theorem 1 Item (i) and Theorem 2 Item (i) are given in Section 3.3. The formalization of
these hierarchies in T2

2 is easily done with access to the dual Weak Pigeonhole Principle for polynomial-time
functions, a principle which is known to be available in T2

2. In more detail, CSH follows from SCSH in PV1,
while SCSH can be established in theory APC1, which is contained in T2

2.
Finally, in the proof of Theorem 3 we formalize in PV1 that the parity function on n bits can be computed

by formulas of size O(n2) and require formulas of size Ω(n3/2). This yields in PV1 a proof of FSH[a, b, n0]
for any choice of parameters a > 2, large enough n0, and b = 3/2. The upper bound on the complexity
of parity follows from a straightforward formalization of the correctness of the formula obtained via a
divide-and-conquer procedure. On the other hand, in order to show the formula lower bound we formalize
Subbotovskaya’s argument [Sub61] based on the method of restrictions. To implement the proof in PV1, we
directly define an efficient refuter that given a small formula outputs an input string where it fails to compute
the parity function. The correctness of the refuter is established by induction using an induction principle
available in the theory S12. We then rely on a conservation result showing that the proof can also be done in
PV1. A detailed exposition of the argument appears in Section 4.

Acknowledgements. We thank Emil Jeřábek for a discussion about witnessing theorems in bounded arith-
metic. We are also grateful to Hanlin Ren for a suggestion that improved our bounds in Corollary 10. This
work received support from the Royal Society University Research Fellowship URF\R1\191059; the UKRI
Frontier Research Guarantee Grant EP/Y007999/1; the Centre for Discrete Mathematics and its Applica-
tions (DIMAP) at the University of Warwick, and the Natural Sciences and Engineering Research Council
of Canada.

2 Preliminaries

2.1 Complexity Theory

We employ standard definitions from complexity theory, such as basic complexity classes, Boolean
circuits, and Boolean formulas (see, e.g., [AB09]).

Let N represent the set of non-negative integers. For any a ∈ N, let |a| denote the length of its binary
representation, defined as |a| ≜ ⌈log2(a + 1)⌉. For a constant k ≥ 1, a function f : Nk → N is said to
be computable in polynomial time if f(x1, . . . , xk) can be computed in time polynomial in |x1|, . . . , |xk|.
For convenience, we might write |x⃗| ≜ |x1|, . . . , |xk|. The class FP denotes the set of polynomial-time
computable functions. Although the definition of polynomial time typically refers to a machine model,
FP can also be defined in a machine-independent manner as the closure of a set of base functions F (not
described here) under composition and limited recursion on notation. A function f(x⃗, y) is defined from

6

functions g(x⃗), h(x⃗, y, z), and k(x⃗, y) by limited recursion on notation if

f(x⃗, 0) = g(x⃗)

f(x⃗, y) = h(x⃗, y, f(x⃗, ⌊y/2⌋))
f(x⃗, y) ≤ k(x⃗, y)

for every sequence (x⃗, y) of natural numbers. Cobham [Cob65] established that FP is the smallest class
of functions that contains the base functions F and is closed under composition and limited recursion on
notation.

2.2 Bounded Arithmetic

2.2.1 Logical Theories

We recall the definitions of some standard theories of bounded arithmetic. For more details, the reader
can consult [Kra95, CN10, Kra19].

Cook’s Theory PV [Coo75]. The theory PV1 is designed to model the set N of natural numbers with the
standard interpretations for constants and function symbols like 0,+,×, etc. The vocabulary (language) of
PV, denoted LPV, includes a function symbol for each polynomial-time algorithm f : Nk → N, where k is
any constant. These function symbols and their defining axioms are derived using Cobham’s characterization
of polynomial-time functions discussed above. While Cook’s PV was an equational theory, it was later
extended in [KPT91] to a first-order theory PV1, which includes an induction axiom scheme that simulates
binary search. It can be shown that PV1 allows induction over quantifier-free formulas (i.e., polynomial-time
predicates).

PV1 can be formulated with all axioms as universal formulas (i.e., ∀x⃗ ϕ(x⃗), where ϕ is free of quanti-
fiers). Thus, PV1 is a universal theory. Although the definition of PV1 is quite technical, the theory is fairly
robust and the details of its definition are often unnecessary for practical purposes. In particular, PV1 has an
equivalent formalizations that does not rely on Cobham’s result, e.g. [Jeř06].

Jeřábek’s Theory APC1 [Jeř04, Jeř05, Jeř07]. APC1 extends PV1 with the dual Weak Pigeonhole Prin-
ciple (dWPHP) for PV1 functions:

APC1 ≜ PV ∪ {dWPHP(f) | f ∈ LPV}.

Each sentence dWPHP(f) postulates that, for every length n = |N | and for every choice of z⃗, there is
y < (1 + 1/n) · 2n such that f(z⃗, x) ̸= y for every x < 2n. It is known that APC1 is contained in T2

2

[MPW02].

Buss’s Theories Si2 and Ti
2 [Bus86]. The language LB for these theories includes predicate symbols =

and ≤, constant symbols 0 and 1, and function symbols S (successor), +, ·, ⌊x/2⌋, |x| (interpreted as the
length of x), and # (interpreted as x#y = 2|x|·|y|, known as “smash”).

Recall that a bounded quantifier is a quantifier of the form Qy ≤ t, where Q ∈ {∃, ∀} and t is a term
not involving y. Similarly, a sharply bounded quantifier is one of the form Qy ≤ |t|. A formula where each
quantifier appears bounded (or sharply bounded) is called a bounded (or sharply bounded) formula.

We can create a hierarchy of formulas by counting alternations of bounded quantifiers. The class Πb
0 =

Σb
0 contains the sharply bounded formulas. Recursively, for each i ≥ 0, the classes Σb

i and Πb
i are defined

7

by the quantifier structure of the sentence, ignoring sharply bounded quantifiers. For instance, if φ ∈ Σb
0

and ψ ≜ ∃y ≤ t(x⃗) φ(y, x⃗), then ψ ∈ Σb
1. For the general case of the definition, see [Kra95]. It is known

that for each i ≥ 1, a predicate P (x⃗) is in Σp
i (the i-th level of the polynomial hierarchy) if and only if there

is a Σb
i -formula that agrees with it over N.

These theories share a common set of finitely many axioms, BASIC, which postulate the expected
arithmetic behavior of the constants, predicates, and function symbols. The only difference among the
theories is the type of induction axiom scheme each one postulates.

Ti
2 is a theory in the language LB that extends BASIC by including the induction axiom IND:

φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)

for all Σb
i -formulas φ(a). The formula φ(a) may contain other free variables in addition to a.

Si2 is a theory in the language LB that extends BASIC by including the polynomial induction axiom
PIND:

φ(0) ∧ ∀x (φ(⌊x/2⌋) → φ(x)) → ∀xφ(x)
for all Σb

i -formulas φ(a). The formula φ(a) may contain other free variables in addition to a.

Theory S12(PV). When proving some results in S12, it is often convenient to use a more expressive vo-
cabulary that easily describes any polynomial-time function. This can be done in a conservative manner,
meaning the power of the theory is not increased. Specifically, let Γ be a set of LB-formulas. We say that
a polynomial-time function f : Nk → N is Γ-definable in S12 if there exists a formula ψ(x⃗, y) ∈ Γ such that
the following conditions are met:

(i) For every a⃗ ∈ Nk, f (⃗a) = b if and only if N |= φ(⃗a, b).

(ii) S12 ⊢ ∀x⃗ (∃y (φ(x⃗, y) ∧ ∀z (φ(x⃗, z) → y = z))) .

Every function f ∈ FP is Σb
1-definable in S12. By incorporating all functions in FP into the vocabulary

of S12 and extending the axioms of S12 with their defining equations, we obtain a theory S12(PV). This
theory allows polynomial-time predicates to be referred to using quantifier-free formulas. S12(PV) remains
conservative over S12, meaning any LB-sentence provable in S12(PV) is also provable in S12. Finally, it is
known that S12(PV) proves the polynomial induction scheme for both Σb

1-formulas and Πb
1-formulas within

the extended vocabulary.

2.2.2 The KPT Witnessing Theorem

The following witnessing theorem (a variant of Herbrand’s theorem) is proved in [KPT91] (cf. also
[Kra95, Theorem 7.4.1]) for universal theories (like the theory PV1).

Theorem 4 (KPT Theorem for ∀∃∀∃ sentences). Let T be a universal theory with vocabulary L. Let φ be
an open L-formula, and suppose that

T ⊢ ∀x ∃y ∀z ∃w φ(x, y, z, w).

Then there is a finite sequence s1, . . . , sk of L-terms such that

T ⊢ ∀x, z1, . . . , zk
(
ψ(x, s1(x), z1) ∨ ψ(x, s2(x, z1), z2) ∨ · · · ∨ ψ(x, sk(x, z1, . . . , zk−1), zk)

)
,

where
ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

8

For completeness, we describe a proof of Theorem 4 in Appendix A.
We can also apply the KPT Theorem to each theory Ti

2 (for i ≥ 1) using a conservative extension of
the theory that admits a universal axiomatization. The corresponding theory is called PVi+1 [KPT91]. In
PVi+1, each term is equivalent to an FPΣp

i function over the standard model. This leads to the following
result.

Theorem 5 (Consequence of the KPT Theorem for Theory Ti
2). Let i ≥ 1, φ(x, y, w, z) be a Πb

i -formula,
and suppose that

Ti
2 ⊢ ∀x ∃y ∀z ∃w φ(x, y, w, z).

Then there is a finite sequence f1, . . . , fk of function symbols, each corresponding to an FPΣp
i function, such

that

N |= ∀x, z1, . . . , zk
(
ψ(x, f1(x), z1) ∨ ψ(x, f2(x, z1), z2) ∨ · · · ∨ ψ(x, fk(x, z1, . . . , zk−1), zk)

)
,

where
ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

3 Circuit Size Hierarchies in Bounded Arithmetic

3.1 Explicit Circuit Lower Bounds from Provability in PV1 and T1
2

In this section, we prove Theorem 1 Items (ii) and Items (iii).

Theorem 6 (Theorem 1 Item (iii)). If there are rationals a > b > 1 and n0 ∈ N such that

PV1 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ P such that L /∈ SIZE[n1+ε].

Proof. Towards a contradiction, suppose that PV1 ⊢ CSH[a, b, n0] for rationals a > b > 1 and some
constant n0 and that P ⊆

⋂
ε>0 SIZE[n

1+ε]. The sentence CSH[a, b, n0] has the form ∀∃∀∃:

CSH[a, b, n0] ≜ ∀n ≥ n0 ∈ Log, ∃ circuit D ∀ circuit C ψa,b(n,D,C) ,

where ψa,b(n,D,C) is the existential formula:

ψa,b(n,D,C) ≜ ∃x |x| ≤ n ∧ SIZE(D) ≤ na ∧ (SIZE(C) ≤ nb → D(x) ̸= C(x)).

Therefore, we can apply the KPT Theorem (Theorem 4), which provides PV1-terms, equivalently FP func-
tions, s1, . . . , sk, where k is a constant, such that

N |= ψa,b(n, s1(1
(n)), C1) ∨ ψa,b(n, s2(1

(n), C1), C2) ∨ · · · ∨ ψa,b(n, sk(1
(n), C1, . . . , Ck−1), Ck). (1)

In the relation above the circuits C1, . . . , Ck are universally quantified.
Next, we use P ⊆

⋂
ε>0 SIZE[n

1+ε] to refute each of these disjuncts. We start by considering the fol-
lowing language, D-Eval:

9

Input: A string x and a sequence ⟨C1, C2, . . . , Cr⟩ of r ≤ k − 1 circuits
1 Define n ≜ |x|;
2 Simulate sr+1(1

(n), C1, . . . , Cr) and interpret the output as a Boolean circuit D : {0, 1}n → {0, 1};
// We assume w.l.o.g. that D is a valid n-bit circuit of size

≤ na, since otherwise the disjunct is trivially false.
3 Evaluate D on input x and output the result.

Algorithm 1: The pseudocode of an algorithm that decides the language D-Eval.

D-Eval is in P due to the fact that s1, . . . , sk ∈ FP and circuit evaluation is in FP. By our assumption
on the circuit complexity of the complexity class P, for every input length m and every ε > 0, D-Eval ∈
SIZE[m1+ε], so we can choose

ε0 ≜ b1/(2k) − 1 > 0

and have D-Eval ∈ SIZE[mb1/(2k)]. We also define the constants

ϵi ≜ bi/k and δi ≜ b(2i−1)/(2k)

for i = 1, . . . , k. Note that ϵi = (1 + ε0)δi and δi+1 > ϵi.
We start by refuting ψa,b(n, s1(1

(n)), C1). We consider inputs of the form x, λ to D-Eval, where λ is
the empty sequence. Then the input has length n + c , where c = O(log n) accounts for the overhead in
the encoding of the input. We consider the circuit C∗

1 ∈ CIRCUIT[(n+ c)1+ε0], which evaluates as D-Eval
on inputs of length n + c, and we fix the input variables not related to x to represent the empty sequence.
The resulting circuit has as input an n-bit string x and computes according to s1(1(n)) by definition of the
D-Eval algorithm. For sufficiently large n, we have that n + c ≤ nδ1 ⇒ (n + c)1+ε0 ≤ n(1+ε0)δ1 = nϵ1 ,
therefore we have the circuit C∗

1 ∈ CIRCUIT[nϵ1] which agrees with the circuit s1(1(n)) on all n-bit inputs.
Since ϵ1 ≤ b, we have that N ̸|= ψa,b(n, s1(1

(n)), C∗
1).

We can apply a similar argument to the next disjunct using the aforementioned circuit C∗
1 . In more

detail, we consider the input (x, ⟨C∗
1 ⟩) on D-Eval, which has length m = n + 9nϵ1 log(nϵ1) + c ≤ nδ2

for sufficiently large n due to δ2 > ϵ1, and a corresponding circuit C∗
2 ∈ CIRCUIT[m1+ε0] provided by

the circuit upper bound hypothesis. Similarly, we can fix the 9nϵ1 log(nϵ1) + c variables not related to
the input string x. This provides an n-bit circuit C∗

2 ∈ CIRCUIT[nϵ2] that computes according to the
circuit s2(1(n), C∗

1), due to the definition of the D-Eval algorithm. Since ϵ2 < b, we have that N ̸|=
ψa,b(n, s2(1

(n), C∗
1), C

∗
2).

Inductively, if we have circuits C∗
1 , C

∗
2 , . . . , C

∗
i for some i ≤ k − 1 of sizes at most nϵ1 , nϵ2 , . . . , nϵi ,

respectively, we consider the input (x, ⟨C∗
1 , . . . , C

∗
i ⟩) toD-Eval, which has lengthm = n+9nϵ1 log(nϵ1)+

· · · + 9nϵi log(nϵi) + c ≤ nδi+1 for sufficiently large n. Therefore, by taking a corresponding m1+ε0-size
circuit for D-Eval and fixing all the inputs except for x, we get the circuit C∗

i+1 ∈ CIRCUIT[nϵi+1] ⊆
CIRCUIT[nb] which agrees with the circuit si+1(1

(n), C∗
1 , . . . , C

∗
i) on all n-bit inputs. Consequently, N ̸|=

ψa,b(n, si+1(1
(n), C∗

1 , . . . , C
∗
i), C

∗
i+1).

Overall, we can refute all disjuncts in Equation (1), which gives us a contradiction. This completes the
proof.

Theorem 7 (Theorem 1 Item (ii)). If there are rationals a > b > 1 and n0 ∈ N such that

T1
2 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ PNP such that L /∈ SIZE[n1+ε].

10

Proof. In this case, provability in T1
2 provides by the KPT Theorem (Theorem 5) functions s1, . . . , sk which

are in FPNP instead of FP as in the previous proof. Therefore, the algorithm D-Eval is in PNP and we use
the upper bound PNP ⊆

⋂
ε>0 SIZE[n

1+ε] to get a contradiction in the same way as above.

Note that in the arguments above we have no control over the constant ε > 0. It depends on the
number of disjuncts obtained from the KPT Theorem, which depends on the supposed proof of the hierarchy
sentence.

3.2 Extracting All the Hardness from Proofs of a Succinct Hierarchy Theorem

In this section, we prove Theorem 2 Item (ii).

Theorem 8 (Theorem 2 Item (ii)). If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ SCSH[a, b, n0] ,

then there is a language L ∈ PNP such that L /∈ SIZE[nb].

Proof. The main idea here is to use the proof of SCSH in order to define a Turing machine M which runs
in polynomial time using an NP oracle and its language is hard against nb-size circuits.

Starting from T1
2 ⊢ SCSH[a, b, n0], we see that the structure of the sentence is ∀∃∀∃:

SCSH[a, b, n0] ≜ ∀n ≥ n0 ∈ Log, ∃ collection F , ∀ circuit C ϕa,b(n,F , C),

where ϕa,b(n,F , C) is the formula that states that F is a collection {(x1, b1), . . . , (xℓ, bℓ)} with ℓ ≤ na,
where |xi| = n and |bi| = 1, and that if C is a circuit on n variables and of size ≤ nb, then there is some
i ∈ [ℓ] such that C(xi) ̸= bi (we can move the existential quantifier at the front of the formula).

Thus, by the KPT Theorem (Theorem 5), there are FPNP functions f1, . . . , fk, where k is a fixed con-
stant, such that

N |= ϕa,b(n, f1(1
(n)), C1) ∨ ϕa,b(n, f2(1(n), C1), C2) ∨ · · · ∨ ϕa,b(n, fk(1(n), C1, . . . , Ck−1), Ck). (2)

From the relation above, we can see that one of the functions f1, . . . , fk will output a collection that
refutes every circuit of size ≤ nb. If it is not f1, then there is a counterexample circuit C1, which is used as
extra input in f2 and so on. Since f1, . . . , fk are in FPNP, we can simulate this procedure in a PNP Turing
machine M :

Input: A bit-string x
1 Define n ≜ |x|;
2 for i = 1, . . . , k do
3 Simulate fi with input 1(n) and, if i > 1, C1, . . . , Ci−1. Interpret the output as a collection

F = {(x1, b1), . . . , (xℓ, bℓ)} with ℓ = na;
4 Check with an NP oracle whether there exists a circuit C of size ≤ nb, such that C(xi) = bi for

all i ∈ [ℓ];
5 If not or if i = k, exit the for-loop with the current F ;
6 If there is such a circuit, then use the NP oracle to find it and name it Ci.
7 end
8 If the pair (x, 1) is in the collection F , then accept. Else reject.

Algorithm 2: The Turing machine Ma,b, whose language is hard for nb-size circuits.

11

It is easy to see that the language L(Ma,b) recognised by the Turing machine Ma,b, is in PNP. It suffices
to show that L(Ma,b) ̸∈ SIZE[nb].

Consider a circuit C ∈ CIRCUIT[nb]. We will show that it fails to recognise L(Ma,b). Assume that the
for-loop in Algorithm 2 ends in the r-th iteration with r ≤ k. We fix the circuits C1, C2, . . . , Cr−1 found by
the algorithm. Then the formula ϕa,b(n, fr(1(n), C1, . . . , Cr−1), C) always holds. If r < k and C did not
satisfy it, then the NP oracle would find C as a counterexample and it would continue to the (r+1)-th itera-
tion. If r = k, then by the construction ofC1, C2, . . . , Ck−1, the formulas ϕa,b(n, fi(1(n), C1, . . . , Ci−1), Ci)
for i < k do not hold, which means by Equation (2) that ϕa,b(n, fk(1(n), C1, . . . , Ck−1), C) is true.

Since F ≡ fr(1
(n), C1, . . . , Cr−1), from ϕa,b(n,F , C) we get that there is some i ∈ [ℓ], such that

C(xi) ̸= bi. However, if bi = 1, then xi ∈ L(Ma,b), and if bi = 0, then xi ̸∈ L(Ma,b). In both cases, the
circuit C fails to recognise the language L(Ma,b), and the proof is complete.

3.3 Formalization in T2
2

In this section, we prove Theorem 1 Item (i) and Theorem 2 Item (i). To achieve this, we show that
the succinct circuit size hierarchy is provable in APC1, which is contained in T2

2. We then observe that the
circuit size hierarchy is easily provable from the succinct circuit size hierarchy.

Theorem 9. For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

APC1 ⊢ SCSH[a, b, n0] .

In particular, SCSH[a, b, n0] is provable in T2
2.

Proof. We define the polynomial-time function, f , which takes as input the description of a circuit, C, of
size nb, which means that the length of the description of C is 9nb log nb, and outputs a bit string y of length
na with the property that for all i = 0, 1, . . . , na − 1, yi = C(i).

The correctness of the polynomial-time algorithm f is provable in PV1. In other words,

PV1 ⊢ ∀n ∈ Log (|x| ≤ 9nb log nb ∧ |y| ≤ na) → [|f(x)| ≤ na ∧ (f(x) = y ↔ ∀i < na yi = Eval(x, i))].
(3)

The quantifier ∀i ≤ na is sharply bounded, so this formula is provable in PV1.
The theory APC1 includes the dWPHP axiom for all PV functions with input length n and output length

n+ 1, or equivalently input length n and output length m with n < m. From the first part of Equation (3),
the input length of f is 9nb log nb, while the output length is na. Furthermore, it is provable in PV1 that
there is some constant n0, such that ∀n ≥ n0 n

a > 9nb log nb. Therefore, we can use the axiom:

dWPHP(f) ≜ ∀n ≥ n0 ∃y (|y| = na) ∀x (|x| = 9nb log nb) f(x) ̸= y (4)

Every circuit of size nb can be described by a string of size 9nb log nb, which means that

∀C ∈ CIRCUIT[nb] |C| ≤ 9nb log nb.

Also, from the second part of Equation (3), using the notation for the circuit C, we get that

f(C) ̸= y ↔ ∃i < na C(i) ̸= yi.

Substituting the last two relations to Equation (4), we get that

APC1 ⊢ ∀n ≥ n0 ∈ Log ∃y (|y| = na) ∀C ∈ CIRCUIT[nb] ∃i < na C(i) ̸= yi,

which is equivalent with SCSH[a, b, n0], if we interpret y as the collection Fy ≜ {(0, y0), (1, y1), . . .}.

12

Corollary 10. For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

T2
2 ⊢ CSH[a, b, n0] .

Proof. Since a > b, there is some rational ϵ > 0, such that a − ϵ > b. From Theorem 9, we have got a
collection F = {(x1, b1), . . . , (xℓ, bℓ)} of size ℓ ≤ na−ϵ, such that for all circuits C of size less than nb,
there exists i ∈ [ℓ] such that C(xi) ̸= bi. So, we only need to prove that

PV1 ⊢ ∃ circuit D : {0, 1}n → {0, 1} of size ≤ na, ∀i ∈ [ℓ] D(xi) = bi,

and then we can easily deduce that APC1 ⊢ CSH[a, b, n0]. The same holds also for T2
2.

It is sufficient to argue in PV1 that there is a polynomial-time function Circuit(F) such that given
the collection F from Theorem 9 outputs a circuit D : {0, 1}n → {0, 1} of the required size such that
∀i ∈ [ℓ] D(xi) = bi. In order to optimize the circuit size, we use that the obtained collection has a specific
structure. More precisely, we have that for any i ∈ [ℓ], the strings xi is the n-bit binary representation of the
integer i− 1. Therefore, we can construct the circuit D in the following way: For every n-bit string xi such
that (xi, 1) ∈ F , we construct the term T i, which is the conjunction of the first |ℓ| least significant bits of xi

(we put the literal zj if the j-th bit of xi is 1 and ¬zj if the j-th bit of xi is 0, where j ≤ |ℓ|). Then we make
the DNF

D ≜
∨

(xi,1)∈F

T i.

It is easy to see that D agrees with all the pairs of the collection F . For an arbitrary pair (xi, bi), if bi = 1,
then the bits of xi satisfy the term T i, hence D(xi) = 1. Otherwise, if bi = 0, we know that the first |ℓ|
least significant bits of xi do not satisfy any term of the disjunction (since for all i, xi ≤ ℓ), thus we get that
D(xi) = 0.

The DNF D can be viewed as a circuit and its correctness is easily provable in PV1. This circuit has
size at most na−ϵ|ℓ| (derived by |ℓ| − 1 ∧-gates for each one of the at most na−ϵ terms and at most na−ϵ

∨-gates for the final disjunction), which is at most na−ϵ(log na−ϵ + 1). For large enough n0, we can prove
that ∀n ≥ n0, n

a−ϵ(log na−ϵ + 1) ≤ na, hence we have the desired result.

3.4 On the Gap Between T1
2 and T2

2

We noticed above that it is possible to prove the circuit size hierarchy in the theory T2
2. In contrast, it

seems difficult to implement a similar proof in the theory T1
2. The reason behind this difficulty is connected

to the proof complexity of the dual Weak Pigeonhole Principle. If there is a proof of the circuit size hier-
archy in T1

2, either it uses an approach that relies on a principle that is not equivalent to dWPHP(PV), or
dWPHP(PV) is also provable in T1

2.
Paris, Wilkie, and Woods [PWW88] were the first to establish the provability of dWPHP(PV) in Buss’s

hierarchy. Subsequently, Maciel, Pitassi, and Woods [MPW02] provided an alternative proof with an explicit
inclusion of the principle in T2

2. In this section, we explain why the same argument is not available in T1
2.

(Their original proof is more general, and an exposition can be found in [Kra19].)
Assume that we have a PV-function g′ : {0, 1}n → {0, 1}n+1 with n ∈ Log or equivalently g′ : N →

2N , such that ¬dWPHP2N
N (g′) holds. It is easy even in S12(PV) to extend this to a new function g : N → N2,

such that ¬dWPHPN2

N (g) ≜ ∀y < N2 ∃x < N g(x) = y holds.
For ℓ = 0, . . . , |N |, we consider all sequences w ∈ [N]ℓ. We extend a sequence by a new element

using the operation ⌢ (e.g., (a1, a2, a3)⌢ a4 = (a1, a2, a3, a4)). For all sequences w, we define functions
gw : N/2ℓ → N2 recursively as follows:

13

• If ℓ = 0, g∅ = g.

• For i < N , gw⌢i(x) = y if ∃z < N such that g(z) = y∧ gw(x) = iN + z, otherwise output ∅. (Here
∅ is just a fixed symbol that we use to denote “error” or that the function is undefined.)

• gw⌢N (x) = y if ∃z < N ∃u < N such that g(z) = y∧gw(x+N/2ℓ+1) = zN+u, otherwise output
∅.

Note that the formula gw(x) = y is Σb
1-definable and that gw(x) cannot have more than one value.

The key step of the proof is showing that

S32 ⊢ ¬dWPHPN2

N (g) → ∃w ∈ [N]ℓ ¬dWPHPN2

N/2l(gw). (5)

The right-hand size can be also written as

∃w ∈ [N]ℓ ∀y < N2 ∃x < N/2ℓ gw(x) = y,

which is a Σb
3 formula. Therefore, for the proof of Equation (5), we use Σb

3-LIND, which is available in S32.
The intuition behind the inductive step is that if we split the domain into two equal intervals and the range
into N intervals, from the surjectivity of g and gw, either the first domain interval has all its values into the
ith range interval, which gives us the new sequence w ⌢ (i− 1), or the second domain interval has value at
each one of the range intervals, which gives us the new sequence w ⌢ N .

To complete the argument, plugging ℓ = |N | in Equation (5), we get a surjective function from 1 to N2,
which is a clear contradiction when N > 1. Therefore, S32 ⊢ dWPHP(g), and since S32 is ∀Σb

3-conservative
over T2

2, we also have T2
2 ⊢ dWPHP(g).

The bottleneck to implement the proof in T1
2 is the quantifier complexity of the inductive statement

associated with Equation (5). Another barrier for such a proof in T1
2 is the fact that for an arbitrary relation

R, dWPHP(R) is not provable in S22(R) [Kra92], so a proof of dWPHP(PV) has to use some properties of
PV functions.

4 Provability of Formula Size Bounds in PV1

In this section, we prove Theorem 3. To achieve this, we establish that:

1. The parity function on n bits requires formulas of size ≥ n3/2 (Section 4.1).

2. The parity function on n bits can be computed by formulas of size O(n2) ≤ na for any fixed rational
a > 2 and large enough n (Section 4.2).

3. Consequently, the formula size hierarchy holds with parameters a > 2 and b = 3/2, provided that n0
is large enough (Section 4.3).

4.1 Subbotovskaya’s Lower Bound

4.1.1 High-Level Details of the Formalization

In this section, we sketch a formalization in PV1 of the proof that the parity function on n bits requires
Boolean formulas of size ≥ n3/2 [Sub61].3 We adapt the argument presented in [Juk12, Section 6.3], which

3For concreteness, we let the size of a Boolean formula F be the number of leaves of F labeled by an input literal. We allow
leaves that are labeled by constants, but we do not charge for them. Consequently, a constant function has formula complexity 0,
while a non-constant function has formula complexity at least 1.

14

proceeds as follows:

1. [Juk12, Lemma 6.8]: Given a Boolean formula F on n-bit inputs, it is possible to fix one of its
variables so that the resulting formula F1 satisfies

Size(F1) ≤ (1− 1/n)3/2 · Size(F).

(In order to pick the variable to be restricted and its value, one first “normalizes” the formula F , as
implicitly described in [Juk12, Claim 6.9].)

2. [Juk12, Theorem 6.10]: By applying this result ℓ ≜ n− k times, it is possible to obtain a formula Fℓ

on k-bit inputs such that

Size(Fℓ) ≤ Size(F) · (1− 1/n)3/2 · (1− 1/(n− 1))3/2 . . . (1− 1/(k+1))3/2 = Size(F) · (k/n)3/2.

3. [Juk12, Example 6.11]: If the initial formula F computes the parity function, by setting ℓ = n− 1 we
obtain

1 ≤ Size(Fℓ) ≤ (1/n)3/2 · Size(F),

and consequently Size(F) ≥ n3/2.

We recommend reading this section with [Juk12, Section 6.3] at hand. We will slightly modify the
argument when formalizing the lower bound in PV1. In more detail, given a small formula F , we recursively
construct (and establish correctness by induction) an n-bit input y witnessing that F does not compute
the parity function. (Actually, for technical reasons related to the induction step, we will simultaneously
construct an n-bit input y0n witnessing that F does not compute the parity function and an n-bit input y1n
witnessing that F does not compute the negation of the parity function.)

Let s(n) be a size bound and ⊕(x) be a PV function that computes the parity of the binary string
described by x, i.e., ⊕(x) ≜ x1 ⊕ x2 ⊕ . . . ⊕ xn, where xi denotes the i-th bit of x. To simplify notation,
we tacitly view x as a binary string. We assume that the formalization employs a well-behaved function
symbol ⊕ such that PV1 proves the basic properties of the parity function, e.g., PV1 ⊢ ⊕(x1) = 1−⊕(x)
and PV1 ⊢ ⊕(x0) = ⊕(x).

We consider the following LPV-sentence stating that the parity function requires formulas of size at least
s(n) for every input length n ≥ 1:

FLBs ≜ ∀N ∀n ∀F (n = |N | ≥ 1 ∧ Size(F) < s(n) → ∃x (|x|ℓ = n ∧ Eval(F, x) ̸= ⊕(x)) , 4

where for convenience of notation we use the function symbol |w|ℓ to compute the bit-length of the string
represented by w (under some reasonable encoding).

Theorem 11. Let s(n) ≜ n3/2. Then PV1 ⊢ FLBs.

Proof. Given b ∈ {0, 1}, we introduce the function ⊕b(x) ≜ ⊕(x) + b (mod 2). In order to prove FLBs in
PV1, we explicitly consider a polynomial-time function R(1(n), F, b) with the following properties:5

1. Let b ∈ {0, 1}.

4To simplify notation, we ommit from the sentence FLBs and in other parts of the exposition certain straightforward conditions,
such as checking that F represents a valid formula and that it computes over n-bit input strings.

5For convenience, we often write 1(n) instead of explicitly considering parameters N and n = |N |. We might also write just
F (x) instead of Eval(F, x).

15

2. If Size(F) < s(n) then R(1(n), F, b) outputs an n-bit string ybn such that Eval(F, ybn) ̸= ⊕b(ybn).

In other words, R(1(n), F, b) witnesses that the formula F does not compute the function ⊕b over n-bit
strings. Note that the correctness of R is captured by the bounded universal sentence:

RefR,s ≜ ∀1(n) ∀F (Size(F) < s(n) → |y0n|ℓ = |y1n|ℓ = n ∧ F (y0n) ̸= ⊕0(y0n) ∧ F (y1n) ̸= ⊕1(y1n)) ,

where we employed the abbreviations y0n ≜ R(1(n), F, 0) and y1n ≜ R(1(n), F, 1). Our plan is to define
R and show that PV1 ⊢ RefR,s. Note that this implies FLBs in PV1. Jumping ahead, the correctness of
R(1(n), F, b) will be established by polynomial induction on N (equivalently, induction on n = |N |). Since
RefR,s is a universal sentence and S12 is ∀Σb

1-conservative over PV1, polynomial induction for NP and coNP
predicates (admissible in S12; see, e.g., [Kra95, Section 5.2]) is available during the formalization. More
details follow.

The procedure R(1(n), F, b) makes use of a few polynomial-time sub-routines (discussed below) and is
defined in the following way:

Input: 1(n) for some n ≥ 1, formula F over n-bit inputs, b ∈ {0, 1}.
1 Let s(n) ≜ n3/2. If Size(F) ≥ s(n) return “error”;
2 If Size(F) = 0, F computes a constant function bF ∈ {0, 1}. In this case, return the n-bit string

ybn ≜ yb10
n−1 such that ⊕b(yb10

n−1) ̸= bF ;
3 Let F̃ ≜ Normalize(1(n), F);
// F̃ satisfies [Juk12, Claim 6.9], Size(F̃) ≤ Size(F),

∀x ∈ {0, 1}n F (x) = F̃ (x).

4 Let ρ ≜ Find-Restriction(1(n), F̃), where ρ : [n] → {0, 1, ⋆} and |ρ−1(⋆)| = n− 1;
// ρ restricts a suitable variable xi to a bit ci, as in [Juk12,

Lemma 6.8].

5 Let F ′ ≜ Apply-Restriction(1(n), F̃ , ρ). Moreover, let b′ ≜ b⊕ ci and n′ ≜ n− 1;
// F ′ is an n′-bit formula; ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci).

6 Let yb
′

n′ ≜ R(1n
′
, F ′, b′) and return the n-bit string ybn ≜ yb

′
n′ ∪ yi 7→ ci;

Algorithm 3: Refuter Algorithm R(1(n), F, b).

Normalize(1(n), F) and its properties (in S12). We say that a subformula G of F is a neighbor of a leaf z
if either z ∧ G or z ∨ G is a subformula of F . We say that a formula F over variables {x1, . . . , xn} is in
normal form if for every i ∈ [n] and every literal z ∈ {xi, xi}, if z is a leaf of F and G is a neighbor of z in
F , then G does not contain the variable xi.

Lemma 12. There is a polynomial-time function Normalize(1(n), F) that given a Boolean formula F over
n input variables, outputs a formula F̃ over n input variables such that the following holds:

(i) Size(F̃) ≤ Size(F).

(ii) For every input x ∈ {0, 1}n, F̃ (x) = F (x).

(iii) F̃ is in normal form.

(iv) F̃ is either a constant 0 or 1, or F̃ contains no leaves labeled by constants 0 and 1.

16

Moreover, the correctness of Normalize(1(n), F) is provable in S12.

Proof Sketch. It is enough to verify that the proof of [Juk12, Claim 6.9] provides such a polynomial-time
function and that its correctness can be established in S12. In more detail, if F is not in normal form, we can
efficiently compute a literal z ∈ {xi, xi} and a neighbor G of z that violates the corresponding property.
As shown in [Juk12, Claim 6.9], we can fix any leaf z′ ∈ {xi, xi} in G by an appropriate constant c so that
the resulting formula F1 satisfies conditions (i) and (ii) of Lemma 12. After at most ℓ ≜ Size(F) iterations,
we obtain a sequence F1, . . . , Fℓ of formulas such that F̃ ≜ Fℓ satisfies conditions (i), (ii), and (iii) of
the lemma. Moreover, condition (iv) can always be guaranteed by simplifying the final formula, i.e., by
replacing subformulas 0 ∨ G by G, 1 ∨ G by 1, 0 ∧ G by 0, and 1 ∧ G by G. The correctness of F̃ ≜
Normalize(1(n), F) can be established by polynomial induction for coNP predicates (i.e., Πb

1 formulas),
which is available in S12.

Find-Restriction(1(n), F̃) and its properties (in S12). We argue in S12 and follow the argument from the
proof of [Juk12, Lemma 6.8]. Let F̃ be a formula over n input variables in normal form. We focus on the
non-trivial case, and assume that n ≥ 2, Size(F̃) ≥ 2, and that F̃ contains no leaves labeled by constants.
Let Count(1(n), F, i) be a polynomial-time algorithm that outputs the number of leaves of F that contain
the variable xi (including its appearances as xi). Let w = (w1, . . . , wn) be the corresponding sequence of
multiplicities, i.e., wi ≜ Count(1(n), F, i). Note that

∑
iwi = s̃, where s̃ ≜ Size(F̃).

We claim that S12 proves the existence of an index i ∈ [n] such that wi ≥ s̃/n. First, for each j ∈ [n], we
define the cumulative sum vj ≜

∑
i≤j wj . Let v ≜ (v0, v1, . . . , vn) be the corresponding sequence, where

we set v0 ≜ 0. Notice that vn = s̃. Since v contains n + 1 elements, it can be efficiently computable from
w. We now argue by induction on n that for some index j ∈ [n] we have vj − vj−1 ≥ vn/n. This implies
that wj = vj − vj−1 ≥ vn/n = s̃/n, as desired.

If n = 1, then v1−v0 = v1 = v1/1 and the result holds for j = 1. Assume the result holds for n−1, and
consider vn. If vn − vn−1 ≥ vn/n, we can pick j = n and we are done. Otherwise, vn−1 ≥ vn − vn/n =
vn(n−1)/n. By the induction hypothesis, there is an index j ∈ [n−1] such that vj−vj−1 ≥ vn−1/(n−1).
Using the lower bound on vn−1, we get that vj − vj−1 ≥ vn/n, which concludes the proof.

Consequently, S12 proves the existence of a variable xi which appears t ≥ s̃/n times as a leaf of F̃ . Let
z1, . . . , zt be the leaves of F̃ labeled by either xi or xi. Recall that we assume that n ≥ 2, Size(F̃) ≥ 2, and
that F̃ satisfies conditions (iii) and (iv) of Lemma 12. Therefore, each leaf zj has a neighbor subformula Gj

in F̃ that contains some leaf labeled by a literal not in {xi, xi}. For this reason, if we set xi to an appropriate
constant cj , Gj will disappear from F , thereby erasing at least another leaf not among z1, . . . , zt. As in
the proof of [Juk12, Lemma 6.8], if we let c ∈ {0, 1} be the constant that appears more often among
c1, . . . , ct and set xi 7→ c in the restriction ρ, all the leaves z1, . . . , zt will be eliminated from F̃ together
with at least t/2 additional leaves.6 Thus the total number of eliminated leaves, which we specify using a
polynomial-time function NumRemoved(1(n), F̃ , ρ), satisfies

NumRemoved(1(n), F̃ , ρ) ≥ t+
t

2
≥ 3s̃

2n
.

Overall, it follows that

S12 ⊢ F̃ = Normalize(1(n), F)∧ρ = Find-Restriction(1(n), F̃) → NumRemoved(1(n), F̃ , ρ) ≥ 3

2n
·Size(F̃) .

6The existence of such a constant c can be proved in S1
2 in a way that is similar to the proof that some variable xi appears in at

least s̃/n leaves.

17

Apply-Restriction(1(n), F̃ , ρ) and its properties (in S12). We only sketch the details. This is simply a
polynomial-time algorithm that, given a formula F̃ on n input variables and a restriction ρ : [n] → {0, 1, ∗}
with |ρ−1(⋆)| = n − 1 (i.e., ρ restricts a single variable xi to a constant ci ∈ {0, 1}), outputs a formula F ′

over n − 1 input variables that sets every literal z ∈ {xi, xi} to the corresponding constant and simplifies
the resulting formula, e.g., replaces subformulas 0 ∨ G by G, 1 ∨ G by 1, 0 ∧ G by 0, and 1 ∧ G by G.
Additionally, for F ′ = Apply-Restriction(1(n), F̃ , ρ), we have

S12 ⊢ Size(F ′) ≤ Size(F̃)−NumRemoved(1(n), F̃ , ρ) ∧ ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z∪xi 7→ ci) . (6)

Using the previously computed bound on NumRemoved(1(n), F̃ , ρ) for ρ = Find-Restriction(1(n), F̃), we
obtain that for F̃ and F ′ defined as above (with s′ ≜ Size(F ′) and s̃ ≜ Size(F̃)), and assuming that n ≥ 2,

S12 ⊢ s′ ≤ s̃− 3

2n
· s̃ = s̃ ·

(
1− 3

2n

)
≤ s̃ ·

(
1− 1

n

)3/2

. (7)

The last inequality uses that S12 ⊢ ∀a, a ≥ 2 → (1− 3/(2a))2 ≤ (1− 1/a)3 , which one can easily verify.

Note that R(1(n), F, b) runs in time polynomial in n+ |F |+ |b| and that it is definable in S12. Next, we
establish the correctness of R(1(n), F, b) in S12 .

Lemma 13. Let s(n) ≜ n3/2. Then S12 ⊢ RefR,s.

Proof. We consider the formula φ(N) defined as

∀F ∀n (n = |N |∧n ≥ 1∧Size(F) < s(n)) → (|y0n|ℓ = |y1n|ℓ = n∧F (y0n) ̸= ⊕0(y0n)∧F (y1n) ̸= ⊕1(y1n)) ,

where as before we use y0n ≜ R(1(n), F, 0) and y1n ≜ R(1(n), F, 1). Note that φ(N) is a Πb
1 formula. Below,

we argue that
S12 ⊢ φ(1) and S12 ⊢ ∀N φ(⌊N/2⌋) → φ(N) .

Then, by polynomial induction for Πb
1 formulas (available in S12) and using that φ(0) trivially holds, it

follows that S12 ⊢ ∀N φ(N). In turn, this yields S12 ⊢ RefR,s.

Base Case: S12 ⊢ φ(1) . In this case, for a given formula F and length n, the hypothesis of φ(1) is satisfied
only if n = 1 and Size(F) = 0. Let y01 ≜ R(1, F, 0) and y11 ≜ R(1, F, 1). We need to prove that

|y01|ℓ = |y11|ℓ = 1 ∧ F (y01) ̸= ⊕0(y01) ∧ F (y11) ̸= ⊕1(y11) .

Since n = 1 and Size(F) = 0, F evaluates to a constant bF on every input bit. The statement above is
implied by Line 2 in the definition of R(n, F, b).

(Polynomial) Induction Step: S12 ⊢ ∀N φ(⌊N/2⌋) → φ(N) . Fix an arbitrary N , let n ≜ |N |, and
assume that φ(⌊N/2⌋) holds. By the induction hypothesis, for every formula F ′ with Size(F ′) < n′3/2,
where n′ ≜ n− 1, we have

|y0n′ |ℓ = |y1n′ |ℓ = n′ ∧ F ′(y0n′) ̸= ⊕0(y0n′) ∧ F ′(y1n′) ̸= ⊕1(y1n′) , (8)

where y0n′ ≜ R(1n
′
, F ′, 0) and y1n′ ≜ R(1n

′
, F ′, 1).

18

Now let n ≥ 2, and let F be a formula over n-bit inputs of size < n3/2. By the size bound on
F , R(1(n), F, b) ignores Line 1. If Size(F) = 0, then similarly to the base case it is trivial to check
that the conclusion of φ(N) holds. Therefore, we assume that Size(F) ≥ 1 and R(1(n), F, b) does not
stop at Line 2. Let F̃ ≜ Normalize(1(n), F) (Line 3), ρ ≜ Find-Restriction(1(n), F̃) (Line 4), F ′ ≜
Apply-Restriction(1(n), F̃ , ρ) (Line 5), n′ ≜ n − 1 (Line 5), and b′ ≜ b ⊕ ci (Line 5), where ρ restricts the
variable xi to the bit ci. Moreover, for convenience, let s ≜ Size(F), s̃ ≜ Size(F̃), and s′ ≜ Size(F ′). By
Lemma 12 Item (i), Equation (7), and the bound s < n3/2,

S12 ⊢ s′ ≤ s̃ · (1− 1/n)3/2 ≤ s · (1− 1/n)3/2 < n3/2 · (1− 1/n)3/2 = (n− 1)3/2 .

Thus F ′ is a formula on n′-bit inputs of size < n′3/2. Recall that for a given b ∈ {0, 1} we have b′ = b⊕ ci.
Let yb

′
n′ ≜ R(1n

′
, F ′, b′) (Line 6). By the first condition in the induction hypothesis (Equation (8)) and

the definition of each ybn ≜ yb
′

n′ ∪ yi 7→ ci, we have |y0n|ℓ = |y1n|ℓ = n. Below, we also rely on the last
two conditions in the induction hypothesis (Equation (8)), Lemma 12 Item (ii), and the last condition in
Equation (6). We derive the following statements, where b ∈ {0, 1}:

F ′(yb
′

n′) ̸= ⊕b′(yb
′

n′) ,

F (ybn) = F ′(yb
′

n′) ,

F (ybn) ̸= ⊕b′(yb
′

n′) .

Notice that

⊕b′(yb
′

n′) = ⊕b⊕ci(yb
′

n′) = ci ⊕ (⊕b(yb
′

n′)) = ci ⊕ (⊕b(ybn)⊕ ci) = ⊕b(ybn) .

These statements imply that, for each b ∈ {0, 1}, F (ybn) ̸= ⊕b(ybn). In other words, the conclusion of φ(N)
holds. This completes the proof of the induction step.

As explained above, the provability of RefR,s in S12 implies its provability in PV1. Since PV1 ⊢
RefR,s → FLBs, this completes the proof of Theorem 11.

4.1.2 On the Low-Level Details of the Formalization

In order to make our presentation accessible to a broader audience, in this section we provide more
details about the formalization of algorithms and about the proofs of their basic properties. For concreteness
and convenience, we consider the theory S12(PV), i.e., S12 extended with function symbols and axioms for
all polynomial-time functions as in Cobham’s characterization of efficient computations. Since this theory
is ∀Σb

1-conservative over PV1 (see Section 2.2.1), the provability of FLBs in S12(PV) yields its provability
in PV1.

As a concrete example, we elaborate on a sub-routine employed by some algorithms discussed in Sec-
tion 4.1. We consider a polynomial-time function Fix(1(n), F, i, b) that, given the description of a formula
F over n input variables, a variable index i ∈ [n], and a bit b ∈ {0, 1}, replaces every leaf of F labeled by
xi with b and every leaf of F labeled by xi with 1− b, then returns the corresponding restricted formula F ′

over n− 1 input variables (without the application of formula simplification rules). Next, we provide more
details about the specification of the procedure Fix in S12(PV) and about a proof of its correctness, i.e.,

S12(PV) ⊢ ∀1(n) ∀F ∀F ′ ∀x ∀z ∀i (9)

(n ≥ 2∧|x|ℓ = n∧|z|ℓ = n−1∧1 ≤ i ≤ n∧F ′ = Fix(1(n), F, i, b)) → (Eval(F ′, z) = Eval(F, z∪xi 7→ b)) ,

where z ∪ xi 7→ b denotes a function that takes (z, i, b), where z assigns bits to x1, . . . , xi−1, xi+1, . . . , xn,
and outputs the n-bit string that agrees with z and sets xi to b.

19

On the Specification of Fix(1(n), F, i, b) in S12(PV). Theory S12(PV) contains function symbols for all
polynomial-time algorithms according to Cobham’s characterization of polynomial-time computations. Con-
sequently, to specify Fix(1(n), F, i, b) we employ a definition of this computation in Cobham’s formalism,
i.e., we define Fix(1(n), F, i, b) using simple base functions together with composition and recursion on no-
tation. In order to be completely formal (a rather cumbersome task), one would first specify how formulas
are represented by numbers and the polynomial-time functions that manipulate the corresponding repre-
sentation. We could then interpret the binary representation of an integer as two sequence of tuples, one
describing the edges in the binary tree representation of the formula, and another describing the labels of
each node of the tree. Finally, Fix(1(n), F, i, b) would be a routine that iterates over each leaf of F labelled
by the i-th variable or its negation and replaces it with the appropriate constant. Using previously defined
routines and their corresponding function symbols, a sequential algorithm of this form can be described
as a recursive procedure in Cobham’s characterization of polynomial-time functions. Moreover, we need
to argue in the theory that the output length of the function on a given input is bounded by a polynomial,
similarly to the constraint in the limited recursion on notation from Cobham’s theorem.

On the Proof of the Correctness of Fix(1(n), F, i, b) in S12(PV) (Equation (9)). S12(PV) also contains
axioms describing how the function symbols (polynomial-time functions) are obtained from each other. For
instance, Fix(1(n), F, i, b) might use in its specification a routine R that takes as input a tuple describing a
formulaG, a bit b, and a leaf ofG and its label, replaces the label of this leaf by the constant b, and outputs the
new formulaG′. We can then reason in S12(PV) about the correctness of Fix(1(n), F, i, b) (as in Equation (9))
using the provable properties of R and of the function symbol Eval. In more detail, Eval can be defined
recursively based on the structure of the input formula, and the base case of the proof of correctness relies
on the properties of R and the fact that the internal evaluations of Eval(F ′, z) for F ′ = Fix(1(n), F, i, b)) and
Eval(F, z∪xi 7→ b)) agree over all leaves. Crucially, the recursive nature of the specification of polynomial-
time functions in Cobham’s definition and in S12(PV) is compatible with the polynomial induction axioms
available in S12(PV), in the sense that we can define recursive procedures while simultaneously proving their
relevant properties by induction.

4.2 Upper Bound

In this section, we show that the parity function on n bits can be computed by formulas of size O(n2),
provably in PV1. We can formalize this upper bound in the language of PV, defining an LPV-sentence
stating that the parity function can be computed by a formula of size s(n) for every input length n ≥ 1:

FUBs ≜ ∀N ∀n ∃F (n = |N | ≥ 1 ∧ Size(F) < s(n) ∧ ∀x (|x| ≤ n→ Eval(F, x) = ⊕0
n(x)) .

Theorem 14. Let s(n) ≜ 4n2. Then PV1 ⊢ FUBs.

Proof. FUBs is a ∀Σb
2 sentence and our intended theory is PV1. In order to implement some inductive

proofs, it will be helpful to reduce the complexity of the formula. For this, we introduce a new polynomial-
time function, ParForm(1(n)), which generates the desired formula that computes the parity function on n
bits. Since it is a polynomial-time function, there is a symbol for it in PV and we can use it in the new
formalization:

FUB′
s ≜ ∀N ∀n (n = |N | ≥ 1∧Size(ParForm(1(n))) < s(n)∧∀x (|x| ≤ n→ Eval(ParForm(1(n)), x) = ⊕0

n(x)) .

It is immediate that FUB′
s ⇒ FUBs, thus we focus on proving FUB′

s. We continue with the following steps:

20

1. We prove an upper bound of n2 for the formulas calculating the parity function and its negation, when
n is a power of 2.

2. We use this construction to derive the 4n2 upper bound for any n.

Next, we define a polynomial-time algorithm Par(1(n)) which computes a formula that calculates the
parity function on n bits and a formula that calculates the negation of the parity function on n bits, if n is a
power of 2.

Input: 1(n) for some n ≥ 1.
1 Let k ≜ |n− 1|. If n ̸= 2k (n is not a power of 2), then return “error”;
// F will compute the parity function, while F will compute its

negation
2 if k = 0 then
3 Define F to be the formula with one leaf x1 and F to be the formula with one leaf ¬x1.
4 else if k ≥ 1 then

// Construct a pair (F, F) of formulas on input bits x1, . . . , x2k as
follows:

5 Let (F1, F1) ≜ Par(1n/2), and define a corresponding pair (F2, F2):
6 In F2 and F 2, relabel the leaves by putting x2k−1+i instead of xi for every i = 1, . . . , 2k−1;
7 Now let F ≜ (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F ≜ (F1 ∧ F2) ∨ (F 1 ∧ F 2).
8 end
9 return (F, F).

Algorithm 4: Par(1(n)) outputs Boolean formulas for ⊕0
n and ⊕1

n when n is a power of 2.

Lemma 15. If n is a power of 2, the algorithm Par(1(n)) correctly outputs two formulas (F, F) of size n2

which calculate the parity function and its negation, provably in S12(PV).

Proof. We split the proof of the correctness for the algorithm Par(1(n)) into 3 properties:

1. ϕ1(n) ≜ F, F ∈ VALIDFORM(n), where VALIDFORM(n) is the set of formulas on n variables;

2. ϕ2(n) ≜ Size(F) = Size(F) = n2;

3. ϕ3(n) ≜ ∀x |x| ≤ n→ Eval(F, x) = ⊕0
n(x) ∧ Eval(F , x) = ⊕1

n(x).

For now we only care about the case that n is a power of 2, so we prove these properties conditionally
(equivalently we prove (n = (n− 1)#1) → ϕ(n)).7 That is why it suffices to use polynomial induction on
n, which is available in S12, since our formulas are at most Πb

1.
We skip the proof of ϕ1, which is proven by simple induction as below, using the fact that if F1, F2 are

formulas then F1 ∧ F2 and F1 ∨ F2 are also formulas.

Property 2: S12 ⊢ ϕ2(n). For the base case, ϕ2(1), we have k = 0, which means that the output (F, F) ≜
Par(11) will be two formulas with one leaf each, hence

Size(F) = Size(F) = 1.

7It is easy to check that this is true if and only if n is a power of 2.

21

For the induction step, we need S12 ⊢ ∀nϕ2(⌊n/2⌋) → ϕ2(n) . If n is not a power of 2, then the
statement is true by default. In the case of n being a power of 2, we fix k = |n − 1| and we want to prove
equivalently:

S12 ⊢ ϕ2(2k−1) → ϕ2(2
k).

Assume that ϕ2(2k−1) ≡ ϕ2(n/2) holds. From Line 8 we have that

F = (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F = (F1 ∧ F2) ∨ (F 1 ∧ F 2), (10)

where (F1, F1) and (F2, F2) are copies of Par(1n/2). From the induction hypothesis, this means that
Size(F1) = Size(F1) = Size(F2) = Size(F2) = (n/2)2 = 22(k−1). Therefore, from (Equation (10))
and the properties of the function Size, we get

Size(F) = Size(F1) + Size(F1) + Size(F2) + Size(F2) = 4 · 22(k−1) = 22k = n2.

Similarly for F , which means that ϕ2(2k) ≡ ϕ2(n) holds. This completes the proof of the induction for
ϕ2.

Property 3: S12 ⊢ ϕ3(n). Here the base case is trivial: for F ≜ x1 and x ∈ {0, 1}, then Eval(F, x) = x =
⊕0

1(x). Similarly for F .
For the induction step, we assume as above that n = 2k and we want to prove:

S12 ⊢ ϕ3(2k−1) → ϕ3(2
k).

We assume that ϕ2(2k−1) ≡ ϕ2(n/2) holds and we write F in the form

F = (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F = (F1 ∧ F2) ∨ (F 1 ∧ F 2),

where (F1, F1) and (F2, F2) are copies of Par(1n/2). Therefore, instead of Eval(F, x), we can calculate

Eval((F1 ∨ F2) ∧ (F 1 ∨ F 2), x).

We need to prove that Eval(F, x) = ⊕0
n(x) for all x with |x| ≤ n. So, taking one such x we can split

its binary representation into two parts x1, x2 with lengths |x1|, |x2| ≤ n/2, such that x = (x2x1)b =
x1 + 2n/2x2.

The input to subformulas F2, F2 from the definition are the bits x2k−1+i for i = 1, . . . , 2k−1, which
means that their input is x2. Similarly, the input to subformulas F1, F1 is x1. Hence, we can define

b1 ≜ Eval(F1, x1) b3 ≜ Eval(F1, x1)

b2 ≜ Eval(F2, x2) b4 ≜ Eval(F2, x2)

From the properties of the evaluation function and the form of F , we can prove in S12 that Eval(F, x) =
(b1 ∨ b2) ∧ (b3 ∨ b4), where the symbols ∨,∧ are used as Boolean symbols here.

However, since |x1|, |x2| ≤ n/2 and (F1, F1) = (F2, F2) = Par(1n/2), from the induction hypothesis
we get that

b1 = ⊕0(x1) b3 = ⊕1(x1) = 1− b1

b2 = ⊕0(x2) b4 = ⊕1(x2) = 1− b2

22

Next, it is easy to prove by checking all the 4 cases that

∀b1, b2 ∈ {0, 1} (b1 ∨ b2) ∧ ((1− b1) ∨ (1− b2)) = b1 ⊕ b2,

and as a result, we get

Eval(F, x) = (⊕0(x1))⊕ (⊕0(x2)) = ⊕0(x2x1) = ⊕0(x)

by the properties of the parity function. Similarly, we can prove that Eval(F , x) = ⊕1
n(x), which concludes

the induction.

For the general case, we use a simple padding argument. For a number n, we can define the number

ñ ≜ (n− 1)#1.

This number is the least power of 2 that is greater or equal to n. It is easy to see that

PV1 ⊢ n ≤ ñ < 2n.

If we replace ParForm(1(n)) by Par1(1
ñ) (the first coordinate of Par(1ñ)), we have by the above lemma

that

1. Size(ParForm(1(n))) = Size(Par1(1
ñ)) = ñ2 < (2n)2 = s(n).

2. For all x with |x| ≤ n, we have |x| ≤ ñ, which by the lemma gives us Eval(ParForm(1n), x) =
Eval(Par1(1

ñ), x) = ⊕0
ñ(x). Since |x| ≤ n, we also have ⊕0

ñ(x) = ⊕0
n(x). Consequently, we have

Eval(ParForm(1n), x) = ⊕0
n(x).

These two together show that PV1 ⊢ FUB′
s and the proof is complete.

4.3 Formula Size Hierarchy

In this section, we provide the proof of Theorem 3.

Theorem 16 (Theorem 3). Consider rationals a > 2 and b = 3/2, and let n0 be a large enough positive
integer. Then

PV1 ⊢ FSH[a, b, n0] .

Proof. We combine the results of Section 4.1 and Section 4.2. We argue in PV1. From Theorem 11, we get
that

∀n ∈ Log ∀F ∈ FORMULA[n3/2] ∃x (|x| ≤ n ∧ F (x) ̸= ⊕n(x)), (11)

and from Theorem 14, we have that

∀n ∈ Log ∃G ∈ FORMULA[4n2] ∀x (|x| ≤ n→ G(x) = ⊕n(x)).

We can eliminate the constant 4 from the latter using that a > 2 and choosing a large enough n0, such that
for every n ≥ n0, na ≥ 4n2 (provably in PV1). Consequently,

∀n ≥ n0 ∈ Log ∃G ∈ FORMULA[na] ∀x (|x| ≤ n→ G(x) = ⊕n(x)). (12)

Finally, combining Equation (11) and Equation (12), we get that

∀n ≥ n0 ∈ Log ∃G ∈ FORMULA[na] ∀F ∈ FORMULA[n3/2] ∃x (|x| ≤ n ∧ F (x) ̸= G(x)),

which is exactly the formula size hierarchy, FSH[a, b, n0], for our choice of parameters a > 2 and b =
3/2.

23

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009. 6

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986. 3, 7

[Bus97] Samuel R. Buss. Bounded arithmetic and propositional proof complexity. In Logic of Com-
putation, pages 67–121. Springer Berlin Heidelberg, 1997. 3

[CLO24] Lijie Chen, Jiatu Li, and Igor C. Oliveira. Reverse mathematics of complexity lower bounds.
In Symposium on Foundations of Computer Science (FOCS), 2024. 5

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and equiva-
lences between circuit lower bounds and Karp-Lipton theorems. In Computational Complexity
Conference (CCC), pages 30:1–30:21, 2019. 3

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, 2010. 7

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. Proc. Logic, Methodology
and Philosophy of Science, pages 24–30, 1965. 7

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary
version). In Symposium on Theory of Computing (STOC), pages 83–97, 1975. 3, 7

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Symposium on the Theory of Computing (STOC), pages
220–229, 1997. 3

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, boolean complexity, and derandomization.
Annals of Pure and Applied Logic, 129(1-3):1–37, 2004. 3, 7

[Jeř05] Emil Jeřábek. Weak pigeonhole principle and randomized computation. PhD thesis, Charles
University in Prague, 2005. 3, 7

[Jeř06] Emil Jeřábek. The strength of sharply bounded induction. Mathematical Logic Quarterly,
52(6):613–624, 2006. 3, 7

[Jeř07] Emil Jeřábek. Approximate counting in bounded arithmetic. Journal of Symbolic Logic,
72(3):959–993, 2007. 3, 7

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012. 14,
15, 16, 17

[KO17] Jan Krajı́ček and Igor C. Oliveira. Unprovability of circuit upper bounds in Cook’s theory PV.
Logical Methods in Computer Science, 13(1), 2017. 5

[KPT91] Jan Krajı́ček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial hier-
archy. Annals of Pure and Applied Logic, 52(1-2):143–153, 1991. 7, 8, 9

24

[Kra92] Jan Krajı́ček. No counter-example interpretation and interactive computation. In Logic from
Computer Science: Proceedings of a Workshop held November 13–17, 1989, pages 287–293.
Springer, 1992. 14

[Kra95] Jan Krajı́ček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclope-
dia of Mathematics and its Applications. Cambridge University Press, 1995. 7, 8, 16

[Kra19] Jan Krajı́ček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 2019. 7, 13

[Kra21] Jan Krajı́ček. Small circuits and dual weak PHP in the universal theory of p-time algorithms.
ACM Transactions on Computational Logic (TOCL), 22(2):1–4, 2021. 5

[MP20] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower
bounds. Annals of Pure and Applied Logic, 171(2), 2020. 5

[MPW02] Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the weak pigeonhole
principle. Journal of Computer and System Sciences, 64(4):843–872, 2002. 7, 13

[Oli24] Igor C. Oliveira. Meta-mathematics of computational complexity theory. Preprint, 2024. 3,
4, 5

[PWW88] Jeff B. Paris, A. J. Wilkie, and Alan R. Woods. Provability of the pigeonhole principle and the
existence of infinitely many primes. J. Symb. Log., 53(4):1235–1244, 1988. 13

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Tech-
nical Journal, 28(1):59–98, 1949. 3

[Sub61] Bella A. Subbotovskaya. Realization of linear functions by formulas using +, ·, −. In Soviet
Math. Dokl, 1961. 6, 14

A Proof of the KPT Theorem for ∀∃∀∃ Sentences

In order to make our results more accessible and the presentation self-contained, in this section we
describe a standard model-theoretic proof of the KPT Witnessing Theorem. We restate the result below for
convenience of the reader.

Theorem 17. Let T be a universal theory with vocabulary L. Let φ be an open L-formula, and suppose
that

T ⊢ ∀x ∃y ∀z ∃w φ(x, y, z, w).

Then there is a finite sequence s1, . . . , sk of L-terms such that

T ⊢ ∀x, z1, . . . , zk
(
ψ(x, s1(x), z1) ∨ ψ(x, s2(x, z1), z2) ∨ · · · ∨ ψ(x, sk(x, z1, . . . , zk−1), zk)

)
,

where
ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

25

Proof. Let b, c1, c2, . . . be a list of new constants, and let u1, u2, . . . be an enumeration of all terms built
from the functions and constants in L together with b, c1, c2, . . ., where the only new constants in uk are
among b, c1, . . . , ck−1.

For convenience, let ψ(x, y, z) ≜ ∃wφ(x, y, z, w), as in the statement of the theorem. We will argue
that there exists a constant k ≥ 1 such that no model of T satisfies the sentence

¬ψ(b, u1, c1) ∧ ¬ψ(b, u2, c2) ∧ . . . ∧ ¬ψ(b, uk, ck) .

This implies that every model of T satisfies the negation of this sentence, and by the completeness theorem,

T ⊢ ψ(b, u1, c1) ∨ ψ(b, u2, c2) ∨ . . . ∨ ψ(b, uk, ck) .

Since b, c1, c2, . . . are new constants and each term uk depends only on b, c1, . . . , ck−1 (among the new
constant symbols), the result follows.

To show the remaining claim, we argue by contradiction. Suppose that no finite k satisfies the claim.
Then, by compactness, we get that

T ∪ {¬ψ(b, u1, c1),¬ψ(b, u2, c2),¬ψ(b, u3, c3), . . .}

admits a model M. Consequently, using the definition of ψ,

M |= T ∪ {∀w¬φ(b, u1, c1, w),∀w¬φ(b, u2, c2, w), . . .}

Let T+ ≜ T∪{∀w¬φ(b, u1, c1, w), ∀w¬φ(b, u2, c2, w), . . .}. Since T is a universal theory and φ is an open
formula, it follows that T+ is also a universal theory. For this reason, the substructure M′ of M consisting
of the denotations of the terms u1, u2, . . . is also a model of T+. Now it is not hard to prove that

M′ |= T + ∃x ∀y ∃z ∀w ¬φ(x, y, z, w) ,

which contradicts the hypothesis of the theorem and completes the proof. To see this, it is enough to show
that M′ |= ∀y ∃z ∀w ¬φ(bM′

, y, z, w). Given an arbitrary element m in M′, by construction of M′, there
is some term uk such that m = uM

′
k (bM

′
, cM

′
1 , . . . , cM

′
k−1). Since M′ is a model of T+, which includes

the sentence ∀w¬φ(b, uk, ck, w), we get that M′ |= ∀w¬φ(bM′
,m, cM

′
k , w). This finishes the proof that

M′ |= ∀y ∃z ∀w ¬φ(bM′
, y, z, w).

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

