
Lower Bounds on the Overhead of Indistinguishability Obfuscation

Zhenjian Lu* Noam Mazor† Igor C. Oliveira‡ Rafael Pass§

Abstract

We consider indistinguishability obfuscation (iO) for multi-output circuits C : {0, 1}n → {0, 1}n
of size s, where s is the number of AND/OR/NOT gates in C. Under the worst-case assumption that
NP ⊈ BPP, we establish that there is no efficient indistinguishability obfuscation scheme that outputs
circuits of size s + o(s/ log s). In other words, to be secure, an efficient iO scheme must incur an
Ω(s/ log s) additive overhead in the size of the obfuscated circuit. The hardness assumption under
which this negative result holds is minimal since an optimal iO scheme with no circuit size overhead
exists if NP ⊆ BPP.

Expanding on this result, we also rule out iO for single-output database-aided circuits with an ar-
bitrary polynomial overhead in circuit size. This strengthens an impossibility result by Goldwasser
and Rothblum [GR07], which considered circuits with access to an exponential-length database that the
obfuscator has oracle access to; in contrast, our impossibility result holds even w.r.t. polynomial-size
databases and even w.r.t. obfuscators that may run in time polynomial in the size of the database (and
thus may read the whole database).

The proof of our main result builds on a connection between obfuscation and meta-complexity put
forward by Mazor and Pass [MP24], and on the NP-hardness of circuit minimization for multi-output
circuits established by Loff, Ilango, and Oliveira [ILO20], together with other techniques from cryptog-
raphy and complexity theory.

*University of Warwick. E-mail: zhenjian.lu@warwick.ac.uk
†Tel Aviv University. E-mail: noammaz@gmail.com
‡University of Warwick. E-mail: igor.oliveira@warwick.ac.uk
§Cornell Tech, Technion, and Tel Aviv University. E-mail: rafael@cs.cornell.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 146 (2024)

Contents

1 Introduction 3
1.1 Results . 4
1.2 Techniques . 6
1.3 Related Work . 11
1.4 Concluding Remarks . 11

2 Preliminaries 12
2.1 Basic Definitions and Notation . 12
2.2 Indistinguishability Obfuscation . 13
2.3 Randomized Levin Reductions for Promise Problems . 14

3 Indistinguishability Obfuscation 15
3.1 Indistinguishability Obfuscation Under the Easiness of NP 15
3.2 Reduction for Multi-Output Circuits . 15
3.3 Connection Between Indistinguishability Obfuscation and Meta-Complexity 17

4 Hardness of Multi-MCSP Under Randomized Approximate Levin Reductions 21
4.1 Hardness of Approximating Set-Cover Under Levin Reductions 22

4.1.1 Hardness of Approximating k-SAT Under Levin Reductions 22
4.1.2 Proof of Lemma 19 . 24

4.2 A Randomized Approximate Levin-Reduction from Set-Cover to Multi-MCSP 27
4.2.1 Preliminaries . 27
4.2.2 Proof of Lemma 20 . 28

5 Proofs of Theorem 1 and Theorem 2 32

6 Alternative Proof via Pseudorandom Encryption Schemes 33
6.1 Proof of Theorem 38 . 34

7 Lower Bounds on Obfuscation for Other Computational Models 40
7.1 Obfuscation of Circuits with Database Access . 40
7.2 Randomized Encoding for TMs with Database Access . 43

2

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementation de-
tails (making it hard to “reverse-engineer”), while preserving its functionality (i.e., its input/output behavior).
During the last decade, the notion of indistinguishability obfuscation (iO) [BGI+12, GGH+13] has emerged
as a powerful, and useful, way of defining the security of program obfuscation. Roughly speaking, this no-
tion of obfuscation requires that for any two functionally equivalent programs C1 and C2 (viewed in this
work as Boolean circuits), their obfuscated versions are computationally indistinguishable. This concept
was first introduced by Barak et al. [BGI+12], with the first general-purpose iO candidate proposed by Garg
et al. [GGH+13]. On the one hand, this notion strong enough to imply both a wide range of standard crypto-
graphic primitives (from the worst-case assumption that NP ⊈ P/poly) and furthemore enables the construc-
tion of various more advanced tasks for which other instantations are not known, such as functional encryp-
tion [GGH+13], software watermarking [CHN+18], deniable encryption [SW21], among many others (see
[JLS21, BCP14, BZ17, GGHR14, KNY17, BGL+15, CHJV14, KLW15, CLP15, BPR15, BPW15, BP15]
and references therein).

The initial iO construction proposed by Garg et al. [GGH+13] was based on a computational hardness
assumption related to multilinear maps, which was later shown to be insecure. Building on a sequence of
subsequent works ([PST14, GLSW15, Lin16, LV16, Lin17, LT17, AJS18, JLMS19, AJL+19, GJLS21]),
Jain, Lin, and Sahai [JLS21, JLS22] introduced a celebrated construction based on assumptions that have
been well-studied by cryptographers (see [JLS24] for an overview). Additional constructions that rely on
a variety of (more heuristic) assumptions, but with simpler constructions, were suggested by [BDGM23,
GP21, BDGM22, GJK18, BIJ+20, Agr19, APM20, CCMR24].

How much overhead is needed to obfuscate a circuit? Alongside the research on the theoretical founda-
tions of indistinguishability obfuscation, considerable efforts have been made to propose mechanisms that
enhance the efficiency of iO schemes. A key measure of this efficiency is the overhead in the circuit size of
the obfuscated circuit. In this context, ideally we would like to ensure the obfuscation of a circuit C of size s
is a new circuit C̃ with size s+poly(n); we will refer to such obfuscators are rate-1, or simply near-optimal.
(We highlight that the study of the overhead of the iO is not just a question of theoretical interest; it directly
impacts the efficiency of the cryptographic applications of iO.) Indeed, for many cryptographic primitives,
such as e.g., secret and public-key encryption schemes, rate-1 construction have been known for decades
[Gol04], and more recently, rate-1 construction have also been developed for more advanced cryptographic
primitives like fully-homomorphic encryption (under standard cryptographic assumptions) [BDGM19].

Towards addresssing this problem, Bitansky and Vaikuntanathan [BV15] and Ananth, Jain, and Sahai
[AJS17] investigated the possibility of achieving iO with constant multiplicative overhead in size. In partic-
ular, [AJS17] proposed a general bootstrapping mechanism able to achieve obfuscated programs of length
2 · s + poly(n) on an input circuit of length s.1 Constant-size overhead is also known to be achievable in
the context of obfuscation for Turing machines [AJS17] and RAM programs [JLL23]. These constructions
suggest the possibility that near-optimal iO schemes may be possible.

Motivated by these results, we consider the following basic question:

What is the minimal overhead required to obfuscate a program?

1We note that their notion of size seems to depend to the description length of a representation of the circuit, which is different
than the standard notion of size using number of gates that we consider in this work.

3

Our main contribution is the first negative result showing limits on the size efficiency of iO schemes for
general circuits. Moreover, we obtain our impossibility result under a minimal hardness assumption. In
essence, our results will show—in a number of settings—that:

“Low overhead iO” exists if and only if we live in Algorithmica (i.e., if NP is easy).

In the next section, we describe our contributions in detail.

1.1 Results

As alluded to above, our results show that, unless NP ⊆ BPP, any efficient procedure that securely
obfuscates a program must output a program with a larger number of instructions. Before formally stating
our results, we introduce appropriate notation.

Notation. We consider iO schemes for multi-output Boolean circuits C : {0, 1}ℓ → {0, 1}ℓ, where ℓ ≥ 1
is arbitrary. We measure the size s of C by its number of (fan-in two) AND, OR, and NOT gates (see
Section 2.1 for an example). We write iO(1λ, C) to denote the obfuscation of C, where λ is the security
parameter. We consider two standard variants of iO in our results. In a perfect iO scheme, the obfuscated
circuit iO(1λ, C) is functionally equivalent to C with probability 1 over the internal randomness of the iO
procedure. On the other hand, in an imperfect iO scheme, we allow a negligible probability that iO(1λ, C)
and C compute different functions. We consider security against non-uniform circuits. The definition of iO
is reviewed in Section 2.

Impossibility of Near-Optimal Obfuscation. We establish the following hardness results on the size
efficiency of indistinguishability obfuscation.

Theorem 1 (Hardness of Near-Optimal Imperfect iO). There exists a universal constant b > 0 such that the
following statements are equivalent.

1. NP ̸⊆ BPP.

2. There exists no imperfect indistinguishability obfuscator for multi-output circuits with output size σ,
for any constant c > 0 and σ(λ, s) = s+ s/(b · log s) + λc.

Theorem 2 (Hardness of Near-Optimal Perfect iO). There exists a universal constant b > 0 such that the
following statements are equivalent.

1. NP ̸⊆ ZPP.

2. There exists no perfect indistinguishability obfuscator for multi-output circuits with output size σ, for
any constant c > 0 and σ(λ, s) = s+ s/(b · log s) + λc.

Since we obtain an equivalence in each case, we rule out near-optimal size-efficient iO under a minimal
worst-case assumption. We note that, under the stronger assumption that one-way functions exist, our
argument rules out iO with output size s + s1−o(1) + poly(ℓ′, λ) for input circuits C : {0, 1}ℓ′ → {0, 1}ℓ
of size s = ℓΘ(1) and input length ℓ′ = O(log ℓ), i.e., even when the number of input bits is exponentially
smaller than the size of the circuit. This can be seen as a lower bound on the overhead of (multi-output) XiO
[LPST16] – a weaker kind of obfuscator that is allowed to run in polynomial time in the length of the truth
table of the circuit (rather than the size of the circuit).

4

From Near-Optimal to Optimal iO. An immediate consequence of the results above is that imperfect
computationally secure iO with small size overhead yields the easiness of NP. We note that before our
results it was not even clear if statically secure iO with no size overhead implied the easiness of NP. Using
that optimal iO schemes with no circuit size overhead exist under the worst-case easiness of NP, we derive
the following unexpected consequence from Theorem 1 and Theorem 2.

Corollary 3 (Bootstrapping Near-Optimal iO to Optimal iO). If for some constant c > 0 there is a perfect
(resp. imperfect) indistinguishability obfuscation scheme for multi-output circuits with output size σ(λ, s) =
s + s/(b · log s) + λc, where b is the constant in Theorem 2 (resp. Theorem 1), then there is a perfect
(resp. imperfect) indistinguishability obfuscation scheme for multi-output circuits with output size σ(λ, s) =
s.

Our results can be extended to other computational models (see Section 7) and are robust to the set of
gates employed by the circuits. However, we currently do not know how to establish them for single-output
Boolean circuits nor for multi-output circuits where we allow unbounded fan-in gates when measuring cir-
cuit size. These are interesting directions for further research (see also Section 1.4).

Next, we present a natural setting where we can prove negative results for single-output circuits and with
respect to an arbitrarily large polynomial overhead in the size of the input circuit.

Impossibility of Obfuscation for (Single-Output Bit) Circuits with Data-Access. In real-life applica-
tions of program obfuscation, it would be desirable to be able to obfuscate also a program that has access to
some “external” (large) database. Of course, a simple way to do this is to simply include the database as part
of the description of the program and obfuscate the new program, but this would induce a huge overhead
(e.g., requiring to duplicate the external database in an obfuscated form). A natural question is thus whether
we can obfuscate just the original program, and let the new obfuscated code still have access to the external
database. The obfuscator is allowed to read the whole external database (during the time of obfuscation),
but we require (just like for standard iO) that the size of the obfuscated program is polynomial in the size of
the original program (i.e., does not depend on the size of the external database). We refer to Section 7.1 for
the formal definition.

A generalized version of such a notion of obfuscation was first studied by Goldwasser and Rothblum
[GR07], where instead of databases, a notion of oracle-aided circuits was considered—in essence, an oracle
can be thought of as an exponentially long database. In our terminology, it was shown in [GR07] that if (1)
the outside database is allowed to be exponentially large, and (2) the obfuscator only gets black-box access
to it, then obfuscation is impossible (even if the database is simply a random oracle). But their work leaves
open the question of whether obfuscation of database-aided circuits is possible if the database is “feasible”
(i.e., of polynomial size) and the obfuscator may read the whole database. Indeed, if NP ⊆ BPP, then it is
easy to optimally obfuscate such database-aided circuits (if the obfuscator gets access to the database).

As our final result, we show how to extend their result to fully rule out obfuscation of database-aided
circuits (assuming NP ̸⊆ BPP) .

Theorem 4. The following statements are equivalent.

1. NP ̸⊆ BPP (resp. NP ̸⊆ ZPP).

2. There exists no imperfect (resp. perfect) indistinguishability obfuscator for database-aided circuits
with output size σ(λ, s), for any σ ∈ poly.

5

In contrast to [GR07] who showed an unconditional lower bound, to derive our lower bound below we
need to assume the worst-case hardness of NP. This is necessary since, as mentioned, assuming NP is
easy, there is an optimal obfuscation for database-aided circuits. Unlike the result of [GR07] (which worked
given a random oracle), part of our database has a certain structure, and we do not know if the result can be
extended to a fully random oracle.

We prove a result similar to Theorem 4 for randomized encoding for Turing machines with database
access (see Section 7.2).

Note that removing the access to a database from the result in Theorem 4 would show that iO in the
standard sense does not exist (unless NP is easy). This motivates the investigation of the limits of our
approach and techniques. We refer to Section 1.4 for further discussion on this and additional research
directions.

1.2 Techniques

In this section, we discuss our techniques and their relation to previous work. In order to explain our
techniques in more detail, we focus on the proof of Theorem 1.

The Key Conceptual Insight. Our proofs rely on a recently established connection between indistin-
guishability obfuscation and meta-complexity introduced by Mazor and Pass [MP24]. Meta-complexity
refers to the complexity of computational problems and tasks that are themselves about computations and
their complexity. A central example is the Minimum Circuit Size Problem (MCSP), i.e., given the truth table
of a Boolean function F , compute the minimum circuit size of F . [MP24] showed, among other results, that
the existence of indistinguishably obfuscation and of sub-exponentially secure one-way functions imply that
a gap version of MCSP is not NP-hard under Levin reductions. They argue that this result provides strong
evidence that the gap version of MCSP is not NP-complete under such reductions.

An important insight of this work is to turn the connection introduced by [MP24] on its head by viewing
it as a concrete approach to showing impossibility results for indistinguishably obfuscation. In other words,
under the widely believed assumption that sub-exponentially secure one-way functions exist, their result
establishes that either indistinguishably obfuscation does not exist or a gap version of MCSP is not NP-hard
under Levin reductions. While we do not make progress towards showing the NP-hardness of MCSP and its
variants, we show that the connection from [MP24] can be extended to some meta-computational problems
for which NP-hardness results are known. This change of perspective, together with other ideas, allow
us to derive negative results for indistinguishability obfuscation in a natural setting and under a minimal
assumption. (Note that, while our approach relies on techniques from meta-complexity, the statement of
Theorem 1 does not refer to meta-complexity.)

Overview of the Proof of Theorem 1. First, we briefly review the easier direction of the equivalence,
which follows from a standard argument. From the assumption that NP ⊆ BPP, the polynomial-time
hierarchy PH collapses to BPP. Since the problem of finding the lexicographic-first minimum-size multi-
output circuit that is equivalent to a given multi-output circuit can be encoded as a language in PH, we obtain
a probabilistic polynomial-time algorithm for this problem that fails with exponentially small probability.
This in turn yields an (imperfect) iO scheme with optimal output size σ(λ,C) = size(C). This scheme is
statistically secure, and thus secure against non-uniform adversaries.

For the other direction, we argue that the assumption that NP ⊈ BPP and the existence of a perfect iO
scheme for multi-output circuits with output size σ(λ, s) = s + s1−o(1) + poly(λ) lead to a contradiction.

6

To achieve this, we rely on a combination of results, which we describe next.

1. Connection Between iO and Hardness of Multi-MCSP. As alluded to above, we reinterpret and adapt
the connection between iO and meta-complexity from [MP24]. In order to explain the result, we need a few
standard definitions from cryptography and complexity theory.

Recall that a universal one-way hash function (UOWHF) is a function H that maps n bits to m bits,
where for us m = n − ω(1), and such that given a random n-bit input x, it is difficult for an efficient
probabilistic algorithm to find x′ ̸= x such that H(x) = H(x′).

The Multi-MCSP problem [ILO20] is defined as follows. We are given as inputs parameters ℓ and m,
the truth-table of a function F : {0, 1}ℓ → {0, 1}m, and a parameter s. The goal is to decide if there is
a multi-output circuit of size at most s that computes F . We will also consider a “gap” or “approximate”
version of the problem, where we only need to approximate the minimum size s.

Let R1 and R2 be relations contained in {0, 1}∗ × {0, 1}∗, where we view the first coordinate as an
instance and the second coordinate as a potential solution. Recall that a triplet (f, g, h) of efficiently com-
putable functions is a Levin reduction from R1 to R2 if (x,w) ∈ R1 implies (f(x), g(x,w)) ∈ R2, and if
(f(x), w) ∈ R2 implies (x, h(x,w)) ∈ R1. Informally, f maps an instance of R1 to an instance of R2, g
maps solutions ofR1 to solutions ofR2, and h maps solutions ofR2 to solutions ofR1.

Formally, we show that if a gap version of Multi-MCSP is NP-hard under randomized Levin reductions
and a secure iO scheme for multi-output circuits C : {0, 1}ℓ → {0, 1}m with near-optimal circuit size
overhead exists, then UOWHFs do not exist. As in [MP24], a larger gap between the positive instances
and negative instances of Multi-MCSP in the assumed Levin reduction allows us to relax the circuit size
overhead in the iO assumption, while maintaining the same conclusion that UOWHFs do not exist.

The proof of this result follows the strategy of [MP24], observing that their approach also holds for the
Multi-MCSP problem under the assumption that we have iO for multi-output circuits. In our setting, we
only assume the existence of an imperfect iO scheme, i.e., there is a negligible probability that it outputs
a circuit that is not equivalent to the input circuit. This weaker assumption can be accommodated with a
careful argument.

While the technique of [MP24] is reasonably general, we note that it does not easily extend to meta-
computational problems over partial functions, such as the one considered in [Hir22]. The fact that we
consider the minimum circuit size problem for total functions is crucial for the correctness of the argument.

2. NP-Hardness of Multi-MCSP Under Randomized Approximate Levin Reductions. Loff, Ilango, and
Oliveira [ILO20] established that Multi-MCSP is NP-hard under randomized reductions. In order to exploit
the connection described in Item 1 above, we extend their result in two directions. Firstly, using a modified
construction and a tighter analysis, we show that a gap variant of Multi-MCSP remains NP-hard. In other
words, approximating the minimum circuit size s of a given multi-output function up to an additive term of
s1−o(1) is hard. Secondly, we show that the NP-hardness result holds under the stronger notion of (random-
ized) Levin reductions.

3. NP-Hardness of Approximating Set-Cover Under Levin Reductions. The argument from [ILO20]
relies on a reduction from certain structured instances of the Set-Cover problem. Recall that in this problem
where we are given n, a collection S of subsets of [n], and a parameter ℓ, and must decide if there are ℓ sets
S1, . . . , Sℓ in S whose union is [n]. In order to simultaneously achieve a gap and a Levin reduction in Item
2, we must verify that a similar hardness result holds for an appropriate subset of instances of the Set-Cover
problem.

7

Due to the parameters in our approximate randomized Levin reduction from Set-Cover to Multi-MCSP,
it is sufficient to show that Set Cover is NP-hard to approximate under Levin reductions up to a constant
factor of the form (1 + ε) for some ε > 0. Note that an even stronger hardness of approximation result for
Set-Cover is known [Fei98], but to our knowledge there is no explicit proof in the literature that the hardness
holds under Levin reductions.

For completeness, we verify that this is indeed the case with an observation that might be of indepen-
dent interest. Pich [Pic15] established that the PCP Theorem can be formalized in the bounded arithmetic
theory PV1. We note that any NP-hardness result established in PV1 under the standard notion of Karp
reductions immediately implies the NP-hardness of the same problem under Levin reductions. This follows
in a generic way using the constructiveness of PV1. We then simply check that existing reductions from the
k-SAT instances derived from the PCP Theorem to the Set-Cover problem maintain the approximation gap,
parameters, and hardness under Levin reductions needed in Item 2. To optimize the parameters in our final
result about the circuit size overhead in obfuscated circuits, we employ Set-Cover instances where each set
is of size O(1), which requires a slightly more involved intermediate reduction using expander graphs from
[PY91].

Putting together the results from Items 1,2, and 3, we get that if an iO scheme for general multi-output
circuits C : {0, 1}ℓ → {0, 1}m with near-optimal circuit size overhead exists, then UOWHFs do not exist.
In other words, under the cryptographic hardness assumption that UOWHFs exist, we establish the hardness
of iO for general multi-output circuits C : {0, 1}ℓ → {0, 1}m.

A caveat is that the parameters ℓ and m obtained from this argument are arbitrary. This is because in the
NP-hardness result from [ILO20] and in its strengthening from Item 2, ℓ can be exponentially small in m.
Consequently, the argument does not rule out the possibility of having iO for circuits C : {0, 1}ℓ → {0, 1}m
where m is polynomial in ℓ, which is a natural setting in applications.

Next, we discuss how to rule out iO for input instances C : {0, 1}n → {0, 1}n where C is of polynomial
size, and how to reduce the required assumption from cryptographic hardness to worst-case hardness.

4. Indistinguishability Obfuscation Versus Multi-MCSP: A Simple Reduction. In order to relax the iO
assumption from Item 1 to circuits C : {0, 1}n → {0, 1}n, it is sufficient to show in Item 2 above that
Multi-MCSP retains its hardness on input functions F : {0, 1}n → {0, 1}n. This remains a challenging
open problem, and can be seen as an important step towards establishing the NP-hardness of MCSP for
single-output Boolean functions. The key difficulty is that the instances of Multi-MCSP produced in the
reduction from Set-Cover are of the form F : {0, 1}ℓ → {0, 1}m with m of order roughly 2ℓ, where the
reduction runs in time polynomial in m. A natural idea is to “pad” the number of input bits of F to m.
However, this would require the reduction to print a truth-table where each coordinate of the resulting
function F : {0, 1}m → {0, 1}m is described by a string of size 2m, which is prohibitively large.

Interestingly, we can remove this drawback in the setting of iO. Crucially, in contrast with Multi-MCSP,
the input of the iO procedure is a circuit instead of a truth-table. This allows us to establish thorough a sim-
ple padding argument that the hardness of iO for arbitrary multi-output circuits C : {0, 1}ℓ → {0, 1}m
implies its hardness for circuits of the form C : {0, 1}n → {0, 1}n.

5. Hardness Under a Minimal Assumption. Finally, we employ standard results to establish a link be-
tween iO and worst-case hardness. By a result of Rompel [Rom90], the existence of UOWHFs can be based
on the existence of one-way functions (OWF). On the other hand, the existence of an imperfect iO scheme
and the assumption that NP ⊈ BPP yield OWFs [KMN+22].

8

Items 4 and 5, together with the discussion above, imply that the existence of (imperfect) iO for
multi-output circuits C : {0, 1}n → {0, 1}n with bounded circuit size overhead and the assumption that
NP ⊈ BPP lead to a contradiction. This completes the overview of the techniques employed in the proof of
Theorem 1.

In Section 6, we present an alternative proof of our main results that might be of independent interest.
In particular, this proof does not rely on the PCP Theorem. It bypasses the general framework described
above by relying instead on pseudorandom encryption schemes and on a direct adaptation of a technique
from [ILO20]. However, while the alternative proof is shorter and more direct, it achieves somewhat weaker
parameters, only ruling out iO schemes whose output circuits have size of order s + o(s1/2) instead of
s + s1−o(1). In contrast, the general framework described above via meta-complexity is more modular and
can be applied in more general settings. For instance, it can rule out size-efficient iO for a weak circuit model
under Levin hardness of a corresponding meta-computational problem. Conversely, an advantage of the
alternative proof is that it is essentially self-contained and easier to adapt to various stronger computational
models when applicable (see Section 7).

The Alternative Approach Through Pseudorandom Encryptions. We rely on encryption schemes with
pseudorandom ciphers, which we describe below. Such schemes are equivalent to one-way functions via
[HILL99, GGM86] (see Section 6). Consequently, the argument sketched next rules out size-optimal iO
under OWFs. It is then possible to derive our main results (with somewhat weaker parameters) by combining
the argument with the ideas described in Items 4 and 5 above.

Informally, a triple (Enc,Dec, LD) of efficient algorithms is a local rate-1 pseudorandom encryption
scheme if the following properties hold:

1. (Rate) For every choice of the key k and message m, the length of the ciphertext Enc(m, k) equals
the length of m.

2. (Correctness) The scheme is correct, i.e., we always have Dec(Enc(m, k), k) = m.

3. (Pseudorandomness) No PPT algorithm can distinguish (m,Enc(m, k)) from (m, y), where y is a
random string of length |m|.

4. (Local Decoding) LD runs in time poly(|k|, log |m|) and recovers the i-th bit of the message, i.e.,
LD(k, |m|, i,Enc(m, k)i) = mi.

Let λ be the security parameter for an obfuscator iO with output size σ(λ, s) = s+ o(s1/2) + poly(λ).
We use the triple (Enc,Dec, LD) to construct an ensemble of distributions {Pλ}λ∈N over pairs (C1, C2)
of multi-output circuits and an advice string a ∈ {0, 1}∗ of bounded length, together with an efficient
deterministic algorithm A, such that Pr(C1,C2,a)←Pλ

[C1 ≡ C2] = 1 but∣∣∣ Pr
(C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, C1)) = 1]− Pr
(C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, C2)) = 1]
∣∣∣ = Ω(1). (1)

By a standard averaging argument that non-uniformly fixes the required advice bits, this contradicts the
security of the iO scheme.

9

Informal Description of Pλ. We next describe how to sample the circuits C1, C2 : {0, 1}logn → {0, 1}n.
and the advice a. We start with an informal description of the procedure that samples the truth table of the
function computed by C1 and C2.

Let j1, j2 ← [n] be two distinct random indices, and let r : {0, 1}logn → {0, 1} be a random function
(represented by a random string of length n). Let k1 and k2 be two random keys for the pseudorandom
encryption scheme (Enc,Dec, LD). We next sample n additional functions T1, . . . , Tn : {0, 1}logn → {0, 1}
as follows: For every i /∈ {j1, j2}, we let Ti be a random function. We let Tj1 and Tj2 be the functions
whose truth tables are Enc(r, k1) and Enc(r, k2), respectively. Finally, we let T : {0, 1}logn → {0, 1}n be
the multi-output function defined by the concatenation of T1, . . . , Tn. That is, T (x) = T1(x) • · · · • Tn(x).

We next rely on a technique from [ILO20]. Roughly speaking, [ILO20] shows a way to encode a function
T in a new function T̂ (with a similar input length but longer output) that has a canonical circuit CT that
computes T̂ , with the property that a copy of CT can be found in any circuit that computes T̂ . Moreover,
T̂ admits a “chain rule”: for any function f : {0, 1}logn → {0, 1}, and any circuit C that computes the
concatenation (T̂ • f)(x) = T̂ (x) • f(x), it is possible to efficiently decompose C into two circuits: the
circuit CT that computes T̂ , and a circuit D of size s = size(C)− size(CT) such that D(x, T̂ (x)) = f(x).
For simplicity, in the following we assume that this decomposition work when we take T̂ to be simply T .
Given this simplified assumption, the truth table of C1 and C2 is given by the function F (x) = T (x) • r(x).

We next define the circuits C1 and C2. The circuit C1 is simply composed by the circuit CT that
computes the function T , and the local decoding circuit of the encryption scheme, LD(k1, n, x, Tj1(x)),
where the key k1 is hard-coded to it, and the value of Tj1 is computed by the right output wire of the circuit
CT . By the construction of Tj1 = Enc(r, k1) and the correctness of the local decoding, we get that C1

indeed computes the function F . Moreover, by a careful choice of parameters, the size of C1 is bounded by
size(CT) + o(n). The circuit C2 is defined similarly, but replaces k1 and j1 in the above construction of C1

with k2 and j2.
Lastly, the advice string a is simply composed by the index j1 and the truth table of the function T .

Informal Description of the DistinguisherA. Next we describe the distinguisher. Given the advice string
containing the index j1 and a circuitC that computes T ◦r,A decomposesC into the circuitCT and a circuit
D such that D(x, T (x)) = r(x). Importantly, by carefully choosing the parameters, when C = iO(Cb) for
b ∈ {1, 2}, the size of D is much smaller than n = |T (x)|. The distinguisher A simply checks if D touches
the j1-th bit of T (x), and if so it outputs 1.

The upper bound on the size of D relies on the upper bound on the size of iO(Cb). This in turn depends
on the size of Cb, which can be bounded due to the use of the local decoder, and on the size overhead of the
iO scheme.

Intuition Behind Equation (1). We finally give some intuition on why A succeeds. We rely on the
pseudorandomness property of the encryption scheme, i.e., that Tj1 and Tj2 are indistinguishable from
random functions.

• First, it follows that A cannot distinguish between the circuit C2 and a circuit Ĉ2 which is constructed
similarly, but in which Tj1 is a random function (instead of an encryption of r). However, in the circuit
Ĉ2, Tj1 is distributed exactly as every other output wire Ti, and sinceD touches only o(n) of the input
wires of CT , it touches Tj1 with low probability. This can be used to show that A outputs 1 with low
probability on iO(C2).

10

• On the other hand, we argue that on iO(C1),Amust output 1 with high probability. Let Ĉ1 be a circuit
which is constructed similarly to C1, but in which Tj2 is a random function (instead of an encryption
of r). Since Ĉ1 is indistinguishable from C1, A outputs 1 on iO(C1) and on iO(Ĉ1) with essentially
the same probability. Assume towards a contradiction that A outputs 0 with noticeable probability on
iO(Ĉ1). Then there is a small circuitD, such thatD(x, T (x)) = r(x), andD does not touch the j1-th
bit of T (x). Since all the other bits in the output of T are independent of r, we are able to show in this
case that r can be compressed. But r is random, which implies that A outputs 1 with high probability
on iO(Ĉ1).

The argument is somewhat subtle because the obfuscations of C1 and Ĉ1 are not indistinguishable by non-
uniform adversaries (indeed, these circuits compute different functions). However, we only need to fool the
fixed distinguisher A described above, which is sufficient for the purpose of establishing Equation (1).

The proof of Theorem 2 is similar to the proof of Theorem 1. On the other hand, the proof of Theorem 4
combines ideas from the alternative approach describe above and from NP-hardness results for conditional
time-bounded Kolmogorov complexity ([Ila20, ACM+21, LP22]).

1.3 Related Work

Although there is extensive literature on positive results and potential constructions of indistinguishabil-
ity obfuscation schemes, the area of impossibility results remains less explored.

Hada [Had00] provided impossibility results regarding the obfuscation of pseudorandom functions under
a strong definition of obfuscation.

Barak et al. [BGI+12] established the impossibility of virtual black-box obfuscation for some contrived
functions. Goldwasser and Kalai [GK05] considered the notion of virtual black-box obfuscation with respect
to an auxiliary input, and proved that there exist natural classes of functions that cannot be obfuscated in
this setting (see also [BCC+14, CKP15, PS15, MMN15, LPST16]).

As mentioned above, Goldwasser and Rothblum [GR07] showed that indistinguishably obfuscation is
impossible in the random oracle model, i.e., when the circuit, the adversary, and the obfuscator all share
access to a random oracle.

Boyle et al. [BIM+23] investigated negative results in the context of iO for weak circuit classes C. In
more detail, a proper obfuscation scheme obfuscates circuits from a circuit class C by circuits from the same
class. For instance, assuming the existence of one-way functions, they showed that there is no proper iO
scheme for k-CNF formulas for any constant k ≥ 3. They make use of existing PAC learning algorithms
to obtain negative results for obfuscation, which are not available in the context of more expressive circuit
classes, such as DNFs.2

1.4 Concluding Remarks

As alluded to above (see also Section 4.1.1), any proof of an NP-hardness result in Cook’s theory PV
implies that the same NP-hardness result holds under Levin reductions. Consequently, the provability of the
hardness of meta-computational problems with a gap between yes and no instances in this theory is directly

2While we have not explored this direction in our work, we believe that our techniques can be adapted to show negative results
on the size-efficiency of proper iO schemes for DNFs and other weak classes (via existing results on the NP-hardness of the
minimum circuit size problem for such classes of functions).

11

connected to the (non)existence of iO with bounded output size for the corresponding class of computational
devices. This exhibits another link between bounded arithmetic and iO (see also [JJ22, ILW23]).

Our results show that the Mazor-Pass connection [MP24] can be leveraged to show impossibility results
for iO for a certain range of parameters. Intriguingly, there is currently no barrier preventing this framework
from ruling out iO (in the standard sense) under a worst-case hardness assumption.3 Note that this would
also follow if one could prove a bootstrapping result showing that an iO scheme with output size sO(1)

yields an iO scheme with output size s + o(s/ log s). Moreover, if the results of [AJS17] generalize to
the multi-output setting and for a notion of size corresponding to number of gates, it would be sufficient to
bootstrap from output size (2 + o(1)) · s to output size s+ o(s/ log s).

As our main open problems, we leave the extension of our (database-free) impossibility results to the
setting of single-output circuits, the investigation of iO for multi-output circuits with output size (1+Ω(1)) ·
s, and understanding the limits of our approach. It would also be interesting to understand if our techniques
can be used to show negative results on the efficiency of additional cryptographic primitives. We hope that
our work will motivate further research in these directions.

Acknowledgements. This work received support from the Royal Society University Research Fellowship
URF\R1\191059; the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre for Dis-
crete Mathematics and its Applications (DIMAP) at the University of Warwick. The research of the second
author is partly supported by NSF CNS-2149305, AFOSR Award FA9550-23-1-0312 and AFOSR Award
FA9550-23-1-0387. The last author is supported in part by NSF Award CNS 2149305, AFOSR Award
FA9550-23-1-0387, AFOSR Award FA9550-23-1-0312 and AFOSR Award FA9550-24-1-0267. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the United States Government, or the AFOSR.

2 Preliminaries

2.1 Basic Definitions and Notation

For a string x ∈ {0, 1}∗, we use |x| to denote the length of x. For strings x, y ∈ {0, 1}∗, we let x • y
denote the concatenated string.

We say that a function α : N→ N is negligible if for every constant c ≥ 1, there is n0 ≥ 1 such that, for
every n ≥ n0, α(n) ≤ n−c.

We let PPT stand for probabilistic polynomial time.

Boolean Circuits. For concreteness, we consider Boolean circuits consisting of AND, OR gates of fan-in
two and NOT gates of fan-in one, with access to input variables x1, . . . , xn and constants 0 and 1. (Our
results are robust to the set of fan-in two gates allowed in the circuit.) We measure the size of a circuit C
(denoted size(C)) by the number of AND, OR, and NOT gates in the circuit. When considering multi-output
circuits, we assign to each output coordinate some internal gate or input variable present in the circuit.

3In order to get such result, it would be enough to establish hardness under Levin reductions under the assumption that iO
exists. We refer to [HIR23] for examples of the usefulness of various cryptographic assumptions when proving NP-hardness of
meta-computational problems.

12

x1

x2

o1 G1 ← x1 AND x2

G2 ← NOT x1

G3 ← NOT x2

G4 ← G2 AND x2

G5 ← x1 AND G3

o2 G6 ← G4 OR G5

In the example above, we have a circuit C : {0, 1}2 → {0, 1}2 represented as a straight-line program that
outputs the sum (o1, o2) of the input bits (x1, x2). In this example, the circuit C has size 6.

For two circuits C,C ′ : {0, 1}ℓ → {0, 1}m, we let C ≡ C ′ denote that C(x) = C ′(x) for every
x ∈ {0, 1}ℓ. In this case, we say that the circuits are functionally equivalent.

The following fact will be useful for us.

Proposition 5 (See, e.g., [Juk12]). There is a polynomial-time algorithm that, given a binary string of length
2n representing the truth table of a function f : {0, 1}n → {0, 1}, outputs a circuit of size at most 5 · 2n/n
that computes f .

Infinitely-Often One-Way Functions (i.o.OWF). We say that a function family f = {fn}n≥1, where
each fn : {0, 1}n → {0, 1}m(n), is an infinitely-often one-way function (i.o.OWF) if for every PPT algorithm
A and for every constant c ≥ 1, there are infinitely many input lengths n such that

Pr
x←{0,1}n, A

[
A(1n, f(x)) ∈ f−1(f(x))

]
≤ n−c.

Infinitely-Often Universal One-Way Hash Function (i.o.UOWHF). We say that a function family h =
{hn}n≥1, where each hn : {0, 1}n → {0, 1}n−ζ(n), is an infinitely-often universal one-way hash function
(i.o.UOWHF) if ζ(n) ≥ 1 and for every PPT algorithm A and for every constant c ≥ 1, there are infinitely
many input lengths n such that

Pr
x←{0,1}n, A

[
x′ ← A(x); fn(x) = fn(x

′) and x ̸= x′
]
≤ n−c.

Theorem 6 (OWF to UOWHF, [Rom90]). Assume the existence of i.o.OWFs. Then i.o.UOWHFs exist.

2.2 Indistinguishability Obfuscation

Definition 7 (Indistinguishability Obfuscation for Multi-Output Circuits). A probabilistic polynomial-time
algorithm iO is an indistinguishability obfuscator for multi-output circuits with output size σ : N× N→ N
if the following hold.

13

• Perfect/Imperfect Functionality: There exists a negligible function α such that for all λ, n ∈ N and
any circuit C : {0, 1}n → {0, 1}n,

Pr
iO

[
iO(1λ, C) ≡ C

]
≥ 1− α(λ).

We say that iO is perfect if α(·) = 0; otherwise it is imperfect.

• Indistinguishability: For any polynomial-size circuit family {Aλ}λ and polynomial p, there exists a
negligible function µ such that for all λ, n ∈ N and any pair of circuits C,C ′ : {0, 1}n → {0, 1}n
satisfying C ≡ C ′ and n ≤ size(C) = size(C ′) ≤ p(λ), it holds that∣∣∣∣Pr

iO
[Aλ(iO(1λ, C)) = 1]−Pr

iO
[Aλ(iO(1λ, C ′)) = 1]

∣∣∣∣ ≤ µ(λ).
• σ-Output-Size: For all λ, n ∈ N and every circuit C : {0, 1}n → {0, 1}n,

Pr
iO

[
size(iO(1λ, C)) ≤ σ(λ, size(C))

]
= 1.

We often implicitly assume that size(C) = size(C ′) = p(λ), since dummy gates can be added to the
circuit so it has size exactly p(λ).

2.3 Randomized Levin Reductions for Promise Problems

For a relation R ⊆ {0, 1}∗ × {0, 1}∗, let L(R) = {x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}. We
say that a relationR is the witness relation of a language L ⊆ {0, 1}∗ if L(R) = L.

Definition 8 (Levin Reduction). Let R1 and R2 be relations. A triplet (f, g, h) of efficiently computable
functions is a Levin reduction fromR1 toR2 if

• For every (x,w) ∈ R1, (f(x), g(x,w)) ∈ R2.

• If (f(x), w) ∈ R2 then (x, h(x,w)) ∈ R1.

Remark 9. Notice that if (f, g, h) is a Levin reduction from R1 to R2, then f is a Karp reduction from
L(R1) to L(R2). Indeed, the first item above implies that if x ∈ L(R1) then f(x) ∈ L(R2), and the
second item implies the other direction.

A Levin reduction (f, g, h) is honest if there exists a constant δ > 0 such that for every large enough
n ∈ N and every x ∈ {0, 1}n, |f(x)| ≥ nδ.

When for two languages L1 and L2 we fix canonical relations R1 and R2, we say that there is a Levin
reduction from L1 to L2 if there is a Levin reduction fromR1 toR2. We say that L ∈ NP is NP-hard under
Levin reductions if there exists a Levin reduction from SAT to L, where the canonical relation for SAT is

RSAT = {(ϕ, v) : ϕ is a Boolean formula and ϕ[v] = 1}.

We also define Levin reductions in the more general context of promise problems. This is useful when
considering the NP-hardness of problems for which there is a gap between positive and negative instances.

In the following, we consider a promise problem (Y,N) that is associated with two relations (RY ,RN)
such that RY ⊆ RN , where RY is the witness relation for Y , and RN is the witness relation for N . That
is, (Y,N) = (L(RY),L(RN)).

14

Definition 10 (Levin Reduction for Promise Problems). Let (R1
Y ,R1

N) and (R2
Y ,R2

N) be pairs of relations
such that R1

Y ⊆ R1
N and R2

Y ⊆ R2
N . A triplet (f, g, h) of efficiently computable functions is a Levin

reduction from (R1
Y ,R1

N) to (R2
Y ,R2

N) if

• For every (x,w) ∈ R1
Y , (f(x), g(x,w)) ∈ R2

Y .

• If (f(x), w) ∈ R2
N then (x, h(x,w)) ∈ R1

N .

We also consider randomized Levin reductions. In this case, f(x; r) can be a randomized function (that
uses randomness r), and both g and h get access to r. We require that the above conditions hold with high
probability over the choice of r. The following definition suffices for our purposes.

Definition 11 (Randomized Levin Reduction for Promise Problems). Let (R1
Y ,R1

N) and (R2
Y ,R2

N) be
pairs of relations such thatR1

Y ⊆ R1
N andR2

Y ⊆ R2
N . A triplet of efficiently computable functions (f, g, h)

is an ε-error randomized Levin reduction from (R1
Y ,R1

N) to (R2
Y ,R2

N) if on every input instance x, with
probability at least 1− ε over the choice of r, the following holds:

1. for every w such that (x,w) ∈ R1
Y , (f(x; r), g(x,w; r)) ∈ R2

Y , and

2. for every w′ such that (f(x; r), w′) ∈ R2
N , (x, h(x,w′; r)) ∈ R1

N .

In order to improve readability, in many occasions we explicit describe the properties of the triple
(f, g, h) describing a Levin reduction between promise problems.

3 Indistinguishability Obfuscation

3.1 Indistinguishability Obfuscation Under the Easiness of NP

Proposition 12. If NP ⊆ ZPP (resp. NP ⊆ BPP), then there exist perfect (resp. imperfect) indistinguisha-
bility obfuscators for multi-output circuits with output size σ(λ, size(C)) = size(C).

Proof Sketch. This is a well know result that is essentially due to [BGI+12]. If NP ⊆ ZPP, then PH ⊆
ZPP (see, e.g., [For17]). By standard search-to-decision techniques, there exists a zero-error probabilis-
tic polynomial-time algorithm such that, given a (multi-output) circuit C, outputs the lexicographic-first
minimum-size circuit that computes the same function as C with probability exponentially close to 1 and ⊥
otherwise. By replacing the output ⊥ with the input circuit C, we get a (statistically secure) indistinguisha-
bility obfuscator with perfect functionality and no overhead.

The proof for the case of NP ⊆ BPP is similar except that now we get a probabilistic polynomial-time
algorithm that can output, with exponentially small probability, some circuit other than the lexicographic-
first minimum-size circuit computing the same function asC. As a result, we only get an indistinguishability
obfuscator with imperfect functionality.

3.2 Reduction for Multi-Output Circuits

It is not hard to see that if we can obfuscate circuits mapping n bits to n bits, then we can also obfuscate
circuits mapping ℓ bits to m bits for any ℓ,m ∈ N, by adding dummy input or output wires. We make this
formal in this subsection.

Analogously to Definition 7, we define indistinguishability obfuscation for general multi-output circuits.

15

Definition 13 (Indistinguishability Obfuscation for General Multi-Output Circuits). A probabilistic polynomial-
time algorithm iO is an indistinguishability obfuscator for general multi-output circuits with output size
σ : N× N→ N if the following hold.

• Perfect/Imperfect Functionality: There exists a negligible function α such that for all λ, ℓ,m ∈ N
and any circuit C : {0, 1}ℓ → {0, 1}m,

Pr
iO

[
iO(1λ, C) ≡ C

]
≥ 1− α(λ).

We say that iO is perfect if α(·) = 0; otherwise it is imperfect.

• Indistinguishability: For any polynomial-size circuit family {Aλ}λ and polynomial p, there exists a
negligible function µ such that for all λ, ℓ,m ∈ N and any pair of circuits C,C ′ : {0, 1}ℓ → {0, 1}m
satisfying max{ℓ,m} ≤ C ≡ C ′ and size(C) = size(C ′) ≤ p(λ), it holds that∣∣∣∣Pr

iO
[Aλ(iO(1λ, C)) = 1]−Pr

iO
[Aλ(iO(1λ, C ′)) = 1]

∣∣∣∣ ≤ µ(λ).
• σ-Output-Size: For all λ, ℓ,m ∈ N and every circuit C : {0, 1}ℓ → {0, 1}m,

Pr
iO

[
size(iO(1λ, C)) ≤ σ(λ, size(C))

]
= 1.

Lemma 14. For any output size function σ, if there exist indistinguishability obfuscators for multi-output
circuits with output size σ (in the sense of Definition 7), then there also exist indistinguishability obfuscators
for general multi-output circuits with output size σ (in the sense of Definition 13).

Proof. Let σ be an output size function and iO be an indistinguishability obfuscator for multi-output circuits
with output size σ.

Consider the following algorithm iO′,

On input (1λ, C), where C is a circuit mapping ℓ bits to m bits. Assume without loss of
generality that m > ℓ. We first obtain a circuit C ′ mapping m bits to m bits, obtained from C
by adding m− ℓ dummy input wires, i.e., they are not connected to any internal gate. We then
obtain a circuit C ′′ := iO(1λ, C ′). Finally, we set the last m − ℓ bits of C ′′ to be 0 and output
the resulting circuit, which maps ℓ bits to m bits.

We claim that iO′ is an indistinguishability obfuscator for general multi-output circuits, as defined in
Definition 13.

First of all, since the circuit C ′ is obtained by adding dummy input wires to the input circuit C (which
maps ℓ bits to m bits), it has the same functionality as C when restricted to the first ℓ input bits. If iO
preserves the functionality of C ′, then C ′′ = iO(1λ, C ′) also has the same functionality as C (again, when
restricted to the first ℓ input bits). This further implies that the final output circuit has the same functionality
as C. As a result, iO′ preserves functionality as iO does (either perfectly or imperfectly).

For the output size, since we only add dummy input wires to the input circuit C, its size does not
change, i.e., size(C) = size(C ′). Then we have size(iO′(1λ, C)) ≤ size(iO(1λ, C ′)) ≤ σ(λ, size(C ′)) =
σ(λ, size(C)).

Finally, for the security, suppose, towards a contradiction, there exist a polynomial-size circuit family
{Aλ}λ, a polynomial p, a constant c > 1 and an infinite set I ⊆ N such that for every λ ∈ I , there

16

are ℓ,m ∈ N and a pair of circuits C1, C2 : {0, 1}ℓ → {0, 1}m satisfying C1 ≡ C2 and max{ℓ,m} ≤
size(C1) = size(C2) ≤ p(λ) for which∣∣∣∣Pr

iO
[Aλ(iO′(1λ, C1)) = 1]−Pr

iO
[Aλ(iO′(1λ, C2)) = 1]

∣∣∣∣ > λ−c.

Then consider the following polynomial-size circuit family {A′λ}λ obtained from {Aλ}λ as follows.

For every λ ∈ I , A′λ takes an additional advice (ℓ,m) and given a circuit C ′′ : {0, 1}m →
{0, 1}m, sets the last m − ℓ input wires of C ′′ to 0, and outputs Aλ applying to the resulting
circuit.

By the definition of iO′, the above implies that for every λ ∈ I , there exist m ∈ N and a pair of circuits
C ′1, C

′
2 : {0, 1}

m → {0, 1}m satisfying C ′1 ≡ C ′2 and m ≤ size(C ′1) = size(C ′2) ≤ p(λ) such that∣∣∣∣Pr
iO

[A′λ(iO(1λ, C ′1)) = 1]−Pr
iO

[A′λ(iO(1λ, C ′2)) = 1]

∣∣∣∣ > λ−c,

which contradicts the security of iO.

As an immediate consequence of Lemma 14, we get that the existence of indistinguishability obfuscators
for multi-output circuits implies that for single-output circuits. It was shown in [KMN+22] that assuming
NP is hard, the existence of indistinguishability obfuscators for single-output circuits (with polynomial
output size) implies the existence of one-way functions. As a result, we derive the following consequence.

Theorem 15 (Following [KMN+22]). Assume NP ̸⊆ ZPP (resp. NP ̸⊆ BPP). If there exist perfect
(resp. imperfect) indistinguishability obfuscators for multi-output circuits with polynomial output size, then
infinitely-often one-way functions exist.

3.3 Connection Between Indistinguishability Obfuscation and Meta-Complexity

In this section, we employ a technique from [MP24] to establish the following result.

Theorem 16. Let β > α > 0, and let γ, δ > 0. Consider the following assumptions:

(i) There is an honest randomized Levin reduction from Circuit-Sat to Gap-Multi-MCSP[s, s + s/(α ·
log s)]. More precisely, there are deterministic polynomial-time functions f , g, and h satisfying the
following conditions:

(1) Given a sufficiently large n-variable Boolean circuit φ ∈ {0, 1}poly(n) and a random string r ∈
{0, 1}poly(n), f(φ, r) outputs (1ℓ, 1m, 1s, tt(F)), where ℓ,m, s ∈ N and F : {0, 1}ℓ → {0, 1}m
is a multi-output function. Moreover, s = s(φ, r) ≥ nδ and s ≥ max{ℓ,m}.

(2) With probability at least 1− o(1) over the choice of r, the following holds:

(a) for any input x such that φ(x) = 1, g(φ, x, r) outputs a circuit C of size at most s that
computes F , and

(b) for any circuit D of size at most s/(α · log s) that computes F , φ(h(φ,D, r)) = 1.

(ii) There exist imperfect indistinguishability obfuscators for general multi-output circuits with output size
σ(λ, s) = s+ s/(β · log s) + λγ .

17

Then there is no infinitely-often universal one-way hash function H = {Hn}n≥1 with Hn : {0, 1}n →
{0, 1}n−ζ(n) and ζ(n) = ω(1).

Proof. LetH := {Hn}n≥1 withHn : {0, 1}n → {0, 1}n−ζ(n) and ζ(n) = ω(1) be an arbitrary polynomial-
time function. Let α, β, γ, and δ be constants as specified in the statement of the theorem, (f, g, h) be
polynomial-time functions describing an honest randomized Levin reduction from the circuit satisfiability
problem Circuit-Sat to Gap-Multi-MCSP[s, s+s/(α · log s)], and let iO be an imperfect indistinguishability
obfuscator for general multi-output circuits with output size σ(λ, s) = s+ s/(β · log s) + λγ .

We describe a PPT algorithm A(x) that, given a random input x ∈ {0, 1}n, attempts to find a different
pre-image of Hn(x).

Input: x ∈ {0, 1}n and random strings r, riO ∈ {0, 1}poly(n), for some n ≥ 1.
1 Let yx := Hn(x);
2 Let φyx(w) be a Boolean circuit that outputs 1 on an input w if and only if Hn(w) = yx;
// Note that the circuit φyx depends only on yx and not on x.

3 Let (1ℓ, 1m, 1s, tt(F)) := f(φyx , r);
// Observe that x satisfies φyx(w).

4 Let Cx,r := g(φyx , x, r) be a circuit with at most s gates (if size > s return ⊥);
5 Let Cx,r

pad be a padded version of Cyx,r with exactly s gates;

6 Let λ := n
δ
2γ and D := iO(1λ, Cx,r

pad; riO);
7 Let x′ := h(φyx , D, r). Then return x′ if φyx(x

′) = 1; otherwise return ⊥;

Algorithm 1: Randomized algorithm A(x) attempts to find a different pre-image of Hn(x).

We establish the following lemma about the correctness of A(x) on a random input x.

Lemma 17. The following holds for every sufficiently large n:

Pr
x←{0,1}n, A

[
x′ ← A(x); Hn(x

′) = Hn(x) and x ̸= x′
]
= Ω(1).

Proof. We adapt the argument from [MP24] to our setting. Let x ∈ {0, 1}n, and consider the output
x′ = A(x, r, riO), where r and riO are random strings. Let yx, φyx , F , s, Cx,r, Cx,r

pad, λ, and D be as in the
description of A.

We consider a distribution D over pairs (φ, x), where φ is the description of a Boolean circuit on n-
variables and x is an assignment. For a given n, we sample from D by sampling a string x ← {0, 1}n and
setting φ = φyx . Note that φyx depends only on yx and not on x.

Since ζ(n) = ω(1), for a random x ← {0, 1}n, with probability at least 1 − o(1), there is x′ ̸= x such
that Hn(x) = Hn(x

′). Let
G := {x ∈ {0, 1}n | |H−1n (Hn(x))| > 1}.

Equivalently, a formula φyx(w) obtained from x ∈ G has more than one satisfying assignment. We might
abuse notation and write φyx ∈ G when considering whether x ∈ G.

Let (φyx , x) ∈ Support(G). We say that a random string r is good for φyx if Items (a) and (b) in the
statement of Theorem 16 hold for r:

18

(a) Given any satisfying assignment x′ of φyx , g(φyx , x
′, r) outputs a circuit Cx′,r of size at most s that

computes F , and4

(b) for any circuit D of size at most s+ s/(α · log s) that computes F , φyx(h(φyx , D, r)) = 1.

Note that for any fixed φyx as above, r is good for φyx with probability at least 1− o(1) over the choice of
r. We let

Rφyx
:= {r ∈ {0, 1}poly(n) | r is good for φyx}.

Now observe that, for every x ∈ G and r ∈ Rφyx
, since x satisfies φyx , the output circuit Cx,r =

g(φyx , x, r) has size at most s and Cx,r
pad is a circuit of size exactly s. Consequently, D = iO(1λ, Cx,r

pad; riO)
is a circuit of size at most

σ(λ, s) = s+ s/(β · log s) + λγ

= s+ s/(β · log s) + (nδ)1/2

≤ s+ s/(β · log s) + s1/2

≤ s+ s/(α · log s),

where the last inequality uses that β > α and s ≥ nδ is sufficiently large. Moreover, for any circuit Cx,r
pad,

with probability at least 1− o(1) over the choice of riO, D is equivalent to Cx,r and Cx,r
pad. Let

RiO
x,r :=

{
riO ∈ {0, 1}poly(n) | D = iO(1λ, Cx,r

pad; riO) is of size ≤ s+ s/(α · log s) and computes F
}
.

As a consequence, for x ∈ G, r ∈ Rφyx
, and riO ∈ RiO

x,r, x′ = h(φyx , D, r) satisfies φyx , i.e., Hn(x
′) =

yx = Hn(x).
It remains for us to argue that we have x′ ̸= x, which we will should to hold with probability Ω(1) over

x← {0, 1}n and A’s internal randomness r and riO. For this, we rely on the security of the iO scheme.
In more detail, for fixed x ∈ G and r ∈ Rφyx

, and for every x′ such that φyx(x
′) = 1, the corresponding

circuits Cx,r
pad and Cx′,r

pad are of the same size and equivalent. This is because F and s depend on r and on
φyx = φyx′ . For convenience, let φ := φyx = φyx′ . By the security of the obfuscator and our choice of
λ = nΩ(1), the distributions iO(1λ, Cx,r

pad) and iO(1λ, Cx′,r
pad) are indistinguishable against non-uniform ad-

versaries of size poly(n), assuming that n is large enough. Since h performs a polynomial-time computation,
by data processing, the distributions

h
(
φ, iO(1λ, Cx,r

pad), r
)

and h
(
φ, iO(1λ, Cx′,r

pad), r
)

(generated from a random string riO) are also indistinguishable, even when given as advice r, φ, x, and x′.
Therefore, by the definition of A, for any x and x′ as above, we get that

Pr
r,riO

[A(x, r, riO) = x | (r, riO) ∈ Eφ,x,x′] ≤ Pr
r,riO

[A(x′, r, riO) = x | (r, riO) ∈ Eφ,x,x′] + o(1)

≤ Pr
r,riO

[A(x′, r, riO) ̸= x′ | (r, riO) ∈ Eφ,x,x′] + 1/3,

4On a related note, observe that x′ and r fully specify Cx′,r in the computation A, since the circuits φyx and φyx′ are the same
when Hn(x) = Hn(x

′).

19

where for convenience we employed the event Eφ,x,x′ := {(r, riO) | r ∈ Rφ ∧ riO ∈ RiO
x,r ∩ RiO

x′,r}. This
implies that

1− Pr
r,riO

[A(x, r, riO) ̸= x | (r, riO) ∈ Eφ,x,x′] ≤ Pr
r,riO

[A(x′, r, riO) ̸= x′ | (r, riO) ∈ Eφ,x,x′] + 1/3,

or equivalently,

1

2
·
(
Pr
r,riO

[A(x, r, riO) ̸= x | (r, riO) ∈ Eφ,x,x′] + Pr
r,riO

[A(x′, r, riO) ̸= x′ | (r, riO) ∈ Eφ,x,x′]
)
≥ 1

3
. (2)

Finally, recall the definition of the distribution D over pairs (φ, x). For convenience, we also consider
the distribution D′, where we first sample (φ, x0) ← D, and then if x0 ∈ G we sample a random x1 ̸= x0
such that φ(x1) = 1 (otherwise we let x1 = x0). We then output the triple (φ, x0, x1). The following holds:

Pr
x←{0,1}n, A

[x′ ← A(x); Hn(x
′) = Hn(x) and x ̸= x′] = Pr

(φ,x)←D,r,riO
[A(x, r, riO) /∈ {x,⊥}]

= Pr
(φ,x0,x1)←D′,r,riO

[A(x0, r, riO) /∈ {x0,⊥}]

≥ Pr[A(x0, r, riO) /∈ {x0,⊥} | φ ∈ G ∧ (r, riO) ∈ Eφ,x0,x1] ·Pr[(r, riO) ∈ Eφ,x0,x1 | φ ∈ G] ·Pr[φ ∈ G]

≥ Pr
(φ,x0,x1)←D′,r,riO

[A(x0, r, riO) /∈ {x0,⊥} | φ ∈ G ∧ (r, riO) ∈ Eφ,x0,x1] · (1− o(1)) (3)

= Pr
(φ,x0,x1)←D′,r,riO,b←{0,1}

[A(xb, r, riO) /∈ {xb,⊥} | φ ∈ G ∧ (r, riO) ∈ Eφ,x0,x1] · (1− o(1)) (4)

=
1

2

∑
b∈{0,1}

Pr
(φ,x0,x1)←D′,r,riO

[A(xb, r, riO) /∈ {xb,⊥} | φ ∈ G ∧ (r, riO) ∈ Eφ,x0,x1] · (1− o(1))

=
1

2

∑
b∈{0,1}

Pr
(φ,x0,x1)←D′,r,riO

[A(xb, r, riO) ̸= xb} | φ ∈ G ∧ (r, riO) ∈ Eφ,x0,x1] · (1− o(1)) (5)

≥ 1

3
· (1− o(1)) (6)

= Ω(1), where the non-trivial equations are justified as follows:

– Equation (3) uses the definition of the events G and Eφ,x0,x1 the estimates above, and the union bound;

– Equation (4) employs that the distributions (φ, x0) and (φ, x1) are identical for (φ, x0, x1)← D′;

– Equation (5) uses that A(xb, r, riO) ̸= ⊥ under events φ ∈ G and (r, riO) ∈ Eφ,x0,x1 ; and

– Equation (6) relies on Equation (2), which is available since φ ∈ G.

This completes the proof of the lemma. ⋄

Finally, the lemma implies that there are no infinitely-often one-way hash functions under the assump-
tions in Theorem 16, which completes the proof.

20

4 Hardness of Multi-MCSP Under Randomized Approximate Levin Reduc-
tions

The components of a multi-output Boolean function f : {0, 1}ℓ → {0, 1}m are the single-output func-
tions that compute the i-th output bit of f for i ∈ [m]. We say a Boolean circuit C computes a multi-output
Boolean function f if for each component fi of f , there is a gate or input wire in C that computes fi.

In this section, we establish the following result.

Theorem 18 (Hardness of Approximating Multi-MCSP under Levin Reductions). There exist a constant
a > 0 such that the following holds. Let L ∈ NP, and VL be an NP-verifier for L. There are deterministic
polynomial-time functions f , g, and h satisfying the following conditions:

• Given a sufficiently large instance x of L and r ∈ {0, 1}|x|
c

, where c > 0 is a constant depending
only on L, f(x; r) outputs (1ℓ, 1m, 1s, tt(F)), where ℓ,m, s ∈ N and F : {0, 1}ℓ → {0, 1}m is a
multi-output function. Moreover, s ≥ max{ℓ,m} and s ≥ |x|κ for some universal constant κ > 0.

• With probability at least 1− o(1) over the choice of r, the following holds:

1. if there is y such that VL(x, y) = 1, then g(x, y; r) outputs a circuit of size at most s that
computes F , and

2. if there is a circuitC of size at most s+s/(a·log s) that computes F , then VL(x, h(x,C; r)) = 1.

To prove Theorem 18, we will use the following two results. The first states that the Set-Cover problem
is hard to approximate.

Lemma 19 (Hardness of Approximating Set-Cover under Levin Reductions). There exist constants 0 <
λ < δ < 1/2 and an integer q > 0 such that the following holds. Let L ∈ NP, and let VL be an NP-verifier
for L. There are polynomial-time functions f , g, and h satisfying the following conditions:

• Given any input instance x for L, f(x) outputs a Set-Cover instance φx = (n, S1, . . . , St) such that
n/q ≤ t ≤ n and |Sj | ≤ q for every j ∈ [t]. Moreover, t ≥ |x|κ for some constant κ > 0.

• If there is y such that VL(x, y) holds, then there exists a set cover of size (1− λ) · t for φx. Moreover,
T = g(x, y) is such a set cover.

• If there is a set cover T ⊆ [t] for φx such that |T | < (1− λ+ δ) · t, then x ∈ L. Moreover, VL(x, y)
holds for y := h(x, T).

The second lemma establishes a Levin reduction from Set-Cover to Multi-MCSP.

Lemma 20 (A Randomized Approximate Levin-Reduction from Set-Cover to Multi-MCSP). Let λ, δ and q
be the constants from Lemma 19. There exist a constant a > 0 and deterministic polynomial-time functions
f̂ , ĝ, and ĥ satisfying the following conditions:

• Given a sufficiently large Set-Cover instance z := (n, S1, . . . , St) satisfying n/q ≤ t ≤ n and
|Sj | ≤ q for every j ∈ [t], and a string r ∈ {0, 1}poly(n), f̂(z; r) outputs (1nin , 1nout , 1s, tt(F)),
where nin, nout, s ∈ N and F : {0, 1}nin → {0, 1}nout is a multi-output function. Moreover, s ≥
max{nin, nout} and s > t/2.

• With probability at least 1− o(1) over the choice of r, the following holds:

21

1. if there is a set cover S ⊆ [t] for z such that |S| ≤ (1 − λ) · t, then ĝ(z, S; r) outputs a circuit
of size at most s that computes F , and

2. if there is a circuit C of size at most s+ s/(a · log s) that computes F , then ĥ(z, C; r) outputs a
set cover S ⊆ [t] for z such that |S| < (1− λ+ δ) · t.

We prove Lemma 19 in Section 4.1 and Lemma 20 in Section 4.2, but first let us use Lemma 19 and
Lemma 20 to prove Theorem 18.

Proof of Theorem 18. Let a > 0 be the constant specified in Lemma 20.
Fix an L ∈ NP with NP-verifier VL, and let (f0, g0, h0) be the Levin reduction from L to Set-Cover

promised by Lemma 19. Let (f̂ , ĝ, ĥ) be the randomized reduction from Set-Cover to Multi-output MCSP
promised by Lemma 20. Define f(x; r) = f̂(f0(x); r), g(x, y; r) = ĝ(f0(x), g0(x, y); r) and h(x,C; r) =
h0(x, ĥ(f0(x), C; r)).

By Lemma 19, f0(x) outputs a Set-Cover instance (n, S1, . . . , St) with n/q ≤ t ≤ n, |Sj | ≤ q for
every j ∈ [t] and t ≥ |x|κ for some constant κ > 0. Thus, by Lemma 20, f(x; r) = f̂(f0(x); r) outputs a
Multi-MCSP instance (1nin , 1nout , 1s, tt(F)) with s > t/2 ≥ |x|κ/2 and s ≥ max{nin, nout}.

Moreover, for every y such that VL(x, y) holds, g0(x, y) outputs a set cover of size (1 − λ) · t. By
Lemma 20, with probability 1 − o(1) over r, g(x, y; r) = ĝ(f0(x), g0(x, y); r) outputs a circuit of size at
most s that computes F . Finally, with the same probability over r, if there is a circuit C of size at most
s + s/(a · log s) that computes F , then ĥ(f0(x), C; r) outputs a set cover S ⊆ [t] for f0(x) such that
|S| < (1− λ+ δ) · t. Thus, by Lemma 19, h(x,C; r) = h0(x, ĥ(f0(x), C; r)) outputs y such that VL(x, y)
holds.

4.1 Hardness of Approximating Set-Cover Under Levin Reductions

4.1.1 Hardness of Approximating k-SAT Under Levin Reductions

Let k be a sufficiently large positive integer. The PCP Theorem states that, given a k-CNF φ(x1, . . . xn),
it is NP-hard to distinguish the following two cases:

• φ is satisfiable; and

• no assignment satisfies more than an (1 − γk)-fraction of clauses in φ, where γk > 0 is a universal
constant.

It is a folklore result that this computational task remains NP-hard under Levin reductions. In this section,
we provide more details about this claim.

Instead of inspecting an existing proof of the PCP Theorem, we rely in a black-box way on a result of
[Pic15] showing that the PCP Theorem can be formalized in the bounded arithmetic theory PV1. To achieve
this, we use that PV1 is a theory for polynomial-time computations, and that the proof of correctness of the
PCP Theorem in this theory implies the existence of polynomial-time functions that exactly match the defi-
nition of a Levin reduction. While we assume basic familiarity with bounded arithmetic (see, e.g., [Bus97]),
the argument described below is not difficult to follow.

We will need the following definition (expressible in PV1).

Definition 21 ([Pic15, Definition 3.5]). Let k, c, q, ℓ be constants, m ∈ Log, r ∈ [ℓ ·mℓ], π ∈ {0, 1}c·mc
.

Let D be an algorithm that runs in time at most k ·mk on an input y of length m. We let Dπ(y, r) ∈ {0, 1}
denote the output of the computation of D on y with oracle access to π using r as a source of randomness,
which proceeds as follows:

22

1. Given y and r,D makes at most q non-adaptive queries to π, represented by the coordinates i1, . . . , iq ∈
[|π|].

2. Given y and the bits π(i1), . . . , π(iq), D computes its output in {0, 1}.

Theorem 22 (PCP Theorem in PV1 [Pic15, Theorem 7]). There are positive constants k, c, q, and ℓ and a
k ·mk-time algorithm D (given as a PV1-function) computing according to Definition 21 There are positive
constants k, c, q, and ℓ and a k ·mk-time algorithm D (given as a PV1-function) computing according to
Definition 21 such that PV1 proves that for any m ∈ Log and Boolean formula ψ ∈ {0, 1}m,

(i) ∃x SAT(ψ, x)→ ∃π ∈ {0, 1}c·mc
Prr∈[ℓ·mℓ][D

π(ψ, r) = 1] = 1 .

(ii) ∀x¬SAT(ψ, x)→ ∀π ∈ {0, 1}c·mc
Prr∈[ℓ·mℓ][D

π(ψ, r) = 1] ≤ 1/2 .

We derive the following consequence from Theorem 22.

Corollary 23 (PCP Theorem Under Levin Reductions (Folklore)). Let k, c, q, ℓ be the constants and D be
the polynomial-time algorithm from Theorem 22. There are polynomial-time functions gPCP and hPCP for
which the following conditions hold:

1. Given a formula ψ ∈ {0, 1}m and an assignment x that satisfies ψ, π := gPCP(ψ, x) ∈ {0, 1}c·m
c

satisfies Prr∈[ℓ·mℓ][D
π(ψ, r) = 1] = 1 .

2. Given a formula ψ ∈ {0, 1}m and π ∈ {0, 1}c·mc
such that Prr∈[ℓ·mℓ][D

π(ψ, r) = 1] > 1/2 , the
assignment x := hPCP(ψ, π) satisfies ψ.

Proof. The result follows from Theorem 22 and the witnessing theorem for ∀Σb
1-sentences available in PV1.

More generally, any proof of NP-hardness under Karp-reductions that can be formalized in PV1 implies NP-
hardness under Levin reductions. We provide more details below.

First, consider Item (i) in Theorem 22. The condition Prr∈[ℓ·mℓ][D
π(ψ, r) = 1] = 1 is expressed as a

polynomial-time predicate A(ψ, π), since there are at most polynomially many choices of r. Consequently,
the correctness of this direction of the reduction is captured by a PV1-sentence of the following form:

∀1m ∀ψ ∈ {0, 1}m ∃x (|x| ≤ m ∧ SAT(ψ, x))→ (∃π (|π| ≤ c ·mc ∧ A(ψ, π)) .

This can be equivalently expressed by the following sentence:

∀1m ∀ψ ∈ {0, 1}m ∀x ∈ {0, 1}≤m ∃π ∈ {0, 1}c·mc
(¬SAT(ψ, x) ∨A(ψ, π)) .

Since the latter is a ∀Σb
1-sentence, by the witnessing theorem for PV1 its provability yields a polynomial-

time function g(1m, ψ, x) such that A(ψ, π) holds with π := g(1m, ψ, x) whenever SAT(ψ, x) holds.
A similar argument in the other direction (i.e., Item (ii)) establishes the existence of a polynomial-time

function x = h(ψ, π) with the desired property.

Hardness of approximating k-SAT under Levin reductions. We now combine the Cook-Levin reduc-
tion and the standard translation between the PCP Theorem and the hardness of approximating CSPs to
derive the NP-hardness of approximating k-SAT under Levin reductions.

Given a k-CNF ψ and an assignment x, we let val(ψ, x) ∈ [0, 1] denote the fraction of clauses of ψ that
are satisfied by x. We will use the same notation for CSPs.

23

Theorem 24 (Hardness of Approximating k-SAT under Levin Reductions). There is an integer k ≥ 1 such
that the following holds. Let L ∈ NP, and let VL be an NP-verifier for L. There are polynomial-time
functions f1, g1, and h1 satisfying the following conditions:

1. Given any input string x, φx := f1(x) is a k-CNF with |x|Ω(1) clauses.

2. If there is y such that VL(x, y) holds, then φx is satisfiable. Moreover, z := g1(x, y) satisfies φx.

3. If there is an assignment w such that val(φx, w) > 1−1/2k+1, then x ∈ L. Moreover, VL(x, y) holds
for y := h1(x,w).

Proof. Since the proof employs standard ideas, we only sketch the argument. Given any L and VL as above,
the Cook-Levin Theorem provides a triple fCL, gCL, and hCL that describes a Levin reduction to the Boolean
formula satisfiability problem. We compose this Levin reduction with the reduction from Corollary 23,
obtaining polynomial-time functions f̃ , g̃, and h̃ with the following properties:

1. Given any input string x ∈ {0, 1}n, ψx := f̃(x) is a Boolean formula of description length m =
poly(n).

2. If VL(x, y) holds for some y, then πx := g̃(x, y) ∈ {0, 1}c·mc
satisfies Prr∈[ℓ·mℓ][D

πx(ψx, r)] = 1.

3. Given any π ∈ {0, 1}c·mc
such that Prr∈[ℓ·mℓ][D

π(ψx, r) = 1] > 1/2, VL(x, y) holds for y :=

h̃(x, π).

Next, the standard correspondence between PCPs and CSPs maintains the gap between yes and no instances
of L, i.e., an instance x is mapped to a Boolean CSP instance φ̃x with constraints of arity k such that
val(φ̃x) = 1 if x ∈ L and val(φ̃x) ≤ 1/2 if x /∈ L. Finally, we convert φ̃x into a k-SAT formula φx with
the properties stated in Theorem 24. It is not difficult to check that the transformation from PCPs to CSPs
and k-SAT instances remains a Levin reduction.

4.1.2 Proof of Lemma 19

We continue the proof with the chain of reductions from k-SAT to bounded Set-Cover. Since the argu-
ments are rather standard, we only sketch some of them.

Lemma 25 (From k-SAT to k-SAT with Bounded Variable Occurrences; Following [PY91]). There exist a
constant d ≥ 1 and polynomial-time functions f2, g2 and h2 such that the following hold.

• For any integer k > 1, given a k-CNF formula φ with m clauses, f2(φ) is a k-CNF formula with
m′ := m+ kdm clauses such that each variable occurs in at most 2d+ 1 clauses.

• If v is an assignment such that val(φ, v) = 1, then g2(φ, v) outputs an assignment u such that
val(f2(φ), u) = 1.

• Given an assignment u such that val(f2(φ), u) > 1− 1
2k+1·(kd+1)

, h2(φ, S) outputs an assignment v

such that val(φ, v) > 1− 1
2k+1 .

Proof. The reduction follows closely the one presented in [PY91, Theorem 2]. We verify that it yields a
Levin reduction. We will need the following construction of expanders.

Claim 26 (See, e.g., [RVW00]). There exist a constant d > 0 and a polynomial-time algorithm A such that,
given as input 1m where m ∈ N, A outputs a d-regular graph G = (V,E) such that |V | = m and for every
subset S ⊆ V with |S| ≤ |V |/2, the number of edges E(S, V − S) having one endpoint in S and one in
V − S is at least |S|.

24

The reduction f2. Let φ be a k-CNF formula with m clauses and variables x1, x2, · · · , xn. Without loss
of generality, assume that each clause has exactly k literals. For i ∈ [n], let ℓi be such that xi (either
positively or negatively) occurs in ℓi clauses. We construct the new formula f2(φ) as follows. For each
variable xi, we introduce the set of ℓi variables

Vxi
:= {x1i , · · · , x

ℓi
i }.

Then using Claim 26, we construct a graph Gxi whose vertices are Vxi . Next, for each edge (xui , x
v
i) in Gxi ,

we create two clauses
(xui ∨ x

v
i) and (xui ∨ xvi).

Note that if xui = xvi then both clauses are satisfied and otherwise exactly one clause is satisfied.
We do the above for each xi, i ∈ [n], and obtain a formula ϕ with variables ∪i∈[n]Vxi . Note that by

construction and by the fact that each Gi is d-regular, the number of clauses in ϕ is∑
i∈[n]

ℓi · d
2
· 2 = kdm.

Also, each variable occurs in at most 2d clauses.
Next, we take the original formula φ, and for each variable xi, we replace every occurrence of xi in φ

by a distinct variable from Vxi . Let ϕ′ be the resulting formula.
Finally, f2(φ) outputs

ϕ′ ∧ ϕ.

It is easy to verify that the above formula has m′ := m + kdm clauses and that each variable occurs in at
most 2d+ 1 clauses.

The function g2. If v is an assignment for the variables in φ that satisfies all the m clauses, then by letting
the variables in Vxi be v(xi) for each xi, we obtain an assignment that satisfies all the m′ clauses in f2(φ).

The function h2. Let u be an assignment for the variables ∪i∈[n]Vxi that satisfies more than

α :=

(
1− 1

2k+1 · (kd+ 1)

)
·m′

clauses in f2(φ). We can obtain an assignment for the variables x1, x2, · · · , xn in φ as follows. We take the
assignment u for ∪i∈[n]Vxi , and for each xi, we set the values of the variables in Vxi to be the majority of
(u(x1i), · · · , u(x

ℓi
i)), breaking ties arbitrarily for each Vxi if the number of 1s is exactly ℓi/2. Note that this

allows us to obtain a single truth value for each xi and hence an assignment for the variables x1, x2, · · · , xn
in φ.

The key observation here is that changing the values of the variables in each Vxi in this way does not
decrease the number of clauses satisfied in f2(φ). To see this, let S be the set of variables in Vxi that do
not have the majority-truth-value. Then flipping the values of variables in S can make at most |S| clauses
in ϕ′ that were previously satisfied become unsatisfied. However, by the expander property of Gi, there
are also at least |S| of the clauses in ϕ that were previously unsatisfied (which correspond to the edges in
E(S, Vxi − S)) and that become satisfied. As a result, we can obtain a new assignment u′ for the variables

25

∪i∈[n]Vxi , where for each i ∈ [n] all the variables in Vxi have the same truth value, that satisfies more than
α clauses in f2(φ). In particular, less than

m′ − α =
m′

2k+1 · (kd+ 1)

clauses in ϕ′ are unsatisfied. Such an u′ yields an assignment for the variables x1, x2, · · · , xn that satisfies
more than

m− m′

2k+1 · (kd+ 1)
= m ·

(
1− 1

2k+1

)
clauses in φ.

Lemma 27 (From k-SAT with Bounded Variable Occurrences to Independent-Set with Bounded Degree).
There exist polynomial-time functions f3, g3 and h3 such that the following hold.

• For any integers k,B > 1, given a k-CNF formula φ with m clauses such that each variable occurs
in at most B clauses, f3(φ) is is a graph G = (V,E) with degree at most ∆ := k+B− 2. Moreover
|V | ≥ |φ|δ for some constant δ.

• If v is an assignment such that val(φ, v) = 1, then g3(φ, v) outputs a set of vertices S ⊆ V of size
|V |/k such that S is an independent set in G.

• For any 0 ≤ ε ≤ 1, given any independent set S ⊆ V in G of size greater than (1 − ε) · |V |/k,
h2(φ, S) outputs an assignment v such that val(φ, v) > 1− ε.

Proof Sketch. The lemma follows from the textbook reduction from k-SAT to Independent-Set. Given a
k-CNF formula φ with m clauses such that each variable occurs in at most B clauses, we construct a graph
G with one vertex for every occurrence of every literal (i.e., there are km vertices). We add an edge between
each pair of vertices whose corresponding literals are within the same clauses (i.e., the vertices within each
clauses form a k-clique). Also, we add an edge between two vertices u and v, if the literals ℓu and ℓv are
complementary to each other. Note that since every variable occurs in at most B clauses, the degree is at
most (k−1)+(B−1) = k+B−2. Given an assignment that satisfies t clauses in φ, it is easy to construct
an independent set of size t for G, and vice versa.

Lemma 28 (From Independent-Set with Bounded Degree to Vertex-Cover with Bounded Degree). There
exist polynomial-time functions f4, g4 and h4 such that the following hold.

• Given a graph G = (V,E), f4(G) outputs a graph G′ = (V ′, E′) such that |V ′| = |V | and |E′| =
|E|.

• Given an independent set S ⊆ V in G, g4(G,S) outputs a set S′ ⊆ V ′ such that |S′| = |V ′| − |S|
and S′ is a vertex cover of G′.

• Given a vertex cover S′ ⊆ V ′ of G′, h4(G,S′) outputs an independent set S ⊆ V in G of size
|S| = |V | − |S′|.

Proof Sketch. The functions f4, g4, h4 are defined as follows: f4(G) = G, g4(G,S) = V \ S, h4(G,S′) =
V ′ \ S′.

Lemma 29 (From Vertex-Cover with Bounded Degree to Set-Cover with Bounded Set Size). There exist
polynomial-time functions f5, g5 and h5 such that the following holds.

26

• Given a graph G = (V,E) with degree at most ∆ ≥ 1, f5(G) outputs a set cover instance z =
(n, S1, . . . , St ⊆ [n]) where n = |E|, t = |V | and |Si| ≤ ∆ for all i ∈ [t].

• Given a vertex cover S ⊆ V in G, g5(G,S) outputs a set cover T of size |S| of z.

• Given a set cover T ⊆ [t] of z, h5(G,T) outputs a vertex cover S ⊆ V in G of size |T |.
Proof Sketch. The function f5 is defined as follows: Given a graph G, let n = |E| and t = |V |, and assume
without loss of generality that V = [t]. For every vertex v ∈ [t], let Sv be the set of all edges in E that touch
V . f5 outputs φ = (n, S1, . . . , St). Let g5(G,S) = S and h5(G,T) = T .

We are now ready to complete the proof of Lemma 19.

Proof Sketch of Lemma 19. Let k be the integer promised by Theorem 24, and let (f1, g1, h1), . . . , (f5, g5, h5)
be the functions promised by Theorem 24 and lemmas 25 and 27 to 29 respectively. The proof follows by
composition of Levin reductions.

Define f(x) = f5(. . . f2(f1(x))). Let x1 = f1(x), x2 = f2(x1), . . . , x5 = f5(x4) (so that f(x) =
x5). Similarly, given a witness y for x, let y1 = g1(x, y), y2 = g2(x1, y1), . . . , y5 = g5(x4, y4) and
define g(x, y) = y5. Finally, given T , let T4 = h5(x4, T), T3 = h4(x3, T4), . . . , T0 = h1(x, T1). Define
h(x, T) = T0.

It is straightforward to verify the conditions stated in the theorem by inspecting the statements of Theo-
rem 24 and Lemmas 25 and 27 to 29. We omit the details here.

4.2 A Randomized Approximate Levin-Reduction from Set-Cover to Multi-MCSP

This subsection is devoted to proving Lemma 20. We begin with some preliminaries.

4.2.1 Preliminaries

Let n,m ∈ N be powers of two and m > n. Let T ∈ {0, 1}m. We identify T with a function mapping
logm bits to 1 bit whose truth table is given by T .

We will first define a canonical partition of the domain of T , which we identify with [m], into n parts.
Let P = (P1, . . . , Pn) be the partition of [m] into n parts given by

Pi =
{
j + (i− 1) · m

n
| j = 1, . . . ,

m

n

}
.

Note that such a partition allows us to divide the m-bit string T into n consecutive segments, each of which
is an (m/n)-bit string.

For each i ∈ [n], we define T⟨i⟩ : {0, 1}logm → {0, 1} to be the following function.

T⟨i⟩(x) =

{
T (x) if x ∈ Pi,
0 otherwise.

That is, the truth table of T⟨i⟩ is an m-bit string whose i-th segment is identical to that of T and 0 elsewhere.
We generalize the above to a subset of [n]. For S ⊆ [n], we define T⟨Si⟩ : {0, 1}

logm → {0, 1} to be the
following function.

T⟨S⟩(x) =

{
T (x) if x ∈

⋃
i∈S Pi,

0 otherwise.

That is, the truth table of T⟨S⟩ is an m-bit string whose i-th segment is identical to that of T for every i ∈ S
and 0 elsewhere.

27

Canonical Circuits. For S ⊆ [n], we describe a single “canonical” Boolean circuit for computing T⟨S⟩,
denoted as CKTT⟨S⟩ . More specifically, we construct CKTT⟨S⟩ as follows.

For each i ∈ S, we construct a circuit Ci computing T⟨i⟩ as follows. We first construct a circuit
C ′ that, given x ∈ {0, 1}logm, outputs 1 if and only if x ∈ Pi. Note that C ′ only needs to look
at the most significant log n bits of x and can be constructed using at most O(log n) gates. We
then construct a circuit C ′′ that takes the least significant log(m/n) bits of x and computes a
function f : {0, 1}log(m/n) → {0, 1} whose truth table is given by the i-th segment of T . Note
that by Proposition 5, C ′′ can be constructed using O(m/(n · log(m/n))) gates. We then let

Ci(x) := C ′(x) ∧ C ′′(x).

Note that each Ci has size at most O(m/n+ log n). After we have Ci for every i ∈ S, we let

CKTT⟨S⟩(x) :=
∨
i∈S

Ci(x).

It is easy to see that CKTT⟨S⟩ can be obtained in polynomial-time given the truth table of T⟨S⟩.

4.2.2 Proof of Lemma 20

In this subsection we prove Lemma 20.

Proof of Lemma 20. We give a probabilistic polynomial-time many-one reduction with one-sided error from
an (1 + Ω(1))-approximation of Set-Cover to an additive approximation of Multi-MCSP.

Let λ, δ and q be the constants from Lemma 19. Let a, a′ > 0 be two sufficiently large constants
specified later.

First of all, given a Set-Cover instance z′ := (n′, S1, . . . , St), we can transform it into another instance
z := (n, S1, . . . , St, St+1), where n is the least power of two that is at least n′, and St+1 := [n] \ [n′]. Then
given a set cover for z′ of some size ℓ, we can construct a set cover for z of size ℓ + 1, and vice versa.
Therefore, it suffices to show polynomial-time functions f̂ , ĝ and f̂ such that for every sufficiently large set
cover instance z := (n, S1, . . . , St, St+1) such that n is a power of two, n/(2q) ≤ t ≤ n and |Si| ≤ q for
every i ∈ [t], with probability at least 1− o(1) over the choice of r, for (1nin , 1nout , 1s, tt(F)) := f̂(z; r),

1. if there is a set cover (encoded by a subset S of indexes) for z of size at most (1 − λ) · t + 1, then
ĝ(z, S; r) outputs a circuit of size at most s that computes F , and

2. if there is a circuit C of size at most s + s/(a · log s) that computes F , then ĥ(z, C; r) outputs a set
cover for z of size less than (1− λ+ δ) · t+ 1.

We proceed to show the above.

The reduction f̂ . Given an instance (n,S := (S1, . . . , St+1)) of the Set-Cover problem and a string
r ∈ poly(n), the reduction f̂ proceeds as follows. Let m be the least power of two greater than a′ · n log n.
Note that m ≤ 2a′ · n log n. Also, let T ∈ {0, 1}m be obtained from the first m bits of r. We view T as the
truth table of a function mapping logm bits to 1 bit.

Next, we define a multi-output function G. Let C
(T,S)

be the circuit built as follows.

28

We start by letting C
(T,S)

be the empty circuit. For each S ∈ S, we first construct CKTT⟨S⟩ .
We then iterate through the gates u in CKTT⟨S⟩ in topological order. Let ⋄ ∈ {∧,∨,¬} be
the gate type of u. If u computes a function that is already computed by C

(T,S)
, then ignore it.

Otherwise, add a ⋄ gate to C
(T,S)

that takes as input(s) those gate(s) in C
(T,S)

that compute the
function(s) which are fed as inputs to u in CKTT⟨S⟩ . (Note that we are guaranteed to find such
gates in C

(T,S)
since we are iterating in topological order).

We denote by OS the (ordered) set of newly added gates during the iteration that corresponds
to the set S ∈ S.

We then define
G(x) := x1 • · · · • xlogm

u∈OS1

u(x) . . .
u∈OSt+1

u(x). (7)

That is, on input x ∈ {0, 1}logm, G outputs x together with the value of each gate in C
(T,S)

when evaluating
on x.

Let γ be the number of components of G that are not functions computed by an input wire. That is,

γ := |{Gi : Gi is a component of G and Gi ̸= xj for all j ∈ [logm]}|.
Note that by construction γ is the number of gates in the circuit C

(T,S)
that defines G. Also, we observe the

following upper bound for γ, which will be useful later.

Claim 30. We have γ ≤ O(m) + q · t+ n.

Proof of Claim 30. Recall the definition of a canonical circuit from the previous subsection. Note that by
construction, γ is the number of internal gates in the circuit C

(T,S)
. In constructing C

(T,S)
, we start with

empty circuit, and build the circuits CKTT⟨S1⟩
, · · · ,CKTT⟨St+1⟩

, each of which computes T⟨Sj⟩ and is of
the form

∨
i∈Sj

Ci, where each Ci computes T⟨i⟩. We then add their gates into C
(T,S)

. However, since we
never add two gates that compute the same function, we will never add the gates in Ci more than once for
each i ∈ [n]. Then the total number of gates that need to be added for computing {Ci}i∈[n] is at most

O

(
m

n · log(m/n)
+ log n

)
· n ≤ O(m).

In addition to {Ci}i∈[n], we have gates that are used to compute T⟨Sj⟩, for all j ∈ [t + 1]. For this, we
add at most qt gates for each Sj , where j ≤ t, since |Sj | ≤ q for each such Sj , and at most n gates for St+1,
giving that we need at most qt+n more gates. The total number gates is upper bounded by O(m)+ qt+n,
as desired. ⋄

Finally, let F : {0, 1}logm → {0, 1}1+logm+γ be the function defined as

F (x) := T (x) •G(x).
The reduction then outputs (1logm, 11+logm+γ , 1s, tt(F)) for s := γ + ⌈(1− λ) · t⌉+ 1. Observe that s is
bounded by a polynomial in n, t.

First, we argue that this procedure runs in polynomial time. In particular, we argue that we can compute
the truth table of F and γ efficiently. To show the former, it suffices to show that we can compute the truth
table of G efficiently. This is indeed the case since we can construct the circuit C

(T,S)
in time poly(m, t).

Then to compute the truth table of G, we just need to evaluate C
(T,S)

on every x ∈ {0, 1}logm. Note that
this also implies that we can compute γ efficiently, since by construction γ is the number of gates in C

(T,S)
.

Now, we will argue for the correctness of the reduction.

29

The completeness and the function ĝ. We show the following regarding the completeness of our reduc-
tion.

Claim 31. There is a deterministic polynomial-time function ĝ such that if there is a set cover S for the
instance (n,S) of size at most ℓ := (1 − λ) · t + 1, then ĝ(n,S, S;T) outputs a circuit of size s that
computes F .

Proof of Claim 31. Suppose there is a set cover S1, . . . , Sℓ for (n,S). From such a set cover, we construct
a circuit of size at most s that computes F .

We first compute a circuit forG. In particular, we will construct the circuit C
(T,S)

described above. Note
that C

(T,S)
can be built efficiently in time poly(m, t). Also, it has size γ.

To compute T , note that by construction and the fact that (S1, . . . , Sℓ) covers [n], we have that

T (x) = T⟨S1⟩(x) ∨ · · · ∨ T⟨Sℓ⟩(x).

Since T⟨S1⟩, . . . , T⟨Sℓ⟩ are components ofG, using additional ℓ gates, we can compute T as well. This yields
a circuit of size at most γ + ℓ ≤ s for F , as desired. ⋄

The soundness and the function ĥ. Next, we show the following regarding the soundness of our reduc-
tion.

Claim 32. There is a deterministic polynomial-time function ĥ such that the following holds with probability
1 − o(1) over the choice of T . Given any circuit C of size at most s + s/(a · log s) that computes F ,
ĥ(n,S, C;T) outputs a set cover of size less than (1− λ+ δ) · t+ 1.

Proof of Claim 32. We start with the description of ĥ.
Fix any T , and let C be a circuit computing F using at most s+ s/(a · log s) gates.
We first argue that γ of the gates inC must compute the components ofG that are not functions computed

by an input wire. Suppose we have a circuit that computes G. Then every distinct component of G has a
(necessarily distinct) input wire or gate from C that computes that component. Therefore, since G has γ
distinct components that are not computed by an input wire, C must have at least γ distinct gates computing
components of G.

It follows that there is a circuit D that takes (logm+ γ) input bits and has at most

s+ s/(a · log s)− γ = ⌈(1− λ) · t⌉+ 1 + s/(a · log s) =: α

gates such that
D(x,G1(x), . . . , Gγ(x)) = T (x)

for all x ∈ {0, 1}logm, where G1, . . . , Gγ are the unique components of G. Moreover, since D has only α
gates of fan-in 2, it uses at most α+ 1 of the components of G in the circuit. This follows from the fact that
a tree with α internal nodes has at most α + 1 leaves. Thus, after a possible relabeling of G1, . . . , Gγ , we
can assume D takes at most (logm+ α+ 1) input bits and that

D(x,G1(x), . . . , Gα+1(x)) = T (x). (8)

For each j ∈ [α+ 1], let Sj ∈ S be a set such that Gj is a component that corresponds to a gate in OSj

(recall the definition of G in Equation (7)). Note that D, {Gj} and {Sj} can be computed efficiently in time
poly(m, t) given the inputs of ĥ. Finally, we use S1, . . . , Sα+1 to construct a set cover. Let I := ∪j∈[α+1]Sj .

30

Then we can add n−|I| sets Sα+2, . . . , Sα+n+1−|I| ∈ S, such that S1, . . . , Sα+n+1−|I| is a set cover. Define
ĥ to output S1, . . . , Sα+n+1−|I|.

To show the correctness of ĥ, we first specify the condition for T under which ĥ satisfies the property
stated in the claim. We say that T ∈ {0, 1}m is good if the Kolmogorov complexity of T is at least m− n,
i.e., K(T) ≥ m − n. By a simple counting argument, we have that a uniformly random T is good with
probability at least 1− 2−n.

We next show that if T is good, then for any circuitC of size at most s+s/(a·log s) that computes F and
the resulting set I obtained in the description of ĥ (note that I depends on C), it holds that |I| ≥ n− δt/2.
Observe that this implies that ĥ outputs a set cover of size

α+ n+ 1− |I| = ⌈(1− λ) · t⌉+ 1 + s/(a · log s) + δt/2

≤ (1− λ) · t+ 2 + s/(a · log s) + δt/2.

Since δ, ε and q are fixed constants, using Claim 30, we have

s

a · log s
=
γ + ⌈(1− λ) · t⌉+ 1

a · log s

≤ O(m+ qt+ n)

a · log s

≤ O(a′ · n log n)
a · log s

≤ O(a′ · (qt) log(qt))
a · log t

< δt/2− 1, (9)

where the second last inequality uses that t ≥ n/(2q), and the last inequality holds by letting a be a
sufficiently large constant. Therefore, in this case we can obtain a set cover of size less than (1− λ+ δ)·t+1,
as desired.

We proceed to show that |I| ≥ n − δt/2 if T is good. Fix a good T and (for the sake of contradiction)
consider any circuit C and resulting set I with |I| < n− δt/2. Observe that by Equation (8), to describe T ,
it suffices to have a description for D and the truth tables of G1, . . . , Gα+1.

First of all, the circuit D, which has α gates and (log(m) + α + 1) = O(n + α) input bits, can be
described using O(α log(n+ α)) bits. Using Equation (9), we have

α = ⌈(1− λ) · t⌉+ 1 + s/(a · log s) ≤ O(t). (10)

Therefore, D can be described using O(t log n) bits.
Next, we describe how to obtain the truth tables of G1, . . . , Gα+1 using a short description. We need the

following encodings.

• For each i ∈ I ⊆ [n], we encode (i, Vi) ∈ [n]× {0, 1}m/n, where Vi is the i-th segment of T .

Using that |I| < n− δt/2, the number of bits that is required for all these encodings is at most

(n− δt/2) · (log n+m/n) ≤ m− m

n
· δt
2

+O(n log n)

≤ m− (a′/2) · n log n+O(n log n),

where in the second inequality we use that m ≥ a′ · n log n, t ≥ n/(2q), and a′ is a sufficiently large
constant.

31

• We encode the subsets S1, . . . , Sα+1 ∈ S for which, Gj , where j ∈ [α + 1], is a component that
corresponds to a gate inOSj , which also corresponds to some gate in CKTT⟨Sj⟩

(recall the definition
of G in Equation (7)). Note that each Sj ⊆ I . Then given the encodings of (i, Vi) for all i ∈ I (which
allow us to recover the i-th segment of T for each i ∈ I), we can recover the truth table of T⟨Sj⟩.

Note that all but at most one of the sets in S1, . . . , Sα+1 contain at most q elements. Therefore,
encoding the subsets S1, . . . , Sα+1 ⊆ [n] can be done using at most O(α · q · log n + n · log n) ≤
O(n log n) bits, using that α ≤ O(t) ≤ O(n).

• Let u1, . . . , uα+1 ∈ [O(m)] be such that Gj is the function computed by the uj-th gate of CKTT⟨Sj⟩
.

We then encodes these gate numbers.

Encoding the gate numbers u1, . . . , uα+1 requires at most O(α · logm) = O(t log n) bits, using that
α ≤ O(t) and that m = nO(1).

With the above encodings, we can describe G1, . . . , Gα+1 as follows. Using the encodings of (i, Vi) for all
i ∈ I and the encodings of the subsets S1, . . . , Sα+1, we recover the truth table of T⟨Sj⟩ for each j ∈ [α+1].
Given these, we construct CKTT⟨Sj⟩

for each j ∈ [α+1]. Finally, using the encodings of the gate numbers
u1, . . . , uα+1, we construct the truth table of Gj for each j ∈ [α+ 1].

Finally, note that the total number of bits needed for the above description (for both the circuit D and
G1, . . . , Gα+1) is

≤
(
m− (a′/2) · n log n) +O(n log n)

)
+O(n log n) +O(t log n)

≤ m− (a′/2) · n log n+O(n log n).

For a′ is sufficiently large, the above implies that K(T) < m−n, which gives a contradiction as desired. ⋄

This completes the proof of Lemma 20.

5 Proofs of Theorem 1 and Theorem 2

Here we complete the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1 and Theorem 2. Let b > a, where a > 0 is the constant in Theorem 18. We consider
each implication below.
(2 =⇒ 1). This follows directly from Proposition 12.
(1 =⇒ 2). Assume NP ̸⊆ BPP (resp. NP ̸⊆ ZPP). Towards a contradiction, suppose there exist a constant
c > 0 and an imperfect (resp. perfect) indistinguishability obfuscator for multi-output circuits with output
size σ(λ, s) = s+ s/(b · log s) + λc. By Lemma 14, there exist indistinguishability obfuscators for general
multi-output circuits with the same output size. Then by Theorem 15, there exist i.o.OWFs, and by Theo-
rem 6 there exist i.o.UOWHFs. On the other hand, by combining Theorem 18 and Theorem 16 there is no
i.o.UOWHF. This contradiction completes the proof.

Remark 33 (Overhead on Circuit Size in Theorem 1 and Theorem 2). The proof described above allows
for an additive overhead on circuit size of order s/ log s. Note that, in principle, Set-Cover might be hard
to approximate under Levin reductions for any constant factor C when each set has size OC(1). Moreover,
the proof of Theorem 16 does not impose a constraint on the circuit size overhead. The bottleneck lies
in the proof of Lemma 20, i.e., on the gap between positive and negative instances of the NP-hardness of

32

Multi-MCSP under Levin reductions. The choice of parameters governing this gap are constrained by the
encoding argument presented near the end of the proof, which does not seem to allow an additive gap of the
form Ω(s).

Also, we note that it is possible to slightly improve the additive overhead from Ω(s/ log s) in Theorem 1
and Theorem 2 to Ω(s · log log s/ log s). More specifically, we can first improve the upper bound for the
quantity γ in Claim 30. To do this, we employ a technique in [Juk12, Claim 1.16] to obtain a circuit of size
O(n), rather thanO(n log n), that simultaneously computes, for all i ∈ [n], whether a given x ∈ {0, 1}logm
belongs to Pi. This can be used to construct circuits for computing T⟨Sj⟩ for every j ∈ [m/n] (recall the
definition of a canonical circuit in Section 4.2.1). Then by modifying the construction of C

(T,S)
, we can

obtain a circuit that computes {T⟨Sj⟩}j∈[m/n], whose size can be upper bounded by O
(

n logn
log logn

)
instead of

O(n log n) in Claim 30. This will allow us to get the claimed improvement.

6 Alternative Proof via Pseudorandom Encryption Schemes

In this part we give a more direct proof to a weaker version of Theorems 1 and 2.
We prove the following results.

Theorem 34 (Hardness of Near-Optimal Imperfect iO for Multi-Output Circuits). The following are equiv-
alent.

1. NP ̸⊆ BPP.

2. There exists no imperfect indistinguishability obfuscator for multi-output circuits with output size σ,
for any constant c > 0 and σ(λ, s) = s+ o(s1/2) + λc.

Theorem 35 (Hardness of Near-Optimal Perfect iO for Multi-Output Circuits). The following are equiva-
lent.

1. NP ̸⊆ ZPP.

2. There exists no perfect indistinguishability obfuscator for multi-output circuits with output size σ, for
any constant c > 0 and σ(λ, s) = s+ o(s1/2) + λc.

To prove Theorem 34 and Theorem 35 we use an encryption scheme with pseudorandom ciphers, defined
below. For simplicity we define here security with respect to a randomly chosen messagem, which is weaker
than the standard security definition but enough for our proof.

Definition 36 (Pseudorandom Encryption Schemes). A pair of efficient algorithms (Enc,Dec) is an i.o.-
rate-1 pseudorandom encryption scheme if the following holds:

• Rate-1: For every λ ∈ N, k ∈ {0, 1}λ, and m ∈ {0, 1}∗, |(Enc(m, k))| = |m|.

• Correctness: For every λ ∈ N, and m ∈ {0, 1}∗ Prk←{0,1}λ [Dec(Enc(m, k), k) = m] = 1.

• Security: For every polynomial p, PPT A and constant c, the following holds for infinitely many
λ ∈ N ,∣∣∣ Pr

A, k←{0,1}λ,m←{0,1}p(λ)
[A(m,Enc(m, k)) = 1]− Pr

A, y←{0,1}p(λ),m←{0,1}p(λ)
[A(m, y) = 1]

∣∣∣ ≤ n−c.
33

We say that (Enc,Dec) has local decryption if there exists an algorithm LD of running time poly(|k|, log |m|)
such that for every k ∈ {0, 1}∗, m ∈ {0, 1}∗, and i ∈ [|m|], we have LD(k, |m|, i,Enc(m, k)i) = mi.

Such pseudorandom encryption schemes can be constructed from one-way function. We use the follow-
ing result.

Proposition 37. Assuming i.o.-one-way functions, there exists an i.o.-rate-1 pseudorandom encryption
scheme with local decryption.

Proof Sketch. By [HILL99, GGM86] the existence of i.o.-one-way functions implies i.o.-pseudorandom
functions. Let F = {fk}k∈{0,1}λ be such a family of pseudorandom functions. We let Enc(m, k)i =
fk(i)⊕mi and LD(k, |m|, i, b) = fk(i)⊕ b. It is not difficult to check that the required conditions hold.

Our main result in this part is the following theorem, stating that if there exists a near-optimal obfuscator
then there is no pseudorandom encryption scheme.

Theorem 38. Assume the existence of an (imperfect) obfuscator for general multi-output circuits with output
size σ(λ, s) ≤ s+ s1/2/30 + poly(λ). Then there is no i.o.-pseudorandom encryption scheme.

We prove Theorem 38 below, but first we use it to prove Theorem 34 and Theorem 35.

Proofs of Theorem 34 and Theorem 35. We consider each implication below.
(2 =⇒ 1). This follows directly from Proposition 12.
(1 =⇒ 2). Assume NP ̸⊆ BPP (resp. NP ̸⊆ ZPP). Towards a contradiction, suppose there exist a constant
c > 0 and an imperfect (resp. perfect) indistinguishability obfuscator for multi-output circuits with output
size σ(λ, s) = s+o(s1/2)+λc. By Lemma 14, there exist indistinguishability obfuscators for general multi-
output circuit with the same output size. Then by Theorem 15, there exist i.o.OWFs, and by Proposition 37
there exists an i.o.-pseudorandom encryption scheme. On the other hand, by Theorem 38 there is no i.o.-
pseudorandom encryption scheme. This contradiction completes the proof.

6.1 Proof of Theorem 38

Let σ(λ, s) ≤ s+s1/2/30+λc for some constant c. Let (Enc,Dec) be a rate-1 pseudorandom encryption
scheme with local decryption algorithm LD that can be implemented as a circuit of size (λ+log |m|)α/2 for
some constant α, and assume without loss of generality that α/2 > c. Let ε = 1/4, and let p(λ) = λα/ε. Let
n = nλ be the first power of two larger than p(λ), and let t(λ) = n/(10 log n). In the following we construct
an ensemble of distributions Pλ over pairs (C1, C2) of multi-output circuits and an advice string a ∈ {0, 1}∗
of bounded length, together with an efficient deterministic algorithm A, such that Pr(C1,C2,a)←Pλ

[C1 ≡
C2] = 1 but∣∣∣ Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, C1)) = 1]− Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, C2)) = 1]

∣∣∣ ≥ 1/3

for any obfuscator iO with output size σ and for infinitely many λ ∈ N. By a standard averaging argument
that non-uniformly fixes the required advice bits, this contradicts the security of the assumed iO scheme.

34

The distribution Pλ. We describe below how to sample from Pλ. In the following we fix λ and omit it
from the notation. We also need the following definition of a canonical circuit. For a string T ∈ {0, 1}n,
viewed as the truth table of a Boolean function mapping log n bits to 1 bit, let CKTT denote the circuit
computing T that is constructed using Proposition 5.

1. We define a sequence (T1, . . . , Tt), where each Ti ∈ {0, 1}n, as follows. Sample r ← {0, 1}n,
k1, k2 ← {0, 1}λ, and j1 ̸= j2 ← [t]. For every i ∈ [t] \ {j1, j2}, let Ti ← {0, 1}n be a random
function. Let Tj1 = Enc(r, k1) and Tj2 = Enc(r, k2).

2. Next, we define a multi-output function G. Let C(T1,...,Tt) be the circuit built as follows.

We start by letting C(T1,...,Tt) be the empty circuit. For each i ∈ [t], we first construct
CKTTi . We then iterate through the gates u in CKTTi in topological order. Let ⋄ ∈
{∧,∨,¬} be the gate type of u. If u computes a function that is already computed by
C(T1,...,Tt), then ignore it. Otherwise, add a ⋄ gate to C(T1,...,Tt) that takes as input(s) those
gate(s) in C(T1,...,Tt) that compute the function(s) which are fed as inputs to u in CKTTi .
(Note that we are guaranteed to find such gates in C(T1,...,Tt) since we are iterating in
topological order).
We denote by Oi the (ordered) set of newly added gates during the iteration that corre-
sponds to Ti.

We then define
G(x) := x1 • · · · • xlogn

u∈O1

u(x) . . .
u∈Ot

u(x). (11)

That is, on input x ∈ {0, 1}logn, G outputs x together with the value of each gate in C(T1,...,Tt) when
evaluating on x.

3. Let γ be the number of components of G that are not functions computed by an input wire. That is,

γ := |{Gi : Gi is a component of G and Gi ̸= xj for all j ∈ [log n]}|.

Note that by construction γ is the number of gates in the circuit C(T1,...,Tt) that defines G. Moreover,
by Proposition 5 it holds that

γ ≤ t · 5n/ log n. (12)

4. Finally, let F : {0, 1}logn → {0, 1}1+logn+γ be the function defined as

F (x) := r(x) •G(x),

where we think on r as a truth table of a function r : {0, 1}logn → {0, 1}.

5. We construct two circuits C1, C2 of size γ + nε that compute the function F :

• C1 is the circuit composed by the circuit computing G, together with the local decryption circuit
LD(k1, n, x, Tj1(x)), with k1 hardcoded to it, where Tj1(x) is computed by G(x).

• C2 is defined similarly with respect to k2 and Tj2 .

Note that the size of each circuit is indeed bounded by γ + nε due to our choice of parameters.

6. Let a = (T⃗ , j1), where we use T⃗ to denote (T1, . . . , Tt).

35

The following claim follows directly from the construction.

Claim 39. For every λ ∈ N,
Pr

(C1,C2,a)←Pλ

[C1 ≡ C2] = 1.

Proof. The claim follows by the correctness of the encryption scheme, and since Tj1 = Enc(r, k1) and
Tj2 = Enc(r, k2).

Before describing the distinguisher, we prove the following claim on the size of the output of iO.

Claim 40. We have

size(iO(1λ, C1)) ≤ γ + t/3 and size(iO(1λ, C2)) ≤ γ + t/3.

Proof. We prove the claim for C1. The proof for C2 is symmetric. First notice that by construction and
Equation (12)

size(C1) ≤ γ + nε ≤ t · 5n/ log n+ nε ≤ 6tn/ log n.

Thus, by our assumption on the overhead of the obfuscator,

size(iO(1λ, C1)) ≤ γ + nε + o((tn/ log n)1/2).

Let δ ∈ o(1) be a monotony decreasing function such that δ(n) ≥ 1/ log n and

size(iO(1λ, C1)) ≤ γ + nε +
1

30
·
√

6tn

log n
≤ γ +

n

30 log n
= γ + t/3 (13)

for large enough n.

The distinguisher. Let (C1, C2, a)← Pλ. We next define a distinguisherA that takes as input the security
parameter 1λ, a circuit C : {0, 1}logn → {0, 1}1+logn+γ of size at most γ + t/3 that computes F , and the
advice a. Its goal is to distinguish C ← iO(1λ, C1) from C ← iO(1λ, C2).

Before defining A, we first argue that γ of the gates in C must compute the components of G. Suppose
we have a circuit that computes G. Then every distinct component of G has a (necessarily distinct) input
wire or gate from C that computes that component. Therefore, since G has γ distinct components that are
not computed by an input wire, C must have at least γ distinct gates computing components of G.

It follows that there is a circuit D that takes (log n+ γ) input bits and has at most t/3 gates such that

D(x,G1(x), . . . , Gγ(x)) = r(x)

for all x ∈ {0, 1}logn, where G1, . . . , Gγ are the unique components of G. Moreover, since D has only
t/3 gates of fan-in 2, it uses at most t/3 + 1 of the components of G in the circuit. Thus, after a possible
relabeling of G1, . . . , Gγ , we can assume D takes at most (log n+ t/3 + 1) input bits and that

D(x,G1(x), . . . , Gt/3+1(x)) = r(x). (14)

For each j ∈ [t/3 + 1], let ij ∈ [t] be the first index such that Gj is a component that corresponds to a
gate in Oij (recall the definition of G in Equation (7)). Note that these values can be efficiently computed
given the input of A. The distinguisher A outputs 1 if j1 is among those indices, and 0 otherwise.

We prove the following lemma.

36

Lemma 41. Assume that iO is an obfuscator for general multi-output circuits with output size σ(λ, s). Then
for infinitely many λ ∈ N,∣∣∣ Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, C1)) = 1]− Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, C2)) = 1]

∣∣∣ ≥ 1/3.

We prove Lemma 41 below, but first let us conclude the proof of the main theorem.

Proof of Theorem 38. The proof follows by combining Claim 39 and Lemma 41, which together contradict
the security of iO.

To prove Lemma 41, we define two new distributions P̂λ,1 and P̂λ,2:

• P̂λ,1 outputs a pair (Ĉ1, a) and is defined similarly to Pλ, where when constructing Ĉ1 we follow the
construction of C1 in Pλ, but changing the first step as follows: replacing Tj2 with a random function
(instead of Enc(r, k2)). The advice string a is set to (T⃗ , j1), where the j2-entry of T⃗ now contains this
random function.

• P̂λ,2 outputs a pair (Ĉ2, a) and is also defined similarly to Pλ, but when constructing Ĉ2 we follow
the construction of C2 but replacing Tj1 with a random function. The rest of the construction is left
the same, and the advice string a is set to (T⃗ , j1), where the j1-entry of T⃗ now contains this random
function.

We remark that in P̂λ,2 the distribution of j1 is independent from the circuit Ĉ2 and can be chosen
(uniformly from [n] \ {j2}) after Ĉ2 is constructed. Additionally, note that C1 and Ĉ1 (similarly, C2 and
Ĉ2) are not functionally equivalent, and might not produce the same number of output bits. Yet, we prove
the following claim for the algorithm A fixed above.

Claim 42. Assume that (Enc,Dec) is an i.o.-pseudorandom encryption scheme. Then for every general
multi-output obfuscator iO and for every constant c, the following hold for infinitely many λ ∈ N,∣∣∣ Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, C1)) = 1]− Pr

(Ĉ1,a)←P̂λ,1, iO
[A(1λ, a, iO(1λ, Ĉ1)) = 1]

∣∣∣ ≤ λ−c,
and, ∣∣∣ Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, C2)) = 1]− Pr

(Ĉ2,a)←P̂λ,2, iO
[A(1λ, a, iO(1λ, Ĉ2)) = 1]

∣∣∣ ≤ λ−c.
Proof. Fix a general multi-output obfuscator iO, and assume towards a contradiction that the claim does not
hold. That is, there exists a polynomial g such that for every large enough λ ∈ N, the following holds for at
least one value of b ∈ {1, 2}.∣∣∣ Pr

(C1,C2,a)←Pλ, iO
[A(1λ, a, iO(1λ, Cb)) = 1]− Pr

(Ĉb,a)←P̂λ,b, iO
[A(1λ, a, iO(1λ, Ĉb)) = 1]

∣∣∣ ≥ 1/g(λ). (15)

For every large enough λ ∈ N, let bλ be a value of b ∈ {1, 2} such that∣∣∣ Pr
(C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, Cb)) = 1]− Pr
(Ĉb,a)←P̂λ,b, iO

[A(1λ, a, iO(1λ, Ĉb)) = 1]
∣∣∣ ≥ 1/2g(λ). (16)

37

(Fix bλ = 1 if the above holds for both b = 1 and b = 2.) Note that by sampling a polynomial number of
samples from the distributions Pλ ,P̂λ,1, and P̂λ,2, we can find a value of bλ as above with probability at
least 1 − 1/6g(λ). Consider the following algorithm that breaks the security of the encryption scheme on
every large enough security parameter λ.

Input: 1λ, m ∈ {0, 1}n, w ∈ {0, 1}n;
// The goal is to distinguish between w = Enc(m,K) and w ← {0, 1}n.

1 Estimate bλ. Let b ∈ {1, 2} be the estimation;
2 Sample j1 ̸= j2 ← [t], kb ← {0, 1}λ, T1, . . . , Tt ← {0, 1}n;
3 Set Tjb = Enc(m, kb) and Tjflip(b) = w, where flip(b) ∈ {1, 2} gets the opposite value of b ∈ {1, 2};
4 Follow Steps 2-5 in the description of Pλ to construct the circuit Cb using strings T1, . . . , Tt, index

jb, and the string m for the role of r. Let C be the resulting circuit;

5 return A(1λ, a, iO(1λ, C)), where a = (T⃗ , j1);

Algorithm 2: Description of the reduction.

The proof now follows by the simple observation that C is distributed as Cb when w = Enc(m,K),
and distributed as Ĉb when w is a random string. Thus, when b = bλ, Algorithm 2 distinguishes between a
random string and an encryption ofm with advantage 1/2g(λ). Since Algorithm 2 guesses the correct value
of bλ with probability at least 1− 1/6g(λ), we get that Algorithm 2 distinguishes between a random string
and an encryption of m with advantage 1/6g(λ).

Given the above claim, it is enough to show that A distinguishes between iO(Ĉ1) and iO(Ĉ2). Towards
this, for an advice string a = (T⃗ , j1), let γ(a) be the value computed in the definition of Pλ, when using
T⃗ as the values of T1, . . . , Tt in the construction of G. It follows that for (C1, C2, a) ← Pλ, γ(a) is the
value of γ used in the description of the distribution Pλ. Similarly to Claim 40, it is not hard to see that the
following claim holds.

Claim 43. We have
Pr

(Ĉ1,a)←P̂λ,1,iO
[size(iO(1λ, Ĉ1)) ≤ γ(a) + t/3] = 1

and
Pr

(Ĉ2,a)←P̂λ,2,iO
[size(iO(1λ, Ĉ2)) ≤ γ(a) + t/3] = 1.

The next claim states that A outputs 1 with high probability on iO(Ĉ1).

Claim 44. For every λ ∈ N,

Pr
(Ĉ1,a)←P̂λ,1, iO

[A(1λ, a, iO(1λ, Ĉ1)) = 1] ≥ 1− negl(n).

Proof. We first describe the randomness used by the construction of Ĉ1. The construction samples j1 ∈ [t]
and M ∈ {0, 1}n×t, where M1, . . . ,Mt−1 ∈ {0, 1}n are used to determine T1, . . . , Tj1−1, Tj1+1, . . . , Tn,
and Mt is used to determine r. Then the construction samples k1 and let Tj1 = Enc(r, k1).

In the following, fix the value of j1 ∈ [t] and M ∈ {0, 1}n×t, and assume that for some k1, and Tj1 =

Enc(r, k1), it holds that with some positive probability over the randomness of iO, A(1λ, a, iO(1λ, Ĉ1))

38

outputs 0 and iO(1λ, Ĉ1) is functionally equivalent to Ĉ1. Then we claim that (j1,M) can be compressed
to length nt− n/100, which implies that the claim holds.

By the assumption above and Claim 43, there exists a circuit C of size at most γ(a) + t/3 which is
equivalent to Ĉ1, and such that A(1λ, a, C) = 0. We next describe how to use such C to compress (j1,M).
By the definition of the distinguisher A, there is a circuit D of size t/3 such that

D(x,G1(x), . . . , Gt/3+1(x)) = r(x),

where G1(x), . . . , Gt/3+1(x) are components computed by the circuits

CKTT1 , . . . ,CKTTj1−1 ,CKTTj1+1 , . . . ,CKTTn

(and importantly can be computed without knowing the value of Tj1). The compressed description is as
follows:

• Describe j1,M1, . . . ,Mt−1 (using ⌈log t⌉ + n(t − 1) bits). These values determine the values of
T1, . . . , Tj1−1, Tj1+1, . . . , Tn and thus the values of CKTT1 , . . . ,CKTTj1−1 ,CKTTj1+1 , . . . ,CKTTn .

• Describe the circuit D and the components G1(x), . . . , Gt/3+1(x). Each component can be described
using log(O(t · n log n)) = log t+ log n+ log log n+O(1) bits, and the circuit D can be described
using t log t bits (here we use the fact that a circuit of size s can be described using 3s log s bits).

The correctness follows since the output of D is equal to r and thus to Mt. The overall compression size
is of length

⌈log t⌉+ n(t− 1) + (t/3 + 1) · (log t+ log n+ log log n+O(1)) + t log t ≤ nt− n/3, (17)

as long as t ≤ n/(10 log n).

Finally, it is not hard to see that A outputs 1 with low probability given iO(Ĉ2).

Claim 45. For every λ ∈ N,

Pr
(Ĉ2,a)←P̂λ,2, iO

[A(1λ, a, iO(1λ, Ĉ2)) = 1] ≤ 1/2.

Proof. The proof follows since the corresponding circuit D described in the specification of A touches at
most t/3 + 1 components of G and by symmetry.

Proof of Lemma 41. We are now ready to prove Lemma 41.

Proof of Lemma 41. The proof follows by Claim 42, Claim 44, Claim 45, and the triangular inequality.

Remark 46 (Overhead on Circuit Size in Theorem 38). The proof described above allows for an additive
overhead on circuit size of order o(s1/2). The choice of parameters leading to this overhead are constrained
by Equation (13) and Equation (17). While the size overhead can be made larger by picking t ≫ n in
Equation (13), we must use t≪ n in Equation (17). This leads to a choice of t = Θ̃(n).

39

7 Lower Bounds on Obfuscation for Other Computational Models

7.1 Obfuscation of Circuits with Database Access

In this part we prove a lower bound on the size overhead for circuits with database access. While we
assume database access, the circuits considered in this section produce a single output bit.

Goldwasser and Rothblum [GR07] showed that obfuscation is impossible when the program has (oracle)
access to a random database. Their proof relies on the fact that the database is too long for the obfuscator
to read. We show here that obfuscation is impossible even if the obfuscator can run in polynomial time in
the size of the database, as long as the size overhead is polynomial only in the security parameter and the
program size.

We start with the definition of obfuscation for single-output circuits with database access. In the follow-
ing, given a string z ∈ {0, 1}∗, a circuit C : {0, 1}ℓ → {0, 1} with oracle access to a database z, denoted by
Cz , is a circuit with oracle gates to the function for which z is its truth table. The size of C is defined as its
total number of AND, OR, NOT, and ORACLE gates. We note that this definition is very similar to that used
by [GR07]; the key (and important) difference is that we allow the obfuscator to run in time polynomial in
the length of the database/oracle z (whereas in their notion, the running time was independent of z, and thus
z could be exponentially long).

Definition 47 (Indistinguishability Obfuscation for Database-Aided Circuits). A probabilistic polynomial-
time algorithm iO is an indistinguishability obfuscator for database-aided circuits with output size σ : N ×
N→ N if the following hold.

• Perfect/Imperfect Functionality: There exists a negligible function α such that for all λ, ℓ ∈ N, any
z ∈ {0, 1}∗ and any database-aided circuit C : {0, 1}ℓ → {0, 1},

Pr
iO

[
Ĉz ≡ Cz : Ĉ ← iO(1λ, C, z)

]
≥ 1− α(λ).

We say that iO is perfect if α(·) = 0; otherwise it is imperfect.

• Indistinguishability: For any polynomial-size circuit family {Aλ}λ and polynomial p, there exists a
negligible function µ such that for all λ, ℓ ∈ N and z ∈ {0, 1}∗ with ℓ, |z| ≤ p(λ) and any pair of
circuits C,C ′ : {0, 1}ℓ → {0, 1} satisfying Cz ≡ C ′z and size(Cz) = size(C ′z) ≤ p(λ), it holds that∣∣∣∣Pr

iO
[Aλ(iO(1λ, C, z)) = 1]−Pr

iO
[Aλ(iO(1λ, C ′, z)) = 1]

∣∣∣∣ ≤ µ(λ).
• σ-Output-Size: For all λ, ℓ ∈ N, z ∈ {0, 1}∗ and every circuit C : {0, 1}ℓ → {0, 1},

Pr
iO

[
size(iO(1λ, C, z)) ≤ σ(λ, size(C))

]
= 1.

We prove the following theorem.

Theorem 48. Assume the existence of an (imperfect) obfuscator for database-aided circuits with output size
σ(λ, s) ∈ poly. Then there is no i.o.-Pseudorandom encryption.

40

Since obfuscation for database-aided circuits is stronger than standard obfuscation, its existence together
with NP ̸⊆ ZPP implies the existence of one-way functions. On the other hand, by a similar argument
to the proof of Proposition 12, if NP ⊆ ZPP (resp. NP ⊆ BPP), there exist perfect (resp. imperfect)
obfuscations for database-aided circuits. We get the following theorems by an argument similar to the
proofs of Theorem 34 and Theorem 35.

Theorem 49. The following are equivalent.

1. NP ̸⊆ ZPP.

2. There exists no perfect indistinguishability obfuscator for database-aided circuits with output size σ,
for any σ ∈ poly.

Theorem 50. The following are equivalent.

1. NP ̸⊆ BPP.

2. There exists no imperfect indistinguishability obfuscator for database-aided circuits with output size
σ, for any σ ∈ poly.

The proof of Theorem 48 follows the same lines of the proof of Theorem 38. Assume towards a con-
tradiction that there exists an indistinguishability obfuscator iO for database-aided circuits with output size
σ ∈ poly, and let (Enc,Dec) be a rate-1 pseudorandom encryption scheme with local decryption algo-
rithm LD that can be implemented as a circuit of size (λ + log |m|)α for some constant α > 1. Let
p(λ) = (σ(λ, 10λα))2 be a polynomial, and let n = nλ = p(λ), and t(λ) = n. We construct a distribu-
tion Pλ over the database z, a pair (C1, C2) of database-aided circuits, and advice string a, such that Cz

1

computes the same function as Cz
2 but iO(C1, z) is distinguishable from iO(C1, z).

The distribution Pλ. We describe below how to sample from Pλ. In the following we fix λ and omit it
from the notation.

1. Sample r ← {0, 1}n, k1, k2 ← {0, 1}λ and j1 ̸= j2 ← [t]. For every i ∈ [t] \ {j1, j2}, let Ti ←
{0, 1}n be a random function. Let Tj1 = Enc(r, k1) and Tj2 = Enc(r, k2). Let z = T1|| . . . ||Tt. We
construct two circuits C1, C2 of size at most 10λα such that each of Cz

1 , C
z
2 computes the function r:

C1 is the circuit with the values for k1 and j1 hardcoded to it, that given an input x (seen as a number
in [n]) computes LD(k1, n, x, Tj1(x)), where Tj1(x) = z(n · (j1 − 1) + x).

C2 is defined similarly with respect to k2 and Tj2 .

2. Let a = (j1, z).

The following claim follows directly by the construction.

Claim 51. For every λ ∈ N,
Pr

(z,C1,C2,a)←Pλ

[Cz
1 ≡ Cz

2] = 1.

Proof. The claim follows by the correctness of the encryption scheme, and since Tj1 = Enc(r, k1) and
Tj2 = Enc(r, k2).

41

The distinguisher. We define a (randomized) distinguisher A that takes as input the security parameter
1λ, a circuit C that computes r, and the advice a: The distinguisher A executes C on 100 random inputs. If
C queries z on the j1-th block in at least one of these inputs, A outputs 1. Otherwise, A outputs 0.

We prove the following lemma.

Lemma 52. Assume that iO is an obfuscator for database-aided circuits with overhead σ ∈ poly. Then for
infinitely many λ ∈ N,∣∣∣ Pr
(z,C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, C1, z)) = 1]− Pr
(z,C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, C2, z)) = 1]
∣∣∣ ≥ 1/3.

We prove Lemma 52 below, but first let us conclude the proof of the main theorem.

Proof of Theorem 48. The proof follows by combining Claim 51 and Lemma 52, which together contradict
the security of iO.

To prove Lemma 52, we define two new distributions P̂λ,1 and P̂λ,2:

• P̂λ,1 outputs a triplet (ẑ1, C1, a) and is defined similarly to Pλ, where when constructing ẑ1 we follow
the construction of z in Pλ, but replacing Tj2 with a random function (instead of Enc(r, k2)). The
advice string a is set to (j1, ẑ1), where the j2-block of ẑ1 now contains this random function. The
circuit C1 is defined in the same way as in Pλ.

• P̂λ,2 outputs a triplet (ẑ2, C2, a) and is also defined similarly to Pλ, but when constructing ẑ2 we
follow the construction of z but replacing Tj1 with a random function. The rest of the construction
is left the same, and the advice string a is set to (j1, ẑ2), where the j1-block of ẑ2 now contains this
random function. The circuit C2 is defined in the same way as in Pλ.

Importantly, due to our choice of parameters, it holds that

size(iO(1λ, C1, ẑ1)) ≤
√
n and size(iO(1λ, C2, ẑ2)) ≤

√
n.

The proof of the next claim is identical to the proof of Claim 42.

Claim 53. Assume that (Enc,Dec) is an i.o.-pseudorandom encryption scheme. Then for every obfuscator
iO for database-aided circuits, and for every constant c, the following hold for infinitely many λ ∈ N,∣∣∣ Pr
(z,C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, C1, z)) = 1]− Pr
(ẑ1,C1,a)←P̂λ,1, iO

[A(1λ, a, iO(1λ, C1, ẑ1)) = 1]
∣∣∣ ≤ λ−c,

and,∣∣∣ Pr
(z,C1,C2,a)←Pλ, iO

[A(1λ, a, iO(1λ, C2, z)) = 1]− Pr
(ẑ2,C2,a)←P̂λ,2, iO

[A(1λ, a, iO(1λ, C2, ẑ2)) = 1]
∣∣∣ ≤ λ−c.

We prove the following claim.

Claim 54. For every λ ∈ N,

Pr
(ẑ1,C1,a)←P̂λ, iO

[A(1λ, a, iO(1λ, C1, ẑ1)) = 1] ≥ 0.99.

42

Proof. Fix the (partial) randomness used by the construction of ẑ1. That is, fix j1 ∈ [t] and M ∈ {0, 1}n×t,
where M1, . . . ,Mt−1 ∈ {0, 1}n are used to determine the values of T1, . . . , Tj1−1, Tj1+1, . . . , Tn, and Mt

is used to determine the value of r. Assume that for some k1, and Tj1 = Enc(r, k1), it holds that with some
positive probability over the randomness of iO, A(1λ, a, iO(1λ, C1, ẑ1)) outputs 0 with probability 0.01.
Then we claim that (j1,M) can be compressed to length nt− n/100, which implies that the claim holds.

Indeed, let Ĉ be the output of iO(1λ, C1, ẑ1), and observe that size(Ĉ) ≤ σ(λ, 10λα) ≤
√
n. If A(Ĉ)

outputs 0 with probability 0.01, it follows that for on least 1/2 of the possible inputs x, Ĉz does not query
Tj1 . We thus can describeM by describing j1,M1, . . . ,Mt−1, Ĉ, and every entry in Ĉ for which Ĉz queries
Tj1 (note that we do not need to describe the indices themselves, as this can be checked using everything we
described so far). To decode the rest of the values we can simply execute Ĉz . The length of the encoding is

(t− 1)n+ log n+ size(Ĉ) + λ+ n/2,

which by our choice of parameters is bounded by tn− n/100.

Claim 55. For every λ ∈ N,

Pr
(ẑ2,C2,a)←P̂λ,2, iO

[A(1λ, a, iO(1λ, C2, ẑ2)) = 1] ≤ 1/2.

Proof. The proof follows since by the definition of A, A executes iO(1λ, C2, ẑ2) 100 times on random
inputs. Since size(iO(1λ, C2, ẑ2)) ≤

√
n, A makes at most 100 ·

√
n queries to ẑ2. It follows that A touches

at most 100 ·
√
n ≤ n/100 blocks of z, and thus the claim follows by symmetry.

Proof of Lemma 52. We are now ready to prove Lemma 52.

Proof of Lemma 52. The proof follows by Claim 53, Claim 54, Claim 55, and the triangular inequality.

7.2 Randomized Encoding for TMs with Database Access

We next define randomized encoding for Turing machines with (oracle) access to a database. In the
following we do not allow the overhead to depend on the length of the database nor on the running time of
M(x).

For simplicity we only define randomized encoding with perfect functionality.

Definition 56 (Randomized encoding for database-aided TM). A pair (RE.Enc,RE.Dec) of efficient ran-
domized algorithms is a randomized encoding for database-aided TMs with output size σ : N×N×N×N→
N if the following holds. Let M be a TM and x ∈ {0, 1}∗ be an input, z ∈ {0, 1}∗ an database, λ ∈ N be a
security parameter and let T ∈ N be a bound on the running time of M(x). Then

• Perfect Functionality: Pr[RE.Decz(RE.Enc(1λ,M, x, T, z)) =M z(x)] = 1.

• Efficiency: RE.Enc(1λ,M, x, T, z) runs in time poly(λ, |M |, |x|, |z|) and RE.Decz(M̂(x)) runs in
time poly(λ, |M |, |x|, t) for M̂(x)← RE.Enc(1λ,M, x, T, z) and where t ≤ T is the running time of
M z(x).

43

• Indistinguishability: For any polynomial-size circuit family {Aλ}λ and polynomial p, there exists a
negligible function µ such that for all TM M and two inputs x0, x1 such that M z(x0) = M z(x1),
|M | ≤ p(λ), |x0| ≤ p(λ), |x1| ≤ p(λ) and the running time of M z on x0 at most p(λ) and is the
same as the running time of M z on x1, the following holds:

|Pr[A(z,RE.Enc(1λ,M, x0, T, z)) = 1]−Pr[A(z,RE.Enc(1λ,M, x1, T, z)) = 1]| = µ(λ).

• σ-Output-Size: For all λ, ℓ ∈ N, z ∈ {0, 1}∗, TM M and input x, |RE.Enc(1λ,M, x, T, z)| ≤
σ(λ, |M |, |x|, log T).

Importantly, note that the running time of RE.Decz(M̂(x)) should not be dependent on the length of z.
In contrast to iO, we do not know if the existence of randomized encoding for TM implies OWFs. We prove
the following theorem.

Theorem 57. Assume the existence of one-way functions. Then there exists no perfect randomized encoding
for database-aided TMs with output size σ, for any σ ∈ poly.

The proof of Theorem 57 follows the same lines of the proofs of Theorem 48 and Theorem 38. Below
we describe the distribution Pλ and the distinguisher and omit the rest of the proof. Assume towards a
contradiction that there exists randomized encoding RE for database-aided TMs with output size σ ∈ poly,
and let τ ∈ poly be the polynomial that bounds the running time of RE.Dec. Let (Enc,Dec) be a rate-1
pseudorandom encryption scheme with local decryption algorithm LD that can be implemented as a circuit
of size (λ + log |m|)α for some constant α. Let p(λ) = (σ(λ, λ, 2λ, (2λ)α))2 be a polynomial, and let
n = nλ = p(λ). Let t = tλ = 100 · τ(λ, λ, 2λ, n · (2λ)α). We construct a distribution Pλ over database z,
TM M , pair of inputs (x1, x2) and an advice a, such that M z(x1) = M z(x2) but RE.Enc(1λ,M, x1, T, z)
is distinguishable from RE.Enc(1λ,M, x2, T, z).

The distribution Pλ. We describe below how to sample from Pλ. In the following we fix λ and omit it
from the notation.

1. Sample r ← {0, 1}n, k1, k2 ← {0, 1}λ and j1 ̸= j2 ← [t]. For every i ∈ [t] \ {j1, j2}, let Ti ←
{0, 1}n be a random function. Let Tj1 = Enc(r, k1) and Tj2 = Enc(r, k2). Let z = T1|| . . . ||Tt.

2. Let M be the program that given an index j and key k, reads the j-th block of z and outputs
Dec(Tj , k). Let x1 = (j1, k1) and x2 = (j2, k2). By construction M z(x1) =M z(x2) = r.

3. Let a = (j1, z).

The following claim follows directly by the construction.

Claim 58. For every λ ∈ N,

Pr
(z,M,x1,x2,a)←Pλ

[M z(x1) =M z(x2)] = 1.

44

The distinguisher. We define a distinguisher A that takes as input the security parameter 1λ, a program
M̂(x) such that |M̂(x)| ≪ r and RE.Decz(M̂(x)) = r and the index j1: The distinguisher A executes
RE.Decz(M̂(x)). If RE.Dec queries z on the j1 block, A outputs 1. Otherwise, A outputs 0.

Observe that by the bound on the running time of RE.Decz(M̂(x)), RE.Decz(M̂(x)) queries at most
t/100 blocks out of the t blocks of z. Using this observation, the proof of the next lemma follows similarly
to the proof of Lemma 41.

Lemma 59. Assume that RE is a perfect randomized encoding for database-aided TMs with output size σ.
Then for infinitely many λ ∈ N,∣∣∣ Pr

(z,M,x1,x2,a)←Pλ

[A(1λ, z, a,RE.Enc(1λ,M, x1, T, z)) = 1]

− Pr
(z,M,x1,x2,a)←Pλ

[A(1λ, z, a,RE.Enc(1λ,M, x2, T, z)) = 1]
∣∣∣ ≥ 1/3.

We now conclude the proof of the main theorem.

Proof of Theorem 57. The proof follows by combining Claim 58 and Lemma 59, which together contradict
the security of RE.

References

[ACM+21] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. In Conference on Foundations of
Software Technology and Theoretical Computer Science, (FSTTCS), pages 7:1–7:19, 2021. 11

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: new methods for
bootstrapping and instantiation. In International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), pages 191–225, 2019. 3

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguisha-
bility obfuscation without multilinear maps: new paradigms via low degree weak pseudoran-
domness and security amplification. In International Cryptology Conference (CRYPTO), pages
284–332. Springer, 2019. 3

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation for tur-
ing machines: Constant overhead and amortization. In International Cryptology Conference
(CRYPTO), pages 252–279, 2017. 3, 12

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation without
multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, 2018. 3

[APM20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: attacks
and fixes for noisy linear FE. In International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 110–140, 2020. 3

45

[BCC+14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai, Omer Paneth,
and Alon Rosen. The impossibility of obfuscation with auxiliary input or a universal simulator.
In Annual Cryptology Conference (CRYPTO), pages 71–89, 2014. 11

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Theory of
cryptography conference, pages 52–73. Springer, 2014. 3

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Theory of Cryptography
Conference, pages 407–437. Springer, 2019. 3

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are
not necessary for IO: circular-secure LWE suffices. In International Colloquium on Automata,
Languages, and Programming (ICALP), volume 229, pages 28:1–28:20, 2022. 3

[BDGM23] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io from homo-
morphic encryption schemes. Journal of Cryptology, 36(3):27, 2023. 3

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.
3, 11, 15

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized
encodings and their applications. In Symposium on Theory of Computing (STOC), pages 439–
448, 2015. 3

[BIJ+20] James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark Zhandry. Affine
determinant programs: A framework for obfuscation and witness encryption. In Innovations in
Theoretical Computer Science Conference (ITCS), pages 82:1–82:39, 2020. 3

[BIM+23] Elette Boyle, Yuval Ishai, Pierre Meyer, Robert Robere, and Gal Yehuda. On low-end obfusca-
tion and learning. In Innovations in Theoretical Computer Science Conference (ITCS), pages
23:1–23:28, 2023. 11

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Theory of Cryptography Conference (TCC), pages 401–
427, 2015. 3

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a Nash
equilibrium. In Symposium on Foundations of Computer Science (FOCS), pages 1480–1498,
2015. 3

[BPW15] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos: Trapdoor
permutations from indistinguishability obfuscation. In Theory of Cryptography Conference
(TCC), pages 474–502. Springer, 2015. 3

[Bus97] Samuel R. Buss. Bounded arithmetic and propositional proof complexity. In Logic of Compu-
tation, pages 67–121. Springer Berlin Heidelberg, 1997. 22

46

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In Symposium on Foundations of Computer Science (FOCS), pages 171–190, 2015.
3

[BZ17] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. Algorithmica, 79:1233–1285, 2017. 3

[CCMR24] Ran Canetti, Claudio Chamon, Eduardo R. Mucciolo, and Andrei E. Ruckenstein. Towards
general-purpose program obfuscation via local mixing. IACR Cryptol. ePrint Arch., page 6,
2024. 3

[CHJV14] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguishability
obfuscation of iterated circuits and RAM programs. Cryptology ePrint Archive, 2014. 3

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. SIAM J. Comput., 47(6):2157–2202, 2018. 3

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random oracles. In
Theory of Cryptography Conference (TCC), pages 456–467, 2015. 11

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In International Cryptology Conference (CRYPTO), pages
287–307, 2015. 3

[Fei98] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998. 8

[For17] Lance Fortnow. NP in ZPP implies PH in ZPP, 2017. Post available at (accessed on 20/6/2024):
https://blog.computationalcomplexity.org/2017/03/
np-in-zpp-implies-ph-in-zpp.html. 15

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In Sym-
posium on Foundations of Computer Science (FOCS), pages 40–49, 2013. 3

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc
from indistinguishability obfuscation. In Theory of Cryptography Conference, pages 74–94.
Springer, 2014. 3

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986. 9, 34

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor products. Cryp-
tology ePrint Archive, Paper 2018/756, 2018. 3

[GJLS21] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
simple-to-state hard problems: New assumptions, new techniques, and simplification. In In-
ternational Conference on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 97–126, 2021. 3

47

https://blog.computationalcomplexity.org/2017/03/np-in-zpp-implies-ph-in-zpp.html
https://blog.computationalcomplexity.org/2017/03/np-in-zpp-implies-ph-in-zpp.html

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In Symposium on Foundations of Computer Science (FOCS), pages 553–562, 2005. 11

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability ob-
fuscation from the multilinear subgroup elimination assumption. In Symposium on Foundations
of Computer Science (FOCS), pages 151–170, 2015. 3

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004. 3

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Sym-
posium on Theory of Computing (STOC), pages 736–749, 2021. 3

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Theory of Cryptog-
raphy Conference (TCC), pages 194–213, 2007. 1, 5, 6, 11, 40

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT), pages 443–
457, 2000. 11

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
9, 34

[Hir22] Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In Symposium on
Foundations of Computer Science (FOCS), pages 968–979, 2022. 7

[HIR23] Yizhi Huang, Rahul Ilango, and Hanlin Ren. NP-hardness of approximating meta-complexity:
A cryptographic approach. In Symposium on Theory of Computing (STOC), pages 1067–1075,
2023. 12

[Ila20] Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and AC0[p]. In Innovations in Theoretical Computer Science Conference (ITCS), pages 34:1–
34:26, 2020. 11

[ILO20] Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-hardness of circuit minimization for multi-
output functions. In Computational Complexity Conference (CCC), pages 22:1–22:36, 2020.
1, 7, 8, 9, 10

[ILW23] Rahul Ilango, Jiatu Li, and Ryan Williams. Indistinguishability obfuscation, range avoidance,
and bounded arithmetic. In Symposium on Theory of Computing (STOC), pages 1076–1089,
2023. 12

[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical proofs
of equivalence. In Symposium on Foundations of Computer Science (FOCS), pages 1023–1034,
2022. 12

[JLL23] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and efficiency of functional
encryption and attribute-based encryption. In International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), pages 479–510, 2023. 3

48

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-
degree expanding polynomials over R to build iO. In International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages 251–281, 2019. 3

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Symposium on Theory of Computing (STOC), pages 60–73, 2021. 3

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over
Fp, DLIN, and PRGs in NC0. In International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 670–699, 2022. 3

[JLS24] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. Commun. ACM, 67(3):97–105, 2024. 3

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer,
2012. 13, 33

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation
for turing machines with unbounded memory. In Symposium on Theory of Computing (STOC),
pages 419–428, 2015. 3

[KMN+22] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-
way functions and (im)perfect obfuscation. SIAM J. Comput., 51(6):1769–1795, 2022. 8, 17

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. Journal of Cryptology,
30(2):444–469, 2017. 3

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
International Conference on the Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT), pages 28–57, 2016. 3

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs.
In International Cryptology Conference (CRYPTO), pages 599–629, 2017. 3

[LP22] Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. In Computa-
tional Complexity Conference (CCC), pages 36:1–36:24, 2022. 11

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation with
non-trivial efficiency. In International Conference on Practice and Theory in Public-Key Cryp-
tography (PKC), pages 447–462, 2016. 4, 11

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-
wise local prgs. In International Cryptology Conference (CRYPTO), pages 630–660. Springer,
2017. 3

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In Symposium on Foundations of Computer
Science (FOCS), pages 11–20, 2016. 3

49

[MMN15] Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. More on impossibility
of virtual black-box obfuscation in idealized models. IACR Cryptol. ePrint Arch., 2015:632,
2015. 11

[MP24] Noam Mazor and Rafael Pass. Gap MCSP is not (Levin) NP-complete in Obfustopia. In
Computational Complexity Conference (CCC), 2024. 1, 6, 7, 12, 17, 18

[Pic15] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in
bounded arithmetic. Logical Methods in Computer Science, 11, 2015. 8, 22, 23

[PS15] Rafael Pass and Abhi Shelat. Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In Theory of Cryptography Conference (TCC), pages 3–17, 2015. 11

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In International Cryptology Conference
(CRYPTO), pages 500–517, 2014. 3

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. 8, 24

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Sympo-
sium on Theory of Computing (STOC), pages 387–394, 1990. 8, 13

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Symposium on Foundations of Computer
Science (FOCS), pages 3–13, 2000. 24

[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. SIAM J. Comput., 50(3):857–908, 2021. 3

50

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

