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Abstract

We present a polynomial-time pseudo-deterministic algorithm for constructing irreducible
polynomial of degree d over finite field Fq. A pseudo-deterministic algorithm is allowed to use
randomness, but with high probability it must output a canonical irreducible polynomial. Our
construction runs in time Õ(d4 log4 q).

Our construction extends Shoup’s deterministic algorithm (FOCS 1988) for the same prob-

lem, which runs in time Õ(d4p
1
2 log4 q) (where p is the characteristic of the field Fq). Shoup

had shown a reduction from constructing irreducible polynomials to factoring polynomials over
finite fields. We show that by using a fast randomized factoring algorithm, the above reduction
yields an efficient pseudo-deterministic algorithm for constructing irreducible polynomials over
finite fields.

1 Introduction

A polynomial f(X) over a finite field Fq (q is a prime power) is said to be irreducible if it doesn’t
factor as f(X) = g(X)h(X) for some non-trivial polynomials g(X) and h(X). Irreducible polyno-
mials over finite fields are algebraic analogues of primes numbers over integers. It is natural to ask
if one can construct an irreducible polynomial of degree d over Fq efficiently. Constructing these
irreducible polynomials are important since they yield explicit construction of finite fields of non-
prime order. Working over such non-prime finite fields is crucial in coding theory, cryptography,
pseudo-randomness and derandomization. Any algorithm that constructs irreducible polynomials
of degree d over Fq would output d log q bits, so we expect an efficient algorithm for constructing
irreducible polynomials would run in time poly(d, log q).

About 1
d fraction of polynomials of degree d are irreducible over Fq [9, Ex. 3.26 and 3.27]. This

gives a simple “trial and error” randomized algorithm for constructing irreducible polynomials,
namely, pick a random degree d polynomial and check if it is irreducible. We can use Rabin’s
algorithm [10] for checking if a polynomial is irreducible, which can be implemented in Õ(d log2 q) [7,
Section 8.2]1. In order to improve the probability of finding an irreducible polynomial to 1

2 , we
sample about d polynomials of degree d and check if any one of them is irreducible. Thus, the
“trial and error” algorithm runs in time Õ(d2 log2 q). Couveignes and Lercier [5] give an alternative
randomized algorithm that runs in time Õ(d log5 q), which is optimal in the exponent of d. Their
algorithm constructs irreducible polynomials by using isogenies between elliptic curves.
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Motivated by this, it is natural to ask if there is also an efficient deterministic algorithm for
constructing irreducible polynomials. In the 80s, some progress was made towards this problem.
Adleman and Lenstra [1] gave an efficient deterministic algorithm for this problem conditional
on the generalized Riemann hypotheses. They also gave an unconditional deterministic algorithm
which outputs an irreducible polynomial of degree approximately d. Shoup [12] gives a deterministic

algorithm of constructing degree d irreducible polynomial which runs in time Õ(d4p
1
2 log4 q) (where

p is the characteristic of Fq). So, Shoup’s algorithm is efficient for fields of small characteristic
(p << d). But when p is large (say super exponential in d), the algorithm does not run in

polynomial time due to the p
1
2 factor in the run time. Since then, there hasn’t been much progress

towards this problem and in particular, the problem of efficient and unconditional deterministic
construction of irreducible polynomials over Fq remains open! In fact, the special case of efficient
and unconditional deterministic construction of quadratic non-residues in Fp is also open.

One can ask similar questions in the integer world, namely, “How to efficiently construct n-bit
prime numbers?”. By the Prime Number Theorem, there are about 1

n n-bit prime numbers (note
the similarity between density of primes and density of irreducible polynomials over Fq). Again
this gives a simple randomized algorithm of just sampling a random n-bit number and checking
if it’s prime using AKS primality test [2]. But here too, there is no known efficient deterministic
algorithm for constructing n-bit prime numbers [13].

Due to the difficulty in finding deterministic algorithms for these problems, we ask a slightly
weaker but related question. Are there efficient pseudo-deterministic algorithms for these problems?

Definition 1.1. A pseudo-deterministic algorithm is a randomized algorithm which for a given
input, generates a canonical output with probability at least 1

2 . ♢

Gat and Goldwasser [6] first introduced the notion of pseudo-deterministic algorithm (they had
called it Bellagio algorithm). Pseudo-deterministic algorithm can be viewed as a middle ground
between a randomized and a deterministic algorithm. From an outsider’s perspective, a pseudo-
deterministic algorithm seems like a deterministic algorithm in the sense that with high probability
it outputs the same output for a given input. The breakthrough result of Chen et al. [4] gave
a polynomial-time pseudo-deterministic algorithm for constructing n-bit prime numbers in the
infinitely often regime.

Theorem 1.2. There is a randomized polynomial-time algorithm B such that, for infinitely many
values of n, B(1n) outputs a canonical n-bit prime pn with high probability.

In particular, their algorithm doesn’t give valid outputs for all values of the input n. Surpris-
ingly, their algorithm is based on complexity theoretic ideas, and not number theoretic ideas. In
fact, they show a more general result that if a set of strings Q are “dense” and it is “easy” to
check if a string x is in Q, then there is an efficient pseudo-deterministic algorithm for generating
elements of Q of a particular length in the infinitely often regime. Both prime numbers and irre-
ducible polynomials over Fq satisfy this property. Thus, this gives an efficient pseudo-deterministic
algorithm for constructing irreducible polynomials over Fq in the infinitely often regime.

But not only does this algorithm not work for all d, there are no good density bounds for the
fraction of d where the algorithm gives valid output. So it is natural to ask if we can extend this
result to all values of degree d over all finite fields Fq. In this paper, we present a more direct
pseudo-deterministic algorithm for constructing irreducible polynomials over Fq (for all degrees d)
which crucially relies on the structure of irreducible polynomials. Our result extends Shoup’s [12]
deterministic algorithm for constructing irreducible polynomials. Shoup reduces the problem of
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constructing irreducible polynomials to factoring polynomials over Fq. We observe that by making
use of the fast randomized factoring algorithm, and the “canonization” process described by Gat
and Goldwasser [6] for computing q-th residues over Fp, the above reduction yields an efficient
pseudo-deterministic algorithm for constructing irreducible polynomials over Fq.

Theorem 1.3. There is a pseudo-deterministic algorithm for constructing an irreducible polynomial
of degree d over Fq (q is prime power) in expected time Õ(d4 log4 q).

2 Overview

As mentioned earlier, Shoup’s deterministic algorithm [12] is efficient for fields of small character-
istic. We extend Shoup’s algorithm and make it efficient over all fields, but at the cost of making
the algorithm pseudo-deterministic. In order to see the main ideas involved, let’s consider a toy
problem of constructing irreducible polynomial of degree 2 over Fp (p is prime). Suppose we could
get our hands on some quadratic non residue α, then X2 − α would be irreducible. There are p−1

2
quadratic non residues in Fp, so if we randomly pick an α ∈ Fp and output X2 − α, it would be
irreducible with about 1

2 probability. But this approach wouldn’t be pseudo-deterministic, since in
each run we will very likely choose different α.

In order to obtain a canonical quadratic non residue α, we first set α = −1 and repeatedly
perform α ←

√
α (choosing the smallest square root) until α is a quadratic non residue. Here,

β is a square root of α if β2 = α (mod p). For computing the square root, we can use Cantor-
Zassenhaus randomized factoring algorithm [3]. In Example 2.1, we illustrate the above strategy
over a specific finite field. Algorithm 1 implements this strategy.

Example 2.1. Let’s try to pseudo-deterministically construct a quadratic non-residue in F73. We
first set α = −1. Square roots of −1 (mod 73) are 27 and 46. The square roots are computed using
Cantor-Zassenhaus randomized factoring algorithm [3].

We choose the smallest square root 27 and set α = 27. Square roots of 27 (mod 73) are 10 and
63. We choose the smallest square root 10 and set α = 10. Since 10 is a quadratic non-residue, we
output 10 (we use Euler’s criterion2 to check if 10 is a quadratic non-residue). ♢

Algorithm 1 Pseudo-deterministically constructing irreducible polynomial of degree 2 over Fp

1: α← −1
2: while α is a quadratic residue do
3: Factorize X2 − α = (X − β1)(X − β2)
4: α← min(β1, β2)
5: end while
6: Output X2 − α

Suppose p− 1 = 2kl (where l is odd). Each time we take square root, the order3 of α (mod p)
doubles. Since the order of α divides

∣∣F∗
p

∣∣ = 2kl (by Lagrange’s theorem), we can repeatedly take
square roots in Algorithm 1 at most k times. Thus, Algorithm 1 will terminate with at most log p
iterations of the while loop. This algorithm is based on Gat and Goldwasser’s algorithm [6] for

2Euler’s criterion: For odd prime p, a is a quadratic non residue iff a(p−1)/2 = −1
3Order of α is the least integer k > 0 such that αk = 1 in Fp
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computing q-th residues over Fp. The algorithm is pseudo-deterministic since at each iteration of
the while loop, we “canonize” our choice of square root by picking the smallest one among the two
choices. Note that we used Euler’s criterion for checking if α is a quadratic residue or not in Line 2.

We can generalize the above ideas for constructing irreducible polynomials over finite fields.
Shoup [12] showed that constructing irreducible polynomials over Fp reduces to finding q-th non
residues over appropriate field extensions (q is prime). These q-th non residues can be pseudo-
deterministically constructed using similar techniques as in Algorithm 1.

The rest of the paper is organized as follows. We start with some preliminaries in Section 3. In
Section 4, we will reduce the problem of constructing irreducible polynomials over extensions fields
Fpk to constructing them over Fp. Section 5 will make use of Shoup’s observation mentioned in
previous paragraph to construct irreducible polynomials over Fp. Finally, in Section 6 we conclude
with some open problems.

3 Preliminaries

3.1 Pseudo-deterministic algorithms

We defined pseudo-deterministic algorithm to be randomized algorithm which for a given input,
generates a canonical output with probability at least 1

2 . In this paper, whenever the pseudo-
deterministic algorithm doesn’t generate a canonical output, it just fails and doesn’t give any valid
output. In such cases, we can just rerun the algorithm until we get some valid output (which
is bound to be canonical). Now the runtime of the algorithm will be random, but the expected
runtime will be (asymptotically) same as the original runtime.

For all the pseudo-deterministic algorithms in this paper, we report the expected run time in
the above sense. These algorithms always generate a canonical output, but the amount of time
they take to do so is random.

3.2 Finite Field primer

In this subsection, we go over some basic facts about finite fields that will be useful in later sections.

3.2.1 Splitting field

A polynomial h(X) ∈ K[X] may not factorize fully into linear factors over the field K. Suppose F
is the smallest extension of K such that h(X) fully factorizes into linear factors over F. In other
words, there exists α1, α2, . . . αk ∈ F such that,

h(X) = (X − α1)(X − α2) · · · (X − αk)

Then F is the called the splitting field of h(X) over K [9, Definition 1.90]. Note that for any
other extension of K that is a proper subfield of F, h(X) will not fully factorize into linear factors.

3.2.2 Structure of Finite Fields

For every prime power pn (p is prime), there exists a finite field of size pn and all finite fields of
size pn are isomorphic to each other [9, Theorem 2.5].
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Theorem 3.1 (Existence and Uniqueness of Finite Fields). For every prime p and every positive
integer n there exists a finite field with pn elements. Any finite field with q = pn elements is
isomorphic to the splitting field of Xq −X over Fp.

Thus, elements of Fpn are roots of Xpn −X. From this, we get the following generalization of
Fermat’s little theorem for finite fields:

Theorem 3.2 (Fermat’s little theorm for finite fields). If α ∈ Fpn, then αpn = α. Conversely, if α
is in some finite field and αpn = α, then α ∈ Fpn.

The below theorem gives the necessary and sufficient condition for a finite field Fpm to be a
subfield of another finite field Fpn [9, Theorem 2.6].

Theorem 3.3 (Subfield Criterion). Let Fq be a finite field with q = pn elements. Then every
subfield of Fq has order pm, where m is the positive divisor of n. Conversely, if m is the positive
divisor of n, then there is exactly one subfield of Fq with pm elements.

From Theorem 3.2 and Theorem 3.3, we get the following useful lemma:

Lemma 3.4. Suppose α is some finite field element. Let k be the smallest integer greater than
0 such that αpk = α. Then, Fpk is the smallest extension of Fp that contains α. In other words,
α ∈ Fpk and for all 1 ≤ k′ < k, α /∈ Fpk′ .

3.2.3 Conjugates and Minimal polynomial

Let f(X) be an irreducible polynomial of degree n over Fq (q is prime power). Then, f(X) has

some root α ∈ Fqn . Also, the elements α, αq, αq2 , . . . , αqn−1
are all distinct and are the roots of

f(X) [9, Theorem 2.14].

f(X) = (X − α)(X − αq)(X − αq2) · · · (X − αqn−1
)

The splitting field of f(X) with respect to Fq is Fqn [9, Corollary 2.15]. The minimal polynomial
of α over Fq is f(X).

Above, the roots of f(X) are all of the form αqi . We will call such elements conjugates α with
respect to Fq:

Definition 3.5. Let Fqn be an extension of Fq and let β ∈ Fqn. Then, β, βq, βq2 , . . . , βqn−1
are

called the conjugates of β with respect to Fq. ♢

In the following sections, we will be using the below lemma to show that certain polynomials
are irreducible.

Lemma 3.6 (Minimal polynomial of β ∈ Fqn). Suppose β ∈ Fqn and conjugates of β with respect
to Fq are all distinct. Then the minimal polynomial of β over Fq has degree n and is of the form:

g(X) = (X − β)(X − βq)(X − βq2) · · · (X − βqn−1
)

Thus, g(X) ∈ Fq[X] is an irreducible polynomial.
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Proof. The minimal polynomial g(X) of β over Fq is the smallest degree polynomial in Fq[X] such

that g(β) = 0. Since, g(βqi) = g(β)q
i
= 0, all conjugates of β are roots of g(X). Hence, degree of

g(X) is at least n (since the conjugates are all distinct). Also since β ∈ Fqn , degree of g(X) is at
most n. Thus, the degree of g(X) is n.

Thus, g(X) = (X − β)(X − βq)(X − βq2) · · · (X − βqn−1
). Since g(X) is a minimal polynomial

of β over Fq, it will be in Fq[X] and is irreducible.

3.2.4 Representing finite field elements

Throughout the paper, we assume that extension fields Fpk are given to us as Fp[X]/(f(X)),
where f(X) is an irreducible polynomial of degree k over Fp (refer [8] for working with other
representations). Each element in Fp[X]/(f(X)) can be viewed as a polynomial with degree at
most k over Fp. The coefficient vectors of these polynomials are in Fk

p. This gives a natural

isomorphism Φ : Fpk → Fk
p. In Fk

p, we can order elements in lexicographic order in the natural
sense.

Definition 3.7. We say that α ∈ Fpk is lexicographically smaller than β ∈ Fpk , if Φ(α) ∈ Fk
p is

lexicographically smaller than Φ(β) ∈ Fk
p. ♢

In the above definition, we compare the coordinates of Φ(α) and Φ(β) by fixing some ordering
on elements on Fp (for e.g., we can consider the natural ordering one gets from the additive group
structure of Fp). Checking if Φ(α) is lexicographically smaller than Φ(β) requires k comparisons,
with each comparison taking O(log p) time. Thus, overall it takes O(k log p) time to check if Φ(α)
is lexicographically smaller than Φ(β).

Similarly, we can define a lexicographic ordering on polynomials over Fpk .

Definition 3.8. Suppose we are given two polynomials g(X) and h(X) of degree d over Fpk . Then
we say that g(X) is lexicographically smaller than h(X) if the coefficient vector of g(X) is lexico-
graphically smaller than coefficient vector of h(X) (the coefficients are compared using Φ). ♢

Checking if g(X) is lexicographically smaller than h(X) requires d+ 1 comparisons, with each
comparison taking O(k log p) time. Thus, overall it takes O(dk log p) time to check if g(X) is
lexicographically smaller than h(X).

Lemma 3.9 (Picking lexicographically smallest polynomial). Suppose we are given n polynomi-
als f1(X), f2(X), . . . , fn(X) of degree d over Fpk . Then, there is an algorithm that outputs the
lexicographically smallest polynomial among them in O(ndk log p) time.

Proof. We go over each polynomial fi(X) one by one, checking if fi(X) is lexicographically smaller
than the lexicographically smallest polynomial we have seen so far. Since each comparison takes
O(dk log p) time, and we do at most n comparisons, the algorithm runs in O(ndk log p) time.

3.3 Equal degree polynomial factorization

Shoup [12] reduced constructing irreducible polynomials to factoring polynomials over finite field.
It turns out that the reduction factors polynomials whose irreducible factors all have same degree.
Hence, equal degree factorization is a crucial sub-routine for constructing irreducible polynomials.
There are several fast randomized equal degree factorization algorithms, and below we mention one
of them:

6



Theorem 3.10 (Equal degree factorization). Suppose f(X) is a polynomial of degree d over Fq (q
is prime power) which factors into irreducible polynomials of equal degree. Then, the equal degree
factorization algorithm by von zur Gathen & Shoup [15] factors f(X) in expected time Õ(d log2 q).

4 Construction of irreducible polynomials over extension fields Fpk

We first show in Algorithm 2 that constructing irreducible polynomials over extension fields Fpk

can be reduced to constructing irreducible polynomials over Fp (p is prime). Theorem 4.1 shows
the correctness and running time of Algorithm 2.

Algorithm 2 Pseudo-deterministic construction of irreducible polynomials over Fpk

Input: Degree d
Output: Irreducible polynomial of degree d over Fpk

1: Pseudo-deterministically construct irreducible polynomial f(X) over Fp of degree dk.

2: Factor f(X) =
∏k−1

i=0 fi(X) over Fpk using Theorem 3.10.
3: Output the lexicographically smallest factor fi(X).

Theorem 4.1 (Correctness and Running time of Algorithm 2). Suppose there is a pseudo-deterministic
algorithm for constructing irreducible polynomials of degree l over Fp (p prime), that runs in ex-
pected time T (l, p). Then Algorithm 2 pseudo-deterministically constructs irreducible polynomials
of degree d over extension field Fpk in expected time T (dk, p) + Õ(dk3 log p).

Proof. Algorithm 2 first constructs an irreducible polynomial f(X) of degree dk over Fp. Note that
Fp[X]/(f(X)) is isomorphic to Fpdk . Some α ∈ Fpdk will be a root of f(X). The conjugates of α
with respect to Fp are all distinct and are the roots of f(X) (refer Section 3.2.3):

f(X) = (X − α)(X − αp)(X − αp2) · · · (X − αpdk−2
)(X − αpdk−1

)

Rearranging the above terms, we get:

f(X) =
[
(X − α)(X − αpk)(X − αp2k) · · · (X − αp(d−1)k

)
]

[
(X − αp)(X − αpk+1

)(X − αp2k+1
) · · · (X − αp(d−1)k+1

)
]

[
(X − αp2)(X − αpk+2

)(X − αp2k+2
) · · · (X − αp(d−1)k+2

)
]

...[
(X − αp(k−1)

)(X − αpk+(k−1)
)(X − αp2k+(k−1)

) · · · (X − αp(d−1)k+(k−1)
)
]

=
k−1∏
i=0

d−1∏
j=0

(X − αpjk+i
)

:=
k−1∏
i=0

fi(X)
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Let q = pk. fi(X) has degree d and its roots are conjugates of αpi ∈ Fqd with respect to
Fq (which are all distinct). Thus, from Lemma 3.6, fi(X) ∈ Fq[X] is the minimal polynomial of

αpi over Fq, and hence fi(X) is irreducible over Fq. So, we can use Theorem 3.10 to factorize
f(X) over Fq, obtaining all factors fi(X) of degree d. We then use Lemma 3.9 to output the
lexicographically smallest factor among fi(X). Let the lexicographically smallest factor be denoted
by fi∗(X). Given a polynomial f(X) of degree dk, fi∗(X) is canonical. Thus, the above construction
is pseudo-deterministic.

For the running time, it takes T (dk, p) time to construct f(X), and then Õ(dk3 log p) time to
factor f(X) over field Fpk (from Theorem 3.10). Finally, choosing fi∗(X) among fi(X) can be
computed in time O(dk2 log p) (from Lemma 3.9). Thus, the overall running time of the algorithm
is T (dk, p) + Õ(dk3 log p).

5 Construction of irreducible polynomials over Fp

Shoup’s algorithm reduces constructing irreducible polynomials over Fp to finding q-th non residues
in splitting field of Xq−1, for all prime divisors q of d (and q ̸= p). For completeness, we reproduce
the theorem below and refer to Theorem 2.1 in [12] for it’s proof.

Theorem 5.1 (Reduction to finding q-th non residues). Assume that for each prime q | d, q ̸= p,
we are given a splitting field K of Xq − 1 over Fp and a q-th non residue in K. Then we can find
an irreducible polynomial over Fp of degree d deterministically with Õ(d4 log p+ log2 p) operations
in Fp.

Shoup constructs the splitting field4 K of Xq − 1 over Fp and a q-th non residue in K by
reducing to deterministic polynomial factorization. Since no known efficient deterministic factoring
algorithms are known, his algorithm is not efficient for finite fields of large characteristic. In this
section, we will find a canonical splitting field K and a canonical q-th non residues by using a fast
randomized factoring algorithm. Thus, we obtain an efficient algorithm for constructing irreducible
polynomials over Fp, but at the cost of making the algorithm pseudo-deterministic.

For each prime q | d, q ̸= p, we will pseudo-deterministically construct a splitting field K of
Xq − 1 over Fp and find a q-th non residue in K. To this end, we first analyze the factorization of
Xq − 1 ∈ Fp[X].

Lemma 5.2. Consider the polynomial Xq − 1 ∈ Fp[X] (p, q are prime numbers). Let k be the
smallest integer greater than 0 such that q | pk − 1 (in other words, k is the order of p (mod q)).
Then,

1. The splitting field of Xq − 1 over Fp is Fpk

2. Xq − 1 = (X − 1)g1(X)g2(X) · · · g q−1
k
(X)

where gi(X) ∈ Fp[X] are irreducible polynomials of degree k.

Proof. Let K be the splitting field of Xq−1 over Fp. The roots of X
q−1 in K are by definition the

q-th roots of unity. Suppose ω ∈ K is some primitive q-th root of unity. Then, {1, ω, ω2, . . . , ωq−1}
4Shoup constructs an irreducible polynomial g(X) ∈ Fp[X] such that Fp/(g(X)) is isomorphic to splitting field of

Xq − 1 over Fp
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are all the q-th roots of unity, and they form a multiplicative subgroup in K∗. In fact, since q is
prime, each of {ω, ω2, . . . , ωq−1} is a primitive q-th root of unity.

Since ωq = 1, we have ωpk = ω and hence from Theorem 3.2, ω ∈ Fpk . By definition of k, k

is the smallest integer greater than 0 such that ωpk = ω. So from Lemma 3.4, Fpk is the smallest
extension of Fp that contains ω. Xq − 1 splits linearly as:

Xq − 1 = (X − 1)(X − ω)(X − ω2) · · · (X − ωq−1)

Fpk is the smallest extension of Fp that contains all the roots of X
q−1. Thus, Fpk is the splitting

field of Xq − 1. We next consider the factorization pattern of Xq − 1 over Fp.
Let G be the multiplicative group of integers modulo q. Since q is prime, elements of G are

{1, 2, . . . , q − 1}. Consider the cyclic subgroup H of G generated by p. The elements of H are
{1, p, p2, . . . , pk−1}. The cosets of H partition G. Let a1H, a2H, . . . , a(q−1)/kH be the (q − 1)/k
cosets of H that partition G. Then, Xq − 1 ∈ Fp[X] can be factorized as follows:

Xq − 1 = (X − 1)(X − ω)(X − ω2) · · · (X − ωq−1)

= (X − 1)

(q−1)/k∏
i=1

∏
j∈aiH

(X − ωj)

= (X − 1)

(q−1)/k∏
i=1

(X − ωai)(X − ωaip)(X − ωaip
2
) · · · (X − ωaip

k−1
)

:= (X − 1)

(q−1)/k∏
i=1

gi(X)

gi(X) has degree k and its roots are conjugates of ωai ∈ Fpk with respect to Fp (which are all
distinct). Thus, from Lemma 3.6, gi(X) ∈ Fp[X] is the minimal polynomial of ωai over Fp, and
hence is irreducible over Fp.

Thus, the splitting field of Xq − 1 over Fp is Fpk . It is easy to see that Fpk contains a q-th non
residue, since the map Φ : α 7→ αq is not surjective in Fpk (since for every i, Φ(ωi) = 1, where ω is
some primitive q-th root of unity).

In order to get our hands on a canonical representation of Fpk , we can factorize (Xq − 1)/(X −
1) = Xq−1+Xq−2+ · · ·+X+1 over Fp and pick the lexicographically smallest degree k irreducible
factor h(X). Then, Fp[X]/h(X) is isomorphic to Fpk . Let ω be an element in Fpk isomorphic to
X ∈ Fp[X]/h(X). Next, to find a canonical q-th non residue α ∈ Fpk , we set α = ω and repeatedly
perform α ← q

√
α (choosing the lexicographically smallest q-th root) until α is a q-th non residue.

Algorithm 3 implements the above idea and constructs an irreducible polynomial of degree d. In
Line 3 and Line 8, factorization is done using Theorem 3.10. We analyze the correctness and
running time of Algorithm 3 in Theorem 5.3.

Theorem 5.3 (Correctness and Runtime of Algorithm 3). Algorithm 3 pseudo-deterministically
constructs an irreducible polynomial of degree d over Fp and runs in expected time Õ(d4 log3 p).
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Algorithm 3 Pseudo-deterministic construction of irreducible polynomials over Fp

Input: Degree d
Output: Irreducible polynomial of degree d over Fp

1: Initialize arrays H ← [ ],Λ← [ ]
2: for prime q | d, q ̸= p do
3: Factorize Xq−1 +Xq−2 + · · ·+X + 1 = g1(X)g2(X) · · · g q−1

k
(X) over Fp

4: h(X)← lexicographically smallest degree k factor among g1(X), g2(X), . . . , g q−1
k
(X)

5: Field arithmetic over Fpk will henceforth be performed over Fp[X]/h(X).
6: α← element in Fpk isomorphic to X in Fp[X]/h(X)
7: while α is a q-th residue do
8: Factorize Xq − α = (X − β1)(X − β2) · · · (X − βq) over Fpk

9: α← lexicographically smallest element among β1, β2, . . . , βq in Fpk

10: end while
11: Append h(X) to array H and α to array Λ
12: end for
13: Using arrays H and Λ and Theorem 5.1, deterministically construct an irreducible polynomial

of degree d over Fp.

Proof. We need to show that the for loop in Algorithm 3 correctly computes the splitting field of
Xq − 1 and finds a q-th non residue in the splitting field. Then, Line 13 will correctly output an
irreducible polynomial of degree d over Fp (from Theorem 5.1).

Let k be the smallest integer greater than 0 such that q | pk − 1 (k is the order of p (mod q)).
From Lemma 5.2, Xq−1 + Xq−2 + · · · + X + 1 factorizes as g1(X)g2(X) · · · g q−1

k
(X) where gi(X)

are degree k irreducible polynomials. Thus, by choosing the lexicographically smallest degree k
irreducible factor h(X) of Xq−1, we ensure that the choice of h(X) is canonical. Fpk

∼= Fp[X]/h(X)
is the splitting field of Xq − 1 which contains a q-th non residue.

Let ω ∈ Fpk be some primitive q-th root of unity. Suppose α is a q-th residue, and let β ∈ Fpk

such that α = βq (β is a q-th root of α). Then, {β, βω, βω2, . . . , βωq−1} are all q-th roots of α.
Thus, as required in Line 8, Xq − α will factorize into linear factors. By ensuring that we pick the
lexicographically smallest q-th root of α, we “canonize” the computation of q-th non residue. This
“canonization” process is akin to the one Gat and Goldwasser [6, Section 5] used to compute q-th
non residue in Fp.

But we still need to ensure that the while loop eventually terminates. Let pk − 1 = qℓr, where
r is not divisible by q. Note that ℓ ≤ k log p. In each iteration of the while loop, the order of α in

F∗
pk

increases by a factor of q. Since the order of α divides
∣∣∣F∗

pk

∣∣∣ = qℓr (by Lagrange’s theorem),

the while loop will terminate in at most ℓ steps. Thus, for each prime q | d, q ̸= p, the for loop at
Line 2 pseudo-deterministically constructs the splitting field Fpk of Xq − 1 and a q-th non residue
in Fpk .

Now we analyze the runtime. From Theorem 3.10, equal degree factorization in Line 3 takes
Õ(q log2 p). From Lemma 3.9, lexicographically smallest h(X) in Line 4 can be chosen in O(q log p).
The while loop at Line 7 runs at most ℓ times. The factoring step at Line 8 takes Õ(qk2 log2 p)
(using Theorem 3.10) and the lexicographically smallest q-th root can be picked in O(qk log p) time.
Thus, the while loop takes Õ(ℓqk2 log2 p). Since ℓ ≤ k log p and k < q, the running time of the

10



while loop can be upper bounded by Õ(q4 log3 p). Thus the overall running time of each iteration
of the for loop is Õ(q4 log3 p). So we can upper bound the running time of the entire for loop
by Õ(d4 log3 p). Since the running time of Line 13 is also upper bounded by Õ(d4 log3 p) (from
Theorem 5.1), the overall running time of the algorithm is Õ(d4 log3 p).

We end this section by completing the proof of Theorem 1.3.

Proof of Theorem 1.3. Algorithm 2 pseudo-deterministically constructs irreducible polynomial of
degree d over Fpk . From Theorem 4.1, it takes time T (dk, p) + Õ(dk3 log p), where T (dk, p) is
time taken for the sub-routine which constructs degree dk irreducible polynomial over Fp. We use
Algorithm 3 to implement this sub-routine, which from Theorem 5.3 takes time Õ(d4k4 log3 p).
Thus, the overall running time is Õ(d4k4 log3 p). Let q = pk. Thus, we have given a pseudo-
deterministic algorithm for constructing irreducible polynomials of degree d over Fq in expected
time Õ(d4 log4 q).

6 Conclusion

We have shown an efficient pseudo-deterministic algorithm for constructing irreducible polynomials
of degree d over finite field Fq. It is natural to ask if this algorithm can be derandomized to get
a fully deterministic algorithm. Since our approach heavily relies on fast randomized polynomial
factoring algorithms, and no efficient deterministic factoring algorithms are known, it is unclear how
to derandomize it using the above approach. In fact, we don’t even know how to deterministically
construct a quadratic non residue modulo p (p is prime).

Another interesting question is to compare the hardness of deterministically factoring polyno-
mials and deterministically constructing irreducible polynomials over finite fields. As mentioned
earlier, Shoup [12] had showed that constructing irreducible polynomials over finite fields can be
efficiently (and deterministically) reduced to factoring polynomials. This suggests that factoring
polynomials is as hard as constructing irreducible polynomials. But what about the other direction?
Would we be able to factor polynomials efficiently if we could construct irreducible polynomials?

The answer is affirmative in the quadratic case. Suppose we are given a quadratic non residue β
modulo p. Then we can compute the square roots of any quadratic residue α module Fp. In other
words, given an irreducible polynomial X2 − β, we can factorize X2 − α. This can be achieved
using the Tonelli-Shanks [11, 14] algorithm for computing square roots modulo p. However, this
technique does not easily generalize to higher degrees d, so there isn’t enough evidence to confirm
that constructing irreducible polynomials is as hard as factoring polynomials in general. We believe
this is an interesting open question that can shine more light on the complexity of both these
problems.

Gat and Goldwasser [6] highlighted the open problem of pseudo-deterministically constructing
n-bit prime numbers, which still remains unsolved. Chen et al. [4] solved this problem but with
the caveat that their algorithm works in the infinitely often regime. Their algorithm is based on
complexity theoretic ideas. In this paper, we gave a pseudo-deterministic algorithm for constructing
irreducible polynomials, which leverages the structure of irreducible polynomials. Perhaps similarly
one could hope to get an efficient pseudo-deterministic algorithm for constructing primes using some
number theoretic approaches.
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