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Abstract

The classical Reed-Muller codes over a finite field Fq are based on evaluations of m-variate
polynomials of degree at most d over a product set Um, for some d < |U|. Because of their good
distance properties, as well as the ubiquity and expressive power of polynomials, these codes
have played an influential role in coding theory and complexity theory. This is especially so in
the setting of U being Fq where they possess deep locality properties. However, these Reed-
Muller codes have a significant limitation in terms of the rate achievable — the rate cannot be
more than 1

m! = exp(−m log m).
In this work, we give the first constructions of multivariate polynomial evaluation codes

which overcome the rate limitation – concretely, we give explicit evaluation domains S ⊆ Fm
q

on which evaluating m-variate polynomials of degree at most d gives a good code. For m =

O(1), these new codes have relative distance Ω(1) and rate 1− ε for any ε > 0. In fact, we give
two quite different constructions, and for both we develop efficient decoding algorithms for
these codes that can decode from half the minimum distance.

The first of these codes is based on evaluating multivariate polynomials on simplex-like
sets. The distance of this code is proved via a generalized Schwartz-Zippel lemma on the
probability of non-zeroness when evaluating polynomials on sparser subsets of Um – the final
bound only depends on the “shape” of the set, and recovers the Schwartz-Zippel bound for the
case of the full Um, while still being Ω(1) for much sparser simplex-like subsets of Um.

The second of these codes is more algebraic and, surprisingly (to us), has some strong lo-
cality properties. It is based on evaluating multivariate polynomials at the intersection points
of hyperplanes in general position. It turns out that these evaluation points have many large
subsets of collinear points. These subsets form the basis of a simple local characterization,
and using some deeper algebraic tools generalizing ideas from Polischuk-Spielman [PS94],
Raz-Safra [RS97] and Ben-Sasson-Sudan [BSS06], we show that this gives a local test for these
codes. Interestingly, the set of evaluation points for these locally testable multivariate poly-
nomial evaluation codes can be as small as O(dm), and need not occupy a constant or even
noticeable fraction of the full space Fm

q .
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1 Introduction

Polynomial evaluation codes, such as the Reed-Solomon and the Reed-Muller codes, have played
a central and outsized role in the classical theory of error-correcting codes. In recent decades, they
have also been key to fundamental advances in complexity theory, pseudorandomness, cryptogra-
phy and extremal combinatorics, for example in PCPs, interactive proofs, randomness extractors,
pseudorandom generators and algebraic complexity theory. Furthermore, the pursuit of algo-
rithms for and understanding of these codes has generated deep ideas in algebraic algorithms,
property testing, and pseudorandom constructions.

A polynomial evaluation code is an error-correcting code obtained by evaluating m-variate
polynomials of degree1 at most d with coefficients in a finite field F at some subset S of Fm.

C = {(P(a))a∈S | P(X1, . . . , Xm) ∈ F[X1, . . . , Xm], deg(P) ≤ d} ⊆ FS
q .

The rate of this code (which is the ratio of the dimension of the code as a linear space to the

length of the codewords) is easily calculated to be R =
(d+m

m )
|S| . The relative distance of this code

(which is the largest fraction of coordinates on which any two codewords are guaranteed to be
different) equals the largest δ such that any polynomial of degree at most d has at least δ|S| non-
zero evaluations on S, and is more complicated to determine. We are interested in families of
codes, with their length |S| going to infinity, and the rate R and the relative distance δ are both
Ω(1).

The most basic and well-known polynomial evaluation code is the m = 1 case: the Reed-
Solomon code. Regardless of the choice of S ⊆ F of size n, this code has relative distance δ = 1− d

n :
since distinct polynomials of degree d can agree on at most d points. Thus, Reed-Solomon codes
achieve a rate-distance tradeoff of R + δ = 1, which turns out to be optimal among all codes.

1Throughout this paper, degree refers to the total degree of a polynomial. Thus the degree of X3Y7 + X6Y6 equals
12.
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For the multivariate case, m ≥ 2, the standard code is called the Reed-Muller code, and is
based on choosing the evaluation domain S to be a product set Um, where2 |U| > d. In this case,
the Schwartz-Zippel lemma provides the necessary bound on the minimum distance: it says that
this code has relative distance at least 1− d

|U| . This gives a worse rate-distance tradeoff of

R =
(1− δ)m

m!
.

For constant m, this gives constant rate and constant relative distance, albeit with R < 1/2 unless
m = 1.

Reed-Muller codes with U equal to the whole finite field F are especially interesting because
of their amazing locality properties. Indeed, Fm contains within it m− 1 and lower dimensional
spaces, and m-variate polynomials of degree d stay degree d when restricted to these lower di-
mensional spaces. This is the basis for a natural local characterization of codewords – and leads
to the extremely useful local testability and local decodability of these codes.

This rate limitation of multivariate polynomial codes is what our paper addresses – we find
evaluation domains for multivariate polynomials of total degree d so that the resulting code has
rate close to 1 while still having constant relative distance. This is a derandomization question – a
random such evaluation domain of the right size has this property with high probability.

We give two kinds of explicit such evaluation domains, along with polynomial time decoding
algorithms for the corresponding codes. The first code is more combinatorial, and its analysis and
decoding involves a generalized Schwartz-Zippel lemma bounding the probability that a poly-
nomial evaluates to zero on a general “shape”. The second kind is more geometric, based on
intersections of hyperplanes in general position, and its analysis and decoding comes from the
presence of the many intersecting lines contained within the evaluation domain. The rich geo-
metric structure that comes from these lines, to our surprise, leads to the local testability of these
codes, something that we did not expect was possible from such a drastic sparsification of the
Reed-Muller code.

1.1 Our results

We give explicit multivariate polynomial evaluation codes with rate close to 1 and constant rela-
tive distance for the setting of m = O(1).

Theorem A (Informal): For m = O(1) and any ε > 0, there are explicit polynomial evaluation codes of
m-variate polynomials that have rate R ≥ 1− ε and relative distance Ω(1) (see Theorems 3.5 and 3.12).

2Reed-Muller codes also include the code of degree d polynomials evaluated on Um with the degree d ≥ |U| (and
individual degree < |U|), but these codes cannot achieve constant rate and relative distance.
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We give three proofs of this theorem.
The fastest (but least informative) proof is obtained via a general result, proved using an ap-

plication of the polynomial method, showing that interpolating sets for m-variate polynomials of
degree (1+ Ω(1))d are themselves automatically good evaluation domains for polynomials of de-
gree d; any polynomial of degree d has many non-zero evaluations on such a set. This construction
gives the tradeoff:

R1/m + δ1/m = 1, (1.1)

which for constant m gives us the statement of Theorem A.
Instantiating this with two known constructions of interpolating sets from the literature3 (and

elegantly presented in the paper of Bläser and Pandey [BP20]), we get the two high rate multivari-
ate polynomial evaluation codes which this paper is about. We give a small taste of these codes
now and in a later subsection we describe them in full generality.

• CAP (Combinatorial Arrays for Polynomials) codes: These codes are obtained by evaluat-
ing multivariate polynomials on simplex-like sets.

A simple example of such a set for the case m = 3 is given below. Assume F has characteristic
at least 1.1d. Then taking S ⊆ F3 to be the “simplex” given by:

S = {(i, j, k) : 0 ≤ i, j, k ≤ 1.1d, i + j + k ≤ 1.1d},

the code obtained by evaluating 3-variate polynomials of degree at most d on S turns out to
have rate R =

( 1
1.1

)3
and relative distance δ =

( 0.1
1.1

)3
.

This example seems somewhat related to the Reed-Muller code with evaluation domain
[1.1d]3. Indeed it is very closely related, and our most general CAP codes come from a uni-
fied viewpoint which captures both of these and many more kinds of evaluation domains.

• GAP (Geometric Arrays for Polynomials) codes: These codes are obtained by evaluating
multivariate polynomials on intersection points of hyperplanes in general position.

A simple example of such a set for the case m = 3 is given below. Let U ⊆ F with |U| = 1.1d.
Then we take the set S ⊆ F3 by evaluating the elementary symmetric polynomials in 3
variables on distinct 3-tuples of U:

S = {(a + b + c, ab + bc + ca, abc) : a, b, c ∈ U, distinct },

The code obtained by evaluating 3-variate polynomials of degree at most d on S turns out to
have rate R =

( 1
1.1

)3
and relative distance δ =

( 0.1
1.1

)3
.

3See [GS00] for a detailed history of interpolating sets for multivariate polynomials.
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It may not be clear why the example above has anything to do with hyperplanes in general
position, but it does, and it in fact contains many large collinear subsets of points. This leads
to the (very surprising to us) local testability of these codes (Theorem C below).

Our second and third proofs of Theorem A are by a direct analysis of the distance of CAP and
GAP codes. This yields much more information, and in particular, allows us to prove our next
main result: that there are efficient unique decoding algorithms for both CAP codes and GAP
codes up to half their minimum distance.

Theorem B (Informal): There are polynomial time algorithms for unique decoding CAP codes and GAP
codes from a fraction of errors that equals half their minimum distance (see Theorems 5.7 and 6.12).

A unique decoding algorithm that decodes a code unto half its minimum distance is effec-
tively providing an “algorithmic proof” of the minimum distance of the code. To prove Theorem
B, we develop alternate and deeper understandings of these codes, and then identify and algo-
rithmize the core combinatorial and geometric phenomena that give CAP codes and GAP codes
their distance.

1.1.1 CAP codes

The CAP code described in the example above is based on evaluating polynomials at a small
subset of the product set [1.1d]3, thus improving upon the standard Reed-Muller codes, which
require the whole product set.

In Section 4, we develop a second, more transparent, proof that CAP codes have distance,
based on a new generalization of the Schwartz-Zippel Lemma. This generalization comes from an
observation that the standard proof of the Schwartz-Zippel lemma not only bounds the number
of zeros in the grid, also gives information about the shape in which the zeros may appear. This
information is quite powerful and underlies the ability of CAP codes to achieve rate close to 1.

To state this generalized Schwartz-Zippel Lemma, we introduce some notation to specify
“shapes”. Let t be a natural number. Let J be a subset of [t]m which is downward closed under the
coordinatewise order ⪯: namely, if j, j′ ∈ [t]m with j′ ⪯ j (which means we have coordinatewise
inequality), then j ∈ J implies j′ ∈ J.

We say that a downward-closed set J ⊆ [t]m has d-robustness at least B if, whenever we delete
d axis parallel (m− 1)-dimensional hyperplanes from J, at least B points of J remain.

We can now state our generalized Schwartz-Zippel lemma.

Generalized Schwartz-Zippel Lemma Let J be a subset of [t]m with d-robustness at least B.

6



Let U ⊆ F with |U| = t, and let U = {u1, . . . , ut}. Define U[J] to be the set S ⊆ Um given by:

S = {(uj1 , uj2 , . . . , ujm) | j ∈ J}.

Let P(X1, . . . , Xm) ∈ F[X1, . . . , Xm] be a nonzero polynomial of degree at most d. Then:

|{a ∈ S | P(a) ̸= 0}| ≥ B.

Thus if we find a subset J with size n and d-robustness ≥ δn, the polynomial evaluation code

with evaluation set U[J] will have relative distance δ (and rate (d+m.
m )
n ).

When we take J = [t]m, then we recover the standard Schwartz-Zippel lemma. When we take
J = {j ∈ [t]m | ∑i ji ≤ t}, we recover the bound for simplex-like CAP codes described earlier (but
in much greater generality – since we do not need the regular-spacedness of the set U).

Other J can be taken, and they can give other rate vs distance tradeoffs. For given constants
R, δ ∈ [0, 1] and m = O(1), the question of whether there is a downward-closed J ⊆ [t]m (for some
large t) of a given size n = (1 + o(1)) · 1

R ·
dm

m! with d-robustness δn is an interesting combinatorial
question. Interestingly, there are choices of J which go beyond (even in the asymptotic setting)
both the full product set and the simplex constructions, even though both are “locally optimal”.

The proof of the Generalized Schwartz-Zippel Lemma is by induction on a stronger statement –
this statement not only bounds the size of, but also gives structural information about, the “shape”
of the zero set of any multivariate polynomial. This refined information also turns out to be useful
for our decoding algorithms, which we discuss next.4

Decoding: Based on the ideas above, we show that CAP codes can be decoded in polynomial
time from half their minimum distance. We do this by developing a suitable generalization of
a peeling-based algorithm of Kim and Kopparty [KK17] for decoding Reed-Muller codes on a
product set. Suppose we are trying to decode the bivariate Reed-Muller code over a grid U2. At
a high level, [KK17] write f (X, Y) = ∑d

i=0 fi(X)Yi. They then decode the univariate polynomials
f (x, Y) on each column. From these decodings, they have estimates of fd(x) for each x ∈ U
and use these to decode for fd using the GMD algorithm – the classical algorithm for decoding
concatenated codes that uses “soft” information. Peeling off the polynomial fd(X)Yd from f (X, Y),
and iteratively applying this argument again gives the final algorithm. The main challenge for
adapting this algorithm to CAP codes is that each column has a variable length (and thus, each
univariate polynomial f (x, Y) is evaluated on a different number of points). We address this by

4It was pointed to us by S Venkitesh [S24] that this generalized Schwartz-Zippel lemma can also be shown as a
consequence of a classic theorem of Macaulay [Mac27] using a slight adaptation of the techniques in [STV20].
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introducing a variant of the GMD algorithm that allows for varying inner code lengths and inner
code distances. This uses a recent new combinatorial analysis of the GMD algorithm by [BHKS23].

1.1.2 GAP codes

GAP codes are based on intersections of hyperplanes in general position. Suppose we take a col-
lection H of t such hyperplanes in Fm. Let S be the set of all m-wise intersections of hyperplanes
fromH. This set S , of size ( t

m), is the set of evaluation points for GAP codes5.

Combinatorially these sets look quite complex, but there is rich structure sitting inside them.
Indeed, if we take the intersection of some (m− 1) hyperplanes fromH, we get a line L in Fm. It is
easy to see that this line contains t− (m− 1) points of S . If t− (m− 1) is at least (1 + Ω(1)) times
d, then polynomials of degree d evaluated on S will look like Reed-Solomon codes of constant
relative distance when restricted S ∩ L.

Decoding: We can use these observations to get a decoding algorithm for GAP codes up to half
the minimum distance. The algorithm is based on decoding along each line S ∩ L to the nearest
Reed-Solomon codeword. How do we stitch together all these Reed-Solomon codewords? Mirac-
ulously, viewing things the right way, the m-variate GAP code turns out to be a concatenated code,
where the outer codes are Reed-Solomon codes over the function field F(X1, . . . , Xm−1), and the
inner codes are (m− 1)-variate GAP codes. From this point of view, the way to stitch together all
these Reed-Solomon codewords is to simply use the classical GMD decoder of Forney for concate-
nated codes!

Compared to the big struggle that happened within [KK17] for decoding Reed-Muller codes,
which involved slowly correcting errors in tiny steps via a back and forth between the inner Reed-
Solomon decoder and the GMD decoder, and a refined version of that struggle that we just did for
decoding CAP codes, this clean decoder for GAP codes is a source of great joy (and relief).

Local Testing: These local Reed-Solomon codes present in GAP codes also form the basis for a
local characterization – we show in Theorem 7.5 that a function defined on S is a codeword of the
GAP code if and only if its restriction to any line L gives a codeword of the Reed-Solomon code of
degree d univariate polynomials.

Using (and generalizing) the ideas of Polischuk-Spielman [PS94] and Raz-Safra [RS97], we up-
grade this local characterization to a robust local characterization (involving planes), and thereby
show local testability of these codes.

5The example GAP code presented above was just an instantiation of this framework with the “moment-curve
construction” of hyperplanes in general position.
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Theorem C (Informal): For m = O(1), GAP codes of length n with constant relative distance are locally
testable with O(n2/m) queries. In particular, for any ε > 0, there exist GAP codes of length n and rate
(1− ε) that are locally testable with O(n2/m) queries (see Theorem 7.2).

The above result is proved using a version of the plane-vs-point test for standard Reed-Muller
codes of Raz-Safra [RS97] (see also its abstraction to tensor codes by Ben-Sasson-Sudan [BSS06]
and Viderman [Vid15]). The rich geometric structure within GAP codes turns out to be sufficient
to implement this proof strategy, despite the drastically smaller number of planes available.

In fact, the proof turns out to be substantially easier than both the proofs of Raz-Safra and
Ben-Sasson-Sudan. The underlying reason is the following fact (Lemma 7.6) about gluing polyno-
mials defined on hyperplanes in general position: if we are given (m− 1)-dimensional hyperplanes
H1, . . . , Hℓ in Fm in general position for some ℓ ≥ d, and degree d polynomials Pi : Hi → F defined
on them which are mutually consistent on the intersections Hi ∩ Hj, then there is a unique degree
d polynomial P(X1, . . . , Xm) consistent with all of them; namely P|Hi = Pi for all i. Without the
general position assumption, this no longer holds (for example, because of parallel hyperplanes),
and this complicates the analysis of the hyperplane consistency graph in [RS97] and [BSS06]. We
think this explains why GAP codes admit a much simpler analysis, and also why the analysis
directly works in the low-distance/high-rate regime6.

We also analyze the natural line-vs-point test for GAP codes, but this ends up being quantita-
tively weaker – it only gives nontrivial testability when the rate is at most (1− ε)2−m (which is still
higher than the rate achievable by the classical Reed-Muller code). Thus, unlike for the plane-vs-
point test, our analysis for the line-vs-point test does not work all the way up to rate approaching
1.

Along the way, we prove an independently interesting statement (Lemma 7.12) about a local-
to-global phenomenon for divisibility. If we have two polynomials A(X1, . . . , Xm) and B(X1, . . . , Xm)

of degree at most d such that for at least 3d hyperplanes H in general position, the (m− 1)-variate
polynomial A|H divides the (m− 1)-variate polynomial B|H, then in fact A divides B. Such state-
ments with a O(d2) bound on the number of hyperplanes needed were implicitly proved in a work
of Forbes [For15] and a work of Harsha, Kumar, Saptharishi and Sudan [HKSS23]. Our work is
the first to get an O(d) bound for this setting. For m = 2 our proof is based on an adaptation of
an argument of Polischuk-Spielman, using Bezout’s theorem and a basic claim about intersection
multiplicities of two curves and with a common tangent. For larger m it involves much more non-
trivial algebraic machinery involving intersection multiplicities of varieties, but the final statement
is still quite clean.

Finally, we remark that GAP codes can be viewed as Tanner codes (or HDX-Tanner codes)

6For the Ben-Sasson-Sudan setting of tensor codes, the original proof only worked when the base code had large
distance. Testability when the base code has low distance was only later discovered by Viderman [Vid15] using some
further clever ideas.
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on the complete graph (for m = 2) or the complete m-dimensional complex (for larger m) on
t vertices, where the inner codes are Reed-Solomon codes. That these codes have high rate is
a surprise; it goes beyond what pure dimension counting implies. That these codes are in fact
multivariate polynomial evaluation codes is another surprise. This viewpoint is related to the
recent constructions of Dinur, Liu and Zhang [DLZ23].

1.1.3 Comparison to Reed-Muller codes

How do CAP codes and GAP codes compare to Reed-Muller codes?
At a very high level, CAP codes take the principles underlying Reed-Muller codes and squeeze

everything that could possibly be squeezed out of it. The proof of distance of CAP codes gener-
alizes the Schwartz-Zippel lemma, and our decoding algorithms for CAP codes generalize the
decoding algorithms for Reed-Muller codes from [KK17]. We feel that our generalized Schwartz-
Zippel lemma as well as our decoding algorithm for CAP codes sheds light on the true content
of the Schwartz-Zippel lemma and the reason for the efficient decodability of Reed-Muller codes,
while simultaneously highlighting the route to modifying Reed-Muller codes to achieve higher
rate.

On the other hand, GAP codes look nothing like Reed-Muller codes, and in many ways they
are much cleaner and more natural than Reed-Muller codes. The proof of distance is much simpler,
and in fact the decoding algorithm just follows directly from viewing it as a concatenated code in
the right way. Even more interestingly, GAP codes are locally testable (in part because of the many
lower dimension subspaces present in the evaluation domain), while Reed-Muller codes are not
unless the evaluation domain is all of Fm

q .
Reed-Muller codes on general product sets Um also have many local constraints, with m axis-

parallel lines through each evaluation point. The local constraint says that the restriction to these
lines should be degree at most d. But the key difference with GAP codes is that these local con-
straints do not characterize Reed-Muller codes – they only characterize evaluation codes of multi-
variate polynomials of individual degree at most d – and this is a significantly bigger code than the
Reed-Muller code which has a total degree condition.

Finally we remark that since the evaluation domains for CAP and GAP codes do not essentially
depend on the degree d, CAP and GAP codes automatically are multiplication codes [Mei13] – the
pointwise product of codewords is a codeword of another good code – one of the key properties
of Reed-Muller codes which is important for applications in complexity theory.

1.2 Other Related Work

There have been many influential works studying the problem of finding small evaluation sets for
m-variate degree-d polynomials which preserve their good distance. Our results are focused on m
constant and d big (where we get codes rate nearly 1), while the existing literature addresses large
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m. The known results give good-distance polynomial evaluation codes with inverse polynomial
rate when m and d are both large, and rate nearly 1 when d is constant and m is large.

Recall the setup. Let k = (m+d
d ), which is the dimension of the space of m-variate polynomi-

als of degree at most d. We are seeking evaluation domains where such polynomials still have
constant fraction distance on this domain, with the size of the evaluation domain being as small a
function of k as possible.

There is a long line of work (Chen-Kao [CK97], Lewin-Vadhan [LV98], Agrawal-Biswas [AB03],
Klivans-Spielman [KS01]) studying pseudorandom generators against low degree polynomials
over large fields using few random bits. The fundamental (and very general) result of Klivans and
Spielman on fooling sparse polynomials from this line of work yields explicit evaluation sets for

m-variate degree-d polynomials of size (m+d
d )

O(1)
= kO(1). When m = d for example, this gives

a multivariate polynomial evaluation code with block-length kO(1), while the evaluation domains
coming from the Schwartz-Zippel lemma would have to have size dm = kΩ(log k). These results
require the field size to be very large (at least (m+d

d )).
Another line of work exploiting deeper algebraic geometric properties of polynomials over

large fields gives interesting evaluation sets over fields of moderately large size. These works by
Bogdanov [Bog05], Derksen-Viola [DV22] and Dwivedi-Guo-Volk [DGV24] lead to explicit eval-
uation sets of size kO(1) when the field size is poly(d, n) (this can also work over slightly smaller
fields, giving slightly larger explicit evaluation sets).

In the other extreme setting of parameters, when d = O(1), m is large and the field is small (e.g.
F2), there is another approach to this problem7 using sumsets of epsilon-biased sets. Here the re-
sult of Dvir-Shiplka [DS11] and Viola [Vio08] (using a key construction of Bogdanov-Viola [BV10],
see also Lovett [Lov08]) give explicit evaluation sets of size (1 + ε)k. There is also an elegant
decoding algorithm for these codes, given by Dvir and Shpilka [DS11].

We also mention a classical coding theory approach to constructing evaluation sets for the
setting m = 2, based on Algebraic Geometry codes. If we take the F-points of an irreducible
degree d + 1 curve in the plane, the number of points where a bivariate polynomial Q(X1, X2)

of degree at most d can vanish on C is at most d · (d + 1) (by Bezout’s theorem). Thus, if we
take n = (1 + Ω(1))d2 points on C as our evaluation domain, we guarantee that polynomials of
degree d have positive fraction distance on this domain. Note, however, that this argument cannot
achieve rates ≥ 1/2, and is thus comparable to the Schwartz-Zippel approach for m = 2.

A very interesting recent work by Dinur, Liu and Zhang [DLZ23] gave new constructions of
constant query locally testable codes of subconstant rate using the explicit description of high
dimensional expanders using finite field geometry, and with Reed-Solomon “inner codes” in a

7To be precise, here we look for evaluation domains in Fm
q for polynomials of total degree d and individual degree

at most q− 1: the individual degree constraint is natural because points in Fm
q cannot witness the nonzeroness of the

polynomials Xq
i − Xi. For this setting, k is taken to be the dimension of this space of polynomials, and may be smaller

than (m+d
d ).
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Tanner code like construction. Our GAP codes can be viewed through a similar lens, but with the
complete m-dimensional complex in place of the HDX.

Another interesting recent line of work is by Bafna, Srinivasan and Sudan [BSS20] and Amireddy,
Srinivasan and Sudan [ASS23], who studied the local properties of multivariate polynomial codes
evaluated on product sets. These gave the first examples of nontrivial locality for multivariate
polynomial evaluation codes which are not evaluated on the full Fm. Our GAP codes give another
such example (but only for local testability).

We close by mentioning two nice open problems.

1. Are there explicit polynomial evaluation codes of rate and relative distance both Ω(1) when
m and d are both large?

2. By a small variant of the argument of Saraf-Yekhanin [SY11], a random choice of evaluation
points in Fm for the space of polynomials of degree at most d will achieve near-optimal
tradeoff of R + δ = 1 − o(1), provided |F| > ω(d). Thus, there are better multivariate
polynomial evaluation codes out there, even for m = 2. We think finding an explicit one of
them for which there is efficient decoding (and possibly locally decoding and locally testing)
is a very interesting problem for future work.

Organization: The rest of this paper is organized as follows. We set up the necessary notation
and prelims in Section 2. We describe our construction of high rate codes in Section 3, followed by
a more detailed discussion on the ideas underlying the construction and properties of CAP codes
in Section 4. We describe the decoding algorithms for CAP codes in Section 5 and GAP codes in
Section 6. We prove the local testability of GAP codes in Section 7.

2 Notation and preliminaries

Notation

Throughout the paper, we use F to denote a field. We use X, Y, Z etc in capitals to denote for-
mal variables, and x, y, z etc in small to denote field elements in F. We use bold for vectors and
subscripts to denote the entries. For example, x ∈ Nm, and the entries of x are x1, ..., xm. Let
N<k = {0, 1, ..., k− 1}. The arity of bold letters will be clear from the context. For a polynomial
f ∈ F[X1, ..., Xm], Z( f ), N( f ) be the set of zeros and non-zeros of f in F.

For any alphabet Σ, natural number n ∈ N, and strings a, b ∈ Σn, ∆(a, b) denotes the Ham-
ming distance between a and b, i.e. the number of coordinates on which a and b disagree with
each other, and δ(a, b) denotes their fractional Hamming distance, i.e. δ(a, b) = ∆(a, b)/n.

12



Error-correcting codes

The following are standard definitions in coding theory. A set C ⊂ Σn is called an error-correcting
code of distance at least d if for any c, c′ ∈ C, ∆(c, c′) ≥ d. The relative distance, d/n, typically
denoted as δ(C) or simply δ where C is clear from the context. The dimension of the code is
log|Σ|(C). The rate of the code, typically R, is equal to log|Σ|(C)/N.

Codes based on polynomial evaluation

This paper is focused on error-correcting codes obtained from polynomial evaluations. The mes-
sage space is the space of m-variate polynomials of total degree at most d, and a polynomial, f , is
encoded by recording the evaluations of f on a subset S ⊂ Fm. We think of the list of evaluations
( f (x))x∈S as a function from S to F. More formally, we have the following definition.

Definition 2.1 (Polynomial Evaluation Code). The m-variate Polynomial Evaluation Code of degree d
on a set S, denote Em,d,S is the set of evaluations of (total) degree d, m-variate polynomials on the set S. That
is

Em,d,S = { f : S→ F : f ∈ F[X1, ..., Xm], deg( f ) ≤ d}

♢

Important examples of polynomial evaluation codes include Reed-Solomon codes, where m =

1, and Reed-Muller Codes, where S is a m-dimensional grid.

Definition 2.2 (Reed-Solomon Code). For any d, n ∈ N with d < n, let RSd,n = E1,d,U where U is
some subset of F of size n. ♢

Definition 2.3 (Reed-Muller Code). For any d, n, m ∈ N with d < n, m ≥ 1, let RM(m, d, n) =

Em,d,Um , where U is some subset of F of size n. ♢

Let C be a polynomial evaluation code where the evaluation set is S. Define an error and
erasure pattern to be a function e : S → (F ∪ {?})N . When added to a codeword, the symbol ?
corresponds to erasures, and non-zero entries of e correspond to errors. Define the weight of an
error and erasure pattern to be wt(e) = 2|{x ∈ S : e(x) ̸= 0, e(x) ̸=?}| + |{x ∈ S : e(x) =?}|;
i.e., the weight of an error and erasure pattern is twice the number of errors plus the number of
erasures. We call e an error pattern when there are no erasures.

Let A be an algorithm and C be a code. We say that A decodes C from error (and erasure)
patterns of weight at most D if for any error (and erasure) pattern e of weight at most D, and any
codeword c ∈ C, A returns c on input c + e.

Hitting sets and interpolating sets

Definition 2.4 (Hitting sets). A subset S ⊆ Fm is called a hitting set for m-variate polynomials of degree
d if every non-zero polynomial f of degree at most d in F[X1, ..., Xm], there is some point x ∈ S such that
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f (x) ̸= 0. ♢

Definition 2.5 (Interpolating sets). A set S ⊆ Fm is an interpolating set for m-variate polynomials of
degree d if for all functions f : S→ F, there is a unique polynomial, g ∈ F[X1, ..., Xm] of degree at most d
such that for all a ∈ S, f (a) = g(a). ♢

Concatenated Codes and GMD decoding

A key step in our decoding algorithms is to express CAP and CAP codes as concatenated codes.
This allows us to leverage known algorithms for decoding concatenated codes such GMD algo-
rithm of Forney [For66].

Definition 2.6. Let Cout : ΣK
1 → ΣN

2 be a code with block length N over an alphabet Σ2 of size Q. Let
Cin = (C1, C2, . . . , CN) be an N-tuple of codes where for each i, the code Ci is of the form Ci : Σ2 → Σn

3 ,
i.e. the message space is identified with the alphabet Σ2 of Cout and Ci maps each such alphabet to a vector
of length n over a new alphabet Σ3. The concatenation of Cout with Cin, denoted as Cin ◦ Cout is a code that
maps messages in the space ΣK

1 to vectors of length (Nn) over the alphabet Σ3, and the encoding maps a
message m ∈ ΣK

1 to the codeword

Cin ◦ Cout(m) = (C1(Cout(m)1), C2(Cout(m)2), . . . , CN(Cout(m)N)) ,

where,

Cout(m) = (Cout(m)1, Cout(m)2, . . . , Cout(m)N) ∈ ΣN
2 .

♢

We now state a result of Forney for decoding concatenated codes up to half their minimum
distance that will be crucially used in our proofs.

Theorem 2.7 (Forney [For66]). Let Cout, Cin = (C1, C2, . . . , CN) be codes and Cin ◦Cout be their concate-
nation as in Definition 2.6. Suppose each inner code Ci has distance d, and Cout has distance D. Suppose
there exists algorithms A1, ..., AN , Aout such that

• For every i, Ai decodes Ci from error patterns of weight less than d.

• Aout decodes Cout from errors and erasures patterns of weight less than D

Then, there is a deterministic algorithm for (unique) decoding of the concatenated code Cin ◦Cout from error
patterns of weight less than dD. Furthermore, the algorithm makes at most one function call to each Ai, at
most O(N) function calls to the algorithm Aout, and performs at most poly(N, n, log(|Σ1| · |Σ2| · |Σ3|))
additional computation.
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3 Explicit High Rate Polynomial Evaluation Codes

The following technical lemma gives a general connection between robust hitting sets for poly-
nomials of degree d and hitting sets for polynomials of slightly higher degree. The lemma will
give us a clean and direct way of analyzing our constructions of high-rate polynomial evaluation
codes.

Lemma 3.1. Let m, d, D be natural numbers with D > d and F be any field. Let S be a subset of Fm that is
a hitting set for polynomials of degree D. Then, for any non-zero m-variate polynomial f of degree at most
d, the number of non-zeroes of f in the set S is at least (D−d+m

m ).

Proof. The proof of the lemma is via an instantiation of the polynomial method.
Let f be an arbitrary non-zero polynomial on m variables and degree d and Tf ⊆ S denote the

set of non-zeroes of f in the set S. Suppose |Tf | < (D−d+m
m ). The next general interpolation claim

exploits this assumption.

Claim 3.2. If |Tf | < (D−d+m
m ), then there is a non-zero polynomial g on m variables and degree at most

(D− d) that vanishes everywhere on Tf .

Proof of Claim 3.2. For the proof of the claim, we think of the coefficients of g as formal variables
and consider the system of homogeneous linear equations obtained by imposing the constraints
that g vanishes at every point in Tf . The number of variables in this linear system equals the
number of monomials of degree at most (D− d) on m variables, i.e., (D−d+m

m ) and the number of
homogeneous linear constraints equals the size of Tf , which by our assumption is strictly less than
(D−d+m

m ). Thus, the number of variables in this homogeneous linear system is strictly more than
the number of constraints imposed. Hence, the system has a non-zero solution.

With the g given by the above claim in hand, consider the polynomial h = f × g. Clearly, the
degree of h is at most D, and h is non-zero since g and f are non-zero. Moreover, since f vanishes
on S \ Tf (by definition of Tf ) and g vanishes on Tf (by construction of g), we get that h vanishes
on all points in the set S, which contradicts the fact that S is a hitting set for m-variate polynomials
of degree at most D. Thus, the size of the set Tf must be at least (D−d+m

m ).

We now discuss the construction of two sets of evaluation points that give us polynomial
evaluation codes of high rate and constant relative distance (when the number of variables is
constant). From Lemma 3.1, we get that one way of doing this is to construct hitting sets of small
size. Two such constructions of hitting sets were given by Bläser & Pandey [BP20]. In fact, their
hitting sets are optimal, in the sense that their hitting set for m-variate degree D polynomials has
size equal to (m+D

D ) (in other words, these hitting sets are interpolating sets). In the next section,
we discuss these constructions and invoke them with Lemma 3.1 to get our codes.
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3.1 A Geometric Construction

To describe this construction, we rely on the notion of hyperplanes in general position that we
now define. Recall that a hyperplane H in Fm is just an affine subspace of co-dimension one. In
other words, there is a non-constant linear polynomial L(X1, X2, . . . , Xm) := α0 + ∑m

i=1 αiXi, where
each αi is a field element such that

H = {(b1, . . . , bm) ∈ Fm : L(b1, . . . , bm) = 0} .

We say that a set H = {H1, H2, . . . , Ht} of hyperplanes in Fm are in general position if for every
subset of hyperplanes in H of size m intersect in one point, and no subset of hyperplanes in H of
size m + 1 intersect.

Given any collection of D + m hyperplanes in general position in Fm, Bläser & Pandey gave a
construction of hitting sets of optimal size for m-variate degree D polynomials. It is not hard to
show that this set of points is, in fact, an interpolating set (and not just a hitting set) for degree D
polynomials on m variables. This stronger property turns out to be useful for our proofs in this
paper.

Theorem 3.3 (Bläser & Pandey [BP20]). Let m, D be natural numbers, F be a field, and let H be a set
of size (m + D) hyperplanes in general position in Fm. Let T ⊆ Fm be the set of all points obtained by
intersecting some m elements of H. Then, T is of size (m+D

m ) and T is an interpolating set for m-variate
polynomials of degree D over F.

We give a quick proof in Appendix C, which is slightly simpler than the already simple proof
in [BP20].

We refer to codes obtained from hitting sets obtained from Theorem 3.3 as Geometric Arrays
for Polynomials (GAP).

Definition 3.4 (GAP). Let t > 0, and F be a finite field of size at least t. Define GAPm,d,t = Em,d,T, where
T is the set of m-wise intersections of some t hyperplanes in general position. I.e., GAPm,d,t is the set of
evaluations of m-variate polynomials of total degree at most d on T. To specify a specific set of t hyperplanes,
H, we write GAPHm,d,t ♢

We now combine Theorem 3.3 and Lemma 3.1 to obtain the following theorem.

Theorem 3.5. Let m, d, t ∈ N with t > m + d. Then GAPm,d,t has distance at least (t−d
m ). Furthermore,

for any ε > 0, if t = m + d + εd− 1, then rate of GAPm,d,t is least
( 1

1+ε

)m and relative distance is at least(
ε

1+ε

)m.

Proof. Let C = GAPm,d,t. LetH be a set of t hyperplanes in general position, and let T be the set of
their m-wise intersections.
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By Theorem 3.3, T is a hitting set for polynomials of degree t − m. Let f be any m-variate
polynomial of degree at most d. By Lemma 3.1, the number of non-zeros of f in T is at least
(t−m−d+m

m ) = (t−d
m ). Therefore, since C is linear, C has distance at least (t−d

m ).
Now let t = m + d + εd. We will now compute the rate, R, and relative distance, δ. Recall that

C has dimension (m+d
m ), and block length ( t

m). Thus,

R =
(m+d

m )

(m+d+εd
m )

=
(m + d)!

m!d!
· m!(d + εd)!
(m + d + εd)!

=
m−1

∏
i=0

(m + d− i)
(m + d + εd− i)

.

Now, using the observation that for all i ≤ m, (m+d−i)
(m+d+εd−i) is at least 1/(1 + ε), we get that R ≥( 1

1+ε

)m
. Then,

δ =
(m+εd

m )

(m+d+εd
m )

=
(m + εd)!
m!(εd)!

· m!(d + εd)!
(m + d + εd)!

=
m−1

∏
i=0

(m + εd− i)
(m + d + εd− i)

.

We now observe that for all i ≤ m, (m+εd−i)
(m+d+εd−i) is at least ε/(1 + ε). Thus, δ ≥

(
ε

1+ε

)m, as required.

Remark 3.6. The distance and rate trade-off for GAP codes is R1/m + δ1/m ≥ 1. ♢

In comparison, the trade-off obtained by the standard Reed-Muller code, RMm,d,ℓ is R = (1−
δ)m/m!. Note that the rate of such codes are always bounded by 1/m!. By contrast, GAP codes
can have rate arbitrarily close to 1, while having constant relative distance.

This construction can be instantiated using any explicit collection of hyperplanes in general
position8. For example, here is a classical construction of hyperplanes in general position coming
from Vandermonde matrices, which works over any sufficiently large field.

Observation 3.7 (The Vandermonde hyperplane family in general position, see eg. Bläser & Pandey
[BP20]). Let t, m be natural numbers with t ≥ m and let F be a field of size at least t. Let α1, α2, . . . , αt be
t distinct elements from the field F.

8which are equivalent to MDS codes.
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For i ∈ [t], let Hi ⊆ Fm be the hyperplane given by:

Hi := {(b1, . . . , bm) ∈ Fm : Lαi(b1, . . . , bm) = 0} ,

where for α ∈ F, Lα(X1, . . . , Xm) is the linear function given by:

Lα(X) := αm − αm−1X1 + αm−2X2 + · · ·+ (−1)m−1αXm−1 + (−1)mXm.

Then, the hyperplanes H1, H2, . . . , Ht are in general position in Fm.

The nonstandard choice of signs in the above construction is to enable the following elegant
description of the evaluation points of the associated GAP code. Viewing Fm as the space of
monic univariate polynomials of degree m (by associating the point (b1, . . . , bm) with the polyno-
mial Tm − b1Tm−1 + . . . + (−1)mbm ∈ F[T]), we get that the hyperplane Lα is simply the set of
monic polynomials that vanish at α. Then the intersection of m such hyperplanes {Lα : α ∈ J}
(where |J| = m) is simply the unique polynomial of degree m whose set of roots equals J – its
coefficients are thus the (signed) elementary symmetric polynomials evaluated at the elements of
J. Instantiating this, we get the following very clean description of the evaluation domain for a
GAP code.

Definition 3.8 (Vandermonde GAP code evaluation domain). Let A ⊆ F be a set of size t. Define the
evaluation domain:

SA,m = {(e1(a), e2(a), . . . , em(a)) | a = (a1, . . . , am), the ai are pairwise distinct elements of A}.

♢

Note that |SA,m| = ( t
m). By the previous discussion, evaluating polynomials of degree d on

SA,m yields a code of distance (t−d
m ).

3.2 A Construction Based on Simplices

We now give another construction of a polynomial evaluation code with parameters matching
those of the construction in Theorem 3.5. The overall framework of analysis will also remain the
same and rely on the use of Lemma 3.1. The main difference is that we instantiate this framework
using an alternative construction of hitting sets for polynomials based on taking the hitting set to
be all points in an appropriate simplex. Let

Λm,D = {(x1, ..., xm) ∈Nm : xi ∈N and x1 + x2 + ... + xm < D}

be the m-dimensional simplex of side length D. This construction of hitting sets is also described
in the work of Bläser & Pandey [BP20]. We start with a statement of their result.
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Theorem 3.9 (Bläser & Pandey [BP20]). Let m, D be natural numbers and F be a field of characteristic
greater than D or zero. Then, Λm,D+1 is of size (m+D

m ) and is a hitting set for m-variate polynomials of
degree D over the field F.

Since the characteristic of F is either zero or larger than D, we can view the set {0, 1, . . . , D} as
a subset of F in a natural sense. Thus, the set Λm,D+1 as constructed above is indeed a subset of
Fm.

Instantiating this hitting/interpolating set with Lemma 3.1, we immediately get another family
of multivariate polynomial evaluation codes with high rate. In fact, investigating the combination
of the proof of Theorem 3.9 from [BP20] and Lemma 3.1 together, we develop a new “Schwartz-
Zippel lemma theory”, which is able to analyze the distance of polynomial codes evaluated over a
wide family of combinatorial shapes – simultaneously generalizing the original Schwartz-Zippel
Lemma for general product sets and the distance bound that we just saw for the above rigid
{0, 1, . . . , D} simplex. See the statement in subsubsection 1.1.1.

For now, we will simply state a special case: combinatorial simplices.

Definition 3.10 (Combinatorial Simplex). Let A ⊆ F with |A| = ℓ. Let A = {a0, a1, . . . , aℓ−1} be an
arbitrary ordering of A. Define:

Λm,A = {(ax1 , ax2 , . . . , axm) | xi ∈N with ∑
i

xi < ℓ}.

♢

In Section 4 we show that combinatorial simplices are good evaluation domains for polyno-
mials. We refer to the codes obtained from combinatorial simplices as Combinatorial Arrays for
Polynomials (CAP) codes.

Definition 3.11 (CAP). Define CAPm,d,ℓ = Em,d,S, where S = Λm,A for some set A of size ℓ. That is,
CAPm,d,ℓ is the set of evaluations of m-variate polynomials of degree at most d on the combinatorial simplex
of A, where |A| = ℓ. ♢

We again have that these codes have good rate and distance, with rate able to approach 1 when
m = O(1).

Theorem 3.12. Let m, d, ℓ ∈N with ℓ > d. Then CAPm,d,ℓ has distance at least (ℓ−d+m−1
m ). Furthermore,

for any ε > 0, if ℓ = d + εd, then rate of CAPm,d,ℓ is least
( 1

1+ε

)m and relative distance is at least
(

ε
1+ε

)m.

The proof of the distance and the calculations of rate and relative distance are the same as that
of the proof of Theorem 3.5.
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4 Zero Patterns of Polynomials

In this section we develop an alternate approach to the distance of CAP codes by understanding
the zero patterns of polynomials. Though this method requires a bit more effort, the technique we
develop leads to a generalized Schwartz-Zippel lemma, and is able to prove the distance proper-
ties of a wider variety of evaluation sets. It will also be the foundation for our efficient decoding
algorithms for CAP codes.

As a particular application of this more general theory, we give an example in Section 4.5
of an evaluation set in 2-dimensions obtaining better rate versus distance trade-offs than both
CAP/GAP codes and traditional RM codes for some settings of rate and distance.

Since polynomial evaluation codes are linear, finding the distance of a polynomial evaluation
code is equivalent to finding lower bounds on the minimum number of non-zeros in S of any
non-zero polynomial of total degree d. Alternatively, one can find upper bounds on the number
of zeros in a set S. In the univariate case, the degree mantra states that univariate polynomials of
degree at most d have at most d zeros. When the evaluation set is the grid, we have the Schwartz-
Zippel lemma.

Thus, in order to prove the distance properties of polynomial evaluation codes on more general
sets, we will study the zero patterns of polynomials and prove a generalization of the Schwartz-
Zippel lemma. We state the The Schwartz-Zippel Lemma below for reference.

Lemma 4.1 (Schwartz-Zippel). Let f ∈ F[X1, ..., Xm] be any non-zero polynomial of total degree at most
d, let S ⊂ F. Then |Z( f ) ∩ Sm| ≤ d|S|m−1

Throughout this section, we identify F = Fq and N in the following way. Suppose
{

α0, ..., αq−1
}

are the elements of F, think of k ∈ N as αk. Note that the mapping of αi to elements of F is irrel-
evant since we will only be working on the indices. We will always assume F is large enough so
that when we write N<ℓ, there are indeed at least ℓ distinct elements in F. Furthermore, we will
write N = N<q = F.

4.1 The Bivariate Case

We start by considering the bivariate case. The standard proof of the Schwartz-Zippel Lemma
proceeds by induction on m. We will present the first inductive step (proving the bivariate case
from the univariate case), and observe that it not only gives bounds on the number of zeros but
also provides restrictions on their locations in the grid.

Let dY be the Y degree of f (i.e., the maximum power of Y in any monomial with non-zero
coefficient). Then we can write f (X, Y) = ∑dY

i=0 fi(X)Yi, where fi is a univariate polynomial in X
of degree at most d− i. Then, consider the number of zeros in each column. I.e., for each x, how
many zeros are there in {(x, y) : y ∈ S}? Let x ∈ S, there are two cases.
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Figure 1: Possible locations of zeros of a bivariate polynomial, f (X, Y) of degree 10, Y-degree 3,
evaluated on N<15 ×N<15. Zeros are denoted with black squares.

1. If fdY(x) ̸= 0, then the univariate polynomials f (x, Y) is non-zero (since the coefficient for
YdY is non-zero). Furthermore, f (x, Y) has degree at most dY, so there are at most dY zeros
in the xth column.

2. fdY(x) = 0, then f (x, Y) may be identically zero, so the entire xth with the column could be
zero.

The proof of the Schwartz-Zippel Lemma then proceeds to bound the number of zeros as
follows. Since fdY has degree at most d− dY, case 2 happens for at most d− dY values of x, and
thus the total number of zeros is at most

|S|(d− dY) + dY(|S| − d + dY) = d|S|+ dY(dY − d) ≤ d|S|.

Upon close inspection, the proof not only bounds the number of zeros but also proves that the
zeros can only occur in a certain pattern. In particular, there exists a ∈ {0, 1, 2, ..., d} (which is the
Y degree of f ), such that at most d− a columns are entirely zero, and the rest of the column have
at most a zeros. Figure 1 shows an example.

To demonstrate the power of this structure, consider the following set.

Example 4.2 (Triangular Evaluation Set). T = Λ2, 3
2 d = {(x, y) ∈N×N : x + y < 3

2 d}. ♢

Let f ∈ F[X, Y] be a polynomial of total degree at most d, how many points in T can f vanish?
Note that T is contained in the grid (N< 3

2 d)
2. Applying the Schwartz-Zippel Lemma directly to

this grid, we get that there are at most 3
2 d2 zeros. By a stars and bars argument, |T| = (

3
2 d
2 ) ≈

9
8 d2 ≤
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Figure 2: A possible zero pattern (same as Figure 1) overlayed with the triangle evaluation set
from Example 4.2 in orange.

3
2 d2. Thus, the Schwartz-Zippel lemma does not rule out the possibility that f vanishes entirely on
T.

Now, let’s consider the structure of the zeros. From the previous discussion, we know that
there exists some a ∈ {0, 1, ..., d} such that f vanishes on at most d− a of the columns, and has at
most a zeros on the remaining columns. Let C ⊂ S be the set of columns on which f vanishes.
Then the smallest value of x for which the xth column does not vanish is at most d− a (in the case
that C = {0, 1, ..., d− a− 1}). However, this column has at least 3

2 d− (d− a) = d/2 + a points in
T. Since f can vanish on at most a of these points, f must be non-zero on at least d/2 points in
this column. Extending this argument to the remaining columns, f must be non-zero on at least
(d/2) + (d/2− 1) + (d/2− 2) + ... + 1 ≈ d2/8 points in T. This example is illustrated in Figure 2.

Slightly more generally, if we fix any ε > 0, and take T = {(x, y) ∈ S : x + y ≤ (1 + ε)d},
we have that any degree d polynomial is non-zero on at least ε2d2/2 points. As a polynomial
evaluation code, E2,d,T has rate 1

(1+ε)2 , and relative distance ε2

(1+ε)2 . Thus, taking ε to be small, we
can get codes with rate arbitrarily close to 1, with constant distance. Notice that this recovers
Theorem 3.12 for m = 2.

In the next section, we formalize the idea of zero patterns and generalize it to m variables.

4.2 The General Case

Slicing. To facilitate working over high-dimensional grids, we will introduce some notation for
slices. Let S ⊂Nm. For x ∈Nm−1, and i ∈ J, define Sx,i = {a ∈N : (x1, ..., xi−1, a, xi, ...., xm−1) ∈ S},
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and call Sx,i the slice of S at x in the i direction. Note that to define a subset of Nm, it suffices to
specify all the slices in the i direction for some i ∈ [m].

We define a set of zero patterns, Zm,d.

Definition 4.3 (Zm,d). Zm,d is a subset of ℘(Nm) and is defined recursively as follows. Z0,d = {∅}, and
∀E ⊂ Nm, E ∈ Zm,d if and only if there exists a ∈ {0, 1, ..., d}, and D ∈ Zm−1,d−a such that for all
x ∈Nd−1, if x ∈ D, then Ex,m = N, and if x /∈ D, |Ex,m| = a1. ♢

The following lemma shows that that for every non-zero polynomial f on m variables with
total degree at most d, the zeros of f are a contained in some set in Zm,d.

Lemma 4.4 (Zero Patterns). Let f be a non-zero polynomial on m variables with total degree at most d.
Let Z( f ) be the set of zeros of f on Nm. Then there is some E ∈ Zm,d such that Z( f ) ⊂ E.

Proof. By induction on m.
Base case. For m = 0, f is a polynomial on zero variables and thus a constant. Since f is

non-zero, it has no zeros; hence, Z( f ) = ∅.
Inductive step. Assume the claim is true for m − 1. Let f ∈ F[X1, ..., Xm] be a non-zero

polynomial with total degree at most d. Let dm ∈ {0, 1, ..., d} be the Xm degree of f , and write
f = ∑dm

i=0 fi(X1, ..., Xm−1)Xi
m. Note that fdm is a non-zero polynomial on m− 1 variables of total de-

gree at most d− dm. Thus, the induction hypothesis applies, and there exists some D ∈ Zm−1,d−dm

such that Z( fdm) ⊂ D.
We’ll construct E by its m directional slices as follows. For x ∈ D, we take everything - i.e.,

Ex,m = N. For x /∈ D, f (x, Xm) is a non-zero univariate polynomial of degree dm, and thus has at
most dm zeros. Thus, |Z( f )x,m| ≤ dm. So for each x /∈ D, we set Ex,m to some subset containing
Z( f )x,m of size exactly dm.

Then, E ∈ Zm,d and E contains Z( f ), so we’re done.

4.3 Shifting

To get a better handle on Zm,d, we will define a shifting operation and find that, after shifting,
elements of Zm,d are very easy to describe.

Let’s again think back to the bivariate case. Suppose f ∈ F[X, Y] is any polynomial of total
degree at most d and Y degree dY. We earlier found that there are at most d− dY columns where
f was completely zero, and the remaining columns had at most dY zeros each. Let C ⊂ N be the
subset of entirely zero columns. Consider an operation that first pushes zeros in each column as
far down as possible. This has no effect for columns what were already completely zeros, but now,
for each other column, the zeros are now contained within the first dY rows. Next, for each row,
push all the zeros as far left as possible. Since there are now at most d − dY columns that have

1Note that we could have had replaced this condition with |Ex,m| ≤ a, but having |Ex,m| exactly equal to a will make
some later proofs slightly cleaner.
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Figure 3: Example of shifting the zeros from Figure 2

non-zero values above the dYth row, we have that all of the zeros are contained in the first dY rows
and d− dY columns. This shifting procedure is shown in Figure 3.

We now formally define the ith shifting operator, σi(Z), that pushes points down in the i di-
rection. Define σi(Z) by its slices in the i direction. For any x ∈Nm−1,

(σi(Z))x,i = N<|Zx,i |.

That is, we replace every slice in the i direction with an initial segment of the same size as the
original slice.

We now prove some basic facts about σi.

Lemma 4.5 (Properties of σi).

(I) σi(Z) can be obtained by decreasing the i coordinate of zero or more elements of Z.

(II) For any i ∈ [m]. σi(N
m) = Nm

(III) Let i, j ∈ [m] with i ̸= j, and A, B ⊂Nm, and suppose A and B are disjoint in a coordinate i, that is
{ai : a ∈ A} ∩ {bi : b ∈ B} = ∅, then if j ̸= i, σj(A ∪ B) = σj(A) ∪ σj(B).

(IV) Let j ∈ [m− 1], and A ⊂Nm−1 and C ⊂N. Then σj(A× C) = σj(A)× C.

Proof.

(I) For any x ∈ Nm−1, (σi(Z))x,i is the initial segment of N of size |Zx,i|. Let z0, z1, ... be the
elements of Zx,i in ascending order. Then f : Zx,i → σi(Z)x,i defined by f (zj) = j is always
such that f (x) ≤ x.

(II) For every x ∈Nm−1, (Nm)x,i = N. Thus, (σi(N
m))x,i = N, and σi(N

m) = Nm.

(III) Let x ∈ Nm−1. Since A and B are disjoint in some coordinate i, at most one of Ax,j, and
Bx,j can be non-empty (otherwise, there would be elements in A and B that both have
i coordinate xi). Thus, Ax,j ∪ Bx,j is either Ax,j or Bx,j, and consequently, |Ax,j ∪ Bx,j| =
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max(|Ax,j|, |Bx,j|). We now show σj(A ∪ B) and σj(A) ∪ σj(B) are equal by comparing their
j-directional slices.

(σj(A) ∪ σj(B))x,j = N<|Ax,j| ∪N<|Bx,j|

= N<max(|Ax,j|,|Bx,j|)

= N<|Ax,j∪Bx,j|

= (σj(A ∪ B))x,j

(IV) Let c ∈ N, and x ∈ Nm−2. Note that the slice at x in the jth direction for A is the same as
the slice at [x1, ..., xm−2, c] in the jth direction for A × {c} since all we changed was to set
the last coordinate to c for each element of A. Thus, σj(A× {c}) = σj(A)× {c}. Then note
that A× C =

⋃
c∈C A× {c}. Each of these sets in the union is disjoint last coordinate, so by

Lemma 4.5(III),

σj(A× C) =
⋃
c∈C

σj(A× {c}) =
⋃
c∈C

σj(A)× {c} = σj(A)× C

Let d ∈ Nm, and define L(d) = {x ∈ Nm : x1 < d1 ∨ x2 < d2 ∨ ... ∨ xm < dm}. We use L to
denote this set since, in the two-dimensional case, it has an “L” shape. We now claim that every
element of Zm,d looks like L(d) for some d after shifting in every coordinate.

Lemma 4.6. Let σ1,...,m = σ1 ◦ σ2 ◦ ... ◦ σm. For every E ∈ Zm,d, σ1,...,m(E) = L(d) for some d ∈
{0, 1, ..., d}m with d1 + d2 + ... + dm = d.

Proof. By induction on m. To make the base case work nicely, define the empty concatenation of
operators to be the identity, and define L([]) = ∅

Base case. For m = 0, E = ∅ = L([])
Inductive Step. Suppose the claim is true for m− 1, and let E ∈ Zm,d. Then by the recursive

definition of Z , there exists some dm ≤ d, and D ∈ Zm−1,d−dm such that Ex,m = N for x ∈ D, and
|Ex,m| = dm for x /∈ D. Then,

σm(E) = D×N∪ D×N<dm

Since D and D partition Nm−1, we have that every x ∈ Nm with xm < dm is in σm(E). Thus, we
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can rewrite the set as D×N≥dm ∪Nm−1 ×N<dm . Plugging this in, we get

σ1,...,m(E) = σ1,...,m−1(D×N≥dm ∪Nm−1 ×N<dm)

= σ1,...,m−1(D×N≥dm) ∪ σ1,...,m−1(N
m−1 ×N<dm)

= σ1,...,m−1(D)×N≥dm ∪ σ1,...,m−1(N
m−1)×N<dm

= σ1,...,m−1(D)×N≥dm ∪Nm−1 ×N<dm .

The second line follows from the fact that D ×N≥dm , and Nm−1 ×N<dm are disjoint in the m
coordinate, and σi for i < m does not change the m coordinate, and applying Lemma 4.5(III)
repeatedly. The third line follows from Lemma 4.5(IV), and the fourth from Lemma 4.5(II).

From the inductive hypothesis, there exists d ∈ {0, 1, ..., d}m−1 such that d1 + d2 + ... + dm−1 =

d− dm, and σ1,...,m−1(D) = L(d1, ..., dm−1). Substituting this back, we finally get

σ1,...,m(E) = L(d1, ..., dm−1)×N≥dm ∪Nm−1 ×N<dm = L(d1, ..., dm).

Also note that ∑m
i=1 di = dm + ∑m−1

i=1 di = dm + d− dm = d, and this completes the proof.

4.4 d-robustness

Since we want to prove upper bounds on the number of zeros in S, we require that S satisfies some
property to ensure that the shifting operation does not move zeros out of the set. Shifting can be
viewed as decreasing the values of certain coordinates (Lemma 4.5(I)), so a very natural definition
is the following.

Definition 4.7 (Downward Closed). S ⊂ Nm is downward closed if for all x, y ∈ Nm, with x1 ≤ y1,
x2 ≤ y2,...,xm ≤ ym, if y ∈ S, then x ∈ S. In other words, if x is at most y in every coordinate, and y ∈ S,
then x ∈ S. ♢

Given, this definition, we see that shifting cannot decrease the size of the intersection with a
downward closed set.

Lemma 4.8. Let S, Z ⊂Nm such that S is downward closed. Then for any i ∈ [m],

|S ∩ Z| ≤ |S ∩ σi(Z)|

Our next lemma bounds the number of zeros of an m-variate polynomial can have on a down-
ward closed set.

Lemma 4.9. Let f ∈ F[X1, .., Xm] be of total degree d, and S be a downward closed set. Then there exists
d ∈ {0, 1, ..., d}m such that ∑m

i=1 di = d, and

|Z( f ) ∩ S| ≤ |L(d) ∩ S|
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Proof. By Lemma 4.4, Z( f ) ⊂ E for some E ∈ Zm,d. By Lemma 4.6, we have that there is some
d ∈ {0, 1, ..., d}m, with ∑m

i=1 di = d, such that σ1,...,m(E) = L(d). Then, we have

|Z( f ) ∩ S| ≤ |E ∩ S| (Z( f ) ⊂ E)

≤ |σ1,...,m(E) ∩ S| (Lemma 4.8)

= |L(d) ∩ S|

We also state the corresponding bound for non-zeros, a direct result of the previous lemma. For
d ∈ {0, 1, ..., d}m, define H(d) = L(d). I.e., H(d) is the set of points x in which every coordinate xi

is at least di.

Lemma 4.10. Let f ∈ F[X1, .., Xm] be of total degree d, and S be a downward closed set. Then, there exists
d ∈ {0, 1, ..., d}m such that ∑m

i=1 di = d, and

|N( f ) ∩ S| ≥ |H(d) ∩ S|

Now, we define a combinatorial property of a set S that guarantees that any m-variate polyno-
mial of total degree at most d will have at least some number of non-zeros on S.

Definition 4.11 (d-robustness of a downward closed set). Let S ⊂ Nm be downward closed. Define
the d-robustness of S, as follows.

Πd(S) = min

{
|H(d) ∩ S| : d ∈Nm,

m

∑
i=1

di = d.

}

The relative d-robustness is then πd(S) = Πd(S)/|S|. ♢

In words, Πd(S) ≥ B if for any choice of d such that ∑m
i=1 di = d, at least B elements x in S are

such that xi ≥ di for all i ∈ [m].
Here are several useful facts about d-robustness

Remark 4.12. For any downward closed S. Πd(S) = |S| −max {|L(d) ∩ S| : d ∈Nm, ∑m
i=1 di = d}.

Additionally, the following conditions are equivalent

• πd(S) ≥ δ

• For every d with ∑m
i=1 di = d, Prx∼S[x ∈ H(d)] ≥ δ

• For every d with ∑m
i=1 di = d, Prx∼S[x ∈ L(d)] ≤ 1− δ

♢
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Following the definition of d-robustness, and Lemma 4.10, we have the following bounds on
the number of zeros/non-zeros in sets with d-robustness δn.

Lemma 4.13 (Zeros in d robust sets). Let f ∈ F[X1, ..., Xm] be a polynomial of total degree d. Let S be
downward closed of size n of size n such that Πd(S) ≥ δn. Then, we get the following equivalent results:

1. |N( f ) ∩ S| ≥ δn.

2. Prx∼S[x ∈ N( f )] ≥ δ.

3. |Z( f ) ∩ S| ≤ (1− δ)|S|.

4. Prx∼S[x ∈ Z( f )] ≤ 1− δ.

A direct consequence of Lemma 4.13 (versions 1, 2) is that polynomial evaluation codes on
downward closed sets have distance.

Corollary 4.14 (Distance of polynomial evaluation codes). Let m, d ∈ N with m ≥ 1, and let S ⊂
Nm. If πd(S) ≥ δ, then Em,d,S has relative distance at least δ.

Thus, to compute the distance of a polynomial evaluation code where the evaluation set is
downward closed, we just need to compute the d-robustness of the set. A direct consequence of
Lemma 4.13 (versions 3, 4) is a generalization of the Schwartz-Zippel Lemma.

Corollary 4.15 (Schwartz-Zippel for downward closed sets). Let m, d ∈ N with m ≥ 1, and let S ⊂
Nm. Let f ∈ [X1, ..., Xm] be a polynomial of total degree d, and suppose πd(S) ≥ δ. Then Prx∼S[ f (x =

0)] ≤ 1− δ, equivalently, |Z( f ) ∩ S| ≤ (1− δ)|S|.

To see that Corollary 4.15 is indeed a generalization of the Schwartz-Zippel lemma, calculate
d-robustness of the grid of side length ℓ, (N<ℓ)

m. Let d ∈ {0, 1, ..., d}m such that ∑m
i=1 di = d. We

have

Pr[x ∈ L(d)] = Pr[∃i ∈ [m].(xi < di)] ≤
m

∑
i=1

Pr[xi < di] =
m

∑
i=1

di/ℓ = d/ℓ .

Thus, (N<ℓ)
d has relative d-robustness 1− d/ℓ, and we have Pr[ f (x) = 0] ≤ d/ℓ, which is exactly

what is given by Schwartz-Zippel.
As an alternate proof that CAP codes have distance (Theorem 3.12), we can calculate the d-

robustness of simplex, Λm,ℓ. Let d ∈ {0, 1, ..., d− 1}m be such that ∑m
i=1 di = d. Then

Λm,ℓ ∩ H(d) = {x ∈Nm : xi ≥ di,
m

∑
i=1

xi < ℓ}

Then, f (x) = x− d is a bijection from Λm,ℓ ∩ H(d) to Λm,ℓ−d. Thus, the d-robustness of Λm,ℓ is(
m + ℓ− d− 1

m

)
.
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Combining this with Lemma 4.13, we get that CAPm,d,ℓ has distance a least (m+ℓ−d−1
m ), recovering

Theorem 3.12. Note that we get the same result for Λm,A, where A ⊂ F has size ℓ, by identifying
the elements of A with {0, 1, ..., ℓ− 1} using any ordering of the elements in A.

4.5 The step evaluation set

We can also use Lemma 4.13 to prove that other evaluations sets provide codes with good distance.
For example, in this section, we show an evaluation set beating both the grid and the simplex for
certain values of δ. The evaluation set is Step(ℓ) = {(x, y) ∈N<ℓ ×N<ℓ : x < ℓ/2∨ y < ℓ/2}.

Claim 4.16 (Step Evaluation Set). E2,d,Step(ℓ) has relative distance 2
3 (1− d/ℓ), and rate at least 2d2

3ℓ2 .

Proof. First we calculate the rate. Note that |Step(ℓ)| = 3
4ℓ

2, so the rate of the code is (d+2
2 )

3
4 ℓ

2 ≥ 2d2

3ℓ2 . To

calculate the distance, we find the d-robustness of Step(ℓ), and apply Corollary 4.14. To find the
πd(Step(ℓ)), we study the size of Step(ℓ) ∩ L(a, d− a) for each a ∈ {0, 1, ..., d}. WLOG, suppose
a ≥ d− a. Consider two cases.

• a ≤ ℓ/2. Since a ≥ d − a, we also have d − ℓ/2 ≤ a. Then, |Step(ℓ) ∩ L(a, d − a)| =
aℓ+ (d− a)ℓ− a(d− a). Since this is a quadratic expression in a with a positive coefficient,
for a ∈ [d− ℓ/2, ℓ/2], this function is maximized at a = ℓ/2 (or equally a = d− ℓ/2), and
we have |Step(ℓ) ∩ L(a, d− a)| ≤ dℓ/2 + ℓ2/4.

• a ≥ ℓ/2. In this case, |Step(ℓ)∩ L(a, d− a)| = ℓa− (a− ℓ/2)ℓ/2 + (d− a)(ℓ− a). This func-
tion another quadratic in a with a positive coefficient of a2. Therefore, it is again maximized
at the boundaries a = ℓ/2, and a = d, and |Step(ℓ) ∩ L(a, d− a)| ≤ dℓ/2 + ℓ2/4.

Rearranging, we find that Step(ℓ) has relative d-robustness equal to 2
3 (1− d/ℓ), as required.

Remark 4.17. The rate distance trade-off of δ = 2/3−
√

2R/3. ♢

Figure 4 compares the rate versus distance trade-offs for the simplex, grid, and step. In par-
ticular, we see that for δ ∈ [0.078, 0.21], the step construction beats both the simplex and the grid.
9

The following is a natural question. For a fixed δ, what is the smallest set S with relative d-
robustness equal to δ? We explore this question in Appendix A, where we prove several lower
bounds in two dimensions. In particular, we show that for δ > 1/2, the grid is optimal, and for
δ→ 0, the simplex has the right asymptotic behavior.

9The exact range for when the step construction beats the grid is δ ∈ [ 1
3 (3−

√
6−

√
5− 2

√
6), 1

2 −
1
6

√
3].
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Figure 4: Comparing rate vs. distance trade-offs for the grid, simplex and step evaluation sets

5 Unique Decoding of CAP Codes

In this section, we give an efficient decoding algorithm for CAP codes. The algorithm is based on
the decoding algorithm for Reed Muller codes given by Kim and Kopparty [KK17].

5.1 Uneven GMD

In this section we describe a variant of the GMD decoding algorithm of Forney [For66] that allows
for inner codes of varying distances. This variant of GMD decoding, Algorithm 1, will be crucial
in our decoding algorithm for the simplex evaluation set. As it turns out, the only change we
need to make to the standard (deterministic) GMD algorithm is the setting of the weights. For a
reference on the GMD algorithm, see section 14.3 of [GRS12].

Theorem 5.1 (Uneven GMD Decoding). Let Cout code with block length N and distance D. For i ∈ [N],
let Ci be a code with distance di. Let C = (C1, ..., CN) ◦ Cout be the concatenated code as in Definition 2.6.
Then, C has minimum distance at least minS⊆[N]:|S|=D ∑i∈S di, i.e. the sum of the D smallest inner dis-
tances.

Furthermore, suppose there exist decoding algorithms Aout, A1, A2, ..., AN with corresponding time
complexities Tout, T1, ..., TN , such that Aout decodes Cout from error and erasure patterns of weight less than
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Algorithm 1: GMD(r, Aout, A1, ..., AN)

1 Write r as N blocks r1, ..., rN corresponding to N inner codewords
2 for i ∈ [N] do
3 yi = Ai(ri)
4 s(i)← number of erasures in ri.
5 x(i)← number of non-erasure coordinates in which yi and ri differ
6 w(i)← di − 2x(i)− s(i)

7 for i ∈ [N] do
8 t← w(i)
9 for j ∈ [N] do

10 if w(j) < t then
11 zj ←?
12 else
13 zj ← rj.

14 c← Aout(z)
15 if wt(C(c(i))− r) < dD then
16 return c

17 return ⊥

D, and for each i ∈ [N], Ai decodes Ci from error (and erasure) patterns of weight less than di.
Then Algorithm 1 instantiated with the Aout, A1, ..., AN decodes the concatenated code C from error

(and erasure) patterns of weight less than minS⊆[N]:|S|=D ∑i∈S di. Furthermore, the time complexity of the
algorithm is poly(Tout, T1, ..., TN , N, n).

Proof. The claim about the distance of the concatenated code is simple. WLOG suppose d1 ≤ d2 ≤
... ≤ dN so that minS⊆[N]:|S|=D ∑i∈S di = ∑D

i=1 di. Let m, m′ be distinct messages with m ̸= m′. Let
X ⊆ [N] be the set of indices where the encodings of m and m′ differ in the outer code. Since the
distance of the outer code is at least D, |X| ≥ D. For each i ∈ X, the inner encoding of ith symbol
of the outer codeword must differ in at least di coordinates. Thus, the total number of coordinates
in which the codewords differ is at least ∑i∈X di, which is at least ∑D

i=1 di.
We now show the correctness of Algorithm 1. The proof follows the combinatorial proof of

Forney’s algorithm given in [BHKS23]. Let e be an error pattern of weight at most ∑D
i=1 di. Let E

be the total number of errors and S be the total number of erasures. Recall wt(e) = 2E + S. Let
e(i) be the number of errors in the ith block, and s(i) be the number of erasures in the ith block.

Consider the situation after decoding the inner codes. Let x(i) be the Hamming distance
between the closest (inner) codeword and the received word in the ith block not counting era-
sures. Define w(i) = di − 2x(i) − s(i) to be the weight of each block. Intuitively, the w(i) cap-
tures the ‘confidence’ in the ith block. We’ll now show that there exists a threshold, t, such that
setting blocks with weight less than t to erasures allows the outer decoder to decode correctly.
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Let A ⊆ [N] be the set of correctly decoded blocks. Let B ⊆ [N] be the set of incorrectly de-
coded blocks. Note that these are unknown to the algorithm and are purely for analysis. Let
A≥t = {i ∈ A : w(i) ≥ t}. Define B≥t similarly. The number of errors remaining after erasing
blocks with weight < t is |B≥t|. The number of blocks we set to erasures is N − |B≥t| − |A≥t|.
Thus, the outer decoder can decode so long as

2|B≥t|+ N − |B≥t| − |A≥t| < D.

I.e.,
|B≥t|+ N − D < |A≥t|.

Claim 5.2. There exists a threshold t ∈ {w(i) : i ∈ [N]} such that the above holds.

If the claim holds, we can decode by trying each weight as a threshold. The rest of this proof
will show that the claim is true.

By contradiction, suppose the claim is false, i.e.

|B≥t|+ N − D ≥ |A≥t|, (5.3)

for every choice in t ∈ {w(i) : i ∈ [N]}. The contradiction we will eventually obtain is that the
weight of e, i.e., 2E + S, is too large.

As a first step, we bound the size of |B|. Since the inner codes are decodable as long as 2e(i) +
s(i) < di, we have

∑
i∈[B]

2e(i) + s(i) ≥ ∑
i∈B

di ≥
|B|

∑
i=1

di,

where the second inequality holds because d1 ≤ d2 ≤ ... ≤ dN . Thus, since we have 2E + S <

∑D
i=1 di, |B| < D. In particular, let |B| = D− u for some positive integer u, and |A| = N − D + u.

Let a1 ≥ a2 ≥ ... ≥ aN−D+u be an enumeration of A, and. Let b1 ≥ b2 ≥ ... ≥ bD−u be an
enumeration of B.

We show that for every r ∈ [u], w(aN−D+r) ≤ w(br). By contradiction, suppose w(aN−D+r) >

w(br). Then consider setting t = w(aN−D+r), we have |A≥t| = N − D + r, and |B≥t| < r, which
contradicts Equation (5.3).

We now use this relationship to bound the weight of the errors in blocks aN−D+r and br. For
simplicity, let’s abbreviate a = aN−D+r, and b = br. Substituting the definition of the weights, we
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get

da − 2x(a)− s(a) ≤ db − 2x(b)− s(b) ⇐⇒

da − db ≤ 2x(a) + s(a)− 2x(b)− s(b)

By the triangle inequality on block b, we have that x(b) ≥ db − s(b) − e(b). Additionally, since
a ∈ A, the ath block was correctly decoded, thus x(a) = e(a). Substituting these facts into the
above and rearranging, we get

da + db ≤ 2e(a) + s(a) + 2e(b) + s(b)

For the remaining blocks in i ∈ B, we know that the weight of the errors in block i is at least
di since otherwise, the inner codeword would have been correctly decoded. Summing over the
weights of the errors in each of these blocks, we have

2E + S ≥ ∑
r∈[u]

daN−D+r + dbr +
D−u

∑
i=u+1

2e(bi) + s(bi)

≥ ∑
r∈[u]

daN−D+r + dbr +
D−u

∑
i=u+1

dbi .

There are 2u + D − 2u = D unique inner distances in the sum, which is at least the sum of the
D smallest inner distances, ∑D

i=1 di, which is a contradiction since 2E + S was supposed to be less
than that quantity.

Remark 5.4. Note that if the inner code can only be decoded from errors, then the theorem is still true if
there are only errors in the received word (and no erasures). However, since we are setting certain blocks to
erasures for the outer decoding, the outer decoder must be able to correct errors and erasures even if there
are no erasures in the received word. ♢

5.2 Decoding in two-dimensions

Let f ∈ F[X, Y] be any bivariate polynomial of total degree at most d. We can write it as

f (X, Y) =
d

∑
i=0

ci(X)Yi,

where ci, a univariate polynomial in X, is the coefficient of Yi. Let G = N<ℓ ×N<ℓ be the two
dimensional ℓ × ℓ grid. View the grid as having ℓ columns, each of size ℓ. Let f : G → F be a
codeword and e : G → F be an error pattern. The received word is r = f + e. Kim and Kopparty
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combine the following observations to decode polynomial evaluation codes on the grid. Firstly,
the xth column contains ℓ evaluations of the univariate polynomial f (x, Y), and thus, we can
decode each column using standard RS decoding. Secondly, for any fixed i and x, the coefficient
of Yi in f (x, Y) is the evaluation of ci at x. Thus, the decodings of each of the ℓ columns combine
to give ℓ evaluations of ci, and we can decode for ci using standard RS decoding. Their algorithm
is iterative, where the first iteration uses this procedure to find cd, the second finds cd−1, and so
on.

We first present an alternate analysis. In particular, to retrieve the coefficient cd, we view the
codeword f as the encoding of cd in some concatenated code and directly apply Algorithm 1. The
decoding algorithm is formally defined in Algorithm 2. In Algorithm 2, and in the rest of the
paper, let CoeffYk be a function that maps a polynomial to its Yk coefficient, and let RSDecoded,n

be the decoding algorithm for RSd,n correcting error and erasure patterns of weight less than n− d.
Note that RSDecode is the standard Berlekamp-Welch algorithm [WB86].

Algorithm 2: DecodeBivariated,ℓ(r, k)

1 if k < 0 then
2 return []
3 else
4 Aout ← RSDecoded−k,ℓ
5 Ax ← CoeffYk ◦ RSDecodek,ℓ−x for each x ∈ {0, 1, ..., ℓ− 1}
6 ck ← GMD(Aout, A0, ..., Aℓ−1, r)
7 return DecodeBivariated,ℓ(r− ckYk, k− 1) + [ck]

Recall that the distance of CAPm,d,ℓ is (ℓ−d+m−1
m ) = |Λm,ℓ−d|.

Theorem 5.5. Let d, ℓ ∈ N with ℓ > d. Let f ∈ CAP2,d,ℓ, be any codeword with Y-degree at most
k (and total degree at most d), e be an error pattern with weight less than (ℓ−d+1

2 ), and let r = f + e.
Write f = ∑k

i=0 ci(X)Yi, Then DecodeBivariated,ℓ(r, k) (Algorithm 2) returns f as a list of coefficients
[c0, ..., ck].

Proof. By induction. Suppose the claim is true for k− 1. We’ll show the claim for k.
Let f be a polynomial with Y-degree at most k. Thus, f = ∑k

i=0 ci(X)Yi, where ci is a univariate
polynomial in X of degree at most d− i.

We claim that the evaluations of f on S is in one-to-one correspondence with the encoding of
ck under the following concatenated code.

Let Cout be the code that encodes ck by evaluating it on N<ℓ. For each x ∈ {0, ..., ℓ− 1}, define
the inner code Cx as the code that encodes elements of α ∈ F in the following way. For any α ∈ F,
map it to the univariate polynomial αYk + ∑k−1

i=0 ci(x)Yi, and evaluate this polynomial on N<ℓ−x.
Let C = (C0, ..., Cℓ−1) ◦ Cout.
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Let (x, y) ∈ Λ2,ℓ. Then f (x, y) is the yth element of the xth block in the encoding of ck under
C. Indeed, the xth block of the outer code is ck(x), and the yth element of the encoding of ck(x)
under the inner code is ck(x)yk + ∑k−1

i=0 ci(x)yi = f (x, y). Furthermore, it is not hard to check that
if (x, y) ∈ Λ2,ℓ, then Cx indeed contains the evaluation at y: In Cx, the polynomial is evaluated on
N<ℓ−x, and y < ℓ− x since (x, y) ∈ Λ2,ℓ. This establishes the one-to-one correspondence.

We now show that the concatenated code can be decoded to the desired distance using Al-
gorithm 1. Cout = RSd−k,ℓ, can thus be decoded from errors and erasures up to weight ℓ− d + k
using RSDecoded−k,ℓ. For each x ∈ N<ℓ, Cx is a subset of RSk,ℓ−x, and thus one can decode for
the polynomial αYk + ∑k−1

i=0 ci(x)Yi using RSDecodek,ℓ−x for error and erasure pattens with weight
less than max(ℓ− x− k, 0). One can then extract α as the coefficient of Yk.

The distance of the concatenated code is then the sum of the ℓ− d + k smallest inner distances,
which is the distances of the last ℓ− d + k inner codes. Note that the distance of Cx is 0 for each
x ∈ {ℓ− k, ℓ− k + 1, ..., ℓ− 1} (the last k codes). For x = ℓ− k− i, the distance is i. Thus, the sum
of the ℓ− d + k smallest inner distances is just 1 + 2 + ... + ℓ− d = (ℓ−d+1

2 ). Since the weight of e
is less than (ℓ−d+1

2 ), the GMD algorithm Algorithm 1 correctly decodes ck.
Then, r− ckYk = ( f − ckYk) + e. This is now a received word with Y-degree at most k− 1. By

the inductive hypothesis, the recursive call correctly returns [c0, ..., ck−1], and the final return value
of the function is the full list of coefficients [c0, c1, ..., ck] as required.

Corollary 5.6. CAP2,d,ℓ can be decoded from error patterns of weight less than the minimum distance.

Proof. For any f ∈ CAP2,d,ℓ, the total degree of f is at most d. Therefore, the Y-degree of f is at
most d, and by Theorem 5.5, DecodeBivariated,ℓ(r, d) correctly decodes so long as the weight of
the error pattern is less than the minimum distance.

5.3 Decoding on the m-dimensional simplex

We now generalize to m dimensions. For brevity, for any v ∈ Nm−1, let Xv = Xe1
1 Xe2

2 · ... · X
em−1
m−1,

and write deg(v) = v1 + v2 + ... + vm−1. Write an m-variate polynomial f as an element of
(F[Xm])[X1, ..., Xm−1]. In particular, write

f = ∑
v:deg(v)≤d

cv(Xm)Xv,

where cv is a univariate polynomial of degree at most d − deg(v). Let ≺ be an ordering over
Nm−1, corresponding to the graded lexicographical ordering of monomials. That is, v ≺ v′ iff
either deg(v) < deg(v′) or deg(v) = deg(v′) and v comes before v′ in lexicographical order. For
example,

[0, 0] ≺ [0, 1] ≺ [1, 0] ≺ [0, 2] ≺ [1, 1] ≺ [2, 0].
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Notice that ≺ is a total order. Our algorithm will recover cv in descending order with respect to
≺. Define the function prev : Nm−1 →Nm−1 ∪ {⊥}, where prev(v) returns the direct predecessor
of v with respect to the order ≺. I.e. prev(v) = max({v′ : v′ ≺ v}). As an edge case, define
prev([0, 0, ..., 0]) = ⊥ to specify an invalid monomial. The algorithm for decoding on the m-
variable simplex is described in Algorithm 3.

Algorithm 3: DecodeSimplexm,d,ℓ(r, v)

1 if v = ⊥ then
2 return []
3 else
4 k← deg(v)
5 Aout ← RSDecode(d− k, ℓ)
6 for i ∈ {0, ..., ℓ− 1} do
7 Ai ← CoeffXv ◦DecodeSimplexm−1,k,ℓ−i(·, [k, 0, ..., 0])

8 cv ← GMD(Aout, A0, ..., Aℓ−1, r)
9 v′ = prev(v)

10 return DecodeSimplexm,d,ℓ(r− cvXv, v′) + [cv]

Theorem 5.7. Let m, d, ℓ ∈ N, such that ℓ > d, and m ≥ 1. Let f ∈ CAPm,d,ℓ, and write f =

∑u:deg(u)≤d cu(Xm)Xu. Let v be an exponent vector of degree at most d and suppose for all w with
v ≺ w, cw = 0. Let e be an error pattern with weight less than |Λm,ℓ−d|, and let r = f + e. Then
DecodeSimplexm,d,ℓ(r, v) (Algorithm 3) returns f as a list of coefficients (cv)v:deg(v)≤d.

Proof. Let ℓ, d ∈N with ℓ > d. For notational simplicity, suppose the code is the CAP code on the
standard simplex of side length ℓ, Λm,ell . The proof works exactly the same on Λm,A for any A ⊂ F
with |A| = ℓ by replacing elements of Am with the vector of their indices in {0, 1, ..., ℓ− 1}.

By induction on m.
For the base case m = 1, observe that Em,d,Λm,ℓ is a Reed-Solomon code, so DecodeSimplex1,d,ℓ

is RSDecoded,ℓ.
Now, suppose the theorem is true for DecodeSimplexm−1,d′,ℓ′ for any d′ and ℓ′ with ℓ′ > d′.

We’ll show the theorem for DecodeSimplexm,d,ℓ. The proof is similar to that of Theorem 5.5. By
induction on v with respect to ≺.

For the inductive hypothesis, suppose that for any polynomial g where the maximum mono-
mial with a non-zero coefficient is Xprev(v), and error pattern e with weight less than |Λm,ℓ−d|,
DecodeSimplexm,d,ℓ(g + e, prev(v)) returns g.

Let f be any polynomial where the maximum monomial with a non-zero coefficient is Xv,
and let e be an error pattern of weight less than |Λm,ℓ−d|, we’ll show DecodeSimplexm,d,ℓ( f +
e, prev(v)) returns f . Let k = deg(v). We first show that f is also the encoding of cv under the
following concatenated code.
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Let Cout be the code that encodes the univariate polynomial cv by evaluating it on N<ℓ. For
i ∈ N<ℓ, define the inner code Ci to be be the code that encodes symbols α ∈ F as a m− 1 variate
polynomial

fα(X1, ..., Xm−1) = αXv + ∑
u:u≺v

cu(xm)Xu,

and evaluates it on Λm−1,ℓ−i. Consider the code C = (C0, C1, . . . , Cℓ−1) ◦ Cout.
We claim that the evaluation of f on Λm,ℓ is the encoding of cv under C. Let (x1, ..., xm−1, i) ∈

Λm,ℓ. Then, this corresponds to the element indexed by (x1, ..., xm−1) in the ith block. Since the ith
element in the outer encoding of cv is cv(i), and the coordinate of the ith inner code indexed by
(x1, ..., xm−1) is the evaluation fci(x1, ..., xm−1) = f (x1, ..., xm). Since x1 + x2 + ... + xm−1 + i < ℓ,
we have x1 + x2 + ... + xm−1 < ℓ− i, so (x1, ..., xm−1) ∈ Λm,ℓ−i and hence is indeed an evaluation
point in Ci.

The degree of cv is at most d− k, thus Cout = RS(d− k, ℓ), and can be decoded from error and
erasure patterns with weight less than ℓ− d + k. For each i ∈N<ℓ, Ci is a subcode of Em−1,k,Λm−1,ℓ−i

since fα has degree at most deg(v) = k. Thus, for any α, fα can be decoded from error and erasure
patterns with weight less than |Λm−1,ℓ−i−k| using the (outer) inductive hypothesis. To retrieve α,
we just extract the coefficient of Xv.

Instantiating the GMD decoder (Algorithm 1) with these outer and inner decoders, we get that
we can decode so long as the number of errors is less than the sum of the ℓ− d + k smallest inner
distances. Note that for x ∈ {ℓ− k, ℓ− k + 1, ..., ℓ− 1}, the last k codes, the distance is zero. For
x = ℓ − k − i, the distance is |Λm−1,i|. Thus, the sum of the ℓ − d + k smallest inner distance is

∑ℓ−d
i=1 |Λm−1,i| = |Λm,ℓ−d|. Since the weight of e is less than |Λm,ℓ−d|, GMD instantiated with these

outer and inner decoders correctly decodes cv.
Then, r− cvYk = ( f − cvYk) + e. Notice that this is now a received word where the maximum

monomial present with respect to ≺ is at most prev(v). By the inductive hypothesis, the recursive
call correctly returns [cu]u≺v, and the final return value of the function is the full list of coefficients.

Corollary 5.8. CAPm,d,ℓ can be decoded from error patterns of weight less than the minimum distance.

Proof. Note that for any f ∈ CAPm,d,ℓ, the total degree is at most d. Viewing f ∈ (F[Xm])[X1, ..., Xm−1],
the greatest monomial with respect to ≺ is Xd

1 , corresponding to the exponent vector [d, 0, 0, ..., 0].
Thus, by Theorem 5.7, DecodeSimplex with the v parameter as [d, 0, ..., 0] decodes any received
word so long as the weight of the error patten is less than the minimum distance.

6 Unique Decoding of GAP codes

This section gives efficient algorithms for decoding GAP codes Theorem 3.5 up to half their min-
imum distance. At a high level, for our decoding algorithms, we essentially view these codes as
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a specific instance of decoding concatenated codes where the outer code is a Reed-Solomon code,
and the inner codes are GAP codes in a smaller dimension, up to some (crucial) technical differ-
ences. We massage this point of view sufficiently to be in a position to invoke the framework of
generalized minimum distance (GMD) decoding for concatenated codes of Forney [For66]. While
this appears to be a natural approach, we note that apriori, it is quite unclear whether this strategy
can decode up to half the minimum distance of the code. For instance, we do not know if this
strategy can give a simple unique decoding algorithm for decoding polynomial evaluation codes
on arbitrary product sets (a problem that was solved only relatively recently by Kim and Kopparty
[KK17]) or our second construction of such codes in Theorem 3.12, both of which, though relying
on GMD decoding seem to require further ideas and a more complex algorithm overall. Perhaps
this innate simplicity of the decoding algorithm is further evidence that the codes in Theorem 3.5
are quite natural and merit further investigation.

In this section, we work with concatenated codes where the outer code is a Reed-Solomon
code, and the inner codes are all polynomial evaluation codes with the same block length and
minimum distance, with potentially different evaluation points. The Reed-Solomon codes in the
outer codes here are in a slightly unusual setting, and we formally define them now.

Definition 6.1 (Reed-Solomon codes over a polynomial ring). Let F be a finite field, X = (X1, . . . , Xm−1)

be an (m− 1)-tuple of variables, S ⊆ F[X] be a set of t affine linear forms and d ∈N be a natural number.
Then, Reed-Solomon codesRS(m, t, d, S) are defined as follows.

The message space of the code is identified with the set of m-variate polynomials f (X, Y) of total degree
at most d. To encode any such message f (X, Y), we view it as a degree d univariate in Y with coefficients in
the field F(X) and the codeword associated to f equals ( f (X, L1(X)), . . . , f (X, Lt(X))), i.e. the evaluation
of f (X, Y) ∈ (F(X))[Y] on the t inputs L1(X), . . . , Lt(X) ∈ S. ♢

The following observation summarises some of the basic properties of this code.

Observation 6.2. LetRS(m, t, d, S) be the codes defined in Definition 6.1. Then, the following are true.

• The distance of the code is (t− d).

• For any message polynomial f (X, Y) of total degree at most d, every coordinate of its encoding
( f (X, L1(X)), . . . , f (X, Lt(X))) is an (m − 1)-variate polynomial of degree d in F[X]. Thus, the
alphabet of the code can be naturally identified with F(d+m−1

m−1 ).

Reed-Solomon codes are very well studied from the point of view of decoding algorithms and,
in particular, are known to be efficiently decodable up to half their minimum distance via the well-
known decoding algorithm of Berlekamp & Welch [WB86]. However, typically, we study Reed-
Solomon codes where the underlying alphabet is a finite field, in contrast to the Reed-Solomon
codes in Definition 6.1 where the underlying alphabet is the set of (m− 1)-variate polynomials of
degree d over the field F. The standard Berlekamp-Welch algorithm can be naturally extended to
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this setting with two additional technical ingredients. The first ingredient is an efficient algorithm
that, when given a rank deficient N × N matrix M whose entries are m-variate polynomials in
F[X] of degree at most D (for some parameter D) outputs a non-zero vector with entries in F[X]
that is in the kernel of M. Lemma 3 in [BHKS23] addresses precisely this problem and shows
that there is a deterministic algorithm for this problem that runs in time poly(Nm, Dm). Moreover,
the degree of every coordinate of the output vector of the algorithm is at most ND. The second
technical ingredient is an efficient algorithm that takes any two m-variate polynomials F and G of
degree at most D as input and outputs the quotient G/F if F divides G and a bot (⊥) otherwise.
One of the ways of doing this is to fix any valid monomial ordering (e.g., the graded lexicographic
order) and just do a standard long division. This gives a deterministic algorithm for this problem
with time complexity poly(Dm).

With these two ingredients in place, the Berlekamp-Welch decoder for Reed-Solomon codes
naturally extends to the codes in Definition 6.1. For our applications here, we need to decode
Reed-Solomon codes from errors and erasures, which the Berlekamp-Welch algorithm handles
without any further issues.

Theorem 6.3 (Berlekamp-Welch [WB86]). Let F be any finite field. There is a deterministic algorithm,
that for all d, m, t ∈N and subsets S ⊆ F[X] of size t of affine linear forms, decodes the codeRS(m, t, d, S)
in time poly(tm, dm, log |F|) from errors and erasures with weight less than the distance of the code.

We start with the bivariate case and then rely on induction on the number of variables to lift
these ideas to the multivariate case.

6.1 Decoding in two dimensions

Before moving on to the decoding algorithm, we first view GAPm,d,t as a concatenated code. We
begin with the m = 2 case, where the details are cleaner, and which will also serve as the base case
for our induction based argument.

We have the following set up. Let H = {ℓ1, ℓ2, . . . , ℓt} be a set of t lines in two dimensions
that are in general position, i.e., every pair of these lines intersect at a point, and no three of them
intersect anywhere. For every i, let ℓi be parameterized as

ℓi := {(x, aix + bi) : x ∈ F},

where ai, bi elements of F. Let T be the set of pairwise intersections of lines in H. We will decode
GAPH2,d,t. Recall that GAPH2,d,t has distance (t−d

2 ).

An intermediate concatenated code: For describing our decoding algorithm, we will rely on
another family of codes that are closely related to GAPH2,d,t. These intermediate codes are denoted
by IH2 and are defined as follows.
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Definition 6.4. The message space of IH2 is the space of bivariate polynomials of total degree at most d
in F[X, Y]. The block length of the code is t(t − 1) and the alphabet is F. We index the coordinates of
the codewords by pairs (i, j), where i, j ∈ {1, 2, . . . , t}, i ̸= j, and the (i, j)th coordinate of the codeword
corresponding to a message polynomial f is the evaluation of f at the intersection of the lines ℓi and ℓj. ♢

From the above definition, it follows that the main difference between the encoding of f under
the codes IH2 and GAPH2,d,t is that in the former, the evaluation of f on the intersection point of any
two distinct lines ℓi and ℓj appears on two separate coordinates, namely, (i, j) and (j, i), whereas in
the latter, this evaluation appears exactly once, at a coordinate indexed by the set {i, j}. Moreover,
given the encoding of any message f under one of these codes, we can efficiently compute its
encoding as a codeword of the other code.

The following lemma summarises some more interesting properties of this new code IH2 that
will be useful for our algorithm. Again, we follow the notation set up earlier in this section.

Lemma 6.5. Let Cout be the code RS(2, t, d, S), where S is the set {aiX + bi : i ∈ {1, 2, . . . , t}} of t
distinct affine forms.

For i ∈ {1, 2, . . . , t}, let Ci be the Reed-Solomon code of dimension (d + 1) and block length (t− 1)
with the evaluation points being the set Si = {αj : (αj, aiαj + bi) ∈ ℓi ∩ ℓj for some j ̸= i}.

Then, the following are true.

• IH2 can be viewed as the code obtained by the concatenation of a code Cout and Cin = (C1, . . . , Ct).

• δ(IH2 ) = δ(GAPH2,d,t) = δ(Cout) · δ(Ci), for every i ∈ {1, 2, . . . , t}.

We now sketch the proof of the lemma.

Proof Sketch. The first item immediately follows from the definitions of the codes involved.
For the second item, we note that IH2 , as defined, is a linear code, and hence its distance equals

the minimum of the weights of non-zero codewords in it. As discussed earlier in this section,
there is a bijection between IH2 and GAPH2,d,t, where every codeword of the former is obtained
by repeating twice every symbol in a codeword of the latter (up to an appropriate indexing of
coordinates). Thus, the Hamming weight of any codeword of minimum weight in IH2 is twice
that of GAPH2,d,t, and hence equals 2 · (t−d

2 ) = (t− d)(t− d− 1). Since the block length of IH2 is also
twice the block length of GAPH2,d,t, we get that their fractional distances must be the same. The last
equality immediately follows from the first item of the lemma and by observing that the distance
of Cout, which is really a Reed-Solomon code over the field F(X) equals (t− d). The distance of
every inner code Ci equals (t− 1− d), and hence their product equals (t− d)(t− d− 1).

From Lemma 6.5, we have that IH2 is a concatenated code. Thus, from Theorem 2.7 and Theo-
rem 6.3, we have the following corollary.

Corollary 6.6. There is a deterministic algorithm, denoted by DecodeIntermediateBivariate, that de-
codes the code IH2 from error patterns of weight less than the minimum distance in time poly(t, d, log |F|).
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The decoding algorithm : We now describe our decoding algorithm for two dimensional GAP
codes.

Algorithm 4: DecodeBivariateGeometric (t, d,H, r)

Input: t, d ∈N with t ≥ d, a setH = {ℓ1, . . . , ℓt} of lines in F2 in general position and
received word r ∈ F(t

2)

Output: The unique polynomial f ∈ F[X, Y] of degree at most d such that
∆
(

GAPH2,d,t( f ), r
)
< (t−d

2 )/2 or, ⊥ if no such polynomial exists.

1 for i ∈ {1, . . . , t} do
2 for j ∈ {1, . . . , t} \ {i} do
3 r̃(i, j)← r({i, j})

4 Output DecodeIntermediateBivariate(t, d,H, r̃) (Corollary 6.6).

Given the discussion leading up to this point, the analysis of algorithm 4 follows almost im-
mediately and is summarised in the following theorem.

Theorem 6.7. Let t, d,∈N with t ≥ d, andH = {ℓ1, . . . , ℓt} be a set of t lines in F×F in general posi-
tion. Then algorithm 4 decodes GAPH2,d,t from error patterns with weight less than the minimum distance.
I.e., when the number of errors is less than half the minimum distance. Moreover, the time complexity of
algorithm 4 is at most poly(t, d, |F|).

Proof. The bound on the time complexity follows immediately from the observation that the con-
struction of the word r̃ from the received word r can be done in O(t2) time and the bound on the
time complexity of the unique decoding algorithm for code IH2 in Corollary 6.6.

We now argue the correctness of the algorithm. Given the received word r, the algorithm first
constructs the received word r̃ for the intermediate code IH2 and then invokes the unique decoding
algorithm for the code IH2 given in Corollary 6.6 on the received word r̃. Thus, the following claim,
together with the correctness of the unique decoding algorithm for IH2 in Corollary 6.6 implies the
correctness of algorithm 4.

Claim 6.8. The received word r is within half the minimum distance of the code GAPH2,d,t if and only if the
word r̃ is within half the minimum distance of the code IH2 .

Proof of claim. Let c be the codeword of the code GAPH2,d,t closest to the received word r and let
c̃ ∈ Ft(t−1) be defined as

∀i ̸= j ∈ {1, . . . , t}, c̃(i, j) = c̃(j, i) = c({i, j}).

From the definition of the code IH2 , it follows that c̃ is a codeword in IH2 . In fact, c and c̃ are
encodings of the same message polynomial. Moreover, from the definitions of r̃ and c̃, it follows
that ∆(c̃, r̃) = 2 · ∆(c, r). Using this bound and the fact that the block length of IH2 is twice that
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of GAPH2,d,t, we get that the fractional Hamming distances, δ(c̃, r̃) and δ(c, r) must be equal to
each other. The claim now follows immediately from Lemma 6.5, which shows that the fractional
minimum distances of these codes are equal.

6.2 Decoding in higher dimensions

In this section, we extend the ideas in the previous section from the bivariate to the multivariate
case. Our technical argument is based on an induction on the number of variables. We start by
setting up the notation. We have a set H of hyperplanes H = {H1, H2, . . . , Ht} in Fm that are
in general position, i.e., every subset of size m of these hyperplanes intersect at a point, and no
(m + 1) of them intersect anywhere. Without loss of generality (up to an invertible change of
basis), we can assume that the hyperplanes can be expressed as

Hi =
{
(a, Li(a)) : a ∈ Fm−1

}
,

where Li(X) ∈ F[X] is an affine linear form on variables X1, X2, . . . , Xm−1.
The set of evaluation points is the set of m-wise intersection of these hyperplanes, and hence

the corresponding polynomial evaluation code GAPHm,d,t has block length ( t
m), and from Theo-

rem 3.5, we have that its distance is (t−d
m ). This section aims to efficiently decode these codes from

less than (t−d
m )/2 errors. As in the case of two dimensions, once again, we relate this code to an in-

termediate code IHm of equal fractional distance and observe that IHm is obtained by concatenating
a Reed-Solomon code with inner codes that are all instances of GAPm−1,d,t−1. These inner codes
can be efficiently decoded from half their minimum distance via induction, and we can invoke
Theorem 6.3 and Theorem 2.7 to get our decoding algorithm for GAPHm,d,t.

An intermediate concatenated code: We start by defining the intermediate code. Throughout
this section, X denotes the (m− 1)-tuple (X1, X2, . . . , Xm−1) of variables.

Definition 6.9. The message space of IHm is the space of m-variate polynomials of total degree at most d in
F[X, Y]. The block length of the code is m · ( t

m) and the alphabet is F. We index the coordinates of a codeword
of this code by pairs (i, j), where i ∈ {1, 2, . . . , t} and j is a subset of size (m− 1) of {1, 2, . . . , t} \ {i}.
The (i, j)th coordinate of the codeword corresponding to a message polynomial f is the evaluation of f at
the intersection of m hyperplanes {Hi} ∪ {Hℓ : ℓ ∈ j}. ♢

Once again, it follows that code words of IHm and GAPHm,d,t are in a natural bijection, and one
can go from a codeword of the latter to the former by repeating every coordinate exactly m times.
The following analog of Lemma 6.5 follows almost immediately from the discussion so far.
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Lemma 6.10. Let Cout be the code RS(m, t, d, S) from Definition 6.1 where S is the set {L1(X), . . . , Lt(X)}
of t-distinct affine forms and H1, H2, . . . , Ht are hyperplanes in general position such that for every i,
Hi = {(a, Li(a)) : a ∈ Fm−1}.

For i ∈ {1, 2, . . . , t}, let Ci = GAPHi
m−1,d,t−1, whereHi = {Hj ∩ Hi : j ∈ {1, 2, . . . , t} \ {i}}.

Then, the following are true.

• IHm is the code obtained by the concatenation of Cout and Cin = (C1, . . . , Ct).

• δ(IHm ) = δ(GAPHm,d,t) = δ(Cout) · δ(Ci), for every i ∈ {1, 2, . . . , t}.

From Lemma 6.10, we note that to invoke Theorem 2.7 to decode IHm , we need the algorithm
from Theorem 6.3 and a unique decoding algorithm for GAPm−1,d,t−1. For the latter, we note
that if H = {H1, H2, . . . , Ht} is a set of hyperplanes in Fm in general position, then for every
i ∈ {1, 2, . . . , t}, Hi = {Hj ∩ Hi : j ̸= i} are hyperplanes in Fm−1 in general position. Thus,
the code Ci is indeed a GAP code for polynomial in one fewer variable and by the induction
hypothesis, such GAP codes are efficiently decodable up to half their minimum distance. The
above discussion, together with Theorem 2.7, immediately implies the following.

Lemma 6.11. There is an algorithm, denoted by DecodeIntermediateMultivariate, that decodes IHm
from error patterns of weight less than the minimum distance. I.e., when the number of errors is less than
half the minimum distance. Moreover, the algorithm is deterministic and on every input, makes at most t
function calls to a unique decoder for the polynomial evaluation code GAPm−1,d,t−1 (algorithm 5), at most
t function calls to the Berlekamp-Welch decoder for Reed-Solomon codes in Theorem 6.3, and performs at
most poly(tm, log |F|) additional computation.

The decoding algorithm : We now describe our decoding algorithm for GAPHm,d,t .

Algorithm 5: DecodeMultivariateGeometric (m, t, d,H, r)
Input: m, t, d ∈N with t ≥ d, a setH = {H1, . . . , Ht} of hyperplanes in Fm in general

position and received word r ∈ F( t
m)

Output: The unique m-variate polynomial f ∈ F[X, Y] of degree at most d such that
∆
(

GAPHm,d,t( f ), r
)
< (t−d

m )/2 or, ⊥ if no such polynomial exists.

1 if m = 2 then
2 Output DecodeBivariateGeometric (t, d,H, r) (algorithm 4).

3 else
4 for i ∈ {1, . . . , t} do
5 for j ⊆ {1, . . . , t} \ {i}, |j| = m− 1 do
6 r̃(i, j)← r ({i} ∪ j)

7 Output DecodeIntermediateMultivariate (m, d, t,H, r̃) (Lemma 6.11).

Note that the unique decoding algorithm for IHm in Lemma 6.11 makes function calls to algo-
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rithm 5, but for the number of variables being (m− 1), which is handled recursively. The following
theorem sums up the analysis of algorithm 5.

Theorem 6.12. Let m, t, d ∈ N with t ≥ d, and H = {H1, . . . , Ht} be a set of t hyperplanes in Fm in
general position. Then DecodeMultivariateGeometric decodes GAPHm,d,t from error patterns of weight
less than the minimum distance. I.e., when the number of errors is less than half the minimum distance.
Moreover, the time complexity of algorithm 5 is at most poly(tm, log |F|).

Proof. The time complexity of the algorithm can be upper bounded by the time taken to generate
the word r̃ and then the time taken in the function call to DecodeIntermediateMultivariate(m, d, t,H, r̃).
By Lemma 6.11, on each such function call, the algorithm DecodeIntermediateMultivariate makes
t calls to algorithm 5, but now for the number of variables being (m − 1) and the number of
hyperplanes being (t− 1) and t calls to the Reed-Solomon decoder given in Theorem 6.3 which
takes time poly(tm, dm, log |F|) ≤ poly(tm, log |F|), in addition to some poly(tm, log |F|) additional
computation. Thus, the time complexity T(m, t, d) of algorithm 5 can be upper bounded by the
following recursion.

T(2, d, t) ≤ poly(t, d, log |F|)

∀m > 2, T(m, d, t) ≤ t · T(m− 1, d, t− 1) + poly(tm, log |F|) ,

which implies that T(m, d, t) is at most poly(tm, log |F|).
We now argue the correctness of the algorithm. This follows the outline of the proof of correct-

ness of algorithm 4 in Theorem 6.7. Given the received word r, the algorithm first constructs the
received word r̃ for the intermediate code IHm and then invokes the unique decoding algorithm
for the code IHm given in Corollary 6.6 on the received word r̃. Therefore, together with the cor-
rectness of the unique decoding algorithm for IHm in Lemma 6.11, the following claim implies the
correctness of algorithm 5.

Claim 6.13. The received word r is within half the minimum distance of the code GAPHm,d,t if and only if
the word r̃ is within half the minimum distance of the code IHm .

Proof of claim. Let c be the codeword of the code GAPHm,d,t closest to the received word r and let c̃
be defined as

∀i ∈ {1, . . . , t}, j ⊆ {1, . . . , t} \ {i}, |j| = m− 1, c̃(i, j) = c({i} ∪ j).

From the definition of the code IHm , it follows that c̃ is a codeword in IHm . In fact, c and c̃ are
encodings of the same message polynomial. Moreover, from the definitions of r̃ and c̃, it follows
that ∆(c̃, r̃) = m · ∆(c, r). The claim now follows from this bound, the fact that the block length of
IHm is also m times the block length of GAPHm,d,t, and the fact that the fractional minimum distances
of these codes are equal to each other as shown in Lemma 6.10.
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Remark 6.14. GAPm,d,t can also be efficiently decoded from error and erasure patterns of weight at most
the minimum distance. ♢

This follows from the fact that the GMD algorithm can handle erasures as long as each inner
decoder can handle erasures. We will elaborate more on this in the next section.

7 Local testability of GAP codes

Next, we discuss the local testability of GAP codes. We analyze two very natural local tests for
GAP codes, the line-point test, and the plane-point test, and show their local testability via these
tests.

First, we fix some notations and define our tests. Throughout this section, let F be a field,
m, d, t ∈ N be such that t ≥ d + m, and let H = {H1, . . . , Ht} be a set of hyperplanes in general
position in Fm. Let S ,L,P denote the set of all m, (m− 1), and (m− 2)-wise intersections of the
hyperplanes in H respectively. Note that S ,L,P correspond to points, lines, and planes in Fm

respectively, and furthermore, S is the set of evaluation points of GAPHm,d,t.

Definition 7.1 (The line-point test). Given query access to a received word f : S → F, the line-point
low-degree test is as follows.

• pick a random line ℓ from the set L and a random point x on ℓ

• let gℓ be a degree d univariate polynomial that is closest to the restriction of f on ℓ ∩ S

• accept if gℓ(x) = f (x), reject otherwise

♢

The plane-point test is similar to the definition above, except that instead of picking a random
line, we pick a random plane P from P and a random point on this plane. We accept if and only if
the degree d bivariate polynomial closest to the restriction of f on P agrees with f on the chosen
point.

Both of these tests have perfect completeness. Namely, if f = P|S for some polynomial
P(X1, . . . , Xm) of degree at most d, then the tests accept with probability 1. Thus, we are inter-
ested in the soundness of the tests.

The main result of this section is an analysis of the soundness of these tests. Specifically, we
show that the plane-point test is a good local test for GAP codes with constant m and constant rate
R < 1.

45



Theorem 7.2. For all m ∈ N, R < 1, there exists a constant Km,R such that for any m-variate GAP code
C of rate ≤ R, and any received word f , if the plane-point test on f has rejection probability p, then

δC( f ) ≤ Km,R · p.

For the line-point test, we are only able to show soundness at rates below some Rm = exp(−m).

Theorem 7.3. For all m ∈ N, there exists constants Rm, Km such that for any m-variate GAP code C of
rate ≤ Rm, and any received word f , if the line-point test on f has rejection probability p, then

δC( f ) ≤ Km · p.

For fixed m, if the GAP code has block length N, then the query complexity of the line-point
test is O(N1/m), and the query complexity of the plane-point test is O(N2/m). Then, a simple
corollary of Theorem 7.2 is the local testability, with polynomially small query complexity, of high
rate GAP codes. The first time such parameters were achieved was by Viderman [Vid15], although
today constant rate locally testable codes with constant query complexity are known through the
celebrated results of [DEL+22, PK22].

Theorem 7.4. For any λ, R ∈ (0, 1), there are GAP codes of arbitrarily large codeword length N, with
rate R and distance δR,λ, that can be locally tested with O(Nλ) queries.

This follows immediately from Theorem 7.2 by taking m big enough so that 2
m < λ.

Additional notation

Before proceeding further, we set up some additional notation and conventions for this section
that we repeatedly appeal to. In many of the technical statements in this section, we work with
an appropriate collection of hyperplanes H in Fm in general position and study properties of
functions on the point set S obtained by taking m-wise intersection of these hyperplanes. In this
setting, unless otherwise stated, all functions that we study should be thought of as functions on
the set S or its intersection with the appropriate domain at hand. For instance, when we say that
for an H ∈ H, let fH be the restriction of f to the hyperplane H, we mean that fH is a function
of the form fH : S ∩ H → F. We also follow this convention of denoting by fH the restriction of
a global function f to a hyperplane (or, more generally, an affine subspace) H. We also say that
two functions f , g are consistent with each other if they take the same values on all points at the
intersection of their domains. For example, given a function f on a hyperplane H and a function
g on a hyperplane H′, we say that f and g are consistent if they agree everywhere on H ∩ H′ ∩ S .
Otherwise, they are said to be inconsistent.

Throughout this section, the field F is assumed to be large enough, essentially so that Fm
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contains t hyperplanes in general position. From Observation 3.7, we know that |F| ≥ t suffices
for this.

In terms of the asymptotic behavior of the parameters involved in the results in this section,
we should think of the number of variables m as an arbitrary constant, and parameters d, t and
the field size |F| to be growing asymptotically. We also note that in our proofs, we haven’t tried to
achieve the best possible quantitative bounds on various parameters involved. We anticipate that
these bounds can be tightened further using a more careful analysis.

Organization

In Section 7.1, we prove a local characterization lemma which states that the property of being
degree d on restrictions to each hyperplane is a characterization of degree d polynomials. More
precisely, if there are (m− 1)-variate degree d polynomials gH for each H ∈ H, such that each pair
(gH, gH′) are consistent on their intersection, then there is a m-variate degree d polynomial f such
that f is consistent with gH for all H ∈ H.

We then prove the soundness of the plane-point test in Section 7.2 and that of the line-point
test in Section 7.3, Section 7.4 and Section 7.5. Section 7.5 contains a general divisibility lemma
(Lemma 7.12) relating divisibility on hyperplane restrictions with global divisibility, a statement
of independent interest.

The proofs of soundness of both tests use a robust version of the local characterization lemma,
which states that if almost all (though not necessarily all) of the hyperplane polynomials are con-
sistent with each other, then they can be stitched together into a global degree d polynomial that is
consistent with many of them. We have two alternate versions of the robust local characterization,
one with better parameters that works for m ≥ 3 (Section 7.2). one with worse parameters that
works for m ≥ 2 (Section 7.4).

The first robust local characterization lemma is based on the Raz-Safra [RS97] and Ben-Sasson-
Sudan [BSS06] hyperplane consistency graph method. The second one is more algebraic, and uses
a refined version of the Polischuk-Spielman method [PS94] based on Bezout’s theorem, paying
careful attention to intersection multiplicities.

7.1 Local characterization

If f is a m-variate degree d polynomial, the restrictions of f to lines are univariate polynomials of
degree at most d. In this section, we prove something of a converse to that statement. Formally,
we show the following.

Theorem 7.5. Let m, d, t ∈ N be such that t ≥ d + m, F be a large enough field, and let H =

{H1, . . . , Ht} be a set of hyperplanes in general position in Fm. Let S ⊆ Fm denote the set of all m-
wise intersection points of the hyperplanes inH and let L be the set of lines determined by the (m− 1)-wise
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intersection of hyperplanes in H. For every line ℓ in L, let gℓ be a univariate polynomial of degree at most
d defined on ℓ.

If for all distinct pairs of lines ℓ1, ℓ2 ∈ L, the line polynomials gℓ1 and gℓ2 agree on the point ℓ1∩ ℓ2 ∈ S ,
then there is an m-variate degree d polynomial f such that for every line ℓ ∈ L, the restriction of f to the
line ℓ equals gℓ.

This statement talks about deducing the m-dimensional structure from 1-dimensional restric-
tions. The proof will recursively use the following lemma, which deduces m-dimensional struc-
ture from (m− 1)-dimensional restrictions.

Lemma 7.6. Let m, d, t ∈N be such that t ≥ d + m and F be a large enough field. LetH = {H1, . . . , Ht}
be a set of hyperplanes in general position in Fm and let S ⊆ Fm denote the set of all m-wise intersection
points of the hyperplanes inH. For every hyperplane H inH, let gH : H → F be a degree d polynomial on
(m− 1) variables.

If for all distinct pairs of hyperplanes H, H′ ∈ H, the polynomials gH and gH′ agree on H ∩ H′ ⊆ S ,
then there is an m-variate degree d polynomial f : S → F such that for every hyperplane H ∈ H, the
restriction of f to H equals gH.

Proof. For every i ∈ {1, 2, . . . , t}, let Hi be the set {Hj ∩ Hi : j ̸= i} of subspaces of Fm of co-
dimension 2. However, we will instead think of Hi as a set of (t− 1) hyperplanes in the (m− 1)
dimensional ambient space Fm−1 (identified with Hi). Moreover, since H is a set of hyperplanes
in Fm in general position, we have that for every i, Hi is a set of hyperplanes in general position
in Fm−1. Let Si be the points given by (m− 1)-wise intersection of hyperplanes in Hi. Note that
Si is precisely the subset of points of S that are contained in the hyperplane Hi.

Let v : S → F be a function defined as follows. For any a ∈ S , let {Hi1 , Hi2 , . . . , Him} ⊆ H be
the hyperplanes that intersect at a. Then, v(a) is defined to be equal to gHij

(a) for j ∈ {1, 2, , . . . , m}.
Since the hyperplane polynomials are mutually consistent with each other, the function v is well-
defined. We now define the global degree d polynomial f using the function v.

Defining the global function: Let H′ be an arbitrary subset of H of size exactly (d + m), and let
S ′ be the set of points obtained by taking m-wise intersection of hyperplanes in H′. Clearly, S ′ is
a subset of S . Let f be the unique degree d polynomial on m-variables such that f (a) = v(a) for
every a ∈ S ′. The existence and uniqueness of f again follows from the fact that the set S ′ is an
interpolating set for degree d polynomials on m variables (Theorem 3.3).

We now argue that for every i, the restriction of the global function f to any hyperplane Hi ∈ H
equals the function gHi . We do this in two steps.

Case I - Hi ∈ H′ : Let S ′i of points obtained by taking the intersection of any (m− 1) hyperplanes
in H′ \ {Hi} together with Hi, and let fHi be the degree d polynomial (on (m− 1)-variables) ob-
tained by restricting f to Hi. Note that S ′i is a subset of Si ∩ S ′ and is an interpolating set for
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degree d polynomials on the space Hi since it is the set of (m− 1)-wise intersections of (d + m− 1)
hyperplanes in general position in this (m− 1)-dimensional ambient space (Theorem 3.3). From
the definition of f , and the properties of fHi discussed earlier, we know that for every point a ∈ S ′i ,
f (a) = fHi(a) = gHi(a) = v(a). Note that we use the fact that S ′i is a subset of S ′ for this. But, fHi

and gHi are both degree d functions on the space Hi that agree everywhere on the set S ′i which is
an interpolating set for such functions. Thus, they must be equal to each other.

Case II - Hi /∈ H′ : Now, the set S ′i of points obtained by taking the intersection any (m − 1)
hyperplanes inH′ together with Hi. fHi is the restriction of f to Hi as defined for Case I. Let a ∈ S ′i
be any point and let Hj ∈ H′ be such that a ∈ Hj. So, we have gHi(a) = gHj(a) = fHj(a), since
gHi and gHj are consistent with each other and gHj = fHj from the case above. But then, fHj and
fHi are both restrictions of the same global function f , and a is a common point in the domain of
these functions. So, fHi(a) = fHj(a). Therefore, we get that gHi(a) = gHj(a) = fHi(a). Hence, we
have two (m− 1)-variate degree d polynomials on gHi and fHi on Hi that are equal to each other
on the set S ′i , which is again an interpolating set for such polynomials. Thus, they must be equal
to each other.

We can now complete the proof of the local characterization from 1-dimensional restrictions.

Proof of Theorem 7.5. The proof of the theorem is via induction on m, with the m = 2 case of
Lemma 7.6 being the base case. So, we now assume that m > 2 and the theorem is true in (m− 1)
dimensions and prove it for m dimensions. The overall structure of the proof follows that of the
proof of Lemma 7.6.

For every i ∈ {1, 2, . . . , t}, letHi be the set {Hj ∩Hi : j ̸= i} of subspaces of Fm of co-dimension
2, which as before, we think of Hi as a set of (t − 1) hyperplanes in the (m − 1) dimensional
ambient space Fm−1 (identified with Hi). Moreover, since H is a set of hyperplanes in Fm in
general position, we have that for every i, Hi is a set of hyperplanes in general position in Fm−1.
Let Si be the points given by (m− 1)-wise intersection of hyperplanes inHi, Li be the lines given
by (m− 2)-wise intersection of hyperplanes in Hi. Note that Si is precisely the subset of points
of S that are contained in the hyperplane Hi and Li is precisely the subset of lines of L that
are contained in the hyperplane Hi. Now, clearly, the set of line polynomials for lines in Li also
satisfies the hypothesis of the theorem, namely that any of two of these polynomials are consistent.
But now, we are in (m− 1) dimensions. Hence, by the induction hypothesis, we get that there is
a degree d polynomial fHi such that for every line ℓ ∈ Li, the restriction of fHi on ℓ equals the
polynomial gℓ.

Moreover, since all the line polynomials are consistent with each other and the hyperplane
polynomials fHi are consistent with all line polynomials on the respective hyperplane, we get that
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the hyperplane polynomials fHi obtained above must also be consistent with each other. Thus,
we are in the setting of Lemma 7.6, and get that there is an m-variate degree d polynomial f that
is consistent with all the hyperplane polynomials fHi . Since these hyperplane polynomials are
consistent with the line polynomials, we get that f is consistent with all the line polynomials,
thereby completing the proof of the theorem.

7.2 Soundness of the plane-point test

In this subsection, we prove Theorem 7.2.
We begin by proving a robust analogue of the local characterization lemma, Lemma 7.6, for

m ≥ 3. Here, in the hypothesis, we are only guaranteed that the low-degree functions on most
(as opposed to all) pairs of hyperplanes are consistent with each other. The conclusion again is in
the spirit of that in Lemma 7.6 and guarantees a single low degree polynomial explaining most of
these hyperplane polynomials.

7.2.1 Robust local characterization

Lemma 7.7 (Robust Local Characterization). Let m ∈ N≥3, and ρ, β, c ∈ (0, 1) be constants. Let t be
a growing parameter and d = ρt. Let H1, ..., Ht ⊂ Fm

q be hyperplanes in general position, and let g1, ..., gt

be corresponding (m− 1)-variate polynomials of degree at most d.
Suppose at least 1− c fraction of pairs of the gi are consistent, and

1− ρ >
√

2c + β. (7.8)

Then, there exists some m-variate polynomial h such that h|Hi ≡ gi for at least a 1 − c/β fraction
choices of i ∈ [t].

Proof. The proof closely follows [BSS06]. Define an inconsistency graph G as follows. The vertices
are [t], and there is an edge between i and j if and only if gi and gj are inconsistent (they are not
equal to each other on Hi ∩ Hj). The goal is to find a large independent set in G (corresponding to
a large set of pairwise consistent polynomials) and apply Lemma 7.6. We first show that G has the
following property.

Claim 7.9. If there is an edge between i and j, then either the degree of i or the degree of j is at least
1
2 (1− ρ)t(1− o(1)).

Suppose i and j are inconsistent, then gi and gj restricted to Hi ∩ Hj are distinct codewords of
GAPm−2,d,t−2, and hence disagree on at least ∆ points, where ∆ is the distance of GAPm−2,d,t−2. Let
S be the subset of points where gi and gj differ. Recall m-wise intersections of hyperplanes specify
the points, and thus, we can think of S as being a subset of ([t]\{i,j}m−2 ) (since points in S must lie on
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Hi and Hj). Let T be the set of indices of the hyperplanes that contain some disagreement between
gi and gj. For any k ∈ T, gk must be inconsistent with at least one of gi and gj. We now bound the
size of T.

|S| ≤
(
|T|

m− 2

)
=⇒ ∆ ≤

(
|T|

m− 2

)
=⇒ (1− ρ)m−2

(
t− 2
m− 2

)
≤
(
|T|

m− 2

)
=⇒ (1− ρ)m−2 ≤ |T|!

(|T| −m− 2)!
· (t− 2−m− 2)!

(t− 2)!

=⇒ (1− ρ)m−2 ≤
m−3

∏
i=0

|T| − i
t− 2− i

=⇒ (1− ρ)m−2 ≤
(
|T|

t− 2

)m−2

=⇒ (1− ρ)(t− 2) ≤ |T|.

The claim then follows from applying the Pigeonhole Principle.
Thus, the vertices with degree < 1

2 (1 − ρ)t(1 − o(1)) form an independent set, I. Let z be
the fraction of vertices of degree at least 1

2 (1 − ρ)t(1 − o(1)). Counting degrees, we have that
zt2

2 (1− ρ)(1− o(1)) ≤ 2c(t
2), which implies z ≤ 2c

1−ρ + o(1).
To apply the local characterization lemma (Lemma 7.6), we need (1− z)t ≥ d + m, which is

true when

1− z ≥ ρ + m/t

⇐= 1− ρ ≥ 2c
1− ρ

+ o(1)

⇐= (1− ρ)2 ≥ 2c + o(1)

⇐= 1− ρ ≥
√

2c + o(1)

which is satisfied by the assumption of the theorem.
Applying Lemma 7.6, we have that there exists a m-variate polynomial h consistent with each

of the polynomials gi for i ∈ I, which is a set of fractional size at least 1− z, we’ll show that it must
be consistent with an even larger set of polynomials.

Let i ∈ [t], and suppose gi is consistent with at least d + 1 polynomials in I. This implies that
gi|Hj ≡ h|Hi∩Hj for at least d+ 1 values of j, which implies h|Hi ≡ gi since both of these polynomials
have degree at most d. Hence, h is consistent with gi as well. For any i, let Xi be the number of
polynomials that are inconsistent with i, we have Ei∈[t][Xi] = ct. Note that t− Xi is the number
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of polynomials consistent with i. If t − Xi ≥ zt + d + 1, then gi is consistent with at least d + 1
polynomials in I, hence also consistent with h. We’ll show that this is true for many i. By Markov’s
inequality,

Pr(Xi > (1− z)t− d− 1) ≤ ct
(1− z)t− d− 1

≤ c
1− z− ρ− 1/t

=
c

1− z− ρ− 1/t

≤ c
β

.

Note that we get the last inequality since z ≤ 2c
1−ρ ≤

2c√
2c

=
√

2c, and 1− ρ >
√

2c + β. Thus, at
least a 1− c/β fraction of the gis is consistent with h as required.

7.2.2 Analysis of the plane-point test

We now analyze the plane-point test and prove the following lemma.

Lemma 7.10. Let m ∈ N≥2, and ρ, p, β ∈ (0, 1) be constants. Let t be a sufficiently large growing
parameter, and let d/t ≤ ρ. Define the sequences (Qm,ρ)m≥3 and (Pm,ρ)m≥3 as follows.

Pm,ρ =

1 m = 2
(1−ρ−β)2(1−ρ)

4 · Pm−1,ρ m ≥ 3

Qm,ρ =

1 m = 2
3

Pm−1,ρ(1−ρ)m−2β
m ≥ 3

Let C = GAPm,d,t, and let f be a received word. Suppose the plane-point test accepts f with at least
probability at least 1− p. Then, if p ≤ Pm,ρ, then

δC( f ) ≤ Qm,ρ p

Proof. The proof of the lemma is by induction on m.
For the base case, m = 2. We query all the points since the entire code lies on a two-dimensional

plane. Let g be the closest bivariate polynomial to f , then the acceptance probability is Ex[1g(x)= f (x)] =

α(g, f ). Thus, we have 1− p ≥ α(g, f ), so δC( f ) ≤ p as required.
Let m ≥ 3 for the inductive step, and suppose the planes test works for the (m − 1)-variate

GAP code. Let fi = f |Hi . We give a brief proof overview below.

1. Using the inductive hypothesis, find (m− 1)-variate polynomials g1, g2, ..., gt such that gi is
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close to fi.

2. Then, we will use Lemma 7.7 (Robust Characterization Lemma) on g1, ..., gt to extract an m-
variate polynomial h consistent with most of the gi. To do so, we must show that many pairs
gi and gj are consistent.

3. Finally, we will bound the distance between h and f .

Finding the gi. Let pi be the rejection probability given that the selected plane lies on Hi. Call i
good if pi ≤ Pm−1,ρ, that is pi satisfies the conditions of the (m− 1)-variate version of the theorem.
A simple calculation shows that the average rejection probability on each hyperplane is the overall
rejection probability, i.e. E[pi] = p. Applying Markov’s Inequality, we have

Pr[i is bad] ≤ Pr[pi > Pm−1,ρ] ≤
p

Pm−1,ρ
.

Let γ = p
Pm−1,ρ

. Then, at least a 1− γ fraction of the is are good. For each i ∈ [t], let gi be the
(m− 1)-variate polynomial obtained by applying the (m− 1)-variate version of the theorem if i is
good and the 0 polynomial otherwise.

Note that if i is bad, gi might be far from fi. However, since most of the indices i are good, we
will show that the average agreement between gi and fi is large. To simplify the notation a bit, let
αi = α(gi, fi), and ηi = 1−Qm−1,ρ pi.

E
i
[α(gi, fi)] = E

i
[αi]

= E
i
[αi − ηi + ηi]

= E
i
[ηi] + E[αi − ηi]

= 1−Qm−1,ρ p + E[αi − ηi].

Focusing on the E[αi − ηi], we have that for each good i, αi ≥ ηi by the distance guarantee of the
(m− 1)-variate version of the theorem, and for each i that is not good (of which there are most a
γ fraction), αi − ηi ≥ Qm−1,ρ pi − 1 ≥ Qm−1,ρPm−1,ρ − 1, where we get the first inequality since the
agreement is always at least zero, and the second inequality because i is not good. Thus, we have

E
i
[α(gi, fi)] ≥ 1−Qm−1,ρ p + γ(Qm−1,ρPm−1,ρ − 1) = 1− γ.

Many pairs are consistent. Now that we know the average agreement between the gi and fi is
large, we will show that many pairs, (gi, gj), are consistent. Towards this goal, we first show that
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the average agreement of gi and gj is high.

E
i,j
[α(gi, gj)] = E

x
E

Hi ,Hj∋x
[1gi(x)=gj(x)]

≥ E
x

E
Hi ,Hj∋x

[1gi(x)= f (x)1gj(x)= f (x)]

= E
x
[ E
i:x∈Hi

[1gi(x)= f (x)]]
2

≥ [E
x

E
i:x∈Hi

[1gi(x)= f (x)]]
2

= [E
i
[α(gi, fi)]]

2

≥ (1− γ)2

> 1− 2γ.

Let c be the fraction of inconsistent pairs. If a pair is consistent, they have agreement 1. On
the other hand, if a pair is not consistent, they have agreement at most 1− δm−2, which is 1− (1−
ρ)m−2. Thus,

1− 2γ < 1− c + c(1− (1− ρ)m−2)

=⇒ c <
2γ

(1− ρ)m−2 .

Applying Lemma 7.7. To apply Lemma 7.7, we need to verify condition 7.8 holds.
In particular, we need

(1− ρ− β)2 ≥ 2c

⇐= (1− ρ− β)2

2
≥ 2p

Pm−1,ρ(1− ρ)m−2

⇐= (1− ρ− β)2(1− ρ)m−2

4
· Pm−1,ρ ≥ p

⇐= Pm,ρ ≥ p.

Applying Lemma 7.7, we obtain a m-variate polynomial h consistent with at least a 1− c/β

fraction of the gi. Finally, we show that h is not too far from f .

Agreement between h and f . Let hi be the restriction of h to Hi. Let Xi = α(hi, fi), and Yi =

α( fi, gi).
α(h, f ) = E[Xi] = E[Xi + Yi −Yi] > 1− γ + E[Xi −Yi] ≥ 1− γ− c/β.

54



where we get the last inequality since gi ̸= hi on at most a c/β fraction of i ∈ [t], and the different
of two number each in (0, 1) is at least -1.

Substituting bound on c,

α(h, f ) ≥ 1− γ− 2γ

(1− ρ)m−2β

= 1− p · 1
Pm−1,ρ

(1 +
2

(1− ρ)m−2β
)

> 1− p(
3

Pm−1,ρ(1− ρ)m−2β
)

= 1− pQm,ρ

Therefore, δC( f ) ≤ pQm,ρ, as required.

Bounds on Pm,ρ, Qm,ρ.

Pm,ρ =
m−3

∏
i=0

(
(1− ρ− β)2(1− ρ)m−2−i

4

)
≥ (1− ρ− β)2m−2(1− ρ)m2

4m−2

Then,

Qm,ρ =
3

Pm−1,ρ(1− ρ)m−2β
≤ 3 · 4m−3

β(1− ρ− β)2m−4(1− ρ)(m−1)2+m−2

Note that the bounds on Pm,ρ and Qm,ρ are exponential in m; however, since m, ρ and β and
constants, Pm,ρ, and Qm,ρ are also constants.

To prove Theorem 7.2, apply Lemma 7.10 with ρ = R1/m, β = 1
2 (1− ρ), and Cm,R = max{1/Pm,ρ, Qm,ρ}.

7.3 Soundness of the line-point test

In this subsection, we prove Theorem 7.3 on the soundness of the line-point test. The proof will
use the soundness of the plane-point test, along with a robust local characterization of bivariate
polynomials based on restrictions to lines. We now state this robust local characterization state-
ment.

Theorem 7.11. There exists a constant ε0 ∈ (0, 1) such that for all ε ∈ [0, 1), with ε < ε0, d, t ∈ N with
t > max{ d+2

1−
√

ε
, 2d

1−3
√

ε
}, and sufficiently large field F, the following is true.

Let H = {ℓ1, . . . , ℓt} be a set of lines in general position in F2. Let S ⊆ Fm denote the set of all
pairwise intersection points of the lines inH. For every line ℓ inH, let gℓ : ℓ→ F be a degree d univariate
polynomial.
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If the polynomials gℓ and gℓ′ agree with each other on ℓ ∩ ℓ′ for at least (1− ε)(t
2) pairs {ℓ, ℓ′} ⊆ H,

then there is an bivariate degree d polynomial f : S → F and a set H̃ ⊆ H of size at least (1− 2ε)t such
that for every ℓ ∈ H̃, the restriction of f on ℓ equals gℓ.

This can be viewed as a robust analogue of Lemma 7.6 for the case m = 2. We already proved
such a robust analogue for m > 2 in Lemma 7.7 during the analysis of the plane-point test. The
proof appears in Section 7.4.

The key ingredient of this robust local characterization is a general divisibility lemma, given
below.

Lemma 7.12. Let F be any field, e, d, t, m be natural numbers, and H be a set of t hyperplanes in Fm

in general position. E(X1, . . . , Xm) and P(X1, . . . , Xm) are polynomials in F[X1, . . . , Xm] of degree equal
to e and d respectively. For any hyperplane H ⊆ Fm, let EH(Z1, . . . , Zm−1) and PH(Z1, . . . , Zm−1)

respectively be the m− 1-variate polynomials in F[Z1, . . . , Zm−1] obtained by the restriction of E and P to
the hyperplane H.

If t > 2d + e and for all hyperplanes H ∈ H, there exists a polynomial QH(Z1, . . . , Zm−1) such that

PH(Z1, . . . , Zm−1) = EH(Z1, . . . , Zm−1) ·QH(Z1, . . . , Zm−1) ,

then, there exists a polynomial Q(X1, . . . , Xm) ∈ F[X1, . . . , Xm] such that

P(X1, . . . , Xm) = E(X1, . . . , Xm) ·Q(X1, . . . , Xm) .

The proof appears in Section 7.5. For the robust local characterization of bivariate polynomials
with lines, Theorem 7.11, we only need the m = 2 case of this lemma. Nevertheless we state and
prove the result for general m because it seems to be a basic statement of independent interest.

In terms of the quantitative parameters, the following simple example shows that at least for
m = 2, the bounds on t in the lemma are essentially tight.

An almost tight example: Let E(X1, X2) be the polynomial X1 of degree 1 and let P(X1, X2) be
the polynomial ∏d

i=1(X2 − i2) of degree d. Let us now consider the lines ℓi defined by solutions
to the linear equation X2 = i · X1 + i2 as i varies in the set {−1, 1,−2, 2, . . . ,−d, d}. Clearly, for
each of these lines, the restriction of P on the line is divisible by the restriction of E on the line.
However, P is not divisible by E in the ring F[X1, X2].

Lemma 7.12 says that if the number of such lines exceeds 2d+ 1, then divisibility of restrictions
guarantees divisibility as bivariates and this example shows that the parameter t in the statement
of Lemma 7.12 must be at least 2d for this to happen.
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7.3.1 Proof of Theorem 7.3 in two dimensions

We recall the m = 2 case of Theorem 7.3. Throughout this section, we denote the fractional agree-
ment between two functions f , g by α( f , g).

Theorem 7.13. There exists a constant ε0 ∈ (0, 1) such that for all ε ∈ [0, 1) with ε < ε0, natural numbers
t, d with t > max{ d+2

1−
√

ε
, 2d

1−3
√

ε
}, and sufficiently large field F, the following is true.

LetH = {ℓ1, . . . , ℓt} be a set of lines in general position in F2. Let S ⊆ F2 denote the set of all pairwise
intersection points of the lines in H. If f : S → F is a function for which the line-point test on f accepts
with probability at least (1− ε), then there exists a degree d polynomial h ∈ F[X, Y] such that f and h
agree on at least (1− 5ε− o(1)) fraction of points in S .

Proof. For every line ℓ ∈ H, let gℓ be the degree d polynomial that is closest to the restriction of f
on ℓ (henceforth denoted by fℓ for brevity). Let α( fℓ, gℓ) denote the fractional agreement between
fℓ and gℓ. Since the line-point passes with probability (1− ε), we have that

E
ℓ
[α( fℓ, gℓ)] = E

ℓ,x∈ℓ
[1gℓ(x)= f (x)] ≥ (1− ε) .

From the above statement, we would like to conclude that for most pairs of lines ℓ, ℓ′, the polyno-
mials gℓ and gℓ′ are consistent with each other, i.e. they agree on ℓ ∩ ℓ′. To this end, we have the
following sequence of inequalities.

E
ℓ,ℓ′

[1gℓ(ℓ∩ℓ′)=gℓ′ (ℓ∩ℓ′)] =E
x

E
ℓ,ℓ′∋x

[1gℓ(x)=gℓ′ (x)]

≥E
x

E
ℓ,ℓ′∋x

[1gℓ(x)= f (x) · 1gℓ′ (x)= f (x)]

=E
x

(
E
ℓ∋x

[1gℓ(x)= f (x)]

)2

≥
(

E
x

E
ℓ∋x

[1gℓ(x)= f (x)]

)2

≥(1− ε)2

≥1− 2ε .

Here, x ranges over the points in S and the lines ℓ, ℓ′ range over lines in the set L, and the third
inequality relies on an application of the Cauchy-Schwartz inequality.

Thus, we have that the for at least (1 − 2ε − 1/t) fraction of all pairs of distinct lines ℓ, ℓ′

in L are consistent with each other. Therefore, from the robust local characterization theorem
(Theorem 7.11) to this setting ( we note that the inequalities needed in the hypothesis are satisfied
for our choice of parameters here), we get that there is bivariate polynomial h of degree at most d
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such that for at least (1− 4ε− 2/t)t lines ℓ inH, we have that

hℓ = gℓ .

Thus, on lines ℓ where hℓ = gℓ, we have that α(hℓ, fℓ) = α(gℓ, fℓ) and on the remaining (4ε + 2/t)
fraction of lines, we have that α(hℓ, fℓ) ≥ 0 (and α(gℓ, fℓ) could be as large as 1). Thus, the overall
fractional agreement between f and h is at least 1− ε− 4ε− 2/t = (1− 5ε− o(1)).

An easy corollary of the above theorem, whose form will be useful for us in the higher dimen-
sional analysis of the test is stated below. The proof follows from the fact that if the parameter ε is
chosen to be sufficiently compared to the parameter ε0 in Theorem 7.13, then the corollary below
does not guarantee any non-trivial agreement between f and h, else, it guarantees an agreement
that is only weaker than that in Theorem 7.13.

Corollary 7.14. There is a constant ε0 ∈ (0, 1) such that for every ε ∈ [0, 1), natural numbers t, d with
t > max{ d+2

1−
√

ε
, 2d

1−3
√

ε
}, and sufficiently large field F, the following is true.

LetH = {ℓ1, . . . , ℓt} be a set of lines in general position in F2. Let S ⊆ F2 denote the set of all pairwise
intersection points of the lines in H. If f : S → F is a function for which the line-point test on f accepts
with probability at least (1− ε), then there exists a degree d polynomial h ∈ F[X, Y] such that f and h
agree on at least (1− 5ε+o(1)

ε0
) fraction of points in S .

7.3.2 Proof of Theorem 7.3 in higher dimensions

We now give an analysis of the line-point test for m ≥ 3. We do this in two steps: we use
Lemma 7.15 to show that if the line-point test passes for a function f with high probability, the
plane-point test also passes with high probability; then we use the soundness of the plane-point
test, Theorem 7.2, to deduce that f is close to low degree.

Lemma 7.15. Let H = {H1, . . . , Ht} be a set of hyperplanes in general position in Fm. Let S ⊆ Fm

denote the set of all m-wise intersection points of the hyperplanes inH and f : S → F be a function. If the
line-point test on function f accepts with probability at least (1− ε), then the plane-point test on f accepts
with probability at least (1− ε/ε0 − o(1)).

Proof. Since the hyperplanes in H are in general position, we have that the number of lines on
every plane is the same, and every line is on the same number of planes. Thus, the distribution on
L obtained by sampling a uniformly random plane P from P and then sampling a uniformly ran-
dom line ℓ from the set of lines contained in P is uniform. Following the notation in Theorem 7.13,
we denote gℓ to be the degree d univariate that is closest to the restriction fℓ of f on the line ℓ, and
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α() denotes the fractional agreement of two functions. Therefore, we have

E
ℓ∈L

[α( fℓ, gℓ)] = E
P∈P

(
E

ℓ∈L,ℓ⊆P
[α( fℓ, gℓ)]

)
,

and these quantities are at least (1− ε) since the line-point test passes with probability at least
(1− ε).

We now note that for any plane P, the quantity (Eℓ∈L,ℓ⊆P [α( fℓ, gℓ)]) is precisely the probability
that the line-point test passes when invoked on the restriction fP of f on the plane P. Let this
probability be denoted by εP. From Corollary 7.14, we have that for a bivariate function (namely,
fP here), if the line-point test passes with probability εP, then there is a degree d polynomial hP

such that α(hP, fP) is at least 1− 5εP/ε0− o(1) , for some fixed constant ε0 ∈ (0, 1). Thus, we have
that

E
P∈P

α(hP, fP) ≥ E
P∈P

(1− 5εP/ε0 − o(1)) .

Now, using the fact that EP(1− εP) = Eℓ∈L [α( fℓ, gℓ)] ≥ (1− ε), we get that

E
P∈P

α(hP, fP) ≥ 1− 5ε/ε0 − o(1) .

Now, for every plane P, if hP is replaced by the degree d bivariate closest to fP, the quantity on the
left-hand side can only increase. Thus, we have that the plane-point test on the function f passes
with probability at least (1− 5ε/ε0 − o(1)), as we wanted to show.

7.4 Robust local characterization of bivariate polynomials using restrictions to lines

In this section, we prove Theorem 7.11.

Proof of Theorem 7.11. Let S ′ be the set of points a ∈ S such that the two lines ℓ, ℓ′ in H that pass
through a agree with each other on a, i.e., gℓ(a) = gℓ′(a). From the hypothesis of the theorem, we
have that |S ′| ≥ (1− ε) · |S| = (1− ε) · (t

2).

An error locator polynomial: Our first observation is that there is a non-zero bivariate polyno-
mial E(x, y) of degree at most

√
εt that vanishes on all points of the set S \ S ′. To see this, we think

of the coefficients of E as formal variables of a polynomial of degree
√

εt and set up a system of
homogeneous linear constraints asserting that E vanishes on all points in S \ S ′. The number of
constraints is at most ε(t

2), whereas the number of variables is (
√

εt+2
2 ), which exceeds the number

of constraints. Thus, there is a non-zero solution. Such a polynomial E plays the role of an error
locator for the rest of the proof. Let e ≤

√
εt denote the degree of E.
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A global low degree polynomial: For every ℓ ∈ H, let Pℓ(z) be the polynomial

Pℓ(Z) := gℓ(Z) · Eℓ(Z) ,

where Eℓ is the restriction of E(X, Y) to the line ℓ. Clearly,

deg(Pℓ) = deg(gℓ) + deg(Eℓ) ≤ d + deg(Eℓ) .

We claim that for every pair of distinct lines ℓ, ℓ′ ∈ H, the polynomials Pℓ and Pℓ′ are consistent
with each other, i.e. they agree on the point a where {a} = ℓ ∩ ℓ′. To argue this, we consider two
cases based on whether or not a is in S ′. If a ∈ S ′, then we have

Pℓ(a) = gℓ(a) · Eℓ(a) = gℓ′(a) · Eℓ′(a) = Pℓ′(a) .

Here the second equality follows from the fact that since a is in S ′, and ℓ and ℓ′ are incident to it,
the corresponding line polynomials gℓ and gℓ′ must agree at a, and the third equality follows from
the fact that by definition, Eℓ and Eℓ′ are restrictions of E and hence must agree at ℓ ∩ ℓ′.

If a /∈ S ′, then by the definition of E, we get that

Pℓ(a) = Pℓ′(a) = gℓ(a) · Eℓ(a) = gℓ′(a) · Eℓ′(a) = 0 .

Applying the local characterization lemma (Lemma 7.6) to this collection {Pℓ : ℓ ∈ H} of line
polynomials of degree d + e, we get that if t ≥ d + e + 2 (which holds since t > d+2

1−2
√

ε
from the

hypothesis of the theorem), then there is a global polynomial P(X, Y) of degree at most (d + e)
such that for every line ℓ ∈ H, the restriction of P on ℓ equals Pℓ (hence justifying the notation).

Now, from the above conclusion and the definition of Pℓ, we get that for every ℓ ∈ H, the
restriction Eℓ of the error locator polynomial E on ℓ divides the restriction Pℓ of P on the line ℓ.
Since t > 2d

1−3
√

ε
and e ≤

√
εt, we get that t > 2d + 3e = 2(d + e) + e ≥ 2 maxℓ{deg(P)}+ deg(E).

Thus, from the divisibility lemma (Lemma 7.12), we have that the bivariate polynomial E(X, Y)
divides the bivariate polynomial P(X, Y).

Let f (X, Y) be the resulting quotient P(X, Y)/E(X, Y). Clearly, deg( f ) is equal to deg(P) −
deg(E), which is at most (d + e)− e = d. To prove the theorem, it now suffices to show that the
restriction fℓ of f on a line ℓ equals gℓ for most lines ℓ.

Agreement with many lines polynomials : From the definition of f , we get that for every ℓ ∈ H,

Pℓ(Z) = fℓ(Z) · Eℓ(Z) ,
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but from the definition of Pℓ, we have that

Pℓ(Z) = gℓ(Z) · Eℓ(Z) .

Thus, if Eℓ(Z) is not identically zero, it must be the case that fℓ(Z) equals gℓ(Z). We now recall
Claim 7.21 from the proof of Lemma 7.16 which shows that the number of lines ℓ where E(X, Y)
can vanish identically is at most deg(E) = e ≤

√
εt. Let B denote the set of all such lines. Thus,

on all lines ℓ ∈ H \ B, we get that fℓ must equal gℓ. Thus, the number of such good lines is at least
(1−

√
ε)t. To complete the proof, we now argue that the fraction of such good lines is even higher.

An improved bound on good lines: For a line ℓ ∈ H, let Iℓ ⊆ H be the set of lines ℓ′ such that gℓ
and gℓ′ do not agree on ℓ ∩ ℓ′. Thus, Iℓ is the set of lines that are inconsistent with ℓ. We say that
the lines outside Iℓ are consistent with ℓ. From the hypothesis of the theorem

E
ℓ∈H

[|Iℓ|] ≤ εt .

Thus, by Markov’s inequality, we get that

Pr
ℓ∈H

[
|Iℓ| ≥ ((1−

√
ε)t− d)

]
≤ εt

(1−
√

ε)t− d
≤ 2ε ,

where the last inequality follows from the fact that t > 2d
1−3
√

ε
≥ 2d

1−2
√

ε
. Thus, we have that for (1−

2ε)t of the lines ℓ, the set Iℓ of lines that are inconsistent with ℓ is of size less than ((1−
√

ε)t− d).
Let ℓ be one such line. Then, ℓ is consistent with at least (ε

√
t + d + 1) lines in H. Among these

consistent lines, at most |B| ≤
√

εt of these can be in the set B. Thus, there are at least (d + 1) lines
ℓ′ such that ℓ and ℓ′ are consistent with each other, i.e. gℓ and gℓ′ agree on ℓ ∩ ℓ′, and fℓ′ = gℓ′ . So,
there are at least (d + 1) distinct points on ℓ, namely its distinct intersection points a with (d + 1)
lines ℓ′ /∈ B that ℓ is consistent with, such that

fℓ(a) = fℓ′(a) = gℓ(a) = gℓ′(a) = f (a) .

Thus, fℓ and gℓ must be equal to each other.
Therefore, the set of lines ℓ on which the restriction of f equals gℓ is of size at least (1− 2ε)t.

This completes the proof of the theorem.

7.5 The divisibility lemma

In this subsection, we prove the divisibility lemma, Lemma 7.12.
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7.5.1 Proof of Lemma 7.12 in 2 dimensions

We now prove the technically easier m = 2 case of Lemma 7.12, which we state below as a lemma.

Lemma 7.16. Let F be any field, e, d, t be natural numbers, and H be a set of t lines in F2 in general
position. E(X, Y) and P(X, Y) are polynomials in F[X, Y] of degree equal to e and d respectively. For
any line ℓ ⊆ F2, let Eℓ(Z) and Pℓ(Z) respectively be the univariate polynomials in F[z] obtained by the
restriction of E and P to the line ℓ.

If t > 2d + e and for all lines ℓ ∈ H, there exists a polynomial Qℓ(Z) such that

Pℓ(Z) = Eℓ(Z) ·Qℓ(Z) ,

then, there exists a polynomial Q(X, Y) ∈ F[X, Y] such that

P(X, Y) = E(X, Y) ·Q(X, Y) .

Bezout’s theorem related preliminaries

To prove the lemma, we first take a detour and discuss Bezout’s theorem and some of its appli-
cations, which turn out to be crucial for the rest of our analysis. We start with a discussion of the
bivariate case first before moving on to high dimensions.

For the rest of this section, we assume F is an algebraically closed field. We begin by defining
the intersection multiplicity of two bivariate polynomials at a point (α, β) ∈ F2. The definition is
in terms of the local ring of F2 at that point, which we now define.

Definition 7.17 (Local ring at a point in F2). Let p = (α, β) ∈ F2. The local ring of p, denoted by Op is
defined as:

Op =

{
A(x, y)
S(X, Y)

| A(X, Y), S(X, Y) ∈ F[X, Y], S(α, β) ̸= 0
}

,

with ring operations being the usual operations on rational functions in X, Y. ♢

We now define the notion of intersection multiplicity of curves at a point.

Definition 7.18 (Intersection Multiplicity of curves in F2 [Ful08, Section 3.3]). Let A(X, Y), B(X, Y) ∈
F[X, Y] be relatively prime polynomials. Let p ∈ F2 be a point such that F(p) = G(p) = 0.

Then the intersection multiplicity of A and B at p, denoted IMult(A, B; p) is defined by:

IMult(A, B; p) = dimF

(
Op/I

)
,

where Op is the local ring of the point p ∈ F2, and I is the ideal of Op generated by A and B. ♢

To help get some intuition for this notion, we mention its relation with the more familiar notion
of the vanishing multiplicity of a polynomial at a point. First, if F vanishes with multiplicity m1 at
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p and G vanishes with multiplicity m2 at p, then the intersection multiplicity of F and G at p is at
least m1 ·m2. It could be more; it will be strictly greater than m1 ·m2 if (and only if) the curves cut
out by F and G have a common tangent at p.

We are now ready to state Bezout’s theorem for curves in a two-dimensional space.

Theorem 7.19 (Bezout’s theorem for curves in 2-dimensional space [Ful08, Section 5.3]). Let A(X, Y),
B(X, Y) in F[X, Y] be relatively prime polynomials of degrees d, e respectively. Let p1, . . . , ps ∈ F2 be com-
mon zeroes of F and G.

Then
s

∑
i=1

IMult(A, B; pi) ≤ d · e.

We can now prove the following technical lemma, which we will crucially use later in proving
the testability of 2-dimensional GAP codes.

Lemma 7.20. Let F be an algebraically closed field and U(X, Y), V(X, Y) be non-zero polynomials. Let
a, b, α ∈ F and k ∈ N be such that the univariate polynomials U(Z, aZ + b), V(Z, aZ + b) vanish with
multiplicity at least k at α.

Then, the intersection multiplicity of the curves U(X, Y) = 0 and V(X, Y) = 0 at the point (α, aα+ b)
is at least k.

Proof. Let p = (α, aα + b) ∈ F2.
Now since U(Z, aZ + b) vanishes with multiplicity at least k at α. Then (Z − α)k divides

U(Z, aZ + b), and this means that U(X, Y) can be written in the form:

U(X, Y) = (Y− aX− b) · A(X, Y) + (X− α)k · B(X, Y)

for some A(X, Y), B(X, Y) ∈ F[X, Y]. Similarly V(Z, uZ + b) vanishes with multiplicity at least k
at α, and thus V(X, Y) is of the form:

V(X, Y) = (Y− aX− b) · A′(X, Y) + (X− α)k · B′(X, Y)

for some A′(X, Y), B′(X, Y) ∈ F[X, Y].
Thus, the ideal I = ⟨U, V⟩ of Op is contained in the ideal J = ⟨(Y − aX − b), (X − α)k⟩ of Op.

This means that
IMult(U, V; p) = dimF(Op/I) ≥ dimF(Op/J).

Thus, to complete the proof, it suffices to show that dimF(Op/J) ≥ k. To see this10, we will show
that the elements 1, (X− α), . . . , (X− α)k−1 are F-linearly independent in the F-vector spaceOp/J.

10An alternative proof of this fact is as follows. dimF(Op/J) equals the intersection multiplicity of the polynomials
Y− aX− b and (X− α)k at the point (α, aα+ b), and this should be k (by Bezout’s theorem) because it is the intersection
multiplicity at the unique point of intersection (in the full projective plane) of two relatively prime polynomials, one of
degree k and one of degree 1.
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We do this via contradiction. Suppose these elements are linearly dependent over F in Op/J.
Then there exist a0, . . . , ak−1 ∈ F, not all 0, such that

k−1

∑
i=0

ai(X− α)i ∈ J

in the ringOz. Let j be the smallest such that aj ̸= 0. This means (recalling the definition of the local
ring) that there exists some S(X, Y) ∈ F[X, Y] with S(α, aα+ b) ̸= 0, and some R(X, Y), R′(X, Y) ∈
F[X, Y] such that we have the following equation in F[X, Y].

S(X, Y) · (X− α)j ·
(

k−1

∑
i=j

ai(X− α)i−j

)
= R(X, Y) · (Y− aX− b) + R′(X, Y) · (X− α)k.

Setting Y = aX + b in this equation, we get

S(X, aX + b) · (X− α)j ·
(

k−1

∑
i=j

ai(X− α)i−j

)
= R′(X, aX + b) · (X− α)k.

Since both sides are divisible by (X− α)j, we can cancel it from both sides, and we get

S(X, aX + b) ·
(

aj +
k−1

∑
i=j+1

ai(X− α)i−j

)
= R′(X, aX + b) · (X− α)k−j.

Finally, substituting X = α into this equation and using the fact that S(α, aα + b) ̸= 0, we get that
aj = 0, a contradiction.

This gives us our desired lower bound on the intersection multiplicity of U(X, Y) and V(X, Y)
at the point (α, aα + b).

Proof of Lemma 7.16

We now proceed with the proof of Lemma 7.16.

Proof of Lemma 7.16. Let E(X, Y) = G(X, Y) · E′(X, Y) and P(X, Y) = G(X, Y) · P′(X, Y), for poly-
nomials E′, P′, G where G is the GCD of E and P. Therefore, E′ and P′ are relatively prime. From
the hypothesis of the lemma, we get that for every line ℓ ∈ H, we have that there exists a polyno-
mial Qℓ(Z) such that

P′ℓ(Z) · Gℓ(Z) = E′ℓ(Z) · Gℓ(Z) ·Qℓ(Z) ,

where E′ℓ, P′ℓ, Gℓ denote the restrictions of E′, P′ and G respectively to the line ℓ. If the degree of E′

is zero, i.e. it is a constant, then clearly, E(X, Y) must divide P(X, Y) with quotient being a constant
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multiple of P′(X, Y) and we are done. So, for the rest of this proof, we assume that the degree of
E′ is at least one. Let e′ denote the degree of E′(X, Y) and d′ denote the degree of P′(X, Y).

We say that a line ℓ ∈ H is bad if either Gℓ is identically zero, or the degree of E′ℓ is strictly less
than the degree of E′(X, Y). LetH′ be the subset ofH are not bad. This is the set of lines of interest
to us for the rest of the proof, and the following claim, whose proof we defer to the end, gives a
lower bound on the number of such lines.

Claim 7.21.

|H′| ≥ |H| − e .

For any such line ℓ ∈ H′, we have that the univariate polynomial E′ℓ has degree equal to e′ and
divides the univariate polynomial P′ℓ. In this case, each of the zeroes α of E′ℓ(Z) is also a zero of P′ℓ,
and in particular, this means that the point (α, mα + b) is a common zero of the bivariates E′(X, Y)
and P′(X, Y). Here m, b ∈ F are such that ℓ := {(a, am + b) : a ∈ F}. Note that the zero α might
not be in F but certainly lives the algebraic closure F of F.

The idea for the rest of the proof is that if the zeroes of E′ℓ happened to be all distinct, then,
for each line ℓ in H′, we get e′ distinct common zeroes of E′(X, Y) and P′(X, Y) in F

2. Moreover,
we know that these polynomials do not have a common factor. Hence, from Bezout’s theorem
(Theorem 7.19), we get that

1
2
· e′ · |H′| ≤ deg(P′) · deg(e′) = d′ · e′,

where the factor 1/2 is to account for the fact that each common zero (α, mα + b) can be a point of
intersection of two lines inH′, and be counted twice. Moreover, sinceH′ is a set of lines in general
position, no point (α, mα + b) can lie on three or more lines in H′. This gives an upper bound of
2d′ ≤ 2d on |H′| and of (2d + e) on |H| using Claim 7.21.

The technical issue with this argument is that the polynomial E′ℓ might not have distinct zeroes
but have zeroes α with high multiplicity, and this weakens the counting argument above and only
yields a bound of d′e′ + e ≤ de + e on |H|. To obtain a better bound, we note from Lemma 7.20
that a zero of multiplicity k of E′ℓ (and hence P′ℓ) also yields a common point on the curves of
E′(X, Y) = 0 and P′(X, Y) = 0 of intersection multiplicity k. Now, using Theorem 7.19 and the
counting argument above, we get the lemma.

Next, we prove Claim 7.21.

Proof of Claim 7.21. Let a line ℓ be parameterized by its slope m and intercept b such that ℓ :=
{(a, am + b) : a ∈ F}. We will show that if ℓ is bad, then its slope m must be a zero of a non-zero
univariate polynomial of low degree. Thus, there are only a few choices of the slope m. Moreover,
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since the lines in H are in general position, there is at most one line of slope m for any m ∈ F.
Thus, the number of bad lines must be small.

Let e′ ≥ 1 be the degree of E′(X, Y), and let Ui(X, Y) denote the homogeneous component of
E′(X, Y) of degree equal to i. Thus,

E′(X, Y) =
e′

∑
i=0

Ui(X, Y) .

Let Ue′(X, Y) := ∑e′
j=0 ue′,jY jXe′−j for constants ue′,j, not all of which are zero. Thus, the restriction

of E′ on ℓ := {(a, am + b) : a ∈ F} is given by

E′ℓ(Z) = E′(Z, mZ + b) =
e′

∑
i=0

Ui(Z, mZ + b) ,

and the coefficient of Ze′ in E′ℓ(Z) equals Ue′(1, m) = ∑e′
j=0 ue′,jmj. In other words, the degree

of E′ℓ(Z) is less than e′ if and only if the slope m of ℓ′ is a zero of the univariate polynomial
(∑e′

j=0 ue′,jη
j) (η is a formal variable here). Now, Ue′(X, Y) is non-zero, we have that (∑e′

j=0 ue′,jη
j)

is a non-zero polynomial of degree e′, there are at most e′ such choices of m.
A very similar argument implies also that the number of lines ℓ on which G(X, Y) vanishes

identically, i.e. Gℓ is identically zero is also bounded by deg(G).
Thus, the slope m of any bad line must come from a set of size at most deg(E′) + deg(G) =

deg(E) = e, and since there are no parallel lines inH, the number of bad lines is at most e.

7.5.2 Proof of Lemma 7.12 for general m

Our proof of this lemma follows the same high-level strategy as for the 2-dimensional case. How-
ever, because we need to deal with a higher-dimensional version of Bezout’s theorem and higher-
dimensional intersection multiplicities, we end up needing some slightly heavier commutative
algebra. For algebra and algebraic geometry background, we refer the reader to [Eis95, Har77].
We only define the algebraic concepts about which we need to reason.

Bezout’s theorem related preliminaries

We now give a quick introduction to the statement of Bezout’s theorem that we need.
Let A(X1, . . . , Xm) and B(X1, . . . , Xm) be relatively prime polynomials; they define codimen-

sion 1 varieties V(A) and V(B) in Fm. We want to study their intersection. Since A and B are
relatively prime, their intersection will be codimension 2.

Informally, Bezout’s theorem for this situation is the following. Let W1, . . . , Ws ⊆ Fm
q be the ir-

reducible components of the intersection of V(A) and V(B) (they are all codimension 2 by [Har77,
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Theorem I.7.1]). For this setup, we can define the intersection multiplicity IMult(A, B; Wi) of A
and B at each variety Wi. Bezout’s theorem says that

∑
i

IMult(A, B; Wi) · deg(Wi) ≤ deg(A) · deg(B),

where deg(Wi) is the degree of the variety Wi. In fact, there is equality in this, provided that A
and B do not have a dimension m− 2 component contained in the “hyperplane at infinity”.

To state Bezout’s theorem formally and for our proof, we will need to understand something
about intersection multiplicities. We start with the definition.

Definition 7.22 (Intersection multiplicity in m dimensions [Har77, Section I.7]). 11 Let A(X1, . . . , Xm),
B(X1, . . . , Xm) ∈ F[X1, . . . , Xm] be relatively prime polynomials, and let V(A), V(B) ⊆ Fm be their zero
sets. Let W be an irreducible variety in Fm of dimension 2. Let p be the prime ideal of W in F[X1, . . . , Xm].

Then we define the intersection multiplicity of A and B at W, denoted by IMult(A, B; W) as

IMult(A, B; W) = lengthOp
(Op/I),

where Op is the local ring of p and I is the ideal of Op generated by A and B. ♢

Note that if A and B do not both vanish on W, then IMult(A, B; W) = 0.

Intersections with a hyperplane: One property of IMult that we will need concerns the case
where B is degree 1 (i.e., V(B) is a hyperplane H). In this case, for any irreducible polynomial
U(Z1, . . . , Zm−1) viewed as a polynomial on H, if we let W denote the m − 2 dimensional irre-
ducible variety V(U) ⊆ H, then we have:

IMult(A, B; W) = the highest power of U that divides AH .

Abusing notation, when B is degree 1 and thus V(B) is a hyperplane H, we will sometimes refer
to IMult(A, B; W) as IMult(A, H; W).

We will also need the property that deg(W) in this case equals the degree of the polynomial
U(Z1, . . . , Zm−1).

11There are some minor differences between what we write here and the definition in [Har77].

1. We only talk about affine varieties.

2. We only talk about the intersection of codimension 1 varieties, while in [Har77], one of the varieties is allowed
to be of arbitrary codimension.

3. We do not require A and B to be irreducible. Since we are in the codimension 1 setting, A and B can be fac-
tored into irreducible factors, and everything generalizes since the definition of intersection multiplicity satisfies
the bilinearity relations IMult(A1 A2, B; W) = IMult(A1, B; W) + IMult(A2, B; W) and IMult(A, B1B2; W) =
IMult(A, B1; W) + IMult(A, B2; W) whenever the A’s and B’s are relatively prime.
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With the definition of IMult in hand, we can now state Bezout’s theorem in the m-dimensional
setting.

Theorem 7.23 (Bezout’s theorem in m-dimensions (for 2 hypersurfaces) [Har77, Theorem I.7.7]).
Let A(X1, . . . , Xm), B(X1, . . . , Xm) ∈ F[X1, . . . , Xm] be relatively prime polynomials, and let V(A), V(B) ⊆
Fm be their zero sets. Let W1, . . . , Ws be the irreducible components of V(A) ∩V(B). Then,

s

∑
j=1

IMult(A, B; Wj) ≤ deg(A) · deg(B).

Furthermore, if the closures V(A) and V(B) in projective space Pm(F) do not contain any common
dimension m− 2 components, then the inequality above is, in fact, an equality.

Proof of Lemma 7.12

We can now prove the divisibility lemma for general m, Lemma 7.12.

Proof of Lemma 7.12. The high-level outline of the lemma is similar to that of the two-dimensional
case. We begin with a high-level sketch. First, we may assume that E and P are relatively prime;
otherwise we can divide out any common factors and reduce to the relatively prime case. Now,
suppose e ≥ 1 – otherwise e = 0, and the conclusion holds trivially.

Our plan is to apply Bezout’s theorem to E and P. Each H for which EH divides PH will account
for some irreducible components Wi in the intersection of V(E) and V(P) which have a large total
of the product of their degree and intersection multiplicity. This gives a lower bound, via Bezout’s
theorem, on deg(E) ·deg(P), for which we have an apriori upper bound. Resolving this yields the
result.

As in the m = 2 case, we need a lemma about the intersection multiplicity of hypersurfaces
that share a common tangent hyperplane. We prove this lemma at the end of this section.

Lemma 7.24. Suppose E, P are relatively prime polynomials in F[X1, . . . , Xm] and H is a hyperplane in
Fm. Let W be an irreducible variety of dimension m − 2 in H, and suppose both IMult(E, H; W) and
IMult(P, H; W) are at least k. Then,

IMult(E, P; W) ≥ k.

Now, we proceed with the formal proof. Let

H′ = {H ∈ H | deg(EH) = e}.

Note that there can be very few H ∈ H which do not lie in H′. This is a natural generalization of
Claim 7.21. Indeed, suppose E(Z1, Z2, . . . , Zm−1, ⟨a, Z⟩ + b) has degree strictly less than e. Then
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letting E∗ be the highest degree homogeneous part of E, we have that E∗(Z1, . . . , Zm−1, ⟨a, Z⟩) = 0,
and thus E∗(Z1, . . . , Zm−1, Y) is divisible by (Y− ⟨a, Z⟩). Since the H in H are in general position
and thus correspond to different as, we get that each H ∈ H \H′ yields a distinct factor of E∗, and
so there can be at most e such H. Thus, we showed,

|H′| ≥ |H| − e > 2d.

Now let H ∈ H′, and let us consider the polynomials EH and PH. LetWH be the set of irreducible
components of V(E) ∩ H. Since EH divides PH, then for every irreducible factor U(Z1, . . . , Zm−1)

of EH, the highest power of U that divides PH is at least the highest power of U that divides EH.
Thus W ∈ WH, we have,

IMult(P, H; W) ≥ IMult(E, H; W).

Now, from Lemma 7.24, we get that for every H ∈ H′ and every W ∈ WH,

IMult(E, P; W) ≥ IMult(E, H; W).

Thus we have,

∑
W∈WH

IMult(E, P; W)deg(W)

≥ ∑
W∈WH

IMult(E, H; W)deg(W)

= deg(EH)

= e.

In words, every H ∈ H′ accounts for many of the intersection multiplicity of E and P. Now
consider the expression ∆ defined below.

∆ := ∑
H∈H′

∑
W∈WH

IMult(E, P; W)deg(W)

≥ |H′| · e

> 2de,

where the inequality is strict because of our assumption that e ≥ 1.
On the other hand, ∆ can be bounded from above by Bezout’s theorem. Let F be the set of

all irreducible components of V(E) ∩ V(P). (Note that they are all m− 2 dimensional by [Har77,
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Theorem I.7.1].). From Theorem 7.23, we have

∆ = ∑
H∈H′

∑
W∈WH

IMult(E, P; W)deg(W)

= ∑
H∈H′

∑
W∈F

1W⊆HIMult(E, P; W)deg(W)

= ∑
W∈F

∑
H∈H′

1W⊆HIMult(E, P; W)deg(W)

= ∑
W∈F

IMult(E, P; W)deg(W)

(
∑

H∈H′
1W⊆H

)
≤ 2 ∑

W∈F
IMult(E, P; W)deg(W)

≤ 2de,

where the last line is Bezout’s theorem, and the penultimate inequality is because any (m − 2)-
dimensional variety W can be contained in at most 2 of the hyperplanes H ∈ H′ (since they are
in general position – and this can only happen if W is the (m− 2)-dimensional intersection of two
hyperplanes inH′).

This gives us a contradiction, and the result follows.

Proof of Lemma 7.24

We now prove Lemma 7.24.

Proof of Lemma 7.24. Let us rename the m variables X1, . . . , Xm to Z1, . . . , Zm−1, Y.
By an affine change of variables, we may assume that the hyperplane H is defined by Y = 0,

and W, the irreducible m− 2-dimensional subvariety of H, is defined by the two equations Y =

0, U(Z1, . . . , Zm−1) = 0, where U is an irreducible polynomial. (This uses the fact that every irre-
ducible subvariety that is codimension 1 in an affine space can be defined by a single irreducible
polynomial.) Thus the prime ideal of F[Z1, . . . , Zm−1, Y] associated with W, p, is generated by y
and U(Z1, . . . , Zm−1).

After the variable change, the polynomial EH(Z1, . . . , Zm−1) becomes E(Z1, . . . , Zm−1, 0) and
PH(Z1, . . . , Zm−1) becomes P(Z1, . . . , Zm−1, 0). Thus E(Z1, . . . , Zm−1, Y) and P(Z1, . . . , Zm−1, Y) are
of the form:

E(Z1, . . . , Zm−1, Y) = EH(Z1, . . . , Zm−1) + Y · CE(Z1, . . . , Zm−1, Y),

P(Z1, . . . , Zm−1, Y) = PH(Z1, . . . , Zm−1) + Y · CP(Z1, . . . , Zm−1, Y),

for some polynomials CE, CP.
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Our hypotheses IMult(E, H; W) ≥ k and IMult(P, H; W) ≥ k tell us that EH(Z1, . . . , Zm−1)

and PH(Z1, . . . , Zm−1) are both divisible by U(Z1, . . . , Zm−1)
k.

Thus, the polynomials E(Z1, . . . , Zm−1, Y) and P(Z1, . . . , Zm−1, Y) both lie in the ideal J of
F[Z1, . . . , Zm−1, Y] generated by U(Z1, . . . , Zm−1)

k and Y.
Now we consider IMult(E, P; W). Let p be the prime ideal of W in F[Z1, Z2, . . . , Zm−1, Y]. By

definition:
IMult(E, P; W) = lengthOp

(Op/I),

where I is the ideal of OW generated by E and P. By our previous observation, if we let J be the
ideal of Op generated by U(Z1, . . . , Zm−1)

k and Y, then I ⊆ J. Thus

IMult(E, P; W) ≥ lengthOp
(Op/J).

This latter expression simply equals IMult(Y, U(Z1, . . . , Zm−1)
k; W), which, by the general com-

ments about intersection multiplicities of polynomials with hyperplanes, equals k. Alternatively,
lengthOp

(Op/J) can be seen to be at least k because of the length k sequence of Op modules

{0} ⊆ Op/⟨Y, U⟩ ⊆ . . . ⊆ Op/⟨Y, Ui⟩ ⊆ . . . ⊆ Op/⟨Y, Uk⟩ = Op/J.

This completes the proof.
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A d-robustness in 2 variables

In this section, we investigate the problem of finding the smallest set with a given d-robustness.
This corresponds to the best R vs δ tradeoff that can be obtained from our generalized Schwartz-
Zippel lemma for shapes. Our main results are that in the regime of large δ (close to 1) and small δ

(close to 0), the grid and the simplex are essentially optimal. As we already saw, for intermediate
δ, there are shapes that outperform both of these.

We first show the grid is optimal for relative d-robustness greater than 1/2.

A.1 High robustness regime

First, we show that any set with relative d-robustness greater than 1/2 must contain the point d, d.

Lemma A.1. Let δ > 1/2. Suppose S ⊂N2 is such that πd(S) ≥ δ. Then S contains (d, d).
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Proof. By contradiction, suppose (d, d) /∈ S. Define the following partition of S. Sx = S ∩ H(d, 0),
Sy = S ∩ H(0, d), and S⊥ = {(x, y) : x < d ∧ y < d}. In words, Sx is the subset of S with x coor-
dinate at least d, Sy is the subset of S with y coordinate at least d, and S⊥ is the subset where both
x and y coordinates are less than d. Since S is downward closed, there are no elements of S with
both x and y coordinates at least d, and thus (Sx, Sy, S⊥) is indeed a partition of S.

Since πd(S) ≥ δ d-robust, we have |Sx| ≥ δ|S|, and |Sy| ≥ δ|S|. Thus, we have |Sx|+ |Sy| ≥
2δ|S| which implies |S| ≥ 2δ|S|, so δ ≤ 1/2, which is a contradiction.

We now prove the following theorem, which implies that the grid is optimal for δ ≥ 1/2.

Theorem A.2. Let S ∈N2 with πd(S) > 1/2. Then

|S| ≥
(√

δ|S|+ d2

4
+

d
2

)2

.

Furthermore, setting R = d2

2|S| , we have R ≤ (1− δ)2/2.

Proof. Let Vx = S∩H(d, 0). Let Vy = S∩H(0, d). Let U = Vx ∩Vy. By hypothesis, |Vx|, |Vy| ≥ δ|S|.
Let c = |Vx |+|Vy|

2 , and note that c ≥ δ|S|.
We have:

|S| = d2 + |Vx|+ |Vy| − |Vx ∩Vy|

= d2 + 2c− |U|

We now get an upper bound on |U| in terms of c. Let ax be the largest a such that (d+ a, d) ∈ S.
Let ay be the largest a such that (d, d+ a) ∈ S. Then |U| ≤ axay. Furthermore, we have |Vx| − |U| ≥
dax and |Vy| − |U| ≥ day.

Thus

|U| ≤
(|Vx| − |U|)(|Vy| − |U|)

d2 .

By the AM-GM inequality,

|U| ≤ (c− |U|)2

d2 .

Simplifying,

|U|2 − (2c + d2)|U|+ c2 ≥ 0.
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Solving, we get:

|U| ≤ c +
d2

2
−

√(
c +

d2

2

)2

− c2

= c +
d2

2
−

√
d2

2

(
2c +

d2

2

)
= c +

d2

2
− d

√
c +

d2

4
.

Thus

|S| ≥ d2 + 2c−
(

c +
d2

2
− d

√
c +

d2

4

)

=
d2

2
+ c + d

√
c +

d2

4

=

(√
c +

d2

4
+

d
2

)2

≥
(√

δ|S|+ d2

4
+

d
2

)2

,

as claimed. Then, substituting |S| = d2

2R , and dividing through by d2, we get

1
2R
≥
(√

δ

2R
+

1
4
+ 1/2

)2

.

Expanding and multiplying through by 2R, we get

1 ≥ δ + R +
√

2δR + R2.

Removing the square root, we get

(1− δ− R)2 − 2δR− R2 ≥ 0.

Expanding and simplifying, we get

δ2 − 2R− 2δ + 1 ≥ 0.
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Finally, rearranging for R, we get
R ≤ (1− δ)2/2,

as claimed.

Let S be the grid of side length ℓ. Recall from the discussion in Section 4.4 that S has relative
d-robustness 1 − d/ℓ. Then the RHS of the inequality is d2

2ℓ2 = d2

2|S| = R. Hence, the grid is
the smallest set with relative d-robustness δ for δ for δ > 1/2. Next, we study the low-distance
regime.

A.2 Low robustness regime

Theorem A.3. Let δ > 0, and S ⊂N2 be such that πd(S) ≥ δ. Let N = |S|, and R = d2

2N . Then we have

N − d2

2
≥
√

2δNd,

and
R ≤ 1− 2

√
δ2 + δ + 2δ

Proof. Let U = Λ2,d be the two-dimensional simplex of side length d. Since πd(S) ≥ δ > 0, U ⊂ S
(otherwise S is contained within the first d column or the first d rows). Let V = U ∩ S. We will
find several subsets Vi of V that are mutually disjoint Taking the sum of sizes of these Vi will yield
our lower bound.

For convenience, define X<a = {(x, y) ∈N2 : x < a}. Similarly define X≥a, Y<a.
Let S1 = V ∩ H(0, d). By hypothesis, |S1| ≥ δN. Let b1 be the smallest value for which

S1 ⊂ X<b1 . I.e., b1 is the number of columns in S1. Then, since S is downward closed, we have that
the set X<b1 ∩ Y<d ⊂ S. Define T1 = X<b1 ∩ Y<d ∩U, and note that it is disjoint from S1. A simple
counting argument shows that |T1| = (b1

2 ). We take V1 = S1 ∪ T1, and note that |U1| ≥ δN + (b1
2 ).

Now we consider the part of V with x coordinate at least b1.
Let S2 = V ∩ H(b1, d− b1) By hypothesis, we have |S2| ≥ δN. Suppose S2 has b1 + b2 columns,

i.e. b2 is the smallest number such that S2 ⊂ X<b1+b2 . By the same logic, we have that T2 =

X≥b1 ∩ X<b2 ∩ Y< d− b1 ∩U is a subset of V that is disjoint from S2. We take V2 = S2 ∪ T2, and
note that |V2| ≥ δN + (b2

2 ) Also, note that V2 is disjoint from V1 since their projections on the X axis
are disjoint.

We repeat the process of taking

Sk = V ∩ H(
k

∑
i=1

bi, d−
k−1

∑
i=1

bi),
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and
Tk = X≥∑k−1

i=1 bi
∩ X<∑k

i=1 bi
∩Y<d−∑k−1

i=1 bi
∩U,

until ∑k
i=1 bk ≥ d.

Let b̂k = d−∑k−1
i=1 bi, it is not hard to see that |Tk| ≥ (b̂k

2 ). Replace bk with b̂k, so that ∑k
i=1 bi = d,

and Ti ≥ (bi
2) for each i ∈ [k]. Thus, Ui ≥ δN + (bi

2) for each i ∈ [k]. We now use these to bound the
size of S. We have

N ≥ |U|+ kδN +
k

∑
i=1

(
bi

2

)
=

d(d− 1)
2

+ kδN +
k

∑
i=1

bi(bi − 1)
2

=
d2

2
+ kδN +

k

∑
i=1

b2
i

2
− d

≥ d2

2
+ kδN +

d2

2k
− d

≥ d2

2
+ d
√

2δN − d.

The third line follows from the fact that ∑k
i=1 bi = d, the fourth line follows from the Cauchy-

Schwartz inequality, and the fifth line follows from the AM-GM inequality. Substituting N = d2

2R ,
and rearranging, we get that

1 ≥ 2
√

Rδ + R−O(1/d)

Ignoring the O(1/d) term and solving for R, we get that R ≤ 1− 2
√

δ2 + δ + 2δ.

Recall that the simplex evaluation set obtains a trade-off R = (1−
√

δ)2 = 1− 2
√

δ + δ. Taking
the Taylor expansion of the expression from Theorem A.3, get R ≤ 1− 2

√
δ + 2δ +O(δ3/2). Thus,

the simplex has the optimal asymptotic behaviour as δ approaches 0, namely, R = 1− 2
√

δ+O(δ).
Figure 5 compares the trade-off obtained by the simplex to the upper bound in Theorem A.3.

B Robust local characterization in m dimensions using error-locator
polynomials

In this section we give a proof of a quantitatively weaker robust local characterization (which is
completely subsumed by our results in Section 7), using an interpolated error-locator polynomial

78



Figure 5: Comparing rate vs. robustness trade-off of the simplex construction to the upper bound

in the spirit of our Theorem 7.11. This uses our divisibility lemma for general m. We only include
this because we find the proof method interesting.

The quantitatively weak aspect is that we cannot take d
t close to 1 in the statement, and thus it

does not apply to high rate GAP codes12.

Theorem B.1. For all m, d, t ∈N and ε ∈ [0, 1) with t ≥ 12(d + m), ε < 1
100m2 , and for all large enough

field F, the following is true.
Let H = {H1, . . . , Ht} be a set of hyperplanes in general position in Fm. Let S ⊆ Fm denote the set of

all m-wise intersection points of the hyperplanes inH. For every hyperplane H inH, let gH : H → F be a
degree d polynomial on (m− 1) variables.

If the polynomials gH and gH′ agree with each other on H ∩ H′ for at least (1− ε)(t
2) pairs {H, H′} ⊆

H, then there is an m-variate degree d polynomial f : S → F and a set H̃ ⊆ H of size at least (1− 2ε)t
such that for every H ∈ H̃, the restriction of f on H equals gH.

Proof of Theorem B.1. Let U be the set of all subspaces of co-dimension two obtained by taking
pairwise intersections of distinct hyperplanes in H, and U ′ ⊆ U be the subset of co-dimension
two subspaces A such that if A = H ∩ H′ for H, H′ ⊆ H, then gH and gH′ agree on A, i.e.

12The source of this weakness is the factor 2 in the divisibility lemma – however this factor 2 is tight for the divisibility
lemma.
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gH and gH′ are consistent with each other. From the hypothesis of the theorem, we have that
|U ′| ≥ (1− ε) · |U | = (1− ε) · (t

2).

An error locator polynomial: We show that there is a non-zero m-variate polynomial E(X) of
degree at most

√
ε
2 tm that vanishes identically on all subspaces in the set U \ U ′. This is again via

an interpolation argument. We think of the coefficients of E as formal variables of a polynomial
of degree

√
ε
2 tm on m variables. Now, for any linear subspace A of co-dimension two, we impose

the constraint that the restriction of E on A, denoted by EA vanishes identically.13 Note that up to
an invertible change of basis, EA is a polynomial of degree at most deg(E) on (m− 2) variables.
Thus, imposing the constraint that EA is identically zero corresponds to (deg(E)+m−2

m−2 ) homogeneous

linear constraints on the coefficients of E(X). Thus, we have a system of
(

ε · (t
2) · (

deg(E)+m−2
m−2 )

)
homogeneous linear constraints on (deg(E)+m−2

m ) many variables. Thus, if(
deg(E) + m

m

)
> ε

(
t
2

)(
deg(E) + m− 2

m− 2

)
,

The system has a non-zero solution. For deg(E) =
√

ε
2 tm, it can be verified that this inequality

holds. Let E be one such non-zero polynomial, and e ≤
√

ε
2 tm denote its degree.

A global low degree polynomial: For every H ∈ H, let PH(Z) be the polynomial

PH(Z) := gH(Z) · EH(Z) ,

where EH is the restriction of E to the hyperplane H. Clearly,

deg(PH) = deg(gH) + deg(EH) ≤ d + deg(EH) .

We claim that for every pair of distinct hyperplanes H, H′ ∈ H, the polynomials PH and PH′ are
consistent with each other, i.e. they agree on the subspace H ∩ H′. To argue this, we consider two
cases based on whether or not A = H ∩ H′ is in U ′. If H ∩ H′ ∈ U ′, then we have that gH and gH′

are consistent, and hence

PA
H = gA

H · EA
H = gA

H′ · EA
H′ = PA

H′ .

If A /∈ U ′, then EA
H is identically zero from the definition of E, and hence

PA
H = PA

H′ ≡ 0 .

13Throughout this proof, we will abuse notation slightly and denote the restriction of polynomials such as E on any
subspace A of co-dimension 2 by EA.
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Now, applying the local characterization theorem (Theorem 7.5) to this collection {PH : H ∈ H}
of hyperplane polynomials of degree d + e, we get that if t ≥ d + e + m (which holds from the
lower bound on t in the hypothesis of the theorem), then there is a global m-variate polynomial P
of degree at most (d + e) such that for every hyperplane H ∈ H, the restriction of P on H equals
PH.

This implies that for every H ∈ H, the restriction EH of E divides the restriction PH of P on
the H. Since t > 2(d + e) + e ≥ 2 maxH{deg(P)} + deg(E), from Lemma 7.12, we get that the
m-variate polynomial E divides the m-variate polynomial P.

Let f (X) be the resulting quotient P(X)/E(X). Clearly, deg( f ) is equal to deg(P) − deg(E),
which is at most (d + e)− e = d. To prove the theorem, it now suffices to show that the restriction
fH of f on a hyperplane H equals the hyperplane polynomial gH for many hyperplanes H in H.
Once again, we first prove a weaker bound for this and then amplify it to complete the proof of
the theorem.

Agreement with many hyperplane polynomials : As in the proof of Theorem 7.11, we again no-
tice that if EH is not identically zero for a hyperplane H ∈ H, then PH/EH is a polynomial and
equals PH/EH = gH = fH. We now observe that there are at most deg(E) hyperplanes H in H
such that EH is identically zero. To see this, note that the polynomial EH can be obtained from the
polynomial E by substituting one of the variables of E (w.l.o.g denoted by Xm here) by an affine
linear form L in the variables X1, X2, . . . , Xm−1. Thus, EH is identically zero if and only if E is di-
visible by (Xm − L). So, every hyperplane H such that EH is identically zero yields a linear factor
of E, and all these factors are distinct (since the hyperplanes are distinct and, in fact, in general
position). Thus, E is divisible by the product of all such linear factors, and hence the number of
such factors, and therefore, such hyperplanes cannot exceed deg(E). Thus, fH equals gH for at
least (t− e) of the hyperplanes. Now, we amplify this bound further to complete the proof of the
theorem.

An improved bound : This final step also follows the outline of this step for the two-dimensional
case. For H ∈ H, let IH ⊆ H be the set of hyperplanes H′ such that gH∩H′

H ̸= gH∩H′
H′ . From the

hypothesis of the theorem

E
H∈H

[|IH |] ≤ εt .

Thus, by Markov’s inequality, we get that

Pr
H∈H

[
|IH | ≥ ((1−

√
ε/2m)t− d−m)

]
≤ εt

(1−
√

ε/2m)t− d−m
≤ 2ε ,

where the last inequality follows from the bounds on t and ε in the theorem. Thus, we have
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that for (1− 2ε)t of hyperplanes H, the set IH is of size less than ((1−
√

ε/2m)t− d− m). Any
such H is consistent with at least d + m of the hyperplanes H′ such that EH′ does not vanish, and
fH′ equals gH′ , which in-turn equals gH. Let A be this set and let AH = {H′ ∩ H : H′ ∈ A}.
Now, if we focus on the (m − 1)-dimensional linear space H, then AH is a set of (d + m) co-
dimension one subspaces within H, which are also in general position. Moreover, fH and gH agree
on each of these subspaces. Thus, they agree on the set of points corresponding to the (m − 1)-
wise intersection of subspaces in AH. Thus, Theorem 3.3, we get that gH and fH must be equal to
each other.

Therefore, for at least (1− 2ε)t hyperplanes H ∈ H, fH equals gH. This completes the proof of
the theorem.

C Intersection points of hyperplanes in general position are an inter-
polating set

We give a quick proof of Bläser and Pandey’s Theorem 3.3.

Proof. For each x ∈ T, we will show that there is a polynomial Px in F[X1, . . . , Xm] of degree at
most d which is nonzero at x and zero at T \ {x}. This immediately implies that every function
from T to F can be interpolated by a polynomial of degree at most d – and since |T| equals the
dimension of the space of all polynomials of degree at most d, we get that T is an interpolating set.

It remains to show the existence of Px. Let H1, . . . , Hm ∈ H be the m hyperplanes whose
intersection is x. By the general position assumption about H, we have that x does not lie on any
other hyperplane inH. Define

Px(X1, . . . , Xm) = ∏
H∈H\{H1,...,Hm}

H(X1, . . . , Xm).

(Here, abusing notation, we used H(X1, . . . , Xm) for a degree 1 polynomial whose zero set equals
the hyperplane H). It is easy to see that Px does not vanish on x and vanishes on other points of T,
and that the degree of Px is at most D. This completes the proof.
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