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Abstract. We show that every NP relation that can be verified by a
bounded-depth polynomial-sized circuit, or a bounded-space polynomial-
time algorithm, has a computational zero-knowledge proof (with statistical
soundness) with communication that is only additively larger than the
witness length. Our construction relies only on the minimal assumption
that one-way functions exist.

In more detail, assuming one-way functions, we show that every NP
relation that can be verified in NC has a zero-knowledge proof with
communication |w|+ poly(λ, log(|x|)) and relations that can be verified
in SC have a zero-knowledge proof with communication |w|+|x|ε·poly(λ).
Here ε > 0 is an arbitrarily small constant and λ denotes the security
parameter. As an immediate corollary, we also get that any NP relation,
with a size S verification circuit (using unbounded fan-in XOR, AND
and OR gates), has a zero-knowledge proof with communication S +
poly(λ, log(S)).

Our result improves on a recent result of Nassar and Rothblum (Crypto,
2022), which achieves length (1 + ε) · |w| + |x|ε · poly(λ) for bounded-
space computations, and is also considerably simpler. Building on a work
of Hazay et al. (TCC 2023), we also give a more complicated version of
our result in which the parties only make a black-box use of the one-
way function, but in this case we achieve only an inverse polynomial
soundness error.

1 Introduction

Zero-knowledge proofs, introduced in the groundbreaking work of Goldwasser
Micali and Rackoff [GMR89], are interactive protocols in which a powerful
but untrusted prover convinces a verifier of the validity of a computational
statement, in such a way, that no additional information is revealed. Different
notions of zero-knowledge have been studied in the literature. In this work we
focus exclusively on proofs offering statistical soundness and computational zero-
knowledge, and refer to this notion whenever we say zero-knowledge proof (see
Remark 4 for a discussion of related variants).

In their seminal work, Goldreich, Micali and Wigderson [GMW86] constructed
a zero-knowledge proof for checking that a given graph is 3-colorable (assuming
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the existence of one-way functions). As 3-coloring is NP-complete, their result
yielded the amazing fact that every problem in NP (i.e., every problem possessing
a classical proof) also has a zero-knowledge proof.

The protocol of [GMW86], henceforth referred to as GMW, proceeds by
having the prover commit to a random 3-coloring of the graph G = (V,E),
the verifier chooses an edge and the prover decommits to the colors of the two
endpoints. In order to get soundness error 2−λ, this base protocol is repeated
sequentially1 Θ(|E| · λ) times.

Thus, the overall communication in the GMW protocol is |V | · |E| · poly(λ).
This should be contrasted with the direct NP proof which has length |V |·log2(3).2
Things becomes even worse when considering general NP languages – for such
languages, due to the Karp reduction to 3-coloring, the GMW protocol gives
communication that is (a relatively large) polynomial in the complexity of the NP
verification circuit rather than the length of the raw witness. A similar overhead
is incurred by other classical approaches such as Blum’s [Blu86] Hamiltonicity
protocol.

It is natural to wonder whether the overhead incurred by these protocols
is inherent. This question has been studied in several works that show that it
is possible to achieve communication that is polynomial in the witness length,
rather than the size of the verification circuit, for a large subclass3 of NP relations
[IKOS09,KR08,GKR15,RRR21,NR22,HVW23]. Similarly to the original GMW
protocol, the protocols in this line of work all rely on the existence of one-way
functions, an assumption that is also known to be necessary for the construction
of zero-knowledge proofs for NP [OW93,HN24]. A different approach, proposed
by Gentry et al. [GGI+15], constructs zero-knowledge proofs with communication
m+poly(λ), where m is the size of the witness and λ is the security parameter,
but relies on the existence of a fully homomorphic encryption scheme (FHE),
which is (believed to be) a much stronger assumption (and is currently only
known to be instantiable assuming the circular security of LWE [Gen09,BV11,
MV24], or via indistinguishibility obfuscation [CLTV15]).4

All the aforementioned results that rely on one-way functions incur at the
very least a large multiplicative blowup over the witness size. In a recent work,
Nassar and Rothblum [NR22], relying only on the existence of one-way functions,
showed that any bounded space NP relation, has a zero-knowledge proof with
length (1+ γ) ·m+nβ ·poly(λ), where m is the witness length, n is the instance
length, λ is the security parameter and γ, β > 0 are arbitrarily small constants.

1 While it may seem natural to repeat the protocol in parallel, this is insecure, see
[HLR21].

2 For this high-level discussion, we ignore minor issues arising from rounding and
efficient bit-representation of trits.

3 The results obtained in this line of work differ, but loosely speaking, other than
[GGI+15], all known results hold for NP relations that can be decided by either
bounded depth circuits or by bounded space algorithms.

4 Gentry et al. [GGI+15] focus on non-interactive zero-knowledge proofs, but note
that their approach is also applicable to interactive zero-knowledge.
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1.1 Our Results

As our main result, we construct zero-knowledge proofs, with communication
that is only additively larger than the witness length, for any NP relation that can
be verified either by a bounded space algorithm or by a bounded-depth circuit.
Our constructions rely only on the minimal assumption of one-way functions.

Theorem 1 (Succinct Zero-Knowledge for Bounded Depth). Assume
that one-way functions exist. Let R be an NP relation with input size n and
witness size m, that can be decided by a polynomial-size circuit with depth D
and assume n ≤ poly(m). Then, R has a zero-knowledge proof with soundness
error 2−λ and communication complexity m+poly(λ, log(m), D) where λ denotes
the security parameter.

Furthermore, the prover and verifier run in time poly(n, λ), the protocol is
public-coin and the number of rounds is poly(λ, log(m), D).

Theorem 2 (Succinct Zero-Knowledge for Bounded Space). Assume
that one-way functions exist. Let R be an NP relation with input size n and
witness size m that can be decided by a polynomial-time and space S algorithm
and assume n ≤ poly(m). Then, for every constant δ > 0, the relation R has a
zero-knowledge proof with soundness error 2−λ, and communication complexity
m+ nδ · poly(S, λ), where λ denotes the security parameter.

Furthermore, the prover and verifier run in time poly(m,λ), the protocol is
public-coin and the number of rounds is poly(λ).

Theorems 1 and 2 improve on the result in [NR22] in that they achieve a truly
additive overhead in communication over the raw witness length (in contrast to
the the (1 + γ) multiplicative overhead in [NR22]).5 For example, Theorem 1
implies that satisfiability of a polynomial-size formula on n-variables has a zero-
knowledge proof with communication n+poly(λ, log n), and 3-colorability of an
n-vertex graph has a zero-knowledge proof with communication n · log2(3) +
poly(λ, log n).

These results are optimal in two ways. First, in terms of assumptions, they
only rely on the minimal assumption that one-way functions exist [OW93,HN24].
Second, in terms of communication, assuming the strong exponential-time hypothesis
(SETH) [IP99], the witness length is a lower bound on communication (up-to
additive terms), due to known limitations on so-called “laconic” provers [GH98,
GVW02]. Given the above, we refer to zero-knowledge proofs with a strictly
additive overhead over the witness as having rate-1.

The proofs of Theorems 1 and 2 are also significantly simpler than that
of [NR22] (which relied on recent non-trivial results on high-rate interactive
oracle proofs (IOPs) [RR20]). The key idea, on which we elaborate in Section 1.2,
is a form of “hybrid zero-knowledge” and is inspired by the construction in
5 Our result is also more general than that of [NR22] in that it holds also for bounded

depth circuits, whereas [NR22] is explicitly only stated for bounded space algorithms.
Nevertheless, by relying on [RR20, Remark 1.5], the techniques of [NR22] could also
yield proofs with communication roughly (1 + γ) ·m for bounded-depth circuits.
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[GGI+15] (and can be further traced back to hybrid encryption). In a nutshell,
we give a simple reduction from constructing a rate-1 zero-knowledge proof, to
constructing a zero-knowledge with communication that can depend polynomially
on the witness length (rather than the size of the verification circuit). Theorems 1
and 2 then follow by combining our reduction with known zero-knowledge proofs
from the literature.

It is worth pointing out some second order differences between Theorem 1 and
Theorem 2, which are inherited from doubly-efficient interactive-proofs on which
they rely. The additive term in the communication in Theorem 1 depends only
poly-logarithmically on the input-size, whereas in Theorem 2 the dependence has
the form nδ. On the other hand, the round complexity in Theorem 2 is poly(λ)
whereas in Theorem 1 the number of rounds also depends poly-logarithmically
on the witness size and linearly on the depth.

Circuit-size Communication for General NP Relations. Theorem 1 also yields
a new zero-knowledge proof for general NP relations with communication that
is only additively larger than the size of the verification circuit. This essentially
follows from the NP completeness of SAT: any NP relation can be verified in
(poly-)logarithmic depth, if the witness includes the values obtained by all of
the gates in the evaluation of the verification circuit (indeed, this “extended
witness” can be checked by verifying that each gate is separately satisfied by the
assignment).

Corollary 3 (Succinct Zero-Knowledge for General Relations). Assume
that one-way functions exist. Let R be an NP relation that can be verified by a
circuit of size S with unbounded fan-in XOR, AND and OR gates. Then, R has
a zero-knowledge proof with soundness error 2−λ and communication complexity
S + poly(λ, log(S)), where λ is the security parameter.

Corollary 3 improves over a similar result for general circuits obtained by
[IKOS09], which had a constant multiplicative overhead, and a result that can
be derived from [NR22], which gives (1 + ε) multiplicative overhead.

Remark 4 (On Computationally Sounds Proofs). In contrast to the statistically
sound proofs considered in this work, it is well-known that (assuming the existence
of collision-resistant hash functions) there exist zero-knowledge arguments (aka
computationally sound proofs) in which the communication is substantially smaller
than the witness length [Kil92].

Our focus however is on the case of statistical soundness. In this case, assuming
reasonable hardness assumptions, the witness length poses a barrier on the
communication [GH98,GVW02].

1.1.1 Zero-Knowledge with Black-Box use of the OWF

Many of the aforementioned constructions of succinct zero-knowledge proofs,
including the protocols establishing Theorems 1 and 2, make a non black-box use
of the one-way function. This means that the implementation of the prover and



Rate-1 Zero-Knowledge Proofs from One-Way Functions 5

the verifier depends on the actual code of the one-way function. This is in contrast
to a black-box construction in which it suffices for the parties to receive oracle
access to the one-way function (in other words, the one-way function is merely
used as a sub-routine). Non black-box constructions are usually considered less
efficient than their black-box counterparts and it is therefore desirable to construct
protocols that avoid such a non black-box use of the one-way function. Such
constructions are also more modular, enabling applications that may not be
possible otherwise (see [KRV24] for a recent example).

The MPC-in-the-head framework of Ishai et al. [IKOS09] gives an alternate
approach that enables a black-box use of the one-way function. In particular, a
very recent work by Hazay, Venkitasubramaniam and Weiss [HVW23] builds on
this framework to construct black-box zero-knowledge proofs with communication
roughly (1 + ε) · m, thereby matching the non black-box result of [NR22]. A
downside of their result, compared to [NR22], is that they only achieve a constant
soundness error (which cannot be reduced by repetition unless we blowup the
communication).

Our second set of results are zero-knowledge proofs with a black-box use
of the one-way function, that improve on the result of [HVW23] in two ways.
Our main improvement is that we obtain proof length that is only additively
larger than m – i.e., a rate-1 zero-knowledge proof (improving on the (1 + ε)
multiplicative overhead in [HVW23]). The second improvement is that we obtain
soundness error that is polynomial in the (reciprocal of) the security parameter,
thereby improving on the constant error achieved in [HVW23]. Our construction
also avoids the use of the relatively heavy hammer of high-rate IOPs used by
[HVW23] and relies on more basic tools (e.g., the doubly-efficient interactive
proof of [GKR15]).

Theorem 5. Assume that one-way functions exist. Let R be an NP relation with
input size n and witness size m, that is computable by a (non-uniform) circuit
family C of size S = S(n) and depth D = D(n) and assume n ≤ poly(m). Then,
for any ε > 0 the relation R has a zero-knowledge proof with perfect completeness,
and soundness error ε, in which the verifier, prover and simulator all only make
a black-box use of the one-way function. The communication complexity is m+
poly

(
1
ε , λ,D, log(S)

)
, where λ is the security parameter.

Furthermore, the prover and verifier run in polynomial time, the protocol is
public-coin and the number of rounds is poly(D, log(S)).

We remark that a similar result to Theorem 5 for bounded space computations
can also be obtained, see discussion in Section 1.2.2.

1.2 Techniques

In this section we give an overview of our techniques.

1.2.1 Rate-1 Zero-Knowledge: Proving Theorems 1 and 2

As mentioned above, the proofs of Theorems 1 and 2 are surprisingly simple.
The key idea behind the protocols, which is inspired by [GGI+15], is to reduce
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the construction of rate-1 zero-knowledge proofs, to constructing zero-knowledge
proofs whose communication depends polynomially only on the witness length.

The protocol proceed as follows. Given an input x and its witness w, the
prover randomly samples a short seed s ∈ {0, 1}λ for a pseudorandom generator
(PRG) G and then uses it to mask the witness. That is, the prover computes
and sends u = G(s)⊕ w to the verifier.

At this point, we view the PRG seed s as playing the role of a new witness,
in the sense that if the verifier knew s then she could verify that x is indeed
in the language. Needless to say, sending s in the clear would violate the zero-
knowledge property, but we observe that it now suffices for the the prover to
prove, in zero-knowledge, that it could have revealed an s that would have made
the verifier accept. The key benefit is that s, which serves as the new witness,
is much shorter than the original witness. Hence, we can afford to use one of
the pre-existing zero-knowledge proofs that have a polynomial overhead in the
witness. Thus, while the first message sent has length exactly m = |w|, the length
of the messages sent afterwards is polynomial in the length of the seed s.

In more detail, given an NP relation R, the prover generates u = G(s) ⊕ w
and we consider the relation R′G =

{
((x, u), s) | (x,G(s) ⊕ u) ∈ R

}
. Observe

that the tuple ((x, u), s) is in R′G if and only if (x,G(s)⊕ u) ∈ R. So by sending
u, we have reduced the problem to one with a smaller witness.

The relation R′G is in NP, since given s we can compute G(s) in polynomial
time in |w|, and then run the NP verifier on (x,G(s)⊕u), which can also be done
in poly(|x|) time. Moreover, we observe that if R can be decided in small depth
then so can R′G – this follows from the fact that, assuming one-way functions,
there exists a PRG G : {0, 1}λ → {0, 1}m computable by depth log(m) · poly(λ)
(and size poly(m,λ)) circuits. Indeed such a PRG follows by using a stretch-
doubling PRG (which can be constructed from a one-way function [HILL99])
and applying the [GGM86] tree-based construction for log(m) levels. Therefore,
since the relation R′G is verifiable in small depth, using pre-existing results
from the literature6 [GKR15], this relation has a zero-knowledge proof with
a communication complexity poly(λ, log(n), D), where D denotes the depth of
the original verification circuit.

Overall, we obtain a zero-knowledge proof for R with communication complexity
that is larger than the witness length only by an additive poly(λ, log(n), D)
factor.

For relations R that can be verified in small space we follow a similar approach,
using a zero-knowledge proof for small space relations with polynomial overhead
in the witness size [RRR21] and using a PRG computable in small space (such
a PRG follows essentially by the textbook stretch increasing construction of a
PRG, see [Gol01, Construction 3.3.2]).

6 The main result in [GKR15] is a doubly-efficient interactive proof for bounded-
depth computations, which is not zero-knowledge. We use here a corollary [GKR15,
Theorem 1.6] that obtains computationally zero-knowledge proofs for bounded depth
NP relations.
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1.2.2 Rate-1 Zero-Knowledge: The Black-Box Way

A downside of the approach described in Section 1.2.1 is that the prover and
verifier make a non black-box use of the one-way function. This is due to the
fact that the new relation R′G has the PRG G encoded as part of its specification
circuit. All known general purpose zero-knowledge proofs need an explicit representation
of the NP verification circuit (and this is inherent, see [Ros12]). Thus, a zero-
knowledge proof for R′G has to use the code of the PRG, which translates into a
non black-box use of the one-way function that G is based on.

In this section we present a different approach in which the prover, verifier
and simulator all make a black-box use of the one-way function. A caveat of this
alternate approach is that we only get a soundness error that is polynomially
related to the (reciprocal of the) security parameter, rather than an exponentially
small soundness error as in Theorems 1 and 2. Nevertheless, this already significantly
improves on the constant soundness error achieved by the previous black-box
construction of Hazay et al. [HVW23].

We continue with the idea of hiding the witness by masking it with a PRG,
but rather than employing an off-the-shelf zero-knowledge protocol to prove
that the masked witness can be opened, we use a general interactive protocol,
which is not zero-knowledge, and make it zero-knowledge by applying multi-
party computation (MPC) techniques, details follow.

Following [HVW23] (although their idea is not quite articulated in the same
way), our main step is constructing a form of “distributed zero-knowledge”, in
which we have a single prover and k verifiers. The goal is for the verifiers to
each be convinced that the prover holds a valid witness, but in such a way that
a subset t < k of the verifiers does not learn anything else. The distributed
zero-knowledge protocol can then be compiled into a standard one (i.e., with
a single monolithic verifier), using the MPC-in-the head approach: the prover
emulates the interaction between the k verifiers via an MPC protocol, and sends
commitments to their views. The monolithic verifier can now request that some
of these views be opened to check that the MPC protocol was executed correctly.

In order to get our desired communication complexity, we therefore need for
the overall communication in the k-party distributed protocol to be roughly m+
poly(λ), and for the MPC-in-the-head emulation to only increase this additively.

The Distributed Zero-Knowledge Protocol. We start by secret sharing the witness
w to the k verifiers, where, for i ∈ [k − 1] the share is a PRG seed si and the
remaining k-th share is set to w ⊕ (

⊕k−1
i=1 (G(si)). Note that this is indeed a

secret sharing of the witness w, since by expanding the seed and XORing, we
can recover the witness. Also, the overall communication of this step is at most
m+ k · poly(λ) as desired.

Assume that the NP relation is decidable in small depth. The prover now
starts an execution of the doubly-efficient GKR protocol for bounded-depth
computations [GKR15] to prove that (x,w) ∈ R. In each round in the protocol,
rather than sending the next GKR prover message in the clear, the prover
secret shares it between the parties. Since the GKR protocol is public-coin, the
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GKR verifier’s messages can be generated by some global source of randomness.
Note that for circuits verifiable in NC, the communication in this part is just
k · polylog(n).

At the end of the interactive phase, the GKR verifier needs to check some
predicate on (x,w) and the interaction transcript. Since our verifier is distributed,
we perform this task via an off-the-shelf (semi-honest secure) MPC protocol.

The idea so far yields a zero-knowledge proof, but hides a somewhat subtle
flaw. The circuit which the parties emulate via the MPC protocol needs to fully
expand the k PRG seeds, recover the witness and then check that the witness
is valid. This means that the size of the circuit is at least k ·m, which increases
the complexity of the MPC protocol beyond what we can afford.

Holography to the Rescue. To resolve this difficulty, we recall an extremely useful
property of the GKR protocol (as well as related protocols in the literature) –
it is a holographic proof [BFLS91, GR17]. Namely, the GKR verifier does not
need full access to its input w but rather only to compute a single point in the
low degree extension of w.7 Moreover, the desired point depends only on the
verifier’s randomness.

Given this, rather than applying the MPC protocol on the full shares of w,
we have each of the k verifiers compute its local contribution to the low degree
extension at the desired point. Here we crucially use the fact that both the secret-
sharing and low-degree extension are computed as linear8 functions, and so the
sum of contributions of the shares is indeed equal to the low degree extension of
w at the desired point.

Thus, the MPC protocol only needs to recombine these small shares and then
run the GKR verification step.

Compiling into a Monolithic Verifier. We now compile the distributed protocol
to one with a single monolithic verifier. The prover simply sends commitments to
all of the shares of the witness and the messages that were sent to the k parties,
and then runs the MPC “in the head”. To maintain short communication, for
the last share of w, which has length m, we use a commitment scheme with only
additive overhead (which can be achieved similarly to our original construction
by XORing with the output of a PRG).

After the prover simulates the MPC, it sends commitments to the parties
views. The verifier then chooses t parties at random and asks the prover to
decommit to everything concerning these parties. Assuming the MPC protocol
7 Recall that a low degree extension of a string w ∈ {0, 1}m is a low degree multivariate

polynomial that agrees with w on a prescribed sub-domain (see Section 2.2 for
details) For our purposes it will only be important that the low-degree extension
is a linear function.

8 It is important here that these procedures are linear over the same field. To do this,
we employ the GKR protocol over a characteristic 2 fields, in which case the additive
secret sharing can be via an XOR (a linear function over such fields). Also, the secret
sharing is not quite linear, because the k-th share is a PRG seed that first needs to
be expanded, but this suffices for our approach.
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has perfect correctness, the only way for the prover to cheat is by providing
one of the players with an incorrect view or a pair of players with inconsistent
views. The former case is caught with probability at least t/k and the latter with
probability at least t·(t−1)

k·(k−1) . So the last thing for the verifier to do is to check the
validity of all decommitments and that all revealed parties behaved consistently
with the protocol.

In order to get a polynomially small soundness error, we set k = poly(λ)
and use as our MPC protocol the semi-honest GMW protocol [GMW87] in the
OT-hybrid model, which offers perfect semi-honest security against t = k − 1
parties. This yields a soundness error of O(1/k).

We remark that an analogous result for bounded space computations can also
be obtained by replacing the [GKR15] that we used with the [RRR21] protocol
for bounded space computations, which is also holographic.

Remark 6 (On Negligible Soundness via Malicious MPC). Following [IKOS09],
it is natural to try to improve the above and obtain a negligible soundness error
by relying on an MPC protocol with malicious security. Recall that in malicious
MPC the computation is robust even if a constant fraction of the parties are
corrupt. The idea would then be for the verifier to request to a open a constant
fraction of the parties views such that either she will identify one of the corrupt
parties and reject or, if all the opened views are consistent, the computation
should be correct.

The reason why this attempt fails is that malicious MPC robustness holds at
the condition that the function has the same output no matter the input of the
corrupted parties. In the case where the function being computed by the parties
is the NP verification of the relation, this attempt would work, since no matter
what the witness is, the function should reject. However, we apply the MPC on
a much simple function (which recover the low degree extension at just a single
point) and changing the input of even just one party can change the result of
the computation.

1.3 Open Questions

The main open question left by our work is constructing rate-1 zero-knowledge
proofs for all NP relations. By the aforementioned result of [GGI+15], such
proofs are known to exist assuming (full-fledged) FHE, but the question is
whether a similar result can be established from a weaker assumption; ideally,
just from the minimal assumption of one-way functions. We remark that, using
our hybrid zero-knowledge approach, such a rate-1 zero-knowledge proof would
follow from the existence of a zero-knowledge proof for NP that has an arbitrary
polynomial dependence on the witness length (but does not scale linearly with
the size of the verification circuit).

A second question left open by our work is whether we can construct succinct
zero-knowledge proofs that use the one-way function as a black-box, but achieve a
negligible soundness error (in contrast to the inverse polynomial soundness error
achieved by our construction). We remark that [IKOS09], building on [DI06],
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give such a result with communication O(|C|)+poly(λ, log(|C|)), where C is the
size of the NP verification circuit. This falls short of our goal of additive overhead
over the NP witness. Actually, to the best of our knowledge it is not even known
how to construct such protocols (i.e., with black box use of the one-way function
and negligible soundness error) with communication poly(m) + poly(λ, log(m))
(even for NP relations that are decidable in NC).

1.4 Organization

Preliminaries are in Section 2. In Section 3 we construct the succinct zero-
knowledge proofs that establish Theorems 1 and 2. The constructions that make
a blackbox use of the one-way function, proving Theorem 5, are in Section 4.

2 Preliminaries

For an NP relation R, we denote by LR the language LR = {x : ∃w, s.t. (x,w) ∈
R}. Throughout this work we use n to denote the instance size |x|, and m to
denote the witness size |w|.

2.1 Computational Indistinguishably

Definition 7. Let D = {Dλ}λ∈N , E = {Eλ}λ∈N be two distribution ensembles
indexed by a security parameter λ. We say that the ensembles are computationally
indistinguishable, denoted D

c
≈ E, if for any family of polynomial size circuits

{Cλ}λ∈N, the following quantity is a negligible function in λ:∣∣∣∣ Pr
x←Dλ

[Cλ(x) = 1]− Pr
x←Eλ

[Cλ(x) = 1]

∣∣∣∣ .
Fact 8 (Computational Data-Processing Inequality) If the distributions
D and E are computationally indistinguishable, and A is a PPT algorithm, then
A(D) and A(E) are also computationally indistinguishable.

2.2 Interactive Proofs

Definition 9 (Interactive proof). A pair of interactive machines (P, V ) is
called an interactive proof system for a language L, if V is a probabilistic
polynomial-time machines, and the following conditions hold for every security
parameter λ ∈ N:

– Completeness: For every x ∈ L, V accepts with probability 1 when interacting
with P on common input (x, 1λ).

– Soundness: For every x /∈ L, and every prover P ∗, V accepts with probability
at most ε(λ) when interacting with P ∗ on common input (x, 1λ).
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We say that an interactive proof has an efficient prover if P can be implemented
in (probabilistic) polynomial-time. In the context of an interactive proof for an
NP relation, we allow the prover access to an NP witness.

We remark that all proofs that we construct in this work will have an efficient
prover.

The Interactive Proof-System of [GKR15]. Our construction will build on the
interactive proof-system of [GKR15]. This protocol relies on the multi-linear
extension encoding, which we recall next. Let F be a finite field and d an integer.
The multi-linear extension of a function f : {0, 1}d → F is the unique multi-linear
polynomial (over F) such that f̂(x) = f(x), for all x ∈ {0, 1}d. A multi-linear
extension of a string w ∈ {0, 1}d can be defined by viewing the string as the
truth-table of a function fw : {0, 1}log(d) → {0, 1}. The multi-linear extension
can be explicitly written as:

f̂(x) =
∑

h∈{0,1}d
f(h) · I(x, h)

where
I(x, h) =

∏
j∈[d]

(
xj · hj + (1− xj) · (1− hj)

)
.

This formula also directly shows that the multi-linear extension at a given point
x ∈ Fd can be computed in time 2d · poly(log(F)).

Theorem 10 (Follows from [GKR15, Theorem 1.5]). Let L be a language
computable by a (non-uniform) circuit family C of size S = S(n) and depth
D = D(n). Let F = F(n) be a constructible field ensemble. Then, there exists a
two phase public-coin interactive proof (P, Vinteractive, Vpost) with the following
properties

1. In the interactive phase (P, Vinteractive), P gets as input (C,x) and Vinteractive

gets only S = |C|. The prover P runs in time poly(S), and Vinteractive

runs in time D ·poly(log(S), log(|F|)). Denote by transcript all messages sent
between the parties. The communication complexity of the interactive phase
is poly(D, log(S), log(|F|)).

2. From transcript and the circuit C we can derive z ∈ Fd, α ∈ F and ⟨C⟩ ∈
{0, 1}poly(D,log(S),log(|F|)) in time poly(S).

3. Vpost gets as input
(
transcript, ⟨C⟩, x̂(z)

)
and either accepts or rejects. Vpost

performs a test on (transcript, ⟨C⟩) and checks the claim x̂(z) = α. Vpost

runs in time poly(D, log(S), log(|F|).

The interactive protocol obtained by first running the interactive phase, then
having the verifies derive ⟨C⟩, x̂(z) and finally running Vpost, has perfect completeness
and soundness error O

(
D logS
|F|

)
.
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We remark that [GKR15, Theorem 1.5] does not separate the proof-system into
two phases as above. However, such a separation follows easily using the fact
that the GKR protocol is holographic, meaning that the verifier’s only needs to
preprocess some queries to the low degree extension of the input prior to the
interaction, and subsequently runs in poly(D, log(S)) time.

2.3 Zero-Knowledge Proofs

Next, we recall the definition of zero-knowledge proofs. For sake of simplicity
we focus on the basic standalone definition but note that our constructions also
achieve the stronger notion of auxilary-input zero-knowledge.

Definition 11 (Zero-knowledge proofs). Let (P, V ) be an interactive proof
system for an NP relation R with security parameter λ. The proof-system (P, V )
is computational zero-knowledge if for every polynomial-time interactive machine
V̂ there exists a probabilistic polynomial-time machine Sim, called the simulator,
such that for every ensemble (x,w) = (xλ, wλ)λ, with (xλ, wλ) ∈ R the following
distribution ensembles are computationally indistinguishable:

–
{
V iew

P (w)

V̂

(
x, 1λ

)}
λ∈N

, and

–
{
Sim

(
x, 1λ

)}
λ∈N.

Succinct Zero-Knowledge Proofs. Next, we state two prior works obtaining succinct
zero-knowledge proofs for bounded depth and bounded space computations. In
contrast to our results, these prior works have a large multiplicative overhead
over the witness length.

Theorem 12 ( [GKR15, Theorem 1.6]). Assume one-way functions exist,
and let λ = λ(n) ≥ log(n) be a security parameter. Let L be a language in
NP/poly, whose relation R can be computed on inputs of length n with witnesses
of length m = m(n) by Boolean circuits of size poly(n) and depth d(n). Then L
has a zero-knowledge interactive proof:

1. The prover runs in time poly(n, λ) (given an NP witness), the verifier runs
in time poly(n, λ) and number of rounds is poly(λ, d(n)).

2. The protocol has perfect completeness and soundness error 2−λ.
3. The protocol is public-coin, with communication complexity m ·poly(λ, d(n)).

Remark 13. The theorem statement in [GKR15] (i.e., [GKR15, Theorem 1.6])
does not explicitly state the number of rounds, but it can be inferred in a
straightforward manner from the protocol. Additionally, the stated soundness
error there is 1

2 , but the protocol can be repeated λ times (sequentially) to
achieve a soundness error of 2−λ.

Theorem 14 ( [RRR21, Theorem 2]). Assume one-way functions exist, and
let δ > 0 be a constant. Let R be an NP relation, with instance length n, and
witness length m that can be verified by a poly(m)-time and space S = S(m)
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Turing Machine, where n ≤ poly(m). Then, the relation R has a public-coin
zero-knowledge interactive proof with perfect completeness, constant soundness
error, and communication complexity (m + S(m)) ·mε · poly(λ). The (honest)
prover, given a valid witness, runs in time poly(m,λ). The verifier runs in time
poly(m,λ).

2.4 Pseudorandom Generator

Definition 15 (Pseudorandom generator). A pseudorandom generator (PRG)
is a deterministic polynomial-time algorithm G satisfying the following two conditions:

1. Expansion: There exists a function ℓ : N → N such that ℓ(λ) > λ for all
λ ∈ N, and |G(s)| = ℓ(|s|) for all s ∈ {0, 1}∗.

2. Pseudorandomness: The ensembles {G(Uλ)}λ and {Uℓ(λ)}λ are computationally
indistinguishable.

Proposition 16 Assuming one-way functions exist, for every polynomial ℓ =
ℓ(λ), there exist a PRG G : {0, 1}λ → {0, 1}ℓ computable by circuits of size
poly(λ, ℓ) and depth poly(λ) · log(ℓ).

We emphasize that here (as well as in Theorem 17 below) poly refers to a fixed
polynomial that is independent of ℓ.

Theorem 16 follows from the tree based PRF construction of Goldreich et
al. [GGM86] (see also [Gol01, Construction 3.6.5]), where we simply output the
log(ℓ)-th layer of the tree (where the root is at layer 0).

Proposition 17 Assuming one-way functions exist, for every polynomial ℓ =
ℓ(λ), there exists a PRG G : {0, 1}λ → {0, 1}ℓ computable by a time poly(λ, ℓ)
and space poly(λ) + log(ℓ) Turing machine.

Theorem 17 follows from the standard stretch-increasing PRG construction (see
[Gol01, Construction 3.3.2]).

2.5 Commitment Scheme

Next, we define commitment schemes. We focus on non-interactive statistically
binding commitments in the common random string (CRS) model, which can
be constructed from one-way functions.

Definition 18 (Commitment scheme). A commitment scheme in the CRS
model is a tuple of probabilistic polynomial-time algorithms (Gen,Com, V er)
with the following semantics:

1. crs← Gen(1λ), where crs is referred to as the common reference string.
2. For any string m ∈ {0, 1}∗ : (com, dec)← Com(crs,m).
3. For any com, dec,m ∈ {0, 1}∗ : {0, 1} ← V er(crs, com,m, dec).

The scheme must satisfy the following requirements:
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1. Correctness: V er always accepts in an honest execution, i.e, for any string
m and any security parameter λ,

Pr
crs←Gen(1λ)

(com,dec)←Com(crs,m)

[
V er(crs, com,m, dec) = 1

]
= 1.

2. Hiding: For any two strings m1,m2 ∈ {0, 1}∗ and any common reference
string crs, the distribution of the commitment of m1 and m2 are computationally
indistinguishable, i.e, if we denote by Comc only the commitment part of
Com then: {Comc(crs,m1)}λ∈N

c
≈ {Comc(1

λ, crs,m2)}λ∈N .
3. Binding: For every λ ∈ N, with probability at least 1−2−λ over the common

reference string, any commitment com∗ has at most one value m that can be
accepted by V er, i.e,

Pr
crs←Gen(1λ)

∃m1,m2, dec1, dec2 ∈ {0, 1}∗ :
m0 ̸= m1,

V er(crs, com∗,m1, dec1) = 1,
V er(crs, com∗,m2, dec2) = 1

 < 2−λ.

Theorem 19 ( [Nao91, HILL99]). Assuming the existence of a one-way
function, there exists a commitment scheme in the CRS model. Furthermore,
the commitment scheme only makes a black-box use of the one-way function.

Fact 20 Let D a distribution over strings of length λ, f a function and com a
commitment scheme. Then (D, com(f(D)) and (D, com(0λ)) are computationally
indistinguishable.

2.6 Multi-Party Computation

We consider the following multi party computation model: n parties wish to
evaluate a function defined jointly on their n private inputs. While there are
many variations of this model, we focus on the one where the output of all of the
parties should be the same (aka “secure function evaluation”). The communication
between parties is synchronous and all pairwise communication channels are
secure. Additionally, following [IKOS09],we also allow an OT-channel between
every two parties. In each round, each party can perform local computations on
all its view (input and all messages seen up to that round), send messages to
any other party and read all its incoming messages. A protocol in this setting,
is a specification for each of the n parties.

For this setting we define the notion of privacy and robustness as given
by [IKOS09]:

Definition 21 (Correctness). Given a deterministic n-party functionality f(w1, ..., wn)
(where input wi belongs to party i), we say that Π realizes f with perfect correctness
if for all inputs w1, . . . , wn, the probability that the output of some party is
different from the output of f is 0, where the probability is over the randomness
of all of the parties.
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Definition 22 (t-Privacy). Let 1 ≤ t < n. We say that Π realizes f with
perfect t-privacy if there exists a PPT simulator Sim such that for any inputs
w1, . . . , wn, and every set of corrupted parties T ⊂ [n], where |T | ≤ t, the
joint views of parties in T (which includes their inputs, randomness and received
messages) is distributed identically to Sim(T, (wi)i∈T , f(w1, . . . , wn)).

We will rely on the classical construction of a secure MPC protocol against
t ≤ n− 1 corruptions, which has perfect semi-honest security in the OT-hybrid
model, due to Goldreich, Micali and Wigderson [GMW87].

Theorem 23 ( [GMW87]). For any n-input functionality f , computable by a
circuit of size S, there is an n-party protocol in the OT-hybrid model with perfect
correctness and perfect (n− 1)-privacy. The parties run in time poly(S, n).

3 Succinct Zero-Knowledge Proofs

In this section we prove our main results: zero-knowledge proofs for any NP
relation that can be verified either in bounded space or by a bounded depth
circuits. We start with a technical definition, which, for any NP relation R gives
a related relation R′ with a shorter witness (but while increasing the length of
the input and complexity of verifying the relation). For an NP relation R, recall
that we use n to denote the input length, m to denote the witness length and λ
to denote the security parameter.

Definition 24. Let R be an NP relation, and G be a PRG, then we define the
NP relation R′G ≜

{(
(x, u), s

)
:
(
x,G(s)⊕ u

)
∈ R

}
.

Our main technical lemma shows how to covert a zero-knowledge proof for R′G
to one for R (where we benefit if the protocol for R′G mainly depends on the
witness length).

Lemma 25. Let R be an NP relation with input size n and witness size m, G
be a PRG, and λ a security parameter. If R′G has a zero-knowledge proof with
communication complexity cc(m,n, λ) and soundness error ε, then R has a zero-
knowledge proof with communication complexity m+ cc(m,n, λ) and soundness
error ε.

Before proving Lemma 25, we first show how to use it to derive our main
results.

Deriving Theorems 1 and 2 from Lemma 25. Let R be an NP relation by depth
D = D(n) polynomial-sized circuits. Assuming the existence of one-way function,
by Theorem 16, there exists a PRG G : {0, 1}λ → {0, 1}m computable by depth
log(m) · poly(λ) and size poly(m,λ) circuits. This implies that the relation R′G
can be decided by a depth D+log(m) ·poly(λ) and size poly(n,m, λ) circuit. By
Theorem 12 (and once again using the assumption that one-way functions exist),
we have that R′G has a zero-knowledge proof with communication complexity
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cc(m,n, λ) = poly(log(m), λ,D), and soundness error 2−λ (and a polynomial-
time prover and verifier). Theorem 1 now follows directly from Lemma 25.

Theorem 2 follows similarly, by combining the small space PRG of Theorem 17
with the succinct zero-knowledge proof for bounded space computations of Theorem 14.

3.1 Proof of Lemma 25

Let R be an NP relation. The zero-knowledge proof for R, which establishes
Lemma 25, is presented in Fig. 1.

Common Input: x ∈ {0, 1}n and security parameter 1λ.
Prover’s Additional Input: witness w ∈ {0, 1}m, such that (x,w) ∈ R.

The Protocol:

1. P generates a random PRG seed s ∈ {0, 1}λ.
2. P sends u = G(s)⊕ w to V .
3. P and V emulate (P ′, V ′) with (x, u) as the common input, s as the witness

and wrt security parameter λ.

Fig. 1. Succinct Zero-Knowledge Proof for NP Relation R

Let R′G be the related NP relation (see Definition 24) and assume that
(P ′, V ′) is a zero-knowledge proof for R′G.

Completeness. Let (x,w) ∈ R. For any s ∈ {0, 1}λ, by construction, it holds
that

(
(x, u), s

)
∈ R′G, where u = G(s)⊕w. Thus, the protocol (P ′, V ′) is run on

a YES instance. Perfect completeness now follows immediately from the perfect
completeness of (P ′, V ′).

Soundness. Let x /∈ LR and let P ∗ be a cheating prover strategy. Without loss
of generality we assume that P ∗ is deterministic. We denote P ∗’s first message
in the protocol by u∗. Assume toward a contradiction that (x, u∗) ∈ L′R. By
definition, there exists an s s.t. (x, u∗ ⊕ G(s)) ∈ R, but that contradicts our
assumption that x /∈ LR. Therefore (x, u∗) /∈ L′R and so, the protocol (P ′, V ′)
is run on a NO instance. By the soundness of the latter protocol, the verifier
accepts with probability at most ε.

Complexity. The prover sends u to V , where u = G(s) ⊕ w so |u| = |w|. Then,
the parties emulate (P ′, V ′) to prove that ((x, u), s) ∈ R′. The communication
complexity for R′G from the given zero-knowledge protocol is cc(m,n, λ) . Thus,
overall we get communication complexity |w|+cc(m,n, λ). In addition, assuming
P ′ and V ′ are polynomial-time, then so are P and V .
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Computational Zero-knowledge. Computational zero-knowledge follows from the
computational zero-knowledge of (P ′, V ′) and the pseudorandomness of G, details
follow.

Given a malicious verifier V̂ we show how to simulate its view. We note that
after P sends the first message, the parties run the zero-knowledge protocol for
R′G, hence we can view the behavior of V̂ from that point on as the behavior
of a malicious verifier in the (P ′, V ′) protocol. We denote this residual cheating
verifier behavior by V̂ ′. Since (P ′, V ′) is zero-knowledge, V̂ ′ has a simulator S′

that can simulate its view. We use S′ to construct an S for V̂ :

S(x, 1λ):

1. Choose u∗ ∈ {0, 1}m.
2. Run S′ on input

(
(x, u∗), 1λ

)
and output (x, u∗, S′(x, u∗)).

Claim. For every ensemble (x,w) ∈ R it holds that
{
V iew

P (w)

V̂
(x, 1λ)

}
λ∈N

c
≈{

S(x, 1λ)
}
λ∈N.

Proof. The proof is via a hybrid argument. Define the following hybrid distributions
(to avoid cluttering the notation we omit the 1λ from all distributions):

H0 :=
(
x, u, V iewV̂ ′

(
x, u)

))
,

H1 :=
(
x, u, S′

(
x, u)

))
,

H2 :=
(
x, u∗, S′

(
x, u∗

))
,

where s ∈R {0, 1}λ is a random seed, u = G(s) ⊕ w and u∗ ∈R {0, 1}m. Note
that H0 = V iew

P (w)

V̂
(x) and that H2 = S(x) and so it suffices to show that H0

and H2 are both computationally indistinguishable from H1.

H0
c
≈ H1: Assume towards a contradiction that the distributions are computationally

distinguishable. Then, there exists a distinguisher D that distinguishes between
H0 and H1 with non-negligible advantage δ. By an averaging argument, there is
some s = (sλ)λ∈N such that D has a distinguishing δ advantage conditioned on
choosing s as the PRG seed. We hardwire this choice of s into the distinguisher
D as non-uniform advice and denote the resulting distinguisher by Ds. We
use Ds to build a distinguisher D′ between V iewV̂ ′((x, u)) and S′(x, u) (recall
that u = G(s) ⊕ w with the aforementioned s) in contradiction to the zero-
knowledge property of (P ′, V ′). Since (x, u) is the input of the protocol (P ′, V ′)
they already exists in the view of V̂ ′, so D′ will take them from the view,
concatenate everything to (x, u, V iewV̂ ′(z)(x, u)), then use D and achieve the
same distinguishing probability δ.
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H1
c
≈ H2: Assume towards a contradiction that there exists a non-uniform

distinguisher D that distinguishes between the hybrids for some (x,w). We build
D′ that distinguishes between Un and G(U|λ|). We give D′ the non-uniform
advice (x,w). Given as input r ∈ {0, 1}m, the distinguisher D′ runs D on input
(x,w⊕r, S′(x,w⊕r)) and outputs the result. If r is sampled from Un, then w⊕r
will also be a random element of Un and thus (x,w⊕r, S′(x,w⊕r)) will be of the
same distribution as (x, u∗, S′(x, u∗)). On the other hand, if r is sampled from
G(U|λ|) then (x,w⊕r, S′(x,w⊕r)) is the same distribution as (x, u, S′(x, u)). So
D′ will be able to distinguish with the same probability as D, in contradiction
to the pseudorandomness of G.

4 Zero-Knowledge with Black-Box use of the OWF

Recall that the proof of Theorems 1 and 2 relies on a protocol in which the prover
and verifier make a non black-box use of the one-way function (see Lemma 25 for
details). In this section, we prove Theorem 5 which gives a different construction
that only makes black-box use of the one-way function. A caveat however is that
here we only achieve an inverse polynomial soundness error, whereas Theorem 1
and Theorem 2 had an exponentially small error.

As mentioned in the introduction, the proof of Theorem 5 is inspired by,
and improves upon the aforementioned work of Hazay, Venkitasubramaniam
and Weiss [HVW23]. Similarly to their work, we utilize the MPC-in-the-head
[IKOS09] techniques in order to avoid the non black-box use of the one way
function.

4.1 Proof of Theorem 5

Let R be an NP relation. We denote by n the instance length and m the witness
length, we denote with S = S(n) the size of the verification circuit and D = D(n)
its depth. Let λ be a security parameter and ε the desired soundness error.
To construct the protocol establishing Theorem 5, we will use the following
ingredients, all of which either exist unconditionally or can be constructed (via
a fully black-box construction) from a one-way function:

– A pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}m (e.g., the one from
Theorem 17, but any PRG with a similar stretch would do – the depth bound
is not needed) with security parameter λ′ = λ+ log(3/ε)

– The non-interactive statistically binding CRS commitment scheme from Theorem 19,
which we denote by com.

– The interactive protocol from Theorem 10, denoted (PGKR, Vinteractive, Vpost).
We denote the number or rounds in the interactive part by r = O(D ·log(S)).
We choose a field with characteristic 2 and size Θ

(
D·log(S)

ε

)
, where all

operations below will be done over this field.
– An MPC protocol from Theorem 23 with perfect security and (k−1)-privacy

with k parties, where k = Θ(1/ε).
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Using these components, the zero-knowledge proof for R that establishes Theorem 5
is presented in Fig. 2.

We proceed to show that the protocol satisfies the desired properties.

Complexity. First, the verifier sends to P a reference string of size poly(λ). Then,
P sends to V commitments to all random seeds and wcom. Each commitment is
of size poly(λ), and |wcom| = m. The prover and verifier run the interactive phase
that has communication complexity poly(D, log(S), log(|F|)), and since it is
secret shared among k parties, we have communication k·poly(D, log(S), log(|F|)).

The prover P then sends commitments to the views of all k parties in the
MPC. The MPC’s input for each party consists of the multi-linear extension
at point z, which has size log(F), and bj (where bj = (mi,j)i∈[r], the messages
from Step Item 4), each of size poly(D, log(S), log(|F|)). The size of the circuit
computed by the MPC is poly(D, log(S), log(|F|)), as derived from the complexity
of Vpost in Theorem 10.

By Theorem 23, the parties run in time polynomial in the size of the input
and the circuit, so the size of the view is at most poly(k,D, log(S), log(F)). The
size of the commitment to the view is there poly(λ, k,D, log(S), log(|F|)). Finally,
P sends the O(k) decommitments of size poly(λ) each.

Overall, the communication complexity is therefore m+poly(λ, k,D, log(S), log(|F|)).
The communication complexity stated in the theorem statement now follows by
taking k = Θ( 1ε ) and F as mentioned above. In addition since the commitment,
PRG, GKR protocol and the MPC protocol are computable in polynomial-time,
then so are P and V .

Completeness. Let (x,w) ∈ R. If (P, V ) follow the protocol specification, the

input of Vpost in Step 5c is:

(
coinsV ,

( ⊕
j∈[k]

bj

))
, where by construction

⊕
bj

j∈[k]
=

(
mi

)
i∈[r]. Hence,

(
coinsV ,

( ⊕
j∈[k]

bj

))
is the transcript of the interaction between

(PGKR, Vinteractive). Also note that ⟨C⟩ is the circuit “hash” for the GKR protocol.

Lastly,
⊕
j∈[k]

aj =

( ⊕
j∈[k−1]

Ĝ(sj)[z]

)
⊕ ŵs[z] = ŵ[z], where the last equality stems

from the fact that the low degree extension is a linear function and the addition
is done bit-wise over a field of characteristic two.

Thus, Vpost’s input in Step 5c is a valid run of the GKR protocol and by
its perfect completeness, the verifier will accepts. Hence, from the (perfect)
completeness of the MPC protocol, the run of the MPC protocol will be an
accepting one. Since P behaved according to the protocol, P should be able
to open all the commitments correctly, and all checks in Step 8 will pass and
therefore V accepts.

Soundness. Let x /∈ LR and let P ∗ be a cheating prover strategy. Without loss
of generality we assume that P ∗ is deterministic.



20 Athamnah, Florentz – Konopnicki and Rothblum

Common Input: x ∈ {0, 1}n and security parameter 1λ.
Prover’s Additional Input: witness w ∈ {0, 1}m, such that (x,w) ∈ R.

The Protocol:

1. V generates a reference string for the commitment scheme and sends it to P
using security parameter λ′ = λ+ log(3/ε). All commitments in the protocol
are done using the commitment scheme com with respect to this reference
string, which we omit to avoid cluttering the notation.

2. P generates k random PRG seeds s1, . . . , sk ∈ {0, 1}λ.
3. P sends commitments {com(si)}i∈[k] to all the seeds. In addition, it sends

wcom = ws ⊕ G(sk), where ws = (w ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)). (The pair
(wcom, com(sk)) should be interpreted as a commitment to ws).

4. P and V emulate the interactive phase of the GKR protocol (see Theorem 10)
on input (Cx, w) (where Cx denotes the circuit that computes the relation R
with x hardcoded). However, in every round i ∈ [r], whenever PGKR wants
to send a message mi, the prover does not forward the message directly, but
rather generates an additive secret sharing of the message s.t mi,1⊕· · ·⊕mi,k =
mi, and sends to V commitments to mi,1, . . . ,mi,k.
(We denote the coins sent from V to P in this stage as coinsV ).

5. (a) P derives z ∈ Fd and ⟨C⟩ (He can do it from Item 4 as explained in
Theorem 10).

(b) P computes the multi-linear extension of G(s1), . . . , G(sk−1) and ws at
the point z. That is, for every j ∈ [k− 1], it computes aj = Ĝ(sj)[z], and
additionally computes ak = ŵs[z] (see Section 2.2 for details).

(c) P executes (“in its head”) the k-party MPC protocol with the following
inputs. For party j ∈ [k − 1], the input is inputj = (aj , bj),
where bj := (mi,j)i∈[r]. For the last party inputk = (ak, bk), where
bk := (mi,k)i∈[r]. The MPC is executed relative to the functionality

Vpost

((
coinsV ,

⊕
j∈[k]

(bj)
)
, ⟨C⟩,

⊕
j∈[k]

aj

)
. Where bj = (mi,j)i∈[r].

(d) P sends commitments to the views of the k parties in the MPC protocol.
6. V randomly chooses a subset of size t = k − 1 of the parties, denoted by

Tq = [k]\{q}, and sends it to P .
7. For every j ∈ Tq, the prover P decommits to everything related to j, namely

sj , (mi,j)i∈[r], and the view of party j.
8. V verifies that (1) all inputs of the parties in Tq were computed correctly, (2)

all their views are consistent (3) all parties properly followed the specification
of the MPC protocol (4) all of the parties accepted. If all tests pass then V
accepts, otherwise it rejects.

Fig. 2. Succinct Zero-Knowledge Proof for NP Relation R
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By Definition 18, since we used security parameter λ′ ≥ log(3/ε), with
probability at least 1− ε/3 the reference string generated in Step 1 produces a
perfectly binding commitment. We continue the analysis under the assumption
that the CRS is indeed perfectly binding, while noting that this can only increase
the soundness error by ε/3.

Consider the following possible behaviors of P ∗:

1. It produces an invalid decommitment.
2. The behavior of one of the parties in the MPC protocol transcript, that

is defined by the commitment (since they are perfectly binding), does not
follow the protocol specification.

3. A pair of views is inconsistent (i.e., messages sent by one party are not
received correctly by the other parties).

In the first case the verifier when checking the decommitments. In the second
case, with probability 1 − 1

k , the verifier V will choose the relevant party and
reject. In the third case, with probability at least 1 − 2

k the relevant pair of
parties is selected and the verifier rejects.

Additionally, if P calculates ⟨C⟩ incorrectly then this either does not change
the outcome of the MPC or it changes (at least) one of the parties’ behavior, or
creates an inconsistency between the views of two parties, then once again with
probability 1− 2

k , V will choose the relevant party/parties and reject. Thus, we
can continue the analysis assuming the MPC protocol computes the intended
function on the defined inputs while adding at most 2

k to the soundness error.
Assuming all commitments can be opened and in one way, and assuming

P simulates the MPC protocol correctly and on the inputs derived from the
opening of the commitments as defined in the protocol, then from the perfect
correctness of the MPC protocol, we get that the MPC protocol calculates
the output of Vpost(coinsV , {mi}i∈[r]), ⟨C⟩, ŵ∗[z]. For some w∗ (derived from
the unique de-commitment and recombining of the messages in Item 5b), and
(coinsV , {mi}i∈[r]), ⟨C⟩ derived of a possible run of the GKR protocol. Since
x /∈ LR, for any such w∗ it holds that (x,w∗) /∈ R and so the circuit Cx does not
accept w∗. By fixing the field size to be Θ(D·polylog(S)

ε ) for a sufficiently large
constant in the Θ-notation, by Theorem 10, the GKR protocol has a soundness
error of ε/3.

Overall, the probability that V accepts is at most ε
3 + 2

k + ε
3 . By choosing

k := ⌈ 6ε⌉ we can get the desired soundness error of ε.

Computational Zero-knowledge. Let V ∗ be a malicious verifier, which we assume
without loss of generality to be deterministic. For a given input (x,w) ∈ R, we
denote V ∗’s first message on input x (which should specify a reference string
for the commitment) by ref . By Definition 18, the commitment is hiding when
using any reference string, in particular ref . For clarity of notation we therefore
omit ref below, but note that all commitments are done relative to this fixed
reference string.

Our proof of zero-knowledge follows the outline of the textbook proof of zero-
knowledge of the 3-coloring protocol [Gol01, Section 4.4.2.3]. In particular, we
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will present a simulator S that is allowed to output a special abort symbol ⊥
and analyze it via two key propositions:

– In Proposition 26 we show that the probability that S(x) outputs ⊥ is at
most 1−O( 1k ).

– In Proposition 27 we show that conditioned on not outputting ⊥, the output
of S(x) is computationally indistinguishable from the verifier’s view in a real
execution of the protocol.

These two properties, combined with rejection sampling, yield the desired simulator
(see [Gol01, Definition 4.3.2] for details). The base simulator (which is allowed
to abort) is presented in Fig. 3.

Proposition 26. The probability that S outputs ⊥ is at most 1−O(1/k).

Proof. Recall that V ∗ is deterministic. We assume without loss of generality that
V ∗ always specifies a valid set Tq∗ (i.e Tq∗ ⊆ [k] is a subset of size k− 1) in Step
6 (since otherwise we can just interpret its message as some fixed Tq∗).

We view two strings m = (s, α, β),m′ = (s′, α′, β′), where s, s′ represent
some choice of seeds for the PRG (in Step 3), α, α′ two randomness choices for
the secret sharing (in Step 4) and β, β′ two randomness choices for the MPC
simulator (in Step 5d). These randomness choices, together with a choice of q ∈
[k] (in Step 5c) and randomness of the commitments, define all the randomness
of the simulator.

Denote by Pr[V ∗q∗(m, q)] the probability, taken over the randomness only
of the commitment, that the verifier V ∗ requests q∗ given simulator behavior
corresponding to randomness (m, q). For any different choices (m, q) and (m′, q′),
due to the hiding property of the commitment, the difference between the probabilities
of the verifier making the choice q∗ for these two interactions is negligible
(otherwise there exist two distinct messages that we can distinguish between
using V ∗).

Thus, for every polynomial p1 and every choice q∗ it holds that |Pr[V ∗q∗(m, q)]−
Pr[V ∗q∗(m

′, q′)]| < 1
p1(n)

. Using this inequality, we prove the claim.

The simple idea is that if the choice of the verifier for Tq∗ is made regardless
(up to negligible probability) of the messages sent by the prover, then with
probability close to 1

k the verifier will choose the same set and there will be no
abort. The rigorous proof that follows is with elementary manipulations over the
probabilities.
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The Simulator for V ∗

Input: main input x ∈ L and security parameter 1λ.

1. The simulator S starts emulating V ∗ on input x and obtain in response a
reference string ref . All commitments in the protocol are done using this
reference string, which we omit similarly to the protocol.

2. S chooses w̃ ∈ {0, 1}m and generates k random PRG seeds s1, . . . , sk ∈ {0, 1}λ.
3. S sends to V ∗ commitments to all random seeds {si}i∈[k]. In addition, it sends

w̃com = w̃s ⊕G(sk), where w̃s = (w̃ ⊕G(s1)⊕ · · · ⊕G(sk−1)) .
4. S emulates with V ∗ the interactive phase of the GKR protocol as follows:

In every round i ∈ [r], the simulator S randomly chooses m̃i, and secret
shares the message to k shares s.t m̃i,1 ⊕ · · · ⊕ m̃i,k = m̃i, and sends to V ∗

commitments to m̃i,1 . . . m̃i,k. We denote the coins sent from V to P in this
stage by coinsV ∗ , and the entire interaction in this stage (the commitments
to all shares as well as the verifier’s coins) by t̃rGKR.

5. (a) Based on the interaction, S computes z ∈ Fd and ⟨C⟩ as described in
Theorem 10.

(b) S computes the multi-linear extension of G(s1), . . . , G(sk−1) and w̃s at
the point z. That is, for every j ∈ [k− 1], it computes aj = Ĝ(sj)[z], and
additionally computes ak = ̂̃ws[z].

(c) S chooses a random subset Tq = [k]\{q} of k − 1 parties.
(d) S computes the inputs for the selected parties as in the protocol,

and runs the MPC simulator denoted SMPC on the selected
parties’ inputs. The MPC simulation is executed wrt the function
Vpost

((
coinsV ∗ ,

⊕
j∈[k]

bj
)
, ⟨C⟩,

⊕
j∈[k]

aj

)
, where bj = (m̃i,j)i∈[r]. We denote

SMPC ’s output for party i ∈ Tq by ṽiewi.
(e) S sets the view of the remaining party q, to a default value, ṽiewq =

0|view|, and sends to V ∗ commitments to the k − 1 views generated by
SMPC and the view of the remainder party q and all communication
channels. Denote these commitments by com(ṽiewi)i∈[k].

6. V ∗ responds with a set Tq∗.
7. If Tq ̸= Tq∗, then S outputs ⊥ and terminates. Otherwise, S outputs(

x, ref, c̄, w̃com, t̃rGKR, {com(ṽiewi)}i∈[k], Tq, {decS(i), decm(i), decv(i)s}i∈T

)
,

where (1) c̄ = com(s1), . . . , com(sk), (2) decs(i), decm(i), decv(i) respectively
the decommitments to si, m̃i and party i’s view.

Fig. 3. Zero-Knowledge Simulator
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We note that all randomness choices are independent, hence using elementary
manipulations:

Pr[S = ⊥] = E
s̄,α,β,q

∑
q∗ ̸=q

Pr
[
V ∗q∗(ms̄,α,β , q)

]
≤ E

s̄,α,β,q

∑
q∗ ̸=q

(
Pr[V ∗q∗(0̄, 0)] +

1

2k2

)
≤ E

s̄,α,β

E
q

∑
q∗ ̸=q

Pr[V ∗q∗(0̄, 0)]

+
1

2k

= E
s̄,α,β

E
q∗

∑
q ̸=q∗

Pr
[
V ∗q∗(0̄, 0)

+
1

2k

= E
s̄,α,β

[
(k − 1) E

q∗

[
Pr[V ∗q∗(0̄, 0)]

]]
+

1

2k

= E
s̄,α,β

[
(k − 1)

k

]
+

1

2k

= 1− 1

2k
,

and the proposition follows.

Denote by S̄(x) the distribution of S(x) conditioned on S(x) ̸= ⊥ (i.e.,
conditioned on Tq = Tq∗).

Proposition 27. The ensembles S̄(x) and {V iew
P (w)
V∗

(x, λ)}x∈L are computationally
indistinguishable.

Proof. Let Tq ⊆ [k] denote the set of parties that the verifier selects, both
with respect to the simulator and the prover (note that Tq depends on the
previous messages that the prover/simulator sent). For x ∈ L, both S̄(x) and
V iew

P (w)
V∗

(x, λ)
x∈L are sequences of the following form:(

x, ref, c̄, wcom, trGKR,
{
com(viewi)

}
i∈[k], Tq,

{
decS(i), decm(i), decv(i)

}
i∈T

)
.

Since we fixed (x,w) and ref we omit them from the notation when analyzing
these two distributions.

We define for each subset Tq = [k]\q two random variables describing, respectively,
the output of S̄ and the view of V ∗ in a real interaction, in the case that the
verifier’s request equals Tq:

1. Let µq(x) denote the output of S̄(x) conditioned on having the verifier’s
request in Step 6 equal Tq when interacting with V ∗. Let pq(x) denote the
probability that the verifier requests the set Tq when interacting with S̄(x).
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2. Let νq(x) denote V iew
P (w)
V ∗ (x) conditioned on V iew

P (w)
V ∗ (x) having the verifier’s

request in Step 6 in the protocol (i.e., when interacting with P (x,w)) equal
Tq. Let fq(x) denote the probability that V ∗ selects Tq when interacting with
P (x,w) in the protocol.

Assume toward a contradiction that the two ensembles in the statement of the
claim are distinguishible. Then one of the following cases must occur.

Case 1: There exists q ∈ [k] such that |pq − fq| is non-negligible. To show that
Case 1 leads to a contradiction, we first argue that the part of the interaction
up to the opening of the commitment is computationally indistinguishible. This
is is captured by the following claim.

Claim. It holds that (c̄, w̃com, t̃rGKR, com(ṽiewi)i∈[k])
c
≈ (c̄, wcom, trGKR, com(viewi)i∈[k]),

where c̄ = (com(s1), . . . , com(sk)).

Section 4.1 follows in a straightforward manner from hiding property of the
commitment scheme and so we defer its proof to Section 4.1.1.

Assuming Case 1 occurs, we can build a (non-uniform) distinguisher between
the two distributions by feeding V ∗ with the distribution and seeing whether it
outputs q, the distinguisher output 1 if q was chosen and 0 otherwise thus case
1 leads to contradiction.

Case 2: If we are not in Case 1, then, loosely speaking, for every q it holds that

|pq(x)− fq(x)| ≤
1

poly(|x|).

Since we assumed the ensembles are distinguisible, by an averaging argument,
there exists some q ∈ [k] for which pq and fq are close and yet the distinguisher
is able to distinguish even conditioned on this value of q. Formally, there exists
a probabilistic polynomial-time algorithm A, a polynomial p(·), and an infinite
sequence of integers such that for each integer n (in the sequence) there exists
an x, |x| = n and a set of parties Tq such that the following conditions hold9:

1. fq(x) >
1

2·p(n) ,
2. |pq(x)− fq(x)| < 1

8·p(n)2 ,
3. |Pr[A(µq(x)) = 1]− Pr[A(νq(x)) = 1]| > 1

2·p(n) .

We proceed to show that Case 2 leads to a contradiction to the following
claim,
9 The conditions follows from the fact that A distinguishes the two distributions and

that Case 1 does not hold. From an averaging argument, there exist a player q ∈ [k]

s.t
∣∣∣fq(x) · Pr[A(µq(x))] − pq(x) · Pr[A(νq(x))]

∣∣∣ ≥ 1
p(n)

. Now for Item 2 we use the
fact that Case 1 does not hold, using a suitably large polynomial. Now we conclude
that

∣∣∣fq(x) · Pr[A(µq(x))]− fq(x) · Pr[A(νq(x))]
∣∣∣ ≥ 1

2·p(n)
and Items 1 and 3 follow.
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Claim. Let Tq = [k]\{q} be a fixed set of parties, denote:

H0 =
(
c̄, w̃com, t̃rGKR,

{
com(ṽiewi)

}
i∈[Tq ]

, com(ṽiewq), Tq,
{
decS(i), decm(i), decv(i)

}
i∈Tq

)
H1 =

(
c̄, wcom, trGKR,

{
com(viewi)

}
i∈[Tq ]

, com(viewq), Tq,
{
decS(i), decm(i), decv(i)

}
i∈Tq

)
then, H0

c
≈ H1.

We yet again defer the proof of the claim to Section 4.1.2 and proceed directly
to showing why it leads to a contradiction. Namely, we use A to construct a
distinguisher A′ that distinguishes between H0 and H1 thereby contradicting
Section 4.1. Consider A′ that emulates the simulator and checks if Tq was chosen
by V ∗. If so A′ runs A on its input (which is sampled either from H0 or H1).
Otherwise A′ outputs 0.

We proceed to show that A′ indeed distinguishes between these two distributions:∣∣Pr[A′(H0)]− Pr[A′(H1)]
∣∣ = ∣∣∣fq(x) · Pr[A(µq(x))]− pq(x) · Pr[A(νq(x))]

∣∣∣
≥ fq(x) ·

∣∣∣Pr[A(µq(x))]− Pr[A(νq(x))]
∣∣∣− Pr[A(νq(x))] ·

∣∣pq(x)− fq(x)
∣∣

≥ fq(x) ·
∣∣∣Pr[A(µq(x))]− Pr[A(νq(x))]

∣∣∣− ∣∣pq(x)− fq(x)
∣∣

>
1

2 · p(n)
· 1

2 · p(n)
− 1

8 · p(n)2

=
1

8 · p(n)2
,

where the first inequality follows from the (reverse) triangle inequality and
the third inequality from the above distance bound on pq vs. fq. Thus, A′

distinguishes between H0 and H1 with non-negligible probability, in contradiction
to Section 4.1.

This concludes the proof of Proposition 27.

4.1.1 Proof of Section 4.1

The proof is via a hybrid argument. Define:

H0 :=
(
c̄, w̃com, t̃rGKR, com(ṽiewi)i∈[k])

)
,

H1 :=
(
c̄, wcom, t̃rGKR, com(ṽiewi)i∈[k]

)
,

H2 :=
(
c̄, wcom, trGKR, com(viewi)i∈[k]

)
.

We show that H0 and H2 are both indistinguishable from H1, from which the
claim follows.
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H0
c
≈ H1: Assume towards a contradiction that the distributions are computationally

distinguishable. Then, since the only difference between the hybrids lies in w̃com

versus wcom, there exists a distinguisher D that distinguishes between (w̃com)
and wcom. (recall wcom = ws ⊕G(sk), where ws = (w⊕G(s1)⊕ · · · ⊕G(sk−1)),
and w̃com = w̃s⊕G(sk), where w̃s = (w̃⊕G(s1)⊕· · ·⊕G(sk−1)). We construct D′
that distinguishes between Un and G(U|λ|). We give D′ the non-uniform advice
(x,w).

The distinguisher D′, given an input r ∈ {0, 1}m, chooses s1, . . . , sk−1, and
runs D on the input ŵcom = r ⊕ (w ⊕ G(s1) ⊕ · · · ⊕ G(sk−1)) and outputs the
result. If r is sampled from Un, then ŵcom will also be a random element of Un

and thus ŵcom will be of the same distribution as w̃com. On the other hand, if r
is sampled from G(U|λ|) then ŵcom is the same distribution as wcom. So D′ will
be able to distinguish with the same probability as D, in contradiction to the
pseudorandomness of G.

H1
c
≈ H2: Due to the hiding property of the commitment, for any two strings

m1,m2 ∈ {0, 1}∗ and any common reference string ref , the distribution of the
commitment of m1 and m2 are computationally indistinguishable. Thus the
commitments of the simulator are computationally indistinguishable from the
commitments to in the real interation.

4.1.2 Proof of Section 4.1

We first show that the inputs and views of the parties selected in the set Tq are
computationally indistinguishable in the two cases: that is, when V ∗ interacts
with P vs. its inteaction with S.

For simplicity of notation we will assume without loss of generality that q = 1
and we use T to denote the selected set T = {2, . . . , k}. Thus, we need to show
that(

(si)i∈T , w̃s, (m̃i)i∈T , (ṽiewi)i∈[T ]

)
c
≈
(
(si)i∈t, ws, (mi)i∈T , (viewi)i∈[T ]

)
,

where recall that for i ∈ T :

– mi is the share for party i of the GKR message in the real interaction (Fig. 2,
Step 4) and m̃i is is the corresponding share of a random message, in the
simulation (Fig. 3, Step 4).

– ĩnputi is the input to party i in the MPC protocol, derived by the simulator
in Fig. 3, Step 5d. That is, ĩnputi =

(
Ĝ(si)(z), m̃i

)
, for i ̸= k and ĩnputk =(̂̃ws(z), m̃k

)
.

– ṽiewi consists of the input for party i followed by the output of SMPC for
the party i. Thus,

{
(ṽiewi)

}
i∈[T ]

=
(
(ĩnputi)i∈T , SMPC

(
ĩnputi)i∈T

))
.

– inputi is the input to party i in the MPC protocol in the real interation,
Fig. 2, Step 5c. Thus, inputi =

(
s(Ĝ(si)(z),mi

)
for i ̸= k, and inputk =(

ŵs(z),mk

)
.
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– viewi is inputi followed by the view of that party in the MPC protocol (all
in the real interaction).

We first show the distribution of the inputs and views of the parties in T are
computationally indistinguishable in the two cases. We then conclude that the
commitment and decommitment to those distributions are also computationally
indistinguishable. Finally, we show we can add to those distributions the commitment
of the remaining party and coinsV ∗ sent by V ∗ in Step 4 and the claim follows.

The proof is via a hybrid argument. Consider the following hybrid distributions:

H0 :=
(
(si)i∈T , w̃s, (m̃i)i∈T ,

{
(ṽiewi)

}
i∈[T ]

)
=
(
(si)i∈T , w̃s, (m̃i)i∈T , ((ĩnputi)i∈T , SMPC((ĩnputi)i∈T )

)
H1 :=

(
(si)i∈T , ws, (m̃i)i∈T , ((inputi)i∈T , SMPC((inputi)i∈T )

)
,

where for i ̸= k,
(
inputi

)
=
(
Ĝ(si)(z)), m̃i)

)
, and (inputk

)
=
(
ŵs(z)), m̃k)

)
H2 :=

(
(si)i∈T , ws, (mi)i∈T , ((inputi)i∈T , SMPC((inputi)i∈T )

)
,

H3 :=
(
(si)i∈T , ws, (mi)i∈T ,

{
(viewi)

}
i∈[T ]

)
.

H0
c
≈ H1: We first show that (s2, . . . , sk−1, w̃s)

c
≈ (s2, . . . , sk−1, ws). Assume

there exists a distinguisher D that distinguishes between (s2, . . . , sk−1, w̃s) and
(s2, . . . , sk−1, ws) with non-negligible advantage. Recall that w̃s =

(
w̃⊕G(s1)⊕

· · · ⊕G(sk−1)
)

and ws =
(
w ⊕G(s1)⊕ · · · ⊕G(sk−1)

)
.

We construct D′ that distinguishes between Un and G(U|λ|). We give D′ the
non-uniform advice (x,w). The distinguisher D′, given as input r ∈ {0, 1}m,
generates s2, . . . , sk−1 ∈ {0, 1}{|λ|}, then computes G(s2) . . . G(sk−1) and runs
D on input (s2 . . . , sk−1, w̄s), where w̄s = r ⊕ (w ⊕G(s2) ⊕ · · · ⊕G(sk−1)) and
outputs the result. If r is sampled from Un, then w̄s will also be a random element
of Un and thus w̄s will be of the same distribution as w̃s. On the other hand,
if r is sampled from G(U|λ|) then w̄s is the same distribution as ws. So D′ will
be able to distinguish with the same probability as D, in contradiction to the
pseudorandomness of G.

Observe that H0 and H1 are obtained from the two distributions above via the
same procedure. Namely, (ĩnputi)i∈T and (inputi)i∈T are computed by applying
G on the seeds and computing the multi-linear extension at the point z, followed
by, either ̂̃ws(z), (m̃i)i∈T or ŵs(z), (m̃i)i∈T . Then, in the same way run SMPC on
(ĩnputi)i∈T and (inputi)i∈T ). Hence, using Theorem 8, since G, the multi-linear
extension and SMPC are PPT algorithms, we conclude that H0

c
≈ H1.

H1 ≡ H2: Recall (mi)i∈[k] is the distribution of the additive secret shaing of
the GKR messages as in Fig. 2, Step 4, whereas (m̃i)i∈[k] is the distribution of
a secret sharing of a random message in Fig. 3, Step 4.
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Since the restriction of an additive secret sharing to any set of k−1 shares is
uniformly random, it follows that (mi)i∈T is distributed identically to (m̃i)i∈T .

Thus, since the rest of the distributions are simply computed in the same
manner for both distributions similarly to the previous case, we conclude H1 ≡
H2.

H2 ≡ H3 By the (k − 1)-privacy of the MPC protocol (see Definition 22 and
Theorem 23), it holds that {(viewi)}i∈[T ] is distributed identically to SMPC((inputi)i∈T ).
Thus, since the input and the rest of the hybrids are identical in the two cases,
we have that H2 ≡ H3.

Thus, we conclude that H0
c
≈ H3. Denote:

C0 :=
(
com(s2), . . . w̃com, com(sk), com(m̃2) . . . com(m̃k),

{
com(ṽiewi)

}
i∈[T ]

, dec
)

C1 :=
(
com(s2), . . . wcom, com(sk), com(m2) . . . com(mk),

{
com(viewi)

}
i∈[T ]

, dec
)
,

where dec = {decS(i), decm(i), decv(i)}i∈T and decs(i), decm(i), decv(i) are the
decommitments to si, m̃i and party i’s view, respectively.

Observe that C0 (resp., C1) is computed from H0 (resp., H3) by the same
procedure – namely, committing to the seeds, (m̃i)i∈T (resp., (mi)i∈T ) and
(ṽiewi)i∈T (resp., (viewi)i∈T ), generating a random seed sk and computing
w̃com = w̃s⊕G(sk) (resp., wcom = ws⊕G(sk)). Thus, by Theorem 8, we conclude
that C0

c
≈ C1.

Finally, from Theorem 20 we can add the commitment to the input of the
remaining party j = 1, i.e.:

(C0, com(s1), com(m̃1), com(ṽiew1))
c
≈ (C1, com(s1), com(m1), com(view1)).

The remaining difference between the claim and what we have proved are trGKR
and t̃rGKR. Recall that trGKR = (com(m1), . . . , com(mk), coinsV ∗), and t̃rGKR =
(com(m̃1), . . . , com(m̃k), coinsV ∗), where coinsV ∗ are the strings sent by V ∗ in
step 4. From Section 4.1, the interaction up to the opening of the commitment
is computationally indistinguishable between the interaction with P and S̄.
Therefore, coinsV ∗ are also indistinguishable between the interaction of V ∗ with
P and S̄. Hence, we can add coinsV ∗ to the distributions, and the claim follows.
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