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Abstract

Two matrices are said to be principal minor equivalent if they have equal corresponding

principal minors of all orders. We give a characterization of principal minor equivalence

and a deterministic polynomial time algorithm to check if two given matrices are principal

minor equivalent. Earlier such results were known for certain special cases like symmetric

matrices, skew-symmetric matrices with 0, 1, -1-entries, and matrices with no cuts (i.e., for

any non-trivial partition of the indices, the top right block or the bottom left block must

have rank more than 1).

As an immediate application, we get an algorithm to check if the determinantal point

processes corresponding to two given kernel matrices (not necessarily symmetric) are the

same. As another application, we give a deterministic polynomial-time test to check equality

of two multivariate polynomials, each computed by a symbolic determinant with a rank 1

constraint on coefficient matrices.

1 Introduction

The determinant of a matrix is a fundamental object of study in mathematics that has found

numerous applications throughout computer science, physics, and other fields. A minor of

a matrix is the determinant of one of its square submatrices and its order is the size of the

corresponding submatrix. A principal minor of a matrix is a minor obtained by deleting the

same set of rows and columns. Principal minors play an important role in a variety of ap-

plications, for example, convexity of functions and positive semidefinite matrices [BV04], the

linear complementarity problem and P-matrices [Mur72], counting number of forests via the

Laplacian matrix [BS11], and inverse eigenvalue problems [Fri77].

In this paper, we investigate a basic question about principal minors – what is the relation-

ship between two n× n matrices which have equal corresponding principal minors of all orders

(i.e., two matrices A and B such that for all S ⊆ {1, 2, . . . , n}, det(A[S, S]) = det(B[S, S])). We

call two such matrices to be principal minor equivalent (PME). Observe that two matrices are PME

if and only if all their corresponding principal submatrices have the same set of eigenvalues.

We seek answers of the following two questions.
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Question 1 (characterization). Can we identify a property P such that two matrices are PME

if and only if they satisfy P?

Question 2 (efficient algorithm). Can we efficiently check whether two matrices are PME or

not?

The question of characterizing the relationship between two PME matrices has been exten-

sively studied [ES80, Loe86, Ahm23, BCCL21, BC16]. One motivation for studying this question

comes from the problem of learning determinantal point processes [KT12, UBMR17, Bru18]

and the closely related principal minor assignment problem [GT06, RKT15, BU24]. While our

original motivation to study this question came from an application to the polynomial identity

testing problem (see Section 1.1).

To move towards characterizing PME matrices, let us first consider some trivial operations

which preserve all the principal minors. Two matrices A and B are called diagonally similar if

there exists an invertible diagonal matrix D such that A = DBD−1
. We call two matrices A

and B diagonally equivalent if A is diagonally similar to B or BT
. It is easy to verify that any

two diagonally equivalent matrices are PME. Interestingly, Engel and Schneider [ES80] showed

that the converse is also true when one of the matrices is symmetric. That is, principal minor

equivalence of a symmetric matrix with another matrix implies their diagonal equivalence (in

fact, diagonal similarity). As one can efficiently check whether two matrices are diagonally

equivalent or not, it also yields an efficient algorithm to decide principal minor equivalence in

this case.

In general, principal minor equivalence does not imply diagonal equivalence, as demon-

strated by the following example. Consider the following block diagonal matrix A and a block

upper triangular matrix B:

A =

(
A1 0
0 A2

)
, B =

(
A1 A3
0 A2

)
. (1)

It is easy to see that A and B are principal minor equivalent oblivious to the entries of A3, but

they are not diagonally equivalent. Such matrices that can be written as a block upper triangular

matrix by permuting some rows and corresponding columns are called reducible matrices (and

irreducible otherwise). For any n × n matrix A, define a graph with the vertex set [n] and

allow an edge (i, j) if and only if the (i, j)-th entry of A is nonzero. We can equivalently define

reducible matrices as the ones whose graph has more than one strongly connected components.

One can show that two matrices are PME if and only if they have the same set of irreducible

blocks and their corresponding irreducible blocks are PME (see, for example, [Ahm23, Section

5]). Hence, we can restrict our focus to irreducible matrices.

In a series of works, Hartfiel and Loewy [HL84], and Loewy [Loe86] extended the result of

Engel and Schneider [ES80] to general irreducible matrices with no cuts. An n× n matrix A is

said to have a cut X ⊆ [n], if 2 ≤ |X| ≤ n− 2 and both the submatrices A[X, X] and A[X, X]
have rank one (the submatrices cannot have rank zero if A is irreducible). They showed that

for any irreducible matrix A with no cuts and any matrix B, if A and B are PME, then A and

B are also diagonally equivalent. So, the case which remained unclear was that of irreducible

matrices with cuts. Engel and Schneider [ES80, Example 3.7] had given an example of two 4× 4
matrices which are PME, but not diagonally equivalent. Clearly, both these matrices must have

a cut.

The cut-transpose operation. Recently, Ahmadieh [Ahm23, Lemma 4.5] gave a general recipe

that for any irreducible matrix A with a cut, finds another matrix B that is PME to A, but not

necessarily diagonally equivalent to A. For this they define an operation on matrices with a

cut, which we refer as cut-transpose. Consider a matrix A and let X be a cut of A. From the
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definition of a cut, A must be of the following form:

A =

(
M pqT

uvT N

)
,

where the submatrix A(X, X) = M and A(X, X) = N and p, q, u, v are column vectors of

appropriate dimensions. Define a cut-transpose operation on A with respect to cut X, which

transforms A to a new matrix ct(A, X) as follows:

ct(A, X) =

(
M puT

qvT NT

)
.

Ahmadieh [Ahm23] showed that cut-transpose is a principal minor preserving operation. A

natural conjecture would be that any two irreducible PME matrices are related by a sequence of

cut-transpose operations. To elaborate, let us define any two matrices A and B as cut-transpose

equivalent if there is a sequence A = A0, A1, . . . , Ak of matrices such that for each 0 ≤ i ≤ k− 1,

Ai+1 = ct(Ai, Xi) for some cut Xi of Ai, and Ak is diagonally equivalent to B. Can one show

that two irreducible matrices are PME if and only if they are cut-transpose equivalent?

Boussaïri and Chergui [BC16] gave a characterization for principal minor equivalent matri-

ces for a special case, when the two matrices are skew-symmetric with entries from {−1, 0, 1}
and all their off-diagonal entries in the first row are nonzero. Interestingly, this characterization

turns out to be cut-transpose equivalence with a restriction. Moreover, they conjectured that

the characterization should be true for arbitrary skew-symmetric matrices. In a follow up work,

Boussaïri, Chaïchaâ, Chergui, and Lakhlifi [BCCL21] proved a similar result for another special

case called generalized tournament matrices (non-negative matrices A with A + AT = Jn − In,

where Jn is all ones matrix). The two settings use a transformations called HL-clan-reversal

and clan-inversion, respectively, which coincide with some restrictions of the cut-transpose op-

eration. Both these work build on a combinatorial result [BILT04] about directed graphs with a

similar flavor. The combinatorial result, in turn, is a generalization of Gallai’s theorem [Gal67]

which states that if two partially ordered sets have the same comparability graph, then they are

related by a sequence of orientation reversal operations (see [BILT04, Mö85]). This orientation

reversal on a poset is a special instance of cut-transpose on the corresponding skew-symmetric

matrix.

This series of works strengthens the confidence in the conjecture that cut-transpose equiv-

alence should be a characterization of PME for arbitrary irreducible matrices. However, their

techniques are graph-theoretic and it is not clear how they can be generalized to arbitrary

matrices. We instead employ algebraic techniques and show that conjecture is indeed true,

thereby completely resolving Question 1. This extends the results for above mentioned special

cases and also proves the conjecture of Boussaïri and Chergui [BC16] about skew-symmetric

matrices. Moreover, we show that for any two n× n irreducible PME matrices A and B, the

cut-transpose sequence contains at most 2n matrices.

Theorem 1.1. Let A and B be two n× n irreducible matrices over any field. Then, A and B are principal

minor equivalent if and only if there exists a sequence of n× n matrices (A = A0, A1, . . . , Ak) with

k < 2n such that

for 0 ≤ i ≤ k− 1, Ai+1 = ct(Ai, Xi) for some cut Xi of Ai (2)

and Ak is diagonally equivalent to B.

Now, let us come to the question of an efficient algorithm to check if two given matrices are

PME (Question 2). If one is allowed the use of randomness, then there is a simple algorithm

for this task via a reduction to polynomial identity testing. Consider a n× n diagonal matrix Y
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with variables y1, y2, . . . , yn in the diagonal. Observe that two n× n matrices A and B are PME

if and only if the following is a polynomial identity (i.e., coefficient-wise equality)

det(A + Y) = det(B + Y).

There is a simple randomized algorithm for polynomial identity testing: just plug-in some

random numbers for the variables and then check the equality (see [Sch80, DL78, Zip79]).

There is no deterministic polynomial time algorithm known for polynomial identity testing

in general, but we can still ask if there is one for this special case. We answer this question

positively. Recall the earlier discussion about reducible matrices and note that testing PME for

two matrices reduces to the same for their corresponding irreducible blocks.

Theorem 1.2. There exists a deterministic polynomial-time algorithm that for any two given n × n
matrices A and B over any field, decides whether the corresponding principal minors of A and B are

equal or not. If they are equal, then as a certificate, the algorithm outputs cut-transpose sequences for the

corresponding irreducible blocks of the two matrices as guaranteed by Theorem 1.1.

1.1 Applications

Polynomial Identity Testing. As mentioned earlier our motivation for the principal minor

equivalence problem came from the polynomial identity testing (PIT) problem. Given two

multivariate polynomials in a succinct representation, the PIT problem asks to decide whether

the two polynomials are identical (i.e., all corresponding coefficients are equal). One of the

widely studied and useful representation for multivariate polynomials is the determinantal

representation. We say that a polynomial f (x1, . . . , xm) ∈ F[x1, . . . , xm] has a determinantal

representation of size n if there exists matrices A0, A1, . . . , Am ∈ Fn×n
such that f = det(A0 +

∑ Aixi). The determinantal representation is known to be almost as expressive as algebraic

circuits (see [Val79] for more details). The PIT problem admits a randomized polynomial-

time algorithm [Sch80, DL78, Zip79]. Obtaining a deterministic algorithm for PIT remains a

challenging open problem that would have interesting implications in proving lower bounds,

and many other algorithmic applications (see, for example, [SY10]). Unable to solve it for the

general setting, the problem has been studied for various restricted settings.

One such restricted setting is symbolic determinant under rank one restriction. Here we

ask for testing whether det(A0 + ∑m
i=1 Aixi) = 0, for given matrices Ai, where rank(Ai) = 1 for

1 ≤ i ≤ m. There has been a lot of interest in this particular setting because of its connections

with some combinatorial optimization problems like bipartite matching and linear matroid

intersection (see [Edm67, Lov89, NSV92]), and algebraic problems like maximum rank matrix

completion (see [IKS10, Gee99, Mur93]). The connection with combinatorics also gives a

deterministic polynomial time algorithm for identity testing in this setting. In fact, there is also

an efficient blackbox PIT (quasi-polynomial time) known for this case [GT17] (blackbox means

that the algorithm cannot see the input, it can only evaluate the given polynomial at any point).

When we have an efficient algorithm to test whether a given polynomial from a class is

zero, the next natural question one can ask is to test whether two given polynomials from that

class are equal. If the class of polynomials is closed under addition, the equality question easily

reduces to testing zeroness of a given polynomial (from the same class). Many well studied

classes of polynomials have this property, for example, sparse polynomials, bounded-depth

circuits, constant fan-in depth-3 circuits etc. On the other hand, there are classes like ROABPs,

which are not closed under addition [KNS20], and for which the equality testing question

has been studied independently [GKST16]. Symbolic determinant with rank one restriction is

another such class. To the best of our knowledge, the class is not known to be closed under

addition. Given that zeroness testing is known for this class, a natural extension would be to ask

if two given polynomials from this class are equal. To the best of our knowledge, no non-trivial

(deterministic) algorithm was known for testing equality of two polynomials from this class
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(symbolic determinant with rank one restriction). We show that this problem reduces to testing

principal minor equivalence, and hence, has a deterministic polynomial-time algorithm.

Theorem 1.3. There exists a deterministic polynomial time algorithm such that given two sequences of

n× n matrices (A0, A1, . . . , Am) and (B0, B1, . . . , Bm) over any field, with the rank of Ai and Bi being

at most 1 for 1 ≤ i ≤ n, it decides whether det(A0 + A1y1 + . . . + Amym) = det(B0 + B1y1 + . . . +
Bmym).

Determinantal Point Processes. As mentioned earlier, one motivation to study principal mi-

nors come from determinantal point processes (DPP). DPP are a family of probabilistic models

which originated in physics [Mac75], and which has subsequently found a wide range of ap-

plications in machine learning [KT12], for example, document summarization, recommender

systems, information retrieval etc. (see references given in [GBDK19, UBMR17]). Convention-

ally, a DPP is defined using principal minors of an n× n symmetric positive semidefinite matrix

K, called a kernel, whose eigenvalues are between 0 and 1. The DPP corresponding to kernel

matrix K is a probability distribution on subsets Y of {1, 2, . . . , n} such that for any subset

J ⊆ {1, 2, . . . , n},
Pr[J ⊆ Y] = det(K[J]),

where K[J] is the principal submatrix of K corresponding to set J (see [Kul12]). DPPs are useful

in settings where one needs to generate a diverse set of objects (larger principal minor means

the vectors associated with the subset span a larger volume).

Symmetric DPPs (as defined above with a symmetric kernel matrix) have a significant

expressive power, however they come with a limitation. Symmetric DPPs can model only

repulsive interactions. That is, any pair of items has a negative correlation – selection of one item

reduces the chances of selection of another item. To overcome this limitation, nonsymmetric

determinantal point process has been proposed, that is, DPP with a nonsymmetric kernel matrix

K. A nonsymmetric kernel matrix can model both positive and negative correlations. Lately,

there have been a few works on nonsymmetric DPPs [Bru18, GBDK19, RRS
+

22, HGDK22,

Arn24]. One of the crucial questions in the study of DPPs is to understand how are two

kernel matrices related which produce the same DPP, which was explicitly asked in some

works on learning DPPs [Bru18, BU24]. This is precisely the principal minor equivalence

problem. While it was already understood in the case of symmetric DPPs, we answer it for

nonsymmetric DPPs in this work. Theoerm 1.1 gives a characterization of the set of matrices

K′ such that DPP(K′) = DPP(K) for a given kernel matrix K (not necessarily symmetric).

Theorem 1.2 gives a deterministic polynomial time algorithm to test whether two given kernel

matrices will produce the same DPP.

1.2 Proof overview

In this subsection, we give a short overview of the proof techniques involved in proving The-

orems 1.1, 1.2 and 1.3. We start with Theorem 1.1 which characterizes principal minor equiv-

alence of irreducible matrices by cut-transpose equivalence. We have already discussed that

cut-transpose equivalence implies principal minor equivalence. Thus, only the other direction

remains to be shown, i.e., principal minor equivalence implies cut-transpose equivalence.

Reduction to the case of all nonzero entries. Our proof of Theorem 1.1 works with an

assumption that the matrices have all nonzero entries. We reduce the general case to this case

using a technique from earlier works [Loe86, HL84, Ahm23], namely, the transformation A 7→
(A + Z)adj

(or (A + Z)−1
), where Z is a diagonal matrix with entries as distinct algebraically

independent elements (or indeterminates). They showed that for any irreducible matrix A, the

matrix (A + Z)adj
has all nonzero entries. Moreover, two irreducible matrices A and B are PME
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Figure 1: Directed graphs associated with two matrices A and B.

if and only if (A + Z)adj
and (B + Z)adj

are. They have also shown that A and (A + Z)adj
have

the same set of cuts. In Lemma 2.13, we show that the cut-transpose operation commutes with

operation A 7→ (A + Z)adj
. This means that matrices A and B are cut-transpose equivalent

if and only if (A + Z)adj
and (B + Z)adj

are. Hence, it is sufficient to prove Theorem 1.1 for

matrices with all nonzero entries.

No common cuts. To prove the characterization for matrices with cuts, a natural strategy

would be to somehow decompose the matrices along a chosen cut and then argue inductively

for the obtained smaller pairs of matrices. From Loewy’s characterization [Loe86], it follows

that for any two irreducible PME matrices A and B, if A has a cut, then B must also have one.

However, it is not necessary a subset of indices which is a cut in matrix A, is also a cut in matrix

B. In fact, it is possible that the two matrices do not have even one cut in common. Following

is such an example of two irreducible PME matrices.

A =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 , B =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

 .

To see that the two matrices A and B are PME, recall that the determinant is a sum over

cycle covers in the directed graph associated with the matrix. And observe that the associated

directed graphs (Figure 1) have only one cycle, and thus, both matrices have only one nonzero

principal minor (i.e., det(A) = det(B) = 1). Now, to see that the two matrices do not have

a common cut, observe that for these matrices, any cut corresponds to a path in associated

directed graph. And there is no subset of vertices simultaneously forming a path in both the

graphs.

We handle such cases with no common cuts by transforming one of the matrices to have a

common cut with the other. Then we prove cut-transpose equivalence by induction based on

the size of the matrices. The following points summarize our proof strategy.

1. For any two irreducible PME matrices A and B, we show that the matrix A has a cut

in common either with matrix B or with another matrix B′ obtained from B via a cut-

transpose operation.

2. Then assuming that the two given matrices have a common cut, we “decompose” each

matrix along a common cut to obtain two smaller matrices. We argue that the two

obtained pairs of matrices are also PME and hence, are cut-transpose equivalent by

induction hypothesis. Then we are able to lift their cut-transpose equivalence to the

given matrices.
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Figure 2: Applying cut-transpose on the directed graph associated with matrix B.

3. The base case for the induction is 4× 4 matrices.

We now elaborate on each of the above points.

Base case: 4 × 4 matrices If A and B are 4 × 4 irreducible PME matrices, then we show

(Lemma 3.1) that (i) either the two are diagonally equivalent or (ii) they have a common cut and

when we do a cut-transpose on matrix A along the common cut, we get a matrix diagonally

equivalent to B. For 3× 3 or smaller matrices, there is no cut, and hence the two matrices must

be diagonally equivalent [HL84].

Getting a common cut. To get a common cut in the given matrices A and B, we consider a

(inclusion-wise) minimal cut S in A. We show that if S is not a cut in B then S must have size

two (Lemma 3.6). Moreover, in that case we can argue that there is a cut X in matrix B such

that when we apply cut-transpose on B along the cut X, we get another matrix B′ where S is a

cut (Lemma 3.5). Clearly, proving cut-transpose equivalence between A and B′ will imply the

same between A and B. The proofs of these two lemmas build on some other technical claims

(Lemmas 3.2, 3.1, 3.3, 3.4), and this is where most of the technical novelty lies.

Let us see how the matrix B′ is obtained in the example described above. Observe that the

matrix A has a cut S = {1, 2}, which is not a cut in matrix B. Let us consider the cut X = {1, 4}
in matrix B and apply cut-transpose along it. We obtain the following matrix B′, which has

S = {1, 2} as a cut, as desired. Figure 2 shows the cut-transpose operation on the associated

directed graph.

B =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0


cut-transpose−−−−−−−→
along {1,4}

B′ =



0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0



Decomposition into smaller matrices. One of our crucial ideas is to define the right decom-

position of a matrix along one of its cuts. For an n× n matrix A with a cut S ⊆ [n], we consider

a decomposition of A into two matrices A1 and A2 defined as follows: choose two arbitrary

indices s ∈ S and t ∈ S, and define A1 := A[S + s] and A2 := A[S + t]. Recall that we assume

all off-diagonal entries to be nonzero, hence, the choice of s and t do not really matter. As

discussed earlier, we can assume that there is set S, which is a cut in both the matrices A and

B. We similarly decompose B into matrices B1 and B2. It is easy to see that if A and B are PME,

then so are Ai and Bi, for i = 1, 2.
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If S is a minimal cut of A, then we show that A1 has no cut (Lemma 3.3). In that case, B1
also does not have a cut and is diagonally equivalent to A1 (from Loewy’s characterization). If

it so happens that A2 and B2 are already diagonally equivalent, then we show that A is either

diagonally equivalent to B or ct(B, S) (Lemma 3.9).

The more interesting case is when A2 and B2 are not diagonally equivalent. Then by

induction hypothesis, we assume that A2 and B2 are cut-transpose equivalent. In the final

step in the proof, we show that we can lift the cut-transpose sequence that relates A2 and B2
to a cut-transpose sequence for A and B as described in Claim 3.8. This lifting procedure is

as follows: for each cut X in the sequence, we either replace it with X ∪ S or keep it as it is,

depending on whether X contains t or not. Finally we append S to the sequence (or do not

append), depending on whether A1 is diagonally similar to BT
1 or B1. We demonstrate this

lifting of the cut-transpose sequence via an example. Consider two PME matrices

A =


1 3 1 1 1
2 1 −1 −1 −1
1 2 2 1 1
2 4 −2 3 4
−1 −2 1 5 6

 , B =


1 2 1 2 −1
3 1 2 4 −2
1 −1 2 2 −1
1 −1 −1 3 5
1 −1 −1 4 6


Let us index the rows and columns of these two matrices by {a, b, c, d, e}. Observe that matrices

A and B have common cut S = {a, b}. We decompose each of them to obtain two smaller

matrices as given below. Here matrices A1 and B1 are submatrices of A and B, respectively,

indexed by {a, b, c}. Similarly, matrices A2 and B2 are submatrices indexed by {b, c, d, e}.

A1 =

1 3 1
2 1 −1
1 2 2

 , A2 =


1 −1 −1 −1
2 2 1 1
4 −2 3 4
−2 1 5 6

 , B1 =

1 2 1
3 1 2
1 −1 2

 , B2 =


1 2 4 −2
−1 2 2 −1
−1 −1 3 5
−1 −1 4 6


Observe that A1 = BT

1 . To relate A2 and B2, observe that applying cut-transpose on B2 with

respect to cut {b, c}, gives us 
1 2 −1 −1
−1 2 − 1

2 − 1
2

4 4 3 4
−2 −2 5 6

 .

The obtained matrix is diagonally similar to A2 (they are related by diagonal matrix D =
diag(1,− 1

2 , 1, 1)). Hence, the cut-transpose sequence for A2 and B2 is simply ({b, c}). To

lift this sequence to A and B we have to take union with {a, b} (because {b, c} contains b).

That is, we obtain the sequence ({a, b, c}). Finally, since A1 = BT
1 , we need to append this

sequence by another cut S = {c, d, e}. Hence, the cut-transpose sequence relating A and B is

({a, b, c}, {c, d, e}). Following equation shows this.

A =


1 3 1 1 1
2 1 −1 −1 −1
1 2 2 1 1
2 4 −2 3 4
−1 −2 1 5 6

 cut-transpose−−−−−−−→
along {a,b,c}


1 3 1 2 −1
2 1 −1 −2 1
1 2 2 2 −1
1 2 −1 3 5
1 2 −1 4 6



cut-transpose−−−−−−−→
along {c,d,e}


1 2 1 2 −1
3 1 2 4 −2
1 −1 2 2 −1
1 −1 −1 3 5
1 −1 −1 4 6

 = B
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An efficient algorithm. Now we describe some of the ideas involved in our polynomial time

algorithm to find a cut-transpose sequence for two irreducible PME matrices. The lemmas

mentioned above all have constructive proofs, that is, the following tasks can be done in

polynomial time.

• Given a minimal cut S of matrix A, we can check whether it is also a cut of matrix B. If

not, then we can find an appropriate cut in B such that applying cut-transpose along it

gives us a matrix that has S as a cut.

• Given a cut-transpose sequence for A2 and B2 (as defined above), we can find one for A
and B.

Two parts which remain unclear are – (i) how to find a minimal cut of a matrix efficiently and

(ii) how to compute (A + Z)adj
efficiently for a given matrix A?

To find a cut of a matrix A, we first show that the function f (X) := rank(A[X, X]) +
rank(A[X, X]) is a submodular function (Lemma 4.3). Then observe that if an irreducible

matrix A has a cut, then cuts are precisely those sets X which minimize f (X) under the

constraints |X| ≥ 2 and |X| ≥ 2. To find an inclusion-wise minimal cut, we simply find a

minimum size cut, using the known algorithms for submodular function minimization under

such constraints (Lemma 4.3).

Coming to the second question, recall that instead of matrix A, we consider (A + Z)adj
to

ensure that all matrix entries are nonzero. Here Z is a diagonal matrix with distinct algebraically

independent elements (or indeterminates). However, we cannot compute (or even write down)

the entries (A + Z)adj
efficiently (succinctly). For efficiency, we need to replace the diagonal

entries in Z with elements from the given field (or a large enough algebraic extension). Using

ideas from polynomial identity testing, we show that in (deterministic) polynomial time, we

can compute an appropriate matrix Z, which ensures that the entries of (A + Z)adj
are all

nonzero (Claim 4.1).

Applications to PIT. As discussed earlier, our algorithm to test principal minor equivalence of

two matrices A and B can also be viewed as an algorithm to test if the following is a polynomial

identity:

det(A + Y) = det(B + Y),

where Y is a diagonal matrix with its diagonal entries being all distinct variables. Theo-

rem 1.3 considers a more general PIT question: whether det(A0 + A1y1 + . . . + Amym) =
det(B0 + B1y1 + . . . + Bmym) for given rank-1 matrices A1, A2, . . . , Am, B1, B2, . . . , Bm and arbi-

trary matrices A0, B0. We get a deterministic algorithm for this more general PIT question via a

reduction to testing principal minor equivalence of two given matrices (Section 5). The reduc-

tion uses matroid intersection as a subroutine, which is known to be solvable in deterministic

polynomial time.

2 Notation and Preliminaries

We use [n] to denote the set of positive integers {1, 2, . . . , n}. For any X ⊆ [n], X denotes the

complement set X. For two sets S and T, S∆T denotes the symmetric difference of S and T. For

a set X and an element e, we use X + e to denote the set X ∪ {e} and X − e to denote the set

X \ {e}.
Suppose that w1 = (w1,1, w1,2, . . . , w1,k1)

T, . . . , wℓ = (wℓ,1, wℓ,2, . . . , wℓ,kℓ)
T

are ℓ vectors over

a field F. Then, we use (w1 | · · · | wℓ) to denote the concatenation of the vectors w1, . . . , wℓ as

follows

(w1 | · · · | wℓ) = (w1,1, . . . , w1,k1 , . . . wℓ,1, . . . , wℓ,kℓ)
T.
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For an n× n matrix A and S, T ⊆ [n], A[S, T] denotes the submatrix of A with rows indexed

by elements in S and columns indexed by elements in T. For S ⊆ [n], let A[S] denote the

submatrix A[S, S]. When S = {i}, then A[i, T] = A[S, T]. We follow a similar notation when T
is a singleton. For a square matrix A, by Aadj

, we denote the adjoint, or adjugate, of A.

2.1 Principal minor equivalence

Suppose that A and B are two n× n matrices over any field. The matrix A is said to be principal

minor equivalent to B if the corresponding principal minors of A and B are equal, i.e. for all

S ⊆ [n], det(A[S, S]) = det(B[S, S]). We use A PME

= B to denote that A is the principal minor

equivalent to B.

The following lemma shows that the principal minor equivalence relation between two ma-

trices remains unchanged under adjoint operation and shift by appropriate diagonal matrices.

It is a straightforward consequence of [HL84, Lemma 4].

Lemma 2.1. Let A and B be two n× n matrices over a field F. Let D be an n× n diagonal matrix over

F such that A + D and B + D are non-singular. Then, A PME

= B if and only if (A + D)adj PME

= (B + D)adj
.

2.2 Reducible and Irreducible matrix

Definition 2.2 (Reducible and Irreducible matrix). A matrix is called reducible if it can be written

as a block upper triangular matrix after permuting the rows and the corresponding columns.

A matrix that is not reducible is called irreducible.

Equivalently, if we replace the nonzero off-diagonal entries with one and the diagonal

entries with zero, then a reducible matrix corresponds to the adjacency matrix of a directed

graph having more than one strongly connected component.

From the above definition, it is easy to see that any matrix A with all nonzero off-diagonal

entries is an irreducible matrix. The above definition directly gives us the following observation.

Observation 2.3. Let A be an n× n matrix over a field F such that the row and columns of A are

indexed by [n]. Let GA be a directed graph defined as follows: the vertex set in [n], and a tuple (i, j) is an

edge of GA if and only if i ̸= j and A[i, j] ̸= 0. Let I1, I2, . . . , Is be the strongly connected components

of A. Then, after permuting the rows and the corresponding columns, the matrix A can be made a block

upper triangular matrix, and the diagonal blocks A(I1), A(I2), . . . , A(Is) are irreducible matrices.

For two reducible matrices A and B, the next lemma helps to reduce the testing of whether

A PME

= B to multiple instances of testing whether two irreducible matrices have the same corre-

sponding principal minors. The following lemma is a direct consequence of [Ahm23, Corol-

lary 5.4].

Lemma 2.4. Let A and B two n× n matrices over a field F. Suppose that after permuting the rows and

the corresponding columns, A can be written as a block upper triangular matrix with s diagonal blocks

A1, A2, . . . , As where each Ai is irreducible and the rows and columns of Ai are indexed by set Ti ⊆ [n].
Then, A PME

= B if and only if the following holds.

1. After permuting some rows and the corresponding columns, B can be written as a block upper

triangular matrix with s diagonal blocks B1, B2, . . . , Bs such that each Bi is irreducible and the

rows and columns of Bi are indexed by set Ti.

2. For each i ∈ [s], Ai
PME

= Bi.
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2.3 Cut of a matrix

Definition 2.5 (Cut of a matrix). Let A be an n × n matrix over a field F such that n ≥ 4.

A subset X ⊂ [n] is called a cut in A if 2 ≤ |X| ≤ n − 2 and the rank of the submatrices

A[X, X] and A[X, X] are at most one.

In particular, if A is an irreducible matrix and X is cut in A, then rank(A[X, X]) =
rank(A[X, X]) = 1.

By definition, if X is a cut of a matrix A then so is X. For a matrix A, a cut X in A is called a

minimal cut if there exists no other cut X′ in A such that X′ ⊆ X. Note that any cut of size two

is always a minimal cut.

Next, we show that the set of cuts of a matrix remains the same if we take its adjugate after

adding an appropriate diagonal matrix.

Lemma 2.6. Let A be an n× n matrix over a field F. Let D be an n× n diagonal matrix over F such

that A + D is non-singular. Then, A and (A + D)adj
have the same set of cuts.

For proof, see Appendix A.

2.4 Diagonal similarity

Suppose that A and B are two n× n matrices over a field F. We say that A is diagonally similar

to B, denoted by A DS

= B, if there exists an n× n invertible diagonal matrix D over F such that

B = DAD−1
. We say that A and B are diagonally equivalent, denoted by A DE

= B, if A DS

= B or

A DS

= BT
.

In the following claim, we describe how to efficiently check whether two matrices are

diagonally similar or not.

Claim 2.7. Given two n × n matrices A and B over F, in polynomial time, we can decide whether

A DS

= B.

Proof Sketch. Observe that if A DS

= B then we must have an invertible diagonal matrix D such

that B[i, j]/A[i, j] = D[i]/D[j], for any i ̸= j with A[i, j] ̸= 0. Consider a weighted directed

graph G on n vertices such that (i, j) is an edge for i ̸= j if and only if A[i, j] ̸= 0 or A[j, i] ̸= 0.

Let us define the weight of an edge (i, j) as w(i, j) = B[j, i]/A[j, i] or A[i, j]/B[i, j] whichever

is defined. If both are defined, they must be equal, otherwise A and B cannot be diagonally

similar. Observe that for any path (i0, i1, . . . , ik) in graph G, it must be that

D[ik]/D[i0] = w(i0, i1)w(i1, i2) · · ·w(ik−1, ik)

Moreover, any diagonal matrix satisfying the above equation for all paths in G will give us

the desired diagonal matrix D. So, we construct D for given matrices A and B as follows.

For any connected component in G, pick an arbitrary vertex i from the component and set

D[i] = 1. For any other vertex j in that component, find a path (i = i0, i1, i2, . . . , ik = j) and

set D[j] = w(i0, i1)w(i1, i2) · · ·w(ik−1, ik). Repeating this for every component in G will give

us matrix D. Finally we should check that B[i, j]/A[i, j] = D[i]/D[j], for every i ̸= j with

A[i, j] ̸= 0.

One can observe that if A DE

= B, then A PME

= B. Next, we consider the converse direction.

Hartfiel and Loewy [HL84, Theorem 3] showed that when n = 2 or 3, and A is an irreducible

matrix, A PME

= B implies that A DE

= B . Later, Lowey [Loe86, Theorem 1] showed that if A is an

irreducible matrix and has no cut, then A PME

= B implies A DE

= B. Therefore, by combining them,

we have the following lemma:
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Lemma 2.8. Let A and B two n× n matrices over a field F such that A is irreducible and A PME

= B.

Then, the following holds:

1. if n = 2 or 3, then A DE

= B.

2. if n ≥ 4 and A has no cut, then A DE

= B.

The next lemma shows that the diagonal similarity relation also holds for the adjugate of the

matrices obtained by adding an appropriate diagonal matrix. It directly follows from [HL84,

Lemma 4].

Lemma 2.9. Let A and B be two n× n matrices over F. Let D be an n× n diagonal matrix such that

both A + D and B + D are invertible. Then, A DS

= B if and only if (A + D)adj DS

= (B + D)adj
.

2.5 Cut-transpose operation

In the previous section, we have seen that under diagonal similarity, the values of the principal

minors of a matrix remain unchanged. Now, we describe another operation under which

also the values of the principal minors remain the same. This operation was defined by

Ahmadieh [Ahm23, Lemma 4.5], and we refer to it as cut-transpose.

Definition 2.10 (Cut-transpose operation). Let A be an n× n irreducible matrix represented

as follows, and X ⊆ [n] be a cut of A. Let q, u ∈ F|X| such that q is the first non-zero row of

A[X, X], u is the first non-zero column of A[X, X]. Let p, v ∈ F|X| such that A[X, X] = p · qT

and A[X, X] = u · vT
.

A =

A[X] p · qT

u · vT A[X]

 .

Then, the cut-transpose operation on A with respect to X, denoted by ct(A, X), transforms A to the

following matrix:

ct(A, X) =

A[X] p · uT

q · vT A[X]T

 .

Remark 2.11. Note that in the above definition, we take one particular rank-one decomposition

for submatrices A[X, X] and A[X, X]. For every nonzero α, β ∈ F, the rank-one submatrices

A[X, X] and A[X, X] are equal to (αp) · (q/α)T
and (βu) · (v/β)T

, respectively. Depending

on what rank one decomposition we choose, we can get a different matrix after applying this

operation. However, all these obtained matrices are diagonally similar to each other. Also, one

advantage of choosing the above decomposition is that ct(ct(A, X), X) = A.

For a k× ℓ matrix M with rank(M) ≤ 1, in polynomial time, we can find p ∈ Fk
and q ∈ Fℓ

such M = p · qT
. Hence, we can find the cut-transpose of a matrix with respect to a given cut

in polynomial time.

Now, we mention some properties of the cut-transpose operation. First, we show that under

cut-transpose operation, the values of the principal minors of a matrix remain the same.

Lemma 2.12. Let A be an n × n irreducible matrix over a field F with a cut X ⊂ [n]. Then,

A PME

= ct(A, X).

For proof, see Appendix A. Next, we show that the cut-transpose operation and the adjoint

operation commute with each other up to diagonal similarity.

Lemma 2.13. Let A be an n× n irreducible matrix over a field F. Then, a cut X ⊆ [n] of A is also a

cut of Aadj
and

ct(A, X)adj DS

= ct(Aadj, X).
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For proof, see Appendix A. Next, we define the cut-transpose equivalence relation. Theo-

rem 1.1 says that it characterizes principal minor equivalence for irreducible matrices.

Definition 2.14. Let A and B be two irreducible matrices over a field F with their rows and

columns indexed by I. Let X = (X1, X2, . . . , Xk) be a sequence of subsets of I. We say that

A and B are cut-transpose equivalent with respect to cut sequence X if it produces a sequence of

matrices (A0 = A, A1, A2, . . . , Ak) with the following property:

∀i ∈ [k], Ai = ct(Ai−1, Xi) where Xi is a cut in Ai−1, and Ak
DE

= B.

The following lemma demonstrates how the cut-transpose relation extends to the adjoint.

Lemma 2.15. Let A, B be two n× n irreducible matrices over a field F and X be sequence of subsets

of [n]. Let D be a diagonal matrix such that A + D and B + D are invertible. Then, A and B are

cut-transpose equivalent with respect to X if and only if (A + D)adj
and (B + D)adj

are cut-transpose

equivalent with respect to X .

Proof. We show this by induction on the size of X . For the base case, X is empty and from

Lemma 2.9, A DS

= B if and only if (A + D)adj DS

= (B + D)adj
. Similarly, A DS

= BT
if and only if

(A + D)adj DS

= (BT + D)adj = ((B + D)adj)T
.

For the inductive step, we assume that the statement is true when the sequence length is less

than k. Now, we show this forX = (X1, X2, . . . , Xk). Here, we show only the forward direction.

The other direction can be shown similarly. Let (A′0 = (A+D)adj, A′1, . . . , A′k) be the sequence of

matrices such that for each i ∈ [k], Xi is cut of A′i−1 and A′i = ct(A′i−1, Xi). Since A′k
DE

= (B+D)adj
,

Xk is also a cut of (B + D)adj
. From Lemma 2.13, ct((B + D)adj, Xk)

DS

= (ct(B + D, Xk))
adj.

Since A′k
DE

= (B+ D)adj
, A′k is diagonally similar to either (B+ D)adj

or its transpose. Suppose

A′k
DS

= (B + D)adj
. Then, ct(A′k, Xk)

DS

= (ct(B + D, Xk))
adj. Note that Xk is also a cut of A′k and

ct(A′k, Xk) = A′k−1, as cut-transpose operation is its own inverse. Hence, A′k−1
DS

= (ct(B +

D, Xk))
adj = (ct(B, Xk)+ D)adj. This implies (A+ D)adj

and (ct(B, Xk)+ D)adj
are cut-transpose

equivalent with respect to sequence X − Xk. By induction hypothesis, A and ct(B, Xk) are cut-

transpose equivalent with respect to X − Xk. Since ct(ct(B, Xk), Xk) = B, we get that A and

B are cut-transpose equivalent with respect to cut sequence X . Similarly, we can show for the

other case when A′k
DS

= ((B + D)adj)T
.

3 Characterization of Prinicipal Minor Equivalence for Irreducible
Matrices

In this section, we show that two irreducible matrices are principal minor equivalent if and only

if they are cut-transpose equivalent. Formally, we show Theorem 1.1. The forward direction

directly follows from Lemma 2.12 and the fact that diagonally equivalent matrices are principal

minor equivalent. For the other direction, first, we argue that we only need to show the theorem

for matrices whose all off-diagonal entries are non-zero.

Suppose there exists a diagonal matrix D such that A + D and B + D are invertible and

off-diagonal entries of (A + D)adj
and (B + D)adj

are non-zero. Since A PME

= B, from Lemma 2.1,

(A + D)adj PME

= (B + D)adj
. From Lemma 2.15, if (A + D)adj

and (B + D)adj
are cut-transpose

equivalent with respect to a cut sequenceX of size at most 2n then so are A and B. This implies

that if the Theorem 1.1 holds for matrices with non-zero off-diagonal entries, then it also holds

for general irreducible matrices. We show the existence of such D in Claim 4.1. Hence, in the

rest of this section, we assume that A and B have non-zero off-diagonal entries, without loss of

generality.
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If n ≤ 3 or A does not have any cut, then Theorem 1.1 directly follows from Lemma 2.8. So,

we assume that n ≥ 4 and A has a cut. We prove the theorem using induction on n. The base

case of n = 4 directly follows from the following lemma. See Appendix B for the proof.

Lemma 3.1. Let A be a 4× 4 matrix over F with all off-diagonal entries are nonzero. Let B be another

4× 4 matrix over F such that A PME

= B. Then, one of the following two holds:

1. A DE

= B.

2. There exists a common cut in A and B. Furthermore, for any common cut X of A and B,

ct(A, X)
DE

= B.

Now, we have two n× n matrices A and B with non-zero off-diagonal entries and at least

one cut such that B PME

= A. First, we show some relation between minimal cuts of A and B that

enables us to apply induction. Precisely, we show that if A and B have the same principal

minors, and A has a cut, then a minimal cut of A is also a cut of B if its size is greater than two.

Otherwise, if the size of a minimal cut S of A is two, then either it is also a cut of B, or there

exists a cut X in B such that the cut-transpose of B with respect to X has cut S. To show this

relationship between cuts, we first show the following three results.

The following lemma establishes the relation between cuts of a matrix and its cut-transpose.

Lemma 3.2. Let A be an n× n matrix over F with nonzero off-diagonal entries. Let S ⊆ [n] be a cut

in A. Then, for any T ⊆ [n] the following holds.

1. If T or T is a subset of S or S, then T is a cut in A if and only if T is a cut in ct(A, S).

2. Otherwise, T is a cut in A if and only if T∆S is a cut in ct(A, S).

Proof. We start with the proof of the first part of the lemma.

Proof of the first part. Assume that T ⊆ S and T is a cut in A. Then, the matrix A has the

following structure:

A =

T S \ T S


T ∗ u1 · vT
1 u1 · vT

2

S \ T p1 · qT
1 ∗ u2 · vT

2

S p2 · qT
1 p2 · qT

2 ∗

such that

u1, q1 ∈ F|T|, v1, u2, p1, q2 ∈ F|S|−|T|, and v2, p2 ∈ F|S|,

and ‘∗’ marked submatrices can be arbitrary. After applying the cut-transpose operation on A
with respect to the cut S, using Remark 2.11,

ct(A, S)[T, T] DS

= u1 · (v1 | p2)
T

and ct(A, S)[T, T] DS

= (p1 | v2) · qT
1 .

Therefore, T is also a cut in ct(A, S). The converse follows because ct(ct(A, S), S) = A.

Now we assume that T ⊆ S. Note that the set of cuts in A is the same as the set of cuts in

AT
. Since T ⊆ S, from the above discussion, T is a cut in AT

if and only if T is a cut in ct(AT, S).
Observe that ct(AT, S) DS

= ct(A, S). Thus, when T ⊆ S, the set T is a cut in A if and only if T is

a cut in ct(A, S). The proof for the remaining cases directly follows from these.
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Proof of the second part. Assume that neither T nor T is a subset of S or S, and T is a cut in

A. This implies that S \ T, S ∩ T and T \ S are nonempty. Since S is a cut in A, the matrix A
has the following structure.

A =

S \ T S ∩ T T \ S S ∪ T



S \ T ∗ ∗ u1 · vT
1 u1 · vT

2

S ∩ T ∗ ∗ u2 · vT
1 u2 · vT

2

T \ S p1 · qT
1 p1 · qT

2 ∗ ∗

S ∪ T p2 · qT
1 p2 · qT

2 ∗ ∗

(3)

such that

u1, q1 ∈ F|S\T|, v1, p1 ∈ F|T\S|, v2, p2 ∈ F|S∪T|, and u2, q2 ∈ F|S∩T|.

Since T is also a cut, the columns and rows of A[S \ T, S ∩ T] are multiples of u1 and qT
2

respectively. Hence, A[S \ T, S ∩ T] = (αu1) · qT
2 for some α ̸= 0. Since rank(A[T, T]) = 1,

A[S ∪ T, T \ S] = p2 · (vT
1 /α). Similarly, for some non-zero β,

A[S ∩ T, S \ T] = (βu2) · qT
1 and A[T \ S, S ∪ T] = p1 · (vT

2 /β).

Thus, the matrix A has the following form.

A =

S \ T S ∩ T T \ S S ∪ T



S \ T ∗ (αu1) · qT
2 u1 · vT

1 u1 · vT
2

S ∩ T (βu2) · qT
1 ∗ u2 · vT

1 u2 · vT
2

T \ S p1 · qT
1 p1 · qT

2 ∗ p1 · (vT
2 /β)

S ∪ T p2 · qT
1 p2 · qT

2 p2 · (vT
1 /α) ∗

(4)

From Eq. (4), applying cut-transpose operation on A with respect to the cut S, we get that

ct(A, S)[T∆S, T∆S] DS

= (αu1 | v1) · (q2 | α−1 p2)
T, and

ct(A, S)[T∆S, T∆S] DS

= (βu2 | v2) · (q1 | β−1 p1)
T.

Therefore, S∆T is a cut in ct(A, S).
Converse follows, because ct(ct(A, S), S) = A and (T∆S)∆S = T.

In the following lemma, we state a property about a minimal cut of size greater than two.

Lemma 3.3. Let A be an n× n matrix over F such that the off-diagonal entries of A are nonzero. Let

S be a minimal cut in A of size greater than two. Let T be a nonempty subset of S, X ⊆ S ∪ T and

X̃ = (S ∪ T) \ X. Then, if X is a cut in A[S ∪ T], then either S ⊆ X or S ⊆ X̃.

In particular, if T = {t} for some t ∈ S, then the matrix A[S + t] have no cut.

Proof. For the sake of contradiction, assume that X ⊆ S∪ T is a cut of A[S∪ T] such that neither

S ⊆ X nor S ⊆ X̃. Since |S| ≥ 3, either |S ∩ X| ≥ 2 or |S ∩ X̃| ≥ 2. This implies that a cut

exists in A[S ∪ T], which contains at least two elements of S. Hence, without loss of generality,

we can assume that |S ∩ X| ≥ 2. If T \ X is empty, then X̃ ⊆ S and hence |X̃ ∩ S| = |X̃| ≥ 2.
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Also, T \ X̃ = T is non-empty. This implies that A[S ∪ T] has a cut such that it has at least

two elements from S, and T has at least one element that is not present in it. Without loss of

generality, we assume that |X ∩ S| ≥ 2 and T \ X ̸= ∅. Since S is not a subset of X, S \ X is

non-empty.

Let t ∈ T \ X = T ∩ X̃. Let

A[S ∩ X, t] = u1, A[S \ X, t] = u2, A[t, S ∩ X] = qT
1 and A[t, S \ X] = qT

2 .

Since X is a cut of A[S + T] and t ∈ X̃, the columns of A[S ∩ X, S \ X] are multiples of u1.

Similarly, the rows of A[S \ X, S ∩ X] are multiples of qT
1 . Since S is a cut of A, A has the

following structure.

A =

S ∩ X S \ X t S + t



S ∩ X ∗ u1 · vT
1 u1 u1 · vT

2

S \ X p1 · qT
1 ∗ u2 u2 · vT

2

t qT
1 qT

2 ∗ ∗

S + t p2 · qT
1 p2 · qT

2 ∗ ∗

(5)

where v1, p1 ∈ F|S\X| and v2, p2 ∈ F|S|+1
. From Eq. (5),

A[S ∩ X, S ∩ X] = u1 · (v1 | 1 | v2)
T

and A[S ∩ X, S ∩ X] = (p1 | 1 | p2) · qT
1 .

This implies S ∩ X ⊂ S is a cut in A which contradicts the minimality of S.

Now we prove the other part of the lemma. Suppose this T is a singleton set, i.e. T = {t}
for some t ∈ S. For the sake of contradiction, assume that there exists a cut X in A[S + t]. Then,

from the first part of the lemma, either S ⊆ X or S ⊆ X̃ where X̃ = (S + t) \ X. Without loss

of generality, assume S ⊆ X. Then |X̃| ≤ 1. This is a contradiction since X is a cut in A[S + t].
Therefore, A[S ∪ T] has no cut when T is a singleton set.

Lemma 3.4. Let A be an n× n matrix over F with nonzero off-diagonal entries. Let S ⊆ [n] be a cut in

the matrix A and t ∈ S, and suppose X ⊆ S is a cut in A[S + t]. Then, X is also a cut in the matrix A.

Proof. The off-diagonal entries of A are nonzero. The sets X and S are cuts in A[S + t] and A,

respectively. This implies that the matrix A can be written as follows.

A =

X S \ X t S− t



X ∗ u1 · vT
1 u1 u1 · vT

2

S \ X p1 · qT
1 ∗ u2 u2 · vT

2

t qT
1 qT

2 ∗ ∗

S− t p2 · qT
1 p2 · qT

2 ∗ ∗

where

u1, q1 ∈ F|X|, v1, u2, p1, q2 ∈ F|S\X|, v2, p2 ∈ F|S|−1,

and ‘∗’marked submatrices can be arbitrary. From the above structure of A, observe that

A[X, X] = u1 · (v1 | 1 | v2)
T

and A[X, X] = (p1 | 1 | p2) · qT
1 .

Therefore, X is a cut in A.
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Now, we get back to show the relationship between the minimal cuts of two PME matrices.

First, we handle the case when the size of the minimal cut of A is two.

Lemma 3.5. Let A and B be two n× n matrices over field F with nonzero off-diagonal entries such that

A PME

= B and S = {s1, s2} is a cut in A of size 2. Then either S is a cut in B or for each i ∈ {1, 2}, B has

a cut Xi, defined as

Xi = {t ∈ S | A[S + t] DS

= B[S + t]} ∪ {si},
and S is a cut in ct(B, Xi).

Proof. Without loss of generality, let S = {1, 2}. Let 3 ≤ t ≤ n. Since A PME

= B, it follows that

A[{1, 2, t}] PME

= B[{1, 2, t}]. From Lemma 2.8, we have A[{1, 2, t}] DE

= B[{1, 2, t}]. Hence, there

exists a diagonal matrix Dt with Dt[1, 1] = 1 such that

Dt A[{1, 2, t}]D−1
t = B[{1, 2, t}] or

Dt A[{1, 2, t}]D−1
t = B[{1, 2, t}]T.

For any t for which the former condition holds, we will have

B[1, t]
B[2, t]

= A[1,t]A[2,1]
A[2,t]B[2,1] =

A[1, 3]A[2, 1]
A[2, 3]B[2, 1]

and (6)

B[t, 1]
B[t, 2]

= A[t,1]A[1,2]
A[t,2]B[1,2] =

A[3, 1]A[1, 2]
A[3, 2]B[1, 2]

. (7)

The last two equalities hold because {1, 2} is a cut in A. For any t for which the later condition

holds, we will have

B[1, t]
B[2, t]

= A[t,1]A[1,2]
A[t,2]B[2,1] =

A[3, 1]A[1, 2]
A[3, 2]B[2, 1]

and (8)

B[t, 1]
B[t, 2]

= A[1,t]A[2,1]
A[2,t]B[1,2] =

A[1, 3]A[2, 1]
A[2, 3]B[1, 2]

. (9)

If equations (6) and (7) hold for every 3 ≤ t ≤ n, or if equations (8) and (9) hold for every

3 ≤ t ≤ n, then {1, 2} will be a cut of B.

Suppose that is not true. It follows that

A[1, 3]A[2, 1]
A[2, 3]

̸= A[3, 1]A[1, 2]
A[3, 2]

.

Let P ⊆ {3, 4, . . . , n} be the set of indices for which equations (6), (7) hold and let Q :=
{3, 4, . . . , n} \ P be the set of indices for which equations (8), (9) hold.

We will show that P ∪ {1} is a cut in B. Consider two indices s ∈ P and t ∈ Q. Consider

the set T = {1, 2, s, t}. Since equations (6) and (7) hold for s and do not hold for t, we have that

B[1, t]
B[2, t]

̸= B[1, s]
B[2, s]

or

B[t, 1]
B[t, 2]

̸= B[s, 1]
B[s, 2]

.

Hence, {1, 2} is not a cut in B[T] and B[T] ̸DS

= A[T]. But, we have that A[T] PME

= B[T]. Hence,

there must be a cut in B[T] (Lemma 3.1) In fact, B[T] will have more than one cut. Because if

B[T] has a unique cut, say {1, t}, then that will also be a unique cut of A[T] (Lemma 3.1). But,

A[T] has a cut {1, 2}.
So, we conclude that B[T] has cuts {1, s} and {1, t}. Hence, we can write

B[s, t]/B[1, t] = B[s, 2]/B[1, 2] and

B[t, s]/B[2, s] = B[t, 1]/B[2, 1]

Using these equations for every s ∈ P and every t ∈ Q, we get that X = P ∪ {1} is a cut in B.

Similarly, we can show that X′ = P ∪ {2} is a cut in B. From Lemma 3.2, X∆X′ = {1, 2} is a

cut of ct(B, X) and ct(B, X′).

17



In the following lemma, we show that a minimal cut of A of size greater than two is also a

cut of B.

Lemma 3.6. Let A and B be two n× n matrices over F with nonzero off-diagonal entries. Let A PME

= B,

and S ⊆ n be a minimal cut in A of size greater than two. Then, S is also a cut in B.

Proof. Let s ∈ S. We show that for all t ∈ S + s, the set Tt := {s, t} is a cut in B[S + Tt]. This

will imply that

B[S, t] = α · B[S, s] and B[t, S] = β · B[s, S]

for some non-zero α, β ∈ F. Hence, S is a cut in B.

Since S is a minimal cut in A of size greater than two, from Lemma 3.4, there are no cuts in

both the matrices A[S + s] and A[S + t]. We have that A PME

= B. Therefore, applying Lemma 2.8,

A[S + s] DE

= B[S + s] and A[S + t] DE

= B[S + t]. This implies that both B[S + s] and B[S + t] have

no cuts.

For the sake of contradiction, assume that Tt is not a cut in B[S + Tt]. Note that Tt is a

cut in A[S + Tt] of size two. Then, from Lemma 3.5, there exists a cut X ⊆ S + Tt in the

matrix B[S + Tt] such that s ∈ X but t /∈ X. Since |S + Tt| ≥ 5, either |X| > 2 or the size of

X̃ := (S + Tt) \ X is greater than 2. If |X| > 2, then X − s is a cut in B[S + t] as X is a cut of

B[S + Tt]. Otherwise, X̃− t is a cut in B[S + s]. In both the cases, we have contradictions. Thus,

Tt is a cut in B[S + Tt] for all t ∈ S + s. This completes our proof.

Let S be a minimal cut of A. If S is of size greater than two, then from Lemma 3.6, S is also

a cut of B. Otherwise, if |S| = 2 and S is not a cut of B, then from Lemma 3.5, there exists a

cut X in B such that S is a cut of ct(B, X). Hence, from now on, we can assume that A has a

minimal cut S, which is also a cut of B.

Now, we go to the inductive step. Since A PME

= B, any principal submatrix of A and the cor-

responding principal submatrix of B are also principal minor equivalent. We fix one principal

submatrix corresponding to set S + t for some s in S and try to get a cut sequence for A and B
using the cut sequence for A[S + s] and B[S + s], which we get from induction hypothesis. For

this, we show Claim 3.8. Before that, we state the following observation.

Observation 3.7. Let A be an n× n matrix with non-zero off-diagonal entries. Let S ⊂ [n] and X ⊂ S
such that X is a cut of A[S]. Then,

1. If X is a cut of A, then ct(A[S], X) = ct(A, X)[S].

2. If S + X is a cut of A, then ct(A[S], X) = ct(A, S + X)[S]

Claim 3.8. Let A and B be two n× n matrices with non-zero off-diagonal entries and a common cut

S ⊂ [n] such that A PME

= B. Let s ∈ S and A[S + s] and B[S + s] be cut-transpose equivalent with respect

to cut sequence (X̃1, X̃2, . . . , X̃k). Let A0 = A and Xi =

{
X̃i ∪ S if s ∈ X̃i

X̃i otherwise

. Then,

1. For each i ∈ [k], Xi and S are cuts of Ai−1 where Ai = ct(Ai−1, Xi) and Ak[S + s] DS

= B[S + s].

2. If S is a minimal cut of A, then S is also a minimal cut of Ai for each i ∈ [k].

Proof. Given that there exists a sequence of matrices (A[S + s] = Ã0, Ã1, . . . , Ãk) such that

Ãi = ct(Ãi−1, X̃i) where X̃i is a cut of Ãi−1 and Ãk
DS

= B[S + s] or B[S + s]T. If s ∈ X̃1, then

X1 = X̃1 ∪ S. Since S is a cut of A = A0 and (S + s) \ X̃1 is a cut of A[S + s], from Lemma 3.4,

(S + s) \ X̃1 is a cut of A0 which in turn implies its complement, that is, X1 is a cut of A0. Since

X1 = S + s + X̃1, from observation 3.7, ct(A0, X1)[S + s] = ct(Ã0, X̃1). Note that in this case,

S ⊆ X1.
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If s /∈ X̃1, then X1 = X̃1. Note that from Lemma 3.4, X1 is also a cut of A0 and X1 ⊂ S.

Hence from observation 3.7, ct(A0, X1)[S + s] = ct(Ã0, X̃1). Given that A1 = ct(A0, X1) and

Ã1 = ct(Ã0, X̃1). Hence, A1[S + s] = Ã1. Since, either X1 ⊂ S or S ⊂ X1, from Lemma 3.2, A1
also has cut S. The minimality of cut S also follows from Lemma 3.2 when S is a minimal cut

of A. Iteratively, in a similar way, we can show that for each i ∈ {2, 3, . . . , k}, Xi and S are cuts

of Ai−1 and Ai[S + s] = Ãi. Also, we can show that if S is a minimal cut of A, then it is also a

minimal cut of Ai for each i ∈ {2, 3, . . . , k}.

Since A[S + s] PME

= B[S + s], from induction hypothesis, we get that they are cut-transpose

equivalent with respect to a cut sequence of length, say k ≤ 2(|S| + 1) ≤ 2n − 2. Using

Claim 3.8, we can get another matrix A′ from A through a sequence of cut-transpose operations

such that A′[S ∪ {s}] DE

= B[S ∪ {s}] and S is a minimal cut of A′. We can go even further and

assume that A′[S ∪ {s}] DS

= B[S ∪ {s}]. This is because when A′[S ∪ {s}] DS

= B[S ∪ {s}]T, then

we can work with BT
instead of B. The following lemma shows that we can get B from A′ by

using at most one cut-transpose operation.

The number of cut transpose operations from A to A′ is k ≤ 2n− 2. If S has size 2 and it is

not a cut in B, then we need one cut-transpose operation from Lemma 3.5. From Lemma 3.9,

we might need one more cut-transpose operation from A′ to B. This completes the proof of

Theorem 1.1 by giving a cut-sequence of size at most 2n from A to B.

Lemma 3.9. Let A and B be two n× n matrices over F with nonzero off-diagonal entries and A PME

= B.

Let S ⊆ [n] be a minimal cut in A and also a cut in B. Let s ∈ S such that A[S + s] DS

= B[S + s]. Then,

either A DS

= B or ct(A, S) DS

= B.

Proof. Without loss of generality, assume that S = [i] and s = i. Then, from the hypothesis,

B[S + i] PME

= A[S + i]. Since S is a minimal cut in A, using Lemma 3.3 and Lemma 2.8, there exists

an (i + 1)× (i + 1) invertible diagonal matrix D1 such that D1[i + 1, i + 1] = 1 and

D1 · A[[i + 1]] · D−1
1 = B[[i + 1]] or B[[i + 1]]T.

From the hypothesis, there exists another (n− i + 1)× (n− i + 1) invertible diagonal matrix

D2 such that D2[i, i] = 1 and

B[S + i] = D2 · A[S + i] · D−1
2 . (10)

We assume that the rows and columns of D2 are indexed by S + i. Next, we divide our proof

into the following two cases.

Case I: In this case, we assume that

D1 · A[[i + 1]] · D−1
1 = B[[i + 1]], (11)

and show A DS

= B. Let D be an n× n invertible matrix defined as follows: For all k ∈ [n],

D[k, k] =

{
D1[k, k] if k ∈ [i]

D2[k,k]
D2[i+1,i+1] otherwise .

We will show that B is equal to DAD−1
. Since S is a common cut in both the matrices A and

B, the rank-one submatrices A[S, S] and B[S, S] can be written as follows.

A[S, S] = A[S, i + 1] · A[i, S]
A[i, i + 1]

and A[S, S] = A[S, i] · A[i + 1, S]
A[i + 1, i]

(12)

B[S, S] = B[S, i + 1] · B[i, S]
B[i, i + 1]

and B[S, S] = B[S, i] · B[i + 1, S]
B[i + 1, i]

(13)
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From Eq. (10) and Eq. (11),

B[i, i + 1] = A[i, i + 1] · D−1
2 [i + 1, i + 1]

B[i, S] = A[i, S] · D−1
2 [S], and

B[S, i + 1] = D1[S] · A[S, i + 1]

Therefore, using the above equation and Eq. (13),

B[S, S] = D1[S] · A[S, i + 1] · D2[i + 1, i + 1] · A[i, S] · D−1
2 [S]

A[i, i + 1]

= D[S] · A[S, S] · D−1[S]

Similarly, we can show that

B[S, S] = D[S] · A[S, S] · D−1[S].

Applying Eq. (11) and Eq. (10), we get that

B[S] = D[S] · A[S] · D−1[S] and

B[S] = D[S] · A[S] · D−1[S].

Thus, B = DAD−1
.

Case II: In this case, we assume that

D1 · A[[i + 1]] · D−1
1 = B[[i + 1]]T, (14)

and show B DS

= ct(A, S). Let D be an n× n invertible diagonal matrix defined as follows: For

all k ∈ [n],

D[k, k] =

{
D−1

1 [k, k] if k ∈ [i]
D2[k,k]

D2[i+1,i+1] otherwise .

We will prove that B is equal to D · ct(A, S) ·D−1
. Since S is a cut, the matrix A has the following

structure.

A =

S S
S A[S] A[S, i + 1] · A[i,S]

A[i,i+1]

S A[S,i]
A[i+1,i] · A[i + 1, S] A[S]

.

Thus, ct(A, S) can be written as follows.

ct(A, S) =

S S
S A[S]T A[i + 1, S]T · A[i,S]

A[i,i+1]

S A[S,i]
A[i+1,i] · A[S, i + 1]T A[S]

.

From Eq. (10) and Eq. (14), we have that

B[i, i + 1] = A[i, i + 1] · D−1
2 [i + 1, i + 1]

B[S, i + 1] = D−1
1 [S] · A[i + 1, S]T

B[i, S] = A[i, S] · D−1
2 [S].
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Using the above equation and Eq. (13),

B[S, S] = D−1
1 [S] · A[i + 1, S]T · D2[i + 1, i + 1] · A[i, S] · D−1

2 [S]
A[i, i + 1]

= D[S] · ct(A, S)[S, S] · D−1[S]

Similarly, we can show that

B[S, S] = D[S] · ct(A, S)[S, S] · D−1[S].

Applying Eq. (14) and Eq. (10), we get that

B[S] = D[S] · ct(A, S)[S] · D−1[S], and

B[S] = D[S] · ct(A, S)[S] · D−1[S].

Thus, B = D · ct(A, S) · D−1
.

4 Algorithm for Principal Minor Equivalence Testing

In this section, we give a proof of Theorem 1.2 by giving polynomial time algorithm for testing

whether two matrices are principal minor equivalent. For reducible matrices, the problem

reduces to smaller instances of principal minor equivalence testing for irreducible matrices

from Lemma 2.4. Using observation 2.3, we can find these instances in polynomial time.

Hence, it is sufficient to give a polynomial time algorithm for irreducible matrices.

In Algorithm 1, given two irreducible matrices A and B as input, we output a cut sequence

with respect to which A and B are cut-transpose equivalent if A PME

= B otherwise, we output "No".

The algorithm is directly based on the proof of characterization result. As mentioned earlier,

we first reduce to an instance where all the off-diagonal entries are non-zero. The following

claim describes how to get such an instance.

Claim 4.1. Let F be a field of size greater than 10n5
. Let A and B be two n× n irreducible matrices

over F. Then, in poly(n) time, we can find a diagonal matrix D ∈ Fn×n
such that A + D and B + D

are nonsingular and all entries of (A + D)adj
and (B + D)adj

are nonzero.

Remark 4.2. When the size of the underlying field F is not greater than 10n5
, we can construct

an extension K of F such that |K| > 10n5
and work with the larger field K. We can also

construct such an extension K in time poly(n).

Proof. Given A and B, we need to construct the following two types of diagonal matrices over

F in poly(n) time.

Type I: Find diagonal matrices DA and DB such that both A + DA and B + DB are nonsingular.

Type II: For all i, j ∈ [n], find diagonal matrices Ai,j and Bi,j such that

(A + Ai,j)
adj[i, j] ̸= 0 and (B + Bi,j)

adj[i, j] ̸= 0.

Before describing the construction of the above-mentioned diagonal matrices, we first dis-

cuss how to use them to get the diagonal matrix D as promised in the claim. Using univariate

polynomial interpolation, we combine all the above-mentioned diagonal matrices to a single

n× n diagonal matrix D̃ as follows. Let T be a subset of F of size 2n2 + 2. Fix a bĳection ϕ from

T to the set of diagonal matrices

{DA, DB} ⊔ {Ai,j, Bi,j | i, j ∈ [n]}.
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For each i ∈ [n], let Pi be a univariate polynomial in y such that for each e ∈ T, Pi(e) = ϕ(e)[i, i].
We can find Pi in poly(n) time using Lagrange interpolation such that its degree is at most

2n2 + 1. Then, the diagonal matrix D̃ is defined as D̃[i, i] = Pi for all i ∈ [n]. Observe that

for each e ∈ T, after substituting y by e in D̃, we get ϕ(e). Thus, both A + D̃ and B + D̃ are

nonsingular, and all entries of (A + D̃)adj
and (B + D̃)adj

are nonzero. In other words, the

univariate polynomials det(A + D̃), det(B + D̃), (A + D̃)adj[i, j] and (B + D̃)adj[i, j] for each

i, j ∈ [n] are nonzero. Note that each of these polynomials has a degree at most (2n2 + 1)× n.

Now, we have found a matrix with univariate polynomials as its entries that satisfy the condition

of our claim.

Now consider the polynomial

P = det(A + D̃) · det(B + D̃) · ∏
i,j∈[n]

(A + D̃)adj[i, j] · (B + D)adj[i, j].

From [Csa76, Ber84], we know that the determinant of an n × n matrix whose entries are

univariate polynomials of at most poly(n) degree can be computed in poly(n) time. Thus, the

polynomial P can be computed in time poly(n). The degree of P is at most d = (2n3 + n)×
(2n2 + 2) ≤ 10n5

. Therefore, for any subset S ⊆ F of size d + 1, there exists an a ∈ S such that

P(a) is nonzero. Find such a point a in S. Given the polynomial P, this can be done in poly(n)
time. This implies that all the polynomials in the product are also nonzero at a ∈ S. Hence,

after substituting y by a in D̃, we get a matrix D that satisfies the condition of our claim. Next,

we describe how to find diagonal matrices of Type I and Type II in poly(n) time.

Find Type I diagonal matrices. Let y be an indeterminate and D′ be a diagonal matrix with

each diagonal entry is y. Then, the coefficient of yn
in det(A + D′) is one, hence, det(A + D′) is

nonzero. Compute the polynomial det(A + D′). Since it is an univariate polynomial of degree

n, in poly(n)time, we can find a point a ∈ F such that the evaluation of det(A + D′) at a is

nonzero. Then, the matrix DA we get by substituting y = a in D′. Similarly, we can find DB in

poly(n) time.

Finding Type II diagonal matrices. Let GA be the graph such that its vertex set in [n] and

(i, j) is an edge inf GA if and only if i ̸= j and A[i, j] ̸= 0. Let i, j ∈ [n]. Since A is irreducible,

there exists a path from i to j in GA. Let

P = (i0, i1, i2, . . . , ik) with i0 = i, ik = j,

be a shortest path from i to j. In particular, when i = j, P is (i0 = i). We can compute such a

path P in time poly(n). Let D′ be a n× n diagonal matrix and y be an indeterminate such that

for all e ∈ [n],

D′[e, e] =

{
0 if e ∈ P \ {i}
y otherwise.

Next, following the proof of [HL84, Theorem 1], one can show that

(A + D′)adj[i, j] = det
(
(A + D′) [[n]− j, [n]− i]

)
̸= 0.

From [Csa76, Ber84], we can compute (A + D′)adj[i, j] in time poly(n). It is a polynomial of

degree at most n − 1. Therefore, in poly(n) time, we can find a point a ∈ F such that the

evaluation of (A + D′)adj[i, j] at y = a is nonzero. Then, the diagonal matrix Ai,j we get by

substituting y = a in D′. Similarly, we find Bi,j for all i, j ∈ [n].

Now, we show how to find a minimal cut in an irreducible matrix efficiently.
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Lemma 4.3. Let A be an n× n irreducible matrix over a field F. Then, we can test whether A has a cut

in poly(n) time. Moreover, if there exists a cut in A, then a minimal cut of A can be computed using

poly(n) time.

Proof. Let 2[n] denote the set of all subsets of [n]. We first show that the functions g1, g2 : 2[n] →
Z, defined as

∀X ∈ 2[n], g1(X) := rank(A[X, X]) and g2(X) := rank(A[X, X]),

are submodular functions. For each i ∈ [n], let Vi be the subspace of Fn
spanned by the ith

row vector of A and the characteristic vector χi for the set {i}. Let f : 2[n] → Z be the function

defined as

∀X ∈ 2[n], f (X) = dim

(
∑
e∈X

Ve

)
.

It is not hard to verify that the function f is a submodular function. Observe that a subset

of row vectors of A[X, X] indexed by T ⊆ X are linearly independent if and only if the set

{χe | e ∈ X} ⊔ {A[e′, [n]] | e′ ∈ T} are linearly independent. Therefore, for all X ∈ 2[n],

f (X) = g1(X) + |X|.

Since f is a submodular function, g1 is a submodular function. Similarly, we can show that g2
is also a submodular function.

Since g1 and g2 are submodular functions, their sum g = g1 + g2 is also a submodular

function. For any set T = {t1, t2} ⊔ {t3, t4} with four distinct elements from [n], let gT be a

function defined on subsets of T such that

∀X ⊆ T, gT(X) = g(X ∪ {t1, t2}).

For any X ⊆ T and a, b ∈ T,

gT(X ∪ {a}) + gT(X ∪ {b}) = g(X ∪ {a, t1, t2}) + g(X ∪ {b, t1, t2})
≥ g(X ∪ {t1, t2}) + g(X ∪ {a, b, t1, t2}) ( submodularity of g)
= gT(X) + gT(X ∪ {a, b}).

From the above, gT is a submodular function. Note that if there exists a cut S in A with

{t1, t2} ⊆ S and {t3, t4} ⊆ S if and only if the minimum value of function gT is at most 2. One

can also observe that for any subset X ⊆ T, gT(X) can be computed in poly(n) time. Thus,

using the submodular minimization algorithm in [Sch03, Chapter 45], we can compute the

minimum the value of gT for any set T = {t1, t2} ⊔ {t3, t4} of four distinct elements from [n]
in poly(n) time. There are at most n4

such subsets T, and we can test whether A has a cut by

computing the minimum value of gT for all such possible subsets T. Thus, we can test whether

A has a cut in poly(n) time.

Now, we discuss how to find a minimal cut. For a subset T = {t1, t2} ⊔ {t3, t4} with four

distinct elements from [n], let g′T be the function on subsets of T such that

∀X ⊆ T, g′T(X) = (n + 1)gT(X) + |X|.

Since both gT and the cardinality function are submodular, g′T is also a submodular function.

Next observe that for X ⊆ T, the set X minimizes g′T if and only if for any S ⊆ [n] with t1, t2 ∈ S
but t3, t4 /∈ S the following holds:

1. g(X ∪ {t1, t2}) ≤ g(S).

2. if g(X ∪ {t1, t2}) = g(S), then |X ∪ {t1, t2}| ≤ |S|.
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Therefore, a minimizing set of g′T gives a minimal cut that contains both t1 and t2 but not t3
and t4, if such a cut exists. Now, using [Sch03, Theorem 45.1], we can compute minimizing sets

for the submodular functions g′T for all possible subsets T, and thus, we get a minimal cut in

poly(n) time if A has a cut.

Algorithm 2 Function for handling |S| = 2 case in function Cut-transpose of Algorithm 1

function Min-Cut-size-Two(A, B, I, S)

P← ∅, and Q← ∅
Let s ∈ S.

for t ∈ I \ S do
if A(S + t) DS

= B(S + t) then
P← P ∪ {t}.

else if A(S + t) DS

= B(S + t)T then
Q← Q ∪ {t}.

else
return “No”.

X ← P ∪ {s}.
if X is not a cut of B then

return “No”.

else
return X.

4.1 Proof of Correctness of Algorithm 1

In the algorithm, we first find an invertible diagonal matrix D such that A + D and B + D are

invertible and off-diagonal entries of (A + D)adj
and (B + D)adj

are non-zero. The existence

of such D is guaranteed by Claim 4.1. From Lemma 2.1, A PME

= B if and only if (A + D)adj PME

=
(B + D)adj

. Also, from Lemma 2.15, (A + D)adj
and (B + D)adj

are cut-transpose equivalent

with respect to a cut sequenceX if and only if A and B are cut-transpose equivalent with respect

to X . Hence, it is sufficient to show proof of the correctness of function Finding-Cut-Sequence

just for input matrices with non-zero off-diagonal entries. We do this in the following lemma.

Lemma 4.4. Let A and B be two matrices over F such that their rows and columns are indexed by

elements in I. Let the off-diagonal entries of A and B be nonzero. Then, given (A, B, I) as input to the

function Finding-Cut-Sequence in Algorithm 1, it does the following:

1. If A PME

= B, then it returns a sequence X of less than 2|I| many subsets of I such that A and B are

cut-transpose equivalent with respect to X .

2. Otherwise, it returns “No”.

Proof. We use induction to prove the above lemma.

Base case. The base case of our induction is either |I| ≤ 3, or A has no cut. From Lemma 2.8,

if |I| ≤ 3 or A has no cut, then A PME

= B if and only if either A DE

= B. Therefore, for the base case,

the function Finding-Cut-Sequence in Algorithm 1 returns “No” when A ̸PME

= B. Otherwise, it

returns an empty sequence.

Inductive step. In Line 12, the function Finding-Cut-Sequence (in Algorithm 1) computes a

minimal cut S in the matrix A. If |S| ≥ 3 and A PME

= B, then from Lemma 3.6, S is also a cut in B.
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Algorithm 1 Algorithm to test equal corresponding principal minors of two irreducible matrices

Input: Two n× n irreducible matrices A and B over F

Output: If A PME

= B, then returns a cut sequence X of subsets of [n] such that A, B are

cut-transpose equivalent with respect to X . Otherwise, returns “No”.

1: Using Claim 4.1, get D and A′ ← (A + D)adj
and B′ ← (B + D)adj

.

2: Finding-Cut-Sequence(A′, B′, [n])
3:

4: function Finding-Cut-Sequence(A, B, I)
5: if |I| ≤ 3, or, A has no cut then
6: if A is not diagonally equivalent to B then
7: return “No”.

8: else
9: return empty sequence.

10: else
11: B̃← B
12: Using Lemma 4.3, find a minimal cut S ⊆ I in A.

13: if |S| ≥ 3, and, S is not a cut of B then
14: return “No”.

15: else if |S| = 2, and, S is not a cut of B then
16: X ←Min-Cut-size-Two(A, B, S, I)
17: if X = “No” then
18: return “No”.

19: B̃← ct(B, X)

20: Let s ∈ S.

21: X ′ ←Finding-Cut-Sequence(A(S + s), B̃(S + s), S + s).
22: if X ′ = “No” then
23: return “No”.

24: Let X ′ = (X′1, X′2, . . . , X′k).
25: A0 ← A.

26: for i = 1 to k do
27: if s ∈ X′i then
28: Xi ← X′i ∪ S
29: else
30: Xi ← X′i
31: Ai ← ct(Ai−1, Xi).

32: if Ak
DE

= B̃ then
33: X ← (X1, X2, . . . , Xk)

34: else if ct(Ak, S) DE

= B̃ then
35: X ← (X1, X2, . . . , Xk, S)
36: else
37: return “No”.

38: if |S| = 2, and, S is not a cut of B then
39: X ← (X , X).

40: return X .
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This implies that if S is not a cut in B, then A ̸PME

= B. Therefore, when |S| ≥ 3 and S is not a cut

of B, the function Finding-Cut-Sequence returns “No”.

Now, consider the case when the size of the minimal cut S is two, but it is not a cut in B.

Then, Algorithm 1 calls the function Min-cut-size-Two of Algorithm 2. It returns “No” when

either a minor corresponding to set S + t where t ∈ I \ S is not same for A and B or when

X, defined in Line 11, is not a cut of B. If a minor is not the same, then obviously A ̸PME

= B.

Otherwise from Lemma 3.5, A ̸PME

= B when X is not a cut of B. If A PME

= B, then from Lemma 3.5

X is a cut of B such that S is a cut of ct(B, X).
Note that B̃ is initially assigned to B at Line 11 of Algorithm 1. If the function Min-cut-size-

Two in Algorithm 2 returns a cut X, then B̃ is reassigned to ct(B, X) at Line 19 of Algorithm 1.

Thus, at the end of Line 19 of Algorithm 1, we have two matrices A and B̃ such that S is a

common cut of them, and also S is a minimal cut in A.

Let s ∈ S, M = A[S + s], and N = B̃[S + s]. Since the cardinality of S is at least two, the

size of S + s is less than |I|. Therefore, from the induction hypothesis, the function Finding-

Cut-Sequence on input (M, N, S + s) returns X ′ as follows:

1. If M PME

= N, thenX ′ = (X′1, X′2, . . . , X′k) such that k < 2|S + s|, X′i ⊆ S + s, andX ′ produces

a sequence of matrices (M = M0, M1, M2, . . . , Mk) satisfying the following:

∀i ∈ [k], Mi = ct(Mi−1, X′i) where X′i is a cut in Mi−1, and Mk
DE

= N. (15)

2. Otherwise, X ′ =“No”.

If M ̸PME

= N, then A ̸PME

= B̃. Applying Lemma 2.12, A ̸PME

= B̃ implies that A ̸PME

= B. Therefore, when

X ′ =“No”, the function Finding-Cut-Sequence also returns “No”.

Now assume that M PME

= N, and X ′ = (X′1, X′2, . . . , X′k) satisfies Eq. (15). Let (X1, X2, . . . , Xk)
be the sequence of subsets of I defined by the ‘for loop’ in Line 26 of Algorithm 1. From

this sequence of subsets, the function Finding-Cut-Sequence defines a sequence of matrices

(A = A0, A1, A2, . . . , Ak) such that Ai = ct(Ai−1, Xi) for all i ∈ [k]. From Claim 3.8, we

get that S is a minimal cut of Ak and Ak[S + s] DE

= B̃[S + s]. Suppose Ak[S + s] DS

= B̃[S + s],
then from Lemma 3.9, we have either Ak

DS

= B̃ or ct(Ak, S) DS

= B̃ when Ak
PME

= B̃. Suppose

Ak[S + s] DS

= B̃[S + s]T or in other words Ak[S + s] DS

= B̃T[S + s]. Then, from Lemma 3.9, we have

either Ak
DS

= B̃T
or ct(Ak, S) DS

= B̃T
when Ak

PME

= B̃T PME

= B.

Hence, if Ak ̸
DE

= B̃ and ct(Ak, S) ̸DE

= B̃, it follows that A ̸PME

= B̃, in which case, the func-

tion Finding-Cut-Sequence returns “No”. When Ak
DE

= B̃, the function Finding-Cut-Sequence

defines X as (X1, X2, . . . , Xk), and when ct(Ak, S) DE

= B̃, it defines X as (X1, X2, . . . , Xk, S).
Therefore, at the end of Line 26 in Algorithm 1, we obtain a sequence X such that A and B are

cut-transpose equivalent with respect to X .

Note that if S is a minimal cut in A of size 2 and it is not a cut in B, then B̃ is defined as

ct(B, X). This implies that B = ct(B̃, X). Therefore, in Line 39 of Algorithm 1, X is updated by

appending X at its end. Thus, we finally have a sequence X of subsets of I such that A and B
are cut-transpose equivalent with respect to X .

4.2 Time complexity of Algorithm 1

Algorithm 1 first computes a diagonal matrix D such that both A+D and B+D are nonsingular

and all the entries of A′ = (A + D)adj
and B′ = (B + D)adj

are nonzero. Claim 4.1 ensures that

we can compute such a diagonal matrix D in poly(n) time. Then, it calls the function Finding-

Cut-Sequence. The function makes at most one recursive call to itself such that the size of the

input matrices reduces by at least one. The matrix operations like finding the cut-transpose
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of a matrix with respect to a given cut, finding a minimal cut (Lemma 4.3), testing diagonal

equivalence (Claim 2.7), and others can be performed in polynomial time in terms of the matrix

size. Hence, the overall runtime of the algorithm is polynomial.

5 PIT for Sum of two DET1

In this section, we show Theorem 1.3. Given two sequences of n× n matrices (A0, A1, . . . , Am)
and (B0, B1, . . . , Bm) over a field F such that the rank of Ai and Bi is at most 1 for 1 ≤ i ≤ n,

the goal is to decide whether two polynomials P1 = det(A0 + A1y1 + . . . + Amym) and P2 =
det(B0 + B1y1 + . . . + Bmym) are the same in poly(m, n) time. First, we consider the case when

A0 and B0 are the zero matrix. Then, we reduce the general case where there are no constraints

on A0 and B0 to this case. Then, we give a polynomial time reduction from this problem to

the problem of equivalence testing of principal minors of two m × m matrices. For integers

p and q, let 0p and 0p,q denote the p× p and p× q matrix, respectively, with all zeros.

5.1 A0 = B0 = 0n.

Let Aj = u1,j · vT
1,j and Bj = u2,j · vT

2,j for each j ∈ [m] where u1,j, v1,j, u2,j, v2,j ∈ Fn
. Let Ui, Vi

be n× m matrices such that their jth column are ui,j and vi,j, respectively, for i ∈ {1, 2} and

j ∈ [m]. Let Y be an m× m diagonal matrix with indeterminate yi as the ith diagonal entry.

Then,

A1y1 + . . . + Amym = U1YVT
1 and B1y1 + . . . + Bmym = U2YVT

2 . (16)

For a subset T of [m], let yT = ∏e∈T ye, Ui,T = Ui[[n], T] and Vi,T = Vi[[n], T] for i ∈ {1, 2}.
Using the Cauchy-Binet formula for multiplying two rectangular matrices,

det(UiYVT
i ) = ∑

T⊆[m],|T|=n
(det(Ui,T)det(Vi,T)yT) for i ∈ {1, 2}.

Hence, by comparing coefficients of monomials of P1 and P2, we get

P1 = P2 ⇐⇒ det(U1,T)det(V1,T) = det(U2,T)det(V2,T) ∀T ⊆ [m] with |T| = n. (17)

Now, we discuss how to test the latter part mentioned above. First, we find a set T of size [n]
such that det(U1,T)det(V1,T) is non-zero using a matroid intersection algorithm for matroids

represented by U1 and V1 in poly(m, n) time. If such T doesn’t exist, then P1 = 0. Similarly,

we can check whether P2 is zero and decide whether P1 = P2. Suppose such a set T exists and

without loss of generality, let T = [n]. If det(U1,[n])det(V1,[n]) ̸= det(U2,[n])det(V2,[n]), then

P1 ̸= P2 from Eq. (17).

Suppose det(U1,[n])det(V1,[n]) = det(U2,[n])det(V2,[n]). Now, we have to check this for other

sets T of size n. Let U′i = U−1
i,[n] ·Ui and V ′i = V−1

i,[n] · Vi for i = 1, 2. Since Ui = Ui,[n] ·U′i , Vi =

Vi,[n] ·V ′i for i = 1, 2 and det(U1,[n])det(V1,[n]) = det(U2,[n])det(V2,[n]), for any set T of size n,

det(U1,T)det(V1,T) = det(U2,T)det(V2,T) ⇐⇒ det(U′1,T)det(V ′1,T) = det(U′2,T)det(V ′2,T)
(18)

Note that U′i,[n] = V ′i,[n] = In. For i = 1, 2, let Ûi and V̂i be the n× (m− n) matrices defined

as U′i [[n], [m] \ [n]] and V ′i [[n], [m] \ [n]], respectively. For i ∈ {1, 2} and a set T = T′1 ⊔ T′2 of

size n with T′1 ⊆ [n], T′2 ⊆ [m]− [n] such that T′2 = {n + e | e ∈ T2} where T2 ⊆ [m− n],

det(U′i,T) = σ(T)det(U′i [[n] \ T′1, T′2]) and det(V ′i,T) = σ(T)det(V ′i [[n] \ T′1, T′2]) (19)
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where σ : ([m]
n ) −→ {1,−1} is some sign function on n sized subsets of [m]. Since U′i [[n] \T′1, T′2] =

Ûi[T1, T2] and V ′i [[n] \ T′1, T′2] = V̂i[T1, T2] where T1 = [n] \ T′1, using Eqs. (17) to (19) we get

P1 = P2 ⇐⇒ det(Û1[T1, T2])det(V̂1[T1, T2]) = det(Û2[T1, T2])det(V̂2[T1, T2]) (20)

for each T1 ⊆ [n], T2 ⊆ [m− n] with |T1| = |T2|

Let A and B be the m×m matrices defined as follows:

A =

 0m−n V̂T
1

−Û1 0n

 and B =

 0m−n V̂T
2

−Û2 0n

 .

Let us consider the principal minors of A and B. If a set T is a subset of [m− n] or [m]− [m− n],
then the corresponding principal minors of both A and B are zero. Consider a set T = T′1 ⊔ T2
such that T2 ⊆ [m − n] and T′1 ⊆ [m] − [m − n] such that T′1 = {m − n + e | e ∈ T1} where

T1 ⊆ [n]. Then,

A[T] =

 0|T2| V̂1[T1, T2]T

−Û1[T1, T2] 0|T1|

 and B[T] =

 0|T2| V̂2[T1, T2]T

−Û2[T1, T2] 0|T1|

 .

Note that if |T1| ̸= |T2|, then both det(A[T]) and det(B[T]) are zero. If |T1| = |T2|, then

det(A[T]) = det(Û1[T1, T2])det(V̂1[T1, T2]); det(B[T]) = det(Û2[T1, T2])det(V̂2[T1, T2]). (21)

From above discussion and Eq. (21),

A PME

= B ⇐⇒ det(Û1[T1, T2])det(V̂1[T1, T2]) = det(Û2[T1, T2])det(V̂2[T1, T2]) (22)

∀T1 ⊆ [n], T2 ⊆ [m− n] with |T1| = |T2|.

From Eq. 20 and Eq. 22, P1 = P2 ⇐⇒ A PME

= B. Note that A and B can be computed

in poly(m, n) time. From Theorem 1.1, we can check whether A PME

= B in poly(m) time. This

completes the proof of Theorem 1.3 when A0 and B0 are the zero matrix.

5.2 No constraint on A0 and B0

From Eq. (16), P1 = det(A0 + U1YVT
1 ) and P2 = det(B0 + U2YV2)T

. From [GT17, Lemma 4.3]

P1 = det(C1) and P2 = det(C2) such that

C1 =

 Im Y 0m,n
0m Im VT

1
U1 0n,m A0

 and C2 =

 Im Y 0m,n
0m Im VT

2
U2 0n,m A0

 .

If we compute Pi = det(Ci) using the Generalized Laplace Theorem by fixing the first m rows,

we get that Pi is multilinear and the coefficient of yT for a subset T of [m] is

σ(T)det(Ci[[2m + n] \ [m], ϕ(T)])

where σ is some sign function depending on set T and ϕ : 2[m] −→ ([2m+n]
m+n ) such that ϕ(T) =

T ∪ {e + m | e /∈ T} ∪ ([2m + n] \ [2m]). Hence,

P1 = P2 ⇐⇒ det(C1[[m], ϕ(T)]) = det(C2[[m], ϕ(T)]) ∀T ⊆ [m]. (23)
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Let V be the (m + n)× (2m + n) matrix

(
Im Im 0m,n

0n,m 0n,m In

)
. For any set T′ ⊂ [2m + n] of size

m + n which is not in image of ϕ, det(V[[m + n], T′]) = 0 and if T′ belongs to image of map ϕ,
then det(V[[m + n], T′]) = 1. Hence,

det(C1[[m], ϕ(T)]) = det(C2[[m], ϕ(T)]) ∀T ⊆ [m] ⇐⇒

det(C1[[m], T′])det(VT′) = det(C2[[m], T′])det(VT′) ∀T′ ∈
(
[2m + n]

m + n

)
. (24)

Note that the right-hand side of the above equation is similar to Eq. (17). Hence, using similar

arguments from the previous section, checking the later part of Eq. 24 can be reduced to

checking whether principal minors of two (2m + n)× (2m + n) matrices (that can be computed

in poly(n) time) are the same. Hence, from Eq. (23), checking whether P1 = P2 reduces to

checking whether principal minors of two (2m + n)× (2m + n) matrices are the same. This

completes the proof of Theorem 1.3.
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A Missing Proofs from Section 2

Lemma 2.12 (restated). Let A be an n× n irreducible matrix over a field F with a cut X ⊂ [n]. Then,

A PME

= ct(A, X).

Proof. Let q and u be the first non-zero row of A[X, X] and the first non-zero column of A[X, X],
respectively. Without loss of generality, we can assume that the cut X is a prefix of the index

set and hence A can be written as follows:

A =

X X( )X M p · qT

X u · vT N
,

where p, v ∈ F|X| and q, u ∈ F|X|. Then, from Definition 2.10,

ct(A, X) =

X X( )X M p · uT

X q · vT NT
.

Let S ⊆ [n]. Observe that if S is a subset of X or X, then det(A(S)) = det(ct(A, X)(S)). Now

consider that S = S1 ⊔ S2 such that S1 and S2 are nonempty subsets of X and X, respectively.

Next, we prove that det(A(S)) = det(ct(A, X)(S)).
Assume that the coordinates p, v are indexed by X and the coordinates of q, u are indexed by

X. By pS1 , qS2 , uS1 and vS2 , we denote the projection of the respective vectors on the respective

coordinates. Let A′ = A[S] and B′ = ct(A, X)[S]. Then,

A′ =

 M[S1] pS1 · qT
S2

uS2 · vT
S1

N[S2]

 , and B′ =

 M[S1] pS1 · uT
S2

qS2 · vT
S1

N[S2]T

 .

If either of pS1 , qS2 , uS2 , or vS1 is the zero vector, then

det(A′) = det(B′) = det(M[S1])det(N[S2]).

Next, assume that all of them are nonzero.

Let ℓ = |S|, k = |S1|, and K = [k]. Suppose that the rows and columns of A′ and B′ are

indexed by [ℓ], and the rows and columns of M[S1] are indexed by K. For each i ∈ K, let Mi
denote the k× k matrix obtained by removing ith column of M[S1] and appending pS1 as the

kth column. For j ∈ K, let Nj denote the (l − k) × (l − k) matrix obtained by removing jth
column of N[S2] and adding uS2 as the first column. Using the Generalized Laplace Theorem

(see [Ahm23, Theorem 3.1]), det(A′) can be written as follows.

det(A′) = ∑
T⊆[ℓ], |T|=k

(−1)∑ K+∑ T det(A′[K, T])det(A′[K, T]).

Note that for all T ⊂ [ℓ] with |T ∩ K| ≥ 2, the submatrix A′[K, T]) is not full rank since

rank(A′[K, K]) ≤ 1. Therefore, for all such T ⊆ [ℓ] with |T| = k, det(A′[K, T]) = 0. This

implies that

det(A′) = det(M[S1])det(N[S2]) + ∑
i∈K,j∈K

(−1)j−i det(A′[K, K− i + j])det(A′[K, K + i− j]).
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Observe that for all i ∈ K and j ∈ K,

det(A′[K, K− i + j]) = qS2 [j− k]det(Mi), and det(A[K, K + i− j]) = vS1 [i]det(Nj).

Therefore,

det(A′) = det(M[S1])det(N[S2]) + ∑
i∈K,j∈K

(−1)j−ivS1 [i]qS2 [j− k]det(Mi)det(Nj)

= det(M[S1])det(N[S2]) +

(
∑
i∈K

(−1)ivS1 [i]det(Mi)

)∑
j∈K

(−1)jqS2 [j− k]det(Nj)

 .

Similarly, using the Generalized Laplace Theorem (see [Ahm23, Theorem 3.1]), we compute

det(B′). For each j ∈ K, let Ñj denote the matrix obtained by removing jth row of N[S2] and

adding qS2 as the first row. Then,

det(B′) = det(M[S1])det(N[S2]) +

(
∑
i∈K

(−1)ivS1 [i]det(Mi)

)∑
j∈K

(−1)juS2 [j− k]det(Ñj)

 .

Let P be the following (|S2|+ 1)× (|S2|+ 1) matrix

P =

(
0 qT

S2

uS2 N[S2]

)
.

Then,

(−1)k det(P) = ∑
j∈K

(−1)jqS2 [j− k]det(Nj) = ∑
j∈K

(−1)juS2 [j− k]det(Ñj).

The above equalities follow from the expression for computing the determinant of P by fixing

the first row and the first column of P, respectively. Hence, det(A[S]) = det(ct(A, X)[S]).

Notations. Suppose that A is an n× n irreducible matrix over a field F with a cut X ⊂ [n].
Let q and u be the first non-zero row of A[X, X] and the first non-zero column of A[X, X],
respectively. Then, the matrix A has the following structure:

A =

X X( )X M p · qT

X u · vT N
,

where p, v ∈ F|X| and q, u ∈ F|X|. Without loss of generality, assume that X = [ℓ]. Then,

X = [n] \ [ℓ]. For each i ∈ X, let

1. MC
i denote the ℓ× ℓ matrix obtained by removing ith column of M and appending p as

the ℓth column.

2. MR
i denote the ℓ× ℓ matrix obtained by removing ith row of M and appending vT

as the

ℓth row.

For each j ∈ X, let X j denote the set X − j. Let pA ∈ F|X| and qA ∈ F|X| be defined as follows:

for all i ∈ X and j ∈ X,

pA[i] = (−1)ℓ+i+1 det(MC
i ) and qA[j− ℓ] = ∑

k∈X

(−1)k+jq[k− ℓ] · det(N[X j, Xk]). (25)
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Similarly, let vA ∈ F|X| and uA ∈ F|X| be defined as follows: for all i ∈ X and j ∈ X,

vA[i] = (−1)ℓ+i+1 det(MR
i ) and uA[j− ℓ] = ∑

k∈X

(−1)k+ju[k− ℓ] · det(N[Xk, X j]). (26)

Based on the above notations, we have the following claim.

Claim A.1. Considering the notations defined above,

Aadj[X, X] = pA · qT
A and Aadj[X, X] = uA · vT

A,

where pA, qA, uA and vA are defined as Eq. (25) and Eq. (26).

Proof. The proof of the above claim will closely follow the proof of [Ahm23, Lemma 4.5]. For

all i ∈ [n], let (n)i denote the set [n] \ {i}. Then, for all i ∈ X and j ∈ X,

Aadj[i, j] = (−1)i+j · det
(

A[(n)j, (n)i]
)

.

For any T ⊆ (n)i, let mT denote the number of elements in T that are greater than i. For

example, if T contains exactly one element from X and |T| = ℓ, then mT = ℓ− i + 1. Now,

using the Generalized Laplace Theorem (see [Ahm23, Theorem 3.1]), for all i ∈ X and j ∈ X,

det
(

A[(n)j, (n)i]
)
= ∑

T⊆(n)i , |T|=ℓ

(−1)mT+∑ X+∑ T det(A[X, T]) · det(A[X j, Ti]).

Since the rank of A[X, X] is at most one, for all ℓ-size subsets T of [n]i with |T ∩ X| ≥ 2, the

value of det(A[X, T]) is zero. Thus, from the above equation,

det
(

A[(n)j, (n)i]
)
= (−1)ℓ−i+1 · ∑

k∈X

(−1)k−i det(MC
i ) · q[k− ℓ] · det(A[X j, Xk])

= (−1)ℓ+1 det(MC
i ) · ∑

k∈X

(−1)kq[k− ℓ] · det(A[X j, Xk])

This implies that, for all i ∈ X and j ∈ X,

Aadj[i, j] = (−1)ℓ+i+1 det(MC
i ) · ∑

k∈X

(−1)k+jq[k− ℓ] · det(A[X j, Xk])

= pA[i] · qA[j− ℓ].

Similarly, we can show that for all i ∈ X and j ∈ X,

Aadj[j, i] = uA[j− ℓ] · vA[i].

This completes the proof of the above claim.

Lemma 2.6 (restated). Let A be an n× n matrix over a field F. Let D be an n× n diagonal matrix

over F such that A + D is non-singular. Then, A and (A + D)adj
have the same set of cuts.

Proof. Observe that A and A + D have the same set of cuts. Next, we show that A + D and

(A + D)adj
have the same set of cuts, implying that A and (A + D)adj

have the same set of

cuts. From Claim A.1, any cut in A + D is also a cut in (A + D)adj
. For the converse direction,

assume that X is a cut in (A + D)adj
. Therefore, X is also a cut in (A + D)−1

since A + D is

non-singular,

((A + D)adj)adj = det(A + D)n−2(A + D).

Thus, again using Claim A.1, X is also a cut in A + D.
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Lemma 2.13 (restated). Let A be an n× n irreducible matrix over a field F. Then, a cut X ⊆ [n] of

A is also a cut of Aadj
and

ct(A, X)adj DS

= ct(Aadj, X).

Proof. Without loss of generality, assume that X = [ℓ]. Then, X = [n] \ [ℓ]. Let q and u be the

first non-zero row of A[X, X] and the first non-zero column of A[X, X], respectively. Then, A
can be written as follows.

A =

X X( )X M p · qT

X u · vT N
,

where p, v ∈ F|X| and q, u ∈ F|X|. From Definition 2.10,

Ã = ct(A, X) =

X X( )X M p · uT

X q · vT NT
.

Repeating some notations from the above, for each i ∈ X, let

1. MC
i denote the ℓ× ℓ matrix obtained by removing ith column of M and appending p as

the ℓth column.

2. MR
i denote the ℓ× ℓ matrix obtained by removing ith row of M and appending vT

as the

ℓth row.

For each j ∈ X, let X j denote the set X− j. Then, using Claim A.1,

Aadj =

X X X Aadj[X] pA · qT
A

X uA · vT
A Aadj[X]

,

where pA ∈ F|X| and qA ∈ F|X| are defined as Eq. (25) and vA ∈ F|X| and uA ∈ F|X| are defined

as Eq. (26). Let A′ be the following matrix.

A′ =

X X X Aadj[X] pA · uT
A

X qA · vT
A Aadj[X]T

.

From Remark 2.11, ct(Aadj, X)
DS

= A′ On the other hand, again applying Claim A.1,

Ãadj =

X X X Ãadj[X] p̃ · ũT

X q̃ · ṽT Ãadj[X]

,
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where like Eq. (25) and Eq. (26), p̃, ṽ ∈ F|X| and q̃, ũ ∈ F|X| are defined as follows: For i ∈ X
and j ∈ X,

p̃[i] = (−1)ℓ+i+1 det(MC
i ) and ũ[j− ℓ] = ∑

k∈X

(−1)k+ju[k− ℓ] · det(NT[X j, Xk])

ṽ[i] = (−1)ℓ+i+1 det(MR
i ) and q̃[j− ℓ] = ∑

k∈X

(−1)k+jq[k− ℓ] · det(NT[Xk, X j]).

Now we show that A′ = Ãadj
, which in turn implies ct(Aadj, X)

DS

= Ãadj
. For all i ∈ [n], let (n)i

denote the set [n] \ {i}. Next, we divide our proof into three cases.

1. Assume that i, j ∈ X. Then,

A′[i, j] = Aadj[i, j] = det(A[(n)j, (n)i]).

On the other hand,

Ãadj[i, j] = det(Ã[(n)j, (n)i]).

If |X| = 2, then Ã[(n)j, (n)i] = A[(n)j, (n)i]
T
. Otherwise, X is also a cut of A[(n)j, (n)i]

and

Ã[(n)j, (n)i]
DS

= ct(A[(n)j, (n)i], X)T.

Therefore, applying Lemma 2.12, det(Ã[(n)j, (n)i]) = det(A[(n)j, (n)i]) and hence, A′[i, j] =
Ãadj[i, j] for all i, j ∈ X.

2. Assume that i, j ∈ X. Then,

A′[i, j] = Aadj[j, i] = det(A[(n)i, (n)j]).

On the other hand,

Ãadj[i, j] = det(Ã[(n)j, (n)i]).

If |X| = 2, Ã[(n)j, (n)i] = A[(n)i, (n)j]. Otherwise, X is also a cut of A[(n)i, (n)j] and

Ã[(n)j, (n)i]
DS

= ct(A[(n)i, (n)j], X).

Therefore, again applying Lemma 2.12, A′[i, j] = Ãadj[i, j] for all i, j ∈ X.

3. Assume that i ∈ X and j ∈ X. Then,

A′[i, j] = pA[i] · uA[j− ℓ]

= (−1)ℓ+i+1 det(MC
i ) · ∑

k∈X

(−1)k+ju[k− ℓ] · det(N[Xk, X j])

= (−1)ℓ+i+1 det(MC
i ) · ∑

k∈X

(−1)k+ju[k− ℓ] · det(NT[X j, Xk])

= p̃[i] · ũ[j] = Ãadj[i, j].

Similarly, we can show that A′[j, i] = Ãadj[j, i].

This completes the proof of our lemma.
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B Proof of Lemma 3.1

First, we present the following lemma, which provides an alternative characterization for

principal minor equivalence testing and will be used in our proof. For an n× n matrix A, let

GA be a directed graph on n vertices such that there exists a directed edge (i, j) if and only if

A[i, j] ̸= 0. For a directed cycle C of GA, let wA(C) denote the weight of the cycle defined as

∏(i,j)∈C A[i, j].

Lemma B.1. Let A and B be two n× n matrices. Then A PME

= B if and only if for each subset S ⊆ [n] ,

the sum of weights of directed Hamiltonian cycles is the same for subgraphs GA[S] and GB[S].

Proof. We show this by induction on the size of subsets. The base case, when the size of the

subset is one, is trivial. Suppose the statement is true for subsets of size k. Let S be a subset of

size k + 1 and det(A[∅]) = det(B[∅]) = 1 and CA and CB denote the set of Hamiltonian cycles

of GA[S] and GB[S], respectively. Then,

det(A[S]) = ∑
T ̸=∅,T⊆S

±(det(A[S \ T])∏
i∈T

A[i, i])± ∑
C∈CA

wA(C). (27)

det(B[S]) = ∑
T ̸=∅,T⊆S

±(det(B[S \ T])∏
i∈T

B[i, i])± ∑
C′∈CB

wB(C′). (28)

The backward direction follows directly from Eqs. (27) and (28) as all the principal minors of A
and B are the same, and the signs of corresponding summands are the same in Eqs. (27) and (28).

Now, we show the forward direction. For any non-empty subset T, if we consider the sub-

matrices A[S \ T] and B[S \ T], for each subset T′ ⊆ S \ T the sum of the weights of the directed

Hamiltonian cycles in GA[T′] and GB[T′] are same. Hence, det(A[S \ T]) = det(B[S \ T]) by

induction hypothesis. Also, the signs are the same in Eq. (27) and Eq. (28) as it just depends on

the size of the subsets T. This, along with the fact that the sum of weights of the Hamiltonian

cycle in GA[S] and GB[S] are the same, implies det(A[S]) = det(B[S]).

Lemma 3.1 (restated). Let A be a 4× 4 matrix over F with all off-diagonal entries are nonzero. Let

B be another 4× 4 matrix over F such that A PME

= B. Then, one of the following two holds:

1. A DE

= B.

2. There exists a common cut in A and B. Furthermore, for any common cut X of A and B,

ct(A, X)
DE

= B.

Proof. When A does not have any cut, then from Lemma 2.8 A DS

= B or A DS

= BT
. Suppose A

has a cut. Then, B must have some cut; otherwise, since A PME

= B, Lemma 2.8 would imply

that A has no cut, which is a contradiction. First, we show that B must have a cut that is

common to A using contradiction. Suppose this is not true. Without loss of generality, assume

that A has cut {1, 2} and B has cut {1, 3}. Since A PME

= B, A′ = D1AD−1
1

PME

= D2BD−1
2 = B′ for

any non-singular diagonal matrices D1 and D2. Since off-diagonal entries are non-zero, we

can choose D1 such that A′[1, 3] = A′[1, 4] = A′[2, 3] = 1. Since A and A′ has same cuts,

rank(A′[{1, 2}, {3, 4}]) = 1 and hence A′[2, 4] = 1. If the above claim is true for A′ and B then

it is also true for A and B. Hence, without loss of generality, we can assume that each entry of

A[{1, 2}, {3, 4}] is one. Similarly, we can assume that each entry of B[{1, 3}, {2, 4}] is one. Let

A be the following matrix with non-zero off-diagonal entries.

A =


∗ a 1 1
b ∗ 1 1
c dc ∗ e
f d f g ∗
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Since A PME

= B, we can represent B as follows by making its size two principal minors the same

as of A.

B =


∗ 1 h 1
ab ∗ dc i
c
h 1 ∗ 1
f d f

i eg ∗


Since rank(B[{2, 4}, {1, 3}]) = 1, abeg = dc f . After substituting g with

dc f
abe ,

A =


∗ a 1 1
b ∗ 1 1
c dc ∗ e
f d f dc f

abe ∗

 and B =


∗ 1 h 1
ab ∗ dc i
c
h 1 ∗ 1
f d f

i
dc f
ab ∗

 .

Since A PME

= B, from Lemma B.1, we get the following equations by equating the sum of weights

of Hamiltonian cycles in GA[S] and GB[S] such that |S| = 3.

ac + bdc =
dc2

h
+ abh =⇒

(
a− dc

h

)
(c− bh) = 0 [S = {1, 2, 3}] (29)

a f + bd f = i f +
abd f

i
=⇒ f (a− i)

(
1− bd

i

)
= 0 [S = {1, 2, 4}] (30)

e f +
dc2 f
abe

= h f +
dc2 f
abh

=⇒ f (e− h)
(

1− dc2

abeh

)
= 0 [S = {1, 3, 4}] (31)

ed f +
d2c2 f
abe

=
d2c f

i
+

dci f
ab

=⇒ f d
(

e− cd
i

)(
1− ci

abe

)
= 0 [S = {2, 3, 4}]. (32)

Since the off-diagonal entries are non-zero, in each equation, at least one of the last two factors

must be zero. This gives 16 different possibilities because there are four equations. Now, we

show that each of these possibilities would imply a contradiction.

Note that

(
a− dc

h

)
= 0 and (e − h) = 0 together implies ae = dc which in turn implies

{1, 3} is a cut of A which is a contradiction. Hence,

(
a− dc

h

)
and e− h can’t be zero together.

Similarly,

(
a− dc

h

)
and a− i can’t be zero together as it implies cd = hi. This implies {1, 2}

is a cut of B, which contradicts the condition of no common cut. Hence, if

(
a− dc

h

)
= 0 then(

1− bd
i

)
and

(
1− dc2

abeh

)
must be zero to make Eqs. (30) and (31) zero.

(
a− dc

h

)
= 0 and(

1− bd
i

)
= 0 imply abh = ci which in turn implies {1, 4} is a cut of B. Similarly,

(
a− dc

h

)
= 0

and

(
1− dc2

abeh

)
= 0 imply c = be. This implies {1, 4} is also a cut of A, which contradicts the no

common cut condition. Note that

(
a− dc

h

)
= 0 always led to a contradiction. Hence, it must

be that (c− bh) = 0 so that Eq. (29) is satisfied.

Now, we show that (c− bh) = 0 would also always lead to a contradiction. If

(
1− bd

i

)
is

also zero, then cd = hi which implies {1, 2} is a cut of B which is a contradiction. Similarly, if(
1− dc2

abeh

)
= 0 then cd = ae which implies {1, 3} is a cut of A which contradicts the no common

cut condition. Hence, to satisfy Eqs. (30) and (31), it must be that (e− h) and (a− i) is equal to

zero along with (c− bh). However, then {1, 4} becomes a cut of both A and B. Hence, (c− bh)
also can’t be zero. This contradicts Eq. (29). Hence, if A has a cut and A PME

= B, then A and B
must have a common cut.

Without loss of generality, let that common cut be {1, 2}. Using earlier arguments, we can

represent A and B as follows by making all entries of A[{1, 2}, {3, 4}] and B[{1, 2}, {3, 4}] one
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and equating size two principal minors.

A =


∗ a 1 1
b ∗ 1 1
c dc ∗ e
f d f g ∗

 and B =


∗ h 1 1
ab
h ∗ 1 1
c dc ∗ i
f d f ge

i ∗

 .

Since A PME

= B, from Lemma B.1, we get the following equations by equating the sum of weights

of Hamiltonian cycles in GA[S] and GB[S] for S = {1, 2, 3} and S = {1, 3, 4}.

ac + bdc = hc +
abdc

h
=⇒ c(a− h)

(
1− bd

h

)
= 0 [S = {1, 2, 3}] (33)

e f + cg = i f +
cge

i
=⇒ (e− i)

(
f − cg

i

)
= 0 [S = {1, 3, 4}] (34)

Eqs. (33) and (34) together implies the following four possible cases. (a− h) = 0 and (e− i) = 0
implies A = B. Hence, A DS

= B.

If

(
1− bd

h

)
= 0 and

(
f − cg

i

)
= 0, then

B =


∗ bd 1 1
a
d ∗ 1 1
c dc ∗ cg

f

f d f f e
c ∗

 =


1 0 0 0
0 1

d 0 0
0 0 c 0
0 0 0 f



∗ b c f
a ∗ dc d f
1 1 ∗ g
1 1 e ∗




1 0 0 0
0 d 0 0
0 0 1

c 0
0 0 0 1

f

 = DATD−1.

Hence, in this case, we get A DS

= BT
.

If (a− h) = 0 and

(
f − cg

i

)
= 0, then

B =


∗ a 1 1
b ∗ 1 1
c dc ∗ cg

f

f d f f e
c ∗

 =


1 0 0 0
0 1 0 0
0 0 c 0
0 0 0 f



∗ a c f
b ∗ c f
1 d ∗ g
1 d e ∗




1 0 0 0
0 1 0 0
0 0 1

c 0
0 0 0 1

f

 .

Here, the matrix in the middle on the right hand side is ct(A, {1, 2}). Hence, in this case,

B DS

= ct(A, S).
Finally, the last case where

(
1− bd

h

)
and e− i are zero. Then,

BT =


∗ a

d c f
bd ∗ dc d f
1 1 ∗ g
1 1 e ∗

 =


1 0 0 0
0 d 0 0
0 0 1 0
0 0 0 1



∗ a c f
b ∗ c f
1 d ∗ g
1 d e ∗




1 0 0 0
0 1

d 0 0
0 0 1 0
0 0 0 1

 .

Like the previous case, the matrix in the middle is ct(A, {1, 2}). Hence, in this case, ct(A, S) DS

=
BT

. This completes the proof of Lemma 3.1.
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