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Abstract

We establish strong inapproximability for finding the sparsest nonzero vector in a real sub-
space (where sparsity refers to the number of nonzero entries). Formally we show that it is
NP-Hard (under randomized reductions) to approximate the sparsest vector in a subspace
within any constant factor. By simple tensoring the inapproximability factor can be made al-
most polynomial assuming NP cannot be solved in randomized quasipolynomial time. We
recover as a corollary state of the art inapproximability factors for the shortest vector problem
(SVP), a foundational problem in lattice based cryptography. Our proof is surprisingly simple,
bypassing even the PCP theorem.

We are inspired by the homogenization framework developed over the course of several
papers studying the inapproximability of minimum distance problems in integer lattices and
error correcting codes. Our proof uses a combination of (a) product testing via symmetric tensor
codes and (b) encoding points of the hypercube as cosets of a random code in higher dimensional space
in order to embed an instance of non-homogeneous quadratic equations into the sparsest vec-
tor problem. (a) is inspired by Austrin and Khot’s simplified proof of hardness of minimum
distance of a code over finite fields, and (b) is inspired by Micciancio’s partial derandomization
of the hardness of SVP.

Our reduction involves the challenge of performing (a) over the reals. We prove that sym-
metric tensoring of the kernel of a +1/-1 random matrix furnishes an adequate product test
(while still allowing (b)). The proof exposes a connection to Littlewood-Offord theory and
relies on a powerful anticoncentration result of Rudelson and Vershynin.

Our main motivation in this work is the development of inapproximability techniques for
problems over the reals. Analytic variants of sparsest vector have connections to small set
expansion, quantum separability and polynomial maximization over convex sets, all of which
cause similar barriers to inapproximability. The approach we develop could lead to progress
on the hardness of some of these problems.
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1 Introduction

Finding the sparsest nonzero vector in a real subspace is a classical and well studied compu-
tational task. It has many connections to machine learning and optimization, via topics like
compressed sensing, robust subspace recovery, dictionary learning, and sparse blind deconvo-
lution [HM13a, BKS14, BKS15], and has been actively studied in the nonconvex optimization lit-
erature [QSW14, QZL+20]. It is also closely related to central questions in complexity theory and
quantum information [BBH+12, HM13b].

We establish strong inapproximability for this problem. Let |x|0 denote the number of nonzero
entries in x. Our main result is the following theorem.

Theorem 1.1. Unless NP ⊆ BPP, for any constant c > 0, given a linear subspace V ⊆ Rn and d ∈ N,
no polynomial-time algorithm distinguishes apart the following cases.
(YES) There exists a nonzero x ∈ V ∩ {0, 1}n with |x|0 ≤ d.
(NO) Every x ∈ V \ {0} satisfies |x|0 ≥ c · d.

Furthermore, unless NP ⊆ ∪k∈NBPTIME(2logk n), for any constant ε > 0, no polynomial-time algorithm
distinguishes apart the following cases.
(YES) There exists a nonzero x ∈ V ∩ {0, 1}n with |x|0 ≤ d.
(NO) Every x ∈ V \ {0} satisfies |x|0 ≥ 2log1−ε nd.

Previously, only NP-hardness of exact optimization was known [McC83, CP86]. The best known
approximation algorithm achieves an O(n/ log n)-approximation [BK01].

The booleanity property of the (YES) case in our inapproximability result allows us to recover
as an immediate corollary state of the art inapproximability factors for the Shortest Vector Problem
(SVP) in lattices, a foundational problem in lattice-based cryptography [Kho05, HR07, Mic12].

Corollary 1.2. Fix p ∈ (0, ∞). Unless NP ⊆ BPP, for any constant c > 0, given a lattice L ⊆ Zn and
d ∈N, no polynomial-time algorithm distinguishes apart the following cases.
(YES) There exists a nonzero vector x ∈ L ∩ {0, 1}n with ∥x∥p

p = d.
(NO) Every x ∈ L \ {0} satisfies ∥x∥p

p ≥ cd.

Furthermore, unless NP ⊆ ∪k∈NBPTIME(2logk n), for any constant ε > 0, no polynomial-time algorithm
distinguishes apart the following cases.
(YES) There exists a nonzero vector x ∈ L ∩ {0, 1}n with ∥x∥p

p = d.
(NO) Every x ∈ L \ {0} satisfies ∥x∥p

p ≥ 2log1−ε nd.

Inapproximability in the p ∈ (0, 1) regime above appears to be new. The proof of Theorem 1.1
is surprisingly simple, bypassing even the PCP theorem. It is inspired by the homogenization
framework developed in [Ajt98, Mic01, DMS03, Kho05, CW09, Mic12, AK14] for lattices and error-
correcting codes over finite fields. Inapproximability for these homogeneous problems (like SVP
or minimum distance) may appear deceptively simple, however they have involved the overcom-
ing of technical and conceptual barriers. In brief, the paradigm that has emerged from these works
is to start with hardness of a non-homogeneous problem (whose hardness is easier to establish) and
reduce it to the desired homogeneous problem using coding theoretic gadgets (e.g., locally dense
codes/lattices). Pioneered in [Ajt98, Mic01] for lattices, this framework finally led to strong hard-
ness for finite fields in [DMS03] and for lattices in [Kho05].

Motivation. Our main motivation in this work is the development of techniques to prove
inapproximability results for problems over the reals. Sparsest vector in a subspace is one of a
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long list of problems (polynomial maximization over the sphere, quantum separability, maximize
∥ · ∥q/∥ · ∥2 (an analytic notion of sparsity when q > 2) over a subspace (henceforth, 2→ q sparsest
vector), small set expansion, densest k-subgraph, sparse PCA, low rank matrix completion, tensor
PCA/rank, etc. ) that are bottlenecks for inapproximability results. A common theme in these
problems is resistance to local gadget reductions from CSPs. Informally this is because extremely
sparse solutions have high objective value, and it is unclear how to decode good assignments to
the variables of a CSP from such solutions. We believe our findings in this work can be considered
as progress towards this goal.

We further substantiate this by highlighting some concrete connections analytic variants of
sparsest vector have. It was shown in [BBH+12] that the small set expansion of a graph G (an
important problem at the heart of inapproximability) can be cast as finding the sparsest vector
that is close (in ℓ2 norm) to the top eigenspace of G. It is also shown [HM13b, BBH+12] that
the hardness of approximately computing the 2 → 4 sparsity of a subspace is closely related to
QMA = NEXP, which is a long standing open problem in quantum information.

Quadratic maximization over convex sets is a rich and expressive family of continuous opti-
mization problems. In [BLN21], it was shown that inapproximability of 2→ q sparsest vector (for
all q > 2) implies the inapproximability of quadratic maximization over any convex set with large
type-2 value (informally type-2 is a quantitative notion of smoothness). All such optimization
problems resist local gadget reductions from CSPs. It was also shown in [BLN21] that when the
convex body has constant type-2 value and additionally admits a certain approximate separation
oracle, the problem admits a polytime constant factor approximation. Thus NP-hardness of ap-
proximating 2→ q sparsest vector would lead to a near-characterization of the approximability of
this wide-ranging class under P ̸= NP.

We believe our work provides a promising new line of attack on hardness of 2 → q sparsest
vector. The reduction we devise to prove Theorem 1.1 admits natural candidate analogues in
the 2 → q setting. Proving analytic versions of our product test using tensor codes and of our
quotienting step would imply correctness of such a reduction.

Derandomization of SVP Hardness. A final point we highlight about our reduction is that
it provides a new candidate approach towards derandomization of SVP, which is a long running
pursuit in the homogenization literature (see [Mic12, BP22] and discussions therein). To deran-
domize our reduction, it suffices to construct a code with polynomial rate and minimum distance
(in the hamming sense), support overlap property of codewords, and finally the quotienting prop-
erty for embedding the hypercube. We raise the question of whether one can deterministically
construct codes with all three properties above.

2 Techniques and Preliminaries

Product Testing via Symmetric Tensor Codes. Minimum Distance of Code (MDC) is the problem
of finding the sparsest vector in a subspace over a finite field, whose hardness is shown via various
instantiations of the homogenization framework [DMS03, CW09, AK14]. In particular, [AK14]
show how over F2, MDC can be used to test if a matrix is rank-1 or not. They do this by starting
with any code of good minimum distance, and considering the subspace of matrices given by
the symmetric tensor product of the code with itself. [AK14] show that the minimum distance
codewords in this code have rank one and any codewords of higher rank have higher distance
by a multiplicative factor of 3/2. Using this product test, one can then embed non-homogeneous
(and even nonlinear) optimization problems into the minimum distance problem.
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We extend this idea to the reals, where it appears good minimum distance no longer suffices.
Given a real code with the additional property that every pair of linearly independent codewords
with small sparsity don’t overlap much in support (henceforth referred to as the bounded code-
word overlap property), we show that the sparsest codewords in the symmetric tensor product
of the code with itself must have rank one. Furthermore we show that the kernel of a random
Rademacher matrix satisfies the bounded overlap property along with adequate minimum dis-
tance, thereby furnishing a product test that embeds within the sparsest vector problem.

For a vector x let σx denote its support, and let SN
d denote the set of N-dimensional unit vectors

with support size at most d. All of the above random subspace properties are covered in the
following theorem which we prove in Section 4.

Theorem 2.1. (Minimum Distance and Codeword Overlap for a Random Rademacher Subspace)
Fix any ε ∈ (0, 1/2). For any d ∈ N sufficiently large, and any integer N ∈ [dC2/ε, e d 0.9

], an h× N
random matrix R with h = ⌈2(1+ε)d logd N⌉ and with i.i.d. ±1-random entries satisfies with probability
at least 1− 1/Nc3d/ log d,

(a) SN
d ∩ ker(R) = ∅ (Code Distance)

(b) ∀ℓ ∈N∩
[

1,
ε

C2
logd N

]
, Overlapℓ ∩ ker(R)ℓ = ∅ where, (Bounded Codeword Overlap)

Overlapℓ :=
{
(u1, . . . , uℓ) ∈ RN×ℓ ∣∣ rk{u1, . . . , uℓ} = ℓ, |⋃i∈[ℓ] σui | ≤ ℓd

}
and where C2 > 1, c3 ∈ (0, 1) are universal constants.

We prove the above theorem by making use of a celebrated result of [RV09] regarding the
Littlewood-Offord problem (see also [RV08] for a one-dimensional precursor), which establishes
a precise connection between approximate arithmetic structure of a collection of vectors a1, a2 . . .
and the probability that a randomly signed sum of vectors ∑i ξiai lies in a ball of small radius.
They give a beautiful proof of this result using harmonic analysis.

Embedding a Solution Set into a Quotient of a Random Subspace. In the full reduction of
[AK14], the product test and non-homogenous hard problem (Max-NAND in their case) are cou-
pled in an intricate manner. We are unable to extend this reduction to the reals.

Instead, we encode the solution set of our starting non-homogeneous optimization problem as
cosets of a random code in a higher dimensional space. We need the additional property that the
encodings of any two solution vectors have approximately equal weight, where weight of a coset
refers to the sparsest vector in the coset. This component of our reduction is inspired by [Mic12],
and it allows us to compose our product test with a non-homogenous optimization problem in a
decoupled and modular fashion. In Section 3 we reduce from boolean quadratic equations whose
solution set is the hypercube. Below we state formally what we require of the embedding of the
hypercube.

We define the weight d slice of the N dimensional hypercube respectively as HN
d := {x ∈

{0, 1}N | |x|0 = d}.
Lemma 2.2. (Embedding of {0, 1}n in a Quotient of ker(R) ∩ HN

k )
Fix any ε ∈ (0, 1/2). Let n ∈ N, and set k := 162 ⌈n2.2/ε2⌉ , d := k(1 − ε)/(1 + ε), h :=
⌈2(1+ε)d logd N⌉ and finally pick any integer N ≥ k5/ε. Let R be an h× N matrix with i.i.d. ±1 random
entries and let T ∈ {0, 1}n×N be such that each entry is set to 1 independently at random with probability
p = 1/(4kn). Then assuming k is sufficiently large, with probability at least 1− 6/n0.1 − 1/N0.4, for
every y ∈ {0, 1}n, there exists x ∈ ker(R) ∩ HN

k such that T(x) = y.
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3 PCP-Free Inapproximability of Sparsest Vector

We present our basic reduction. Our starting point is hardness of exactly solving a non-homogeneous
system of quadratic equations. The proof uses an elementary reduction from the NP-hardness of
1-in-3-SAT [Sch78] and appears in Appendix A.

Proposition 3.1. Given n variables y1, . . . , yn and m quadratic equations (∑i,j∈[n] αℓ,i,jyiyj = bℓ)ℓ∈[m], it
is NP-hard to distinguish between the following two cases:
(YES) There exists y ∈ {0, 1}n satisfying all m equations.
(NO) There doesn’t exist y ∈ Rn satisfying all m equations.

We next present our basic reduction that generates a constant multiplicative gap.

Reduction from non-homogeneous quadratic equations to sparsest vector in a subspace.
Given the system of m0 quadratic equations (∑i,j∈[n0] αℓ,i,jyiyj = bℓ)ℓ∈[m0] on n0 variables and a
parameter ε ∈ (0, 1/2), let k := 162 ⌈n2.2

0 /ε2⌉ , d := k(1 − ε)/(1 + ε), N :=
⌈
k5/ε

⌉
, and h :=

⌈2(1+ε)d logd N⌉. Let R ∈ Rh×N , T ∈ Rn0×N be random matrices such that R is chosen to be an
h× N matrix with i.i.d. ±1 random entries and T ∈ {0, 1}n0×N is chosen such that each entry is
set to 1 independently at random with probability p = 1/(4kn0).
Remark. The above parameters are chosen precisely so that we may apply Theorem 2.1 and
Lemma 2.2.
Definition of Subspace. Now we present the subspace V ⊆ RN×N . For any X ∈ RN×N and
any i ∈ [N], Xi denotes the i-th row of X (represented as a column vector) and Xi denotes the
i-th column of X. The linear subspace V is the set of matrices X ∈ RN×N such that there exist
Y ∈ Rn0×n0 and z ∈ R satisfying the following system of homogeneous linear equations in X, Y, z.

RXi = 0, RXi = 0 ∀i ∈ [n0]

X∗ = X

z = ∑
i∈[n0]

X[i, i]/k

Y = TXT∗

( ∑
i,j∈[n0]

αℓ,i,jY[i, j])− zbℓ = 0 ∀ℓ ∈ [m0] (1)

Eq. (1) refers to the entire system rather than just the last line.

Remark. Due to symmetry (X∗ = X), adding both constraints RXi = 0, RXi = 0 is redundant.
However we include these implied constraints to emphasize the importance of both the rows and
the columns of X lying inside the kernel of R.

We next prove the validity of theabove reduction.

Proposition 3.2. For any constant ε ∈ (0, 1/2), given a linear subspace V ⊆ Rn and k ∈ N, unless
NP ⊆ BPP, no polynomial-time algorithm distinguishes between the following two cases.
(YES) There exists a nonzero x ∈ V ∩ {0, 1}n with |x|0 ≤ k.
(NO) Every x ∈ V \ {0} has |x|0 ≥ (2− ε)k.
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Proof. We use the above reduction from solving a system of quadratic equations whose hardness
is proved in Proposition 3.1.

By Theorem 2.1 and Lemma 2.2, R and T satisfy the following properties with probability
1− o(1), (that we will invoke shortly):
(Distance) : Every nonzero x ∈ ker(R) satisfies |x|0 ≥ d.
(Overlap) : For all x, y ∈ ker(R) that are linearly independent, |σx ∪ σy| ≥ 2d.
(Shattering) : {0, 1}n0 ⊆ T(ker(R) ∩ HN

k ).

Completeness. Let y ∈ {0, 1}n0 be a solution to the system of quadratic equations (∑i,j∈[n0] αℓ,i,jyiyj =

bℓ)ℓ∈[m0]. By property (Shattering), there exists x ∈ {0, 1}N ∩ ker(R) with |x|0 = k such that
Tx = y. Then it is easy to check that Y = yy∗, X = xx∗, z = 1 is a solution of Eq. (1) which further
satisfies |X|0 = k2. Therefore, X is a nonzero 0-1 vector in V whose sparsity is k2.

Soundness. Let X ∈ V be nonzero with |X|0 < 2d2. Then there exist Y and z such that (X, Y, z)
is a nonzero solution of Eq. (1). We will show that the system of quadratic equations admits a
solution over reals.

If X has rank at least 2, then it has at least two linearly independent nonzero columns in
ker(R). By (Overlap), these two columns certify that at least 2d rows of X are nonzero, and thus
(Distance) implies that |X|0 ≥ 2d2 = (2−O(ε))k2.

Therefore, X has rank 1. Since X is symmetric, we conclude X = xx∗ for some nonzero
x ∈ RN . The constraint z = ∑i X[i, i]/k implies that z > 0, and the constraint Y = TXT∗ implies
that Y = yy∗ where y = Tx. Then the final equation of Eq. (1) implies that for every ℓ ∈ [m0],

( ∑
i,j∈[n0]

αℓ,i,jyiyj) = zbℓ,

and thus y/
√

z is a solution to the system of quadratic equations.

Simple tensoring then implies our main result. Moreover the booleanity property of the com-
pleteness solution is preserved under tensoring. Given V ⊆ Rn, let V ⊗ V ⊆ Rn×n denote the
subspace such that X ∈ V ⊗ V if and only if every row and column of X (viewed as an n × n
matrix) lies in V.

Fact 3.3. If there exists x ∈ V ∩ Hn
d′ , then xxT ∈ V ⊗ V with |x|0 = (d′)2. On the other hand, if any

x ∈ V \ {0} satisfies |x|0 ≥ d′, then for any X ∈ V ⊗V \ {0}, |X|0 ≥ (d′)2.

Proof. For the second statement, if X ̸= 0, at least one row is nonzero. Since that row is in V,
there are at least d′ nonzero columns. Applying the same argument for each column implies that
|X|0 ≥ (d′)2.

Using this we obtain

Theorem 1.1. Unless NP ⊆ BPP, for any constant c > 0, given a linear subspace V ⊆ Rn and d ∈ N,
no polynomial-time algorithm distinguishes apart the following cases.
(YES) There exists a nonzero x ∈ V ∩ {0, 1}n with |x|0 ≤ d.
(NO) Every x ∈ V \ {0} satisfies |x|0 ≥ c · d.

Furthermore, unless NP ⊆ ∪k∈NBPTIME(2logk n), for any constant ε > 0, no polynomial-time algorithm
distinguishes apart the following cases.
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(YES) There exists a nonzero x ∈ V ∩ {0, 1}n with |x|0 ≤ d.
(NO) Every x ∈ V \ {0} satisfies |x|0 ≥ 2log1−ε nd.

Proof. Let V ⊆ Rn and d ∈ N be an instance given by Proposition 3.2 with ε = 0.1. Let V = V⊗t

and d = 1.9t for some t ∈N fixed later. The new ambient dimension is N = nt. Applying Fact 3.3,
one can conclude that in the (YES) case of Proposition 3.2, V ∩ HN

dt ̸= ∅, and in the (NO) case,
every nonzero vector in V has sparsity at least (1.9d)t.

Setting t to be an arbitrarily large constant implies the first statement, and setting t = logO(1/ε) n
implies the second statement as the gap is given by 1.9t = 2log1−ε N .

Our strong completeness and soundness conditions imply hardness of SVP as an immediate
corollary, restated below.

Corollary 1.2. Fix p ∈ (0, ∞). Unless NP ⊆ BPP, for any constant c > 0, given a lattice L ⊆ Zn and
d ∈N, no polynomial-time algorithm distinguishes apart the following cases.
(YES) There exists a nonzero vector x ∈ L ∩ {0, 1}n with ∥x∥p

p = d.
(NO) Every x ∈ L \ {0} satisfies ∥x∥p

p ≥ cd.

Furthermore, unless NP ⊆ ∪k∈NBPTIME(2logk n), for any constant ε > 0, no polynomial-time algorithm
distinguishes apart the following cases.
(YES) There exists a nonzero vector x ∈ L ∩ {0, 1}n with ∥x∥p

p = d.
(NO) Every x ∈ L \ {0} satisfies ∥x∥p

p ≥ 2log1−ε nd.

Proof. Given an instance (V, d) of Theorem 1.1, define the lattice L := V ∩Zn. In the (YES) case,
there exists x ∈ L ∩ HN

d , and so ∥x∥p
p = d. In the (NO) case, if x ∈ L \ {0} satisfies |x|0 ≥ αd

for some gap parameter α, since every nonzero coordinate has absolute value ≥ 1, we must have
∥x∥p

p ≥ αd.

4 Properties of Rademacher Random Subspaces

4.1 Minimum Distance and Bounded Codeword Overlap

Throughout this section, let ξ1, . . . , ξd denote i.i.d. Rademacher (±1) random variables. For a
vector u ∈ RN , σu denotes its support. In this section we borrow heavily from the exposition,
ideas and notions in [RV09, RV08].

Small Ball Probability and LCD.

Definition 4.1. The Lévy concentration function of a random vector Ξ in Rℓ is defined for t > 0 as

L(Ξ, t) := sup
v∈Rℓ

P [∥Ξ− v∥2 ≤ t] .

Following [RV09], LCD is defined as

LCDα,γ(a) := inf
{

θ > 0 | dist(θ · a, ZN) < min(γ∥θ · a∥2, α)
}

.
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It can be thought of as a measure of arithmetic structure. Let E ⊂ RN be a subspace. We define

LCDα,γ(E) := inf
a∈S(E)

LCDα,γ(a).

where S(E) denotes the euclidean sphere restricted to the subspace E.
The following theorem which connects multidimensional small ball probability of a signed

sum of vectors to the LCD of their Rowspace, is the main workhorse of our proof of the overlap
property.

Theorem 4.2 (Multidimensional Small ball probability, Theorem 3.3 of [RV09]).
Consider a sequence of orthonormal vectors u1, . . . , uℓ ∈ SN−1. Let u1, . . . uN ∈ Rℓ be the columns of the
ℓ× N matrix whose rows are formed by u1, . . . uℓ. Let ξ1, . . . , ξN be i.i.d. Rademacher random variables
and let Ξ := ∑N

j=1 ξ j · uj be a sum of randomly signed vectors. Then for any α > 0, γ ∈ (0, 1), and
t ≥
√
ℓ/LCDα,γ(span{u1, . . . , uℓ}), we have

L(Ξ, t
√
ℓ) ≤

(Ct
γ

)ℓ
+ Cℓe−α2

.

where C is a universal constant.

Remark 4.3. Above, we specialized their theorem to the case of orthonormal vectors. For a reader interested
in the details of the specialization, see the proof of Theorem 4.2 in [RV09].

Restricted Isometry. The following restricted isometry result is well known in related parameter
regimes. In order to make parameter choices that are compatible with the proof of Theorem 2.1, we
derive it here again using off-the-shelf concentration estimates for the maximum and minimum
singular values of a random matrix. For a matrix A ∈ Rh×N and k ∈N, let

σk
min(A) := min

|T|≤k,|T|⊆[N]
σmin(A∗T AT)

1/2

σk
max(A) := max

|T|≤k,|T|⊆[N]
σmax(AT),

where AT denotes the column submatrix of A restricted to T.

Proposition 4.4 (R is an Isometry when restricted to any subset of Θ(d/ log d) Columns).
Let d, ℓ, N ∈ N, η ∈ [1, 3/2] and let h := 2ηd log N. There are universal constants C0 > 1, c0 ∈ (0, 1),

such that an h × N random matrix R with i.i.d. ±1 entries satisfies with probability at least 1− N−ℓd

that σℓd
max(R) ≤ C0

√
ℓd log N. Moreover σd

min(R) ≥ c0
√

h with probability at least 1 − N−d, where
d := ⌈c0d/ log d⌉.

Proof. By Theorem 5.39 in [Ver10], there is a universal constant C0 > 1 such that for any fixed
T ∈ ([N]

ℓd ),

P
[
σmax(RT) > C0

√
ℓd log N

]
≤ N−2ℓd.

Taking union bound over all choices of T implies the first claim.
It is shown in [BDJ+77], that there is a universal constant c0 ∈ (0, 1) such that for any fixed

T ∈ (
[N]

d ),

P
[
σmin(RT) < c

√
h
]
≤ N−2d.

where d := ⌈c0d/ log d⌉. Taking union bound over (N
d ) choices of T implies the second claim.
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Standard Net Size Estimates. We use the following standard facts about ε-nets. Recall that when
T is a metric space with distance d and let E ⊂ T, N ⊆ T is called an ε-net of E if for every x ∈ E
there exists y ∈ N such that d(x, y) ≤ ε.

Fact 4.5. Let T be a metric space and let E ⊂ T. Let N ⊂ T be a t-net of the set E. Then there exists a
(2t)-net N ′ of E whose cardinality does not exceed that of N , and such that N ′ ⊂ E.

Fact 4.6. There is a t-net (in ℓ2 norm) within Sd−1, of size at most ( 6
t )

d.

Partitioning Space for Chaining according to Small ball Probability. We define SN
d to be the

union of all subspheres of RN supported on d coordinates. We then partition SN
d into compressible

and incompressible vectors. This paritioning is required since compressible vectors can have rela-
tively high small ball probability. The saving grace here is that portion of SN

d that is compressible
is much smaller than the incompressible portion.

Define for any ℓ ∈N and any δ, ρ ∈ (0, 1) the following sets:

SN
d := {u ∈ RN : ∥u∥2 = 1, |u|0 ≤ d}

Comp(ℓ)
ρ,δ :=

{
u ∈ SN

ℓd | ∃T ⊆ σu, |T| ≤ δℓd, s.t. ∥uσu\T∥2 ≤ ρ
}

i.e. the set of vectors of sparsity ℓd that are ρ-close to a δℓd-sparse vector

Incomp(ℓ)
ρ,δ := SN

ℓd \Comp(ℓ)
ρ,δ

ρ0(ℓ) := c0/(2C0
√
ℓ log d), δ0(ℓ) := c0/(ℓ log d), t0(ℓ) := 2

√
ℓ log d/(c0d)

Comp(ℓ) := Comp(ℓ)
ρ0(ℓ), δ0(ℓ)

, Incomp(ℓ) := Incomp(ℓ)
ρ0(ℓ), δ0(ℓ)

Basesℓ :=
{
(u1, . . . , uℓ) ∈

(
SN−1)ℓ ∣∣ u1, . . . , uℓ orthonormal,

|
⋃

i∈[ℓ]
σui | ≤ ℓd, Span({u1, . . . , uℓ}) ∩Comp(ℓ) = ∅

}
where c0, C0 are universal constants determined by Proposition 4.4.

We require a lower bound on the LCD of vectors that are incompressible.

Lemma 4.7 (LCD of incompressible vectors [RV09]).
Consider any ρ, δ ∈ (0, 1), and any a ∈ Incomp(ℓ)

ρ,δ . Then, for every γ ∈ (0, ρ2
√

δ/2) and every α > 0,

one has LCDα,γ(a) >
√

δℓd/2.

We are finally ready to use Theorem 4.2 to derive an estimate on the joint small ball probability
of an orthogonal basis whose span does not contain compressible vectors.

Corollary 4.8 (Joint Small Ball Probability for Basis Elements of an Incompressible Subspace).
There is a universal constant C1 > 1 such that for any ℓ ∈ N, any (u1, . . . , uℓ) ∈ Basesℓ, and any d

sufficiently large,

P
[
maxi∈[ℓ]∥Rui∥∞ ≤ t0(ℓ)

]
≤ (C1 log2 d)hℓ · ℓ2hℓ/

√
d

hℓ

Proof. Assume γ0(ℓ) := ρ0(ℓ)2
√

δ0(ℓ)/3. Lemma 4.7 gives a universal lower bound of
√

c0d/ log d/2,
on the LCD of vectors in Incomp(ℓ). Indeed for any α > 0 we have

LCDα,γ0(ℓ)(span{u1, . . . , uℓ}) = inf
a∈SN−1∩span{u1,...,uℓ}

LCDα,γ0(ℓ)(a) ≥ inf
a∈Incomp(ℓ)

LCDα,γ0(ℓ)(a)
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≥
√

c0d/ log d/2 ,

where we used the fact that SN−1 ∩ span{u1, . . . , uℓ} ⊆ Incomp(η) by definition of Bases.

We then apply Theorem 4.2 with α←
√
ℓ log d, γ← γ0(ℓ), t← t0(ℓ), to obtain that

P
[
∑i∈[ℓ]⟨ξ, ui⟩2/ℓ ≤ t0(ℓ)2

]
≤ Cℓ t0(ℓ)ℓ

γ0(ℓ)ℓ
+ Cℓe−ℓ log2 d = O(log2 d)ℓ · ℓ2ℓ/

√
d
ℓ

.

Since maxi∈[ℓ]{|⟨ξ, ui⟩|} ≥
(

∑i∈[ℓ]⟨ξ, ui⟩2/ℓ
)1/2, we obtain

P
[
maxi∈[ℓ] |⟨ξ, ui⟩| ≤ t0(ℓ)

]
= O(log2 d)ℓ · ℓ2ℓ/

√
d
ℓ

.

The claim then follows by observing that by independence of the rows of R,

P
[
maxi∈[ℓ]∥Rui∥∞ ≤ t0(ℓ)

]
=

(
P
[
maxi∈[ℓ] |⟨ξ, ui⟩| ≤ t0(ℓ)

] )h
.

Equipped with our joint small ball estimate, we are now ready to prove the bounded overlap
property.

Theorem 2.1. (Minimum Distance and Codeword Overlap for a Random Rademacher Subspace)
Fix any ε ∈ (0, 1/2). For any d ∈ N sufficiently large, and any integer N ∈ [dC2/ε, e d 0.9

], an h × N
random matrix R with h = ⌈2(1+ε)d logd N⌉ and with i.i.d. ±1-random entries satisfies with probability
at least 1− 1/Nc3d/ log d,

(a) SN
d ∩ ker(R) = ∅ (Code Distance)

(b) ∀ℓ ∈N∩
[

1,
ε

C2
logd N

]
, Overlapℓ ∩ ker(R)ℓ = ∅ where, (Bounded Codeword Overlap)

Overlapℓ :=
{
(u1, . . . , uℓ) ∈ RN×ℓ ∣∣ rk{u1, . . . , uℓ} = ℓ, |⋃i∈[ℓ] σui | ≤ ℓd

}
and where C2 > 1, c3 ∈ (0, 1) are universal constants.

Proof. Claim (a) is a special case of (b) for ℓ ← 1. So we need only prove (b). We first show that
for any ℓ ∈ N, Comp(ℓ) ∩ ker(R) = ∅ with high probability, which will then allow us to focus on
incompresible subspaces.
Compressible vectors:
For any u ∈ Comp(ℓ), let T be the set of δ0(ℓ)ℓd coordinates of largest magnitude in u. Let y be the
vector such that yj = uj for j ∈ T and yj = 0 otherwise, and z = u− y. Then ∥y∥2 ≥

√
1− ρ0(ℓ)2,

and ∥z∥2 ≤ ρ0(ℓ), |y|0 ≤ δ0(ℓ)ℓd, and |z|0 ≤ ℓd. Then we have

∥Ru∥2 ≥ σ
δ0(ℓ)ℓd
min (R)∥y∥2 − σℓd

max(R)∥z∥2

≥ σ
c0d/ log d
min (R)

√
1− ρ0(ℓ)2 − σℓd

max(R) · ρ0(ℓ) .

We have by Proposition 4.4, that with probability at least 1− N−c0d/ log d,

inf
u∈Comp(ℓ)

∥Ru∥2 ≥ c0
√

h
√

1− 1/(4C2
0ℓ log d)− c0

√
d log N/ log d/2 ≥ 3c0

√
h/4 . (2)

9



which implies that for any ℓ ∈ N, Comp(ℓ) ∩ ker(R) = ∅ with probability 1− N−c0d/ log d, for d
sufficiently large.

Incompressible Subspaces. Assume ℓ ≤ (ε/C2) logd N for a sufficiently large constant C2 chosen
later. We will show with high probability that for any (u1, . . . , uℓ) ∈ Overlapℓ, at least one of
u1, . . . , uℓ doesn’t lie inside ker(R). Observe that if (u1, . . . , uℓ) ∈ Overlapℓ ∩ ker(R)ℓ, then for any
orthonormal basis ũ1, . . . , ũℓ of span{u1, . . . uℓ}, it holds that (ũ1, . . . , ũℓ) ∈ Overlapℓ ∩ ker(R)ℓ,
and so it suffices to show that for any orthonormal basis (u1, . . . , uℓ) within Overlapℓ, at least one
of u1, . . . , uℓ doesn’t lie inside ker(R). Since we showed above that ker(R) avoids compressible
vectors with high probability, we may assume that span{u1, . . . uℓ} is incompressible. Thus we
need only show that Basesℓ ∩ ker(R)ℓ = ∅ with high probability, which we do by combining
Corollary 4.8 with a union bound over a sufficiently fine net.
Orthogonal Bases of Incompressible Subspaces. Let O ⊆ Basesℓ be a minimum size 1/d2-net of
Basesℓ according to the norm ∥(u1, . . . uℓ)∥ := maxi∈[ℓ] ∥ui∥2. We have

inf
(ũ1,...,ũℓ)∈Basesℓ

max
i∈[ℓ]
∥Rũi∥∞

≥
(triangle inequality)

min
(u1,...,uℓ)∈O

max
i∈[ℓ]
∥Rui∥∞ − max

(u′1,...,u′ℓ)∈Basesℓ, s.t.
∀i∈[ℓ], ∥u′i∥2≤1/d2

max
i∈[ℓ]
∥Ru′i∥∞

≥
(Cauchy-Schwarz)

min
(u1,...,uℓ)∈O

max
i∈[ℓ]
∥Rui∥∞ − σℓd

max(R)/d2

≥
(Proposition 4.4)

min
(u1,...,uℓ)∈O

max
i∈[ℓ]
∥Rui∥∞ − O

(√
ℓ log N/d1.5) with probability 1− N−c0d/ log d

≥
(since N ≤ e d 0.1

, ℓ = O(logd N))
min

(u1,...,uℓ)∈O
max
i∈[ℓ]
∥Rui∥∞ − o(t0(ℓ)) (3)

It suffices now to show that min(u1,...,uℓ)∈Omaxi∈[ℓ] ∥Rui∥∞ ≥ t0(ℓ) with high probability, to obtain
that Basesℓ ∩ ker(R)ℓ = ∅. We again proceed by anticoncentration+union bound. For any fixed
(u1, . . . , uℓ) ∈ Basesℓ, we have by Corollary 4.8 that

P
[
maxi∈[ℓ]∥Rui∥∞ ≤ t0(ℓ)

]
≤ (C1 log2 d)hℓ · ℓ2hℓ/

√
d

hℓ
=

1
Nℓd(1+ε/3)−o(ℓd)

.

where the final step assumes that ℓ = O(logd N). As for net size, observe that Basesℓ has a 1/(2d2)-
net of size dO(ℓ2d) · Nℓd since the ℓd-dimensional sphere has a 1/(2d2)-net of size dO(ℓd), and any
basis in Basesℓ can be generated by choosing a subset of size ℓd and then choosing ℓ vectors in the
sphere supported on those coordinates. We then apply Fact 4.5 to obtain a 1/d2-net for Basesℓ that
is also a subset. So we have |O| = dO(ℓ2d) ·Nℓd. Thus the probability that Basesℓ ∩ker(R)ℓ ̸= ∅ is at
most dO(ℓ2d)/Nεℓd/2 ≤ 1/Nℓd(ε/3−O(ℓ/ logd N)). The claim then follows assuming by taking a union
bound over all choices of positive integers ℓ ≤ (ε/C2) logd N for a sufficiently large universal
constant C2 > 1.

4.2 Embedding a Discrete Solution Set as a Quotient of a Random Rademacher Sub-
space

One of the key ingredients in Section 3 is the idea (inspired by precedents in the homogenization
literature [Mic12]) of encoding (linearly) the solutions of a hard non-homogeneous optimization
problem as nearly minimial weight cosets of a subspace with good minimum distance, where

10



weight of a coset refers to the sparsity of the sparsest vector in the coset. In Section 3 we reduce
from boolean quadratic equations (resp. affine sparsest vector) whose solution space is the hy-
percube. In this section we prove this embedding result for the case of a random Rademacher
subspace.

The proof is not difficult and follows from a routine albeit technical second moment calcula-
tion. Potentially useful intuition here is that random Rademacher subspaces contain many nearly-
minimum weight boolean vectors that are quite uncorrelated with one another. With respect to
most projections to low enough dimensional space, this set of boolean vectors will behave like a
high dimensional set in an appropriate sense and after projection will completely cover the low
dimensional hypercube.

We prove the following technical lemma that will be used to deduce our embedding result
discussed above.

For any y ∈ {0, 1}n, let Cy := {x ∈ {0, 1}N | proj(x) = y}.

Lemma 4.9 (Random Subspace of Distance ≥ d has Large Intersection with HN
d(1+ε)).

Fix any ε ∈ (0, 1/2). Let k ∈ N be even, set d := k(1− ε)/(1 + ε), h := ⌈2(1+ε) · d logd N⌉, and let
R be an h× N matrix with i.i.d. ±1-random entries.
(a) If N ≥ k2/ε, then for k sufficiently large we have P[|HN

k ∩ ker(R)| ≥ Nεk/2] ≥ 1− 1/N0.4.

(b) Consider any n ≥ k and set the column duplication parameter N := N/n. If N ≥ n2/ε, then for k
sufficiently large and any fixed y ∈ Hn

k , we have P[|Cy ∩ ker(R)| ≥ Nεk/2] ≥ 1− 1/N0.4.

Proof. Since for any y ∈ Hn
k we have Cy ⊆ HN

k , claim (a) follows as an immediate consequence of
(b) by setting n← k. We now prove the stronger statement (b).

Let pt
ℓ denote the probability that the sum of t Rademacher variables equals ℓ. Fix any y ∈ Hn

k
and let F := {σx | x ∈ Cy}. We first check that µ := E[|Cy ∩ ker(R)|] is large. Let XS denote the
indicator random variable for the event that R1S = 0. We have E[XS] = P[R1S = 0] = (pk

0)
h =

Θ(1/
√

k)h and so

µ = E

[
∑

S∈F
XS

]
≥ N k · (pk

0)
h = N k/N(1−ε)k ≥ Nεk/2 . (4)

In order to use Chebyshev’s inequality, we begin with a second moment calculation. Let Ft :=
|{(S1, S2) : S1, S2 ∈ F , |S1 ∩ S2| = t}|, and observe that

E

[
( ∑

S∈F
XS)

2

]
=

k

∑
t=0

Ft ·P [R1S1 = 0, R1S2 = 0] (5)

where S1, S2 above are any fixed sets satisfying S1, S2 ∈ ([N]
k ), |S1 ∩ S2| = t. Above we used the

fact that the joint distribution of R1S1 , R1S2 is the same for any pair S1, S2 of k-sets that intersect in
t elements.

We next give upper estimates for the terms in the aforementioned sum. Clearly, Ft ≤ (k
t) · N

t ·
N2k−2t ≤ N2k−t · (ke/t)t. Assume k− t is even and t ≤ k(1− ε/10). We have

P [R1S1 , R1S2 = 0]
= P

[
R1S1\S2

= −R1S1∩S2 , R1S2\S1
= −R1S1∩S2

]
= ∑

z∈Zh

P
[
R1S1\S2

= −z, R1S2\S1
= −z

]
·P [R1S1∩S2 = z]

11



= ∑
z∈Zh

P
[
R1S1\S2

= −z
]
·P

[
R1S2\S1

= −z
]
·P [R1S1∩S2 = z]

=
(

∑
ℓ∈Z

(pk−t
−ℓ )

2 · (pt
ℓ)
)h

≤ (pk−t
0 )2h

= (pk
0)

2h ·
(

2−k ·
(

k
k/2

)
· 2k−t ·

(
k− t

(k− t)/2

))2h

≤ (pk
0)

2h · (e1/4(k− t)
√

k/k− t)2h(
Stirling’s Approximation:

ℓ!√
2πℓ · (ℓ/e)ℓ

∈ (e1/12ℓ+ 1, e1/12ℓ)
)

≤ (pk
0)

2h · (e1/4(k− t) et/2(k− t))2h (θ > 0⇒
√

1 + θ < eθ/2)

= (pk
0)

2h · eO(th/k) (since k− t ≥ εk/10)

When k− t is odd, we replace pk−t
0 with pk−t

1 above and follow the same approach, observing that
pk

0/pk−t
1 = 1 + O(t/(k− t)), to get the same bound. For the case when t ≥ k− εk/10, we will use

a different upper estimate:

P [R1S1 , R1S2 = 0] ≤ P [R1S1 = 0] ≤ (pk
0)

h .

Combining the above three estimates with Eq. (5), we obtain

E
[
(∑S∈F XS)

2]
≤ F0(pk

0)
2h +

k(1−ε/10)

∑
t=1

(eO(h/k)ke/(tN))t · N2k · (pk
0)

2h +
k

∑
t=k(1−ε/10)

N2k−t · (ke/t)t · (pk
0)

h

≤ µ2 + µ2 ·
k(1−ε/10)

∑
t=1

(eO(h/k)ke/(tN))t + µ · k · Nεk/9

≤ µ2 + µ2 ·
k(1−ε/10)

∑
t=1

(N O(1/ log k)ke/(tN))t + O(µ1+1/8)

≤ µ2(1 + k/N 1−O(1/ log k)
) ≤ µ2(1 + 1/N1−ε−O(1/ log k))

By Chebyshev’s inequality, we conclude

P
[
|Cy ∩ ker(R)| ≥ µ/2

]
= P [∑S∈F XS ≥ µ/2] ≥ 1− 4/N1−ε−O(1/ log k)

which proves (b).

We are now ready to conclude our desired embedding result.

Lemma 2.2. (Embedding of {0, 1}n in a Quotient of ker(R) ∩ HN
k )

Fix any ε ∈ (0, 1/2). Let n ∈N, and set k := 162 ⌈n2.2/ε2⌉ , d := k(1− ε)/(1+ ε), h := ⌈2(1+ε)d logd N⌉
and finally pick any integer N ≥ k5/ε. Let R be an h× N matrix with i.i.d. ±1 random entries and let
T ∈ {0, 1}n×N be such that each entry is set to 1 independently at random with probability p = 1/(4kn).
Then assuming k is sufficiently large, with probability at least 1− 6/n0.1 − 1/N0.4, for every y ∈ {0, 1}n,
there exists x ∈ ker(R) ∩ HN

k such that T(x) = y.

12



Proof. We combine the fact that ker(R) contains many vectors in HN
k (by Lemma 4.9 (a)) with

the following result which shows that the random projection of a sufficeintly large subset of a
hypercube slice, to a sufficeintly low dimension, must cover the entire hypercube.

Theorem 4.10 (Theorem 5.9 of [Mic01], Random Projections Shatter Large Subsets of HN
k ).

For any k, n, N ∈ N and any t > 0, let F ⊆ {0, 1}N be a set of at least k!N4
√

kn/t vectors, each with
k non-zero entries. If T ∈ {0, 1}n×N is chosen by setting each entry to 1 independently at random with
probability p = 1/(4kn), then the probability that all of {0, 1}n is contained in T(F ) = {Tx | x ∈ F} is
at least 1− 6t.

We apply the above theorem with the substitution t ← 1/n0.1, n ← n, k ← k, N ← N.
It is easily checked that the assumptions of our claim imply that k!N4

√
kn/t < Nεk/2, and so the

application of the above theorem is valid.
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A NP-Hardness of Exactly Solving non-Homogeneous Quadratic Equations

Proposition 3.1. Given n variables y1, . . . , yn and m quadratic equations (∑i,j∈[n] αℓ,i,jyiyj = bℓ)ℓ∈[m], it
is NP-hard to distinguish between the following two cases:
(YES) There exists y ∈ {0, 1}n satisfying all m equations.
(NO) There doesn’t exist y ∈ Rn satisfying all m equations.

Proof. We reduce from 1-in-3-SAT, where the input consists of n Boolean variables x1, . . . , xn and
a 3-CNF formula φ = C1 ∧ · · · ∧ Cm on where each Ci contains exactly three literals, and the goal
is to find a Boolean assignment so that each Ci has at least one true literal and at least one false
literal. It is one of the earliest problems proved to be NP-Complete [Sch78].

Given an instance of 1-in-3-SAT, we create n + 1 variables y0, . . . , yn, and add the following
constraints. Let Cj contains three literals sj,1xij,1 , sj,2xij,2 , sj,3xij,3 where ij,1, ij,2, ij,3 ∈ [n] denote the
indices of the variables appearing in Cj and sj,1, sj,2, sj,3 ∈ {±1} indicate their signs. (I.e., −x1
means ¬x1.) The quadratic constraints are the following.

y2
0 = 1

y2
i − y0yi = 0 ∀i ∈ [n]

sj,1(2yij,1 − y0)sj,2(2yij,2 − y0) + sj,2(2yij,2 − y0)sj,3(2yij,3 − y0)

+ sj,3(2yij,3 − y0)sj,1(2yij,1 − y0) = −1 ∀j ∈ [m]

Completeness. Let x1, . . . , xn ∈ {0, 1} be an assignment satisfying every 1-in-3-SAT constraint,
where 1 denotes True and 0 denotes False. Then y0 = 1, yi = xi satisfies all the quadratic con-
straints; in particular, for each j ∈ [m] and ℓ ∈ [3], sj,ℓ(2yij,ℓ − y0) becomes 1 if the corresponding
literal sj,ℓxij,ℓ is True and −1 otherwise. So the LHS of the final constraint for j ∈ [m] is 3 if all
literals of Cj have the same value and −1 otherwise.

Soundness. Let y0, . . . , yn ∈ R be an assignment satisfying all the quadratic equations. Then
y0 = 1 or −1. If y0 = 1, then each yi ∈ {0, 1} and xi = yi for every i ∈ [n] is a satisfying
assignment for φ. The same argument as the completeness case shows that (xi) is a solution for
1-in-3-SAT.

If y0 = −1, yi ∈ {0,−1}. Let us consider the assignment xi = −yi for every i ∈ [n]. Then
sj,ℓ(2yij,ℓ − y0) becomes −1 if the corresponding literal sj,ℓxij,ℓ is True and 1 otherwise. Again fol-
lowing the same argument, (xi)i∈[n] is a satisfying assignment for φ.
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