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Abstract. We fully determine the communication complexity of approximating matrix rank, over
any finite field F. We study the most general version of this problem, where 0 6 r < R 6 n are
given integers, Alice and Bob’s inputs are matrices A,B ∈ Fn×n, respectively, and they need to
distinguish between the cases rk(A + B) = r and rk(A + B) = R. We show that this problem
has randomized communication complexity Ω(1 + r2 log |F|). This is optimal in a strong sense
because O(1 + r2 log |F|) communication is sufficient to determine, for arbitrary A,B, whether
rk(A+B) 6 r. Prior to our work, lower bounds were known only for consecutive integers r and R,
with no implication for the approximation of matrix rank. Our lower bound holds even for quantum
protocols and even for error probability 1

2
− 1

4
|F|−r/3, which too is virtually optimal because the

problem has a two-bit classical protocol with error 1
2
−Θ(|F|−r).

As an application, we obtain an Ω( 1
k
· n2 log |F|) space lower bound for any streaming algorithm

with k passes that approximates the rank of an input matrix M ∈ Fn×n within a factor of
√

2− δ,
for any δ > 0. Our result is an exponential improvement in k over previous work.

We also settle the randomized and quantum communication complexity of several other linear-
algebraic problems, for all settings of parameters. This includes the determinant problem (given
matrices A and B, distinguish between the cases det(A+B) = a and det(A+B) = b, for fixed field
elements a 6= b) and the subspace sum and subspace intersection problem (given subspaces S and T
of known dimensions m and `, respectively, approximate the dimensions of S + T and S ∩ T ).
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1. Introduction

The exact and approximate computation of matrix rank is a fundamental problem in theoretical
computer science, studied for its intrinsic importance as well as its connections to other algorithmic
and complexity-theoretic questions. In particular, a large body of research has focused on the
communication complexity of the matrix rank problem in Yao’s two-party model [29, 30], with
both classical and quantum communication. In this problem, the two parties Alice and Bob receive
matrices A,B ∈ Fn×n, respectively, over a finite field F and are tasked with determining the rank
of A+B using minimal communication. The first result in this line of research was obtained three
decades ago by Chu and Schnitger [6], who proved a lower bound of Ω(kn2) for the deterministic
communication complexity of computing the rank of A + B when the matrix entries are k-bit
integers. Several years later, Chu and Schnitger [7] further showed that this communication problem
has deterministic complexity Ω(n2 log p) when the matrix entries are in Fp, the finite field with p
elements. The first result on the randomized communication complexity of the matrix rank problem
was obtained by Sun and Wang [27], who proved that determining whether A+B is singular requires
Ω(n2 log p) bits of communication for matrices A,B over the finite field Fp for prime p. In a follow-
up paper, Li, Sun, Wang, and Woodruff [16] showed that this Ω(n2 log p) lower bound holds even
for a promise version of the matrix rank problem, where the matrix A + B is guaranteed to have
rank either n− 1 or n. The lower bounds of [27, 16] further apply to quantum communication.

Despite these exciting developments, no progress has been made on lower bounds for approximat-
ing matrix rank. Our main contribution is the complete resolution of the approximate matrix rank
problem. In what follows, we state our results for matrix rank and several other approximation
problems, and present applications of our work to streaming complexity.

1.1. Matrix rank problem. We study the problem of approximating matrix rank in its most
general form. Specifically, let F be any finite field. For integer parameters n,m,R, r such that
min{n,m} > R > r > 0, we consider the promise communication problem defined on pairs of
matrices A,B ∈ Fn×m by

RANKF,n,m
r,R (A,B) =


−1 if rk(A+B) = r,

1 if rk(A+B) = R,

∗ otherwise,

where the asterisk indicates that the communication protocol is allowed to exhibit arbitrary behavior
when rk(A + B) /∈ {r,R}. In words, the problem amounts to distinguishing input pairs with
rk(A+B) = r from those with rk(A+B) = R. The corresponding total communication problem is
given by

RANKF,n,m
r (A,B) =

{
−1 if rk(A+B) 6 r,

1 otherwise.

Clearly, the total problem RANKF,n,m
r is more challenging than the promise problem RANKF,n,m

r,R .
Prior to our work, the strongest known result was the Ω(n2 log p) lower bound of [16] on the bounded-
error quantum communication complexity of RANK

Fp,n,n
n−1,n for fields Fp of prime order. Unfortunately,

this lower bound has no implications for the approximation of matrix rank because the ratio (n−1)/n
rapidly tends to 1. We resolve this question in full in the following theorem.

Theorem 1.1 (Lower bound for rank problem). There is an absolute constant c > 0 such that for
all finite fields F and all integers n,m,R, r with min{n,m} > R > r > 0,

Q∗1
2
− 1

4|F|r/3
(RANKF,n,m

r,R ) > c(1 + r2 log |F|).
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In particular,

Q∗1/4(RANKF,n,m
r,R ) > c(1 + r2 log |F|).

In the statement above, Q∗ε denotes ε-error quantum communication complexity with arbitrary
prior entanglement, which is the most powerful model of probabilistic computation. Clearly, all
our lower bounds apply to the randomized (classical) model as well. Two other remarks are in
order. Even in the special case of r = n− 1 and R = n, our result is a significant improvement on
previous work because our theorem is proved in the large-error regime, with the error probability
exponentially close to 1/2. This should be contrasted with the communication lower bounds of [27,
16], which were proved for error probability 1/3. Moreover, Theorem 1.1 is the first result of its
kind because it allows for an arbitrary gap between r and R. In particular, Theorem 1.1 shows for
the first time that approximating the matrix rank to any constant factor requires Ω(n2 log |F|) bits
of communication, even for protocols that succeed with exponentially small probability (take R = n
and r = cn for a small constant c > 0).

Theorem 1.1 is optimal in a strong sense. Specifically, we have the following matching up-
per bound, which we prove by adapting Clarkson and Woodruff’s streaming algorithm for matrix
rank [9]. In the statement below, Rε denotes randomized (classical) communication complexity with
error ε.

Theorem 1.2 (Upper bound for rank problem). There is an absolute constant c > 0 such that for
all finite fields F and all integers n,m, r with min{n,m} > r > 0,

R1/3(RANKF,n,m
r ) 6 c(1 + r2 log |F|),

R 1
2
− 1

32|F|r
(RANKF,n,m

r ) 6 2.

This result shows that the lower bound of Theorem 1.1 is tight not only for quantum protocols
solving the partial problem RANKF,n,m

r,R but even for classical, bounded-error protocols solving the
total problem RANKF,n,m

r . Moreover, Theorem 1.2 shows that the error regime for which we prove
our lower bound in Theorem 1.1 is also optimal, in that the total rank problem has a classical
protocol with cost only 2 bits and error probability 1

2 − |F|
−Θ(r).

Theorem 1.1 generalizes to multiparty communication, as we discuss below in Section 1.5.

1.2. Streaming complexity. The streaming complexity of matrix rank has received extensive
attention in the literature [9, 27, 16, 4, 1, 2, 5]. In this model, an algorithm with limited space is
presented with a matrix M of order n over a given field, in row-major order. The objective is to
compute or approximate the rank of M , using either a single pass or multiple passes over M . Via
standard reductions, our Theorem 1.1 implies an essentially optimal lower bound on the streaming
complexity of approximating matrix rank. Unlike previous work, our result remains valid even for
polynomially many passes and even for correctness probability exponentially close to 1/2. Stated in
its most general form, our result is as follows.

Theorem 1.3. Let n, r,R be nonnegative integers with n/2 6 r < R 6 n, and let F be a finite field.
Define f : Fn×n → {−1, 1, ∗} by

f(M) =


−1 if rkM = r,

1 if rkM = R,

∗ otherwise.
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Let A be any randomized streaming algorithm for f with error probability 1
2 −

1
4 |F|

−(r−dn/2e)/3 that
uses k passes and space s. Then

sk = Ω

((
r −

⌈n
2

⌉)2
log |F|

)
.

By way of notation, recall that f in the above statement is a partial function, and A is allowed to
exhibit arbitrary behavior on matrices M where f(M) = ∗.

Corollary 1.4. Let F be a finite field, and let δ ∈ (1/2, 1) be any constant. Let A be a k-pass
streaming algorithm that takes as input a matrix M ∈ Fn×n (for any n > 5

δ−0.5) such that either
rkM = n or rkM = bδnc, and determines which is the case with probability of correctness at least
1
2 + |F|−(δ−0.5)n/5. Then A uses Ω( 1

k · n
2 log |F|) space.

Proof. Take R = n and r = bδnc in Theorem 1.3.

The space lower bound in Corollary 1.4 is essentially optimal since the rank of a matrixM ∈ Fn×n
can be computed exactly by a trivial, single-pass algorithm with space O(n2 log |F|). Prior to our
work, the strongest streaming lower bound for approximating matrix rank was due to Chen et al. [5].
For any constants ε > 0 and δ > 0, they proved that no o(

√
log n)-pass algorithm with space n2−ε

can distinguish between the cases rkM = n and rkM 6 δn with probability 2/3, where M is an
input matrix of order n over a finite field of size ω(n). Our Corollary 1.4 shows that distinguishing
between the cases rkM = n and rkM = bδnc requires n2−ε log |F| space even with k = Θ(nε) passes,
an exponential improvement on [5]. Moreover, Corollary 1.4 is valid for all finite fields regardless of
size, and holds even when the correctness probability is exponentially close to 1/2.

We now restate our streaming lower bound in more standard terminology. Recall that an algo-
rithm A with input M ∈ Fn×n approximates, with probability p, the rank of M within a factor
of c ∈ [1,∞) if for every input matrix M, the output of A is in the range [1

c rkM, c rkM ] with
probability at least p. We have:

Corollary 1.5. Let F be a finite field, and let c ∈ [1,
√

2) be any constant. Let A be a k-pass
streaming algorithm with input M ∈ Fn×n (for any n > 40

2−c2 ) that approximates, with probability at
least 1

2 + |F|−(2−c2)n/40, the rank of M within a factor of c. Then A uses Ω( 1
k · n

2 log |F|) space.

Proof. Define δ = 1
2(1

2 + 1
c2

). Since δ < 1/c2, algorithm A can be used to distinguish, with correctness
probability at least 1

2 + |F|−(2−c2)n/40, matrices M ∈ Fn×n of rank bδnc from those of rank n
(simply check if A ’s output is < n/c or > n/c). The correctness probability of this distinguisher
exceeds 1

2 + |F|−(bδnc−dn/2e)/3 due to n > 40/(2 − c2). Therefore, it uses Ω( 1
k · n

2 log |F|) space by
Theorem 1.3.

1.3. Determinant problem. Recall that a square matrix over a field F has full rank if and only
if its determinant is nonzero. As a result, the problem of computing the determinant has received
considerable attention in previous work on matrix rank, e.g., [7, 27, 16]. We are interested in the
most general form of the determinant problem, where Alice and Bob receive as input matrices
A,B ∈ Fn×n, respectively, and need to determine whether the determinant of A+B equals a or b.
The problem parameters a and b are distinct field elements that are fixed in advance. Formally, the
determinant problem is the partial communication problem on matrix pairs (A,B) given by

DETF,n
a,b (A,B) =


−1 if det(A+B) = a,

1 if det(A+B) = b,

∗ otherwise.
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Prior to our work, the strongest result on the determinant problem was due to Sun and Wang [27],
who proved a tight lower bound of Ω(n2 log |F|) for the randomized and quantum communication
complexity of DETF,n

a,b for nonzero a, b over any finite field F of prime order. They conjectured
the same lower bound for the case of arbitrary a, b. To see why the case of nonzero a, b is rather
special, observe that the number of matrices with determinant a is always the same as the number
of matrices with determinant b, with natural bijections between these two sets; but this is no
longer true if one of a, b is zero. This asymmetry suggests that the determinant problem requires a
substantially different approach when one of a, b is zero. In this work, we develop sufficiently strong
techniques to solve the determinant problem in full, thereby settling Sun and Wang’s conjecture in
the affirmative.

Theorem 1.6. There is an absolute constant c > 0 such that for every finite field F, every pair of
distinct elements a, b ∈ F, and all integers n > 2,

Q∗1
2
− 1

4|F|(n−1)/3
(DETF,n

a,b ) > cn2 log |F|.

The communication lower bound of Theorem 1.6 is best possible, up to the multiplicative constant c.
It matches the trivial, deterministic protocol where Alice sends her input matrix A to Bob using
n2dlog |F|e bits, at which point Bob computes det(A+B) and announces the output of the protocol.
Furthermore, the error regime in Theorem 1.6 is also essentially optimal because, for example, the
problem DETF,n

0,b has a randomized protocol with only 2 bits of communication and error probability
1
2 − Θ(|F|n−1), by taking r = n − 1 and R = m = n in Theorem 1.2. Lastly, we note that the
requirement that n > 2 in Theorem 1.6 is also necessary because the determinant problem for
1 × 1 matrices reduces to the equality problem with domain F × F and therefore has randomized
communication complexity O(1).

We prove Theorem 1.6 for all a, b from first principles, without relying on the work of Sun and
Wang [27]. In the case of nonzero a, b, we give a new proof that is quite short and uses only basic
Fourier analysis, unlike the rather technical proof of [27]. To settle the complementary case where
one of a, b is zero, we prove a stronger result of independent interest. Here, we introduce a natural
problem that we call RANKDETF,n

r,a , which combines features of the matrix rank and determinant
problems. It is parameterized by a nonzero field element a ∈ F and a nonnegative integer r < n,
and Alice and Bob’s objective is to distinguish input pairs (A,B) with rk(A + B) = r from those
with det(A+B) = a. We prove the following.

Theorem 1.7. There is an absolute constant c > 0 such that for every finite field F, every field
element a ∈ F \ {0}, and all integers n > r > 0,

Q∗1
2
− 1

4|F|r/3
(RANKDETF,n

r,a ) > c(1 + r2 log |F|).

Taking r = n−1 in this result settles Theorem 1.6 when one of a, b is zero, as desired. Theorem 1.7 is
optimal in a strong sense: even the total problem RANKF,n,n

r , which subsumes RANKDETF,n
r,a , has

bounded-error classical communication complexity O(1 + r2 log |F|) by Theorem 1.2. Theorem 1.7
for the RANKDETF,n

r,a problem significantly strengthens our main result, Theorem 1.1, for the
matrix rank problem RANKF,n,n

r,n (in the former problem, Alice and Bob distinguish rank r from
determinant a 6= 0; in the latter problem, they distinguish rank r from rank n).

Theorems 1.6 and 1.7 generalize to multiparty communication, as we discuss below in Section 1.5.

1.4. Subspace sum and intersection problems. There are two natural ways to recast the
computation of matrix rank as a communication problem. One approach, discussed in detail above,
is to assign matrices A and B to Alice and Bob, respectively, and require them to compute the rank
of A+B. Alternatively, one can require Alice and Bob to compute the rank of the matrix

[
A B

]
.
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This alternative approach is best described in the language of linear subspaces: letting S and T
stand for the column space of A and B, respectively, the rank of

[
A B

]
is precisely the dimension

of the linear subspace S + T generated by S and T . Here, we may assume that the dimensions of
S and T are known in advance because this information can be communicated at negligible cost.

In this way, one arrives at the subspace sum problem over a finite field F, where Alice receives as
input an m-dimensional linear subspace S ⊆ Fn and Bob receives an `-dimensional linear subspace
T ⊆ Fn. The integers m and ` are part of the problem specification and are fixed in advance. In the
promise version of the subspace sum problem, the objective is to distinguish subspace pairs with
dim(S + T ) = d1 from those with dim(S + T ) = d2, for distinct integers d1, d2 fixed in advance.
This corresponds to the partial function given by

SUMF,n,m,`
d1,d2

(S, T ) =


−1 if dim(S + T ) = d1,

1 if dim(S + T ) = d2,

∗ otherwise.

The corresponding total communication problem is that of determining whether S+T has dimension
at most d, for an integer d fixed in advance:

SUMF,n,m,`
d (S, T ) =

{
−1 if dim(S + T ) 6 d,

1 otherwise.

The total problem is more challenging than the promise problem in that SUMF,n,m,`
d1,d2

is a restriction
of SUMF,n,m,`

d1
, for any integers d1 < d2. As noted by many authors, from the standpoint of

communication complexity, computing the dimension of the subspace sum S + T is equivalent to
computing the dimension of the subspace intersection S ∩ T. This equivalence follows from the
identity dim(S + T ) = dim(S) + dim(T )− dim(S ∩ T ).

Despite the syntactic similarity between the matrix sum A+B and the corresponding subspace
sum S + T , the subspace sum problem appears to be significantly more subtle and technical. Pre-
vious work has focused on a special case that we call subspace disjointness (determining whether
Alice and Bob’s subspaces have trivial intersection, {0}) and the dual problem that we call vector
space span (determining if the sum of Alice and Bob’s subspaces is the entire vector space). These
two problems were studied in [18, 7], with an optimal lower bound of Ω(n2 log p) on their deter-
ministic communication complexity over a field with p elements. Sun and Wang [27] showed that
the Ω(n2 log p) lower bound for subspace disjointness remains valid even for randomized and quan-
tum communication. In follow-up work, Li, Sun, Wang, and Woodruff [16] proved an Ω(n2 log p)
quantum lower bound for a promise version of subspace disjointness, where Alice and Bob’s inputs
are n/2-dimensional subspaces that either have trivial intersection or intersect in a one-dimensional
subspace. The authors of [19] considered an asymmetric problem where Alice receives an n-bit vec-
tor, Bob receives a subspace, and their objective is to determine whether Alice’s vector is contained
in Bob’s subspace. They showed that in any randomized one-way protocol that solves this problem,
either Alice sends Ω(n) bits, or Bob sends Ω(n2) bits.

In summary, all previous lower bounds for two-way communication complexity have focused on
subspace disjointness or vector space span. The general problem, where Alice and Bob need to
distinguish between the cases dim(S + T ) = d1 and dim(S + T ) = d2, is substantially harder and
has remained unsolved. The difficulty is that previous results [27, 16] are based on a reduction
from the matrix rank problem to subspace disjointness, and this straightforward strategy does not
produce optimal results for the subspace sum problem with arbitrary parameters. In this paper,
we approach the subspace sum problem from first principles and solve it completely. Our solution
settles both the promise version of subspace sum and the corresponding total version. For clarity,
we first state our result in the regime of constant error.
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Theorem 1.8. Let F be a finite field with q = |F| elements, and let n,m, `, d,D be nonnegative
integers with max{m, `} 6 d < D 6 min{m+ `, n}. If m = ` = d, then

R1/3(SUMF,n,m,`
d ) = O(1).

If m, `, d are not all equal, then

Q∗1/3(SUMF,n,m,`
d,D ) = Θ((d−m+ 1)(d− `+ 1) log q),

R1/3(SUMF,n,m,`
d ) = Θ((d−m+ 1)(d− `+ 1) log q).

Several remarks are in order. Recall that in Fn, the sum of an m-dimensional subspace and an
`-dimensional subspace has dimension between max{m, `} and min{m + `, n}. This justifies the
above requirement that d,D ∈ [max{m, `},min{m + `, n}]. Theorem 1.8 shows that the promise
version of the subspace sum problem has the same communication complexity as the total version,
up to a constant factor. Moreover, the theorem shows that this communication complexity is the
same, up to a constant factor, for quantum and classical communication protocols. Both the lower
and upper bounds in Theorem 1.8 require substantial effort. Lastly, the degenerate case d = m = `
of the subspace sum problem is easily seen to be equivalent to the equality problem, which explains
the O(1) bound in the theorem statement.

In addition to the constant-error regime of Theorem 1.8, we are able to determine the communi-
cation complexity of subspace sum for essentially all settings of the error parameter, as follows.

Theorem 1.9. Let F be a finite field with q = |F| elements, and let n,m, `, d,D be nonnegative
integers with max{m, `} 6 d < D 6 min{m+ `, n}. If m = ` = d, then

R1/3(SUMF,n,m,`
d ) = O(1).

If m, `, d are not all equal, then for all γ ∈ [1
3q
−(2d−m−`)/5, 1

3 ],

Q∗1−γ
2

(SUMF,n,m,`
d,D ) = Θ((logqdqd−mγe+ 1)(logqdqd−`γe+ 1) log q),

R 1−γ
2

(SUMF,n,m,`
d ) = Θ((logqdqd−mγe+ 1)(logqdqd−`γe+ 1) log q)

and moreover

R 1
2
− 1

16q2d−m−`+16
(SUMF,n,m,`

d ) 6 2. (1.1)

Theorem 1.9 determines the communication complexity of subspace sum for every error probabil-
ity in [1

3 ,
1
2 −Θ(|F|−(2d−m−`)/5)]. This is essentially the complete range of interest because by (1.1),

the communication cost drops to 2 bits when the error probability is set to 1
2 − |F|

−(2d−m−`)−Θ(1).
Analogous to the constant-error regime, Theorem 1.9 shows that the communication complexity of
subspace sum for any error in [1

3 ,
1
2−Θ(|F|−(2d−m−`)/5)] is the same, up to a constant factor, for both

the partial and total versions of the problem, and for both quantum and classical communication.
Theorems 1.8 and 1.9 reveal a rather subtle dependence of the communication complexity on the
problem parameters d,m, `, particularly as one additionally varies the error parameter. This ex-
plains why we were not able to obtain these theorems via a reduction from the matrix rank problem,
as was done in previous work [27, 16] in the special case of subspace disjointness.

In view of the aforementioned identity dim(S+T ) = dim(S)+dim(T )−dim(S∩T ), our results for
subspace sum can be equivalently stated in terms of subspace intersection. Formally, the subspace
intersection problem requires Alice and Bob to distinguish subspace pairs (S, T ) with dim(S ∩T ) =
d1 from those with dim(S ∩T ) = d2, where S is an m-dimensional subspace given as input to Alice,
T is an `-dimensional subspace given to Bob, and d1, d2 are distinct integers fixed in advance. This
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corresponds to the partial function

INTERSECTF,n,m,`
d1,d2

(S, T ) =


−1 if dim(S ∩ T ) = d1,

1 if dim(S ∩ T ) = d2,

∗ otherwise.

The total version of the subspace intersection problem is given by

INTERSECTF,n,m,`
d (S, T ) =

{
−1 if dim(S ∩ T ) > d,

1 otherwise,

where d is a problem parameter fixed in advance. Theorem 1.9 fully settles the complexity of the
subspace intersection problem, as follows.

Theorem 1.10. Let F be a finite field with q = |F| elements, and let n,m, `, r, R be nonnegative
integers with max{0,m+ `− n} 6 r < R 6 min{m, `}. If m = ` = R, then

R1/3(INTERSECTF,n,m,`
R ) = O(1).

If m, `,R are not all equal, then for all γ ∈ [1
3q
−(m+`−2R)/5, 1

3 ],

Q∗1−γ
2

(INTERSECTF,n,m,`
r,R ) = Θ((logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q),

R 1−γ
2

(INTERSECTF,n,m,`
R ) = Θ((logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q)

and moreover

R 1
2
− 1

16qm+`−2R+16
(INTERSECTF,n,m,`

R ) 6 2.

Amoment’s reflection (see Proposition 2.25) shows that in Fn, the intersection of anm-dimensional
subspace and an `-dimensional subspace is a subspace of dimension between max{0,m+ `−n} and
min{m, `}, hence the requirement that r,R ∈ [max{0,m + ` − n},min{m, `}]. Remarks analogous
to those for subspace sum apply to Theorem 1.10 as well. Specifically, Theorem 1.10 determines the
ε-error communication complexity of subspace intersection for all ε ∈ [1

3 ,
1
2 − Θ(|F|−(m+`−2R)/5)],

which is essentially the complete range of interest because the communication cost drops to 2 bits
when the error probability is set to 1

2 − |F|
−(m+`−2R)−Θ(1). Also, Theorem 1.10 shows that in this

range of interest, the ε-error communication complexity of subspace intersection is the same (up to
a constant factor) for both the partial and total versions of the problem, and for both quantum and
classical communication.

1.5. Multiparty lower bounds. Via a blackbox reduction which we will now describe, our lower
bounds for the matrix rank and determinant problems scale to multiparty communication. We adopt
the standard multiparty model known as the number-in-hand blackboard model, which features t
communicating players and a (possibly partial) function F : X1×X2× · · · ×Xt → {−1, 1, ∗} with t
arguments. An input (x1, x2, . . . , xt) is partitioned among the t players by assigning xi to the i-th
player. The players communicate by writing on a shared blackboard. They also have access to an
unbounded supply of shared random bits, which they can use in deciding what to do at any given
point in the protocol. In the end, they must all agree on a bit (−1 or 1) that represents the output
of the protocol. The cost of a communication protocol is the maximum number of bits written
on the blackboard in the worst-case execution. The ε-error randomized communication complexity
Rε(F ) of a given function F is the least cost of a protocol that computes F with probability of error
at most ε on every input. As usual, the standard setting of the error parameter is ε = 1/3, which
can be replaced with any other constant in (0, 1/2) at the expense of a constant-factor change in
communication complexity. This model subsumes Yao’s two-party randomized model as a special
case, which justifies our continued use of the notation Rε(F ). We note that there are alternative
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number-in-hand models, where instead of a shared blackboard, the parties communicate via private
channels (the message-passing model) or through an intermediary (the coordinator model). The
blackboard model is more powerful than these alternative models, and lower bounds in it are more
widely applicable.

Phillips, Verbin, and Zhang [20] developed a symmetrization technique that transforms two-
party communication lower bounds for a class of problems into multiparty lower bounds. Our
communication problems have a large symmetry group and are particularly well-suited for the
methods of [20]. Using their technique, we prove the following.

Proposition 1.11. Let (X,+) be a finite Abelian group, and let f : X → {−1, 1, ∗} be a given
function. For t > 2, let Ft : Xt → {−1, 1, ∗} be the t-party communication problem given by
Ft(x1, x2, . . . , xt) = f(x1 + x2 + · · ·+ xt). Then for all t > 2,

R1/6(Ft) >
1

12
tR1/3(F2).

In other words, as one transitions from two parties to t parties, the communication complexity
scales by a factor of Ω(t). This proposition, proved in Appendix B, simplifies and generalizes an
earlier result due to Li, Sun, Wang, and Woodruff [16, Theorem 7]. The matrix rank problem,
determinant problem, and rank versus determinant problem all admit multiparty generalizations
that fit perfectly into the framework of Proposition 1.11, with the Abelian group in all cases being
the group of matrices under addition. To begin with, the t-party matrix rank problem is given by
RANKF,n,m,t

r,R (M1,M2, . . . ,Mt) = rankF,n,m
r,R (

∑
Mi), where the matrix function rankF,n,m

r,R : Fn×m →
{−1, 1, ∗} outputs −1 on matrices of rank r, outputs 1 on matrices of rank R, and outputs ∗ in all
other cases. Theorem 1.1 and Proposition 1.11 imply the following.

Theorem 1.12. For all finite fields F, all integers n,m,R, r with min{n,m} > R > r > 0, and all
t > 2,

R1/3(RANKF,n,m,t
r,R ) = Ω(t+ tr2 log |F|).

Continuing, the t-party determinant problem is given by DETF,n,t
a,b (M1,M2, . . . ,Mt) = detF,na,b (

∑
Mi),

where the matrix function detF,na,b : Fn×n → {−1, 1, ∗} outputs −1 on matrices with determinant a,
outputs 1 on matrices with determinant b, and outputs ∗ in all other cases. Theorem 1.6 and
Proposition 1.11 yield:

Theorem 1.13. For every finite field F, every pair of distinct elements a, b ∈ F, and all integers
n > 2 and t > 2,

R1/3(DETF,n,t
a,b ) = Ω(tn2 log |F|).

Finally, the t-party rank versus determinant problem is given by RANKDETF,n,t
r,a (M1,M2, . . . ,Mt) =

rankdetF,nr,a (
∑
Mi), where the matrix function rankdetF,nr,a : Fn×n → {−1, 1, ∗} outputs −1 on ma-

trices of rank r, outputs 1 on matrices with determinant a, and outputs ∗ in all other cases. The
following multiparty result is immediate from Theorem 1.7 and Proposition 1.11.

Theorem 1.14. For every finite field F, every field element a ∈ F \ {0}, and all integers n > r > 0
and t > 2,

R1/3(RANKDETF,n,t
r,a ) = Ω(t+ tr2 log |F|).

Theorems 1.12 and 1.14 are tight for every r > 1 in a very strong sense: we give a t-party
protocol with error 1/3 and communication cost O(t(r2 + 1) log |F|) for checking whether the sum
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of the players’ matrices has rank at most r (see Corollary 3.17 in Section 3.7). Theorem 1.13 is
tight because the stated lower bound matches the trivial, deterministic protocol where each party
announces their input. Since the blackboard model is more powerful than the message-passing and
coordinator models, Theorems 1.12–1.14 are valid in those alternative models as well.

1.6. Bilinear query complexity. Our communication lower bounds additionally imply new re-
sults in query complexity. We adopt the bilinear query model due to Rashtchian, Woodruff, and
Zhu [21], which subsumes a large number of other query models and is particularly well-suited
for linear-algebraic problems. Formally, let f : Fn×m → {−1, 1, ∗} be a (possibly partial) Boolean
function on matrices over a field F. In the bilinear query model, the query algorithm accesses the
input X ∈ Fn×m in an adaptive manner with bilinear queries. Each such query reveals the value
uTXv ∈ F for a pair of vectors u ∈ Fn, v ∈ Fm of the algorithm’s choosing. As usual, a randomized
query algorithm is a probability distribution on deterministic query algorithms. The cost of a query
algorithm is the maximum number of queries in the worst-case execution. The ε-error bilinear query
complexity of f, which we denote by BLQε(f), is the minimum cost of a bilinear query algorithm
that computes f with probability of error at most ε on every input. As always, the algorithm may
exhibit arbitrary behavior on inputs X with f(X) = ∗.

Recall the matrix functions rankF,n,m
r,R ,detF,na,b , rankdetF,nr,a that correspond to the matrix rank prob-

lem, determinant problem, and rank versus determinant problem and were formally defined in Sec-
tion 1.5. Our next result settles their bilinear query complexity for all settings of the parameters
n,m, r,R, a, b.

Theorem 1.15. Let F be a finite field. Then:
(i) for all integers n,m,R, r with min{n,m} > R > r > 0,

BLQ 1
2
− 1

4|F|r/3
(rankF,n,m

r,R ) = Ω(r2 + 1);

(ii) for every pair of distinct elements a, b ∈ F and all integers n > 1,

BLQ 1
2
− 1

4|F|(n−1)/3
(detF,na,b ) = Ω(n2);

(iii) for every field element a ∈ F \ {0} and all integers n > r > 0,

BLQ 1
2
− 1

4|F|r/3
(rankdetF,nr,a ) = Ω(r2 + 1).

Proof. For a matrix function f : Fn×m → {−1, 1, ∗}, consider the associated communication problem
F : Fn×m×Fn×m → {−1, 1, ∗} given by F (A,B) = f(A+B). As observed by the authors of [21], a
cost-c randomized algorithm for f in the bilinear query model gives a randomized communication
protocol for F of cost 2dlog |F|ec. Specifically, on input A for Alice and B for Bob, they simulate
the query algorithm on A + B. Computing a query uT(A + B)v for given vectors u, v amounts to
exchanging the field elements uTAv and uTBv. In summary,

Rε(F ) 6 2dlog |F|eBLQε(f).

Now the claimed query lower bounds in (i)–(iii)are immediate from our corresponding communica-
tion complexity results (Theorems 1.1, 1.6, and 1.7) as well as the trivial query lower bound of 1
for any nonconstant function.

Every lower bound in Theorem 1.15 is tight, even for computation with error probability 1/3. To
prove the tightness of Theorem 1.15(i) and 1.15(iii), we give a query algorithm with error probability
1/3 and cost O(r2 + 1) for checking whether the input matrix has rank at most r (see Theorem 3.18
in Section 3.7). Finally, the lower bound in Theorem 1.15(ii) matches the trivial, deterministic
upper bound of n2 queries.
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The strongest result prior to our work was an Ω(n2) query lower bound due to Rashtchian,
Woodruff, and Zhu [21] for distinguishing, with probability 2/3, matrices of rank n− 1 from those
of rank n. Theorem 1.15(i) shows that the Ω(n2) query lower bound remains valid even for distin-
guishing matrices of rank cn (for any constant c > 0) from those of rank n, and even for correctness
probability exponentially close to 1/2. In particular, Theorem 1.15(i) shows that Ω(n2) bilinear
queries are needed to approximate the rank of a matrix to any constant factor.

1.7. Previous approaches. A powerful tool for proving lower bounds on randomized and quan-
tum communication complexity is the approximate trace norm [30, 13, 22, 17, 24]. In more detail,
let F : X×Y → {−1, 1} be a given communication problem, and let M = [F (x, y)]x,y be its charac-
teristic matrix. The δ-approximate trace norm of M , denoted ‖M‖Σ,δ, is the minimum trace norm
of a real matrix M̃ that approximates M entrywise within δ. The approximate trace norm bound
states that

Q∗ε(F ) >
1

2
log

(
‖M‖Σ,2ε

3
√
|X||Y |

)
(1.2)

for all ε > 0, making it possible to prove communication lower bounds by analyzing the approximate
trace norm of M . To bound the approximate trace norm from below, it is useful to appeal to its
dual formulation as a maximization problem, whereby

‖M‖Σ,2ε >
〈M,Φ〉 − 2ε‖Φ‖1

‖Φ‖
(1.3)

for every nonzero real matrix Φ. As a result, proving a communication lower bound reduces to
constructing a matrix Φ whose spectral norm and `1 norm are small relative to the inner product
of Φ with the communication matrix M . The matrix Φ is often referred to as a dual matrix or a
witness. The lower bound (1.2) remains valid for partial functions F : X×Y → {−1, 1, ∗} and their
characteristic matrices M , in which case the dual characterization of the approximate trace norm
is given by

‖M‖Σ,2ε >
1

‖Φ‖

 ∑
domF

Mx,yΦx,y − 2ε‖Φ‖1 −
∑

domF

|Φx,y|

 (1.4)

for all Φ 6= 0. In this equation, domF = {(x, y) : F (x, y) 6= ∗} denotes the domain of the partial
function F . Comparing this dual characterization with the original one (1.3) for total functions,
we notice that the inner product is now restricted to the domain of F, and there is an additional
penalty term for any weight placed by Φ outside the domain of F. For more background on the use
of duality in proving communication lower bounds, we refer the reader to the surveys [23, 15].

Main idea in [27], [16]. Constructing a good witness Φ can be very challenging. Sun and Wang [27]
studied the nonsingularity problem over fields Fp of prime order p, where Alice and Bob’s inputs are
matrices A,B ∈ Fn×np , respectively, and they are required to output 1 if A+ B is nonsingular and
−1 otherwise. Let M be the characteristic matrix of this communication problem. To analyze the
approximate trace norm of M, the authors of [27] use the witness Φ = [(−1)nĝ(A+ B)]A,B, where
ĝ is the Fourier transform of the function g : Fn×np → {0, 1} given by g(X) = 1 if and only if X is
nonsingular. The calculations in [27] reveal the following, where C > 6 is an absolute constant:
(i) ‖Φ‖ = 1;
(ii) 〈M,Φ〉 = 2pn

2−n∏n
i=1(pi − 1);

(iii) ‖Φ‖1 6 Cpn
2−n∏n

i=1(pi − 1).
Using this witness Φ in (1.3) with a sufficiently small error parameter ε, Sun and Wang obtain
‖M‖Σ,2ε = Ω(pn

2
pn(n−1)/2), which in view of (1.2) gives an Ω(n2 log p) lower bound on the bounded-

error communication complexity of the nonsingularity problem.



THE COMMUNICATION COMPLEXITY OF APPROXIMATING MATRIX RANK 13

In follow-up work, Li, Sun, Wang, and Woodruff [16] studied the partial communication problem
F = RANK

Fp,n,n
n−1,n . Let M ′ denote its characteristic matrix. The authors of [16] used the same

witness Φ as Sun and Wang [27] and proved the following:

(i) ‖Φ‖ = 1;
(ii)

∑
domF M

′
A,BΦA,B = pn

2−n(1 + p−p−n+1

p−1 )
∏n
i=1(pi − 1);

(iii) ‖Φ‖1 = pn
2−n∏n−1

i=0 (1 + p−i) ·
∏n
i=1(pi − 1);

(iv)
∑

domF |ΦA,B| = ‖Φ‖1 −
∑

domF M
′
A,BΦA,B.

Making these substitutions in (1.4) and setting ε to a sufficiently small constant, the authors of [16]
obtain ‖M ′‖Σ,2ε = Ω(pn

2
pn(n−1)/2), which along with (1.2) results in an Ω(n2 log p) lower bound

on the quantum communication complexity of F = RANK
Fp,n,n
n−1,n . We note that we have described

the work of [27, 16] in the framework that we adopt in our paper, which differs somewhat from
the original presentation in [27, 16]. These differences do not affect any of the ideas or bounds in
question.

Unfortunately, the above analyses rely heavily on ε being set to a small constant. This is because
‖Φ‖1 is too large compared to the inner product 〈M,Φ〉 and the correlation

∑
domF M

′
A,BΦA,B,

which makes setting ε close to 1/2 impossible. Since the authors of [16] determined ‖Φ‖1 and∑
domF M

′
A,BΦA,B exactly, with equality, there is no room for improved analysis and no possibility

of setting ε close to 1/2 with this choice of witness Φ. This rules out the use of Φ for proving
Theorem 1.1 even in the special case of RANKF,n,n

n−1,n.
When it comes to the general problem RANKF,n,n

r,n , the witness Φ produces no meaningful results
at all for any r 6 n − 3, regardless of the error parameter ε. The issue is that the `1 norm of Φ
is concentrated on matrix pairs (A,B) for which A + B has rank n or n − 1, whereas the domain
of RANKF,n,n

r,n consists of matrix pairs whose sum has rank n or r. Quantitatively, the domain of
RANKF,n,n

r,n supports less than half of the `1 norm of Φ, which causes the lower bound in (1.4) to
be negative for every ε. Our attempts at simple modifications to Φ were not successful.

1.8. Our approach. Our techniques depart substantially from the previous work in [27, 16]. In-
stead of attempting to guess a good witness Φ and analyzing its metric and analytic properties,
we determine how exactly those properties depend on the choice of a witness. In this way, we are
able to construct essentially optimal witnesses for the matrix rank, determinant, subspace sum,
and subspace intersection problems. We first discuss the matrix rank problem, over an arbitrary
finite field F. In this overview, we focus on the canonical case F = RANKF,n,n

k,n , where Alice and
Bob receive square matrices A,B ∈ Fn×n, respectively, and need to decide whether rk(A+B) = k
or rk(A + B) = n. This special case captures the matrix rank problem in its full generality via
straightforward reductions.

Reducing the degrees of freedom. We will call a witness Φ symmetric if each entry ΦA,B is fully
determined by the rank of A + B. In searching for a good witness for the matrix rank problem,
we will only consider symmetric witnesses Φ. This restriction is without loss of generality: since
F (A,B) depends only on the rank of A+B, it is not hard to verify that any witness for F can be
“symmetrized” without harming the corresponding value of the approximate trace norm bound, (1.4).
The resulting witness matrix Φ has only n+ 1 degrees of freedom, corresponding to every possible
value of the rank of A+B.

Let i ∈ {0, 1, . . . , n} be given. Consider the matrix whose rows and columns are indexed by
elements of Fn×n, and whose (A,B) entry is defined to be 1 if rk(A + B) = i and zero otherwise.
Normalize this matrix to have `1 norm 1, and call the resulting matrix Ei. Then any symmetric
witness matrix is a linear combination of E0, E1, . . . , En. With this in mind, for any real function
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ϕ : {0, 1, . . . , n} → R, we define

Eϕ = ϕ(0)E0 + ϕ(1)E1 + · · ·+ ϕ(n)En.

Taking Φ = Eϕ in the approximate trace norm bound (1.4) and simplifying, we arrive at the
following bound for the characteristic matrix M of F :

‖M‖Σ,2ε >
1

‖Eϕ‖

ϕ(n)− ϕ(k)− 2ε‖ϕ‖1 −
∑

i/∈{k,n}

|ϕ(i)|

 . (1.5)

Our challenge now is to understand how ϕ affects the spectral norm of Eϕ. For matrices with a large
symmetry group, it is reasonable to expect algebraic structure in the spectrum. For example, the
so-called combinatorial matrices, studied by Knuth [12] and used for communication lower bounds
by Razborov [22], have all eigenvalues described in terms of Hahn polynomials. We will similarly
see that the spectrum of each Eϕ has strong algebraic structure and is described in terms of what
we call hyperpolynomials.

By analyzing the singular values of Eϕ, we prove that

‖Eϕ‖ = q−n
2

max
s=0,1,...,n

∣∣∣∣∣
n∑
t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣ , (1.6)

where q is the order of the finite field F, and Γn is an auxiliary function. In more detail, we define

Γn(s, t) = E
rkA=s
rkB=t

ω〈A,B〉,

where ω is a primitive root of unity of order equal to the characteristic of F, with the operation x 7→
ωx for field elements x ∈ F deferred to Section 2.4. An exact expression for Γn(n, t) can be obtained
from the analysis of the Fourier spectrum of the nonsingularity function in [27]. Understanding
Γn(s, t) for general s, t, however, is rather nontrivial. To this end, we derive the representation

Γn(s, t) =
n∑
r=0

Pn(s, t, r)Γn(n, r),

where Pn(s, t, r) is the probability that the upper-left s×t quadrant of a uniformly random nonsingu-
lar matrix of order n has rank r. By explicitly calculating the probabilities Pn(s, t, r) and combining
them with the closed-form expression for Γn(n, r), we obtain the upper bound |Γn(s, t)| 6 cq−st/2

for an absolute constant c. In addition to this analytic property, we establish the following algebraic
result: for n, s fixed, Γn(s, t) as a function of t ∈ {0, 1, . . . , n} is a polynomial in q−t of degree at
most s. These two properties play a central role in our analysis. In what follows, we will refer to a
polynomial in q−t as a hyperpolynomial in t.

Univariate object for the rank problem. Since (1.5) is invariant under multiplication of ϕ by a
positive factor, we will normalize ϕ such that ϕ(n) = 1. To achieve a large value on the right-
hand side of (1.5), we will construct a function ϕ that is negative at k, has `1 norm concentrated
on {k, n}, and results in Eϕ having a small spectral norm. In view of (1.6), the spectral norm
requirement amounts to a bound on maxs |

∑n
t=0 ϕ(t)Γn(s, t)|. Quantitatively speaking, to obtain

an asymptotically optimal lower bound for the matrix rank problem, we need ϕ to satisfy the
following constraints:

(i) ϕ(n) = 1;
(ii) ϕ(k) < 0;

(iii)
∑

i/∈{k,n} |ϕ(i)| = q−Ω(k);

(iv) |
∑n

t=0 ϕ(t)Γn(s, t)| = q−Ω(k2) for every s ∈ {0, 1, . . . , n}.
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The last requirement states that ϕ needs to be almost orthogonal to each Γn(s, t), viewed as a
function of t with fixed s. Recall from our earlier discussion that for s and n fixed, Γn(s, t) is
a hyperpolynomial of low degree, namely, a polynomial in q−t of degree at most s. To achieve
orthogonality to hyperpolynomials of low degree, we leverage the Cauchy binomial theorem [26,
eqn. (1.87)], which implies that

n∑
t=0

(
n

t

)
q

(−1)tq(
t
2)g(q−t) = 0 (1.7)

for every polynomial g of degree less than n. In particular, defining ϕ(t) =
(
n
t

)
q
(−1)tq(

t
2) for

t = 0, 1, . . . , n ensures that ϕ is exactly orthogonal to each hyperpolynomial Γn(s, t) for s < n.
Unfortunately, this choice of ϕ does not satisfy our constraint on the distribution of the `1 norm
because most of it would be concentrated on the values ϕ(t) at points t ≈ n. To overcome this
difficulty, we apply a hyperpolynomial of low degree to achieve the desired distribution of the `1
norm. Specifically, we set

ϕ(t) =

(
n

t

)
q

(−1)t−nq(
t
2)−(n2)ζ(q−t)

for a carefully constructed polynomial ζ; the factor (−1)−nq−(n2) in this formula serves to normalize
ϕ and ensure the proper signs. As we increase the degree of ζ, we improve the distribution of the
`1 norm of ϕ at the expense of a weaker orthogonality guarantee, for now ϕ is orthogonal only to
hyperpolynomials of degree less than n − deg ζ. With an appropriate choice of ζ, we are able to
ensure all four desiderata (i)–(iv) for the univariate function ϕ. The most technical part of the
analysis is the upper bound in (iv). For s small, our construction guarantees (iv) as a consequence
of the Cauchy binomial theorem, with

∑n
t=0 ϕ(t)Γn(s, t) = 0. For s large, we use the pointwise

bounds for ϕ and Γn and show that
∑n

t=0 |ϕ(t)| |Γn(s, t)| = q−Ω(k2).
By combining equations (1.5) and (1.6) with the properties (i)–(iv) of the univariate function ϕ,

we derive the following bound on the approximate trace norm: ‖M‖Σ,2ε > (1−2ε−q−Ω(k))qn
2
qΩ(k2).

Applying the approximate trace norm method (1.2), we obtain the sought lower bound of Ω(k2 log q)

on the quantum communication complexity of F for error ε = 1
2 − q

−Θ(k). To achieve the error
probability as stated in Theorem 1.1, we derive bounds for ϕ with explicit constants, which we did
not discuss in this proof sketch.

The determinant problem. To solve the determinant problem DETF,n
a,b for all field elements a, b, we

combine our approach to the matrix rank problem presented above with additional Fourier-theoretic
ideas. Recall that we tackle the determinant problem from first principles, without relying on the
partial solution for nonzero a, b due to Sun and Wang [27]. With this in mind, we will first discuss
the case of nonzero a, b. Consider the function ga,b : Fn×n → {−1, 1, 0} given by

ga,b(X) =


−1 if detX = a,

1 if detX = b,

0 otherwise.

A simple argument reveals that the Fourier coefficients of ga,b corresponding to singular matrices are
zero, whereas those corresponding to nonsingular matrices M depend only on det(M). By applying
Parseval’s identity, we obtain a strong upper bound on the absolute value of every Fourier coefficient
of ga,b:

‖ĝa,b‖∞ 6
1√

|SL(F, n)|
,
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where SL(F, n) denotes the special linear group of order-n matrices over F. Consider now the matrix
Φa,b whose rows and columns are indexed by elements of Fn×n and whose entries are given by
Φa,b(A,B) = ga,b(A+B). The spectral norm of Φa,b is governed by the Fourier coefficients of ga,b,
with

‖Φa,b‖ = qn
2‖ĝa,b‖∞ 6

qn
2√

|SL(F, n)|
.

Observe that Φa,b is precisely the characteristic matrix of DETF,n
a,b with the ∗ entries replaced with

zeroes. Using Φa,b as a witness in the approximate trace norm method, we immediately obtain
Theorem 1.6 for nonzero a, b.

Consider now the complementary case when one of a, b is zero, say, a 6= 0 and b = 0. Here, we
study the rank versus determinant problem RANKDETF,n

k,a , which in this case is a subproblem of the
determinant problem. Its parameters are an integer k ∈ {0, 1, . . . , n−1} and a nonzero field element
a ∈ F. Recall that in this problem, Alice and Bob are given matrices A,B ∈ Fn×n, respectively,
and are called upon to distinguish between the cases rk(A + B) = k and det(A + B) = a. To
construct a witness for RANKDETF,n

k,a , we combine our solutions to the matrix rank problem and
the determinant problem for nonzero field elements. In more detail, consider the witness Φ for the
problem RANKF,n,n

k,n that we sketched above. Recall that ΦA,B depends only on the rank of A+B,

and moreover the `1 norm of Φ is concentrated on matrix pairs (A,B) with rk(A + B) ∈ {k, n}.
To turn Φ into a witness for RANKDETF,n

k,a , we form a linear combination of Φ with the matrices
Φa,b for all b ∈ F \ {0, a}, constructed in the previous paragraph for the determinant problem with
nonzero field elements. The coefficients in this linear combination are chosen so as to transfer the `1
weight placed by Φ on matrix pairs with det(A+B) /∈ {0, a} to the matrix pairs with det(A+B) = a,
without affecting any other entries of Φ. The resulting dual witness has low spectral norm (being
the sum of matrices with low spectral norm) and has its `1 norm concentrated on matrix pairs
(A,B) for which A + B has rank k or determinant a, ensuring strong correlation with the partial
function RANKDETF,n

k,a . By applying the approximate trace norm method, we obtain the claimed
communication lower bounds for RANKDETF,n

k,a .

Subspace sum and intersection. We now present the main ideas in our solution to the subspace
sum and subspace intersection problems. Since these problems are equivalent, we will discuss the
intersection problem alone. As before, we work with an arbitrary finite field F, whose order we
denote by q. Also by way of notation, recall that m and ` stand for the dimensions of Alice’s
subspace S and Bob’s subspace T, respectively. For simplicity, we will assume in this overview that
the dimension n of the ambient vector space satisfies n > m+`, which ensures that dim(S∩T ) takes
on every possible value in {0, 1, 2, . . . ,min{m, `}} as one varies the subspaces S, T. We will focus on
the canonical case of the subspace intersection problem where Alice and Bob need to distinguish
subspace pairs with dim(S ∩ T ) = 0 from those with dim(S ∩ T ) = R, for an integer R with
0 < R 6 min{m, `}. In what follows, we let F = INTERSECTF,n,m,`

0,R stand for this communication
problem of interest. The general case of the subspace intersection problem, which we will not discuss
in this overview, reduces to this canonical case.

As before, the challenge is to construct a dual matrix Φ that witnesses a strong lower bound on the
approximate trace norm of the characteristic matrix M of F . Note that the rows of Φ are indexed
by m-dimensional subspaces, and the columns are indexed by `-dimensional subspaces. Analogous
to the matrix rank problem, we start with the methodological observation that the symmetry of F
greatly reduces the number of degrees of freedom in Φ. Specifically, F (S, T ) by definition depends
only on dim(S ∩ T ). A moment’s thought now shows that any dual matrix Φ for the subspace
intersection problem can be “symmetrized” such that its (S, T ) entry depends only on dim(S ∩ T ),
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and this symmetrization can only improve the resulting lower bound on the approximate trace norm
in (1.4).

For r = 0, 1, . . . ,min{m, `}, let Jn,m,`r stand for the matrix whose rows are indexed by m-
dimensional subspaces of Fn, whose columns are indexed by `-dimensional subspaces of Fn, and
whose (S, T ) entry is 1 if dim(S ∩ T ) = r and zero otherwise. Put another way, Jn,m,`r is the char-
acteristic matrix of subspace pairs whose intersection has dimension r. For an arbitrary function
ψ : {0, 1, . . . ,min{m, `}} → R, we define

Jn,m,`ψ =

min{m,`}∑
r=0

ψ(r)Jn,m,`r .

We refer to this family of matrices, whose (S, T ) entry depends only on dim(S ∩ T ), as subspace
matrices. It will also be helpful to have notation for normalized versions of these matrices, as follows:

J
n,m,`
r =

1

‖Jn,m,`r ‖1
Jn,m,`r , J

n,m,`
ψ =

min{m,`}∑
r=0

ψ(r)

‖Jn,m,`r ‖1
Jn,m,`r .

In this notation, we are looking to construct a dual witness of the form Φ = J
n,m,`
ψ for some function

ψ. This matrix has min{m, `} + 1 degrees of freedom, corresponding to every possible value that
dim(S∩T ) can take. Setting Φ = J

n,m,`
ψ in the approximate trace norm bound (1.4) and simplifying,

one obtains the following bound for the characteristic matrix M of F :

‖M‖Σ,2ε >
1

‖Jn,m,`ψ ‖

−ψ(0) + ψ(R)− 2ε‖ψ‖1 −
∑

i/∈{0,R}

|ψ(i)|

 . (1.8)

At first glance, this equation looks similar to the corresponding equation (1.5) for the matrix rank
problem. However, there is a major difference: the spectral norm of Eϕ is now replaced with the
spectral norm of Jn,m,`ψ , and there is no reason to expect that these quantities depend on their

corresponding univariate objects ϕ and ψ in a similar way. Indeed, our spectral analysis of Jn,m,`ψ

is quite different and significantly more technical than that of Eϕ.

Analyzing the spectrum of subspace matrices. Symmetric subspace matrices Jn,m,mψ are classical
objects whose eigenvectors and eigenvalues have been studied in numerous works, e.g., [10, 11, 3, 8].
However, these previous analyses do not seem to apply to the general, asymmetric case of interest
to us, namely, that of subspace matrices Jn,m,`ψ for arbitrary m, `. One way to reduce the analysis
of the spectral norm of Jn,m,`ψ to the symmetric case is to express the product Jn,m,`ψ (Jn,m,`ψ )T =

Jn,m,`ψ Jn,`,mψ as the sum of symmetric subspace matrices and then apply known results for the
symmetric case. Unfortunately, multiplying these subspace matrices leads to expressions so unwieldy
and complicated that this is clearly not the method of choice.

Instead, our analysis is inspired by a result of Knuth [12] on what he called combinatorial matrices,
which we briefly mentioned above. Specifically, Knuth investigated the eigenvalues of symmetric
matrices of order

(
n
t

)
whose rows and columns are indexed by t-element subsets of {1, 2, . . . , n} and

whose (A,B) entry depends only on |A ∩ B|. To determine the eigenvectors of a combinatorial
matrix, Knuth studied certain homogeneous linear systems with variables indexed by subsets of
a fixed cardinality s, and the equations themselves corresponding to sets of cardinality s − 1.
He showed that any solution to such a system for s ∈ {1, 2, . . . , t} is an eigenvector for every
combinatorial matrix of order

(
n
t

)
. Knuth also proved that for any given s, the space of solutions

has a basis supported on the variables indexed by what he called basic sets. These sets have a simple
combinatorial description, which the author of [12] used to prove that the eigenvectors arising from
the homogeneous systems for s = 1, 2, . . . , t, together with the all-ones vector, form an exhaustive
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description of the eigenvectors of each combinatorial matrix. Once the eigenvectors are determined,
one readily calculates their associated eigenvalues and in particular the spectral norm.

With some effort, we are able to adapt Knuth’s ideas to the context of subspaces. Along the
way, we encounter several obstacles. To begin with, counting problems that are straightforward for
sets become challenging for subspaces, and some intuitive combinatorial principles no longer work.
For example, the inclusion-exclusion formula dim(S + T ) = dim(S) + dim(T )− dim(S ∩ T ) has no
analogue for three or more subspaces. Another obstacle is that Knuth’s notion of a basic set does
not seem to have a meaningful analogue for subspaces. For this reason, we reformulate Knuth’s
ideas in a purely linear-algebraic way and sidestep much of the combinatorial machinery in [12].
The final hurdle is extending Knuth’s analysis to the asymmetric case. Ultimately, we are able to
determine the singular values and spectral norm of every subspace matrix Jn,m,`ψ and in particular

its normalized version Jn,m,`ψ . We prove that

‖Jn,m,`ψ ‖ = max
s=0,1,...,min{m,`}

∣∣∣∣∣∣
min{m,`}∑
r=0

ψ(r)Λ
n,m,`
r (s)

∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣

min{m,`}∑
r=0

ψ(r)Λ
n,`,m
r (s)

∣∣∣∣∣∣
1/2

, (1.9)

where Λ
n,m,`
r and Λ

n,`,m
r are functions with algebraic and analytic properties analogous to those of

the Γn function in our solution to the matrix rank problem. Specifically, we have:

(i) for n,m, `, s fixed, Λ
n,m,`
r (s) as a function of r ∈ {0, 1, . . . ,min{m, `}} is a polynomial in qr

of degree at most s;
(ii) |Λn,m,`

r (s)| 6 8
(
n
m

)−1

q
q−s(m−r)/2 for r = 0, 1, . . . ,min{m, `}.

By swapping the roles of m and `, one obtains analogous properties for Λ
n,`,m
r (s).

This spectral result gives us fine-grained control over the spectrum of Jn,m,`ψ via the univariate
function ψ. Our construction of ψ is based on the Cauchy binomial theorem and is conceptually
similar to our univariate function ϕ in the matrix rank problem. In particular, we use the algebraic
property (i) to bound the product in (1.9) for small s, and the analytic property (ii) to bound it for
large s. We further ensure that the `1 norm of ψ is highly concentrated on {0, R}, with ψ(0) < 0
and ψ(R) > 0. This results in a strong lower bound in (1.8), which in turn leads to an optimal lower
bound on the communication complexity of F by virtue of the approximate trace norm method.

2. Preliminaries

2.1. General notation. We view Boolean functions as mappings X → {−1, 1}, where X is a
nonempty finite set and the range elements −1, 1 correspond to “true” and “false,” respectively. A
partial Boolean function is a mapping f : X → {−1, 1, ∗}, whose domain is defined as dom f =
{x ∈ X : f(x) 6= ∗}. Recall that for an arbitrary function f : X → Y, the restriction of f to a subset
X ′ ⊆ X is defined to be the mapping f |X′ : X ′ → Y given by (f |X′)(x) = f(x).

We adopt the shorthand [n] = {1, 2, . . . , n}.We use the letters p and q throughout this manuscript
to refer to a prime number and a prime power, respectively. As usual, Fq stands for the Galois field
GF(q), the q-element field which is unique up to isomorphism. For a given set X, the Kronecker
delta δx,y is defined for x, y ∈ X by

δx,y =

{
1 if x = y,

0 otherwise.

For a function f : X → C, we use the familiar norms ‖f‖1 =
∑

x∈X |f(x)| and ‖f‖∞ = maxx∈X |f(x)|.
Similarly, for a real or complex matrix M, one defines ‖M‖1 =

∑
|Mi,j | and ‖M‖∞ = max |Mi,j |.

The norms ‖v‖1 and ‖v‖∞ for a real or complex vector v are defined analogously. The Euclidean
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norm is given by ‖v‖2 =
√∑

|vi|2. We denote the base-q logarithm of x by logq x. In the special
case of the binary logarithm, we write simply log x rather than log2 x.

2.2. Linear-algebraic preliminaries. Let F be a given field. We denote the set of n×m matrices
over F by Fn×m. We use the standard notation rkA, kerA, and AT for the rank, null space, and
transpose of the matrix A. As usual, the determinant of A ∈ Fn×n is denoted detA. The trace
of a matrix A ∈ Fn×n is denoted trA and defined as the sum of the diagonal elements of A. The
commutativity of the trace operator is often helpful: tr(AB) = tr(BA) for square matrices A,B.We
let diag(a1, a2, . . . , an) denote the diagonal matrix of order n with diagonal entries a1, a2, . . . , an.
Recall that In normally denotes the identity matrix of order n, whereas I denotes the identity
matrix whose order is to be inferred from the context. We generalize the meaning of In somewhat
by defining

In = diag(1, 1, . . . 1︸ ︷︷ ︸
n

, 0, . . . 0),

where the order of the matrix (and hence the number of zeroes on the diagonal) will be clear from
the context. We let J and 1 denote the all-ones matrix and all-ones vector, respectively, whose
dimensions will be clear from the context.

Fact 2.1. For square matrices A,B of order n over a given field F,
rkAB > rkA+ rkB − n.

Proof. Recall that the dimension of kerAB is at most the sum of the dimensions of kerA and kerB.
By the rank-nullity theorem, this is equivalent to the claimed inequality.

For F a finite field or the field of real numbers, the inner product operation on vectors and
matrices is defined as usual by 〈x, y〉 =

∑
xiyi and 〈A,B〉 =

∑
Ai,jBi,j . For F = C, the modified

definitions 〈x, y〉 =
∑
xiyi and 〈A,B〉 =

∑
Ai,jBi,j are used instead. For complex-valued functions

f, g : X → C, we write 〈f, g〉 =
∑

x∈X f(x)g(x). Again for F = C, the conjugate transpose of
a matrix A = [Ai,j ]i,j is denoted by A∗ = [Aj,i]i,j , and a matrix A ∈ Cn×n is called unitary if
A∗A = AA∗ = I. The following useful fact relates the inner product and trace operators.

Fact 2.2. Let A,B,C,D be matrices of order n over R or a finite field. Then:

(i) 〈A,B〉 = tr(ABT) = tr(ATB),
(ii) 〈A,C1BC2〉 = 〈CT

1 AC
T
2 , B〉.

Proof. Item (i) is immediate from the definition of matrix multiplication, whereas (ii) follows from (i)
and the commutativity of the trace operator: 〈A,C1BC2〉 = tr(ACT

2 B
TCT

1 ) = tr(CT
1 AC

T
2 B

T) =
〈CT

1 AC
T
2 , B〉.

Over any field F, we let e1, e2, . . . , en denote as usual the vectors of the standard basis for Fn. For
any subset S ⊆ Fn, recall that its span over F is denoted spanS. For a linear subspace S, the symbols
dimS and S⊥ refer as usual to the dimension of S and the orthogonal complement of S, respectively.
For a linear transformation M, we let M(S) = {Mx : x ∈ S} denote the image of S under M .
Recall that the sum of linear subspaces S and T is defined as S+T = {x+ y : x ∈ S, y ∈ T} and is
the smallest subspace that contains both S and T. In expressions involving subspaces, we adopt the
convention that the union ∪ and intersection ∩ operators have higher precedence than the subspace
sum operator +. For a vector space V and an integer k, we adopt the notation S (V, k) for the set
of all subspaces of V of dimension k. For arbitrary subspaces S, T in a finite-dimensional vector
space, the following identity is well-known, and we use it extensively in our proofs without further
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mention:

dim(S + T ) = dim(S) + dim(T )− dim(S ∩ T ). (2.1)

This equation is one of the few instances when subspaces behave in ways analogous to sets. Such
instances are rare. For example, unlike sets, general subspaces S, T, U need not satisfy S∩(T+U) =
S ∩ T + S ∩ U. The equality requires additional hypotheses, as recorded below.

Fact 2.3. For any linear subspaces S, S′, T with S′ ⊆ S,
S ∩ (S′ + T ) = S′ + S ∩ T.

Proof. It is clear that S′+S∩T is a subspace of both S and S′+T. It remains to prove the opposite
inclusion, S∩ (S′+T ) ⊆ S′+S∩T. For this, consider an arbitrary vector u+v ∈ S with u ∈ S′ and
v ∈ T. Then v ∈ S + u = S. As a result, v ∈ S ∩ T and therefore u+ v ∈ S′+S ∩ T as claimed.

We continue with a fact that relates the dimension of S ∩ T to that of S⊥ ∩ T⊥.

Fact 2.4. Let S, T ⊆ Fn be subspaces over a given field F. Then
(S + T )⊥ = S⊥ ∩ T⊥, (2.2)

(S ∩ T )⊥ = S⊥ + T⊥, (2.3)

dim(S ∩ T ) = dim(S) + dim(T ) + dim(S⊥ ∩ T⊥)− n. (2.4)

Proof. To begin with,

S⊥ ∩ T⊥ = {x : 〈x, y〉 = 0 for all y ∈ S} ∩ {x : 〈x, y〉 = 0 for all y ∈ T}
= {x : 〈x, y〉 = 0 for all y ∈ S ∪ T}
= {x : 〈x, y〉 = 0 for all y ∈ S + T}

= (S + T )⊥,

where the third step uses the linearity of inner product. This settles (2.2). Applying (2.2) to
the orthogonal complements of S and T results in (S⊥ + T⊥)⊥ = S ∩ T, which upon orthogonal
complementation of both sides yields (2.3). Equation (2.4) is also a straightforward consequence
of (2.2), as follows:

dim(S⊥ ∩ T⊥) = dim((S + T )⊥)

= n− dim(S + T )

= n− dim(S)− dim(T ) + dim(S ∩ T ).

It is well-known that for a symmetric real matrix, any pair of eigenvectors corresponding to
distinct eigenvalues are orthogonal. For completeness, we state this simple fact with a proof below.

Fact 2.5. Let M be a symmetric real matrix. Let u, v be eigenvectors of M corresponding to
different eigenvalues. Then 〈u, v〉 = 0.

Proof. Suppose thatMu = αu andMv = βv, where α 6= β. Then (α−β)〈u, v〉 = 〈αu, v〉−〈u, βv〉 =
〈Mu, v〉 − 〈u,Mv〉 = 0, where the last step uses M = MT. This forces 〈u, v〉 = 0, as claimed.

2.3. Matrix norms. Associated with every matrix A ∈ Cn×m are min{n,m} nonnegative reals
that are called the singular values of A, denoted σ1(A) > σ2(A) > · · · > σmin{n,m}(A). Every matrix
A ∈ Cn×m has a singular value decomposition A = UΣV ∗, where U and V are unitary matrices
of order n and m, respectively, and Σ is a rectangular diagonal matrix whose diagonal entries are
σ1(A), σ2(A), . . . , σmin{n,m}(A). In the case of real matrices A, the matrices U and V in the singular
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value decomposition can be taken to be real. An alternative characterization of the singular values
is given by

Fact 2.6. Let A ∈ Cn×m be given, with n 6 m. Then the singular values of A are precisely the
square roots of the eigenvalues of AA∗, counting multiplicities.

The spectral norm, trace norm, and Frobenius norm of A are defined in terms of the singular
values as follows:

‖A‖ = σ1(A), (2.5)

‖A‖Σ =
∑

σi(A), (2.6)

‖A‖F =
√∑

σi(A)2. (2.7)

Equivalently,

‖A‖ = max
x:‖x‖2=1

‖Ax‖2, (2.8)

‖A‖F =
√∑

|Aij |2. (2.9)

These equations agree with (2.5) and (2.7) because the Euclidean norm on vectors is invariant under
unitary transformations.

Fact 2.7. For any matrices A,B ∈ Cn×m,
|〈A,B〉| 6 ‖A‖ ‖B‖Σ.

Fact 2.7 follows directly from (2.8) and the singular value decomposition of B. We now recall a
relationship between the trace norm and Frobenius norm; see, e.g., [24, Prop. 2.4].

Fact 2.8. For all matrices A and B of compatible dimensions,

‖AB‖Σ 6 ‖A‖F ‖B‖F.

Recall that a sign matrix is a real matrix with entries in {−1, 1}. A partial sign matrix, then, is
a matrix with entries in {−1, 1, ∗}. We define the domain of a partial sign matrix F by domF =
{(i, j) : Fij 6= ∗}. The ε-approximate trace norm of F , denoted ‖F‖Σ,ε, is the least trace norm of a
real matrix F̃ that satisfies

|Fij − F̃ij | 6 ε if Fij ∈ {−1, 1}, (2.10)

|F̃ij | 6 1 + ε if Fij = ∗. (2.11)

The following lower bound on the approximate trace norm is well known [15, 24, 25]. For reader’s
convenience, we include a proof.

Proposition 2.9. For any partial sign matrix F and ε > 0,

‖F‖Σ,ε > sup
Φ6=0

1

‖Φ‖

 ∑
(i,j)∈domF

FijΦij − ε‖Φ‖1 −
∑

(i,j)/∈domF

|Φij |

 .
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Proof. Let F̃ be a real matrix that approximates F in the sense of (2.10) and (2.11). Then for any
Φ 6= 0,

〈F̃ ,Φ〉 =
∑

domF

FijΦij +
∑

domF

(F̃ij − Fij)Φij +
∑

domF

F̃ijΦij

>
∑

domF

FijΦij −
∑

domF

|F̃ij − Fij | |Φij | −
∑

domF

|F̃ij | |Φij |

>
∑

domF

FijΦij −
∑

domF

ε|Φij | −
∑

domF

(1 + ε)|Φij |

=
∑

domF

FijΦij − ε‖Φ‖1 −
∑

domF

|Φij |.

On the other hand, Fact 2.7 shows that 〈F̃ ,Φ〉 6 ‖F̃‖Σ ‖Φ‖. Combining these two bounds for 〈F̃ ,Φ〉
gives

‖F̃‖Σ >
1

‖Φ‖

 ∑
domF

FijΦij − ε‖Φ‖1 −
∑

domF

|Φij |

 .

Taking the supremum over Φ 6= 0 completes the proof.

2.4. Fourier transform. Consider a prime power q = pk, with p a prime and k a positive integer.
Recall that the additive group of Fq is isomorphic to the Abelian group Zkp. Fix any such isomor-
phism ψ. Let ω = e2πi/p, a primitive p-th root of unity. For x ∈ Fq, define ωx = ωx1ωx2 · · ·ωxk ,
where (x1, x2, . . . , xk) is the image of x under ψ. Then for all x, y ∈ Fq,

ωx+y = ωxωy, (2.12)

ω−x = ωx. (2.13)

One further calculates
∑

x∈Fq ω
x =

∏k
i=1(1 +ω+ω2 + · · ·+ωp−1) = 0, which in turn generalizes to∑

x∈Fq

ωax = 0, a ∈ Fq \ {0} (2.14)

since x 7→ ax is a permutation on Fq.
Let n be a positive integer. For A ∈ Fn×nq , define a corresponding character χA : Fn×nq → C by

χA(X) = ω〈A,X〉.

It follows from (2.12) that

χA(X + Y ) = χA(X)χA(Y ), (2.15)

making χA a homomorphism of the additive group Fn×nq into the multiplicative group of C. Us-
ing (2.12) and (2.13), one obtains 〈χA, χB〉 =

∑
X ω

〈A,X〉ω〈B,X〉 =
∑

X ω
〈A,X〉−〈B,X〉 =

∑
X ω

〈A−B,X〉,
which along with (2.14) leads to

〈χA, χB〉 =

{
qn

2 if A = B,

0 otherwise.
(2.16)

Hence, the characters χA for A ∈ Fn×nq form an orthogonal basis for the complex vector space of
functions Fn×nq → C. In particular, every function f : Fn×nq → C has a unique representation as a
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linear combination of the characters:

f(X) =
∑

A∈Fn×nq

f̂(A)χA(X). (2.17)

The numbers f̂(A) are called the Fourier coefficients of f . They are given by

f̂(A) = q−n
2〈f, χA〉 = E

X∈Fn×nq

f(X)ω−〈A,X). (2.18)

where the first step is justified by (2.16), and the second step uses (2.13). An immediate consequence
of (2.16) and (2.17) is that 〈f, f〉 = qn

2 ∑
A |f̂(A)|2. This result is known as Parseval’s identity,

and it is typically written in the form

E
X∈Fn×nq

[|f(X)|2] =
∑

A∈Fn×nq

|f̂(A)|2. (2.19)

With f̂ viewed as a complex-valued function on Fn×nq , the linear transformation that sends f 7→ f̂
is called the Fourier transform. Its matrix representation is easy to describe. Specifically, define

Hn = q−n
2/2[ω〈A,B〉]A,B,

where the row and column indices range over all matrices in Fn×nq . Analogous to (2.16), one shows
that Hn is unitary:

HnH
∗
n = H∗nHn = I. (2.20)

Then the Fourier transform f 7→ f̂ , given by (2.18), corresponds to the linear transformation
q−n

2/2H∗n. Analogously, the inverse transformation f̂ 7→ f of (2.17) corresponds to qn2/2Hn.
The following well-known fact relates the singular values of a matrix [ϕ(A+B)]A,B to the Fourier

spectrum of the outer function ϕ. We include a proof adapted from [16] and generalized to the case
of Fq.

Fact 2.10 (adapted from Li et al., Lemma 20). Let ϕ : Fn×nq → C be given. Define

Φ = [ϕ(X + Y )]X,Y ∈Fn×nq
.

Then

Φ = HnDHn,

where D is the diagonal matrix given by DA,A = qn
2
ϕ̂(A). In particular, the singular values of Φ

are qn2 |ϕ̂(A)| for A ∈ Fn×nq .

Proof. Using the homomorphic property (2.15) of the characters,

ϕ(X + Y ) =
∑

A∈Fn×nq

ϕ̂(A)χA(X + Y )

=
∑

A∈Fn×nq

ϕ̂(A)χA(X)χA(Y ).

Restated in matrix form, this equation becomes Φ = [χA(X)]X,A diag(. . . , ϕ̂(A), . . .) [χA(Y )]A,Y =

HnDHn, as desired.
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2.5. Gaussian binomial coefficients. Gaussian binomial coefficients, also known as q-binomial
coefficients, are defined by(

n

m

)
q

=
(qn − 1)(qn − q) · · · (qn − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)
(2.21)

=
(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
(2.22)

for all nonnegative integers n,m and real numbers q > 1. Observe that
(
n
0

)
q

= 1 since the above
product is empty for m = 0. Note further that

(
n
m

)
q

= 0 whenever m > n. One recovers standard
binomial coefficients from this definition via

lim
q↘1

(
n

m

)
q

=

(
n

m

)
.

As a matter of convenience, one generalizes Gaussian binomial coefficients to arbitrary integers n,m
by defining(

n

m

)
q

= 0 if min{n,m} < 0.

With this convention, one has the familiar identity(
n

m

)
q

=

(
n

n−m

)
q

, n,m ∈ Z. (2.23)

Gaussian binomial coefficients play an important role in enumerative combinatorics. In particular,
we recall the following classical fact.

Fact 2.11. Fix a prime power q and integers n > m > 0. Then the number of m-dimensional
subspaces of Fnq is exactly

(
n
m

)
q
.

Proof. This result is clearly true for m = 0. For m > 1, there are (qn − 1)(qn − q) · · · (qn − qm−1)
ordered bases (v1, v2, . . . , vm) of vectors in Fnq . Each such basis defines an m-dimensional subspace.
Conversely, every m-dimensional subspace has exactly (qm − 1)(qm − q) · · · (qm − qm−1) ordered
bases. Thus, the number of m-dimensional subspaces is (2.21), as claimed.

The following monotonicity property of q-binomial coefficients is well-known. We provide a proof
for convenience.

Fact 2.12. Let n > m > 0 be given integers. Then for all integers ` ∈ [m,n−m] and reals q > 1,(
n

m

)
q

6

(
n

`

)
q

. (2.24)

Proof. The defining equation (2.22) gives(
n

`

)
q

=

(
n

m

)
q

·
∏̀

i=m+1

qn−i+1 − 1

qi − 1
.

If ` 6 n/2, then every fraction in the above product is greater than 1. As a result, (2.24) holds in
this case. In the complementary case ` > n/2, we have n− ` ∈ [m,n/2] and therefore(

n

m

)
q

6

(
n

n− `

)
q

by the first part of the proof. Since
(
n
n−`
)
q

=
(
n
`

)
q
, we again arrive at (2.24).
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We will use the next proposition to accurately estimate Gaussian binomial coefficients.

Proposition 2.13. For any set I of positive integers, and any real number x > 2,
1

4
6
∏
i∈I

(
1− 1

xi

)
6 1.

Proof. The upper bound is trivial. For the lower bound, we may clearly assume that I = {1, 2, 3 . . .}.
A simple inductive argument shows that (1−a1) · · · (1−an) > 1−a1−· · ·−an for any a1, . . . , an ∈
(0, 1). It follows that

∞∏
i=2

(
1− 1

xi

)
> 1− 1

x2
− 1

x3
− . . . = 1− 1

x(x− 1)

and therefore
∞∏
i=1

(
1− 1

xi

)
>

(
1− 1

x

)(
1− 1

x(x− 1)

)
>

1

4
,

where the last step uses x > 2.

Corollary 2.14. For any integers n > m > 0 and any real number q > 2,

qm(n−m) 6

(
n

m

)
q

6 4qm(n−m).

Proof. The lower bound follows directly from the fact that (qn − qi)/(qm − qi) > qn/qm for n > m.
The upper bound can be verified as follows:(

n

m

)
q

=
(qn − 1)(qn − q) . . . (qn − qm−1)

(qm − 1)(qm − q) . . . (qm − qm−1)
6

qnm

qm2 ∏m
i=1(1− q−i)

6 4qm(n−m),

where the last step applies Proposition 2.13.

We now recall a classical result known as the Cauchy binomial theorem, see, e.g., [26, eqn. (1.87)].

Fact 2.15. For any integer n > 1 and real number q > 1, the following identity holds in R[t]:

(1 + t)(1 + qt) . . . (1 + qn−1t) =
n∑
i=0

q(
i
2)
(
n

i

)
q

ti. (2.25)

Corollary 2.16. For any integer n > 1 and real number q > 1, and any real polynomial g of
degree less than n,

n∑
i=0

(−1)iq(
i
2)
(
n

i

)
q

g(q−i) = 0. (2.26)

Proof. For d = 0, 1, . . . , n− 1, take t = −1/qd in (2.25) to obtain
n∑
i=0

(−1)iq(
i
2)
(
n

i

)
q

(q−i)d = 0. (2.27)

This establishes (2.26) when g is a monomial of degree less than n. The general case follows by
linearity: multiply (2.27) by the degree-d coefficient in g and sum over d.
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2.6. Counting and generating matrices of given rank. For a field F, we let M F,n,m
r denote

the set of matrices in Fn×m of rank r. Since we mostly use F = Fq in this work, we will usually
omit the reference to the field and write simply M n,m

r . As a matter of convenience, we adopt the
convention that for any n > 0 there is exactly one “matrix” of size 0 × n and exactly one “matrix”
of size n× 0, both of rank 0. The role of these empty matrices is to ensure that

|M 0,n
0 | = |M

n,0
0 | = 1, n > 0,

which simplifies the statement of several lemmas in this paper. Analogously, we define

M n,m
r = ∅ if min{n,m, r} < 0. (2.28)

For nonsingular matrices of order n > 1, we adopt the shorthand Mn = M n,n
n .

Proposition 2.17. Let n,m, r be nonnegative integers with r 6 min{n,m}. Then

|M n,m
r | =

(
n

r

)
q

(qm − 1)(qm − q) . . . (qm − qr−1). (2.29)

Proof. If r = 0, then the right-hand side of (2.29) evaluates to 1. This is consistent with our
convention that |M n,m

0 | = 1 for all n,m > 0.
We now consider the complementary case r > 1, which forces n and m to be positive. Fix an

arbitrary r-dimensional subspace S ⊆ Fnq and consider the subset MS ⊆ M n,m
r of matrices whose

column space is S. Fix an n× r matrix A with column space S. Since the columns of A are linearly
independent, every matrix in MS has a unique representation of the form AB for some B ∈M r,m

r .
Conversely, any product AB with B ∈M r,m

r is a matrix in MS . Therefore,

|MS | = |M r,m
r |. (2.30)

Recall that M n,m
r is the disjoint union of MS over r-dimensional subspaces S ⊆ Fnq , and there are

precisely
(
n
r

)
q
such subspaces (Fact 2.11). With this in mind, (2.30) leads to

|M n,m
r | =

(
n

r

)
q

|M r,m
r |. (2.31)

Finally, the number of r ×m matrices of rank r is precisely the number of bases (v1, v2, . . . , vr) of
row vectors in Fmq , whence |M

r,m
r | = (qm − 1)(qm − q) · · · (qm − qr−1). Making this substitution

in (2.31) completes the proof.

Using Proposition 2.13 and Corollary 2.14 to estimate the right-hand side of (2.29), we obtain:

Corollary 2.18. Let m,n, r be nonnegative integers with r 6 min{n,m}. Then
1

4
qr(n+m−r) 6 |M n,m

r | 6 4qr(n+m−r).

The following fact is well-known; cf. [16].

Proposition 2.19. Let n > 1 be a given integer. Let X,Y be random matrices distributed inde-
pendently and uniformly on Mn. Then:

(i) for any fixed A ∈Mn, the matrices XA and AX are distributed uniformly on Mn;
(ii) for any r ∈ {0, 1, . . . , n} and fixed A ∈M n,n

r , the matrix XAY is distributed uniformly on
M n,n

r .

Proof. (i) For any B ∈ Mn, we have P[XA = B] = P[X = BA−1] = 1/|Mn|. Therefore, XA is
distributed uniformly on Mn. The argument for AX is analogous.
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(ii) Fix B ∈M n,n
r arbitrarily. Then B can be obtained from A by a series of elementary row and

column operations, so that B = M1AM2 for nonsingular M1,M2. As a result,

P[XAY = B] = P[M−1
1 XAYM−1

2 = A] = P[XAYM−1
2 = A] = P[XAY = A],

where the last two steps are valid by part (i). To summarize, XAY takes on every value in M n,n
r

with the same probability. Since XAY ∈M n,n
r , the proof is complete.

2.7. Random projections. Given a collection of subspaces S1, S2, . . . , Sm in a vector space, we
use random projections to reduce the dimension of the ambient space while preserving algebraic
relationships among the Si. This is done by choosing a uniformly random matrix X and replacing
S1, S2, . . . , Sm with the subspaces X(S1), X(S2), . . . , X(Sm), respectively. The following lemma
provides quantitative details.

Lemma 2.20. Let n and d be positive integers, F a finite field with q = |F| elements, and S ⊆ Fn a
subspace. Then for every integer t 6 min{dim(S), d},

P
X∈Fd×n

[dim(X(S)) 6 t] 6 4q−(dim(S)−t)(d−t). (2.32)

In particular, for every integer T 6 min{dim(S), d},

E
X∈Fd×n

qT−min{T,dim(X(S))} 6 1 + 8q−(dim(S)−T+1)(d−T+1)+1. (2.33)

Proof. Equations (2.32) and (2.33) hold trivially for negative t and T, respectively. As a result, we
may assume that t > 0 and T > 0. Abbreviate k = dim(S). Fix a basis v1, v2, . . . , vk for S and
extend it to a basis v1, v2, . . . , vn for Fn. Let A ∈ Fn×n be the unique matrix such that Avi = ei for
each i = 1, 2, . . . , n. In particular, A(S) = span{e1, e2, . . . , ek}. Now, let X ∈ Fd×n be uniformly
random. Then the rows of XA are independent random variables, each a uniformly random linear
combination of the rows of A. Since A is nonsingular of order n, it follows that the rows of XA are
independent random vectors in Fn. Put another way, XA ∈ Fd×n has the same distribution as X.
As a result,

P[dim(X(S)) 6 t] = P[dim(XA(S)) 6 t]

= P[dim(X(A(S))) 6 t]

= P[dim(span{Xe1, Xe2, . . . , Xek}) 6 t]

= P[∃B ∈ S (Fd, t) such that Xe1, Xe2, . . . , Xek ∈ B]

6
∑

B∈S (Fd,t)

P[Xe1, Xe2, . . . , Xek ∈ B], (2.34)

where the third step uses A(S) = span{e1, e2, . . . , ek}, and the last step applies a union bound.
Now

P[dim(X(S)) 6 t] 6
∑

S (Fd,t)

(
qt

qd

)k
=

(
d

t

)
q

q−k(d−t) 6 4qt(d−t)q−k(d−t) = 4q−(k−t)(d−t),
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where the first step is justified by (2.34) and the fact that Xe1, Xe2, . . . , Xek are independent and
uniformly random vectors in Fd; the second step applies Fact 2.11; and the third step uses Corol-
lary 2.14. This settles (2.32). Now (2.33) can be verified as follows:

E qT−min{T,dim(X(S))} 6 1 +
T−1∑
t=0

qT−tP[dim(X(S)) = t]

6 1 +
T−1∑
t=0

qT−t · 4q−(k−t)(d−t)

= 1 +
T∑
t=1

qt · 4q−(k−T+t)(d−T+t)

= 1 +

T∑
t=1

qt · 4q−(k−T+1)(d−T+1)−(t−1)(d+k+t−2T+1)

6 1 +
∞∑
t=1

qt · 4q−(k−T+1)(d−T+1)−(t2−1)

6 1 + 4q−(k−T+1)(d−T+1)+1 · q

q − 1

6 1 + 8q−(k−T+1)(d−T+1)+1,

where the third step is a change of variable, the next-to-last step bounds the series by a geometric
series, and the last step is valid due to q > 2.

The previous lemma yields an analogous results for matrices:

Lemma 2.21. Let n,m, d be positive integers, F a finite field with q = |F| elements, and M ∈ Fn×m
a given matrix. Then for every integer t 6 min{rkM,d}:
(i) P[rk(XM) 6 t] 6 4q−(rk(M)−t)(d−t) for a uniformly random matrix X ∈ Fd×n;

(ii) P[rk(MY ) 6 t] 6 4q−(rk(M)−t)(d−t) for a uniformly random matrix Y ∈ Fm×d.

Proof. Let S be the column span ofM. Then rk(XM) = dim(X(S)), and (i) follows from Lemma 2.20.
For (ii), rewrite the probability of interest as P[rk(Y TMT) 6 t] and apply (i).

2.8. Communication complexity. An excellent reference on communication complexity is the
monograph by Kushilevitz and Nisan [14]. In this overview, we will limit ourselves to key definitions
and notation. The public-coin randomized model, due to Yao [29], features two players Alice and
Bob and a (possibly partial) Boolean function F : X ×Y → {−1, 1, ∗} for finite sets X and Y. Alice
is given as input an element x ∈ X, Bob is given y ∈ Y , and their objective is to evaluate F (x, y).
To this end, Alice and Bob communicate by sending bits according to a protocol agreed upon in
advance. Moreover, they have an unlimited supply of shared random bits which they can use when
deciding what message to send at any given point in the protocol. Eventually, they must agree on a
bit (−1 or 1) that represents the output of the protocol. An ε-error protocol for F is one which, on
every input (x, y) ∈ domF, produces the correct answer F (x, y) with probability at least 1− ε. The
protocol’s behavior on inputs outside domF can be arbitrary. The cost of a protocol is the total bit
length of the messages exchanged by Alice and Bob in the worst-case execution of the protocol. The
ε-error randomized communication complexity of F, denoted Rε(F ), is the least cost of an ε-error
randomized protocol for F . The standard setting of the error parameter is ε = 1/3, which can be
replaced by any other constant in (0, 1/2) with only a constant-factor change in communication
cost.
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A far-reaching generalization of the randomized model is Yao’s quantum model [30], where Alice
and Bob exchange quantum messages. As before, their objective is to evaluate a fixed function
F : X × Y → {−1, 1, ∗} on any given input pair (x, y), where Alice receives as input x and Bob
receives y. We allow arbitrary prior entanglement at the start of the communication, which is the
quantum analogue of shared randomness. A measurement at the end of the protocol produces a
one-bit answer, which is interpreted as the protocol output. An ε-error protocol for F is required
to output, on every input (x, y) ∈ domF, the correct value F (x, y) with probability at least 1− ε.
As before, the protocol can exhibit arbitrary behavior on inputs outside domF . The cost of a
quantum protocol is the total number of quantum bits exchanged in the worst-case execution. The
ε-error quantum communication complexity of F , denoted Q∗ε(F ), is the least cost of an ε-error
quantum protocol for F. The asterisk in Q∗ε(F ) indicates that the parties can share arbitrary prior
entanglement. As before, the standard setting of the error parameter is ε = 1/3. For a detailed
formal description of the quantum model, we refer the reader to [28, 22, 24]. For any protocol Π,
quantum or otherwise, we write cost(Π) for the communication cost of Π.

The following theorem, due to Linial and Shraibman [17, Lem. 10], states that the matrix of the
acceptance probabilities of a quantum protocol has an efficient factorization with respect to the
Frobenius norm. Closely analogous statements were established earlier by Yao [30], Kremer [13],
and Razborov [22].

Theorem 2.22. Let X,Y be finite sets. Let P be a quantum protocol (with or without prior
entanglement) with cost C qubits and input sets X and Y. Then[

P[P (x, y) = 1]
]
x∈X,y∈Y

= AB

for some real matrices A,B with ‖A‖F 6 2C
√
|X| and ‖B‖F 6 2C

√
|Y |.

Theorem 2.22 provides a transition from quantum protocols to matrix factorization, which is by
now a standard technique that has been used by various authors in various contexts. Among other
things, Theorem 2.22 gives the following approximate trace norm method for quantum lower bounds;
see, e.g., [22, Thm. 5.5]. For the reader’s convenience, we state and prove this result in the generality
that we require.

Theorem 2.23 (Approximate trace norm method). Let F : X × Y → {−1, 1, ∗} be a (possibly
partial) communication problem. Then

4Q
∗
ε(F ) >

‖M‖Σ,2ε
3
√
|X| |Y |

,

where M = [F (x, y)]x∈X,y∈Y is the characteristic matrix of F.

Proof. Let P be a quantum protocol with prior entanglement that computes F with error ε and
cost C. Put

Π =
[
P[P (x, y) = 1]

]
x∈X, y∈Y

.

Then the matrix M̃ = 2Π− J satisfies |M̃x,y| 6 1 for all (x, y) ∈ X × Y and |Mx,y − M̃x,y| 6 2ε for
all (x, y) ∈ domM . In particular,

‖M‖Σ,2ε 6 ‖M̃‖Σ. (2.35)
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On the other hand, Theorem 2.22 guarantees the existence of matrices A and B with AB = Π and
‖A‖F ‖B‖F 6 4C

√
|X| |Y |. Therefore,

‖M̃‖Σ = ‖2AB − J‖Σ
6 2‖AB‖Σ + ‖J‖Σ
6 2‖A‖F‖B‖F + ‖J‖Σ
6 2 · 4C

√
|X| |Y |+ ‖J‖Σ

= 2 · 4C
√
|X| |Y |+

√
|X| |Y |, (2.36)

where the third step uses Fact 2.8. Equations (2.35) and (2.36) give ‖M‖Σ,2ε 6 (2 ·4C +1)
√
|X| |Y |,

which implies the claimed lower bound on 4C .

A distinguisher for a communication problem F : X×Y → {−1, 1, ∗} is a communication protocol
Π for which the expected output on every input in F−1(−1) is less than the expected output on
every input in F−1(1). We will use the following proposition to convert any distinguisher for F into
a communication protocol that computes F .

Proposition 2.24. Let F : X × Y → {−1, 1, ∗} be a (possibly partial) communication problem.
Suppose that Π is a cost-c randomized protocol with output ±1 such that

E[Π(x, y)] 6 α for all (x, y) ∈ F−1(−1), (2.37)

E[Π(x, y)] > β for all (x, y) ∈ F−1(1), (2.38)

where α, β are reals with −1 6 α 6 β 6 1. Then

R 1
2
− 1

8
(β−α)(F ) 6 c.

Proof. For a real number t, define s̃gn t to be 1 if t > 0 and −1 if t < 0. Set p = |α+β|/(2+ |α+β|)
and consider the following randomized protocol Π′ with input (x, y) ∈ X × Y : with probability p,
Alice and Bob output − s̃gn(α+β) without any communication; with the complementary probability
1−p, they execute the original protocol Π on (x, y) and output its answer. Clearly, Π′ has the same
cost as Π. On every (x, y) ∈ F−1(−1),

E[Π′(x, y)] 6 −p s̃gn(α+ β) + (1− p)α =
−(α+ β) + 2α

2 + |α+ β|
=

α− β
2 + |α+ β|

6 −β − α
4

,

where the first step uses (2.37), and the last step uses −1 6 α 6 β 6 1. Analogously, on every
(x, y) ∈ F−1(1),

E[Π′(x, y)] > −p s̃gn(α+ β) + (1− p)β =
−(α+ β) + 2β

2 + |α+ β|
=

β − α
2 + |α+ β|

>
β − α

4
,

where the first step uses (2.38). We have shown that E[Π′(x, y)F (x, y)] > (β−α)/4 on the domain
of F, which is another way of saying that Π′ computes F with error at most 1

2 −
1
8(β − α).

2.9. Communication problems defined. Let F be a given field. For nonnegative integers n,m, r
with r 6 min{n,m}, the rank problem is the communication problem in which Alice and Bob are
given matrices A,B ∈ Fn×m, respectively, and their objective is to determine whether rk(A+B) 6 r.
Formally, this problem corresponds to the Boolean function RANKF,n,m

r : Fn×m × Fn×m → {−1, 1}
given by

RANKF,n,m
r (A+B) = −1 ⇔ rk(A+B) 6 r.
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We also study the corresponding partial problem RANKF,n,m
r,R for nonnegative integers n,m, r,R

with r < R 6 min{n,m}, defined on Fn×m × Fn×m by

RANKF,n,m
r,R (A,B) =


−1 if rk(A+B) = r,

1 if rk(A+B) = R,

∗ otherwise.

For a positive integer n and a pair of distinct field elements a, b ∈ F, the determinant problem
DETF,n

a,b : Fn×n × Fn×n → {−1, 1, ∗} is given by

DETF,n
a,b (A,B) =


−1 if det(A+B) = a,

1 if det(A+B) = b,

∗ otherwise.

The rank versus determinant problem is a hybrid inspired by the previous two problems. Specif-
ically, for a number r ∈ {0, 1, . . . , n − 1} and a nonzero field element a ∈ F \ {0}, we define
RANKDETF,n

r,a : Fn×n × Fn×n → {−1, 1, ∗} by

RANKDETF,n
r,a (A,B) =


−1 if rk(A+B) = r,

1 if det(A+B) = a,

∗ otherwise.

Note that RANKDETF,n
r,a is a subproblem of both RANKF,n,n

r,n and DETF,n
0,a , in the sense that the

domain of RANKDETF,n
r,a is a subset of the domain of each of these other two problems and it agrees

on its domain with those problems.
Consider now the setting where Alice is given an m-dimensional subspace S ⊆ Fn and Bob is

given an `-dimensional subspace T ⊆ Fn, for some nonnegative integers n,m, ` with max{m, `} 6 n.
In the subspace intersection problem with parameter d, Alice and Bob need to determine whether
S ∩ T has dimension at least d. In the subspace sum problem, they need to determine whether
S + T has dimension at most d. Formally, these problems correspond to the Boolean functions
INTERSECTF,n,m,`

d and SUMF,n,m,`
d that are defined on S (Fn,m)×S (Fn, `) by

INTERSECTF,n,m,`
d (S, T ) = −1 ⇔ dim(S ∩ T ) > d,

SUMF,n,m,`
d (S, T ) = −1 ⇔ dim(S + T ) 6 d.

Their partial counterparts INTERSECTF,n,m,`
d1,d2

and SUMF,n,m,`
d1,d2

, for any pair of distinct integers
d1, d2, are defined on S (Fn,m)×S (Fn, `) by

INTERSECTF,n,m,`
d1,d2

(S, T ) =


−1 if dim(S ∩ T ) = d1,

1 if dim(S ∩ T ) = d2,

∗ otherwise,

SUMF,n,m,`
d1,d2

(S, T ) =


−1 if dim(S + T ) = d1,

1 if dim(S + T ) = d2,

∗ otherwise.

These partial functions are well-defined for any d1, d2 with d1 6= d2. Their communication com-
plexity, however, is zero unless both d1 and d2 have meaningful values for the problem in question.
Specifically, one must have d1, d2 ∈ [max{m, `},min{m + `, n}] for the subspace sum problem and
d1, d2 ∈ [max{0,m+`−n},min{m, `}] for the subspace intersection problem. We record this simple
fact as a proposition below.
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Proposition 2.25. Let F be a field. Let n,m, ` be nonnegative integers with max{m, `} 6 n. Then:
(i) there exist S ∈ S (Fn,m) and T ∈ S (Fn, `) with dim(S + T ) = d if and only if d is an

integer with max{m, `} 6 d 6 min{m+ `, n};
(ii) there exist S ∈ S (Fn,m) and T ∈ S (Fn, `) with dim(S ∩ T ) = d if and only if d is an

integer with max{0,m+ `− n} 6 d 6 min{m, `}.

Proof. (i) For any subspaces S, T ⊆ Fn, we have the trivial bounds max{dim(S),dim(T )} 6 dim(S+
T ) 6 min{dim(S) + dim(T ), n}. This proves the “only if” part of (i). For the converse, let d be
any integer with max{m, `} 6 d 6 min{m + `, n}. Then the sets A = {1, 2, . . . ,m} and B =
{d− `+ 1, . . . , d− 1, d} satisfy A,B ⊆ {1, 2, . . . , n} (because ` 6 d 6 n) and A ∪B = {1, 2, . . . , d}
(because m 6 d 6 m + `). As a result, span{e1, e2, . . . , em} and span{ed−`+1, . . . , ed−1, ed} are a
pair of subspaces in Fn of dimension m and `, respectively, whose sum has dimension d.

(ii) Recall that dim(S ∩T ) = dim(S) + dim(T )−dim(S+T ) for any subspaces S, T . As a result,

{dim(S ∩ T ) : S ∈ S (Fn,m), T ∈ S (Fn, `)}
= {m+ `− dim(S + T ) : S ∈ S (Fn,m), T ∈ S (Fn, `)}
= {m+ `− d : d ∈ Z with max{m, `} 6 d 6 min{m+ `, n}}
= {max{0,m+ `− n}, . . . ,min{m, `} − 1,min{m, `}},

where the second step uses (i).

Let F : X × Y → {−1, 1, ∗} and F ′ : X ′ × Y ′ → {−1, 1, ∗} be (possibly partial) communication
problems. A communication-free reduction from F to F ′ is a pair of mappings α : X → X ′ and
β : Y → Y ′ such that F (x, y) = F ′(α(x), β(y)) for all (x, y) ∈ domF. We indicate the existence of
a communication-free reduction from F to F ′ by writing F ′ � F . In this case, it is clear that the
communication complexity of F ′ in any given model is bounded from below by the communication
complexity of F in the same model.

Proposition 2.26. Let n,m, `, r, R be integers with 0 6 r < R 6 min{m, `} and max{m, `} 6 n.
Then

INTERSECTF,n,m,`
r,R � INTERSECTF,n−r,m−r,`−r

0,R−r .

Proof. Consider the injective linear map ϕ : Fn−r → Fn that takes any vector and extends it with
r zero components to obtain a vector in Fn. Given arbitrary subspaces S, T ⊆ Fn−r of dimension
m−r and `−r, respectively, define S′ = span(ϕ(S)∪{en−r+1, . . . , en−1, en}) and T ′ = span(ϕ(T )∪
{en−r+1, . . . , en−1, en}). Then clearly

dim(S′ ∩ T ′) = dim(S′) + dim(T ′)− dim(S′ + T ′)

= dim(S) + r + dim(T ) + r − dim(S + T )− r
= dim(S) + dim(T )− dim(S + T ) + r

= dim(S ∩ T ) + r,

whence the reduction INTERSECTF,n−r,m−r,`−r
0,R−r (S, T ) = INTERSECTF,n,m,`

r,R (S′, T ′).

3. The matrix rank problem

In this section, we prove a tight lower bound on the randomized and quantum communication
complexity of the rank problem. As discussed in the introduction, we obtain this lower bound by
constructing a dual matrix Φ with certain properties, namely, low spectral norm, low `1 norm, and
high correlation with the characteristic matrix of the rank problem. We start in Section 3.1 by
analyzing the probabilities Pn that arise in the recurrence relation for the Γn function. The latter
plays an important role in our proof and is studied in Section 3.2. Section 3.3 constructs a univariate
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dual object ϕ defined on {0, 1, . . . , n} and studies its analytic and metric properties. We build on
ϕ to construct a dual matrix Eϕ in Section 3.4, and discuss how the properties of ϕ give rise to
analogous properties of Eϕ. Sections 3.5 and 3.6 establish lower bounds for the approximate trace
norm of the characteristic matrix and the communication complexity of the rank problem, with
Φ = Eϕ used as the dual witness. We prove a matching communication upper bound in Section 3.7.
Section 3.8 concludes our study of the rank problem with an application to streaming complexity.

Throughout this section, the underlying field is Fq for an arbitrary prime power q. The root of
unity ω and the notation ωx for x ∈ Fq are as defined in Section 2.4.

3.1. The Pn function. The Pn function, defined next, conveys useful information about random
nonsingular matrices of order n over a given field.

Definition 3.1. Let n > 1 be a given integer. For nonnegative integers s, t, r ∈ {0, 1, . . . , n}, define
Pn(s, t, r) to be the probability that the upper-left s×t quadrant of a uniformly random nonsingular
matrix in Fn×nq has rank r:

Pn(s, t, r) = P
X∈Mn

[rk(IsXIt) = r]. (3.1)

To derive a closed-form expression for Pn, we essentially need to count the number of ways to
complete a given s× t matrix of rank r to a nonsingular matrix of order n. We break this counting
task into two steps, where the first step is to count the number of completions of an s× t matrix of
rank r to an s× n matrix of rank s.

Lemma 3.2. Let s, t, r,m be nonnegative integers with r 6 min{s, t}. Let A ∈M s,t
r be given. Then

the number of matrices B ∈ Fs×mq for which rk
[
A B

]
= s is

qrm |M s−r,m
s−r |.

Proof. If r = 0, then rk
[
A B

]
= rkB. As a result, rk

[
A B

]
= s if and only if B ∈ M s,m

s .
Therefore, the lemma holds in this case. In what follows, we consider r > 1, which forces s and t
to be positive integers.

Define the matrices A′ and A′′ to be the top r rows of A and the bottom s − r rows of A,
respectively. We first consider the possibility when A′′ is zero or empty. Here, the column span of
A′ is necessarily all of Frq. Given an s×m matrix B, partition it into B′ and B′′ conformably with
the partition of A. Then

rk
[
A B

]
= rk

[
A′ B′

0 B′′

]
= rk

[
A′ 0
0 B′′

]
= rk(A′) + rk(B′′) = r + rk(B′′).

Thus,
[
A B

]
has rank s if and only if rk(B′′) = s − r. This means that there are |M s−r,m

s−r | ways
to choose B′′, and independently qrm ways to choose B′, such that rk

[
A B

]
= s.

It remains to examine the case of a general matrix A of rank r > 1. Let V be an invertible
matrix such that the bottom s− r rows of V A are zero. Let M be the set of s×m matrices M for
which rk

[
V A M

]
= s. Then rk

[
A B

]
= s if and only if V B ∈M . In particular, the number of

matrices B for which rk
[
A B

]
= s is |M |. Since |M | = qrm |M s−r,m

s−r | by the previous paragraph,
we are done.

We now derive an exact expression for Pn and establish its relevant algebraic and analytic prop-
erties.

Lemma 3.3. Let n > 1 be a given integer. Then for all s, t, r ∈ {0, 1, . . . , n}:

(i) Pn(s, t, r) = 0 if r > min{s, t} or r < s+ t− n;
(ii) Pn(s, t, r) = qr(n−t)|M s,t

r | |M s−r,n−t
s−r |/((qn − 1)(qn − q) · · · (qn − qs−1));
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(iii) for any fixed values of n, s, r, the quantity Pn(s, t, r) as a function of t ∈ {0, 1, . . . , n} is a
polynomial in q−t of degree at most s;

(iv) Pn(s, t, r) 6 16q−(s−r)(t−r).

Proof. (i) Since the quadrant of interest is an s × t matrix, the first inequality is trivial. For the
second inequality, observe that the matrix IsXIt in the defining equation (3.1) satisfies rk(IsXIt) >
rk Is + rk(XIt)− n = s+ t− n by Fact 2.1.

(ii) If r > min{s, t}, then the left-hand side and right-hand side of (ii) both vanish due to (i)
and the definition of M s,t

r . We now treat the case r 6 min{s, t}. Letting M stand for the set of
nonsingular matrices of order n whose upper-left s× t quadrant has rank r, we have

Pn(s, t, r) =
|M |
|Mn|

. (3.2)

A matrix in M can be chosen by the following three-step process: choose a matrix in M s,t
r for the

upper-left quadrant; extend the quadrant to a matrix in M s,n
s , which by Lemma 3.2 can be done

in qr(n−t) |M s−r,n−t
s−r | ways; and finally add n− s rows to obtain an invertible matrix, which can be

done in (qn − qs)(qn − qs+1) · · · (qn − qn−1) ways. Altogether, we obtain

|M | = |M s,t
r | · qr(n−t) |M

s−r,n−t
s−r | · (qn − qs)(qn − qs+1) · · · (qn − qn−1),

whereas Proposition 2.17 gives

|Mn| = (qn − 1)(qn − q) · · · (qn − qn−1).

Making these substitutions in (3.2) completes the proof.
(iii) We claim that for all s, t, r ∈ {0, 1, . . . , n},

Pn(s, t, r) = qr(n−t)
(
s

r

)
q

(qt − 1)(qt − q) · · · (qt − qr−1)

× (qn−t − 1)(qn−t − q) · · · (qn−t − qs−r−1)

(qn − 1)(qn − q) · · · (qn − qs−1)
. (3.3)

Indeed, in the case when r > min{s, t} or r < s+t−n, the right-hand side vanishes and therefore the
equality holds due to (i). In the complementary case, Proposition 2.17 gives closed-form expressions
for |M s,t

r | and |M s−r,n−t
s−r | which, when substituted in (ii), result in (3.3). This settles (3.3) for all

s, t, r ∈ {0, 1, . . . , n}.
Rewrite (3.3) to obtain

Pn(s, t, r) = qrn
(
s

r

)
q

(1− q−t)(1− q−t+1) · · · (1− q−t+r−1)

× (qn−t − 1)(qn−t − q) · · · (qn−t − qs−r−1)

(qn − 1)(qn − q) · · · (qn − qs−1)
. (3.4)

Now, fix n, s, r arbitrarily. If r 6 s, then (3.4) makes it clear that Pn(s, t, r) is a polynomial in q−t
of degree at most r + (s − r) = s. If r > s, then Pn(s, t, r) is identically zero and thus trivially a
polynomial in q−t of degree at most s.
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(iv) For r > s, we have Pn(s, t, r) = 0 by (i) and therefore the claimed upper bound holds trivially.
In the complementary case, simplify (3.3) to obtain

Pn(s, t, r) 6 qr(n−t)
(
s

r

)
q

qtr · q(n−t)(s−r)

(qn − 1)(qn − q) · · · (qn − qs−1)

6 qr(n−t)
(
s

r

)
q

qtr · 4q(n−t)(s−r)q−ns

6 qr(n−t) · 4qr(s−r)qtr · 4q(n−t)(s−r)q−ns

= 16q−(s−r)(t−r),

where the second and third steps apply Proposition 2.13 and Corollary 2.14, respectively.

3.2. The Γn function. A basic building block in our construction is the characteristic function of
matrices in Fn×nq of a given rank. Its Fourier spectrum is best understood in terms of what we call
the Γn function.

Definition 3.4. Let n > 1 be a given integer. For s, t ∈ {0, 1, . . . , n}, define

Γn(s, t) = E
rkA=s
rkB=t

ω〈A,B〉,

where the expectation is taken with respect to the uniform distribution on M n,n
s ×M n,n

t .

Sun and Wang [27] studied the Fourier spectrum of the nonsingularity function on Fn×nq , defined
to be 1 on nonsingular matrices and 0 otherwise. In our notation, they established the following
result.

Lemma 3.5. For any integers n > 1 and r ∈ {0, 1, . . . , n},

Γn(n, r) =
(−1)rq(

r
2)

(qn − 1)(qn − q) · · · (qn − qr−1)
.

The proof of Sun and Wang [27] is stated for fields Fp with prime p, but their analysis readily
extends to fields of cardinality a prime power. In Appendix A, we prove Lemma 3.5 from scratch
in our desired generality, using a simpler proof than that of [27].

Our next lemma collects crucial properties of Γn(s, t) for general values of s, t.

Lemma 3.6. Let n > 1 be a given integer. Then for all s, t ∈ {0, 1, . . . , n}:

(i) |Γn(s, t)| 6 1;
(ii) Γn(s, t) = Γn(t, s);
(iii) Γn(s, t) =

∑n
r=0 Pn(s, t, r)Γn(n, r);

(iv) for n, s fixed, Γn(s, t) as a function of t ∈ {0, 1, . . . , n} is a polynomial in q−t of degree at
most s;

(v) |Γn(s, t)| 6 128q−st/2.

Proof. (i) Using |ω| = 1 and the triangle inequality,

|Γn(s, t)| =
∣∣∣∣ EA,B ω〈A,B〉

∣∣∣∣ 6 E
A,B

∣∣∣ω〈A,B〉∣∣∣ = 1.

(ii) The symmetry of Γn follows from the independence of A and B in the defining equation for
Γn, and the symmetry of the inner product over Fq.
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(iii) We have:

Γn(s, t) = E
A∈Mn,n

s

B∈Mn,n
t

ω〈A,B〉

= E
X,Y,Z1,Z2,W∈Mn

ω〈XIsY,Z1Z2ItW 〉

= E
X,Y,Z1,Z2,W∈Mn

ω〈XIsYW
TItZT

2 ,Z1〉

= E
X,U,Z1,Z2∈Mn

ω〈X(IsUIt)ZT
2 ,Z1〉

=
n∑
r=0

P
U∈Mn

[rk(IsUIt) = r] E
X,U,Z1,Z2∈Mn

[
ω〈X(IsUIt)ZT

2 ,Z1〉 | rk(IsUIt) = r
]

=

n∑
r=0

P
U∈Mn

[rk(IsUIt) = r] E
B∈Mn,n

r
Z1∈Mn

ω〈B,Z1〉

=
n∑
r=0

Pn(s, t, r)Γn(n, r),

where the first step restates the definition of Γn, the second step uses Proposition 2.19, the third
step applies Fact 2.2(ii), the fourth and sixth steps again use Proposition 2.19, and the last step is
immediate from the definitions of Pn and Γn.

(iv) Immediate from (iii) and Lemma 3.3(iii).
(v) We have:

|Γn(s, t)| =

∣∣∣∣∣
n∑
r=0

Pn(s, t, r)Γn(n, r)

∣∣∣∣∣
6

n∑
r=0

Pn(s, t, r)|Γn(n, r)|

=

n∑
r=max{0,s+t−n}

Pn(s, t, r) |Γn(n, r)|

6
n∑

r=max{0,s+t−n}

16q−(s−r)(t−r) · q(
r
2)

(qn − 1)(qn − q) · · · (qn − qr−1)

6
n∑

r=max{0,s+t−n}

64q−(s−r)(t−r)+(r2)−nr

6 128q−st/2,

where the first step appeals to (iii), the third step is valid by Lemma 3.3(i), the fourth step uses
Lemma 3.3(iv) and Lemma 3.5, the fifth step applies Proposition 2.13, and the last step which
completes the proof is justified by the following claim.

Claim 3.7. For any integers n > 1 and s, t ∈ {0, 1, . . . , n},
∞∑

r=max{0,s+t−n}

q−(s−r)(t−r)+(r2)−nr 6 2q−st/2. (3.5)
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Proof. The exponent of q on the left-hand side of (3.5) is given by the function

A(r) = −(s− r)(t− r) +

(
r

2

)
− nr (3.6)

= −st− 1

2

(
r + n− s− t+

1

2

)2

+
1

2

(
n− s− t+

1

2

)2

. (3.7)

The first equality shows that A(r) is always an integer, whereas the second shows that A(r) is a
strictly decreasing function in the variable r ∈ [max{0, s+ t− n},∞). These two facts lead to

A(max{0, s+ t− n}+ i) 6 A(max{0, s+ t− n})− i, i = 0, 1, 2, . . . . (3.8)

We will now prove that

A(max{0, s+ t− n}) 6 −st
2
. (3.9)

There are two cases to consider. If s + t 6 n, then A(max{0, s + t − n}) = A(0) = −st and
therefore (3.9) holds. The complementary case s+ t > n+ 1 is more challenging. Here, we have

A(max{0, s+ t− n}) = A(s+ t− n) 6 −st+
1

2

(
n− s− t+

1

2

)2

,

where the second step uses (3.7). Thus, the proof of (3.9) will be complete once we show that(
n− s− t+

1

2

)2

− st 6 0. (3.10)

To prove (3.10), suppose that of all pairs (s, t) ∈ {0, 1, . . . , n}2 with s + t > n + 1, the left-hand
side of (3.10) is maximized at a pair (s∗, t∗). By symmetry, we may assume that s∗ 6 t∗. If we
had t∗ 6 n − 1, then it would follow that s∗ > 2 (due to the requirement that s∗ + t∗ > n + 1);
as a result, the left-hand side of (3.10) would be larger for the pair (s, t) = (s∗ − 1, t∗ + 1) than
it is for the pair (s, t) = (s∗, t∗), an impossibility. Therefore, t∗ = n. In addition, we have s∗ > 1
(due to the requirement that s∗ + t∗ > n+ 1). Evaluating the right-hand side of (3.10) at this pair
(s∗, t∗) = (s∗, n), we obtain (s∗− 1

2)2− s∗n, which is clearly negative due to s∗ ∈ {1, 2, . . . , n}. This
completes the proof of (3.10) and therefore that of (3.9).

Now,
∞∑

r=max{0,s+t−n}

q−(s−r)(t−r)+(r2)−nr =

∞∑
r=max{0,s+t−n}

qA(r)

=
∞∑
i=0

qA(max{0,s+t−n}+i)

6 qA(max{0,s+t−n})
∞∑
i=0

q−i

6 q−st/2 · q

q − 1
,

where the first step uses the definition of A(r), the third step applies (3.8), and the final step appeals
to (3.9) and a geometric series. Since q > 2, this completes the proof of (3.5).

3.3. Univariate dual object. Our construction of the univariate dual object is based on the
Cauchy binomial theorem along with a certain “correcting” polynomial ζ. The next lemma presents
ζ as parametrized by two numbers ` and m and gives its basic properties.
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Lemma 3.8. Let n, k, `,m be nonnegative integers such that ` + m 6 k < n. Define a univariate
polynomial ζ by

ζ(t) =

`−1∏
i=0

t− q−i

q−n − q−i
·

k−1∏
i=k−m

t− q−i

q−n − q−i
·
n−1∏
i=k+1

t− q−i

q−n − q−i
. (3.11)

Then:

(i) ζ(q−n) = 1;
(ii) sgn ζ(q−k) = (−1)n−k−1;
(iii) ζ(q−r) = 0 for r ∈ {0, 1, . . . , n} \ ({`, `+ 1, . . . , k −m− 1} ∪ {k, n});
(iv) deg ζ = n+ `+m− k − 1;

(v) |ζ(q−r)| 6 4q−r(n−k+m−1)+(n2)−k−(k−m2 ) for r ∈ {`, `+ 1, . . . , k −m− 1}.

Proof. Items (i), (iii), and (iv) are immediate from the defining equation for ζ. Item (ii) holds
because for t = q−k, the first and second products in (3.11) contain only positive factors, whereas
the third product contains exactly n− k − 1 factors all of which are negative. For (v),

|ζ(q−r)| =

∣∣∣∣∣
`−1∏
i=0

q−r − q−i

q−n − q−i
·

k−1∏
i=k−m

q−r − q−i

q−n − q−i
·
n−1∏
i=k+1

q−r − q−i

q−n − q−i

∣∣∣∣∣
=

`−1∏
i=0

1− qi−r

1− q−(n−i) ·
k−1∏

i=k−m

qi−r − 1

1− q−(n−i) ·
n−1∏
i=k+1

qi−r − 1

1− q−(n−i)

6
`−1∏
i=0

1

1− q−(n−i) ·
k−1∏

i=k−m

qi−r

1− q−(n−i) ·
n−1∏
i=k+1

qi−r

1− q−(n−i) .

The product of the numerators in the last expression is q−r(n−k+m−1)+(n2)−k−(k−m2 ), whereas the
product of the denominators is at least 1/4 by Proposition 2.13.

With ζ in hand, we are now in a position to construct the promised univariate dual object ϕ. The
properties of ϕ established in the lemma below will give rise to analogous properties in the dual
matrix Eϕ.

Lemma 3.9. Let n, k, `,m be nonnegative integers such that `+m 6 k < n. Then there is a function
ϕ : {0, 1, . . . , n} → R such that:

(i) ϕ(n) = 1;
(ii) ϕ(k) < 0;
(iii) ϕ(r) = 0 for r ∈ {0, 1, . . . , n} \ ({`, `+ 1, . . . , k −m− 1} ∪ {k, n});
(iv)

∑n
r=0 ϕ(r)ξ(q−r) = 0 for every polynomial ξ of degree at most k − `−m;

(v)
∑

r∈{0,...,n}\{k,n} |ϕ(r)| 6 32q−m−1.

Proof. Define

ϕ(r) =

(
n

r

)
q

(−1)r−nq(
r
2)−(n2)ζ(q−r),

where ζ is the univariate polynomial from Lemma 3.8. Then items (i)–(iii) are immediate from the
corresponding items (i)–(iii) of Lemma 3.8.

For (iv), fix a univariate polynomial ξ of degree at most k− `−m. In view of Lemma 3.8(iv), the
product of ζ and ξ has degree less than n. As a result, the Cauchy binomial theorem (Corollary 2.16)



THE COMMUNICATION COMPLEXITY OF APPROXIMATING MATRIX RANK 39

implies that
n∑
r=0

ϕ(r)ξ(q−r) = (−1)−nq−(n2)
n∑
r=0

(
n

r

)
q

(−1)rq(
r
2)ζ(q−r)ξ(q−r) = 0.

For (v), fix any r ∈ {`, `+ 1, . . . , k −m− 1}. Then

|ϕ(r)| =
(
n

r

)
q

q(
r
2)−(n2)|ζ(q−r)|

6 4qr(n−r) · q(
r
2)−(n2) · 4q−r(n−k+m−1)+(n2)−k−(k−m2 )

= 16q−(k−m−r+1
2 )−m, (3.12)

where in the second step we bound the q-binomial coefficient via Corollary 2.14 and |ζ(q−r)|
via Lemma 3.8(v). Now∑

r∈{0,...n}\{k,n}

|ϕ(r)| =
k−m−1∑
r=`

|ϕ(r)| 6
k−m−1∑
r=`

16q−(k−m−r+1
2 )−m 6

∞∑
i=2

16q−(i2)−m 6
16q−m−1

1− 1
q

,

where the first step is valid by (iii), the second step uses (3.12), and the fourth step uses a geometric
series along with

(
i
2

)
> i− 1 for i > 2. Since q > 2, this completes the proof of (v).

3.4. From univariate dual objects to dual matrices. En route to the main result of this
section, we now show how to convert a univariate dual object ϕ, such as the one constructed
in Lemma 3.9, into a dual matrix Eϕ.

Definition 3.10. Let n > 1 be a given integer. For r = 0, 1, . . . , n, define Er to be the matrix with
rows and columns indexed by matrices in Fn×nq , and entries given by

(Er)A,B =

{
q−n

2 |M n,n
r |−1 if rk(A+B) = r,

0 otherwise.

For a function ϕ : {0, 1, . . . , n} → R, define

Eϕ =
n∑
r=0

ϕ(r)Er.

As one would expect, the metric and analytic properties of Eϕ are closely related to those of ϕ.

Lemma 3.11 (Metric properties of Eϕ). Let n > 1 be an integer and ϕ : {0, 1, . . . , n} → R a given
function. Then∑

A,B:rk(A+B)=r

(Eϕ)A,B = ϕ(r), r = 0, 1, . . . , n, (3.13)

∑
A,B:rk(A+B)=r

|(Eϕ)A,B| = |ϕ(r)|, r = 0, 1, . . . , n. (3.14)

In particular,

‖Eϕ‖1 = ‖ϕ‖1.

Proof. Recall that for any fixed matrix A ∈ Fn×nq , the mapping B 7→ A + B is a permutation
on Fn×nq . As a result, for any fixed matrix A, there are exactly |M n,n

r | matrices B such that
rk(A+B) = r. Altogether, there are qn2 |M n,n

r | matrix pairs (A,B) with rk(A+B) = r. With this
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in mind, Definition 3.10 implies the following for each r:∑
rk(A+B)=r

(Er)A,B =
∑

rk(A+B)=r

|(Er)A,B| = 1. (3.15)

Now for each r,∑
rk(A+B)=r

(Eϕ)A,B =
∑

rk(A+B)=r

n∑
i=0

ϕ(i)(Ei)A,B =
∑

rk(A+B)=r

ϕ(r)(Er)A,B = ϕ(r),

where the second step uses (Ei)A,B = 0 for i 6= r, and the final step applies (3.15). Analogously,∑
rk(A+B)=r

|(Eϕ)A,B| =
∑

rk(A+B)=r

∣∣∣∣∣
n∑
i=0

ϕ(i)(Ei)A,B

∣∣∣∣∣ =
∑

rk(A+B)=r

|ϕ(r)| |(Er)A,B| = |ϕ(r)|.

This establishes (3.13) and (3.14). Summing (3.14) over r gives ‖Eϕ‖1 = ‖ϕ‖1.

To discuss the spectrum of Eϕ, we first describe the Fourier spectrum of the characteristic function
of matrices of a given rank. This is where the significance of the Γn function becomes evident.

Lemma 3.12. Let n > 1 be a given integer. For r ∈ {0, 1, . . . , n}, define fr : Fn×nq → {0, 1} by
fr(X) = 1 if and only if rkX = r. Then for all M ∈ Fn×nq ,

f̂r(M) =
|M n,n

r |
qn2 · Γn(rkM, r).

Proof. We have

f̂r(M) = E
X∈Fn×nq

ω−〈M,X〉fr(X)

= q−n
2
∑

X∈Mn,n
r

ω−〈M,X〉

= q−n
2 |M n,n

r | E
X∈Mn,n

r

ω−〈M,X〉

= q−n
2 |M n,n

r | E
X∈Mn,n

r
U,V ∈Mn

ω−〈M,UXV 〉

= q−n
2 |M n,n

r | E
X∈Mn,n

r
U,V ∈Mn

ω〈−U
TMV T,X〉

= q−n
2 |M n,n

r | E
X∈Mn,n

r

Y ∈Mn,n
rkM

ω〈Y,X〉

= q−n
2 |M n,n

r |Γn(rkM, r),

where the second step uses the definition of fr, the fourth step is valid by Proposition 2.19, the fifth
step invokes Fact 2.2(ii), the sixth step uses Proposition 2.19 once more, and the last step applies
the definition of Γn.

We are now ready to describe the spectrum of Eϕ in terms of ϕ and the Γn function.
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Lemma 3.13 (Singular values of Eϕ). Let n > 1 be an integer and ϕ : {0, 1, . . . , n} → R a given
function. Then the singular values of Eϕ are

q−n
2

∣∣∣∣∣
n∑
t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣ , s = 0, 1, . . . , n,

with corresponding multiplicities |M n,n
s | for s = 0, 1, . . . , n.

Proof. For t = 0, 1, . . . , n, define ft as in Lemma 3.12. In this notation,

Eϕ =
n∑
t=0

ϕ(t)Et =
n∑
t=0

ϕ(t)

[
1

qn2 |M n,n
t |
· ft(A+B)

]
A,B

= [f(A+B)]A,B,

where

f =
n∑
t=0

ϕ(t)

qn2 |M n,n
t |
· ft.

By Fact 2.10, the singular values of Eϕ are qn2 |f̂(M)| for M ∈ Fn×nq . Calculating,

qn
2 |f̂(M)| = qn

2

∣∣∣∣∣
n∑
t=0

ϕ(t)

qn2 |M n,n
t |
· f̂t(M)

∣∣∣∣∣
= q−n

2

∣∣∣∣∣
n∑
t=0

ϕ(t)Γn(rkM, t)

∣∣∣∣∣ ,
where the first step uses the linearity of the Fourier transform, and the second step applies Lemma 3.12.
Grouping these singular values according to rkM shows that the spectrum of Eϕ is as claimed.

3.5. Approximate trace norm of the rank problem. Using the machinery developed in pre-
vious sections, we now prove a lower bound on the approximate trace norm of the characteristic
matrix of the rank problem. Combined with the approximate trace norm method, this will allow us
to obtain our communication lower bounds for the rank problem.

Theorem 3.14. Let n > k > 0 be given integers. Let F be the matrix with rows and columns
indexed by elements of Fn×nq , and entries given by

FA,B =


1 if rk(A+B) = n,

−1 if rk(A+B) = k,

∗ otherwise.

Then for all reals δ > 0 and all nonnegative integers `,m with `+m 6 k,

‖F‖Σ,δ >
1

150

(
1− δ − 64

qm+1

)
q`(k−`−m+1)/2 qn

2
, (3.16)

‖F‖Σ,δ >
1− δ
150

· qk/2 qn2
. (3.17)
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Proof. Let ϕ : {0, 1, . . . , n} → R be the function constructed in Lemma 3.9. Then∑
domF

FA,B(Eϕ)A,B − δ‖Eϕ‖1 −
∑

domF

|(Eϕ)A,B|

=
∑

rk(A+B)=n

(Eϕ)A,B −
∑

rk(A+B)=k

(Eϕ)A,B − δ‖Eϕ‖1 −
∑

rk(A+B)/∈{n,k}

|(Eϕ)A,B|

= ϕ(n)− ϕ(k)− δ‖ϕ‖1 −
∑

r/∈{n,k}

|ϕ(r)|

= |ϕ(n)|+ |ϕ(k)| − δ‖ϕ‖1 −
∑

r/∈{n,k}

|ϕ(r)|

= (1− δ)‖ϕ‖1 − 2
∑

r/∈{n,k}

|ϕ(r)|

>

1− δ − 2
∑

r/∈{n,k}

|ϕ(r)|

 ‖ϕ‖1, (3.18)

where the second step uses Lemma 3.11, the third step is valid by Lemma 3.9(i)–(ii), and the last
step is justified by Lemma 3.9(i).

We now analyze the spectral norm of Eϕ. Recall from Lemma 3.6(iv) that for any fixed values of
n and s, the quantity Γn(s, t) as a function of t ∈ {0, 1, . . . , n} is a polynomial in q−t of degree at
most s. In this light, Lemma 3.9(iv) implies that

max
s∈{0,1,...,k−`−m}

∣∣∣∣∣
n∑
t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣ = 0. (3.19)

Continuing,

max
s∈{k−`−m+1,...,n−1,n}

∣∣∣∣∣
n∑
t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣
= max

s∈{k−`−m+1,...,n−1,n}

∣∣∣∣∣
n∑
t=`

ϕ(t)Γn(s, t)

∣∣∣∣∣
6 max

s∈{k−`−m+1,...,n−1,n}

{
‖ϕ‖1 max

t∈{`,`+1,...,n}
|Γn(s, t)|

}
6 max

s∈{k−`−m+1,...,n−1,n}

{
‖ϕ‖1 max

t∈{`,`+1,...,n}
128q−st/2

}
= 128‖ϕ‖1q−`(k−`−m+1)/2, (3.20)

where the first step uses Lemma 3.9(iii), and the third step applies the bound of Lemma 3.6(v).
By (3.19), (3.20), and Lemma 3.13,

‖Eϕ‖ 6 128‖ϕ‖1 q−`(k−`−m+1)/2 q−n
2
. (3.21)

Proposition 2.9 with Φ = Eϕ implies, in view of (3.18) and (3.21), that

‖F‖Σ,δ >
1

128
·

1− δ − 2
∑

r/∈{n,k}

|ϕ(r)|

 q`(k−`−m+1)/2 qn
2
. (3.22)
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Since
∑

r/∈{n,k} |ϕ(r)| 6 32q−m−1 by Lemma 3.9(v), this settles (3.16). The alternative lower
bound (3.17) follows from (3.22) by taking ` = k and m = 0 and noting that

∑
r/∈{n,k} |ϕ(r)| = 0 in

this case (by Lemma 3.9(iii)).

3.6. Communication lower bounds. We will now use our newly obtained lower bound on the
approximate trace norm to prove the main result of this section, a tight lower bound on the commu-
nication complexity of the rank problem. We will first examine the canonical case of distinguishing
rank-k matrices in Fn×n from full-rank matrices.

Theorem 3.15. There is an absolute constant c > 0 such that for all finite fields F and all integers
n > k > 0,

Q∗1
2
− 1

4|F|k/3
(RANKF,n,n

k,n ) > c(1 + k2 log |F|). (3.23)

Proof. Abbreviate q = |F| and ε = 1
2 −

1
4qk/3

. Since RANKF,n,n
k,n is a nonconstant function, we have

the trivial lower bound

Q∗ε(RANKF,n,n
k,n ) > 1. (3.24)

Let F be the characteristic matrix of this communication problem. We first examine the case
k 6 50. Here, taking δ = 2ε in equation (3.17) of Theorem 3.14 shows that ‖F‖Σ,2ε > qk/6qn

2
/300 >

qk
2/300qn

2
/300, where the last step uses k 6 50. It follows from Theorem 2.23 that

Q∗ε(RANKF,n,n
k,n ) >

1

2
log

qk
2/300

3 · 300
>

1

600
k2 log q − 5.

Taking a weighted arithmetic average of this lower bound and (3.24) settles (3.23).
Consider now the complementary case k > 50. Taking δ = 2ε, ` = dk/3e, and m = bk/2c in

equation (3.16) of Theorem 3.14 gives

‖F‖Σ,2ε >
1

150

(
1

2qk/3
− 64

qbk/2c+1

)
qdk/3e(k−dk/3e−bk/2c+1)/2qn

2

>
1

300

(
1− 128

qk/6

)
q−k/3qdk/3ek/12qn

2

>
1

600
q−k/3qdk/3ek/12qn

2

>
1

600
qk

2/48qn
2
,

where the last two steps use k > 50. As a result, Theorem 2.23 guarantees that

Q∗ε(RANKF,n,n
k,n ) >

1

2
log

qk
2/48

3 · 600
>

1

96
k2 log q − 6.

Taking a weighted arithmetic average of this lower bound and (3.24) settles (3.23).

We now establish our main lower bound for the rank problem in its full generality.

Theorem (restatement of Theorem 1.1). There is an absolute constant c > 0 such that for all finite
fields F and all integers n,m,R, r with min{n,m} > R > r > 0,

Q∗1
2
− 1

4|F|r/3
(RANKF,n,m

r,R ) > c(1 + r2 log |F|). (3.25)

In particular,

Q∗1/4(RANKF,n,m
r,R ) > c(1 + r2 log |F|). (3.26)



44 ALEXANDER A. SHERSTOV AND ANDREY A. STOROZHENKO

Proof. There is a communication-free reduction from RANKF,R,R
r,R to RANKF,n,m

r,R , where Alice and
Bob pad their input matrices A,B ∈ FR×R with zeroes to obtain matrices A′, B′ ∈ Fn×m with
rk(A+B) = rk(A′+B′). Therefore, Q∗ε(RANKF,n,m

r,R ) > Q∗ε(RANKF,R,R
r,R ) for all ε. Now Theorem 3.15

implies (3.25), which in turn implies (3.26).

3.7. Communication upper bounds. To finalize our study of the rank problem, we will prove
a matching upper bound on its communication complexity. We emphasize that our upper bound is
achieved by a randomized (classical) protocol, whereas our lower bound is valid even for quantum
communication.

Theorem 3.16. Let n,m,R be nonnegative integers with min{n,m} > R > 0. Let F be a finite field
with q = |F| elements. Then for all t > 2 and ε ∈ (0, 1), there is a t-party randomized communication
protocol which:

– takes as input matrices A1, A2, . . . , At ∈ Fn×m for players 1, 2, . . . , t, respectively;
– computes min{rk(

∑
Ai), R} with probability of error at most ε; and

– has communication cost O(t(R+ dlogq(1/ε)e)2 log q).

Proof. We may assume that n,m > 1 since the theorem is trivial otherwise. The communication
protocol is based on random projections and is inspired by Clarkson and Woodruff’s streaming
algorithm [9] for matrix rank. Set ∆ = dlogq(8/ε)e and A =

∑
Ai. The players use their shared

randomness to pick a pair of independent and uniformly random matrices X ∈ F(R+∆)×n and
Y ∈ Fm×(R+∆). Then each player i sends the matrix XAiY ∈ F(R+∆)×(R+∆), and they all output
min{rk(XAY ), R}. The communication cost is O(t(R + ∆)2 log q) as claimed, due to XAY =∑
XAiY . It is also clear that this protocol always outputs a lower bound on the correct value

min{rkA,R}, due to rk(XAY ) 6 rkA for all X,Y . It remains to show that

P[rk(XAY ) > min{rkA,R}] > 1− ε. (3.27)

Conditioned on X, we have rk(XAY ) > min{rk(XA), R} with probability at least 1− 4q−∆−1 >
1− ε/2 (apply Lemma 2.21(ii) with M = XA and t = min{rk(XA), R} − 1). Similarly, rk(XA) >
min{rkA,R} with probability at least 1 − ε/2 (apply Lemma 2.21(i) with M = A and t =
min{rkA,R} − 1). The union bound now gives (3.27).

In the corollary below, RANKF,n,m,t
r : (Fn×m)t → {−1, 1} denotes the total version of the matrix

rank problem for t parties, given by RANKF,n,m,t
r (A1, A2, . . . , At) = −1 if and only if rk(

∑
Ai) 6 r.

Corollary 3.17. Let n,m, r be integers with min{n,m} > r > 0. Let F be a finite field with q = |F|
elements. Then for all ε ∈ (0, 1/2),

Rε(RANKF,n,m
r ) =

{
O(log(1/ε)) if r = 0,

O((r + dlogq(1/ε)e)2 log q) otherwise.
(3.28)

More generally, for all t > 2,

Rε(RANKF,n,m,t
r ) = O(t(r + dlogq(1/ε)e)2 log q). (3.29)

Proof. We have RANKF,n,m,t
r (A1, A2, . . . , At) = −1 if and only if min{rk(

∑
Ai), r + 1} 6 r. To

compute this minimum with error ε, one can use the t-party protocol of Theorem 3.16 with R = r+1,
with communication cost O(t(r + dlogq(1/ε)e)2 log q). This settles the multiparty bound (3.29),
which in turn implies the two-party bound (3.28) for r > 1.

Lastly, RANKF,n,m
0 (A,B) = −1 if and only if A = −B. Thus, RANKF,n,m

0 is equivalent to the
equality problem with domain Fn×m × Fn×m. It is well known [14] that the ε-error randomized
communication complexity of equality is O(log(1/ε)). Therefore, (3.28) holds also for r = 0.
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Our communication upper bound readily generalizes to the bilinear query model, as follows.

Theorem 3.18. Let n,m, r be integers with min{n,m} > r > 0. Let F be a finite field with q = |F|
elements. Then for all ε ∈ (0, 1/2), there is a query algorithm in the bilinear query model with cost
O((r+ dlogq(1/ε)e)2) that takes as input a matrix A ∈ Fn×m and determines whether rkA 6 r with
probability of error at most ε.

Proof. On input A ∈ Fn×m, choose X ∈ F(R+∆)×n and Y ∈ Fm×(R+∆) uniformly at random, where
∆ = dlogq(8/ε)e and R = r + 1. Then trivially rk(XAY ) 6 rkA. In the opposite direction, we
have the bound (3.27), established in the last paragraph of the proof of Theorem 3.16. Therefore,
we can determine whether rkA 6 r with probability of error ε by checking whether rk(XAY ) 6 r.
Since the entries of XAY are bilinear forms in A, the entire matrix XAY can be recovered using
(R+ ∆)2 queries.

We now prove an alternative communication upper bound, showing that even a two-bit protocol
can solve the rank problem with nontrivial advantage. For simplicity, we will only consider the
two-party model; a similar statement can be proved for bilinear query complexity.

Theorem 3.19. Let n,m, r be integers with min{n,m} > r > 0. Let F be a finite field with q = |F|
elements. Then

R 1
2
− 1

32qr
(RANKF,n,m

r ) 6 2. (3.30)

Proof. Consider the following auxiliary protocol Π. On input A,B ∈ Fn×m, Alice and Bob use their
shared randomness to pick a pair of independent and uniformly random vectors x ∈ Fn and y ∈ Fm,
as well as a uniformly random function H : F→ {−1, 1}. They exchange H(xTAy) and H(−xTBy)
using 2 bits of communication and output −H(xTAy)H(−xTBy).

We now analyze the expected output of Π(A,B) on a given matrix pair A,B. To begin with,

E[Π(A,B) | x, y] =

{
−1 if xT(A+B)y = 0,

0 otherwise.
(3.31)

Indeed, if xT(A + B)y = 0 then xTAy = −xTBy and therefore Π outputs −1. If, on the other
hand, xT(A + B)y 6= 0 then xTAy 6= −xTBy, which means that H(xTAy) and H(−xTBy) are
independent and their product has expected value 0. Equation (3.31) implies that EΠ(A,B) =
−P[xT(A+B)y = 0], which can be expanded as

EΠ(A,B) = −P[xT(A+B) = 0]−P[xT(A+B) 6= 0]P[xT(A+B)y = 0 | xT(A+B) 6= 0].

The event xT(A+B) = 0 is equivalent to x being in the orthogonal complement of the column span of
A+B, which happens with probability qn−rk(A+B)/qn = q− rk(A+B). Conditioned on xT(A+B) 6= 0,
the field element xT(A+B)y is uniformly random and in particular is 0 with probability 1/q. As a
result,

EΠ(A,B) = − 1

qrk(A+B)
−
(

1− 1

qrk(A+B)

)
· 1

q
= −1

q
− q − 1

qrk(A+B)+1
.

Therefore, the expected value of Π(A,B) is at most −1/q − (q − 1)/qr+1 when rk(A+B) 6 r and
is at least −1/q − (q − 1)/qr+2 when rk(A+B) > r. Proposition 2.24 now shows that RANKF,n,m

r

has a communication protocol with the same cost as Π and error at most 1
2 −

1
8(q − 1)2/qr+2. This

settles (3.30) since q > 2.

Corollary 3.17 (with ε = 1/3) and Theorem 3.19 settle Theorem 1.2 from the introduction.
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3.8. Streaming complexity. Fix a finite field F and a (possibly partial) function f : Fn×n →
{−1, 1, ∗}. A streaming algorithm for f receives as input a matrix M ∈ Fn×n in row-major order.
We say that A computes f with error ε if for every input in the domain of f , the output of A agrees
with f with probability at least 1 − ε. We will now use a well-known reduction [16] to transform
our communication lower bound for the matrix rank problem into a lower bound on its streaming
complexity.

Theorem (restatement of Theorem 1.3). Let n, r,R be nonnegative integers with n/2 6 r < R 6 n,
and let F be a finite field. Define f : Fn×n → {−1, 1, ∗} by

f(M) =


−1 if rkM = r,

1 if rkM = R,

∗ otherwise.

Let A be any randomized streaming algorithm for f with error probability 1
2 −

1
4 |F|

−(r−dn/2e)/3 that
uses k passes and space s. Then

sk = Ω

((
r −

⌈n
2

⌉)2
log |F|

)
. (3.32)

Proof. Abbreviate m = bn/2c and F = RANKF,m,m
r−dn/2e,R−dn/2e. We will use a reduction from com-

munication to streaming due to Li, Sun, Wang, and Woodruff [16, Thm. 29]. Specifically, let
A,B ∈ Fm×m be Alice and Bob’s inputs, respectively, for F . Define

M =

A −Im 0
B Im 0
0 0 In−2m

 ,
where Im and In−2m stand for the identity matrices of orderm and n−2m, respectively (in particular,
In−2m is empty for even n). We have

rkM = rk

A+B 0 0
B Im 0
0 0 In−2m

 = rk(A+B) + n−m = rk(A+B) +
⌈n

2

⌉
.

As a result, for all matrix pairs (A,B) with rk(A+B) ∈ {r−dn/2e, R−dn/2e}, we have F (A,B) =
f(M). This makes it possible for Alice and Bob to compute F by simulating A on M . Alice starts
the simulation by running A on the first m rows ofM , which depend only on her input A. She then
sends Bob the contents of A ’s memory, and Bob runs A on the remaining n−m rows of M . This
completes the first pass. Next, Bob sends Alice the contents of A ’s memory, and they continue as
before until they simulate all k passes. At the end of the k-th pass, Bob announces the output of
A as the protocol output. The error probability of the described protocol is the same as that of
A , and the communication cost is s(2k − 1) + 1 bits. Therefore,

R 1
2
− 1

4
|F|−(r−dn/2e)/3(F ) 6 s(2k − 1) + 1.

Since the left-hand side is at least Ω((r − dn/2e)2 log |F| + 1) by Theorem 1.1, the claimed trade-
off (3.32) follows.

4. The determinant problem

In this section, we establish our lower bound on the communication complexity of the determinant
problem. We begin in Section 4.1 with technical results on characteristic functions of matrices with a
given determinant value. In Section 4.2, we give our own proof of the lower bound for distinguishing
two nonzero values of the determinant, which is simpler and more elementary than the proof in [27].
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In Section 4.3, we prove an optimal lower bound for the general case of distinguishing two arbitrary
values of the determinant, solving an open problem from [27]. Throughout this section, we use a
generic finite field F with q elements, where q is an arbitrary prime power. The root of unity ω and
the notation ωx for x ∈ F are as defined in Section 2.4.

4.1. Auxiliary results. Fix a finite field F and a positive integer n. Recall that the determinant
function on Fn×n is multiplicative, with det(AB) = det(A) det(B). As a result, the set of matrices
in Fn×n with nonzero determinants form a group under matrix multiplication, called the general
linear group and denoted by GL(F, n). Analogously, the matrices in Fn×n with determinant 1 also
form a group, called the special linear group and denoted by SL(F, n). The multiplicativity of
the determinant further implies that SL(F, n) is a normal subgroup of GL(F, n), with quotient
isomorphic to the multiplicative group of the field: GL(F, n)/ SL(F, n) ∼= F×. For any given field
element u 6= 0, the set of matrices with determinant u form a coset of SL(F, n) in GL(F, n). In
particular,

|{X ∈ Fn×n : detX = u}| = |SL(F, n)| = |Mn|
|F| − 1

, u ∈ F \ {0}. (4.1)

Recall that for each Y ∈ Fn×n, the mapping X 7→ X + Y is a permutation on Fn×n. As a result,
the previous equation implies that

|{(X,Y ) ∈ Fn×n × Fn×n : det(X + Y ) = u}| = |F|n2 |SL(F, n)|, u ∈ F \ {0}. (4.2)

To understand the spectral norm of the characteristic matrix of the determinant problem, we
now introduce a relevant function on Fn×n and discuss its Fourier coefficients.

Lemma 4.1. Let n be a positive integer, F a finite field. For a pair of distinct elements u, v ∈ F\{0},
define gu,v : Fn×n → {−1, 1, 0} by

gu,v(X) =


−1 if detX = u,

1 if detX = v,

0 otherwise.

Then:

(i) ĝu,v(A) = 0 for every singular matrix A;
(ii) ĝu,v(A) = ĝu,v(B) whenever detA = detB;

(iii) ‖ĝu,v‖∞ 6 1/
√
|SL(F, n)|.

Proof. (i) In view of (4.1), we have

ĝu,v(A) = E
X∈Fn×n

gu,v(X)ω−〈A,X〉

= |F|−n2 · |Mn|
|F| − 1

(
E

X:detX=v
ω−〈A,X〉 − E

X:detX=u
ω−〈A,X〉

)
.

It remains to show that the expectations in the last expression are equal. Since A is singular,
there exist nonsingular matrices P and Q such that A = PIsQ for s = rkA < n. Consider the
order-n diagonal matrix Z = diag(1, 1, . . . , 1, u−1v). Using Is = IsZ, we obtain A = PIsZQ =
PIsQQ

−1ZQ = AQ−1ZQ. As a result,

E
X:detX=u

ω−〈A,X〉 = E
X:detX=u

ω−〈AQ
−1ZQ,X〉

= E
X:detX=u

ω−〈A,X(Q−1ZQ)T〉

= E
Y :detY=v

ω−〈A,Y 〉,
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where the second step uses Fact 2.2(ii), and the last step is valid because the mapping X 7→
X(Q−1ZQ)T is a bijection from the set of matrices with determinant u onto the set of matrices
with determinant u · det((Q−1ZQ)T) = v.

(ii) For singular A and B, the claim is immediate from (i). In the complementary case,

ĝu,v(A) = E
X∈Fn×n

gu,v(X)ω−〈A,X〉

= E
X∈Fn×n

gu,v((BA
−1)TX)ω−〈A,(BA

−1)TX〉

= E
X∈Fn×n

gu,v(X)ω−〈A,(BA
−1)TX〉

= E
X∈Fn×n

gu,v(X)ω−〈B,X〉

= ĝu,v(B),

where the second step is valid because (BA−1)T is invertible and hence X 7→ (BA−1)TX is a
permutation on Fn×n; the third step is justified by det((BA−1)TX) = det(B) det(X)/det(A) =
detX; and the fourth step is an application of Fact 2.2(ii).

(iii) Let M be a matrix with |ĝu,v(M)| = ‖ĝu,v‖∞. By (i), we know that detM 6= 0. Now

1 > E
X∈Fn×n

[|gu,v(X)|2]

=
∑

A∈Fn×n
|ĝu,v(A)|2

>
∑

A:detA=detM

|ĝu,v(A)|2

= |{A : detA = detM}| |ĝu,v(M)|2

= |SL(F, n)| ‖ĝu,v‖2∞,
where the second step applies Parseval’s inequality (2.19), the fourth step is justified by (ii), and
the fifth step uses detM 6= 0 along with (4.1).

4.2. Determinant problem for nonzero field elements. As an application of the previous
lemma, we now prove that the characteristic matrix of the determinant problem DETF,n

a,b for any
two nonzero field elements a, b has small spectral norm.

Lemma 4.2. Let F be a finite field with q = |F| elements. For each u ∈ F \ {0}, define Gu to be the
matrix with rows and columns indexed by elements of Fn×n, and entries given by

(Gu)X,Y =

{
q−n

2 |SL(F, n)|−1 if det(X + Y ) = u,

0 otherwise.
(4.3)

Then

‖Gu‖1 = 1, u ∈ F \ {0}, (4.4)

‖Gv −Gu‖ 6 |SL(F, n)|−3/2 6 8q−3(n2−1)/2, u, v ∈ F \ {0}. (4.5)

Proof. Equation (4.4) follows from (4.2). For (4.5), there are two cases to consider. If u = v, then
Gv −Gu = 0 and thus ‖Gv −Gu‖ = 0. If u 6= v, write Gv −Gu = [q−n

2 |SL(F, n)|−1gu,v(X + Y )]X,Y
with gu,v as defined in Lemma 4.1. Then

‖Gv −Gu‖ =
‖ĝu,v‖∞
|SL(F, n)|

6
1

|SL(F, n)|3/2
, (4.6)
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where the first step applies Fact 2.10, and the second step uses Lemma 4.1(iii). It remains to simplify
the bound of (4.6):

1

|SL(F, n)|3/2
=

(
|Mn|
q − 1

)−3/2

=

(
qn−1

n−2∏
i=0

(qn − qi)

)−3/2

6 8q−3(n2−1)/2,

where the first step uses (4.1), the second step applies Proposition 2.17, and the last step is justified
by Proposition 2.13.

Lemma 4.2 was originally obtained by Sun and Wang [27] using a different and rather technical
proof. By contrast, the proof presented above is short and uses only basic Fourier analysis. With
this newly obtained bound on the spectral norm of the characteristic matrix of DETF,n

a,b for nonzero
a, b, we can use the approximate trace norm method to obtain a tight communication lower bound
for this special case of the determinant problem.

Theorem 4.3. Let F be a finite field, and n a positive integer. Then for every pair of distinct
elements a, b ∈ F \ {0} and every γ ∈ (0, 1),

Q∗(1−γ)/2(DETF,n
a,b ) >

1

4
(n2 − 3) log |F| − 1

2
log

12

γ
. (4.7)

Proof. Let F be the characteristic matrix of DETF,n
a,b . For u ∈ F \ {0}, define Gu as in Lemma 4.2.

Since Ga and Gb are supported on disjoint sets of entries, (4.4) leads to

‖Gb −Ga‖1 = ‖Gb‖1 + ‖Ga‖1 = 2. (4.8)

Taking Φ = Gb −Ga in Proposition 2.9, we obtain

‖F‖Σ,1−γ >
1

‖Gb −Ga‖

 ∑
domF

FA,B(Gb −Ga)A,B − (1− γ)‖Gb −Ga‖1 −
∑

domF

|(Gb −Ga)A,B|


=

1

‖Gb −Ga‖

( ∑
domF

|(Gb −Ga)A,B| − (1− γ)‖Gb −Ga‖1

)

=
γ‖Gb −Ga‖1
‖Gb −Ga‖

>
1

4
γ|F|3(n2−1)/2, (4.9)

where the second and third steps are valid because Gb−Ga by definition coincides in sign with F on
domF and vanishes on domF ; and the last step uses (4.5) and (4.8). Now (4.7) follows from (4.9)
in view of Theorem 2.23.

We remind the reader that Theorem 4.3 was obtained with different techniques by Sun and
Wang [27], who settled the determinant problem DETF,n

a,b for nonzero a, b and left open the comple-
mentary case when one of a, b is zero.

4.3. Determinant problem for arbitrary field elements. Recall that the rank versus deter-
minant problem, RANKDETF,n

k,a , is a hybrid problem that naturally generalizes the matrix rank
problem RANKF,n,n

k,n and the determinant problem DETF,n
0,a . Specifically, the rank versus determi-

nant problem requires Alice and Bob to distinguish matrix pairs with rk(A + B) = k from those
with det(A + B) = a, where a is a nonzero field element, k is an integer with k < n, and A,B

are Alice and Bob’s respective inputs. We will now construct a dual matrix for RANKDETF,n
k,a and
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thereby obtain a lower bound on its approximate trace norm. As a dual matrix, we will use a linear
combination of the dual matrices from our analyses of the rank and determinant problems.

Theorem 4.4. Let n > k > 1 be given integers. Let F be a finite field with q = |F| elements, and
let a ∈ F \ {0}. Let F be the characteristic matrix of RANKDETF,n

k,a . Then for all reals δ > 0 and
all nonnegative integers `,m with `+m 6 k,

‖F‖Σ,δ >
1

150

(
1− δ − 64

qm+1

)
q`(k−`−m+1)/2 qn

2
, (4.10)

‖F‖Σ,δ >
1− δ
150

· qk/2 qn2
. (4.11)

Proof. This proof combines our ideas in Theorems 3.14 and 4.3, and our dual matrix here will be a
linear combination of the dual matrices used in those theorems.

Fix nonnegative integers `,m with `+m 6 k, and let ϕ : {0, 1, . . . , n} → R be the corresponding
function constructed in Lemma 3.9. This univariate function gives rise to a matrix Eϕ, described
in Definition 3.10. To restate equation (3.21) from our proof of Theorem 3.14,

‖Eϕ‖ 6 128‖ϕ‖1 q−`(k−`−m+1)/2 q−n
2
. (4.12)

For u ∈ F \ {0}, define Gu as in Lemma 4.2. As our dual matrix, we will use

Φ = Eϕ +
∑

b∈F\{0,a}

ϕ(n)

q − 1
(Ga −Gb). (4.13)

Claim 4.5. For every matrix pair (A,B),

ΦA,B =


(Eϕ)A,B if det(A+B) = 0,

ϕ(n)q−n
2 |SL(F, n)|−1 if det(A+B) = a,

0 otherwise.

Proof. If det(A + B) = 0, then by definition (Gu)A,B = 0 for every nonzero field element u. As a
result, (4.13) gives ΦA,B = (Eϕ)A,B in this case.

In what follows, we treat the complementary case when det(A + B) 6= 0. For all such matrix
pairs,

(Eϕ)A,B =

n∑
i=0

ϕ(i)(Ei)A,B = ϕ(n)(En)A,B =
ϕ(n)

qn2 |Mn|
=

ϕ(n)

qn2(q − 1)|SL(F, n)|
,

where the first three steps are immediate from Definition 3.10, and the last step uses (4.1). In
particular,

ΦA,B =
ϕ(n)

qn2(q − 1)|SL(F, n)|
+

∑
b∈F\{0,a}

ϕ(n)

q − 1
((Ga)A,B − (Gb)A,B). (4.14)

If det(A + B) = a, then by definition (Ga)A,B = q−n
2 |SL(F, n)|−1 and (Gb)A,B = 0 for all b ∈

F \ {0, a}, so that (4.14) gives

ΦA,B =
ϕ(n)

qn2(q − 1)|SL(F, n)|
+

∑
b∈F\{0,a}

ϕ(n)

(q − 1)qn2 |SL(F, n)|
=

ϕ(n)

qn2 |SL(F, n)|
.
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If, on the other hand, det(A + B) = c for some c ∈ F \ {0, a}, then by definition (Ga)A,B = 0 and
likewise (Gb)A,B = 0 for every b 6= c, so that (4.14) simplifies to

ΦA,B =
ϕ(n)

qn2(q − 1)|SL(F, n)|
− ϕ(n)

(q − 1)
(Gc)A,B = 0.

We proceed to establish key analytic and metric properties of Φ. To begin with,

‖Φ‖ 6 ‖Eϕ‖+
∑

b∈F\{0,a}

|ϕ(n)|
q − 1

‖Ga −Gb‖

6 ‖Eϕ‖+
∑

b∈F\{0,a}

‖ϕ‖1
q − 1

‖Ga −Gb‖

6 128‖ϕ‖1 q−`(k−`−m+1)/2 q−n
2

+
∑

b∈F\{0,a}

‖ϕ‖1
q − 1

· 8q−3(n2−1)/2

6 (128q−`(k−`−m+1)/2 + 8q−(n2−3)/2)q−n
2‖ϕ‖1, (4.15)

where the first step uses the triangle inequality, and the third step is a substitution from (4.12)
and equation (4.5) of Lemma 4.2. To simplify this bound, recall from the theorem hypothesis that
n > k > 1 and `,m > 0. Therefore, `(k − `−m+ 1) 6 `(k − `+ 1) 6 (k + 1)2/4 6 n2/4 6 n2 − 3.

This results in q−(n2−3)/2 6 q−`(k−`−m+1)/2, and thus (4.15) simplifies to

‖Φ‖ 6 136q−`(k−`−m+1)/2q−n
2‖ϕ‖1. (4.16)

Next, we examine ‖Φ‖1. We have∑
rk(A+B)=n

|ΦA,B| =
∑

det(A+B)=a

|ΦA,B| =
∑

det(A+B)=a

|ϕ(n)|
qn2 |SL(F, n)|

= |ϕ(n)|,

where the first and second steps are immediate from Claim 4.5, and the last step applies (4.2). Also,∑
rk(A+B)<n

|ΦA,B| =
∑

rk(A+B)<n

|(Eϕ)A,B| = ‖Eϕ‖ −
∑

rk(A+B)=n

|(Eϕ)A,B| = ‖ϕ‖1 − |ϕ(n)|,

where the first step uses Claim 4.5, and the last step invokes Lemma 3.11. These two equations
yield

‖Φ‖1 = ‖ϕ‖1. (4.17)

Continuing,∑
domF

FA,BΦA,B =
∑

det(A+B)=a

ΦA,B −
∑

rk(A+B)=k

ΦA,B

=
∑

det(A+B)=a

ϕ(n)

qn2 |SL(F, n)|
−

∑
rk(A+B)=k

(Eϕ)A,B

= ϕ(n)− ϕ(k)

= |ϕ(n)|+ |ϕ(k)|

= ‖ϕ‖1 −
∑

r/∈{k,n}

|ϕ(r)|, (4.18)
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where the second step uses Claim 4.5, the third step invokes Lemma 3.11 and (4.2), and the fourth
step is valid due to Lemma 3.9(i), (ii). Finally,∑

domF

|ΦA,B| =
∑

rk(A+B)/∈{n,k}

|ΦA,B|+
∑

rk(A+B)=n
det(A+B)6=a

|ΦA,B|

=
∑

rk(A+B)/∈{n,k}

|ΦA,B|

=
∑

rk(A+B)/∈{n,k}

|(Eϕ)A,B|

=
∑

r/∈{n,k}

|ϕ(r)|, (4.19)

where the second and third steps use Claim 4.5, and the last step uses Lemma 3.11. Now∑
domF

FA,BΦA,B − δ‖Φ‖1 −
∑

domF

|ΦA,B|

= ‖ϕ‖1 − δ‖ϕ‖1 − 2
∑

r/∈{n,k}

|ϕ(r)|

>

1− δ − 2
∑

r/∈{n,k}

|ϕ(r)|

 ‖ϕ‖1, (4.20)

where the first step uses (4.17)–(4.19), and the last step is legitimate by Lemma 3.9(i).
Proposition 2.9 implies, in view of (4.16) and (4.20), that

‖F‖Σ,δ >
1

136

1− δ − 2
∑

r/∈{n,k}

|ϕ(r)|

 q`(k−`−m+1)/2 qn
2
. (4.21)

Since
∑

r/∈{n,k} |ϕ(r)| 6 32q−m−1 by Lemma 3.9(v), this proves (4.10). The alternative lower
bound (4.11) follows by taking ` = k and m = 0 in (4.21) and noting that

∑
r/∈{n,k} |ϕ(r)| = 0

in this case (by Lemma 3.9(iii)).

By virtue of the approximate trace norm method, Theorem 4.4 yields the following tight lower
bound on the communication complexity of the rank versus determinant problem.

Theorem (restatement of Theorem 1.7). There is an absolute constant c > 0 such that for every
finite field F, every field element a ∈ F \ {0}, and all integers n > k > 0,

Q∗1
2
− 1

4|F|k/3
(RANKDETF,n

k,a ) > c(1 + k2 log |F|). (4.22)

Proof. For k = 0, the claimed lower bound follows from the fact that RANKDETF,n
0,a is nonconstant

and hence has communication complexity at least 1 bit. For k > 1, our lower bounds on the
approximate trace norm of RANKDETF,n

k,a are identical to those for RANKF,n,n
k,n (Theorems 4.4

and Theorem 3.14, respectively). Accordingly, the proof here is identical to that of Theorem 3.15,
with equations (4.10) and (4.11) of Theorem 4.4 used in place of the corresponding equations (3.16)
and (3.17) of Theorem 3.14.

As a consequence, we obtain an optimal communication lower bound for the unrestricted deter-
minant problem.
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Theorem (restatement of Theorem 1.6). There is an absolute constant c > 0 such that for every
finite field F, every pair of distinct elements a, b ∈ F, and all integers n > 2,

Q∗1
2
− 1

4|F|(n−1)/3
(DETF,n

a,b ) > cn2 log |F|. (4.23)

Proof. If ab = 0, then DETF,n
a,b contains as a subproblem either RANKDETF,n

n−1,b (when a = 0) or
¬RANKDETF,n

n−1,a (when b = 0), and therefore (4.23) follows from Theorem 1.7. If a and b are
both nonzero, Theorem 4.3 gives

Q∗1
2
− 1

4|F|(n−1)/3
(DETF,n

a,b ) > c′n2 log |F| − 1

2
log 24

for a small enough constant c′ > 0. Taking a weighted average of this lower bound with the trivial
lower bound of 1 bit settles (4.23).

5. The subspace sum and intersection problems

As discussed in the introduction, our analysis of the subspace sum and subspace intersection
problems has similarities with the rank problem but also diverges from it in important ways. Instead
of additively composed matrices whose rows and columns are indexed by elements of Fn×nq , we now
have matrices with rows and columns indexed by subspaces, and each entry (A,B) depends solely
on the dimension of A∩B. While the construction of the univariate dual object is similar to that for
the rank problem, its relation to the singular values of the dual matrix is significantly more intricate,
and computing the spectral norm of the dual matrix is now a challenge. Our study of the spectral
norm is based on ideas due to Knuth [12]. We start in Section 5.1 by formalizing the equivalence of
the subspace sum and subspace intersection problems, which allows us to focus on the latter problem
from then on. As a first step toward solving the subspace intersection problem, we collect necessary
technical results about subspace combinatorics in Section 5.2. In Section 5.3, we give a formal
definition of subspace matrices, state several auxiliary results, and compare our analysis of their
spectrum to that of Knuth. In Section 5.4, we fully determine the spectrum of subspace matrices.
In Sections 5.5–5.7, we use this spectral study along with our techniques developed in Section 3 to
prove optimal lower bounds on the communication complexity of the subspace intersection problem.
Sections 5.8 and 5.9 conclude with matching communication upper bounds. As in previous sections,
we let q denote an arbitrary prime power and adopt Fq throughout as the underlying field.

5.1. Equivalence of the subspace sum and intersection problems. The equivalence of the
subspace sum and subspace intersection problems from the standpoint of communication complexity
is a straightforward consequence of the identity (2.1), valid for any linear subspaces S and T in a
finite-dimensional vector space. We formalize this equivalence below.

Proposition 5.1. Let n,m, ` be nonnegative integers with max{m, `} 6 n. Then for all integers
d,D with d 6= D,

SUMF,n,m,`
d,D = INTERSECTF,n,m,`

m+`−d,m+`−D, (5.1)

SUMF,n,m,`
d = INTERSECTF,n,m,`

m+`−d . (5.2)

Proof. Let S, T ⊆ Fn be arbitrary subspaces of dimensionm and `, respectively. Since dim(S+T ) =
m+ `− dim(S ∩ T ), we have

SUMF,n,m,`
d,D (S, T ) = INTERSECTF,n,m,`

m+`−d,m+`−D(S, T ),

settling (5.1). Analogously, for any subspaces S, T ⊆ Fn of dimension m and `, respectively, we
have dim(S + T ) 6 d if and only if dim(S ∩ T ) > m+ `− d, which implies (5.2).
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We will now prove our main result on the subspace sum problem (stated in the introduction as
Theorems 1.8 and 1.9) assuming our corresponding result on subspace intersection (Theorem 1.10).
In the rest of this work, we will focus on proving Theorem 1.10.

Proof of Theorems 1.8 and 1.9 assuming Theorem 1.10. Recall that Theorem 1.8 is a special case
of Theorem 1.9, corresponding to γ = 1/3. Therefore, it suffices to prove Theorem 1.9. Define
r = m+ `−D and R = m+ `− d. Then the hypotheses max{m, `} 6 d < D 6 min{m+ `, n} and
γ ∈ [1

3q
−(2d−m−`)/5, 1

3 ] of Theorem 1.9 can be equivalently stated as

max{0,m+ `− n} 6 r < R 6 min{m, `}, (5.3)

γ ∈ [1
3q
−(m+`−2R)/5, 1

3 ]. (5.4)

Recall from Proposition 5.1 that SUMF,n,m,`
d,D is the same function as INTERSECTF,n,m,`

R,r , which in
turn is the negation of INTERSECTF,n,m,`

r,R . Now the bounds for SUMF,n,m,`
d,D claimed in Theorem 1.9

follow from the bounds for INTERSECTF,n,m,`
r,R in Theorem 1.10, upon substituting R = m+ `− d.

This appeal to Theorem 1.10 is legitimate due to (5.3) and (5.4).
Analogously, SUMF,n,m,`

d is the same function as INTERSECTF,n,m,`
R (Proposition 5.1), and there-

fore the bounds claimed for SUMF,n,m,`
d in Theorem 1.9 follow from the bounds for INTERSECTF,n,m,`

R

in Theorem 1.10, upon substituting R = m+ `− d.

5.2. Counting subspaces satisfying combinatorial constraints. When it comes to counting,
one could hope that the transition from subsets to subspaces would be straightforward and amount
to replacing binomial coefficients with their Gaussian counterparts. Unfortunately, this is not the
case. Many basic results for sets have no analogues in the subspace setting. For example, the
well-known inclusion-exclusion formula (2.1) is valid for two subspaces but does not generalize to
any larger number. As a consequence, it is in general a subtle task to count the subspaces of a given
dimension that satisfy basic combinatorial constraints relative to other given subspaces. We start
by counting, for given subspaces A and C, all d-dimensional subspaces that contain C and avoid
A \ C.

Lemma 5.2 (Counting subspaces externally). Let A and C be linear subspaces of an n-dimensional
vector space V over Fq. Let d > 0 be an integer. Then the number of dimension-d linear subspaces
X such that C ⊆ X ⊆ V and A ∩X = A ∩ C is

q(dim(A)−dim(A∩C))(d−dim(C))

(
n− dim(A+ C)

d− dim(C)

)
q

. (5.5)

Proof. The lemma is trivially true for d /∈ [dim(C), n] since the Gaussian binomial coefficient in (5.5)
is zero in that case. In what follows, we consider the complementary case d ∈ [dim(C), n].

Let X be the set of subspaces X in the statement of the lemma. Fix a basis v1, v2, . . . , vdim(C)

for C. Let B be the set of all d-tuples (v1, . . . , vdim(C), u1, . . . , ud−dim(C)) of vectors in V such that
for all i,

ui /∈ A+ C + span{u1, u2, . . . , ui−1}. (5.6)

Then each element of B is an ordered basis, with

|B| =
d−dim(C)∏

i=1

(qn − qdim(A+C)+i−1). (5.7)
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Claim 5.3. Every subspace X ∈X has precisely
d−dim(C)∏

i=1

(qd − qdim(C)+i−1) (5.8)

ordered bases in B.

Proof. Let us say that a sequence of vectors (u1, u2, . . . , uk) in X is good if (5.6) holds for all
i = 1, 2, . . . , k. We will prove that for every good sequence of k vectors in X, where k < d−dim(C),

there are exactly qd− qdim(C)+k vectors uk+1 ∈ X such that the sequence (u1, u2, . . . , uk+1) is good.
Indeed, letting S, S′, T in Fact 2.3 be the subspaces X,C + span{u1, u2, . . . , uk}, A, respectively, we
obtain

X ∩ (A+ C + span{u1, u2, . . . , uk}) = (X ∩A) + C + span{u1, u2, . . . , uk}
= (C ∩A) + C + span{u1, u2, . . . , uk}
= C + span{u1, u2, . . . , uk}.

Therefore, the only vectors uk+1 ∈ X for which the sequence (u1, u2, . . . , uk+1) is not good are the
elements of C + span{u1, u2, . . . , uk}, which is a subspace of dimension dim(C) + k because it is
spanned by the linearly independent vectors v1, v2, . . . , vdim(C), u1, u2, . . . , uk. In conclusion, out of
the qd vectors ofX, there are precisely qdim(C)+k vectors uk+1 for which the sequence u1, u2, . . . , uk+1

is not good.
It now follows immediately that the number of good sequences (u1, u2, . . . , ud−dim(C)) of vectors

in X is (5.8) as claimed, with qd − qdim(C) ways to choose u1, then qd − qdim(C)+1 ways to choose
u2 given u1, then qd − qdim(C)+2 ways to choose u3 given u1, u2, and so on.

Claim 5.4. Every element of B is an ordered basis for some subspace in X .

Proof. Fix a tuple (u1, u2, . . . , ud−dim(C)) with (5.6) for all i, and let

X = span{v1, . . . , vdim(C), u1, . . . , ud−dim(C)}.
Then clearly X is a d-dimensional subspace with C ⊆ X ⊆ V. This in particular means that A∩X
contains A ∩ C. It remains to prove the opposite inclusion, A ∩X ⊆ A ∩ C. For this, fix arbitrary
scalars αi, βj such that∑

αivi +
∑

βjuj ∈ A.

If some βj were nonzero, we could take j∗ = max{j : βj 6= 0} and obtain uj∗ ∈ β−1
j∗ (A−

∑
αivi −∑

j<j∗ βjuj), contradicting (5.6). This means that βj = 0 for all j, with the consequence that the
vector

∑
αivi +

∑
βjuj =

∑
αivi belongs to C. This settles the containment A ∩X ⊆ A ∩ C and

completes the proof.

Claims 5.3 and 5.4 imply that |X | is the quotient of (5.7) by (5.8), namely,

|X | =
d−dim(C)∏

i=1

qn − qdim(A+C)+i−1

qd − qdim(C)+i−1

=

(
qdim(A+C)

qdim(C)

)d−dim(C)(
n− dim(A+ C)

d− dim(C)

)
q

= q(dim(A)−dim(A∩C))(d−dim(C))

(
n− dim(A+ C)

d− dim(C)

)
q

.

This completes the proof of the lemma.
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Corollary 5.5 (Counting subspaces internally). Let S′ ⊆ S be linear subspaces in a vector space
over Fq. Let d > 0 be an integer. Then the number of dimension-d linear subspaces T with S′ ⊆
T ⊆ S is(

dim(S)− dim(S′)

d− dim(S′)

)
q

. (5.9)

Proof. Set V = S, C = S′, and A = {0} in the statement of Lemma 5.2

We now generalize Lemma 5.2 by allowing A∩X to be any subspace of A of a given dimension t.

Lemma 5.6. Let A,B be linear subspaces of an n-dimensional vector space V over Fq. Define
r = dim(A ∩ B). Let d and t be nonnegative integers. Then the number of dimension-d linear
subspaces X such that B ⊆ X ⊆ V and dim(A ∩X) = t is

q(dim(A)−t)(d−t−dim(B)+r)

(
n− dim(A)− dim(B) + r

d− t− dim(B) + r

)
q

(
dim(A)− r

t− r

)
q

. (5.10)

Proof. The lemma is trivially true for t /∈ [r, dim(A)] since the last Gaussian binomial coefficient
in (5.10) is zero in that case. In what follows, we consider the complementary case t ∈ [r, dim(A)].

Let X be the set of all dimension-d subspaces X with B ⊆ X ⊆ V and dim(A ∩X) = t. Let A
be the set of all dimension-t subspaces A′ with A ∩B ⊆ A′ ⊆ A. By Corollary 5.5,

|A | =
(

dim(A)− r
t− r

)
q

. (5.11)

For any X ∈ X , the subspace A ∩ X is by definition a dimension-t subspace of A that contains
A ∩B. This makes it possible to define a function f : X → A by f(X) = A ∩X.

Claim 5.7. For every A′ ∈ A ,

|f−1(A′)| = q(dim(A)−t)(d−t−dim(B)+r)

(
n− dim(A)− dim(B) + r

d− t− dim(B) + r

)
q

. (5.12)

Proof. Define C = A′ + B. Then A ∩ C = A′ + A ∩ B by Fact 2.3, which in view of A ∩ B ⊆ A′

further yields

A ∩ C = A′. (5.13)

Now

|f−1(A′)| = |{X : X is a subspace of dimension d with B ⊆ X ⊆ V and A ∩X = A′}
= |{X : X is a subspace of dimension d with C ⊆ X ⊆ V and A ∩X = A′}
= |{X : X is a subspace of dimension d with C ⊆ X ⊆ V and A ∩X = A ∩ C}

= q(dim(A)−dim(A∩C))(d−dim(C))

(
n− dim(A+ C)

d− dim(C)

)
q

, (5.14)

where the first step is immediate from the definitions of X and f ; the second step holds because the
condition B ⊆ X is logically equivalent to A′+B ⊆ X due to A′ ⊆ X; the third step applies (5.13);
and the final step uses Lemma 5.2.

It remains to calculate the dimensions of the relevant subspaces in (5.14). We have dim(C) =
dim(A′+B) = dim(A′) + dim(B)−dim(A′∩B), which along with A′∩B = A∩B and dim(A′) = t
yields

dim(C) = t+ dim(B)− r. (5.15)
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It is immediate from (5.13) that

dim(A ∩ C) = t. (5.16)

Finally, we have dim(A+ C) = dim(A+A′ +B) = dim(A+B) and therefore

dim(A+ C) = dim(A) + dim(B)− r. (5.17)

Substituting (5.15)–(5.17) into (5.14), we arrive at the sought equality (5.12).

Claim 5.7 implies that |X | is the product of the right-hand side of (5.11) and the right-hand side
of (5.12), as was to be shown.

Corollary 5.8. Let S′ ⊆ S be linear subspaces in a vector space over Fq. Let d and t be nonnegative
integers. Then the number of dimension-d linear subspaces T ⊆ S with dim(S′ ∩ T ) = t is

q(dim(S′)−t)(d−t)
(

dim(S)− dim(S′)

d− t

)
q

(
dim(S′)

t

)
q

. (5.18)

Proof. Invoke Lemma 5.6 with V = S, A = S′, and B = {0}.

5.3. Subspace matrices. In [12], Knuth defined combinatorial matrices of type (n, t) as matrices
whose rows and columns are indexed by t-element subsets of a fixed n-element set, and whose
(A,B) entry depends only on |A ∩B|. We begin with analogous definitions in the setting of linear
subspaces. Let F be a given finite field. For each d = 0, 1, 2, . . . , n, fix an ordering on the set of
dimension-d subspaces of Fn.

Definition 5.9. Let n,m, ` be nonnegative integers with max{m, `} 6 n. For any r > 0, define
JF,n,m,`
r to be the matrix whose rows are indexed by dimension-m subspaces of Fn, columns indexed

by dimension-` subspaces of Fn, and entries given by

(JF,n,m,`
r )A,B =

{
1 if dim(A ∩B) = r,

0 otherwise,

where the row index A and column index B use the ordering on the subspaces of Fn fixed at the
beginning.

Thus, the (A,B) entry of JF,n,m,`
r depends only on the dimension of A ∩ B rather than the

subspaces A,B themselves. By passing to the linear span of all such matrices for fixed F, n,m, `,
we obtain a matrix family that we call subspace matrices.

Definition 5.10 (Subspace matrices). For a function ϕ : Z→ R, we define

JF,n,m,`
ϕ =

min{m,`}∑
r=0

ϕ(r)JF,n,m,`
r . (5.19)

Recall that throughout this manuscript, the underlying field is F = Fq for an arbitrary prime power
q. To avoid notational clutter, we will write simply Jn,m,`r and Jn,m,`ϕ to mean JF,n,m,`

r and JF,n,m,`
ϕ ,

respectively.
To determine the eigenvalues of combinatorial matrices with rows and columns indexed by t-

element subsets of {1, 2, . . . , n}, Knuth investigates a certain homogeneous system of linear equations
with variables indexed by s-element subsets and the equations themselves corresponding to (s− 1)-
element subsets. He refers to the solutions to such systems as (n, s)-kernel systems. It turns out
that the linear space of kernel systems has a basis supported on variables labeled by a certain type
of sets, which Knuth calls basic sets and which he fully describes in a combinatorial way. For any
s ∈ {1, 2, . . . , t} and any (n, s)-kernel system (xu), he shows that the corresponding vector (zw),
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indexed by t-element subsets w and given by zw =
∑

u⊆w xu, is an eigenvector for any combinatorial
matrix of type (n, t). These vectors (zw) for various values of s, together with the all-ones vector,
make up a complete set of eigenvectors, and Knuth’s analysis also reveals the associated eigenvalues.

Even setting aside the more subtle combinatorial nature of subspaces described in Section 5.2, it
is not clear how to generalize Knuth’s notion of basic sets to linear subspaces. For this reason, we do
not appeal to combinatorial machinery and rely instead on linear-algebraic arguments. As another
point of departure, our problem requires understanding the singular values of a general subspace
matrix Jn,m,`ϕ , whereas Knuth studied combinatorial matrices that are symmetric (analogous to the
symmetric subspace matrices Jn,m,mϕ in our setting). We note that the eigenvalues of symmetric
subspace matrices Jn,m,mϕ were also determined by Delsarte [10] and Eisfeld [11], and their properties
were studied in [3, 8]. However, these previous analyses do not seem to apply to the general case of
interest to us, namely, that of subspace matrices Jn,m,`ϕ for arbitrary m, `.

We start by studying the subspace matrices Jn,m,kk , which play a particularly important role in
our analysis. The following lemma investigates their rank.

Lemma 5.11. Let n,m, k be nonnegative integers with m > k > 0 and n > m+ k. Then

rk Jn,m,kk =

(
n

k

)
q

. (5.20)

Proof. In the degenerate case n = 0, the matrix Jn,m,kk = J0,0,0
0 =

[
1
]
clearly has rank

(
0
0

)
q

= 1.

In what follows, we treat the case n > 1. Here, we will exhibit reals z0, z1, . . . , zk such that for all
k-dimensional subspaces A,B ⊆ Fnq ,∑

X⊆Fnq : dimX=m

zdim(A∩X)(J
n,m,k
k )X,B = δdim(A∩B),k. (5.21)

Put differently, this means that every vector of the standard basis e1, e2, . . . can be obtained as a
linear combination of the rows of Jn,m,kk , immediately implying (5.20). Rewriting (5.21),

k∑
i=0

zi
∑

X⊆Fnq : dimX=m,

dim(A∩X)=i

(Jn,m,kk )X,B = δdim(A∩B),k ∀A,B. (5.22)

The inner summation equals the number of m-dimensional subspaces X with B ⊆ X ⊆ Fnq and
dim(A ∩X) = i. Applying Lemma 5.6, we find that (5.22) is equivalent to

k∑
i=0

ziq
(k−i)(m−i−k+r)

(
n− 2k + r

m− i− k + r

)
q

(
k − r
i− r

)
q

= δr,k, r = 0, 1, . . . , k, (5.23)

where r corresponds to dim(A ∩B) in (5.22). Write (5.23) in matrix form as

Mz =
[
0 0 · · · 0 1

]T
, (5.24)

where M = [Mr,i] is the real matrix of order k + 1 given by

Mr,i = q(k−i)(m−i−k+r)

(
n− 2k + r

m− i− k + r

)
q

(
k − r
i− r

)
q

for r, i ∈ {0, 1, . . . , k}. All entries of M below the diagonal are zero because
(
k−r
i−r
)
q

= 0 for r > i.

The diagonal entries, on the other hand, are

Mr,r = q(k−r)(m−k)

(
n− 2k + r

m− k

)
q

,
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which is nonzero because n− 2k+ r > m− k by the hypothesis that n > m+ k. This makes M an
upper triangular matrix with nonzero entries on the diagonal. Then M is invertible, and a solution
z to (5.24) is guaranteed to exist.

We will recover the k-th eigenspace of Jn,m,mϕ as the image of ker Jn,k−1,k
k−1 under the linear map

Jn,m,kk . The first step is to understand how the map Jn,m,ki acts on ker Jn,k−1,k
k−1 for different values

of i.

Lemma 5.12. Let n > m > k be positive integers. Then for all i = 0, 1, . . . , k − 1 and x ∈
ker Jn,k−1,k

k−1 ,

Jn,m,ki x = −qk−i−1 · q
i+1 − 1

qk−i − 1
Jn,m,ki+1 x. (5.25)

Proof. Consider the matrix product M = Jn,m,k−1
i Jn,k−1,k

k−1 . Let us compute the generic entry
MA,B, where A,B ⊆ Fnq are subspaces of dimension m and k, respectively. By definition, MA,B

is the number of (k − 1)-dimensional subspaces X ⊆ B such that dim(A ∩ X) = i. Invoking
Corollary 5.8 with S = B and S′ = A ∩B, we obtain

(Jn,m,k−1
i Jn,k−1,k

k−1 )A,B = q(r−i)(k−1−i)
(

k − r
k − 1− i

)
q

(
r

i

)
q

,

where r = dim(A ∩B). Rewriting this equation in matrix form,

Jn,m,k−1
i Jn,k−1,k

k−1 =
k∑
r=0

q(r−i)(k−1−i)
(

k − r
k − 1− i

)
q

(
r

i

)
q

Jn,m,kr .

In this equation, the product of the q-binomial coefficients vanishes whenever r > i + 1 or r < i.
Therefore, the above summation contains only two nonzero terms, namely,

Jn,m,k−1
i Jn,k−1,k

k−1 =
∑

r∈{i,i+1}

q(r−i)(k−1−i)
(

k − r
k − 1− i

)
q

(
r

i

)
q

Jn,m,kr .

Simplifying,

Jn,m,k−1
i Jn,k−1,k

k−1 =
qk−i − 1

q − 1
Jn,m,ki + qk−1−i · q

i+1 − 1

q − 1
Jn,m,ki+1 .

Applying this matrix equation to a vector x ∈ ker Jn,k−1,k
k−1 gives

0 =
qk−i − 1

q − 1
Jn,m,ki x+ qk−1−i · q

i+1 − 1

q − 1
Jn,m,ki+1 x,

which directly implies (5.25).

Corollary 5.13. Let n > m > k be positive integers. Then for all r = 0, 1, . . . , k and x ∈
ker Jn,k−1,k

k−1 ,

Jn,m,kr x = (−1)k−rq(
k−r

2 )
(
k

r

)
q

Jn,m,kk x. (5.26)
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Proof. The proof is by induction on k − r for fixed integers n,m, k. For the base case r = k, the
equality in (5.26) is trivial. For the inductive step with k − r > 0, we have

Jn,m,kr x = −qk−r−1 · q
r+1 − 1

qk−r − 1
Jn,m,kr+1 x

= −qk−r−1 · q
r+1 − 1

qk−r − 1
· (−1)k−r−1q(

k−r−1
2 )

(
k

r + 1

)
q

Jn,m,kk x

= (−1)k−rq(
k−r

2 )
(
k

r

)
q

Jn,m,kk x,

where the first step uses Lemma 5.12, and the second step applies the inductive hypothesis.

Let A,B ⊆ Fnq be arbitrary subspaces of dimension m and `, respectively. Recall from Fact 2.4
that for fixed n,m, `, the dimension of A∩B is uniquely determined by the dimension of A⊥ ∩B⊥.
This makes the subspace matrix Jn,m,`ϕ identical, up to a permutation of the rows and columns, to
the subspace matrix Jn,n−m,n−`ϕ′ for an appropriate function ϕ′. We record this fact as our next
lemma. Its role in our work will be to simplify the calculation of the singular values of Jn,m.`ϕ and the
eigenvalues of Jn,m,mϕ by reducing the general case to the case m+ ` 6 n and m 6 n/2, respectively.

Lemma 5.14. Let n,m, ` be nonnegative integers with max{m, `} 6 n. Let ϕ : Z → R be given.
Then:

(i) Jn,m,`ϕ = PJn,n−m,n−`ϕ′ Q, where P,Q are permutation matrices and ϕ′ : Z→ R is defined by
ϕ′(t) = ϕ(t+m+ `− n);

(ii) Jn,m,mϕ = PJn,n−m,n−mϕ′′ P−1, where P is a permutation matrix and ϕ′′ : Z→ R is defined by
ϕ′′(t) = ϕ(t+ 2m− n).

Proof. Recall that for any d ∈ {0, 1, . . . , n}, the map S 7→ S⊥ is a bijection between the subspaces
of Fnq of dimension d and those of dimension n − d. For subspaces A,B ⊆ Fnq of dimension m and
`, respectively, we have

(Jn,m,`ϕ )A,B = ϕ(dim(A ∩B))

= ϕ(dim(A⊥ ∩B⊥) +m+ `− n)

= ϕ′(dim(A⊥ ∩B⊥))

= (Jn,n−m,n−`ϕ′ )A⊥,B⊥ ,

where the second step uses Fact 2.4. Rewriting this conclusion in matrix form,

Jn,m,`ϕ = [(Jn,n−m,n−`ϕ′ )A⊥,B⊥ ]A,B,

where A,B range over all subspaces of dimension m and `, respectively. The matrix on the right-
hand side is clearly Jn,n−m,n−`ϕ′ , up to a reordering of the rows and columns. This settles (i).

An argument analogous to the above yields

Jn,m,mϕ = [(Jn,n−m,n−mϕ′′ )A⊥,B⊥ ]A,B,

where A,B range over all subspaces of dimension m. The matrix on the right-hand side is the result
of permuting the rows and columns of Jn,n−m,n−mϕ′′ according to the same permutation, which is
another way of phrasing (ii).

5.4. Eigenvalues and eigenvectors of subspace matrices. Our description of the spectrum
of each Jn,m,`ϕ is in terms of a function which we now define.
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Definition 5.15. For nonnegative integers n,m, `, r, k with max{m, `} 6 n and k 6 min{m, `},
define

Λn,m,`r (k) =
k∑
i=0

(−1)i
(
k

i

)
q

q(
i
2)+(m−r)(`−r−i)

(
n−m− i
`− r − i

)
q

(
m− k + i

r − k + i

)
q

.

More generally, for any ϕ : Z→ R, define

Λn,m,`ϕ (k) =

min{m,`}∑
r=0

ϕ(r)Λn,m,`r (k).

As part of our analysis of the eigenvalues of Jn,m,mϕ , we will determine its eigenspaces and show
that they are pairwise orthogonal. The orthogonality will follow from the pairwise distinctness of
the corresponding eigenvalues, with the following lemma playing a crucial role.

Lemma 5.16. Let n,m be nonnegative integers with m 6 n/2. Then the numbers Λn,m,m0 (k) for
k = 0, 1, . . . ,m are pairwise distinct.

Proof. For r = 0, the q-binomial coefficient
(
m−k+i
r−k+i

)
q
in Definition 5.15 vanishes unless i = k. As a

result,

Λn,m,m0 (k) = (−1)kq(
k
2)+m(m−k)

(
n−m− k
m− k

)
q

= (−1)kq(
k
2)+m(m−k)

(
n−m− k
n− 2m

)
q

.

For k ∈ {0, 1, . . . ,m}, the q-binomial coefficient in the last expression is clearly positive and a
nonincreasing function of k, whereas the exponent of q is a strictly decreasing function of k. It
follows that the numbers |Λn,m,m0 (k)| for k = 0, 1, . . . ,m form a strictly decreasing sequence.

As in [12], we treat the all-ones eigenvector separately.

Proposition 5.17. Let n,m, `, r be nonnegative integers with max{m, `} 6 n. Then

Jn,m,`r 1 = q(m−r)(`−r)
(
n−m
`− r

)
q

(
m

r

)
q

1 (5.27)

= Λn,m,`r (0)1, (5.28)

‖Jn,m,`r ‖1 = q(m−r)(`−r)
(
n−m
`− r

)
q

(
m

r

)
q

(
n

m

)
q

. (5.29)

More generally, for ϕ : Z→ R,
Jn,m,`ϕ 1 = Λn,m,`ϕ (0)1, (5.30)

‖Jn,m,`ϕ ‖1 =

min{m,`}∑
r=0

|ϕ(r)| q(m−r)(`−r)
(
n−m
`− r

)
q

(
m

r

)
q

(
n

m

)
q

. (5.31)

Proof. Let A ⊆ Fnq be a subspace of dimension m. By definition, (Jn,m,`r 1)A is the number of `-
dimensional subspaces X ⊆ Fnq with dim(A ∩X) = r. Taking S′ = A and S = Fnq in Corollary 5.8,
we obtain

(Jn,m,`r 1)A = q(m−r)(`−r)
(
n−m
`− r

)
q

(
m

r

)
q

.
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This settles (5.27), which in turn implies (5.28) by Definition 5.15. Since there are exactly
(
n
m

)
q

subspaces A ⊆ Fnq of dimension m, equation (5.29) is immediate from (5.27). Equation (5.30)
follows by linearity from (5.19) and (5.28). Analogously, (5.31) follows from (5.19) and (5.29) since
the matrices Jn,m,`r for r > 0 have disjoint support.

The following lemma is the cornerstone of our analysis of the spectrum of subspace matrices
Jn,m,`ϕ . It generalizes Knuth’s work from sets to subspaces (m = `) and further to the asymmetric
case of interest to us (m 6= `).

Lemma 5.18. Let n,m, ` be positive integers with n > m + `. Let k ∈ {1, 2, . . . ,min{m, `}} and
x ∈ ker Jn,k−1,k

k−1 be given. Then for all integers t > 0,

Jn,m,`t Jn,`,kk x = Λn,m,`t (k)Jn,m,kk x. (5.32)

More generally, for all ϕ : Z→ R,

Jn,m,`ϕ Jn,`,kk x = Λn,m,`ϕ (k)Jn,m,kk x. (5.33)

Proof. Fix an arbitrary integer t > 0 and defineM = Jn,m,`t Jn,`,kk . Let us compute the generic entry
MA,B, where A,B are subspaces of Fnq of dimension m and k, respectively. By definition, MA,B is
the number of `-dimensional subspaces X such that dim(A ∩X) = t and B ⊆ X ⊆ Fnq . Lemma 5.6
implies that

(Jn,m,`t Jn,`,kk )A,B = q(m−t)(`−t−k+r)

(
n−m− k + r

`− t− k + r

)
q

(
m− r
t− r

)
q

,

where r = dim(A ∩B). Rewriting this equation in matrix form, we obtain

Jn,m,`t Jn,`,kk =
k∑
r=0

q(m−t)(`−t−k+r)

(
n−m− k + r

`− t− k + r

)
q

(
m− r
t− r

)
q

Jn,m,kr .

Applying this matrix identity to a vector x ∈ ker Jn,k−1,k
k−1 , we find

Jn,m,`t Jn,`,kk x =
k∑
r=0

q(m−t)(`−t−k+r)

(
n−m− k + r

`− t− k + r

)
q

(
m− r
t− r

)
q

Jn,m,kr x

=

k∑
r=0

q(m−t)(`−t−k+r)

(
n−m− k + r

`− t− k + r

)
q

(
m− r
t− r

)
q

· (−1)k−rq(
k−r

2 )
(
k

r

)
q

Jn,m,kk x

=

k∑
r=0

q(m−t)(`−t−k+r)

(
n−m− k + r

`− t− k + r

)
q

(
m− r
t− r

)
q

· (−1)k−rq(
k−r

2 )
(

k

k − r

)
q

Jn,m,kk x

=
k∑
i=0

q(m−t)(`−t−i)
(
n−m− i
`− t− i

)
q

(
m− k + i

t− k + i

)
q

· (−1)iq(
i
2)
(
k

i

)
q

Jn,m,kk x

= Λn,m,`t (k) Jn,m,kk x,

where the second step uses Corollary 5.13, the fourth step is a change of variable, and the last step
is immediate by Definition 5.15. This settles (5.32). Now for any ϕ : Z→ R,

Jn,m,`ϕ Jn,`,kk x =

min{m,`}∑
t=0

ϕ(t)Jn,m,`t Jn,`,kk x =

min{m,`}∑
t=0

ϕ(t)Λn,m,`t (k)Jn,m,kk x = Λn,m,`ϕ (k)Jn,m,kk x,

where the first step uses (5.19), the second step applies (5.32), and the last step is valid by Defini-
tion 5.15.
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We are now in a position to describe the eigenvalues of every symmetric subspace matrix.

Theorem 5.19 (Eigenvalues of Jn,m,mϕ ). Let n > m > 0 be given integers.

(i) If m 6 n/2, then the eigenvalues of Jn,m,mϕ for a given function ϕ : Z → R are Λn,m,mϕ (k)
for k = 0, 1, . . . ,m, with corresponding multiplicities

(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . ,m.

(ii) Ifm > n/2, then the eigenvalues of Jn,m,mϕ for a given function ϕ : Z→ R are Λn,n−m,n−mψ (k)

for k = 0, 1, . . . , n−m, with corresponding multiplicities
(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . , n−m,

with ψ : Z→ R given by ψ(t) = ϕ(t+ 2m− n).

Proof. We first show that (i) implies (ii). Recall from Lemma 5.14 that Jn,m,mϕ is permutation-similar
to Jn,n−m,n−mψ with ψ : Z→ R given by ψ(t) = ϕ(t+ 2m− n). The eigenvalues of Jn,n−m,n−mψ are,
by part (i) of this theorem, Λn,n−m,n−mψ (k) for k = 0, 1, . . . , n−m, with corresponding multiplicities(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . , n−m. It follows that these are also the eigenvalues of Jn,m,mϕ because

a similarity transformation preserves the eigenvalues and their multiplicities. This settles (ii).
It remains to prove (i), where by hypothesis

m 6
n

2
. (5.34)

Define subspaces S0, S1, . . . , Sm of the
(
n
m

)
q
-dimensional real vector space by

S0 = span{1},

Sk = {Jn,m,kk x : x ∈ ker Jn,k−1,k
k−1 }, k = 1, 2, . . . ,m.

Claim 5.20. Let k ∈ {0, 1, . . . ,m}. Then dimSk =
(
n
k

)
q
−
(
n
k−1

)
q
.

Proof. We need only consider k > 1, the claim being trivial otherwise. Observe from (5.34) and
Lemma 5.11 that Jn,m,kk has rank

(
n
k

)
q
. Put another way, its columns are linearly independent. Since

Sk is the image of ker Jn,k−1,k
k−1 under Jn,m,kk , it follows that

dimSk = dim kerJn,k−1,k
k−1 . (5.35)

Another appeal to (5.34) and Lemma 5.11 reveals that the columns of Jn,k,k−1
k−1 are linearly indepen-

dent. This makes Jn,k−1,k
k−1 = (Jn,k,k−1

k−1 )
T a matrix of order

(
n
k−1

)
q
×
(
n
k

)
q
with linearly independent

rows, whence dim ker Jn,k−1,k
k−1 =

(
n
k

)
q
−
(
n
k−1

)
q
. In view of (5.35), the proof is complete.

Claim 5.21. Let k ∈ {0, 1, . . . ,m}. Then every vector of Sk is an eigenvector of Jn,m,mϕ with
eigenvalue Λn,m,mϕ (k).

Proof. For k = 0, the claim is immediate from (5.30) of Proposition 5.17. Consider now the
complementary case k ∈ {1, 2, . . . ,m}. Here, n and m are positive integers. Invoking Lemma 5.18
with ` = m and (5.34) yields Jn,m,mϕ v = Λn,m,mϕ (k)v for all v ∈ Sk, as desired.

Claim 5.22. For any k, k′ ∈ {0, 1, . . . ,m} with k 6= k′, the subspaces Sk and Sk′ are orthogonal.

Proof. Taking ϕ = 1{0} in Claim 5.21 shows that S0, S1, . . . , Sm are eigenspaces of the symmetric
matrix Jn,m,m0 with eigenvalues Λn,m,m0 (0),Λn,m,m0 (1), . . . ,Λn,m,m0 (m), respectively. But these m +
1 numbers are pairwise distinct by (5.34) and Lemma 5.16. It now follows from Fact 2.5 that
S0, S1, . . . , Sm are pairwise orthogonal.
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As we just established with Claim 5.22, the subspaces S0, S1, . . . , Sm are pairwise orthogonal.
Since they are subspaces over the reals, we infer that dim(

∑m
k=0 Sk) =

∑m
k=0 dimSk. Using dimSk =(

n
k

)
q
−
(
n
k−1

)
q
from Claim 5.20, we arrive at

dim

(
m∑
k=0

Sk

)
=

m∑
k=0

((
n

k

)
q

−
(

n

k − 1

)
q

)
=

(
n

m

)
q

−
(
n

−1

)
q

=

(
n

m

)
q

.

In other words, a basis for the vector space in question can be obtained by concatenating bases
for S0, S1, . . . , Sm. Lastly, recall from Claim 5.21 that Sk (for k = 0, 1, . . . ,m) is an eigenspace of
Jn,m,mϕ with eigenvalue Λn,m,mϕ (k). This settles (i) and completes the proof of the theorem.

At last, we adapt the previous proof to the asymmetric case (m 6= `) and determine the singular
values of every subspace matrix Jn,m,`ϕ .

Theorem 5.23 (Singular values of Jn,m,`ϕ ). Let n,m, ` be nonnegative integers with max{m, `} 6 n.

(i) If m+ ` 6 n, then the singular values of Jn,m,`ϕ for a given function ϕ : Z→ R are√
Λn,m,`ϕ (k) Λn,`,mϕ (k), k = 0, 1, . . . ,min{m, `},

with corresponding multiplicities
(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . ,min{m, `}.

(ii) If m+ ` > n, then the singular values of Jn,m,`ϕ for a given function ϕ : Z→ R are√
Λn,n−m,n−`ψ (k) Λn,n−`,n−mψ (k), k = 0, 1, . . . ,min{n−m,n− `},

with corresponding multiplicities
(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . ,min{n − m,n − `}, where

ψ : Z→ R is given by ψ(t) = ϕ(t+m+ `− n).

Proof. We first show that (i) implies (ii). Recall from Lemma 5.14 that the matrix Jn,m,`ϕ is
the same, up to a reordering of the rows and columns, as Jn,n−m,n−`ψ with ψ : Z → R given by
ψ(t) = ϕ(t + m + ` − n). The singular values of Jn,n−m,n−`ψ are, by part (i) of this theorem,√

Λn,n−m,n−`ψ (k) Λn,n−`,n−mψ (k) for k = 0, 1, . . . ,min{n −m,n − `}, with corresponding multiplic-
ities

(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . ,min{n −m,n − `}. It follows that these are also the singular

values of Jn,m,`ϕ because reordering the columns or rows does not change the singular values or their
multiplicities. This establishes (ii).

It remains to settle (i), where by hypothesis

m+ ` 6 n. (5.36)

We may further assume that

m 6 `, (5.37)

for otherwise we can work with the transposed matrix (Jn,m,`ϕ )
T

= Jn,`,mϕ , the singular values being
invariant under matrix transposition. By (5.36), (5.37), and Fact 2.12,(

n

m

)
q

6

(
n

`

)
q

. (5.38)

Another consequence of (5.36) and (5.37) is that m 6 n/2, which makes it possible to define
subspaces S0, S1, . . . , Sm of the

(
n
m

)
q
-dimensional real vector space as in the proof of part (i) of

Theorem 5.19. In particular, Claims 5.20–5.22 apply as before.
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Claim 5.24. Let k ∈ {0, 1, . . . ,m}. Then every vector of Sk is an eigenvector of Jn,m,`ϕ Jn,`,mϕ with
eigenvalue Λn,m,`ϕ (k)Λn,`,mϕ (k).

Proof. For k = 0, a double application of Proposition 5.17 yields Jn,m,`ϕ Jn,`,mϕ 1 = Jn,m,`ϕ Λn,`,mϕ (0)1 =

Λn,m,`ϕ (0)Λn,`,mϕ (0)1, as desired. Consider now k ∈ {1, 2, . . . ,m}. In this case, due to (5.37), the
integers n,m, ` are positive and satisfy min{m, `} = m. Then for any x ∈ ker Jn,k−1,k

k−1 ,

(Jn,m,`ϕ Jn,`,mϕ )Jn,m,kk x = Jn,m,`ϕ (Jn,`,mϕ Jn,m,kk x)

= Jn,m,`ϕ (Λn,`,mϕ (k)Jn,`,kk x)

= Λn,`,mϕ (k)Jn,m,`ϕ Jn,`,kk x

= Λn,`,mϕ (k)Λn,m,`ϕ (k)Jn,m,kk x,

where the second and fourth steps apply Lemma 5.18 with (5.36) (note that the roles of m and `
are reversed in the first application). We have shown that for each x ∈ ker Jn,k−1,k

k−1 , its image under
Jn,m,kk is an eigenvector of Jn,m,`ϕ Jn,`,mϕ with eigenvalue Λn,`,mϕ (k)Λn,m,`ϕ (k). Since Sk is by definition
the image of ker Jn,k−1,k

k−1 under Jn,m,kk , the claim is proved.

Recall from Claims 5.20 and 5.22 that the subspaces S0, S1, . . . , Sm are pairwise orthogonal,
with dimSk =

(
n
k

)
q
−
(
n
k−1

)
q
. As in the proof of Theorem 5.19, this implies that the real vector

space in question is a direct sum of S0, S1, . . . , Sm. In view of Claim 5.24, we conclude that the
eigenvalues of Jn,m,`ϕ Jn,`,mϕ are Λn,m,`ϕ (k)Λn,`,mϕ (k) for k = 0, 1, . . . ,m, with corresponding multiplic-
ities

(
n
k

)
q
−
(
n
k−1

)
q
for k = 0, 1, . . . ,m. This completes the proof since the singular values of Jn,m,`ϕ

are, by (5.38) and Fact 2.6, the square roots of the eigenvalues of Jn,m,`ϕ (Jn,m,`ϕ )
T

= Jn,m,`ϕ Jn,`,mϕ ,
counting multiplicities.

5.5. Normalized subspace matrices. To study the communication complexity of the subspace
intersection problem, we now define normalized versions of subspace matrices.

Definition 5.25. Let n,m, ` be nonnegative integers with m + ` 6 n, and let F be a finite field.
Define

J
F,n,m,`
r =

1

‖JF,n,m,`
r ‖1

· JF,n,m,`
r , r = 0, 1, 2, . . . ,min{m, `}. (5.39)

For any function ϕ : Z→ R, define

J
F,n,m,`
ϕ =

min{m,`}∑
r=0

ϕ(r)J
F,n,m,`
r . (5.40)

The requirement m + ` 6 n in Definition 5.25 serves to ensure that JF,n,m,`
r 6= 0 for each

r = 0, 1, . . . ,min{m, `}, so that the normalization in (5.39) is meaningful. As elsewhere in this
manuscript, we will work with the generic field F = Fq and will henceforth write Jn,m,`r and Jn,m,`ϕ

instead of JF,n,m,`
r and JF,n,m,`

ϕ .

The following lemma relates the metric properties of a normalized subspace matrix Jn,m,`ϕ to the
corresponding univariate function ϕ.
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Lemma 5.26 (Metric properties of Jn,m,`ϕ ). Let n,m, ` be nonnegative integers with m+ ` 6 n. Let
ϕ : Z→ R be a given function. Then:∑

S∈S (Fnq ,m),

T∈S (Fnq ,`):
dim(S∩T )=r

(J
n,m,`
ϕ )S,T = ϕ(r), r = 0, 1, . . . ,min{m, `}. (5.41)

Moreover,

‖Jn,m,`ϕ ‖1 =

min{m,`}∑
r=0

|ϕ(r)|. (5.42)

Proof. We have∑
S,T :dim(S∩T )=r

(J
n,m,`
ϕ )S,T =

∑
S,T :dim(S∩T )=r

min{m,`}∑
i=0

ϕ(i)

‖Jn,m,`i ‖1
· (Jn,m,`i )S,T

=
∑

S,T :dim(S∩T )=r

ϕ(r)

‖Jn,m,`r ‖1
· (Jn,m,`r )S,T

=
ϕ(r)

‖Jn,m,`r ‖1

∑
S,T :dim(S∩T )=r

(Jn,m,`r )S,T

= ϕ(r), (5.43)

where the second step uses (Jn,m,`i )S,T = 0 for i 6= r, and the final step is valid because (Jn,m,`r )S,T
equals 1 if dim(S ∩ T ) = r and 0 otherwise. This proves (5.41). An analogous argument yields∑

S,T :dim(S∩T )=r

|(Jn,m,`ϕ )S,T | = |ϕ(r)|.

Summing this equation over r gives (5.42).

To describe the singular values of a normalized subspace matrix Jn,m,`ϕ , we introduce a normalized
counterpart of the function Λ from Definition 5.15.

Definition 5.27. Let n,m, `, k be nonnegative integers with m+ ` 6 n and k 6 min{m, `}. Define

Λ
n,m,`
r (k) =

1

‖Jn,m,`r ‖1
Λn,m,`r (k), r = 0, 1, . . . ,min{m, `}.

More generally, for any ϕ : Z→ R, define

Λ
n,m,`
ϕ (k) =

min{m,`}∑
r=0

ϕ(r)Λ
n,m,`
r (k).

With this notation, we obtain the following counterpart of Theorem 5.23 for normalized subspace
matrices.

Theorem 5.28. Let n,m, ` be nonnegative integers with m + ` 6 n. Let ϕ : Z → R be given.

Then the singular values of Jn,m,`ϕ are:
√

Λ
n,m,`
ϕ (k) Λ

n,`,m
ϕ (k) with multiplicity

(
n
k

)
q
−
(
n
k−1

)
q
, where

k = 0, 1, . . . ,min{m, `}.



THE COMMUNICATION COMPLEXITY OF APPROXIMATING MATRIX RANK 67

Proof. By definition, Jn,m,`ϕ = Jn,m,`ϕ′ with ϕ′ : Z→ R given by

ϕ′(r) =

{
ϕ(r)/‖Jn,m,`r ‖1 if r ∈ {0, 1, . . . ,min{m, `}},
0 otherwise.

Recall from Theorem 5.23 that the singular values of Jn,m,`ϕ′ are
√

Λn,m,`ϕ′ (k) Λn,`,mϕ′ (k) with multi-

plicity
(
n
k

)
q
−
(
n
k−1

)
q
, where k = 0, 1, . . . ,min{m, `}. Since Λn,m,`ϕ′ (k) = Λ

n,m,`
ϕ (k) and Λn,`,mϕ′ (k) =

Λ
n,`,m
ϕ (k) by Definition 5.27, the proof is complete.

With our next lemma, we establish key algebraic and analytic properties of Λ
n,m,`
r (k).

Lemma 5.29. Let n,m, `, k be nonnegative integers with m+ ` 6 n and k 6 min{m, `}. Then:

(i) for n,m, `, k fixed, Λ
n,m,`
r (k) as a function of r ∈ {0, 1, . . . ,min{m, `}} is a polynomial in

qr of degree at most k;

(ii) |Λn,m,`
r (k)| 6 8

(
n
m

)−1

q
q−k(m−r)/2 for r = 0, 1, . . . ,min{m, `}.

Proof. Let r ∈ {0, 1, . . . ,min{m, `}} be given. Then

Λ
n,m,`
r (k) =

1

‖Jn,m,`r ‖1
Λn,m,`r (k)

=
1

‖Jn,m,`r ‖1

k∑
i=0

(−1)i
(
k

i

)
q

q(
i
2)+(m−r)(`−r−i)

(
n−m− i
`− r − i

)
q

(
m− k + i

r − k + i

)
q

=

(
n

m

)−1

q

k∑
i=0

(−1)i
(
k

i

)
q

q(
i
2)+(m−r)(`−r−i)

q(m−r)(`−r) ·

(
n−m−i
`−r−i

)
q(

n−m
`−r
)
q

·

(
m−k+i
r−k+i

)
q(

m
r

)
q

, (5.44)

where the first step restates Definition 5.27, the second step applies Definition 5.15, and the final
step uses Proposition 5.17. To simplify (5.44), observe that(

n−m−i
`−r−i

)
q(

n−m
`−r
)
q

=
q`−r − 1

qn−m − 1
· q

`−r − q
qn−m − q

· · · · · q
`−r − qi−1

qn−m − qi−1
. (5.45)

Indeed, if ` − r − i < 0, then the left-hand side is zero by definition, and the right-hand side also
evaluates to zero. In the complementary case ` − r − i > 0, one obtains (5.45) directly from the
definition of Gaussian binomial coefficients. One analogously verifies that(

m−k+i
r−k+i

)
q(

m
r

)
q

=
qr − 1

qm − 1
· q

r − q
qm − q

· · · · · q
r − qk−i−1

qm − qk−i−1
, (5.46)

by considering the cases r − k + i < 0 and r − k + i > 0. Substituting (5.45) and (5.46) into (5.44)
gives

Λ
n,m,`
r (k) =

(
n

m

)−1

q

k∑
i=0

(−1)i
(
k

i

)
q

q(
i
2)−(m−r)i · q

`−r − 1

qn−m − 1
· q

`−r − q
qn−m − q

· · · · · q
`−r − qi−1

qn−m − qi−1

× qr − 1

qm − 1
· q

r − q
qm − q

· · · · · q
r − qk−i−1

qm − qk−i−1
. (5.47)



68 ALEXANDER A. SHERSTOV AND ANDREY A. STOROZHENKO

To verify the algebraic property (i), rewrite (5.47) to obtain

Λ
n,m,`
r (k) =

(
n

m

)−1

q

k∑
i=0

(−1)i
(
k

i

)
q

q(
i
2)−mi · q` − qr

qn−m − 1
· q

` − qr+1

qn−m − q
· · · · · q

` − qr+i−1

qn−m − qi−1

× qr − 1

qm − 1
· q

r − q
qm − q

· · · · · q
r − qk−i−1

qm − qk−i−1
.

The i-th summand in this expression is, for fixed values of n,m, `, k, clearly a polynomial in qr of
degree at most i+ (k − i) = k. This settles (i).

We now turn to the analytic property, (ii). Dropping the zero terms from the summation in (5.47),
and applying the triangle inequality,

|Λn,m,`
r (k)| 6

(
n

m

)−1

q

min{k,`−r}∑
i=max{0,k−r}

(
k

i

)
q

q(
i
2)−(m−r)i · q

`−r − 1

qn−m − 1
· q

`−r − q
qn−m − q

· · · · · q
`−r − qi−1

qn−m − qi−1

× qr − 1

qm − 1
· q

r − q
qm − q

· · · · · q
r − qk−i−1

qm − qk−i−1
.

The first i fractions on the right-hand side are each bounded by q`−r/qn−m, whereas the other k− i
fractions are each bounded by qr/qm. Using these estimates leads to

|Λn,m,`
r (k)| 6

(
n

m

)−1

q

min{k,`−r}∑
i=max{0,k−r}

(
k

i

)
q

q(
i
2)−(m−r)i · q(`−r−n+m)i · q−(m−r)(k−i)

6

(
n

m

)−1

q

min{k,`−r}∑
i=max{0,k−r}

4qi(k−i)+(i2)−(m−r)i+(`−r−n+m)i−(m−r)(k−i)

6

(
n

m

)−1

q

min{k,`−r}∑
i=max{0,k−r}

4qi(k−i)+(i2)−(m−r)i−ri−(m−r)(k−i)

=

(
n

m

)−1

q

min{k,`−r}∑
i=max{0,k−r}

4qi(k−r−i)+(i2)−k(m−r), (5.48)

where the second step uses Corollary 2.14, and the third step is valid since n > m+` by hypothesis.
Let A(i) denote the exponent of q in (5.48). Then A(i) is an integer-valued function of i that strictly
decreases on [k − r,∞). As a result, (5.48) yields

|Λn,m,`
r (k)| 6

(
n

m

)−1

q

∞∑
t=0

4qA(max{0,k−r})−t

6 8

(
n

m

)−1

q

qA(max{0,k−r}),

where the second step uses a geometric series along with q > 2. Therefore, the proof of (ii) will be
complete once we show that

A(max{0, k − r}) 6 −k(m− r)
2

. (5.49)

There are two cases to consider. If k 6 r, then A(max{0, k−r}) = A(0) = −k(m−r) 6 −k(m−r)/2,
where the last step uses the hypothesis that r 6 m. If k > r, then A(max{0, k − r}) = A(k − r) =(
k−r

2

)
− k(m− r) 6 k(k − r)/2− k(m− r) 6 −k(m− r)/2, where the last step uses the hypothesis

that k 6 m. This settles (5.49) and completes the proof of the lemma.
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5.6. Approximate trace norm of the subspace problem. We have reached a pivotal point in
our study of the subspace intersection problem, where we analyze the approximate trace norm of its
characteristic matrix. As in our analysis of the rank problem (Section 3), we start by constructing
a suitable univariate dual object.

Lemma 5.30. Let ∆, R, d1, d2 be nonnegative integers with 0 < R 6 ∆ − d1 − d2. Then there is a
function ψ : {0, 1, . . . ,∆} → R such that:

(i) ψ(0) = −1;
(ii) ψ(R) > 0;
(iii) ψ(r) = 0 for r ∈ {0, 1, . . . ,∆} \ ({R+ d1 + 1, R+ d1 + 2, . . . ,∆− d2} ∪ {0, R});
(iv)

∑∆
r=0 ψ(r)ξ(qr) = 0 for every polynomial ξ of degree at most ∆−R− d1 − d2;

(v)
∑

r∈{0,...,∆}\{0,R} |ψ(r)| 6 32q−d1−1.

Proof. By hypothesis, d1 +d2 6 ∆−R < ∆. As a result, we may invoke Lemma 3.9 with parameters
n, k, `,m set to ∆,∆−R, d2,d1, respectively, to obtain a function ϕ : {0, 1, . . . ,∆} → R such that:

(i′) ϕ(∆) = 1;
(ii′) ϕ(∆−R) < 0;
(iii′) ϕ(r) = 0 for r ∈ {0, 1, . . . ,∆} \ ({d2, d2 + 1, . . . ,∆−R− d1 − 1} ∪ {∆−R,∆});
(iv′)

∑∆
r=0 ϕ(r)ξ(q−r) = 0 for every polynomial ξ of degree at most ∆−R− d1 − d2;

(v′)
∑

r∈{0,...,∆}\{∆−R,∆} |ϕ(r)| 6 32q−d1−1.

Define ψ : {0, 1, . . . ,∆} → R by ψ(r) = −ϕ(∆− r). Then (i), (ii), (iii), and (v) are immediate from
(i′), (ii′), (iii′), and (v′), respectively. The remaining item (iv) follows from (iv′) via

∆∑
r=0

ψ(r)ξ(qr) = −
∆∑
r=0

ϕ(∆− r)ξ(qr−∆ · q∆) = −
∆∑
i=0

ϕ(i)ξ(q−i · q∆) = 0.

With the univariate dual object ψ now constructed, we will use the associated subspace matrix
Φ = J

n,m,`
ψ as a dual witness to prove our sought lower bound on the approximate trace norm. The

theorem below only treats a canonical case of the subspace intersection problem. However, we will
see shortly that this result allows us to tackle all parameter settings.

Theorem 5.31. Let n,m, `,R be given integers with 0 < R 6 min{m, `} and m + ` 6 n. Let F
be the characteristic matrix of INTERSECT

Fq ,n,m,`
0,R . Then for all reals δ > 0 and all nonnegative

integers d1, d2 with d1 + d2 6 min{m, `} −R,

‖F‖Σ,δ >
1

8

(
1− δ − 64

qd1+1

)(
n

m

)1/2

q

(
n

`

)1/2

q

q(min{m,`}−R−d1−d2+1)(m+`−2 min{m,`}+2d2)/4,

(5.50)

‖F‖Σ,δ >
1− δ

8

(
n

m

)1/2

q

(
n

`

)1/2

q

q(m+`−2R)/4. (5.51)

Proof. Structurally, the proof is similar to that of Theorem 3.14. Let ∆ = min{m, `}. Then 0 < R 6
∆ − d1 − d2 by hypothesis. Let ψ : {0, 1, . . . ,∆} → R be the function constructed in Lemma 5.30,
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and extend ψ to all of Z by defining ψ(r) = 0 for r /∈ {0, 1, . . . ,∆}. Then∑
domF

FS,T (J
n,m,`
ψ )S,T − δ‖J

n,m,`
ψ ‖1 −

∑
domF

|(J n,m,`ψ )S,T |

= −
∑

dim(S∩T )=0

(J
n,m,`
ψ )S,T +

∑
dim(S∩T )=R

(J
n,m,`
ψ )S,T − δ‖J

n,m,`
ψ ‖1

−
∑

dim(S∩T )/∈{0,R}

|(J n,m,`ψ )S,T |

= −ψ(0) + ψ(R)− δ‖ψ‖1 −
∑

r/∈{0,R}

|ψ(r)|

= |ψ(0)|+ |ψ(R)| − δ‖ψ‖1 −
∑

r/∈{0,R}

|ψ(r)|

= (1− δ)‖ψ‖1 − 2
∑

r/∈{0,R}

|ψ(r)|

>

1− δ − 2
∑

r/∈{0,R}

|ψ(r)|

 ‖ψ‖1, (5.52)

where the second step uses Lemma 5.26, the third step is valid by Lemma 5.30(i)–(ii), and the fifth
step is justified by Lemma 5.30(i).

We now analyze the spectral norm of J n,m,`ψ . Recall from Lemma 5.29(i) that for fixed n,m, `

and fixed k ∈ {0, 1, . . . ,∆}, the quantity Λ
n,m,`
r (k) as a function of r ∈ {0, 1, . . . ,∆} is a polynomial

in qr of degree at most k. As a result,

max
k∈{0,1,...,∆−R−d1−d2}

√
Λ
n,m,`
ψ (k) Λ

n,`,m
ψ (k)

= max
k∈{0,1,...,∆−R−d1−d2}

√√√√Λ
n,`,m
ψ (k) ·

∆∑
r=0

ψ(r)Λ
n,m,`
r (k)

= max
k∈{0,1,...,∆−R−d1−d2}

√
Λ
n,`,m
ψ (k) · 0

= 0, (5.53)

where the first step applies Definition 5.27, and the second step uses Lemma 5.30(iv). Next, for all
k ∈ {0, 1, . . . ,∆},

|Λn,m,`
ψ (k) Λ

n,`,m
ψ (k)| =

∣∣∣∣∣
∆∑
r=0

ψ(r)Λ
n,m,`
r (k)

∣∣∣∣∣ ·
∣∣∣∣∣

∆∑
r=0

ψ(r)Λ
n,`,m
r (k)

∣∣∣∣∣
=

∣∣∣∣∣
∆−d2∑
r=0

ψ(r)Λ
n,m,`
r (k)

∣∣∣∣∣ ·
∣∣∣∣∣
∆−d2∑
r=0

ψ(r)Λ
n,`,m
r (k)

∣∣∣∣∣
6 ‖ψ‖1 max

r=0,1,...,∆−d2

|Λn,m,`
r (k)| · ‖ψ‖1 max

r=0,1,...,∆−d2

|Λn,`,m
r (k)|

6 ‖ψ‖21 · 8
(
n

m

)−1

q

q−k(m−∆+d2)/2 · 8
(
n

`

)−1

q

q−k(`−∆+d2)/2,
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where the first step applies Definition 5.27, the second step uses Lemma 5.30(iii), and the last step
invokes Lemma 5.29(ii) to bound Λ

n,m,`
r (k) and then again (with the roles of m and ` interchanged)

to bound Λ
n,`,m
r (k). It follows that

max
k∈{∆−R−d1−d2+1,...,∆−1,∆}

√
Λ
n,m,`
ψ (k) Λ

n,`,m
ψ (k)

6 max
k∈{∆−R−d1−d2+1,...,∆−1,∆}

8‖ψ‖1

((
n

m

)
q

(
n

`

)
q

qk(m−∆+d2)/2qk(`−∆+d2)/2

)−1/2

= 8‖ψ‖1

((
n

m

)
q

(
n

`

)
q

q(∆−R−d1−d2+1)(m+`−2∆+2d2)/2

)−1/2

. (5.54)

As a result,

‖J n,m,`ψ ‖ = max
k∈{0,1,...,∆}

√
Λ
n,m,`
ψ (k) Λ

n,`,m
ψ (k)

6 8‖ψ‖1

((
n

m

)
q

(
n

`

)
q

q(∆−R−d1−d2+1)(m+`−2∆+2d2)/2

)−1/2

, (5.55)

where the first step appeals to Theorem 5.28, and the second step substitutes the upper bounds
from (5.53) and (5.54).

We are now in a position to complete the proof of the theorem. Proposition 2.9 with Φ = J
n,m,`
ψ

implies, in view of (5.52) and (5.55), that

‖F‖Σ,δ >
1

8

1− δ − 2
∑

r/∈{0,R}

|ψ(r)|

(n
m

)1/2

q

(
n

`

)1/2

q

q(∆−R−d1−d2+1)(m+`−2∆+2d2)/4.

Since
∑

r/∈{0,R} |ψ(r)| 6 32q−d1−1 by Lemma 5.30(v), this settles (5.50). In the special case d1 = 0

and d2 = ∆−R, we have
∑

r/∈{0,R} |ψ(r)| = 0 from Lemma 5.30(iii), whence (5.51).

5.7. Communication lower bounds. We will now prove an optimal lower bound on the com-
munication complexity of the subspace intersection problem. To simplify the exposition, we will
first consider the canonical case where Alice and Bob need to determine whether the intersection of
their subspaces has dimension 0 versus dimension R, corresponding to the approximate trace norm
result that we just obtained. The general lower bound for all parameter settings will then follow
using the reduction of Proposition 2.26.

Lemma 5.32. Let F be a finite field with q = |F| elements. Let n,m, `,R be nonnegative integers
with

0 < R 6 min{m, `}, (5.56)
R < max{m, `}, (5.57)
m+ ` 6 n. (5.58)

Then

Q∗(1−γ)/2(INTERSECTF,n,m,`
0,R ) > c(logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q (5.59)

for all γ ∈ [1
3q
−(m+`−2R)/5, 1], where c > 0 is an absolute constant independent of F, n,m, `,R, γ.

Proof. Due to the symmetry between m and ` in the statement of the lemma, we may assume that

m > `, (5.60)
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corresponding to the mnemonic “m for more, ` for less.” The hypotheses (5.58) ensures that there is
a pair of subspaces in S (Fn,m)×S (Fn, `) whose intersection has dimension 0; analogously, (5.56)
and (5.58) ensure that there is a pair of subspaces in S (Fn,m)×S (Fn, `) whose intersection has
dimension R. This makes INTERSECTF,n,m,`

0,R a nonconstant function, with the trivial lower bound

Q∗(1−γ)/2(INTERSECTF,n,m,`
0,R ) > 1. (5.61)

It suffices to prove that the characteristic matrix F of this communication problem satisfies

‖F‖Σ,1−γ > c′
(
n

m

)1/2

q

(
n

`

)1/2

q

qc
′(logqdqm−Rγe+1)(logqdq`−Rγe+1) (5.62)

for some absolute constant c′ > 0. Indeed, once this lower bound is established, an appeal to
Theorem 2.23 yields

Q∗(1−γ)/2(INTERSECTF,n,m,`
0,R )

>
1

2
log

c′qc
′(logqdqm−Rγe+1)(logqdq`−Rγe+1)

3

=
c′

2
(logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q − 1

2
log

3

c′
. (5.63)

Taking a weighted arithmetic average of (5.61) and (5.63) settles (5.59).
In what follows, we prove (5.62). We first examine the case γ 6 q−`+R+23. Equation (5.51)

of Theorem 5.31 yields

‖F‖Σ,1−γ >
γ

8

(
n

m

)1/2

q

(
n

`

)1/2

q

q(m+`−2R)/4

>
1

24

(
n

m

)1/2

q

(
n

`

)1/2

q

q(m+`−2R)/20, (5.64)

where the second step uses the lemma hypothesis that γ > 1
3q
−(m+`−2R)/5. Moreover,

m+ `− 2R > m−R

>
1

2
(m−R+ 1)

>
1

2
(m−R+ 1) · 1

24
(logqdq`−Rγe+ 1)

>
1

48
(logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1), (5.65)

where the first step uses (5.56), the second step is valid by (5.57) and (5.60), the third step is
legitimate because γ 6 q−`+R+23 in the case under consideration, and the last step uses the lemma
hypothesis that γ 6 1. Equations (5.64) and (5.65) imply (5.62) for c′ = 1/960.

We now examine the complementary case, γ > q−`+R+23. This assumption on γ, along with
the lemma hypothesis that γ 6 1, implies that the integer d1 = blogq(128/γ)c is an element of
{0, 1, 2, . . . , `−R}. This in turn means that the integer d2 = d(`−R− d1)/2e is also an element of
{0, 1, 2, . . . , `−R}.We have d1+d2 = d1+d(`−R−d1)/2e 6 d1+(`−R−d1) = `−R = min{m, `}−R,
where the last step uses (5.60). As a result, Theorem 5.31 is applicable with parameters d1 and d2,
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and equation (5.50) yields

‖F‖Σ,1−γ >
1

8

(
γ − 64

qd1+1

)(
n

m

)1/2

q

(
n

`

)1/2

q

q(min{m,`}−R−d1−d2+1)(m+`−2 min{m,`}+2d2)/4

>
1

8

(
γ − 64

qd1+1

)(
n

m

)1/2

q

(
n

`

)1/2

q

q(`−R−d1−d2+1)(m−`+2d2)/4

>
γ

16

(
n

m

)1/2

q

(
n

`

)1/2

q

q(`−R−d1−d2+1)(m−`+2d2)/4

>
γ

16

(
n

m

)1/2

q

(
n

`

)1/2

q

q(`−R−d1)(m−R−d1)/8

=
1

16

(
n

m

)1/2

q

(
n

`

)1/2

q

q(`−R−blogq(128/γ)c)(m−R−blogq(128/γ)c)/8−logq(1/γ), (5.66)

where the second step applies (5.60), the third and fifth steps use the definition of d1, and the
fourth step uses the definition of d2. Recall that γ > q−`+R+23 in the case under consideration,
and γ ∈ [1

3q
−(m+`−2R)/5, 1] by the lemma hypothesis. We may therefore use Claim 5.33, stated and

proved below, to simplify to the right-hand side of (5.66) as follows:

‖F‖Σ,1−γ >
1

16

(
n

m

)1/2

q

(
n

`

)1/2

q

q(logqdqm−Rγe+1)(logqdq`−Rγe+1)/160.

This establishes (5.62) with c′ = 1/160, completing the proof of the lemma.

Claim 5.33. For any γ with max{q−`+R+23, 1
3q
−(m+`−2R)/5} 6 γ 6 1,

1

8

(
`−R−

⌊
logq

128

γ

⌋)(
m−R−

⌊
logq

128

γ

⌋)
− logq

1

γ

>
1

160
(logqdqm−Rγe + 1)(logqdq`−Rγe + 1). (5.67)

Proof. The proof is somewhat tedious but straightforward. To begin with,
1

8

(
`−R−

⌊
logq

128

γ

⌋)(
m−R−

⌊
logq

128

γ

⌋)
− logq

1

γ

=
1

8

⌈
logq

q`−Rγ

128

⌉(
m−R−

⌊
logq

128

γ

⌋)
− logq

1

γ

>
1

8

⌈
logq

q`−Rγ

128

⌉(
m−R−

⌊
logq

128

γ

⌋
− 1

2
logq

1

γ

)
, (5.68)

where the last step uses the fact that 1
8dlogq(q

`−Rγ/128)e > 2 due to the hypothesis γ > q−`+R+23.
We now bound from below the factors in (5.68). We have

logq
q`−Rγ

128
> logq

q`−Rγ

q7
> logq

dq`−Rγe
q8

= logqdq`−Rγe − 8 >
1

2
(logqdq`−Rγe+ 1), (5.69)
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where the second and fourth steps are valid because q`−Rγ > q23 by hypothesis. The other factor
in (5.68) can be bounded as follows:

m−R−
⌊

logq
128

γ

⌋
− 1

2
logq

1

γ
> m−R− logq

q7

γ3/2

> m−R− logq
q7

(max{q−`+R+23, 1
3q
−(m+`−2R)/5})3/2

> m−R− 7− 3

2
min

{
`−R− 23,

1

5
(m+ `− 2R) + 2

}
> m−R− 7− 3

2
min

{
m−R− 23,

2

5
(m−R) + 2

}
> m−R− 7− 3

2

(
1

3
(m−R− 23) +

2

3

(
2

5
(m−R) + 2

))
=

1

10
(m−R) +

5

2

>
1

10
(logqdqm−Rγe+ 1), (5.70)

where the first step applies the bound 128 6 q7 and drops the floor operator, the second step uses
the hypothesis for γ, the fourth step is valid by (5.60), the fifth step replaces the minimum by a
weighted average, and the last step is legitimate because γ 6 1 by hypothesis. Now (5.67) follows
from (5.68)–(5.70).

We now extend the previous lemma to all possible parameter settings, thus obtaining the desired
communication lower bound for subspace intersection.

Theorem 5.34. Let c > 0 be the absolute constant from Lemma 5.32. Let F be a finite field with
q = |F| elements, and let n,m, `, r, R be integers with max{0,m + ` − n} 6 r < R 6 min{m, `}.
Then max{m, `} 6 n. Furthermore, for all γ ∈ [1

3q
−(m+`−2R)/5, 1],

Q∗1−γ
2

(INTERSECTF,n,m,`
r,R ) >

{
1 if R = m = `,

c(logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q otherwise.

Proof. The hypothesis max{0,m+`−n} 6 r < R 6 min{m, `} implies that m+`−n 6 min{m, `},
which is equivalent to max{m, `} 6 n.

Recall from Proposition 2.25 that for each integer d ∈ [max{0,m+ `− n},min{m, `}], there are
subspaces S ∈ S (Fn,m) and T ∈ S (Fn, `) with dim(S ∩ T ) = d. This makes INTERSECTF,n,m,`

r,R

a nonconstant function, which means that its ε-error quantum communication complexity for each
ε ∈ [0, 1/2) is at least 1 bit. This settles the claimed communication lower bounds in the case
R = m = `.

In what follows, we focus on the complementary case when R,m, ` are not all equal. In view of
R 6 min{m, `}, we infer that R < max{m, `}. This new inequality, and the theorem hypotheses
that m+ `− n 6 r < R 6 min{m, `} and γ ∈ [1

3q
−(m+`−2R)/5, 1], can be equivalently stated as

R− r < max{m− r, `− r}, (5.71)
0 < R− r 6 min{m− r, `− r}, (5.72)
(m− r) + (`− r) 6 n− r, (5.73)

γ ∈ [1
3q
−((m−r)+(`−r)−2(R−r))/5, 1]. (5.74)



THE COMMUNICATION COMPLEXITY OF APPROXIMATING MATRIX RANK 75

Now

Q∗(1−γ)/2(INTERSECTF,n,m,`
r,R ) > Q∗(1−γ)/2(INTERSECTF,n−r,m−r,`−r

0,R−r )

> c(logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q, (5.75)

where the first step uses Proposition 2.26, and the second step is valid by Lemma 5.32 whose
application is in turn justified by (5.71)–(5.74).

Theorem 5.34 settles the quantum communication lower bound of Theorem 1.10 for the promise
subspace intersection problem, and hence also the randomized communication lower bound for the
total subspace intersection problem.

5.8. Communication upper bounds for small error. In this section and the next, we prove
communication upper bounds matching our lower bound for the subspace intersection problem. We
start with a technical lemma.

Lemma 5.35. Let n,m, `, r,∆ be nonnegative integers with r 6 min{m, `} and max{m, `} 6 n. Fix
a finite field F, and let S ∈ S (Fn,m) and T ∈ S (Fn, `) be given subspaces. Let X ∈ F(m+`−r+∆)×n

and Y ∈ F(m+`−2r+3∆)×(m+`−r+∆) be uniformly random matrices. Then with probability at least
1− 16|F|−∆−1, one has

dim(X(S)) = dim(S), (5.76)
dim(X(T )) = dim(T ), (5.77)

dim(Y ((X(S))⊥)) = dim((X(S))⊥), (5.78)

dim(Y ((X(T ))⊥)) = dim((X(T ))⊥). (5.79)

Assuming (5.76)–(5.79), the subspaces S′ = Y ((X(S))⊥) and T ′ = Y ((X(T ))⊥) satisfy

dim(S′) = `− r + ∆, (5.80)

dim(T ′) = m− r + ∆, (5.81)

dim(S′ ∩ T ′) = m+ `− r + ∆− dim(X(S + T ))

+ dim((X(S))⊥ + (X(T ))⊥)− dim(Y ((X(S))⊥ + (X(T ))⊥)). (5.82)

Proof. Abbreviate q = |F|. Let E1, E2, E3, E4 be the events that correspond to (5.76)–(5.79), re-
spectively. Applying Lemma 2.20 with t = m− 1 and d = m+ `− r + ∆ gives

P[¬E1] 6 4q−(`−r+∆+1) 6 4q−∆−1. (5.83)

Analogously, applying Lemma 2.20 with t = `− 1 and d = m+ `− r + ∆ shows that

P[¬E2] 6 4q−(m−r+∆+1) 6 4q−∆−1. (5.84)

Conditioned on E1 ∧ E2, we have

dim((X(S))⊥) = m+ `− r + ∆− dim(X(S)) = `− r + ∆, (5.85)

dim((X(T ))⊥) = m+ `− r + ∆− dim(X(T )) = m− r + ∆. (5.86)

As a result, invoking Lemma 2.20 with t = `− r + ∆− 1 and d = m+ `− 2r + 3∆ shows that

P[¬E3 | E1 ∧ E2] 6 4q−(m+`−2r+3∆)+(`−r+∆−1) 6 4q−2∆−1. (5.87)

Analogously, invoking Lemma 2.20 with t = m− r + ∆− 1 and d = m+ `− 2r + 3∆ shows that

P[¬E4 | E1 ∧ E2] 6 4q−(m+`−2r+3∆)+(m−r+∆−1) 6 4q−2∆−1. (5.88)
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Now

P[E1 ∧ E2 ∧ E3 ∧ E4] = P[E1 ∧ E2]P[E3 ∧ E4 | E1 ∧ E2]

> P[E1 ∧ E2]−P[¬(E3 ∧ E4) | E1 ∧ E2]

> 1−P[¬E1]−P[¬E2]−P[¬E3 | E1 ∧ E2]−P[¬E4 | E1 ∧ E2]

> 1− 16q−∆−1,

where the last step uses (5.83)–(5.88). This settles the first part of the lemma.
In what follows, we assume (5.76)–(5.79). Then (5.80) follows from dim(S′) = dim((X(S))⊥) =

`−r+∆, where the last step uses (5.85). Analogously, (5.81) follows from dim(T ′) = dim((X(T ))⊥) =
m− r + ∆, where the last step uses (5.86). Toward the remaining equation (5.82), we have

dim((X(S))⊥ + (X(T ))⊥) = dim(((X(S)) ∩ (X(T )))⊥)

= m+ `− r + ∆− dim((X(S)) ∩ (X(T )))

= m+ `− r + ∆− (dim(X(S)) + dim(X(T ))− dim(X(S) +X(T )))

= −r + ∆ + dim(X(S + T )),

where the first step uses Fact 2.4, and the last step uses (5.76), (5.77), and the linearity of X. With
this substitution, (5.82) is equivalent to

dim(S′ ∩ T ′) = m+ `− 2r + 2∆− dim(Y ((X(S))⊥ + (X(T ))⊥)). (5.89)

Due to (5.80), (5.81), and Y ((X(S))⊥ + (X(T ))⊥) = Y ((X(S))⊥) + Y ((X(T ))⊥) = S′ + T ′, equa-
tion (5.89) is a restatement of dim(S′∩T ′) = dim(S′)+dim(T ′)−dim(S′+T ′), which is a well-known
identity valid for any subspaces S′, T ′.

We are now ready to prove our communication upper bound for subspace intersection in the
regime where the error probability is a small constant or tends to 0. In the next section, we will
generalize this result to the more challenging regime where the error tends to 1/2.

Theorem 5.36 (Small error). Let F be a finite field with q = |F| elements. Let n,m, `,R be integers
with 0 < R 6 min{m, `} and max{m, `} 6 n. Then for each 0 < ε 6 1/3,

Rε(INTERSECTF,n,m,`
R ) = O

((
m−R+

⌈
logq

1

ε

⌉)(
`−R+

⌈
logq

1

ε

⌉)
log q

)
. (5.90)

If in addition m = ` = R, then for each 0 < ε 6 1/3,

Rε(INTERSECTF,n,m,`
R ) = O

(
log

1

ε

)
. (5.91)

Proof. Define r = R − 1. For an integer ∆ > 0 to be set later, consider the following protocol Π.
On input a pair of subspaces S ∈ S (Fn,m) for Alice and T ∈ S (Fn, `) for Bob, the parties use
their shared randomness to pick independent and uniformly random matrices X ∈ F(m+`−r+∆)×n

and Y ∈ F(m+`−2r+3∆)×(m+`−r+∆). Next, they verify the four conditions (5.76)–(5.79). This can be
done using only two bits of communication, with Alice and Bob verifying the conditions pertaining
to their respective inputs. If any of these conditions fail, they output a uniformly random value in
{−1, 1}. In the complementary case, Alice and Bob compute

S′ = Y ((X(S))⊥),

T ′ = Y ((X(T ))⊥),

respectively. The owner of the smaller of the subspaces S′ and T ′ sends it to the other party in the
form of a basis, who then computes dim(S′ ∩ T ′) and outputs 1 if and only if dim(S′ ∩ T ′) 6 ∆.
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We first analyze the communication cost of Π. If any of the conditions (5.76)–(5.79) fail, the
communication cost is 2 bits. If all four conditions hold, then dim(S′) = `− r + ∆ and dim(T ′) =
m − r + ∆ by Lemma 5.35. As a result, a basis for the smaller of the subspaces S′ and T ′ can be
communicated using (m+ `− 2r+ 3∆)(min{m, `}− r+ ∆)dlog qe bits, where the first factor is the
dimension of the ambient space. Altogether, the communication cost is at most

2 + (2 max{m, `} − 2r + 3∆)(min{m, `} − r + ∆)dlog qe+ 1

= O((m − r + ∆)(` − r + ∆) log q). (5.92)

We now analyze the correctness probability. To this end, we prove the following claim.

Claim 5.37. The output of the protocol is correct whenever the matrices X,Y satisfy (5.76)–(5.79)
as well as the additional conditions

dim(X(S + T )) > min{dim(S + T ),m+ `− r}, (5.93)

dim(Y ((X(S))⊥ + (X(T ))⊥)) = dim((X(S))⊥ + (X(T ))⊥). (5.94)

Proof. Recall from Lemma 5.35 that (5.76)–(5.79) force (5.82), which in view of (5.94) simplifies to

dim(S′ ∩ T ′) = m+ `− r + ∆− dim(X(S + T )). (5.95)

We first consider the case dim(S ∩ T ) 6 r. Here dim(S + T ) > m + ` − r, which along with
(5.93) implies that dim(X(S + T )) > m + ` − r. Substituting this lower bound into (5.95) gives
dim(S′ ∩ T ′) 6 ∆. As a result, Π outputs the correct value in this case.

In the complementary case dim(S ∩ T ) > r + 1, we have dim(S + T ) 6 m + ` − r − 1 and
therefore also dim(X(S + T )) 6 m + ` − r − 1. Substituting this upper bound into (5.95) gives
dim(S′ ∩ T ′) > ∆ + 1, showing that the output of Π is correct in this case as well.

Condition (5.93) fails with probability at most 4q−∆−1, by Lemma 2.20 with d = m+ `− r + ∆
and t = min{dim(S + T ),m+ `− r} − 1. Moreover, conditioned on (5.76) and (5.77), one has

dim((X(S))⊥ + (X(T ))⊥) 6 dim((X(S))⊥) + dim((X(T ))⊥)

= 2(m+ `− r + ∆)− dim(X(S))− dim(X(T ))

6 m+ `− 2r + 2∆

and hence (5.94) fails with probability at most 4q−(m+`−2r+3∆)+(m+`−2r+2∆−1) 6 4q−∆−1, by
Lemma 2.20 with d = m+ `− 2r + 3∆ and t = dim((X(S))⊥ + (X(T ))⊥)− 1. Since (5.76)–(5.79)
are simultaneously true with probability at least 1 − 16q−∆−1 (by Lemma 5.35), we conclude
that the six conditions (5.76)–(5.79), (5.93), (5.94) hold simultaneously with probability at least
1−16q−∆−1−4q−∆−1−4q−∆−1 = 1−24q−∆−1. Now Claim 5.37 implies that the described protocol
Π has error probability at most 24q−∆−1. Since we calculated Π’s cost to be (5.92), we conclude
that

R24/q∆+1(INTERSECTF,n,m,`
R ) = O((m− r + ∆)(`− r + ∆) log q).

Taking ∆ = blogq(24/ε)c now settles (5.90). For the additional upper bound (5.91), observe that
INTERSECTF,n,m,`

R for m = ` = R is the equality problem with domain S (Fn,m) × S (Fn,m).
The claimed upper bound now follows because it is well-known [14, Chapter 3.3] that the equality
problem over any domain has ε-error randomized communication complexity O(log(1/ε)).

5.9. Communication upper bounds for large error. To study the large-error regime, we recall
a basic fact on vector spaces.

Proposition 5.38. Let A,A′ be subspaces such that A′ ⊆ A. Then for any subspace B,

dim(A ∩B)− dim(A′ ∩B) 6 dim(A)− dim(A′). (5.96)
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Proof. Since A ∩ B + A′ is a subspace of A, we have dim(A ∩ B + A′) 6 dim(A). Expanding the
left-hand side yields dim(A∩B) + dim(A′)−dim(A∩B ∩A′) 6 dim(A), which is clearly equivalent
to (5.96).

We now revisit the subspaces S′ and T ′ in Lemma 5.35 and study the distribution of dim(S′∩T ′).

Lemma 5.39. Let n,m, `, r,∆ be nonnegative integers with r < min{m, `} and max{m, `} 6 n. Fix
a finite field F with q = |F| elements, and let S ∈ S (Fn,m) and T ∈ S (Fn, `) be given subspaces.
Let X ∈ F(m+`−r+∆)×n and Y ∈ F(m+`−2r+3∆)×(m+`−r+∆) be uniformly random matrices. Let Z be
the indicator random variable for the event that (5.76)–(5.79) hold. Define S′ = Y ((X(S))⊥) and
T ′ = Y ((X(T ))⊥). Then:

(i) E[Zqdim(S′∩T ′)] 6 q∆(1 + 8q−∆)2 whenever dim(S ∩ T ) 6 r;

(ii) E[Zqmin{dim(S′∩T ′),∆+1}] > q∆+1(1− 16q−∆−1) whenever dim(S ∩ T ) > r + 1.

Proof. (i) Consider the random variables

A = m+ `− r −min{dim(X(S + T )),m+ `− r},

B = dim((X(S))⊥ + (X(T ))⊥)− dim(Y ((X(S))⊥ + (X(T ))⊥)).

Then the inequality

Zqdim(S′∩T ′) 6 ZqA+B+∆ (5.97)

is trivially true for Z = 0 and follows from equation (5.82) of Lemma 5.35 for Z = 1. The hypothesis
dim(S ∩T ) 6 r implies that dim(S+T ) = dim(S) + dim(T )− dim(S ∩T ) > m+ `− r. As a result,
applying Lemma 2.20 with d = m+ `− r + ∆ and T = m+ `− r gives

E
X

[qA] 6 1 + 8q−∆. (5.98)

Now, let Z ′ be the indicator random variable for the event that (5.76) and (5.77) hold. Then Z ′ = 1
implies that

dim((X(S))⊥ + (X(T ))⊥) 6 dim((X(S))⊥) + dim((X(T ))⊥)

= 2(m+ `− r + ∆)− dim(X(S))− dim(X(T ))

6 m+ `− 2r + 2∆.

As a result, Lemma 2.20 is applicable with d = m+ `− 2r+ 3∆ and T = dim((X(S))⊥+ (X(T ))⊥)
and gives

Z ′E
Y

[qB | X] 6 Z ′(1 + 8q−∆). (5.99)

It remains to put these ingredients together:

E[Zqdim(S′∩T ′)] 6 E[ZqA+B+∆]

6 E[Z ′qA+B+∆]

= q∆ E
X
qAZ ′E

Y
[qB | X]

6 q∆ E
X
qAZ ′(1 + 8q−∆)

6 q∆ E
X
qA(1 + 8q−∆)

6 q∆(1 + 8q−∆)2,

where the first step uses (5.97), the second step is justified by Z 6 Z ′, the fourth step applies (5.99),
and the last step uses (5.98).
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(ii) Assume now that dim(S ∩ T ) > r + 1. For Z = 1, equation (5.82) of Lemma 5.35 gives

dim(S′ ∩ T ′) > m+ `− r + ∆− dim(X(S + T ))

> m+ `− r + ∆− dim(S + T )

= m+ `− r + ∆− dim(S)− dim(T ) + dim(S ∩ T )

= −r + ∆ + dim(S ∩ T )

> ∆ + 1.

Now

E[Zqmin{dim(S′∩T ′),∆+1}] > q∆+1 E[Z]

> q∆+1(1− 16q−∆−1),

where the second step uses Lemma 5.35.

At last, we are in a position to prove our claimed communication upper bound for the subspace
intersection problem.

Theorem 5.40 (Large error). Let F be a finite field with q = |F| elements, and let n,m, `,R be
integers with max{0,m+ `− n} < R 6 min{m, `}. Then max{m, `} 6 n and

R 1
2
− 1

16qm+`−2R+16
(INTERSECTF,n,m,`

R ) 6 2. (5.100)

Furthermore, for each γ ∈ [1
3q
−(m+`−2R)/3, 1

3 ],

R(1−γ)/2(INTERSECTF,n,m,`
R ) = O((logqdγqm−Re+ 1)(logqdγq`−Re+ 1) log q). (5.101)

If in addition m = ` = R, then

R1/3(INTERSECTF,n,m,`
R ) = O(1). (5.102)

Proof. The hypothesis max{0,m + ` − n} < R 6 min{m, `} implies that m + ` − n 6 min{m, `},
which is equivalent to max{m, `} 6 n. The bound (5.102) is immediate from Theorem 5.36.

In the rest of the proof, define r = R − 1. We will first settle (5.100). Let ∆ be a nonnegative
integer to be chosen later. Consider the following protocol Π′. On input a pair of subspaces
S ∈ S (Fn,m) for Alice and T ∈ S (Fn, `) for Bob, the parties use their shared randomness to pick
independent and uniformly random matricesX ∈ F(m+`−r+∆)×n and Y ∈ F(m+`−2r+3∆)×(m+`−r+∆).
Alice and Bob compute S′ = Y ((X(S))⊥) and T ′ = Y ((X(T ))⊥), respectively. Note that S′ and T ′
are subspaces in an ambient vector space V of dimension m+ `− 2r + 3∆. Let Z be the indicator
random variable for the event that the four conditions (5.76)–(5.79) hold. Alice and Bob use shared
randomness to pick a uniformly random vector v ∈ V . They output 1 in the event that Z = 1
and v ∈ S′ ∩ T ′, and output a uniformly random ±1 value otherwise. The communication cost of
this protocol is 2 bits since Alice can privately verify the conditions (5.76), (5.78), and v ∈ S′, and
likewise Bob can privately verify the conditions (5.77), (5.79), and v ∈ T ′. Observe further that

E[Π′(S, T ) | X,Y ] = Zqdim(S′∩T ′)−(m+`−2r+3∆).

Passing to expectations over X and Y, we arrive at

EΠ′(S, T ) = q−(m+`−2r+3∆) E[Zqdim(S′∩T ′)].

Applying Lemma 5.39, we find that Π′(S, T ) has expectation at most α′ = q−m−`+2r−2∆(1+8q−∆)2

if dim(S ∩ T ) 6 r, and at least β′ = q−m−`+2r−2∆q(1 − 16q−∆−1) if dim(S ∩ T ) > r + 1. Taking
∆ = 7, one calculates that β′ − α′ > q−m−`+2r−14/2. Now Proposition 2.24 implies that

R 1
2
− 1

16qm+`−2r+14
(¬ INTERSECTF,n,m,`

R ) 6 2,
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which is equivalent to (5.100).
In what follows, we prove the remaining upper bound (5.101). Due to the symmetry between m

and `, we may assume without loss of generality that

m > `. (5.103)

Let k and ∆ be nonnegative integers to be set later, where

1 6 k 6 `− r. (5.104)

We will adapt Π′ to obtain a new protocol Π′′ that satisfies the following inequalities for all subspaces
S, T ⊆ Fn of dimension m and `, respectively:

E[Π′′(S, T ) | X,Y ] > q−k−∆Zqmin{dim(S′∩T ′),∆+1}, (5.105)

E[Π′′(S, T ) | X,Y ] 6 q−k−∆Zqdim(S′∩T ′). (5.106)

On input S and T, Alice and Bob in Π′′ choose uniformly random matrices X and Y as before.
They then compute the indicator random variable Z, which is a function of X,Y, S, T. If Z = 0,
they output a uniformly random ±1 value. Clearly, (5.105) and (5.106) hold in this case.

In the complementary case Z = 1,Alice and Bob compute S′ = Y ((X(S))⊥) and T ′ = Y ((X(T ))⊥),
respectively. Lemma 5.35 with Z = 1 implies that S′ and T ′ are subspaces of dimension `− r + ∆
and m− r+ ∆, respectively, in an ambient vector space of dimension m+ `− 2r+ 3∆. This makes
it possible for Bob to find a subspace U of dimension m− r+ ∆ + k such that T ′ ⊆ U , and send U
to Alice. An application of Proposition 5.38 yields

dim(S′ ∩ U)− dim(S′ ∩ T ′) 6 dim(U)− dim(T ′) = k. (5.107)

What Alice does next depends on the dimension of S′ ∩ U.
(i) If dim(S′ ∩ U) > k + ∆ + 1, then (5.107) implies that dim(S′ ∩ T ′) > ∆ + 1. Therefore,

(5.105) and (5.106) amount to the requirement that the protocol’s output have expectation
at least q−k+1 and at most q−k−∆+dim(S′∩T ′) ∈ [q−k+1,∞). To meet this requirement, Alice
simply outputs a random ±1 value with expectation q−k+1.

(ii) If dim(S′∩U) 6 k+∆, Alice identifies a (k+∆)-dimensional subspace S′′ with the property
that S′ ∩ U ⊆ S′′ ⊆ S′, which exists because k + ∆ 6 ` − r + ∆ due to (5.104). She then
picks a uniformly random vector v ∈ S′′ and sends it to Bob, who outputs 1 if v ∈ T ′ and a
uniformly random ±1 value otherwise. In this case, Alice and Bob’s expected output is

qdim(S′′∩T ′)

qdim(S′′)
=
qdim(S′′∩T ′)

qk+∆
=
qdim(S′′∩U∩T ′)

qk+∆
=
qdim(S′∩U∩T ′)

qk+∆
=
qdim(S′∩T ′)

qk+∆
,

where the second step uses T ′ ⊆ U, the third step uses the defining property S′∩U ⊆ S′′ ⊆ S′
of the set S′′, and the last step is valid due to T ′ ⊆ U. This agrees with (5.105) and (5.106),
which require that the protocol’s output have expectation between q−k−∆qmin{dim(S′∩T ′),∆+1}

and q−k−∆qdim(S′∩T ′).

The proof of (5.105) and (5.106) is now complete.
Since U has co-dimension `− r + 2∆− k, it can be communicated in the form of a basis for U⊥

using (`− r + 2∆− k)(m+ `− 2r + 3∆)dlog qe bits. The vector v takes (m+ `− 2r + 3∆)dlog qe
bits to send. In view of (5.103), we conclude that

cost(Π′′) = O((`− r + 2∆− k + 1)(m− r + ∆)dlog qe+ 1). (5.108)

Lastly, we will show that Π′′ is a distinguisher for the subspace intersection problem. For this, pass
to expectations with respect to X and Y in (5.105) and (5.106) to obtain

EΠ′′(S, T ) > q−k−∆ E[Zqmin{dim(S′∩T ′),∆+1}], (5.109)

EΠ′′(S, T ) 6 q−k−∆ E[Zqdim(S′∩T ′)]. (5.110)
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Now Lemma 5.39 implies that Π′′(S, T ) has expectation at most α′′ = q−k(1+8q−∆)2 if dim(S∩T ) 6
r, and at least β′′ = q−k+1(1− 16q−∆−1) if dim(S ∩ T ) > r + 1. Taking ∆ = 7, one calculates that
β′′ − α′′ > q−k/2. Now (5.108) and Proposition 2.24 imply that

R 1
2
− 1

16qk
(¬ INTERSECTF,n,m,`

R ) = O((`− r − k + 1)(m− r + 1) log q) (5.111)

for every positive integer k 6 `− r.
Let γ ∈ [1

3q
−(m+`−2R)/3, 1

3 ] be given. For γ ∈ [q−4, 1
3 ], one obtains (5.101) from the bound

R1/3(INTERSECTF,n,m,`
R ) = O((`−R+1)(m−R+1) log q) of Theorem 5.36. For γ ∈ [1

3q
−(m+`−2R)/3, q−4],

setting k = min{blogq(1/γ)c − 3, `− r} in (5.111) gives

R(1−γ)/2(¬ INTERSECTF,n,m,`
R ) = O((`− r −min{blogq(1/γ)c − 3, `− r}+ 1)(m− r + 1) log q)

= O((max{dlogq(γq
`−r)e, 0}+ 4)(m− r + 1) log q)

= O((logqdγq`−re+ 1)(m− r + 1) log q)

= O((logqdγq`−Re+ 1)(m−R+ 1) log q)

= O((logqdγq`−Re+ 1)(logqdγqm−Re+ 1) log q),

where the last step uses (5.103) and γ > 1
3q
−(m+`−2R)/3. This completes the proof of (5.101).

Theorem 5.40 settles the randomized communication upper bounds of Theorem 1.10 for the total
subspace intersection problem, and hence also the quantum communication upper bound for the
promise subspace intersection problem.
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Appendix A. Fourier spectrum of nonsingularity

Throughout this section, the underlying field is Fq for an arbitrary prime power q. The root of
unity ω and the notation ωx for x ∈ Fq are as defined in Section 2.4. The objective of this appendix
is to prove Lemma 3.5. Our proof is shorter and simpler than the approach of Sun and Wang [27],
who proved Lemma 3.5 for fields of prime order. What our proofs have in common is the following
proposition [27].
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Proposition A.1 (Sun and Wang). For any integers n > 1 and r ∈ {0, 1, . . . , n},
Γn(n, r) = E

X∈Mn

ωX1,1+···+Xr,r .

Proof (due to Sun and Wang). Let X,Y, Z be independent and uniformly random nonsingular ma-
trices of order n. Then by Proposition 2.19(ii), the product XIrY is a uniformly random matrix of
rank r. Therefore,

Γn(n, r) = Eω〈Z,XIrY 〉

= Eω〈X
TZY T,Ir〉

= Eω〈X,Ir〉

= EωX1,1+X2,2+···+Xr,r ,

where the second step uses Fact 2.2(ii), and the third step is legitimate because XTZY T is a
uniformly random nonsingular matrix by Proposition 2.19(i).

We are now ready to establish our result of interest.

Lemma (restatement of Lemma 3.5). For any integers n > 1 and r ∈ {0, 1, . . . , n},

Γn(n, r) =
(−1)rq(

r
2)

(qn − 1)(qn − q) · · · (qn − qr−1)
.

Proof. Consider independent random matrices X and L of order n, where X is a uniformly random
nonsingular matrix and L is a uniformly random nonsingular lower-diagonal matrix. By Proposi-
tion 2.19(i), the product XL is a uniformly random nonsingular matrix. Therefore, Proposition A.1
implies that

Γn(n, r) = Eω
∑r
i=1(XL)i,i .

We will say that X is nice if Xi,j = 0 for all (i, j) pairs such that i ∈ {1, 2, . . . , r} and j > i.

Claim A.2. One has

E
L

[
ω
∑r
i=1(XL)i,i | X

]
=

{
(−1)r(q − 1)−r if X is nice,
0 otherwise.

This claim, to be proved shortly, implies that

Γn(n, r) =
(−1)r

(q − 1)r
P[X is nice]. (A.1)

The probability of the nonsingular matrix X being nice is straightforward to calculate: there are
q − 1 choices for the first row, q(q − 1) choices for the second row, q2(q − 1) choices for the third
row, and so on up to row r, whence

P
X

[X is nice] =

∏r
i=1 q

i−1(q − 1)

(qn − 1)(qn − q) · · · (qn − qr−1)
.

Making this substitution in (A.1) completes the proof.
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Proof of Claim A.2. Conditioned on X, the columns of XL are independent random variables.
Therefore,

E
L

[
ω
∑r
i=1(XL)i,i | X

]
=

r∏
i=1

E
L

[
ω(XL)i,i | X

]
=

r∏
i=1

E
L

[
ω
∑n
j=iXi,jLj,i | X

]
. (A.2)

The entries of L are independent random variables, with the diagonal entries distributed uniformly
on Fq \ {0} and the subdiagonal entries distributed uniformly on Fq. If X is not nice, then Xi,k 6= 0
for some i ∈ {1, 2, . . . , r} and k > i, which means that the corresponding summation

∑n
j=iXi,jLj,i

is a uniformly random field element. This forces (A.2) to vanish, due to (2.14). When X is nice, on
the other hand, (A.2) simplifies as follows:

r∏
i=1

E
L

[
ω
∑n
j=iXi,jLj,i | X

]
=

r∏
i=1

E
L

[
ωXi,iLi,i | X

]
=

r∏
i=1

E
ai∈Fq\{0}

ωai

=

(∑
a∈Fq ω

a − 1

q − 1

)r
=

(−1)r

(q − 1)r
,

where the second step is legitimate because Xi,i is nonzero and Li,i is a uniformly random nonzero
field element, and the last step uses (2.14).

Appendix B. Multiparty lower bounds via symmetrization

The purpose of this appendix is to prove Proposition 1.11, which gives a generic method for
transforming two-party communication lower bounds for a class of problems into corresponding
multiparty lower bounds. Recall that we adopt the number-in-hand blackboard model of multiparty
communication, reviewed in the introduction. The notation Rε(F ) stands for the ε-error randomized
communication complexity of the two-party or multiparty problem F. The cost of a protocol Π,
denoted cost(Π), is the total number of bits written to the blackboard in the worst-case execution
of Π.

Proposition (restatement of Proposition 1.11). Let (X,+) be a finite Abelian group, and let
f : X → {−1, 1, ∗} be a given function. For t > 2, let Ft : Xt → {−1, 1, ∗} be the t-party com-
munication problem given by Ft(x1, x2, . . . , xt) = f(x1 + x2 + · · ·+ xt). Then for all t > 2,

R1/6(Ft) >
1

12
tR1/3(F2).

Proof. The proof uses the symmetrization technique of Phillips, Verbin, and Zhang [20]. Let Π be
a randomized protocol for Ft with error probability 1/6. We will use Π to construct a protocol for
the two-party problem F2 with error probability 1/3 and communication cost at most cost(Π) ·12/t.

The protocol for F2 is as follows. On input (a, b) ∈ X × X, Alice and Bob use their shared
randomness to pick uniformly random elements r1, r2, . . . , rt−1 ∈ X and uniformly random integers
i, j with 1 6 i < j 6 n. Let

x = (r1, r2, . . . , rt−1,−r1 − r2 − · · · − rt−1) + (0, . . . , 0, a, 0, . . . , 0, b, 0, . . . , 0),
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where the rightmost tuple has a in the i-th component, b in the j-th component, and zeroes every-
where else. Since the components of x sum to a+ b, we have

Ft(x) = F2(a, b). (B.1)

Moreover, x is a uniformly random tuple whose components sum to a + b because the first t − 1
components are distributed independently and uniformly at random on X, whereas the sum of the
components is a+ b. In particular, x and (i, j) are independent random variables.

By construction, Alice knows all the components of x except for the j-th, and Bob knows all
the components except for the i-th. This makes it possible for them to run Π on x, with Alice
simulating all the parties other than the j-th, and Bob simulating all the parties other than the
i-th. When Π requires the i-th party to speak, Alice sends his message to Bob, and analogously for
the j-th party. For k = 1, 2, . . . , t, consider the random variable C(x, k) defined as the total number
of bits sent in Π by the k-th party on input x. Then the number of bits exchanged by Alice and
Bob is C(x, i) +C(x, j). Using the independence of x and (i, j), we can now bound Alice and Bob’s
expected communication cost on input (a, b) as follows:

E[C(x, i) + C(x, j)] =
2

t
E[C(x, 1) + · · ·+ C(x, t)] 6

2

t
cost(Π). (B.2)

By (B.1), the described two-party protocol computes F2 with the same error probability that Π
computes Ft, namely, 1/6. Furthermore, by (B.2), the expected communication cost of the two-party
protocol on any given input is at most cost(Π) ·2/t. By Markov’s inequality, the probability of Alice
and Bob exchanging at least cost(Π) · 12/t bits is at most 1/6. Therefore, one can obtain a protocol
for F2 with error 1/6 + 1/6 = 1/3 by terminating the described protocol as soon as bcost(Π) · 12/tc
bits have been communicated.
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