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THE COMMUNICATION COMPLEXITY OF APPROXIMATING
MATRIX RANK

ALEXANDER A. SHERSTOV AND ANDREY A. STOROZHENKO

ABSTRACT. We fully determine the communication complexity of approximating matrix rank, over
any finite field F. We study the most general version of this problem, where 0 < r < R < n are
given integers, Alice and Bob’s inputs are matrices A, B € F"*", respectively, and they need to
distinguish between the cases rk(A + B) = r and rk(A + B) = R. We show that this problem
has randomized communication complexity Q(1 4 r?log|F|). This is optimal in a strong sense
because O(1 + 72 log |F|) communication is sufficient to determine, for arbitrary A, B, whether
rk(A + B) < r. Prior to our work, lower bounds were known only for consecutive integers r and R,
with no implication for the approximation of matrix rank. Our lower bound holds even for quantum
protocols and even for error probability % — i|F|77'/ 3, which too is virtually optimal because the
problem has a two-bit classical protocol with error & — ©(|F|™").

As an application, we obtain an Q(% -n?log |F|) space lower bound for any streaming algorithm
with k passes that approximates the rank of an input matrix M € F**" within a factor of v/2 — 6,
for any § > 0. Our result is an exponential improvement in k over previous work.

We also settle the randomized and quantum communication complexity of several other linear-
algebraic problems, for all settings of parameters. This includes the determinant problem (given
matrices A and B, distinguish between the cases det(A+ B) = a and det(A + B) = b, for fixed field
elements a # b) and the subspace sum and subspace intersection problem (given subspaces S and T'
of known dimensions m and ¢, respectively, approximate the dimensions of S+ 7 and SNT).
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1. INTRODUCTION

The exact and approximate computation of matrix rank is a fundamental problem in theoretical
computer science, studied for its intrinsic importance as well as its connections to other algorithmic
and complexity-theoretic questions. In particular, a large body of research has focused on the
communication complexity of the matrix rank problem in Yao’s two-party model |29 B0], with
both classical and quantum communication. In this problem, the two parties Alice and Bob receive
matrices A, B € F™*"  respectively, over a finite field F and are tasked with determining the rank
of A+ B using minimal communication. The first result in this line of research was obtained three
decades ago by Chu and Schnitger [6], who proved a lower bound of Q(kn?) for the deterministic
communication complexity of computing the rank of A + B when the matrix entries are k-bit
integers. Several years later, Chu and Schnitger [7] further showed that this communication problem
has deterministic complexity (n?logp) when the matrix entries are in F,, the finite field with p
elements. The first result on the randomized communication complexity of the matrix rank problem
was obtained by Sun and Wang [27], who proved that determining whether A+ B is singular requires
Q(n?log p) bits of communication for matrices A, B over the finite field [F,, for prime p. In a follow-
up paper, Li, Sun, Wang, and Woodruff [16] showed that this ©(n?logp) lower bound holds even
for a promise version of the matrix rank problem, where the matrix A + B is guaranteed to have
rank either n — 1 or n. The lower bounds of [27, [I6] further apply to quantum communication.

Despite these exciting developments, no progress has been made on lower bounds for approximat-
ing matrix rank. Our main contribution is the complete resolution of the approximate matrix rank
problem. In what follows, we state our results for matrix rank and several other approximation
problems, and present applications of our work to streaming complexity.

1.1. Matrix rank problem. We study the problem of approximating matrix rank in its most
general form. Specifically, let F be any finite field. For integer parameters n,m, R, such that
min{n,m} > R > r > 0, we consider the promise communication problem defined on pairs of
matrices A, B € F"*™ by

-1 if rk(A+ B) =,
RANK7"™(A,B) =<1  if tk(A+ B) = R,
* otherwise,

where the asterisk indicates that the communication protocol is allowed to exhibit arbitrary behavior
when rk(A + B) ¢ {r,R}. In words, the problem amounts to distinguishing input pairs with
rk(A+ B) = r from those with rk(A + B) = R. The corresponding total communication problem is
given by

-1 if rk(A+ B) <,
1 otherwise.

RANKE™™(A, B) = {

F.nm

Clearly, the total problem RANKE"™™ is more challenging than the promise problem RANK, ».

Prior to our work, the strongest known result was the Q(n?log p) lower bound of [16] on the bounded-

. . . ]vanvn
error quantum communication complexity of RANKn_Ln
this lower bound has no implications for the approximation of matrix rank because the ratio (n—1)/n

rapidly tends to 1. We resolve this question in full in the following theorem.

for fields I}, of prime order. Unfortunately,

THEOREM 1.1 (Lower bound for rank problem). There is an absolute constant ¢ > 0 such that for
all finite fields F and all integers n, m, R,r with min{n,m} > R > r >0,

Qi__. (RANKE;E’m) > ¢(1 4 r%log |F|).

2 4‘]F|7”/3
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In particular,

Q;ARANKQQW>>CQ+42mgWD.

In the statement above, QI denotes e-error quantum communication complexity with arbitrary
prior entanglement, which is the most powerful model of probabilistic computation. Clearly, all
our lower bounds apply to the randomized (classical) model as well. Two other remarks are in
order. Even in the special case of r =n — 1 and R = n, our result is a significant improvement on
previous work because our theorem is proved in the large-error regime, with the error probability
exponentially close to 1/2. This should be contrasted with the communication lower bounds of |27,
16], which were proved for error probability 1/3. Moreover, Theorem is the first result of its
kind because it allows for an arbitrary gap between r and R. In particular, Theorem [I.I] shows for
the first time that approximating the matrix rank to any constant factor requires (n?log |F|) bits
of communication, even for protocols that succeed with exponentially small probability (take R = n
and r = cn for a small constant ¢ > 0).

Theorem is optimal in a strong sense. Specifically, we have the following matching up-
per bound, which we prove by adapting Clarkson and Woodruff’s streaming algorithm for matrix
rank [9]. In the statement below, R. denotes randomized (classical) communication complexity with
error €.

THEOREM 1.2 (Upper bound for rank problem). There is an absolute constant ¢ > 0 such that for
all finite fields F and all integers n, m,r with min{n,m} >r > 0,

Ry /3(RANK)™™) < ¢(1 4 7% log [F|),

Ri__1 (RANKE™™) <2,

27 32[F|”

This result shows that the lower bound of Theorem [I.1]is tight not only for quantum protocols
solving the partial problem RANKE’;’W but even for classical, bounded-error protocols solving the

total problem RANKE’”””. Moreover, Theorem shows that the error regime for which we prove
our lower bound in Theorem is also optimal, in that the total rank problem has a classical
protocol with cost only 2 bits and error probability & — k|~

Theorem [I.1] generalizes to multiparty communication, as we discuss below in Section [I.5]

1.2. Streaming complexity. The streaming complexity of matrix rank has received extensive
attention in the literature |9, 27 16 4, 1, 2L [5]. In this model, an algorithm with limited space is
presented with a matrix M of order n over a given field, in row-major order. The objective is to
compute or approximate the rank of M, using either a single pass or multiple passes over M. Via
standard reductions, our Theorem [I.1] implies an essentially optimal lower bound on the streaming
complexity of approximating matrix rank. Unlike previous work, our result remains valid even for
polynomially many passes and even for correctness probability exponentially close to 1/2. Stated in
its most general form, our result is as follows.

THEOREM 1.3. Let n,r, R be nonnegative integers withn/2 < r < R < n, and let F be a finite field.
Define f: F™*" — {—1,1,%} by
-1 if rkM =,
f(M)=<1 if tk M = R,
* otherwise.
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Let of be any randomized streaming algorithm for f with error probability % — %]Fr(’“_{”/ﬂ)/‘g that
uses k passes and space s. Then

o= ((r=[5]) 0se1).

By way of notation, recall that f in the above statement is a partial function, and &7 is allowed to
exhibit arbitrary behavior on matrices M where f(M) = .

COROLLARY 1.4. Let F be a finite field, and let 6 € (1/2,1) be any constant. Let </ be a k-pass
streaming algorithm that takes as input a matric M € F™™ (for any n > ﬁ) such that either
tk M =n ortk M = |dn], and determines which is the case with probability of correctness at least
14 [F|=@=05n/5 Then o uses Q(+ - n?log|F|) space.

Proof. Take R =n and r = [én| in Theorem . [

The space lower bound in Corollaryis essentially optimal since the rank of a matrix M € F**"
can be computed exactly by a trivial, single-pass algorithm with space O(n?log |F|). Prior to our
work, the strongest streaming lower bound for approximating matrix rank was due to Chen et al. [5].
For any constants € > 0 and § > 0, they proved that no o(y/logn)-pass algorithm with space n?>~¢
can distinguish between the cases tk M = n and rk M < on with probability 2/3, where M is an
input matrix of order n over a finite field of size w(n). Our Corollary shows that distinguishing
between the cases Tk M = n and rtk M = |n] requires n>~¢ log |F| space even with k = ©(n?) passes,
an exponential improvement on [5]. Moreover, Corollary is valid for all finite fields regardless of
size, and holds even when the correctness probability is exponentially close to 1/2.

We now restate our streaming lower bound in more standard terminology. Recall that an algo-
rithm &/ with input M € F™*" approximates, with probability p, the rank of M within a factor
of ¢ € [1,00) if for every input matrix M, the output of &7 is in the range [% rk M, crk M| with
probability at least p. We have:

COROLLARY 1.5. Let F be a finite field, and let ¢ € [1,/2) be any constant. Let </ be a k-pass
streaming algorithm with input M € F™*™ (for any n > %) that approximates, with probability at

least 1 + [F|=(=In/40 4he rank of M within a factor of c. Then < uses Q(z -n*log [F|) space.

Proof. Define § = §(3+ ). Since § < 1/c?, algorithm &/ can be used to distinguish, with correctness
probability at least 3 + F|~(2=¢)n/40  matrices M € F™" of rank |dn| from those of rank n
(simply check if @7’s output is < n/c or > n/c). The correctness probability of this distinguisher
exceeds % + 7|~ (Lond=[7/2D)/3 due to n > 40/(2 — ¢2). Therefore, it uses Q(z - n?log|F|) space by
Theorem [1.3]

1.3. Determinant problem. Recall that a square matrix over a field F has full rank if and only
if its determinant is nonzero. As a result, the problem of computing the determinant has received
considerable attention in previous work on matrix rank, e.g., [7, 27, [I6]. We are interested in the
most general form of the determinant problem, where Alice and Bob receive as input matrices
A, B € F™*" respectively, and need to determine whether the determinant of A + B equals a or b.
The problem parameters a and b are distinct field elements that are fixed in advance. Formally, the
determinant problem is the partial communication problem on matrix pairs (A, B) given by

—1 if det(A+ B) = a,
DET, (A, B) =41 if det(A+ B) =b,

* otherwise.
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Prior to our work, the strongest result on the determinant problem was due to Sun and Wang [27],
who proved a tight lower bound of Q(n?log|F|) for the randomized and quantum communication
complexity of DETE’ZL for nonzero a,b over any finite field ' of prime order. They conjectured
the same lower bound for the case of arbitrary a,b. To see why the case of nonzero a,b is rather
special, observe that the number of matrices with determinant a is always the same as the number
of matrices with determinant b, with natural bijections between these two sets; but this is no
longer true if one of a,b is zero. This asymmetry suggests that the determinant problem requires a
substantially different approach when one of a, b is zero. In this work, we develop sufficiently strong
techniques to solve the determinant problem in full, thereby settling Sun and Wang’s conjecture in
the affirmative.

THEOREM 1.6. There is an absolute constant ¢ > 0 such that for every finite field F, every pair of
distinct elements a,b € F, and all integers n > 2,
Qi 1 (DET.?) > en®log|F).
2 4“1:'(77,71)/3 ’
The communication lower bound of Theorem [I.0]is best possible, up to the multiplicative constant c.
It matches the trivial, deterministic protocol where Alice sends her input matrix A to Bob using
n?[log |F|] bits, at which point Bob computes det(A+ B) and announces the output of the protocol.
Furthermore, the error regime in Theorem is also essentially optimal because, for example, the
problem DETHJ’ZL has a randomized protocol with only 2 bits of communication and error probability

% — O(|F|*71), by taking r = n — 1 and R = m = n in Theorem . Lastly, we note that the
requirement that n > 2 in Theorem is also necessary because the determinant problem for
1 x 1 matrices reduces to the equality problem with domain F x F and therefore has randomized
communication complexity O(1).

We prove Theorem for all a,b from first principles, without relying on the work of Sun and
Wang [27]. In the case of nonzero a, b, we give a new proof that is quite short and uses only basic
Fourier analysis, unlike the rather technical proof of [27]. To settle the complementary case where
one of a, b is zero, we prove a stronger result of independent interest. Here, we introduce a natural
problem that we call RANKDETE’(:L, which combines features of the matrix rank and determinant
problems. It is parameterized by a nonzero field element a € F and a nonnegative integer r < n,
and Alice and Bob’s objective is to distinguish input pairs (A, B) with rk(A + B) = r from those
with det(A + B) = a. We prove the following.

THEOREM 1.7. There is an absolute constant ¢ > 0 such that for every finite field F, every field
element a € F\ {0}, and all integers n > r > 0,

Qi__ 1 (RANKDET)) > (1 + r*log |F|).

2 4\]F|T/3

Taking 7 = n—1 in this result settles Theorem [I.6]when one of a, b is zero, as desired. Theorem [I.7]is
optimal in a strong sense: even the total problem RANKE ™" which subsumes RANKDETE;C’}, has

bounded-error classical communication complexity O(1 + 72 log |F|) by Theorem Theorem
for the RANKDETE™ problem significantly strengthens our main result, Theorem for the

,a
matrix rank problem RANK]E,;?’" (in the former problem, Alice and Bob distinguish rank r from
determinant a # 0; in the latter problem, they distinguish rank r from rank n).

Theorems[1.6] and [1.7] generalize to multiparty communication, as we discuss below in Section [I.5

1.4. Subspace sum and intersection problems. There are two natural ways to recast the
computation of matrix rank as a communication problem. One approach, discussed in detail above,
is to assign matrices A and B to Alice and Bob, respectively, and require them to compute the rank
of A+ B. Alternatively, one can require Alice and Bob to compute the rank of the matrix [A B].
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This alternative approach is best described in the language of linear subspaces: letting S and T
stand for the column space of A and B, respectively, the rank of [A B] is precisely the dimension
of the linear subspace S + T generated by S and T. Here, we may assume that the dimensions of
S and T are known in advance because this information can be communicated at negligible cost.

In this way, one arrives at the subspace sum problem over a finite field F, where Alice receives as
input an m-dimensional linear subspace S C F"™ and Bob receives an /-dimensional linear subspace
T C F™. The integers m and ¢ are part of the problem specification and are fixed in advance. In the
promise version of the subspace sum problem, the objective is to distinguish subspace pairs with
dim(S + T') = d; from those with dim(S + T') = da, for distinct integers dj, ds fixed in advance.
This corresponds to the partial function given by

—1 if dim(S+7T) =dy,
SUMG (S, T) = q 1 if dim(S +T) = da,
* otherwise.

The corresponding total communication problem is that of determining whether S+7" has dimension
at most d, for an integer d fixed in advance:

—1 if dim(S+1T) < d,
1 otherwise.

SUM, ™™ (S, T) = {

The total problem is more challenging than the promise problem in that SUMS;”C}T’Z is a restriction

of SUMS;"’m’K, for any integers d; < dy. As noted by many authors, from the standpoint of
communication complexity, computing the dimension of the subspace sum S + T is equivalent to
computing the dimension of the subspace intersection S N 7. This equivalence follows from the
identity dim(S + T') = dim(S) + dim(7") — dim(SNT).

Despite the syntactic similarity between the matrix sum A + B and the corresponding subspace
sum S + 7', the subspace sum problem appears to be significantly more subtle and technical. Pre-
vious work has focused on a special case that we call subspace disjointness (determining whether
Alice and Bob’s subspaces have trivial intersection, {0}) and the dual problem that we call vector
space span (determining if the sum of Alice and Bob’s subspaces is the entire vector space). These
two problems were studied in [I8, [7], with an optimal lower bound of Q(n?logp) on their deter-
ministic communication complexity over a field with p elements. Sun and Wang [27] showed that
the Q(n?log p) lower bound for subspace disjointness remains valid even for randomized and quan-
tum communication. In follow-up work, Li, Sun, Wang, and Woodruff [I6] proved an Q(n?logp)
quantum lower bound for a promise version of subspace disjointness, where Alice and Bob’s inputs
are n/2-dimensional subspaces that either have trivial intersection or intersect in a one-dimensional
subspace. The authors of [I9] considered an asymmetric problem where Alice receives an n-bit vec-
tor, Bob receives a subspace, and their objective is to determine whether Alice’s vector is contained
in Bob’s subspace. They showed that in any randomized one-way protocol that solves this problem,
either Alice sends (n) bits, or Bob sends 2(n?) bits.

In summary, all previous lower bounds for two-way communication complexity have focused on
subspace disjointness or vector space span. The general problem, where Alice and Bob need to
distinguish between the cases dim(S + 1) = d; and dim(S + T') = da, is substantially harder and
has remained unsolved. The difficulty is that previous results [27] [I6] are based on a reduction
from the matrix rank problem to subspace disjointness, and this straightforward strategy does not
produce optimal results for the subspace sum problem with arbitrary parameters. In this paper,
we approach the subspace sum problem from first principles and solve it completely. Our solution
settles both the promise version of subspace sum and the corresponding total version. For clarity,
we first state our result in the regime of constant error.
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THEOREM 1.8. Let F be a finite field with ¢ = |F| elements, and let n,m,¢,d, D be nonnegative
integers with max{m, ¢} < d < D < min{m + {,n}. If m = { = d, then

Ry /3(SUM,™™) = O(1).

If m,£,d are not all equal, then
Q1/3(SUM ™) = ©((d — m +1)(d — £+ 1)log ),
Ry j3(SUM,™™") = ©((d — m + 1)(d — £ + 1) log q).

Several remarks are in order. Recall that in F™, the sum of an m-dimensional subspace and an
¢-dimensional subspace has dimension between max{m, ¢} and min{m + ¢,n}. This justifies the
above requirement that d, D € [max{m, ¢}, min{m + ¢,n}]. Theorem shows that the promise
version of the subspace sum problem has the same communication complexity as the total version,
up to a constant factor. Moreover, the theorem shows that this communication complexity is the
same, up to a constant factor, for quantum and classical communication protocols. Both the lower
and upper bounds in Theorem require substantial effort. Lastly, the degenerate case d = m = ¢
of the subspace sum problem is easily seen to be equivalent to the equality problem, which explains
the O(1) bound in the theorem statement.

In addition to the constant-error regime of Theorem [I.8] we are able to determine the communi-
cation complexity of subspace sum for essentially all settings of the error parameter, as follows.

THEOREM 1.9. Let F be a finite field with ¢ = |F| elements, and let n,m,{,d, D be nonnegative
integers with max{m, ¢} < d < D < min{m + {,n}. If m =€ = d, then
Ry j3(SUMG™™ ) = O(1).

If m, £, d are not all equal, then for all v € [1 —(2d=m—£)/5 y 3

Q1. (SUM ™) = ©((log,[¢" ™1 + 1)(log,[¢"~*4] + 1) logq),

Ri- v(SUMF”mZ) O((log,[q*™y] + 1)(log,[¢* ‘4] + 1) log q)
and moreover
Ry . (SUMS™™) < 2. (1.1)

16q2d—m—I+16

‘\ wl—

Theorem [I.9) determines the communication complexity of subspace sum for every error probabil—
ity in [3, 3 — O(|F|~ (2d=m=0)/5)] This is essentially the complete range of interest because by (|1 ,
the communication cost drops to 2 bits when the error probability is set to i |p|-@d-m-0- 5 b,
Analogous to the constant-error regune Theorem shows that the commumcatlon complexity of
subspace sum for any error in [3, 5— O(|F|~(2d=m=0/5)] is the same, up to a constant factor, for both
the partial and total versions of the problem, and for both quantum and classical communication.
Theorems and reveal a rather subtle dependence of the communication complexity on the
problem parameters d, m, ¢, particularly as one additionally varies the error parameter. This ex-
plains why we were not able to obtain these theorems via a reduction from the matrix rank problem,
as was done in previous work [27, [16] in the special case of subspace disjointness.

In view of the aforementioned identity dim(S+7) = dim(S)+dim(7") —dim(SNT'), our results for
subspace sum can be equivalently stated in terms of subspace intersection. Formally, the subspace
intersection problem requires Alice and Bob to distinguish subspace pairs (S,T") with dim(SN7T) =
dy from those with dim(SN7T') = dg, where S is an m-dimensional subspace given as input to Alice,
T is an ¢-dimensional subspace given to Bob, and di, ds are distinct integers fixed in advance. This
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corresponds to the partial function
-1 if dim(SNT)=d,
INTERSECT (S, T) =41 i dim(SNT) = da,
* otherwise.

The total version of the subspace intersection problem is given by

—1 if dim(SNT) >d,

INTERSECTS™"™(S,T) = ,
1 otherwise,

where d is a problem parameter fixed in advance. Theorem fully settles the complexity of the
subspace intersection problem, as follows.

THEOREM 1.10. Let F be a finite field with ¢ = |F| elements, and let n,m, £, r, R be nonnegative
integers with max{0,m + ¢ —n} <r < R < min{m,l}. If m = { = R, then

Ry j3(INTERSECT""™") = O(1).

If m, £, R are not all equal, then for all v € [%q_(m+e_2R)/5, %],

Qi (INTERSECT, ™) = ©((log,[q™"+] + 1)(log,[¢" 7] + 1) log ).

(
Ri- (INTERSECT;™"™) = ©((log,[q" "] + 1) (log,[¢" 7] + 1) log q)

and moreover

R, . (INTERSECTR""™") < 2.

2 16qm+£72R+16

A moment’s reflection (see Proposition[2.25) shows that in F”, the intersection of an m-dimensional
subspace and an ¢-dimensional subspace is a subspace of dimension between max{0,m+ ¢ —n} and
min{m, ¢}, hence the requirement that r, R € [max{0, m + ¢ — n}, min{m, £}]. Remarks analogous
to those for subspace sum apply to Theorem [1.10] as well. Specifically, Theorem determines the
e-error communication complexity of subspace intersection for all € € [3, 3 — O(|F|~(m+E=2R)/5)]
which is essentially the complete range of interest because the communication cost drops to 2 bits
when the error probability is set to % — |F|~(m+£=2R)=6(1) " Also, Theorem shows that in this
range of interest, the e-error communication complexity of subspace intersection is the same (up to
a constant factor) for both the partial and total versions of the problem, and for both quantum and

classical communication.

1.5. Multiparty lower bounds. Via a blackbox reduction which we will now describe, our lower
bounds for the matrix rank and determinant problems scale to multiparty communication. We adopt
the standard multiparty model known as the number-in-hand blackboard model, which features ¢
communicating players and a (possibly partial) function F': X1 X Xo X -+ x X3 — {—1,1,%} with ¢
arguments. An input (z1,x2,...,2;) is partitioned among the ¢ players by assigning z; to the i-th
player. The players communicate by writing on a shared blackboard. They also have access to an
unbounded supply of shared random bits, which they can use in deciding what to do at any given
point in the protocol. In the end, they must all agree on a bit (—1 or 1) that represents the output
of the protocol. The cost of a communication protocol is the maximum number of bits written
on the blackboard in the worst-case execution. The e-error randomized communication complexity
R.(F) of a given function F is the least cost of a protocol that computes F' with probability of error
at most € on every input. As usual, the standard setting of the error parameter is ¢ = 1/3, which
can be replaced with any other constant in (0,1/2) at the expense of a constant-factor change in
communication complexity. This model subsumes Yao’s two-party randomized model as a special
case, which justifies our continued use of the notation R.(F'). We note that there are alternative
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number-in-hand models, where instead of a shared blackboard, the parties communicate via private
channels (the message-passing model) or through an intermediary (the coordinator model). The
blackboard model is more powerful than these alternative models, and lower bounds in it are more
widely applicable.

Phillips, Verbin, and Zhang [20] developed a symmetrization technique that transforms two-
party communication lower bounds for a class of problems into multiparty lower bounds. Our
communication problems have a large symmetry group and are particularly well-suited for the
methods of [20]. Using their technique, we prove the following.

PrROPOSITION 1.11. Let (X,+) be a finite Abelian group, and let f: X — {—1,1,%} be a given
function. For t > 2, let Fy: Xt — {—1,1,%} be the t-party communication problem given by
F(xy,x9,...,2¢) = f(x1 +x2+ -+ +2¢). Then for all t > 2,

1
Ry6(Ft) > EtR1/3(F2)-

In other words, as one transitions from two parties to t parties, the communication complexity
scales by a factor of (t). This proposition, proved in Appendix [B] simplifies and generalizes an
earlier result due to Li, Sun, Wang, and Woodruff [I6, Theorem 7|. The matrix rank problem,
determinant problem, and rank versus determinant problem all admit multiparty generalizations
that fit perfectly into the framework of Proposition [[.11] with the Abelian group in all cases being
the group of matrices under addition. To begin with, the t-party matriz rank problem is given by
RANK]F (M, M, ..., M) = rank]F (> M;), where the matrix function 1"ank]F B Frm
{-1,1 >x<} outputs —1 on matrices of rank T, outputs 1 on matrices of rank R, and outputs * in all
other cases. Theorem [I.I] and Proposition [[.11] imply the following.

THEOREM 1.12. For all finite fields F, all integers n,m, R,r with min{n,m} > R > r > 0, and all
t>2,
Ry 3(RANK'2™") = Q(t + tr? log | ).

Continuing, the t-party determinant problem is given by DET]F’n’t(Ml, My, ..., My) = detF’n(Z M),

where the matrix function det]F 7P 5 £11, %} outputs —1 on matrices with determinant a,
outputs 1 on matrices with determlnant b, and outputs x in all other cases. Theorem [I.6] and

Proposition [I.11] yield:
THEOREM 1.13. For every finite field F, every pair of distinct elements a,b € F, and all integers
n>=2andt> 2,

Ry /3(DET; ") = Q(tn* log |F]).

Finally, the t-party rank versus determinant problem is given by RANKDETE’;L”‘/(ML My, ..., My) =

rankdet]fjg (>° M;), where the matrix function rankdetg”g: Frxm — {—1,1,%} outputs —1 on ma-
trices of rank r, outputs 1 on matrices with determinant a, and outputs * in all other cases. The
following multiparty result is immediate from Theorem and Proposition [I.11

THEOREM 1.14. For every finite field F, every field element a € F \ {0}, and all integers n >r >0
and t > 2,
Rl/g(RANKDETF”t) Q(t + tr?log |F|).

Theorems [1.12] and [I.14] are tight for every r > 1 in a very strong sense: we give a t-party
protocol w1th error 1/3 and communication cost O(t(r? + 1) log |F|) for checking whether the sum
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of the players’ matrices has rank at most r (see Corollary in Section . Theorem is
tight because the stated lower bound matches the trivial, deterministic protocol where each party
announces their input. Since the blackboard model is more powerful than the message-passing and
coordinator models, Theorems [I.12HI.14] are valid in those alternative models as well.

1.6. Bilinear query complexity. Our communication lower bounds additionally imply new re-
sults in query complexity. We adopt the bilinear query model due to Rashtchian, Woodruff, and
Zhu [21], which subsumes a large number of other query models and is particularly well-suited
for linear-algebraic problems. Formally, let f: F"*™ — {—1,1,x} be a (possibly partial) Boolean
function on matrices over a field F. In the bilinear query model, the query algorithm accesses the
input X € F™ " in an adaptive manner with bilinear queries. Each such query reveals the value
u' Xv € F for a pair of vectors u € F”, v € F™ of the algorithm’s choosing. As usual, a randomized
query algorithm is a probability distribution on deterministic query algorithms. The cost of a query
algorithm is the maximum number of queries in the worst-case execution. The e-error bilinear query
complezity of f, which we denote by BLQ,(f), is the minimum cost of a bilinear query algorithm
that computes f with probability of error at most € on every input. As always, the algorithm may
exhibit arbitrary behavior on inputs X with f(X) = *.

Recall the matrix functions rankf’g’m, detg’gb, rankdet]f’a that correspond to the matrix rank prob-
lem, determinant problem, and rank versus determinant problem and were formally defined in Sec-
tion [[.5] Our next result settles their bilinear query complexity for all settings of the parameters
n,m,r, R, a,b.

s

THEOREM 1.15. Let F be a finite field. Then:
(i)  for all integers n,m, R,r with min{n,m} > R>r >0,
BLQ: 1 (rank ™) = Q(r? +1);
CEREE ’
(ii)  for every pair of distinct elements a,b € F and all integers n > 1,
BLQ%]W&WS (dety ;) = Q(n?);

(iii)  for every field element a € F\ {0} and all integers n > r > 0,
BLQL,;(rankdet]}i’Q) =Q(r?+1).

2 4\]F|T/3

Proof. For a matrix function f: F"*™ — {—1,1, %}, consider the associated communication problem
F:Frm x Fnxm — {—1,1,%} given by F(A, B) = f(A+ B). As observed by the authors of [21], a
cost-c¢ randomized algorithm for f in the bilinear query model gives a randomized communication
protocol for F' of cost 2[log|F|]c. Specifically, on input A for Alice and B for Bob, they simulate
the query algorithm on A + B. Computing a query u' (A + B)v for given vectors u,v amounts to
exchanging the field elements v’ Av and ' Bv. In summary,

R(F) < 2[log [F[] BLQ.(f)
Now the claimed query lower bounds in |(i)H(iii)pre immediate from our corresponding communica-

tion complexity results (Theorems and |1.7) as well as the trivial query lower bound of 1
for any nonconstant function. 1

Every lower bound in Theorem is tight, even for computation with error probability 1/3. To
prove the tightness of Theorem [I.15(i)|and [1.15[(iii)| we give a query algorithm with error probability
1/3 and cost O(r? +1) for checking whether the input matrix has rank at most r (see Theorem
in Section [3.7). Finally, the lower bound in Theorem [L.15ii)| matches the trivial, deterministic

upper bound of n? queries.
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The strongest result prior to our work was an §2(n?) query lower bound due to Rashtchian,
Woodruff, and Zhu [21] for distinguishing, with probability 2/3, matrices of rank n — 1 from those
of rank n. Theorem shows that the Q(n?) query lower bound remains valid even for distin-
guishing matrices of rank cn (for any constant ¢ > 0) from those of rank n, and even for correctness
probability exponentially close to 1/2. In particular, Theorem shows that Q(n?) bilinear
queries are needed to approximate the rank of a matrix to any constant factor.

1.7. Previous approaches. A powerful tool for proving lower bounds on randomized and quan-
tum communication complexity is the approzimate trace norm [30, 3], 22, 17, 24]. In more detail,
let F': X xY — {—1,1} be a given communication problem, and let M = [F'(z,y)]s,y be its charac-
teristic matrix. The ¢-approzimate trace norm of M, denoted ||M||s. 5, is the minimum trace norm

of a real matrix M that approximates M entrywise within §. The approximate trace norm bound
states that

) 1 [ M]]5,2
QZ(F) > 5 log <3 |X|]Y|> (1.2)

for all € > 0, making it possible to prove communication lower bounds by analyzing the approximate
trace norm of M. To bound the approximate trace norm from below, it is useful to appeal to its
dual formulation as a maximization problem, whereby

(M, @) — 2¢||®||x
1]l

for every nonzero real matrix ®. As a result, proving a communication lower bound reduces to
constructing a matrix ® whose spectral norm and ¢; norm are small relative to the inner product
of ® with the communication matrix M. The matrix ® is often referred to as a dual matriz or a
witness. The lower bound remains valid for partial functions F': X xY — {—1,1,*} and their
characteristic matrices M, in which case the dual characterization of the approximate trace norm
is given by

1M

%2 2 (1.3)

1

s2e 2 g | 2 May®ey — 2608 = 37 [y (1.4)
dom F' dom F'

for all ® # 0. In this equation, dom F' = {(x,y) : F(z,y) # *} denotes the domain of the partial
function F. Comparing this dual characterization with the original one for total functions,
we notice that the inner product is now restricted to the domain of F, and there is an additional
penalty term for any weight placed by ® outside the domain of F. For more background on the use
of duality in proving communication lower bounds, we refer the reader to the surveys [23] [15].

[M]

Main idea in |27], [1I6]. Constructing a good witness ® can be very challenging. Sun and Wang [27]
studied the nonsingularity problem over fields I, of prime order p, where Alice and Bob’s inputs are
matrices A, B € ™", respectively, and they are required to output 1 if A 4+ B is nonsingular and
—1 otherwise. Let M be the characteristic matrix of this communication problem. To analyze the
approximate trace norm of M, the authors of [27] use the witness ® = [(—1)"g(A + B)]a,B, where
g is the Fourier transform of the function g: Fj*" — {0,1} given by g(X) = 1 if and only if X is
nonsingular. The calculations in [27] reveal the following, where C' > 6 is an absolute constant:

0 lel=1 |
(i) (@) = 2" " T, (0 — 1
(iif) [l < Cp™ " [[iy (0 — 1)
Using this witness ® in ((1.3) with a sufficiently small error parameter €, Sun and Wang obtain

| M||5 2 = Q(p p"(=1/2) which in view of |) gives an (n?log p) lower bound on the bounded-
error communication complexity of the nonsingularity problem.
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In follow-up work, Li, Sun, Wang, and Woodruff [16] studied the partial communication problem
F = RANK:”""  Let M’ denote its characteristic matrix. The authors of [16] used the same

n—1n"
witness ® as Sun and Wang [27] and proved the following:
i) ol =1

() Cgomr MapPan =p™ "(1+ pi;[;::ﬂ )T (0 = 1);

(i) 1@ =p" " Ty (L+p77) - TT (0 — 1);

(V) X gomr | PaBl = 1l = Xdom r Mi pPaB.
Making these substitutions in and setting € to a sufficiently small constant, the authors of [16]
obtain || M'||s 2. = Q(p"’ p"(™=1/2) which along with (1.2) results in an Q(n2logp) lower bound
on the quantum communication complexity of F' = RANK’Z?:;L. We note that we have described
the work of [27, [I6] in the framework that we adopt in our paper, which differs somewhat from
the original presentation in 27, [16]. These differences do not affect any of the ideas or bounds in
question.

Unfortunately, the above analyses rely heavily on € being set to a small constant. This is because

|®[]1 is too large compared to the inner product (M,®) and the correlation 4., p M) p®a 5,

which makes setting e close to 1/2 impossible. Since the authors of [16] determined |®||; and
Y dom M4 5®a.p exactly, with equality, there is no room for improved analysis and no possibility

of setting € close to 1/2 with this choice of witness ®. This rules out the use of ® for proving
Theorem H even in the special case of RANKi’f’ffn.

When it comes to the general problem RANKE”,?’”, the witness ® produces no meaningful results
at all for any » < n — 3, regardless of the error parameter €. The issue is that the £; norm of ®
is concentrated on matrix pairs (A, B) for which A + B has rank n or n — 1, whereas the domain
of RANKE};’}’” consists of matrix pairs whose sum has rank n or r. Quantitatively, the domain of
RANKE’,?’” supports less than half of the #; norm of ®, which causes the lower bound in to

be negative for every . Our attempts at simple modifications to ® were not successful.

1.8. Our approach. Our techniques depart substantially from the previous work in [27, [16]. In-
stead of attempting to guess a good witness ® and analyzing its metric and analytic properties,
we determine how exactly those properties depend on the choice of a witness. In this way, we are
able to construct essentially optimal witnesses for the matrix rank, determinant, subspace sum,
and subspace intersection problems. We first discuss the matrix rank problem, over an arbitrary

finite field F. In this overview, we focus on the canonical case F' = RANKE’Z’”, where Alice and

Bob receive square matrices A, B € F"*" respectively, and need to decide whether rk(A + B) = k
or tk(A + B) = n. This special case captures the matrix rank problem in its full generality via
straightforward reductions.

Reducing the degrees of freedom. We will call a witness ® symmetric if each entry ®4 p is fully
determined by the rank of A + B. In searching for a good witness for the matrix rank problem,
we will only consider symmetric witnesses ®. This restriction is without loss of generality: since
F(A, B) depends only on the rank of A + B, it is not hard to verify that any witness for F' can be
“symmetrized” without harming the corresponding value of the approximate trace norm bound, .
The resulting witness matrix @ has only n + 1 degrees of freedom, corresponding to every possible
value of the rank of A + B.

Let 7« € {0,1,...,n} be given. Consider the matrix whose rows and columns are indexed by
elements of F"*" and whose (A, B) entry is defined to be 1 if rk(A + B) = i and zero otherwise.
Normalize this matrix to have ¢; norm 1, and call the resulting matrix F;. Then any symmetric
witness matrix is a linear combination of Ey, F1, ..., Ey,. With this in mind, for any real function
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¢:{0,1,...,n} = R, we define
Ey = ¢(0)Eo + o(1)E1 + -+ + ¢o(n) Ep.

Taking ® = FE, in the approximate trace norm bound (1.4) and simplifying, we arrive at the
following bound for the characteristic matrix M of F"

HMHEMM o) — o(k) = 2]l — 3 le(d)

Our challenge now is to understand how ¢ affects the spectral norm of E,. For matrices with a large
symmetry group, it is reasonable to expect algebraic structure in the spectrum. For example, the
so-called combinatorial matrices, studied by Knuth [I12] and used for communication lower bounds
by Razborov [22], have all eigenvalues described in terms of Hahn polynomials. We will similarly
see that the spectrum of each K, has strong algebraic structure and is described in terms of what
we call hyperpolynomials.

By analyzing the singular values of E,, we prove that

(1.5)

n

: (1.6)

where ¢ is the order of the finite field IF, and I';, is an auxiliary function. In more detail, we define

— (4,B)

Fn(svt) - iﬁgziw ’
where w is a primitive root of unity of order equal to the characteristic of F, with the operation z —
w® for field elements x € IF deferred to Section An exact expression for I'y, (n, t) can be obtained
from the analysis of the Fourier spectrum of the nonsingularity function in [27]. Understanding

Iy (s,t) for general s,t, however, is rather nontrivial. To this end, we derive the representation

Tp(s,t) =Y Pu(s,t,r)Tn(n,r),
r=0

where P, (s, t,r) is the probability that the upper-left s x¢ quadrant of a uniformly random nonsingu-
lar matrix of order n has rank r. By explicitly calculating the probabilities P, (s,t, ) and combining
them with the closed-form expression for T',,(n,7), we obtain the upper bound |I'y(s,t)| < cq /2
for an absolute constant c. In addition to this analytic property, we establish the following algebraic
result: for n,s fixed, I',(s,t) as a function of t € {0,1,...,n} is a polynomial in ¢~¢ of degree at
most s. These two properties play a central role in our analysis. In what follows, we will refer to a
polynomial in ¢~t as a hyperpolynomial in t.

Univariate object for the rank problem. Since is invariant under multiplication of ¢ by a
positive factor, we will normalize ¢ such that ¢(n) = 1. To achieve a large value on the right-
hand side of , we will construct a function ¢ that is negative at k, has ¢; norm concentrated
on {k,n}, and results in F, having a small spectral norm. In view of , the spectral norm
requirement amounts to a bound on max, |> ;" @(t)['s(s,t)|. Quantitatively speaking, to obtain
an asymptotically optimal lower bound for the matrix rank problem, we need ¢ to satisfy the
following constraints:

(1) ¢(n)=1;

(ii) (k) <0

(i) Cigpny o)) = ¢
)

1v) | e@)(s,t)| = ¢ *) for every s € {0,1,...,n}.
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The last requirement states that ¢ needs to be almost orthogonal to each I',(s,t), viewed as a
function of ¢ with fixed s. Recall from our earlier discussion that for s and n fixed, T',(s,t) is
a hyperpolynomial of low degree, namely, a polynomial in ¢~ of degree at most s. To achieve
orthogonality to hyperpolynomials of low degree, we leverage the Cauchy binomial theorem [20),
eqn. (1.87)], which implies that

i (?)q(—l)tq(g)g(qt) =0 (1.7)

t=0

t
t =0,1,...,n ensures that ¢ is exactly orthogonal to each hyperpolynomial T'),(s,t) for s < n.

Unfortunately, this choice of ¢ does not satisfy our constraint on the distribution of the ¢; norm
because most of it would be concentrated on the values ¢(t) at points t &~ n. To overcome this
difficulty, we apply a hyperpolynomial of low degree to achieve the desired distribution of the /;
norm. Specifically, we set

olt) = (”)q(—l)t"q<é>—<’5>¢<qt>

t

for every polynomial g of degree less than n. In particular, defining (t) = (”)q(—l)tq@ for

for a carefully constructed polynomial (; the factor (—1)_”q_(g) in this formula serves to normalize
@ and ensure the proper signs. As we increase the degree of {, we improve the distribution of the
£1 norm of ¢ at the expense of a weaker orthogonality guarantee, for now ¢ is orthogonal only to
hyperpolynomials of degree less than n — deg{. With an appropriate choice of (, we are able to
ensure all four desiderata (i)—(iv) for the univariate function ¢. The most technical part of the
analysis is the upper bound in (iv). For s small, our construction guarantees (iv) as a consequence
of the Cauchy binomial theorem, with >~} ; o(t)['s(s,t) = 0. For s large, we use the pointwise
bounds for ¢ and I';, and show that »_," , [p(t)| [Tn(s,t)] = q ),

By combining equations and with the properties (i)—(iv) of the univariate function ¢,
we derive the following bound on the approximate trace norm: [|M ||y 2. > (1 — 26 — g UR))gn? AUK)
Applying the approximate trace norm method , we obtain the sought lower bound of (k? log q)
on the quantum communication complexity of F' for error ¢ = % — ¢~ ©®)_ To achieve the error
probability as stated in Theorem [I.1] we derive bounds for ¢ with explicit constants, which we did
not discuss in this proof sketch.

The determinant problem. To solve the determinant problem DETE’? for all field elements a, b, we
combine our approach to the matrix rank problem presented above with additional Fourier-theoretic
ideas. Recall that we tackle the determinant problem from first principles, without relying on the
partial solution for nonzero a,b due to Sun and Wang [27]. With this in mind, we will first discuss
the case of nonzero a, b. Consider the function g,p: F**"™ — {—1,1,0} given by

—1 if det X =a,
Gap(X) =<1 if det X = b,
0 otherwise.
A simple argument reveals that the Fourier coefficients of g, corresponding to singular matrices are

zero, whereas those corresponding to nonsingular matrices M depend only on det(M). By applying
Parseval’s identity, we obtain a strong upper bound on the absolute value of every Fourier coefficient

of ga,b:
1

Tl € ——
Hga,b”oo SL(E,n)]
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where SL(F, n) denotes the special linear group of order-n matrices over F. Consider now the matrix
P, whose rows and columns are indexed by elements of F"*™ and whose entries are given by
®,5(A, B) = gap(A+ B). The spectral norm of @, is governed by the Fourier coefficients of gq .,
with

n2

q

1®apll = ——
[SL(E, n)|

Observe that @, is precisely the characteristic matrix of DET® alb " with the * entries replaced with
zeroes. Using ®,; as a witness in the approximate trace norm method, we immediately obtain
Theorem for nonzero a, b.

Consider now the complementary case when one of a,b is zero, say, a # 0 and b = 0. Here, we
study the rank versus determinant problem RANKDETE:Z, which in this case is a subproblem of the
determinant problem. Its parameters are an integer k € {0, 1,...,n—1} and a nonzero field element
a € F. Recall that in this problem, Alice and Bob are given matrices A, B € F™*", respectively,
and are called upon to distinguish between the cases rk(A + B) = k and det(A + B) = a. To
construct a witness for RANKDET 4> We combine our solutions to the matrix rank problem and
the determinant problem for nonzero ﬁeld elements. In more detail, consider the witness ® for the
problem RANK]F ™" that we sketched above. Recall that ® 4 g depends only on the rank of A+ B,
and moreover the /1 norm of ® is concentrated on matrix pairs (A4, B) with rk(4A + B) € {k,n}.
To turn @ into a witness for RANKDETI,S’Z, we form a linear combination of ® with the matrices
P, p for all b € F\ {0,a}, constructed in the previous paragraph for the determinant problem with
nonzero field elements. The coefficients in this linear combination are chosen so as to transfer the ¢
weight placed by ® on matrix pairs with det(A+B) ¢ {0, a} to the matrix pairs with det(A+B) = a,
without affecting any other entries of ®. The resulting dual witness has low spectral norm (being
the sum of matrices with low spectral norm) and has its ¢; norm concentrated on matrix pairs
(A, B) for which A + B has rank k or determinant a, ensuring strong correlation with the partial
function RANKDETI]E:Z. By applying the approximate trace norm method, we obtain the claimed

communication lower bounds for RANKDETI,Z’Z

Subspace sum and intersection. We now present the main ideas in our solution to the subspace
sum and subspace intersection problems. Since these problems are equivalent, we will discuss the
intersection problem alone. As before, we work with an arbitrary finite field [F, whose order we
denote by ¢. Also by way of notation, recall that m and ¢ stand for the dimensions of Alice’s
subspace S and Bob’s subspace T, respectively. For simplicity, we will assume in this overview that
the dimension n of the ambient vector space satisfies n > m+¢, which ensures that dim(SNT) takes
on every possible value in {0, 1,2, ..., min{m, ¢}} as one varies the subspaces S, T. We will focus on
the canonical case of the subspace intersection problem where Alice and Bob need to distinguish
subspace pairs with dim(S N'7T) = 0 from those with dim(S N7T) = R, for an integer R with
0 < R < min{m, ¢}. In what follows, we let F' = INTERSECTIF .t stand for this communication
problem of interest. The general case of the subspace 1ntersect10n problem which we will not discuss
in this overview, reduces to this canonical case.

As before, the challenge is to construct a dual matrix ® that witnesses a strong lower bound on the
approximate trace norm of the characteristic matrix M of F'. Note that the rows of ® are indexed
by m-dimensional subspaces, and the columns are indexed by /-dimensional subspaces. Analogous
to the matrix rank problem, we start with the methodological observation that the symmetry of F’
greatly reduces the number of degrees of freedom in ®. Specifically, F'(S,T') by definition depends
only on dim(S N 7). A moment’s thought now shows that any dual matrix ® for the subspace
intersection problem can be “symmetrized” such that its (S,7") entry depends only on dim(SNT),
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and this symmetrization can only improve the resulting lower bound on the approximate trace norm
in ((1.4]).

For r = 0,1,...,min{m, ¢}, let JM™ stand for the matrix whose rows are indexed by m-
dimensional subspaces of ", whose columns are indexed by /¢-dimensional subspaces of F", and
whose (S, T) entry is 1 if dim(S N T) = r and zero otherwise. Put another way, J/*™" is the char-
acteristic matrix of subspace pairs whose intersection has dimension r. For an arbitrary function
¥:{0,1,...,min{m, (}} — R, we define

min{m, ¢}
Tpmt= 3 ()
r=0
We refer to this family of matrices, whose (S,T') entry depends only on dim(S N T), as subspace
matrices. It will also be helpful to have notation for normalized versions of these matrices, as follows:

w(T') Jn,m,ﬁ‘

r

. 1 . min{m, ¢}
Vi p—— T =)
' ey, v =l

. . . . ¢ .
In this notation, we are looking to construct a dual witness of the form ® = ﬁm for some function

1. This matrix has min{m, ¢} + 1 degrees of freedom, corresponding to every possible value that

dim(SNT) can take. Setting ® = j:;’m’g in the approximate trace norm bound 1) and simplifying,
one obtains the following bound for the characteristic matrix M of F":

1 ,
se 2 e | —0(0) +9(R) = 2epll — Y ()] | - (1.8)
17 i{0.R}
At first glance, this equation looks similar to the corresponding equation ([1.5)) for the matrix rank
problem. However, there is a major difference: the spectral norm of E, is now replaced with the

1M

spectral norm of ﬁ’m’e, and there is no reason to expect that these quantities depend on their

corresponding univariate objects ¢ and % in a similar way. Indeed, our spectral analysis of j?b’m’g

is quite different and significantly more technical than that of F.

Analyzing the spectrum of subspace matrices. Symmetric subspace matrices J""™"™ are classical
objects whose eigenvectors and eigenvalues have been studied in numerous works, e.g., [10} 11}, 13, §].
However, these previous analyses do not seem to apply to the general, asymmetric case of interest
to us, namely, that of subspace matrices Jg’m’z for arbitrary m, £. One way to reduce the analysis

of the spectral norm of Jg’m’é to the symmetric case is to express the product Jg’m’g(JZ’m’g)T =

JZ’m’EJZ’Z’m as the sum of symmetric subspace matrices and then apply known results for the

symmetric case. Unfortunately, multiplying these subspace matrices leads to expressions so unwieldy
and complicated that this is clearly not the method of choice.

Instead, our analysis is inspired by a result of Knuth [12] on what he called combinatorial matrices,
which we briefly mentioned above. Specifically, Knuth investigated the eigenvalues of symmetric
matrices of order (?) whose rows and columns are indexed by t-element subsets of {1,2,...,n} and
whose (A, B) entry depends only on |A N B|. To determine the eigenvectors of a combinatorial
matrix, Knuth studied certain homogeneous linear systems with variables indexed by subsets of
a fixed cardinality s, and the equations themselves corresponding to sets of cardinality s — 1.
He showed that any solution to such a system for s € {1,2,...,t} is an eigenvector for every
combinatorial matrix of order (?) Knuth also proved that for any given s, the space of solutions
has a basis supported on the variables indexed by what he called basic sets. These sets have a simple
combinatorial description, which the author of [12] used to prove that the eigenvectors arising from
the homogeneous systems for s = 1,2,...,t, together with the all-ones vector, form an exhaustive
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description of the eigenvectors of each combinatorial matrix. Once the eigenvectors are determined,
one readily calculates their associated eigenvalues and in particular the spectral norm.

With some effort, we are able to adapt Knuth’s ideas to the context of subspaces. Along the
way, we encounter several obstacles. To begin with, counting problems that are straightforward for
sets become challenging for subspaces, and some intuitive combinatorial principles no longer work.
For example, the inclusion-exclusion formula dim(S + 7T') = dim(S) + dim(7T") — dim(S N T") has no
analogue for three or more subspaces. Another obstacle is that Knuth’s notion of a basic set does
not seem to have a meaningful analogue for subspaces. For this reason, we reformulate Knuth’s
ideas in a purely linear-algebraic way and sidestep much of the combinatorial machinery in [12].
The final hurdle is extending Knuth’s analysis to the asymmetric case. Ultimately, we are able to
determine the singular values and spectral norm of every subspace matrix J,Z’m’z and in particular

. . . l
its normalized version jz)m . We prove that

min{m,¢} 1/2 min{m, ¢} 1/2
—n,m,l —n,m,l - n,l,m
AN I Do w®] I B DR E O BT
=0,1,...,min{m, — —o

- 4 - n,l . . . . .
where Arn "™ and A:L ™ are functions with algebraic and analytic properties analogous to those of
the I',, function in our solution to the matrix rank problem. Specifically, we have:

(i) for n,m,¥, s fixed, K:L’m’z(s) as a function of r € {0,1,..., min{m, ¢}} is a polynomial in ¢"

of degree at most s;
(ii) |KTn’m’e($)| < 8(%);1q_5(m_7)/2 for r =0,1,...,min{m, ¢}.
By swapping the roles of m and ¢, one obtains analogous properties for K: ’g’m(s).

This spectral result gives us fine-grained control over the spectrum of J&f’m’f via the univariate
function 1. Our construction of % is based on the Cauchy binomial theorem and is conceptually
similar to our univariate function ¢ in the matrix rank problem. In particular, we use the algebraic
property (i) to bound the product in for small s, and the analytic property (ii) to bound it for
large s. We further ensure that the ¢; norm of ¢ is highly concentrated on {0, R}, with 1(0) < 0
and ¢ (R) > 0. This results in a strong lower bound in , which in turn leads to an optimal lower
bound on the communication complexity of F' by virtue of the approximate trace norm method.

2. PRELIMINARIES

2.1. General notation. We view Boolean functions as mappings X — {—1,1}, where X is a
nonempty finite set and the range elements —1,1 correspond to “true” and “false,” respectively. A
partial Boolean function is a mapping f: X — {—1,1,*}, whose domain is defined as dom f =
{z € X : f(x) # *}. Recall that for an arbitrary function f: X — Y, the restriction of f to a subset
X' C X is defined to be the mapping f|x/: X’ — Y given by (f|x/)(z) = f(z).

We adopt the shorthand [n] = {1,2,...,n}. We use the letters p and ¢ throughout this manuscript
to refer to a prime number and a prime power, respectively. As usual, IF, stands for the Galois field
GF(q), the g-element field which is unique up to isomorphism. For a given set X, the Kronecker
delta 0y 4 is defined for z,y € X by

5o 1 ifx =y,
Y10 otherwise.

For a function f: X — C, we use the familiar norms || f[[1 = > cx | f(2)| and || f||oc = max,cx |f(z)].
Similarly, for a real or complex matrix M, one defines | M |1 = > |M; ;| and | M || = max |M; ;|.
The norms ||v||; and ||v||e for a real or complex vector v are defined analogously. The Euclidean
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norm is given by |[vlla = /> [vi[?. We denote the base-q logarithm of x by log, x. In the special
case of the binary logarithm, we write simply log « rather than log, x.

2.2. Linear-algebraic preliminaries. Let I be a given field. We denote the set of n x m matrices
over F by F"*™_ We use the standard notation rk A, ker A, and AT for the rank, null space, and
transpose of the matrix A. As usual, the determinant of A € F"*" is denoted det A. The trace
of a matrix A € F"*" is denoted tr A and defined as the sum of the diagonal elements of A. The
commutativity of the trace operator is often helpful: tr(AB) = tr(BA) for square matrices A, B. We
let diag(ay,as,...,a,) denote the diagonal matrix of order n with diagonal entries aj,aq,...,ap.
Recall that I, normally denotes the identity matrix of order n, whereas I denotes the identity
matrix whose order is to be inferred from the context. We generalize the meaning of I,, somewhat
by defining
I, = diag(1,1,...1,0,...0),
N——
n

where the order of the matrix (and hence the number of zeroes on the diagonal) will be clear from
the context. We let J and 1 denote the all-ones matrix and all-ones vector, respectively, whose
dimensions will be clear from the context.

FACT 2.1. For square matrices A, B of order n over a given field F,
rkAB >1kA+r1k B —n.

Proof. Recall that the dimension of ker AB is at most the sum of the dimensions of ker A and ker B.
By the rank-nullity theorem, this is equivalent to the claimed inequality. 1

For F a finite field or the field of real numbers, the inner product operation on vectors and
matrices is defined as usual by (z,y) = > x;y; and (A, B) = Y~ A; ;B; ;. For F = C, the modified
definitions (x,y) = > x;y; and (A, B) = > A, ;B; ; are used instead. For complex-valued functions
[,9: X — C, we write (f,g9) = > ,cx f(x)g9(z). Again for F = C, the conjugate transpose of
a matrix A = [A;j];; is denoted by A* = [A4;;];j, and a matrix A € C™™" is called unitary if
A*A = AA* = I. The following useful fact relates the inner product and trace operators.

Fact 2.2. Let A, B,C, D be matrices of order n over R or a finite field. Then:

(i) (A, B) =tr(AB") =tr(ATB),
(ii) (A,C1BCy) = (CTACT, B).

Proof. Item is immediate from the definition of matrix multiplication, whereas follows from
and the commutativity of the trace operator: (A,C1BCs) = tr(ACy BTC) = tr(C] ACY BT) =
(CTACT, B). 0

Over any field F, we let ey, eo, ..., e, denote as usual the vectors of the standard basis for F". For
any subset S C [F”, recall that its span over I is denoted span S. For a linear subspace S, the symbols
dim S and S refer as usual to the dimension of S and the orthogonal complement of S, respectively.
For a linear transformation M, we let M(S) = {Mz : x € S} denote the image of S under M.
Recall that the sum of linear subspaces S and T is defined as S+T ={z+y:xz € S,y € T} and is
the smallest subspace that contains both S and T'. In expressions involving subspaces, we adopt the
convention that the union U and intersection N operators have higher precedence than the subspace
sum operator +. For a vector space V and an integer k, we adopt the notation . (V, k) for the set
of all subspaces of V' of dimension k. For arbitrary subspaces S,7T in a finite-dimensional vector
space, the following identity is well-known, and we use it extensively in our proofs without further
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mention:
dim(S + T) = dim(S) + dim(7T") — dim(SNT). (2.1)

This equation is one of the few instances when subspaces behave in ways analogous to sets. Such
instances are rare. For example, unlike sets, general subspaces S, T, U need not satisfy SN(T+U) =
SNT+ SNU. The equality requires additional hypotheses, as recorded below.

FAcT 2.3. For any linear subspaces S, S’,T with S’ C S,
SN +T)=85+8SNT.

Proof. Tt is clear that S’ +SNT is a subspace of both S and S’ +T. It remains to prove the opposite
inclusion, SN(S"+T) C '+ SNT. For this, consider an arbitrary vector u+v € S with u € S" and
veT. Thenve S+u=S5. As aresult, v € SNT and therefore u+v € S'+SNT as claimed. [

We continue with a fact that relates the dimension of S NT to that of S+ NT+.

FAcT 2.4. Let S,T CF" be subspaces over a given field F. Then

(S+T)t=5tnT1t, (2.2)
(SNT)*: =8+ +71+, (2.3)
dim(S N T) = dim(S) + dim(T) + dim(S+ N T+) — n. (2.4)

Proof. To begin with,
STt ={z:(z,y)=0forallye Syn{z: (z,y) =0 foralyc T}
={z:(z,y)=0forallye SUT}
={z:(z,y)=0forallye S+ T}
=(S+1)",
where the third step uses the linearity of inner product. This settles . Applying (2.2) to

the orthogonal complements of S and T results in (S+ + T+)t = SN T, which upon orthogonal
complementation of both sides yields (2.3). Equation (2.4) is also a straightforward consequence

of , as follows:
dim(S+ N TH) = dim((S + T)4)
=n—dim(S+1T)
=n —dim(S) — dim(7T") + dim(SNT). i

It is well-known that for a symmetric real matrix, any pair of eigenvectors corresponding to
distinct eigenvalues are orthogonal. For completeness, we state this simple fact with a proof below.

FacT 2.5. Let M be a symmetric real matriz. Let u,v be eigenvectors of M corresponding to
different eigenvalues. Then (u,v) = 0.

Proof. Suppose that Mu = au and Mv = v, where o # (. Then (a—3)(u, v) = (au,v) —(u, fv) =
(Mu,v) — (u, Mv) = 0, where the last step uses M = M. This forces (u,v) = 0, as claimed.

2.3. Matrix norms. Associated with every matrix A € C"*™ are min{n, m} nonnegative reals
that are called the singular values of A, denoted 01(A) > 02(A) = -+ = Owingn,m} (A). Every matrix
A € C™™"™ has a singular value decomposition A = UX V™, where U and V are unitary matrices
of order n and m, respectively, and X is a rectangular diagonal matrix whose diagonal entries are
01(A),02(A), ..., Tminfn,m} (A). In the case of real matrices A, the matrices U and V' in the singular
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value decomposition can be taken to be real. An alternative characterization of the singular values
is given by

FACT 2.6. Let A € C™™ be given, with n < m. Then the singular values of A are precisely the
square roots of the eigenvalues of AA*, counting multiplicities.

The spectral norm, trace norm, and Frobenius norm of A are defined in terms of the singular
values as follows:

[A]l = o1(A), (2.5)
1Al =" ai(A), (2.6)
IAlp = /> oi(A)2. (2.7)

Equivalently,
[All = max {[|Az]2, (2.8)

z:||z|[2=1

IAlle = /D 14512 (2.9)

These equations agree with (2.5)) and (2.7)) because the Euclidean norm on vectors is invariant under
unitary transformations.
FAcT 2.7. For any matrices A, B € C"*™,

(4, B)] < [|A[ | Bl|s-

Fact follows directly from ([2.8)) and the singular value decomposition of B. We now recall a
relationship between the trace norm and Frobenius norm; see, e.g., [24, Prop. 2.4].

FacT 2.8. For all matrices A and B of compatible dimensions,
[ABls < || Allr [|Blle-

Recall that a sign matriz is a real matrix with entries in {—1,1}. A partial sign matrix, then, is
a matrix with entries in {—1,1,%}. We define the domain of a partial sign matrix F' by dom F' =
{(i,7) : Fij # *}. The e-approzimate trace norm of F', denoted ||F||x, is the least trace norm of a
real matrix F that satisfies

|Fij — Fy| <e if Fij € {-1,1}, (2.10)
|Fij| <1+e if Fij = *. (2.11)

The following lower bound on the approximate trace norm is well known [15] 24} 25]. For reader’s
convenience, we include a proof.

PROPOSITION 2.9. For any partial sign matriz F and € > 0,

£

1
S,e 2 SUD o > Fy®y—cl®hi— > |y
o0 |2 i .
,j)€dom F (i,j)¢dom F
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Proof. Let F be a real matrix that approximates F in the sense of (2.10) and (2.11)). Then for any
¢ #0,

(F, @)= Y Fy®iy+ Y (Fyj—Fy)y+ Y Fydy

dom F dom F' dom F
> Y Fy®iy— ) [Fy = Fyll®gl— Y |Fyl 104
dom F' dom F' dom F
> ) Fy®i— Y el®yl— Y (1+2)|yl
dom F' dom F' dom F
= ) %y —ell@fh - D (@4
dom F' dom F

On the other hand, Fact [2.7/shows that (F, ®) < ||[F|x [|®||. Combining these two bounds for (F, ®)

gives

~ 1
1F|s = ] > Fydy—ell@f - Y |yl
dom F' dom I
Taking the supremum over ® # 0 completes the proof. [

2.4. Fourier transform. Consider a prime power ¢ = p*, with p a prime and k a positive integer.
Recall that the additive group of I, is isomorphic to the Abelian group Z]; . Fix any such isomor-

phism 1. Let w = e*™/P_ a primitive p-th root of unity. For z € Fy, define w* = w™w*? - .- W,

where (21, z2,..., ) is the image of z under . Then for all z,y € F,
WY = wrwY, (2.12)
w T =T, (2.13)

One further calculates 3 5 w® = M, 4+w+w?+- - 4wP!) =0, which in turn generalizes to
> W =0, a€F,\ {0} (2.14)
z€lFy

since x — ax is a permutation on F,.

Let n be a positive integer. For A € Fy*", define a corresponding character x4 : Fy*" — C by
xa(X) = w0,

It follows from (2.12)) that
xa(X +Y) =xa(X)xa(Y), (2.15)

making x4 a homomorphism of the additive group Fy*™ into the multiplicative group of C. Us-

ing (2.12) and (2.13)), one obtains (x4, xp) = Y. x WP FwBX) = 3 WAX=BX) = S~ () (A=B.X)
which along with (2.14]) leads to

2
q~ if A= DB,
(xa,xB) = { (2.16)

0 otherwise.

Hence, the characters x4 for A € Fj*" form an orthogonal basis for the complex vector space of
functions Fg*" — C. In particular, every function f: Fg*" — C has a unique representation as a
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linear combination of the characters:

FX) = > FAxalx). (2.17)
AeFg*™

~

The numbers f(A) are called the Fourier coefficients of f. They are given by
JA) =q(fxa) = B[, (2.18)
XEIF;LXTL

where the first step is justified by (2.16)), and the second step uses (2.13). An immediate consequence

~

of (2.16) and (2.17) is that (f, f) = ¢" S A If(A)2. This result is known as Parseval’s identity,
and it is typically written in the form

E (fCOPI= > 1P (2.19)

Xerg ™ AeFy <™

With J?Viewed as a complex-valued function on Fy*", the linear transformation that sends f ]?
is called the Fourier transform. Its matrix representation is easy to describe. Specifically, define

H, =q " 2w4B)) 5,

where the row and column indices range over all matrices in Fp*". Analogous to (2.16)), one shows
that H,, is unitary:

H,H; =H H, =1. (2.20)
Then the Fourier transform f +— f, given by (2.18]), corresponds to the linear transformation
q_"2/ 2H. Analogously, the inverse transformation f ++ f of (2.17) corresponds to q”2/ ’H,,.

The following well-known fact relates the singular values of a matrix [p(A+ B)]4,p to the Fourier
spectrum of the outer function ¢. We include a proof adapted from [16] and generalized to the case
of .

FacT 2.10 (adapted from Li et al., Lemma 20). Let  : Fy*"™ — C be given. Define
@ = [SO(X + Y)]X,YEngn'
Then
& =H,DH,,
where D 1is the diagonal matriz given by Dy a = q”2g5(A). In particular, the singular values of ®
are q”zlgﬁ(A)\ for A e FZX”.
Proof. Using the homomorphic property (2.15)) of the characters,

P(X+Y)= > @Axa(X +Y)
AeFg*n

= > AA)xa(X)xay).
AeFyxm

Restated in matrix form, this equation becomes ® = [x4(X)]x a diag(...,p(4),...) [xa(Y)]ay =
H,DH,, as desired. ]
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2.5. Gaussian binomial coefficients. Gaussian binomial coefficients, also known as q-binomial
coefficients, are defined by

n\ _ ("=D("—q) - (¢"—q¢"")
(m)f( ") (g — ) (g = ) (221)
_ (@ -D@" 1) (g - T)
(¢m—=1)(gm~t=1)---(¢—1)

for all nonnegative integers n, m and real numbers ¢ > 1. Observe that (g)q = 1 since the above

(2.22)

product is empty for m = 0. Note further that (2)(1 = 0 whenever m > n. One recovers standard
binomial coefficients from this definition via

() = ()

As a matter of convenience, one generalizes Gaussian binomial coefficients to arbitrary integers n, m
by defining

(n) =0 if min{n,m} <O0.
q

m

With this convention, one has the familiar identity

(;)q - <n fm>q n,m € Z. (2.23)

Gaussian binomial coefficients play an important role in enumerative combinatorics. In particular,
we recall the following classical fact.

Fact 2.11. Fiz a prime power q and integers n = m > 0. Then the number of m-dimensional
subspaces of Fy is exactly (g@)q.

Proof. This result is clearly true for m = 0. For m > 1, there are (¢" — 1)(¢" — q)--- (¢" — ¢™!)

ordered bases (v1,va,...,vy) of vectors in F q- Pach such basis defines an m-dimensional subspace.
Conversely, every m-dimensional subspace has exactly (¢™ — 1)(¢™ — q)---(¢™ — ¢™ ') ordered
bases. Thus, the number of m-dimensional subspaces is (2.21]), as claimed. ]

The following monotonicity property of g-binomial coeflicients is well-known. We provide a proof
for convenience.

FAcCT 2.12. Let n = m > 0 be given integers. Then for all integers £ € [m,n —m] and reals ¢ > 1,

(;)q < (Z)q (2.24)

Proof. The defining equation ([2.22]) gives

(n) B <n> ﬁ it -1
t/q Mg iZmi ¢ -1

If £ < n/2, then every fraction in the above product is greater than 1. As a result, (2.24) holds in
this case. In the complementary case £ > n/2, we have n — ¢ € [m,n/2] and therefore

(), = (02),

by the first part of the proof. Since (nT—LE)q = (z)(p we again arrive at ([2.24)). [
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We will use the next proposition to accurately estimate Gaussian binomial coefficients.

PROPOSITION 2.13. For any set I of positive integers, and any real number x > 2,
1 1
c<II (1 —~ x) <L
i€l

Proof. The upper bound is trivial. For the lower bound, we may clearly assume that I = {1,2,3...}.
A simple inductive argument shows that (1—a1)---(1—ayp) > 1—ay—---—ay, for any ay,...,a, €
(0,1). It follows that

o0
1 1 1 1
[Mr-5)zt-5 -5 =1- ——
xt x?2 28 x(z—1)

i=2
and therefore

L(-5)>(-2) (-5a0) =5

where the last step uses = > 2. ]

COROLLARY 2.14. For any integers n = m = 0 and any real number q > 2,

qm(nfm) < <n> < 4qm(nfm).
m q

Proof. The lower bound follows directly from the fact that (¢" — ¢*)/(¢™ — ¢*) > ¢"/q™ for n = m.
The upper bound can be verified as follows:

n o __ n o __ n _ ,m—1 nm
(n> _ (cfn 1)(qm Q)---(qm q m71) | < ggmnm),
m), (@ —=1(@"—q)...(¢"—¢™ ") " ¢ [[iL,(1-q7)
where the last step applies Proposition m ]

We now recall a classical result known as the Cauchy binomial theorem, see, e.g., |26l eqn. (1.87)].

FactT 2.15. For any integer n > 1 and real number q > 1, the following identity holds in R]t]:
A+ +qt)...(1+¢" ) Zq () (2.25)
q

COROLLARY 2.16. For any integer n > 1 and real number ¢ > 1, and any real polynomial g of
degree less than n,

n o /n ~
Z(—l)’q(2)<.> glg™") =0. (2.26)
i=0 v/ q
Proof. For d =0,1,...,n—1, take t = —1/¢% in ) to obtain

<” (2.27)

i= 0

This establishes (2.26)) when g is a monomial of degree less than n. The general case follows by
linearity: multiply (2.27) by the degree-d coefficient in g and sum over d.
i
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2.6. Counting and generating matrices of given rank. For a field F, we let ™ denote
the set of matrices in F™*™ of rank r. Since we mostly use F = F, in this work, we will usually
omit the reference to the field and write simply .#,""". As a matter of convenience, we adopt the
convention that for any n > 0 there is exactly one “matrix” of size 0 x n and exactly one “matrix”
of size n x 0, both of rank 0. The role of these empty matrices is to ensure that

“///(?m‘ = "//(;Z’O‘ =1, n =0,
which simplifies the statement of several lemmas in this paper. Analogously, we define
M =2 if min{n, m,r} <0. (2.28)

For nonsingular matrices of order n > 1, we adopt the shorthand .#,, = .,"".

PROPOSITION 2.17. Let n,m,r be nonnegative integers with r < min{n, m}. Then
n _
= () @ - 0" - (2.29)
q

Proof. If r = 0, then the right-hand side of evaluates to 1. This is consistent with our
convention that [.#;""| = 1 for all n,m > 0.

We now consider the complementary case r > 1, which forces n and m to be positive. Fix an
arbitrary r-dimensional subspace S C ]FZL and consider the subset .#Zg C .#;""™ of matrices whose
column space is S. Fix an n x r matrix A with column space S. Since the columns of A are linearly
independent, every matrix in .#s has a unique representation of the form AB for some B € .#,"".
Conversely, any product AB with B € .#,""" is a matrix in .#g. Therefore,

| As| = A (2.30)

Recall that .#,""™ is the disjoint union of .#g over r-dimensional subspaces S C Fy, and there are

precisely (:‘)q such subspaces (Fact . With this in mind, 1) leads to

n
= () bz (231)
"/ q
Finally, the number of  x m matrices of rank r is precisely the number of bases (v1,vs,...,v,) of
row vectors in Fy', whence | = (g™ — 1)(¢™ — q) -+ (¢™ — ¢"~1). Making this substitution
in 1} completes the proof. [

Using Proposition and Corollary to estimate the right-hand side of (2.29), we obtain:

COROLLARY 2.18. Let m,n,r be nonnegative integers with r < min{n,m}. Then
1 _ _
qu(n-i—m r) < ‘(//Tn,m’ < 4qr(n+m 7”)'

The following fact is well-known; cf. [16].

PrOPOSITION 2.19. Let n > 1 be a given integer. Let X,Y be random matrices distributed inde-
pendently and uniformly on #,. Then:

(i)  for any fixred A € My, the matrices X A and AX are distributed uniformly on My;
(ii) for anyr € {0,1,...,n} and fived A € A;"", the matriv X AY is distributed uniformly on

Proof. For any B € .#,, we have P[XA = B] = P[X = BA™!] = 1/|.#,]|. Therefore, XA is

distributed uniformly on .#,. The argument for AX is analogous.
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Fix B € .#,"" arbitrarily. Then B can be obtained from A by a series of elementary row and
column operations, so that B = M; AMj; for nonsingular My, Ms. As a result,
P[XAY = B =P[M;'XAYM;' = A| = P[XAY M,;"' = A] = P[XAY = A],

where the last two steps are valid by part To summarize, X AY takes on every value in .Z,""
with the same probability. Since X AY € .#,"", the proof is complete. ]

2.7. Random projections. Given a collection of subspaces S1,Ss,...,Sy in a vector space, we
use random projections to reduce the dimension of the ambient space while preserving algebraic
relationships among the .S;. This is done by choosing a uniformly random matrix X and replacing
S1,852,...,Sn with the subspaces X (S1), X(S2),...,X(Sn), respectively. The following lemma
provides quantitative details.

LEMMA 2.20. Let n and d be positive integers, F a finite field with g = |F| elements, and S CF" a
subspace. Then for every integer t < min{dim(S), d},

P [dim(X(9)) < t] < 4¢~@mS)=0)(d=t), (2.32)
XeFdxn
In particular, for every integer T' < min{dim(S), d},

Xegix" qT—min{T,dim(X(S))} <1+ 8q—(dim(S)—T+1)(d—T+1)+1‘ (233)

Proof. Equations ([2.32)) and ([2.33)) hold trivially for negative ¢t and 7', respectively. As a result, we
may assume that ¢ > 0 and 7" > 0. Abbreviate &k = dim(S). Fix a basis vy, ve,...,v; for S and
extend it to a basis v1,vs, ..., v, for F*. Let A € F"*™ be the unique matrix such that Av; = e; for
each i = 1,2,...,n. In particular, A(S) = span{ey,es,...,ex}. Now, let X € F?X" be uniformly
random. Then the rows of X A are independent random variables, each a uniformly random linear
combination of the rows of A. Since A is nonsingular of order n, it follows that the rows of X A are
independent random vectors in F”. Put another way, X A € F4*" has the same distribution as X.
As a result,

P[dim(X (S)) < t]

P[dim(X A(S5)) < {]

[
— P[dim(X(A(S))) <
= P[dim(span{Xe;j, Xea,..., Xer}) < 1]
= P[3B € .#(F%,t) such that Xe;, Xes, ..., Xej, € B
< Y PlXey, Xey,..., Xe, € B, (2.34)
Be.(Fd t)

where the third step uses A(S) = span{ej,es,...,ex}, and the last step applies a union bound.
Now

t\ K d
P[dim(X(S)) << Y (‘*’d) —(t) gD < 4gl 0D — 4gm (00,
S (Fd,t) 9 4
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where the first step is justified by (2.34)) and the fact that Xej, Xes,..., Xey are independent and
uniformly random vectors in F¢; the second step applies Fact [2.11} and the third step uses Corol-

lary This settles (2.32)). Now (2.33]) can be verified as follows:

T-1

E qT—min{T,dim(X(S))} <14+ Z qT—t P[dlm(X(S)) _ t]

t=0
T-1

< 1 4 qT—t . 4q—(k—t)(d—t)
=0
T

— 14 th  4q~ (k=TH+)(d-T+1)
=1
T

14 th ) 4q7(k7T+1)(dfTJrl)f(tfl)(d+k+t72T+1)
t=1

<1+ th . 4q7(k7T+1)(d7T+1)7(t271)
t=1

<14 4q—(k—T+1)(d—T+1)+1 o q

qg—1
< 14 8¢~ (k=T+D(@-T+1)+1

Y

where the third step is a change of variable, the next-to-last step bounds the series by a geometric
series, and the last step is valid due to ¢ > 2.

The previous lemma yields an analogous results for matrices:

LEMMA 2.21. Let n,m,d be positive integers, F a finite field with ¢ = |F| elements, and M € F*"*™
a given matriz. Then for every integer t < min{rk M, d}:

(1) PRk(XM) < t] < 4g~ECM=DE=Y) for o uniformly random matriz X € F™;
(i) Prk(MY) < t] < 4~ CKOD=9E=Y) for o uniformly random matriz Y € Fm*e,

Proof. Let S be the column span of M. Then rk(X M) = dim(X (S5)), and|(i)|follows from Lemma
For rewrite the probability of interest as P[rk(YTMT) < t] and apply ]

2.8. Communication complexity. An excellent reference on communication complexity is the
monograph by Kushilevitz and Nisan [14]. In this overview, we will limit ourselves to key definitions
and notation. The public-coin randomized model, due to Yao [29], features two players Alice and
Bob and a (possibly partial) Boolean function F': X x Y — {—1,1,*} for finite sets X and Y. Alice
is given as input an element x € X, Bob is given y € Y, and their objective is to evaluate F(x,y).
To this end, Alice and Bob communicate by sending bits according to a protocol agreed upon in
advance. Moreover, they have an unlimited supply of shared random bits which they can use when
deciding what message to send at any given point in the protocol. Eventually, they must agree on a
bit (—1 or 1) that represents the output of the protocol. An e-error protocol for F is one which, on
every input (z,y) € dom F, produces the correct answer F(z,y) with probability at least 1 —e. The
protocol’s behavior on inputs outside dom F' can be arbitrary. The cost of a protocol is the total bit
length of the messages exchanged by Alice and Bob in the worst-case execution of the protocol. The
e-error randomized communication complexity of F, denoted R.(F’), is the least cost of an e-error
randomized protocol for F'. The standard setting of the error parameter is ¢ = 1/3, which can be
replaced by any other constant in (0,1/2) with only a constant-factor change in communication
cost.
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A far-reaching generalization of the randomized model is Yao’s quantum model [30], where Alice
and Bob exchange quantum messages. As before, their objective is to evaluate a fixed function
F: X xY — {-1,1,%} on any given input pair (z,y), where Alice receives as input = and Bob
receives y. We allow arbitrary prior entanglement at the start of the communication, which is the
quantum analogue of shared randomness. A measurement at the end of the protocol produces a
one-bit answer, which is interpreted as the protocol output. An e-error protocol for F is required
to output, on every input (z,y) € dom F, the correct value F(z,y) with probability at least 1 — e.
As before, the protocol can exhibit arbitrary behavior on inputs outside dom F'. The cost of a
quantum protocol is the total number of quantum bits exchanged in the worst-case execution. The
e-error quantum communication complezity of F, denoted QX(F), is the least cost of an e-error
quantum protocol for F. The asterisk in QX(F) indicates that the parties can share arbitrary prior
entanglement. As before, the standard setting of the error parameter is ¢ = 1/3. For a detailed
formal description of the quantum model, we refer the reader to [28] 22, 24]. For any protocol II,
quantum or otherwise, we write cost(II) for the communication cost of II.

The following theorem, due to Linial and Shraibman [I7, Lem. 10], states that the matrix of the
acceptance probabilities of a quantum protocol has an efficient factorization with respect to the
Frobenius norm. Closely analogous statements were established earlier by Yao [30], Kremer [13],
and Razborov [22].

THEOREM 2.22. Let X,Y be finite sets. Let P be a quantum protocol (with or without prior
entanglement) with cost C' qubits and input sets X and Y. Then

P[P(z,y) = 1 } — AB
PP@y=1]
for some real matrices A, B with ||A|r < 2°4/|X]| and || B||r < 2°/]Y].

Theorem [2.22| provides a transition from quantum protocols to matrix factorization, which is by
now a standard technique that has been used by various authors in various contexts. Among other
things, Theorem [2.22] gives the following approzimate trace norm method for quantum lower bounds;
see, e.g., [22], Thm. 5.5]. For the reader’s convenience, we state and prove this result in the generality
that we require.

THEOREM 2.23 (Approximate trace norm method). Let F: X x Y — {—1,1,%} be a (possibly
partial) communication problem. Then
JQHP) 5 [ M| 5,2¢ ’
3VIX|Y]
where M = [F(x,y)|zexyey is the characteristic matriz of F.
Proof. Let P be a quantum protocol with prior entanglement that computes F' with error ¢ and
cost C. Put

= [P[P(x,y) - 1]L€X,yey.

Then the matrix M = 211 — J satisfies |Mx7y| < 1forall (z,y) € X xY and |[M,, — Mz7y| < 2¢ for
all (xz,y) € dom M. In particular,

|M]|50: < || M]s. (2.35)
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On the other hand, Theorem [2:22] guarantees the existence of matrices A and B with AB = II and
|Allr |1 Bllr < 49/ X[[Y]. Therefore,

1Mz = [|2AB - J|s
< 2|AB|s + || J|s
< 2| AllglIBlle + [|7]|s
<2-4V/IXTIY] + |1
=2 4°/IX][Y]+ VIX] Y], (2.36)

where the third step uses Fact Equations (2.35) and (2.36) give | M||s2. < (2-4€ +1)/]X][Y],
0

which implies the claimed lower bound on 4¢.

A distinguisher for a communication problem F': X xY — {—1, 1, %} is a communication protocol
II for which the expected output on every input in F~1(—1) is less than the expected output on
every input in F~!(1). We will use the following proposition to convert any distinguisher for F' into
a communication protocol that computes F'.

PROPOSITION 2.24. Let F: X XY — {—1,1,%} be a (possibly partial) communication problem.
Suppose that 11 is a cost-c randomized protocol with output 1 such that

E[ll(z,y)] < « for all (z,y) € F~(—1), (2.37)

E[ll(z,y)] = B for all (z,y) € F~(1), (2.38)
where o, B are reals with —1 < a < B < 1. Then

Ri_15_o(F) <c

ool

1_
2

Proof. For a real number ¢, define sgnt to be 1if ¢t > 0 and —1if ¢ < 0. Set p = |a+3|/(2+ |a+ 3])
and consider the following randomized protocol II" with input (z,y) € X X Y: with probability p,
Alice and Bob output — sgn(a+ ) without any communication; with the complementary probability
1 —p, they execute the original protocol IT on (z,y) and output its answer. Clearly, II' has the same
cost as II. On every (z,y) € F~1(-1),

—(a+p)+2a  a-§ <_ﬁ—a
2+ |+ 8 2+ |a+p6] T 4
where the first step uses (2.37)), and the last step uses —1 < o < f < 1. Analogously, on every

(z,y) € F7(D),
— — 2 — —
BIN (2, 9)] > ~psiia + 6) + (1 p)f = —p o Dt = o Aot 5 e

where the first step uses (2.38). We have shown that E[Il'(x, y)F(z,y)] = (8 — «)/4 on the domain

of F, which is another way of saying that II' computes F' with error at most % - %(ﬁ — ). 1

E[II'(z,y)] < —psgn(a+ f) + (1 - p)a =

9

2.9. Communication problems defined. Let I be a given field. For nonnegative integers n, m, r
with r < min{n, m}, the rank problem is the communication problem in which Alice and Bob are
given matrices A, B € F"*™ respectively, and their objective is to determine whether rk(A+B) < r.
Formally, this problem corresponds to the Boolean function RANKf’”’m: Frxm s Frxm — {—1,1}
given by

RANKE™™(4 4+ B) = —1 & 1k(A+B) <
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We also study the corresponding partial problem RANKf’g’m for nonnegative integers n,m,r, R
with 7 < R < min{n, m}, defined on F"*™ x F"*™ by

-1 if tk(A+B) =,
RANK; ™A, B)={1 if tk(A+ B) = R,
* otherwise.

For a positive integer n and a pair of distinct field elements a,b € F, the determinant problem
DET. 7" B 5 B — {1, 1, %} is given by

—1 if det(A+ B) = a,
DET, (A, B) =41 if det(A+ B) =b,
* otherwise.
The rank versus determinant problem is a hybrid inspired by the previous two problems. Specif-
ically, for a number r € {0,1,...,n — 1} and a nonzero field element a € F \ {0}, we define
RANKDET} " F™" x F>™ — {—1,1,%} by
—1 if rk(A+ B) =,
RANKDET,?(A,B) =1 if det(4+ B) = q,

* otherwise.

Note that RANKDETE”Q is a subproblem of both RANK;P:”T’Z’” and DETS’Z, in the sense that the

domain of RANKDETE:™ is a subset of the domain of each of these other two problems and it agrees

on its domain with those problems.

Consider now the setting where Alice is given an m-dimensional subspace S C F" and Bob is
given an ¢-dimensional subspace T' C F", for some nonnegative integers n, m, ¢ with max{m, ¢} < n.
In the subspace intersection problem with parameter d, Alice and Bob need to determine whether
S NT has dimension at least d. In the subspace sum problem, they need to determine whether
S + T has dimension at most d. Formally, these problems correspond to the Boolean functions
INTERSECTS’"’m’Z and SUMS’"’m’Z that are defined on .7 (F", m) x . (F",¢) by

INTERSECT, "™ (S, T) = -1 &  dim(SNT) >d,
SUME™™ S, T) = -1 &  dim(S+7T) <d.
Their partial counterparts INTERSECTE;%Z“E and SUME;”C}T’Z, for any pair of distinct integers
dy,da, are defined on . (F", m) x .7 (F", {) by
1 if dim(SNT) = dy,
INTERSECT, "/ (S,T) = {1  if dim(SNT) = da,
* otherwise,
1 if dim(S + T) = di,
SUMG™™ (S, T) =41 if dim(S +T) = da,
L * otherwise.

These partial functions are well-defined for any di,ds with di # ds. Their communication com-
plexity, however, is zero unless both d; and dy have meaningful values for the problem in question.
Specifically, one must have dj, ds € [max{m, ¢}, min{m + ¢,n}] for the subspace sum problem and
dy,dy € [max{0,m+¢—n}, min{m, ¢}] for the subspace intersection problem. We record this simple
fact as a proposition below.
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PROPOSITION 2.25. Let F be a field. Let n,m,{ be nonnegative integers with max{m, £} < n. Then:
(i) there exist S € S(F",m) and T € /(F",¢) with dim(S + T) = d if and only if d is an
integer with max{m, ¢} < d < min{m + ¢,n};
(ii)  there exist S € L (F",m) and T € L (F", ) with dim(S NT) = d if and only if d is an
integer with max{0,m + ¢ — n} < d < min{m, ¢}.

Proof. [(1)] For any subspaces S, T C F", we have the trivial bounds max{dim(5), dim(7")} < dim(S+
T) < min{dim(S) + dim(7"),n}. This proves the “only if” part of [(i)}] For the converse, let d be
any integer with max{m, ¢} < d < min{m + ¢,n}. Then the sets A = {1,2,...,m} and B =
{d—¢+1,...,d—1,d} satisfy A, B C {1,2,...,n} (because £ < d <n)and AUB ={1,2,...,d}
(because m < d < m + ¢). As a result, span{ej,ea,...,e,} and span{eq_rsi1,...,e4-1,€4} are a
pair of subspaces in F™ of dimension m and £, respectively, whose sum has dimension d.
(i1)| Recall that dim(SNT) = dim(S) + dim(7) — dim(S +T') for any subspaces S,T. As a result,
{dim(SNT):S e L EF",m), T € L(F" 1)}

={m+{—dim(S+7T):5 e SF",m), T e L[F" ()}

={m+{—d:deZ with max{m, ¢} <d < min{m +{,n}}

= {max{0,m + ¢ —n},...,min{m, £} — 1, min{m, ¢} },
where the second step uses 1

Let F: X xY — {-1,1,%} and F': X' x Y’ — {—1,1, %} be (possibly partial) communication
problems. A communication-free reduction from F to F' is a pair of mappings a: X — X’ and
B:Y — Y’ such that F(x,y) = F'(a(z), 5(y)) for all (x,y) € dom F. We indicate the existence of
a communication-free reduction from F to F’ by writing F’ = F. In this case, it is clear that the
communication complexity of F’ in any given model is bounded from below by the communication
complexity of F' in the same model.

PROPOSITION 2.26. Let n,m,{,r, R be integers with 0 < r < R < min{m, ¢} and max{m,(} < n.
Then

F: ) 78 F: — = 757
INTERSECTT’Em >~ INTERSECTO’g_;m e

Proof. Consider the injective linear map : F"~" — F™ that takes any vector and extends it with
r zero components to obtain a vector in F”. Given arbitrary subspaces S,T C F"™" of dimension
m —r and £ —r, respectively, define S = span(p(S)U{en—rt1,...,en—1,€n}) and T" = span(p(T)U
{en—r+1s---y€n—1,€n}). Then clearly
dim(S8'NT") = dim(S") + dim(7”) — dim(S" + 1)

=dim(S) +r+dim(T) +r —dim(S+7T) — r

= dim(S) + dim(7T") — dim(S +7T) +r

=dim(SNT)+r,

whence the reduction INTERSECTE’;::’me’Z#(S, T) = INTERSECTEV’g’m’Z(S’, T"). [

3. THE MATRIX RANK PROBLEM

In this section, we prove a tight lower bound on the randomized and quantum communication
complexity of the rank problem. As discussed in the introduction, we obtain this lower bound by
constructing a dual matrix ® with certain properties, namely, low spectral norm, low ¢; norm, and
high correlation with the characteristic matrix of the rank problem. We start in Section by
analyzing the probabilities P,, that arise in the recurrence relation for the I';, function. The latter
plays an important role in our proof and is studied in Section[3.2] Section [3.3]constructs a univariate
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dual object ¢ defined on {0,1,...,n} and studies its analytic and metric properties. We build on
¢ to construct a dual matrix E, in Section @, and discuss how the properties of ¢ give rise to
analogous properties of E,. Sections @ and @ establish lower bounds for the approximate trace
norm of the characteristic matrix and the communication complexity of the rank problem, with
® = F, used as the dual witness. We prove a matching communication upper bound in Section .
Section concludes our study of the rank problem with an application to streaming complexity.

Throughout this section, the underlying field is IF, for an arbitrary prime power ¢. The root of
unity w and the notation w® for x € F, are as defined in Section

3.1. The P, function. The P, function, defined next, conveys useful information about random
nonsingular matrices of order n over a given field.

DEFINITION 3.1. Let n > 1 be a given integer. For nonnegative integers s, t,r € {0,1,...,n}, define
P,(s,t,r) to be the probability that the upper-left s x t quadrant of a uniformly random nonsingular
matrix in Fg*" has rank r:
P,(s,t,r) = Xel?///n[rk(ISXIt) =r]. (3.1)
To derive a closed-form expression for P,, we essentially need to count the number of ways to
complete a given s X t matrix of rank r to a nonsingular matrix of order n. We break this counting
task into two steps, where the first step is to count the number of completions of an s X t matrix of
rank 7 to an s X n matrix of rank s.

LEMMA 3.2. Let s,t,r,m be nonnegative integers with r < min{s,t}. Let A € M be given. Then
the number of matrices B € F*™ for which rk [A B] =sis

m s—r,m
q" A

Proof. If r = 0, then rk [A B] = rk B. As a result, rk [A B] = s if and only if B € ™.
Therefore, the lemma holds in this case. In what follows, we consider r > 1, which forces s and t
to be positive integers.

Define the matrices A’ and A” to be the top r rows of A and the bottom s — r rows of A,
respectively. We first consider the possibility when A” is zero or empty. Here, the column span of
A’ is necessarily all of Fy. Given an s x m matrix B, partition it into B’ and B" conformably with
the partition of A. Then
A B A0
0 B”} =k [o B

Thus, [A B] has rank s if and only if rk(B”) = s — r. This means that there are |.Z,_""| ways

to choose B”, and independently ¢"™ ways to choose B’, such that rk [A B] =s.

It remains to examine the case of a general matrix A of rank r > 1. Let V be an invertible
matrix such that the bottom s — r rows of V A are zero. Let .# be the set of s x m matrices M for
which rk [VA M] = s. Then rk [A B] = s if and only if VB € .#. In particular, the number of
matrices B for which rk [A B] = sis [.#|. Since |.#| = ¢"™ |.#;_"™| by the previous paragraph,
we are done. I

rk [A B] =rk [ ] =1k(A") +1k(B") = r + tk(B").

We now derive an exact expression for P, and establish its relevant algebraic and analytic prop-
erties.

LEMMA 3.3. Letn > 1 be a given integer. Then for all s,t,r € {0,1,...,n}:

(i)  Pu(s,t,r) =01if r > min{s,t} or r < s+t —mn;
(i) Pals,tor) = ¢ Ot || /(0" = D@ = @) (q" = ¢ ));
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(iii) for any fixed values of n,s,r, the quantity P,(s,t,r) as a function of t € {0,1,...,n} is a
polynomial in ¢~! of degree at most s;
(iv)  Pa(s,t,r) <16~ (7=,

Proof. Since the quadrant of interest is an s X t matrix, the first inequality is trivial. For the
second inequality, observe that the matrix I; X I; in the defining equation satisfies rk(I; X 1) >
rk I + k(X I;) —n = s+t —n by Fact[2.1]

If > min{s,t}, then the left-hand side and right-hand side of both vanish due to |(i)]
and the definition of ./ '. We now treat the case r < min{s,t}. Letting .# stand for the set of
nonsingular matrices of order n whose upper-left s x t quadrant has rank r, we have

M
P,(s,t,r) = ||//l || (3.2)

A matrix in .# can be chosen by the following three-step process: choose a matrix in ., * for the
upper-left quadrant; extend the quadrant to a matrix in .#;", which by Lemma can be done
in ¢"" =t || ways; and finally add n — s rows to obtain an invertible matrix, which can be
done in (¢" — ¢*)(¢" — ¢*T1)--- (¢" — ¢" ') ways. Altogether, we obtain
_ —rn—t _

ot | = |3 AT (0 = )@ =) (@ -,
whereas Proposition gives

| o] = (@" = 1)(¢" = q) -+ (¢" =" 7).
Making these substitutions in (3.2)) completes the proof.

[(iii)] We claim that for all s,¢,7 € {0,1,...,n},

Pa(s,t,r) = ¢" "™ <i> @ =D =)@ —q)

n—t n—t n—t s—r—1
DRk )] Citad NIk o} (3.3)
(-1 —q) ("¢ 1)
Indeed, in the case when r > min{s, ¢} or r < s+t—mn, the right-hand side vanishes and therefore the
equality holds due to In the complementary case, Proposition gives closed-form expressions
for || and |.#°~""""| which, when substituted in result in (3.3). This settles for all
s, t,r€{0,1,...,n}.
Rewrite to obtain

P(s,t,r) =q" (j) (1-— qit)(l — q7t+1) (1 - q*tJrrfl)

@ =D~ (" -

(=D —q) (" =)

Now, fix n, s, r arbitrarily. If r < s, then makes it clear that P,(s,t,r) is a polynomial in ¢~*

of degree at most r + (s —r) = s. If » > s, then P,(s,t,r) is identically zero and thus trivially a
polynomial in ¢~¢ of degree at most s.

(3.4)
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For r > s, we have P, (s,t,7) =0 by and therefore the claimed upper bound holds trivially.
In the complementary case, simplify (3.3) to obtain

(n—t)(s—r)
Pu(s,t,r) < g0 <3> " 1
(Bh7) < E R V() R )

<> qtr 4qn t)(s— r)q—ns

< qrn t) 4qr ) tr 4q(n t)(s— r)q—ns

= 16q —(s—r)(t— T)
where the second and third steps apply Proposition and Corollary [2.14] respectively. ]
3.2. The I', function. A basic building block in our construction is the characteristic function of

matrices in Fg™" of a given rank. Its Fourier spectrum is best understood in terms of what we call
the I';, function.

DEFINITION 3.4. Let n > 1 be a given integer. For s,t € {0,1,...,n}, define
n(87 t) rkE:sw ’
rk B=t

where the expectation is taken with respect to the uniform distribution on 5" x #;"".

Sun and Wang [27] studied the Fourier spectrum of the nonsingularity function on Fy ™™, defined
to be 1 on nonsingular matrices and 0 otherwise. In our notation, they established the following
result.

LEMMA 3.5. For any integers n > 1 and r € {0,1,...,n},
(-1)7g®)
(" =" —q)--(¢"—q ")
The proof of Sun and Wang [27] is stated for fields F, with prime p, but their analysis readily
extends to fields of cardinality a prime power. In Appendix [A] we prove Lemma from scratch

in our desired generality, using a simpler proof than that of [27].
Our next lemma collects crucial properties of T',(s,t) for general values of s, ¢.

Ip(n,r) =

LEMMA 3.6. Let n > 1 be a given integer. Then for all s,t € {0,1,...,n}:
() [Tu(s, ) < L
(11) Fn(sat) = Fn(ta S);
(111) Fn(sv t) = Z;L:Q Pn(sa t, T)Fn (na T);
(iv)  for m,s fixed, T',(s,t) as a function of ¢ € {0,1,...,n} is a polynomial in ¢~¢ of degree at
most s;

(v)  [Tols,t)] < 128¢71/2.

Proof. Using |w| = 1 and the triangle inequality,

E w45

)

T (s, 1)| = <E ’w<A’B>‘ —1

The symmetry of T, follows from the independence of A and B in the defining equation for
I'y,, and the symmetry of the inner product over F,.
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We have:
Lp(s,t)= E B
Aca"”
Be.#""

— E w<XISKZ1Z21tW>
X7Y7Z17Z27W6‘%"

XI,YWT1,.Z] ,Z4)

= E w'
X,Y,Zl,ZQ,W€<%n
_ E W\ XUUL)Z3 1)

 XU,Z1,ZaE My,

= P [rk(I,UIL) =
>, P, UL =]

n

G WXWUIZLZ) | ([UT,) = 7“]
X,U,Zl,ZQG“%n

P [tk(I,UIL) = E B2
Ue///n[r(s ) T]Be//ﬂ“"w

r=0 7\ E My

3

Pa(s,t,7)ln(n,7),

Il
=)

T

where the first step restates the definition of I',,, the second step uses Proposition the third
step applies Fact the fourth and sixth steps again use Proposition [2.19] and the last step is

immediate from the definitions of P, and I',.

(iv)| Immediate from and Lemma [3.3(iii)|

We have:
|Fn(5’t)| = ZPH(Satvr)Fn(na T)

r=0

< P, (s, t,r)|Ty(n,r)|
r=0

— > Po(s,t,7) |Tp(n,7)|
r=max{0,s+t—n}

< Zn: 16g~(s=nt=7) q(;)

A n __ n __ oo (g — qr—1
r=max{0,s+t—n} (q 1)((] q) (C] q )

< Z 64q7(sfr)(tfr)+(£)—nr

r=max{0,s+t—n}
< 128q—8t/2 ’

where the first step appeals to the third step is valid by Lemma [3.3(1), the fourth step uses

Lemma [3.3(iv)| and Lemma the fifth step applies Proposition and the last step which
completes the proof is justified by the following claim. ]

CrLAM 3.7. For any integers n > 1 and s,t € {0,1,...,n},

Z q—(s—r)(t—T)-‘r(;)—m" < 2q—st/2. (35)
r=max{0,s+t—n}
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Proof. The exponent of g on the left-hand side of (3.5)) is given by the function

A(r) = —(s —7)(t —7) + (;) —nr (3.6)

—st— (g A Y (3.7)
= S 2 T n S 2 2 n S 2 . .

The first equality shows that A(r) is always an integer, whereas the second shows that A(r) is a

strictly decreasing function in the variable r € [max{0,s 4+t — n}, 00). These two facts lead to
A(max{0,s +t —n} +1) < A(max{0,s +t —n}) — i, i=0,1,2,.... (3.8)

We will now prove that

st

5

There are two cases to consider. If s +t < n, then A(max{0,s +t —n}) = A(0) = —st and

therefore (3.9) holds. The complementary case s + ¢ > n + 1 is more challenging. Here, we have

A(max{0,s+t—n}) < — (3.9)

1 1\?
A(maX{O,s—i—t—n}):A(s—i-t—n)<—st+§ (n—s—t+2) ;

where the second step uses (3.7)). Thus, the proof of (3.9)) will be complete once we show that
1\2
(n—s—t+2> — st <0. (3.10)

To prove , suppose that of all pairs (s,t) € {0,1,...,n}? with s +¢ > n + 1, the left-hand
side of (3.10) is maximized at a pair (s*,¢*). By symmetry, we may assume that s* < t*. If we
had t* < n — 1, then it would follow that s* > 2 (due to the requirement that s* +¢t* > n + 1);
as a result, the left-hand side of would be larger for the pair (s,t) = (s* — 1,¢* + 1) than
it is for the pair (s,t) = (s*,t*), an impossibility. Therefore, ¢t* = n. In addition, we have s* > 1
(due to the requirement that s* +t* > n + 1). Evaluating the right-hand side of at this pair
(s*,t*) = (s*,n), we obtain (s* — 1)2 — s*n, which is clearly negative due to s* € {1,2,...,n}. This
completes the proof of and therefore that of .
Now,
[o.¢] o

Z qf(sfr)(tfr)+(g) —nr _ Z qA(r)

r=max{0,s+t—n} r=max{0,s+t—n}

_ i qA(max{O,s-I—t—n}—i-i)

=0
o0
< qA(max{O,s—i—t—n}) Z q—z
1=0
< q—St/2 . q
X

q—1
where the first step uses the definition of A(r), the third step applies (3.8)), and the final step appeals
to (3.9) and a geometric series. Since ¢ > 2, this completes the proof of (3.5)).

3.3. Univariate dual object. Our construction of the univariate dual object is based on the
Cauchy binomial theorem along with a certain “correcting” polynomial . The next lemma presents
¢ as parametrized by two numbers £ and m and gives its basic properties.
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LEMMA 3.8. Let n, k,f,m be nonnegative integers such that £ +m < k < n. Define a univariate
polynomial ¢ by

R e S S s NP
O=1l—=" 1l =—= 1l == (3.11)
=0 q q i=k—m q q i=k+1 q q

) e =1;
) senC(gF) = (="
i) ((¢g")=0forre{0,1,...,n}\{{,€+1,....k—m—1}U{k,n});
) deg(=n+L+m—k—1,
) 1C(g)| < ag T RAm= D) k= (5" for o {0,041,k —m — 1},

Proof. Ttems |(i) | and [(iv)| are immediate from the defining equation for (. Item holds
because for t = q the ﬁrst and second products in ([3.11)) contain only positive factors, whereas
the third product Contalns exactly n — k — 1 factors all of which are negative. For ,

I = | e
i—kfm i= k+1
_ i:[l 1— qifr . ]ﬁ qifr -1 . 71:[1 qifr -1
i=0 1—g 9 i=k—m =g (0 i=k+1 1—g (0
-1 k-1 - n—1 -
1 qz—r qz—r
< - ° -~ ° - 7 N\ .
H) L—g (0 i=k—m L —g (0 2-111 1 =g (0

n k—m
The product of the numerators in the last expression is qiT(”karm*lH(?)*k*( 2 ), whereas the
product of the denominators is at least 1/4 by Proposition m 1

With ¢ in hand, we are now in a position to construct the promised univariate dual object ¢. The
properties of ¢ established in the lemma below will give rise to analogous properties in the dual
matrix E,.

LEMMA 3.9. Letn,k,{,m be nonnegative integers such that £+m < k < n. Then there is a function
¢:{0,1,...,n} — R such that:

i

— e
P

— — —

forr€{0,1,...,n}\ ({{,0+1,....k—m—1} U{k,n});
Yo @(r)&(g™") = 0 for every polynomial £ of degree at most k — £ — m;

> e 0\ fkny 1P(r)] < 32¢7 1

(

(iii
(iv
(v

Proof. Define
p(r) = <n> (~1) g~ Geg),

”
where ( is the univariate polynomial from Lemma[3.8] Then items [(i)}{(iii)| are immediate from the

corresponding items |(1)H(ii1)| of Lemma
For , fix a univariate polynomial £ of degree at most k — ¢ —m. In view of Lemma [3.§(iv)| the

product of ¢ and £ has degree less than n. As a result, the Cauchy binomial theorem (Corollary [2.16))
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implies that

> plreta) = (=17 @3 () ra@e e =o.
r=0 r=0 q
For fix any r € {{,£+1,...,k—m —1}. Then

ot = (1) o Oleta

<4 gD)-(3) . gqr (5 k- (57)

(k—m—r+1)_

=160 2 )™, (3.12)

where in the second step we bound the g-binomial coefficient via Corollary and |¢(¢7")]
via Lemma [3.§(v)| Now

k—m—1 k—m—1 fm 1 00 ) 16q_m_1

S leml= X leml< Yo 160 T <Y 66 <« S
re{0,..n}\{k,n} r=~4 r=~{ =2 q

where the first step is valid by the second step uses (3.12), and the fourth step uses a geometric

series along with (;) > 11— 1 for ¢ > 2. Since q > 2, this completes the proof of ]

3.4. From univariate dual objects to dual matrices. En route to the main result of this
section, we now show how to convert a univariate dual object ¢, such as the one constructed
in Lemma [3.9] into a dual matrix E,.

DEFINITION 3.10. Let n > 1 be a given integer. For r =0, 1,...,n, define E, to be the matrix with
rows and columns indexed by matrices in [Fj; ™", and entries given by

¢ i rk(A+ B) =7,
0 otherwise.

(ET)A,B - {

For a function ¢: {0,1,...,n} — R, define
n
E, = Z o(r)Ey.
r=0

As one would expect, the metric and analytic properties of E, are closely related to those of .

LEMMA 3.11 (Metric properties of E,). Let n > 1 be an integer and ¢: {0,1,...,n} = R a given
function. Then

> (Bpap=e(r), r=0,1,...,n, (3.13)
A,B:rk(A+B)=r
Yo (Eoasl=le(r), r=0,1,...,n. (3.14)

A,B:rk(A+B)=r

In particular,
1Bl = llells-

Proof. Recall that for any fixed matrix A € Fy*", the mapping B — A + B is a permutation
on Fp*™. As a result, for any fixed matrix A, there are exactly |.#"| matrices B such that

rk(A + B) = r. Altogether, there are ¢ |.#;"| matrix pairs (A, B) with tk(A 4+ B) = r. With this
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in mind, Definition [3.10] implies the following for each 7:
Y (EBas= >, [(E)asl=1 (3.15)
rk(A+B)=r rk(A+B)=r
Now for each r,

> (Boas= >, Z@ > o) (Eas =),

rk(A+B)=r rk(A+B)=r =0 rk(A+B)=r
where the second step uses (E;)4 p = 0 for ¢ # r, and the final step applies (3.15)). Analogously,

Y Eoasl= ) Zw Das|= > leII(E)asl=ler)].

rk(A—i—B)* rk(A—&—B)*r i=0 rk(A+B)=r

This establishes and . Summing (3 over r gives || E,||1 = ||¢||1- i

To discuss the spectrum of £, we first describe the Fourier spectrum of the characteristic function
of matrices of a given rank. This is where the significance of the I'j, function becomes evident.

LEMMA 3.12. Let n > 1 be a given integer. For r € {0,1,...,n}, define fr.: Fp>™ — {0,1} by
[r(X) =1 if and only if tk X = r. Then for all M € Fy*",

-~ | |

fr(M) =

L (rk M,r).

Proof. We have

FM)= E o M1 (x)
XeFg*m

T M)

Xeu"
=q "L B o
Xedy
_ fn ’%nn‘ 7<M,UXV>

Xe///" "
UVE///n

_ 7n " (7UTMVT,X>

Xe///" "
UVE///n

— —n ’%nn‘ (Y,X)
X e/// T
Yeuyy,
= q " |4 | Dtk M, ),
where the second step uses the definition of f,., the fourth step is valid by Proposition the fifth

step invokes Fact [2.2(ii)], the sixth step uses Proposition once more, and the last step applies
the definition of T',,.

We are now ready to describe the spectrum of E, in terms of ¢ and the I',, function.
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LEMMA 3.13 (Singular values of E,). Let n > 1 be an integer and ¢: {0,1,...,n} — R a given
function. Then the singular values of E, are

n
—n? Z(p(t)f‘n(st s=0,1,...,n,
t=0
with corresponding multiplicities | #s""| for s =0,1,...,n.

Proof. For t =0,1,...,n, define f; as in Lemma In this notation,
n
B = Y0 =3 o) [ A+ D] =174+ B
t=0 | | A,B
where
= tz; PNzl ///” e e
By Fact the singular values of E,, are q”2|f(M )| for M € Fp*™. Calculating,

~ elt) 4
quﬂ’%n,n‘ ft(M)'

n2

" f(M)] =

Zcp n(tk M, t)|,

where the first step uses the hnearlty of the Fourier transform, and the second step applies Lemmal3.12]
Grouping these singular values according to rk M shows that the spectrum of E,, is as claimed. ]

3.5. Approximate trace norm of the rank problem. Using the machinery developed in pre-
vious sections, we now prove a lower bound on the approximate trace norm of the characteristic
matrix of the rank problem. Combined with the approximate trace norm method, this will allow us
to obtain our communication lower bounds for the rank problem.

THEOREM 3.14. Let n > k > 0 be given integers. Let F be the matriz with rows and columns
indexed by elements of F"*™, and entries given by

1 if rk(A+ B)=n,
Fap=14-1 if rk(A+ B) =k,
* otherwise.

Then for all reals § = 0 and all nonnegative integers £,m with £ +m < k,

1 64 e
IPllss > g5 (15— o ) a4 me0r2g, 3.16)

1—96 )
F > g2 gt 3.17
1F]]s, w0 44 (3.17)
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Proof. Let ¢: {0,1,...,n} — R be the function constructed in Lemma Then

> Fan(Bp)an—0lEoli— Y I(By)asl

dom F' dom F

= Z (Ew)A,B - Z (Ecp)A,B - 5||E¢H1 - Z ’(Esa)A,B

rk(A+B)=n rk(A+B)=k rk(A+B)¢{n,k}

= o(n) — (k) = dlleli = > le(r)]
r¢{n,k}

= lp(n)| + lp(k)| = dllel = Y o)l

r¢{n,k}
=(1=0d)leli—-2 >
r¢{nk}

>(1-6-2 > le()]]| lelh, (3.18)
r¢{n,k}
where the second step uses Lemma the third step is valid by Lemma [3.9(1)H(i1)} and the last
step is justified by Lemma [3.9(1)]
We now analyze the spectral norm of E,. Recall from Lemma that for any fixed values of
n and s, the quantity I',,(s,t) as a function of ¢t € {0,1,...,n} is a polynomial in ¢~ of degree at
most s. In this light, Lemma [3.9(iv)[implies that

ng n(s,t)| =

0. (3.19)

56{0,1, ,k l—m}

Continuing,

n

2l

=0

se{k—L— m—i—l7 sn—1n}

n

= max t)n(s,t
se{k—l—m+1,..,n—1,n} ;90() n(s,1)

< ma ma (st
Se{kferl),(...,nl,n}{‘(p te{é,tzﬂ),(...,n}’ ”( )‘}

< max {H(p” max 128q—st/2}
s€{k—l—m+1,...n—1,n} te{,0+1,...n}

— 128] gm0, 520

where the first step uses Lemma [3.9(iii)|, and the third step applies the bound of Lemma [3.6{(v)|
By (8.19), (3.20), and Lemma

1B || < 128]|lly g~k tmmtD/2 =%, (3.21)
Proposition with ® = E,, implies, in view of (3.18) and ({3.21]), that
1
62 g (17072 D le(n)] | g * g (3.22)

r¢{n,k}
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Since 3¢ g0y [0(1)] < 32¢~™ ! by Lemma 3§(v)|7 this settles 1' The alternative lower
bound (3.17)) follows from (3.22) by taking £ = k and m = 0 and noting that Z%{n’k} lo(r)| =0 in
3.9Gii))-

this case (by Lemma I

3.6. Communication lower bounds. We will now use our newly obtained lower bound on the
approximate trace norm to prove the main result of this section, a tight lower bound on the commu-
nication complexity of the rank problem. We will first examine the canonical case of distinguishing
rank-k matrices in F™*™ from full-rank matrices.

THEOREM 3.15. There is an absolute constant ¢ > 0 such that for all finite fields F and all integers
n>k>=0,
Qi1 (RANK ™) > c(1+ k? log [F|). (3.23)

2 4‘]1:'/9/3

Proof. Abbreviate ¢ = |F| and ¢ = % - 4{1%/3. Since RANKI,S:Z’" is a nonconstant function, we have
the trivial lower bound

Q(RANK, ") > 1. (3.24)
Let F' be the characteristic matrix of this communication problem. We first examine the case
k < 50. Here, taking § = 2¢ in equation of Theoremshows that || F||s 2 > ¢"/%q"* /300 >
qkz/ 300(]"2 /300, where the last step uses k& < 50. It follows from Theorem that
qk2/300

1 1
*(RANK;™") > =1 > —k%logq — 5.
@ k) 2 3108 5555 2 Gop Floed

Taking a weighted arithmetic average of this lower bound and (3.24) settles (3.23)).
Consider now the complementary case k > 50. Taking § = 2¢, ¢ = [k/3], and m = |k/2] in

equation (3.16)) of Theorem gives

1 1 64 2
i _ [k/31(k—Tk/3]—|k/2]+1)/2 4
”F|2725 2 150 <2qk/3 qu/2J+1)q q

> 1 (1 128) g3 [ /31k/12 0

300 \' T g7
1 k 2
> —q /3 .[k/31k/12 n
600 q q q
1 e 2
600 q q ,

where the last two steps use k > 50. As a result, Theorem [2.23] guarantees that
k2/48

1 q 1
*(RANK;™") > =1 > — k%logq — 6.
@ kn ) 2 310837500 2 gg K loed

Taking a weighted arithmetic average of this lower bound and (3.24) settles (3.23)). [

We now establish our main lower bound for the rank problem in its full generality.
THEOREM (restatement of Theorem|1.1)). There is an absolute constant ¢ > 0 such that for all finite
fields F and all integers n,m, R,r with min{n,m} > R >r >0,
Qi (RANK ™) > e(1 + 12 log |F]). (3.25)

2 4\]F|7'/3

In particular,

Q7 /s(RANK"1™) > (1 + 12 log [F). (3.26)
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Proof. There is a communication-free reduction from RANKE’}I;’R to RANK]E’;%’m, where Alice and
Bob pad their input matrices A, B € FE*R with zeroes to obtain matrices A, B’ € F"*™ with
rk(A+B) = rk(A'+B'). Therefore, Q*(RANK ™) > Q*(RANK;'/"") for all ¢. Now Theorem

implies (3.25)), which in turn implies (3.26]). i

3.7. Communication upper bounds. To finalize our study of the rank problem, we will prove
a matching upper bound on its communication complexity. We emphasize that our upper bound is
achieved by a randomized (classical) protocol, whereas our lower bound is valid even for quantum
communication.

THEOREM 3.16. Let n,m, R be nonnegative integers with min{n,m} > R > 0. Let F be a finite field
with ¢ = |F| elements. Then for allt > 2 and e € (0, 1), there is a t-party randomized communication
protocol which:

— takes as input matrices Ay, Aa, ..., Ay € F™*™ for players 1,2, ..., t, respectively;
— computes min{rk(>_ A;), R} with probability of error at most €; and
— has communication cost O(t(R + [log,(1/¢)])*logq).

Proof. We may assume that n,m > 1 since the theorem is trivial otherwise. The communication
protocol is based on random projections and is inspired by Clarkson and Woodruff’s streaming
algorithm [9] for matrix rank. Set A = [log,(8/¢)] and A = )  A;. The players use their shared
randomness to pick a pair of independent and uniformly random matrices X € FUE+A)xn apnq
Y € Fm>*(B+A) Then each player ¢ sends the matrix X A;Y € FUEHA)X(B+A) “and they all output
min{rk(XAY), R}. The communication cost is O(t(R + A)?logq) as claimed, due to XAY =

> XAY. It is also clear that this protocol always outputs a lower bound on the correct value
min{rk A, R}, due to rk(XAY) <rk A for all X,Y. It remains to show that

Plrk(XAY) > min{rk A,R}| > 1 —e. (3.27)
Conditioned on X, we have rk(X AY) > min{rk(X A), R} with probability at least 1 —4¢~2~!
1 —¢/2 (apply Lemma [2.21f(i1)| with M = X A and ¢ = min{rk(X A), R} — 1). Similarly, rk(X A)

min{rk A, R} with probability at least 1 — /2 (apply Lemma [2.21fi)| with M = A and ¢
min{rk A, R} — 1). The union bound now gives (3.27)

| BV

In the corollary below, RANKEmmt. (Frxm)t £ 1 11 denotes the total version of the matrix
rank problem for ¢ parties, given by RANKE ™™ (A, Ay, ..., A;) = —1 if and only if tk(3" 4;) < r.

COROLLARY 3.17. Let n,m,r be integers with min{n, m} > r > 0. Let F be a finite field with ¢ = |F|
elements. Then for all e € (0,1/2),

Fn,my\ __ O(log(l/a)) ifT‘ = 07
R (RANK, ™) = {O((r + [logq(l/eﬂ)2log q) otherwise. (3:28)

More generally, for allt > 2,
R(RANK;"™™") = O(t(r + [log,(1/¢)])*log q). (3.29)

Proof. We have RANKE™™E(A) Ay .. Ay) = —1 if and only if min{rk(3>> A;),r +1} < 7. To
compute this minimum with error e, one can use the t-party protocol of Theorem [3.16| with R = r+1,
with communication cost O(t(r + [log,(1/¢)])*logq). This settles the multiparty bound ,
which in turn implies the two-party bound for r > 1.

Lastly, RANKE’"’m(A, B) = —1 if and only if A = —B. Thus, RANK]g’n’m is equivalent to the
equality problem with domain F™*" x F**™_ It is well known [I4] that the e-error randomized
communication complexity of equality is O(log(1/¢)). Therefore, holds also for r = 0. [
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Our communication upper bound readily generalizes to the bilinear query model, as follows.

THEOREM 3.18. Let n,m,r be integers with min{n,m} >r > 0. Let F be a finite field with ¢ = |F|
elements. Then for all e € (0,1/2), there is a query algorithm in the bilinear query model with cost
O((r + [log,(1/€)1)?) that takes as input a matriz A € F**™ and determines whether rk A < r with
probability of error at most €.

Proof. On input A € F™ ™ choose X € FUETA)*X" gand v e Fmx(B+A) yniformly at random, where
A = [log,(8/¢)] and R = r + 1. Then trivially rk(XAY') < rk A. In the opposite direction, we
have the bound , established in the last paragraph of the proof of Theorem Therefore,
we can determine whether rk A < r with probability of error € by checking whether rk(XAY") < r.
Since the entries of X AY are bilinear forms in A, the entire matrix X AY can be recovered using
(R + A)? queries. [

We now prove an alternative communication upper bound, showing that even a two-bit protocol
can solve the rank problem with nontrivial advantage. For simplicity, we will only consider the
two-party model; a similar statement can be proved for bilinear query complexity.

THEOREM 3.19. Let n,m,r be integers with min{n,m} >r > 0. Let F be a finite field with ¢ = |F|
elements. Then

Ri_ 1 (RANKE™™) L2, (3.30)

27 32q7

Proof. Consider the following auxiliary protocol II. On input A, B € F™"*™, Alice and Bob use their
shared randomness to pick a pair of independent and uniformly random vectors x € F” and y € F™,
as well as a uniformly random function H: F — {—1,1}. They exchange H(z" Ay) and H(—z" By)
using 2 bits of communication and output —H (2" Ay)H(—2" By).

We now analyze the expected output of II(A, B) on a given matrix pair A, B. To begin with,

~1 ifa"(A+ B)y =0,

) (3.31)
0 otherwise.

E[II(A, B) | z,y] = {
Indeed, if 2T(A 4+ B)y = 0 then 2T Ay = —2'" By and therefore II outputs —1. If, on the other
hand, 27 (A + B)y # 0 then ' Ay # —x" By, which means that H(z" Ay) and H(—xz"By) are
independent and their product has expected value 0. Equation (3.31]) implies that ETI(A, B) =
—P[zT(A+ B)y = 0], which can be expanded as

ETI(A,B) = —Plz"(A+B) =0 -P[2"(A+ B) # 0| Pz (A+ B)y =0 | 2" (A+ B) # 0).
The event ' (A+B) = 0 is equivalent to 2 being in the orthogonal complement of the column span of
A+ B, which happens with probability ¢~ ™(A4+5) /¢qn — ¢=k(A+B) Conditioned on 2T (A+ B) # 0,
the field element 2 (A + B)y is uniformly random and in particular is 0 with probability 1/q. As a
result,

e~k (1) e

q"k(A+B) o qs(A+B) q q o qs(A+B)+1

Therefore, the expected value of II(A, B) is at most —1/q — (¢ — 1)/¢" " when rk(A + B) < r and
is at least —1/q — (¢ — 1)/¢"*? when 1k(A + B) > r. Proposition now shows that RANK: ™™
has a communication protocol with the same cost as II and error at most & — %(q —1)?/¢" 2. This

settles (3.30]) since ¢ > 2.

Corollary (with € = 1/3) and Theorem settle Theorem [1.2] from the introduction.
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3.8. Streaming complexity. Fix a finite field F and a (possibly partial) function f: F"*" —
{=1,1,*}. A streaming algorithm for f receives as input a matrix M € F"*" in row-major order.
We say that @7 computes f with error ¢ if for every input in the domain of f, the output of </ agrees
with f with probability at least 1 —e. We will now use a well-known reduction [I6] to transform
our communication lower bound for the matrix rank problem into a lower bound on its streaming
complexity.

THEOREM (restatement of Theorem. Let n,r, R be nonnegative integers with n/2 < r < R < n,
and let F be a finite field. Define f: F™" — {—1,1,%} by

-1 ifrkM =,
f(M)=<1 if tk M =R,
* otherwise.

Let of be any randomized streaming algorithm for f with error probability % — %]IH_(T_["/QD/S that
uses k passes and space s. Then

sk=0 <(7‘ - [g-‘)Qlog ]IF|> . (3.32)

Proof. Abbreviate m = |n/2| and F = RANKE’_T?;:;Lﬂ R—[ny21- We will use a reduction from com-
munication to streaming due to Li, Sun, Wang, and Woodruff [I6, Thm. 29|. Specifically, let

A, B € F™*™ be Alice and Bob’s inputs, respectively, for F. Define

A -1, 0
M= |B I, 0o |,
0 0 In72m

where I,;, and I,_o,, stand for the identity matrices of order m and n—2m, respectively (in particular,
I,,—op, is empty for even n). We have

A+B 0 0 .
tkM=1k| B L, 0 =rk(A+B)+n—m=rk(A+B)+H.
0 0 Inf2m

As a result, for all matrix pairs (A4, B) with tk(A+ B) € {r—[n/2], R—[n/2]}, we have F(A, B) =
f(M). This makes it possible for Alice and Bob to compute F' by simulating < on M. Alice starts
the simulation by running 7 on the first m rows of M, which depend only on her input A. She then
sends Bob the contents of &/’s memory, and Bob runs & on the remaining n — m rows of M. This
completes the first pass. Next, Bob sends Alice the contents of &/’s memory, and they continue as
before until they simulate all £ passes. At the end of the k-th pass, Bob announces the output of
&/ as the protocol output. The error probability of the described protocol is the same as that of
o/, and the communication cost is s(2k — 1) + 1 bits. Therefore,

Ri_tig-e—rns2ns(F) < 8(2k = 1) + 1.

Since the left-hand side is at least Q((r — [n/2])?log |F| + 1) by Theorem , the claimed trade-
off (3.32) follows. I

4. THE DETERMINANT PROBLEM

In this section, we establish our lower bound on the communication complexity of the determinant
problem. We begin in Section[£.I] with technical results on characteristic functions of matrices with a
given determinant value. In Section we give our own proof of the lower bound for distinguishing
two nonzero values of the determinant, which is simpler and more elementary than the proof in [27].
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In Section [4.3] we prove an optimal lower bound for the general case of distinguishing two arbitrary
values of the determinant, solving an open problem from [27]. Throughout this section, we use a
generic finite field F with ¢ elements, where ¢ is an arbitrary prime power. The root of unity w and
the notation w® for € I are as defined in Section [2.4]

4.1. Auxiliary results. Fix a finite field F and a positive integer n. Recall that the determinant
function on F"*™ is multiplicative, with det(AB) = det(A)det(B). As a result, the set of matrices
in F™*" with nonzero determinants form a group under matrix multiplication, called the general
linear group and denoted by GL(TF,n). Analogously, the matrices in F"*" with determinant 1 also
form a group, called the special linear group and denoted by SL(FF,n). The multiplicativity of
the determinant further implies that SL(IF,n) is a normal subgroup of GL(FF,n), with quotient
isomorphic to the multiplicative group of the field: GL(F,n)/SL(F,n) = F*. For any given field
element u # 0, the set of matrices with determinant u form a coset of SL(F,n) in GL(F,n). In
particular,

_ L4
[F| -1’
Recall that for each Y € F™"*™ the mapping X — X + Y is a permutation on F"*™. As a result,
the previous equation implies that
{(X,Y) € B x T : det(X +Y) = u}| = |F|"’|SL(F, n)|, u € F\ {0}. (4.2)
To understand the spectral norm of the characteristic matrix of the determinant problem, we
now introduce a relevant function on F™*™ and discuss its Fourier coefficients.

{X € F""" : det X = u}| = |SL(F, n)|

weF\ {0}, (4.1)

LEMMA 4.1. Let n be a positive integer, F a finite field. For a pair of distinct elements u,v € F\ {0},
define gy : F™*" — {—1,1,0} by
—1 if det X =u,
gu,v(X> =41 if det X = v,
0 otherwise.
Then:
(1) Guo(A) =0 for every singular matriz A;
(i) Guo(A) = guo(B) whenever det A = det B;

(i) [|9uwlloc < 1/4/ISL(F,n)[.

Proof. In view of (4.1)), we have

/u\vA = E qu —{4.X)
ool A) = B guolX)e

_Ee L (g g )
|F|—1 X:det X=v X:det X=u

It remains to show that the expectations in the last expression are equal. Since A is singular,
there exist nonsingular matrices P and @ such that A = PI;Q for s = rk A < n. Consider the
order-n diagonal matrix Z = diag(1,1,...,1,u"'v). Using Iy = I;Z, we obtain A = PI,ZQ =
PLQQ'ZQ = AQ™'ZQ. As a result,

E w7<A7X> — E w7<AQ_1ZQ7X>
X:det X=u X:det X=u
_ B LAX@QzeT
X:det X=u
— E w_<A7Y>7

- Y:detY=v
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where the second step uses Fact [2.2(ii)} and the last step is valid because the mapping X
X(Q7'ZQ)T is a bijection from the set of matrices with determinant u onto the set of matrices
with determinant u - det((Q~'ZQ)T) = v.

For singular A and B, the claim is immediate from In the complementary case,

/u\UA = E qu —{AX)
FoolA) = B guolX)e

= E gy ((BATHTX)w (AEBATITX)
XEFnxn ™7

= E (X)w7<Aa(BA_1)TX>
XEFnxn ™7

= B guo(X)w BX)
Xe]Fan

= Gu(B);
where the second step is valid because (BA™!)T is invertible and hence X — (BA™)TX is a
permutation on F™ ™ the third step is justified by det((BA™)TX) = det(B)det(X)/det(A) =
det X; and the fourth step is an application of Fact [2.2(ii)|
Let M be a matrix with gy, (M)| = ||gu|s- By we know that det M # 0. Now

1> E X)|?
B o (0P

= D Gue(DP

AeFnxn

> Y (@A)

A:det A=det M
— |{A: det A = det M} [gus(M)[?

= [SL(F, 0)| [|Fu %

where the second step applies Parseval’s inequality (2.19)), the fourth step is justified by and
the fifth step uses det M # 0 along with (4.1)). ]

4.2. Determinant problem for nonzero field elements. As an application of the previous
lemma, we now prove that the characteristic matrix of the determinant problem DETE’? for any
two nonzero field elements a, b has small spectral norm.

LEMMA 4.2. Let F be a finite field with ¢ = |F| elements. For each u € F\ {0}, define G, to be the
matriz with rows and columns indexed by elements of F™"*™, and entries given by

—n2 _ .
Then
[Gull1 =1, u € F\ {0}, (4.4)
|Gy — G|l < |SL(F, n)| /2 < 8¢~ 3(*~1)/2, u,v € F\ {0} (4.5)

Proof. Equation (4.4]) follows from (4.2)). For (4.5)), there are two cases to consider. If u = v, then
Gy — Gy =0 and thus |G, — Gy || = 0. If u # v, write Gy, — Gy = [¢™ |SL(F, n)| L gun(X +Y)]xy
with gy, as defined in Lemma [£.1} Then

190l 1

GU—Gu = S )
| 1= ISLeF. »)] < ST nP?

(4.6)
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where the first step applies Fact and the second step uses Lemma|4.1j(iii). It remains to simplify
the bound of (4.6)):

. ~3/2
1 EA 2 —1 3 ' —3(n?—
R (bt § - n no__ gt < 8¢ (n? 1)/2
SL(F, ) <q—1> U Ve

where the first step uses (4.1]), the second step applies Proposition and the last step is justified
by Proposition m

Lemma was originally obtained by Sun and Wang [27] using a different and rather technical
proof. By contrast, the proof presented above is short and uses only basic Fourier analysis With
this newly obtained bound on the spectral norm of the characteristic matrix of DET n for nonzero
a, b, we can use the approximate trace norm method to obtain a tight commumcatlon lower bound
for this special case of the determinant problem.

THEOREM 4.3. Let F be a finite field, and n a positive integer. Then for every pair of distinct
elements a,b € F\ {0} and every v € (0,1),

* n 1 1 12
Q(177)/2(DET5:(;) > Z(nz —3)log [F| — 5 log o (4.7)

Proof. Let F' be the characteristic matrix of DETE’ZL. For w € F \ {0}, define G,, as in Lemma
Since G, and G} are supported on disjoint sets of entries, (4.4]) leads to

1Gy = Gall1 = [|Gbll1 + [|Gallr = 2. (4.8)
Taking ® = G — G, in Proposition we obtain

1
1F 51—y > 1Go— Call > Fap(Gy—Ga)ap— 1 =Gy —Galli = Y [(Gy— Ga)asl
b @ dom F' e
"Gy — Gall G I (Z [(Gy — Ga)apl — (1 V)HGb—Ga\h)
b— dom F'
_ Gy = Gallr
HGb - Ga”
1 _
> Zymi‘%(n? /2 o)

where the second and third steps are valid because Gy — G, by definition coincides in sign with F' on
dom F' and vanishes on dom F; and the last step uses (4.5) and (4.8). Now (4.7)) follows from (4.9)
in view of Theorem [2.23] ]

We remind the reader that Theorem was obtained with different techniques by Sun and
Wang [27], who settled the determinant problem DETS’;L for nonzero a, b and left open the comple-
mentary case when one of a, b is zero.

4.3. Determinant problem for arbitrary field elements. Recall that the rank versus deter-
minant problem, RANKDETF’n, is a hybrid problem that naturally generalizes the matrix rank

problem RANKIF"" and the determinant problem DET " Specifically, the rank versus determi-
nant problem requires Alice and Bob to distinguish matrlx pairs with rk(A + B) = k from those
with det(A 4+ B) = a, where a is a nonzero field element, k is an integer with k¥ < n, and A, B

are Alice and Bob’s respective inputs. We will now construct a dual matrix for RANKDETH;’Z and
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thereby obtain a lower bound on its approximate trace norm. As a dual matrix, we will use a linear
combination of the dual matrices from our analyses of the rank and determinant problems.

THEOREM 4.4. Let n > k > 1 be given integers. Let F be a finite field with ¢ = |F| elements, and
let a € F\ {0}. Let F be the characteristic matriz of RANKDETI,S’Z. Then for all reals 6 > 0 and
all nonnegative integers £, m with £ +m < k,

1 64 g 2
||F| p3N) > 1750 <1 — 5 — qm+1> qg(/f l—m+1)/2 qn ’ (410)
1—-6 2
Fllgs > —— - ¢"2 ¢, 4.11
1=, w0 4 (4.11)

Proof. This proof combines our ideas in Theorems [3:14] and [£.3] and our dual matrix here will be a
linear combination of the dual matrices used in those theorems.

Fix nonnegative integers ¢, m with £ +m < k, and let ¢: {0,1,...,n} — R be the corresponding
function constructed in Lemma . This univariate function gives rise to a matrix F,, described

in Definition To restate equation ([3.21)) from our proof of Theorem
_ _y_ _mn2
1By || < 128||l|y g Emm D2 g7, (4.12)
For u € F\ {0}, define G, as in Lemma As our dual matrix, we will use

=E,+ Y.

beF\{0,a}

;p(_n)l (Go — Gy). (4.13)

CLAM 4.5. For every matriz pair (A, B),

(Ey)a.B if det(A+ B) =0,
Py = o(n)g " |SL(F,n)|~' if det(A+ B) = q,
0 otherwise.

Proof. If det(A + B) = 0, then by definition (G,)4,s = 0 for every nonzero field element u. As a
result, (4.13)) gives @4 p = (F,)4,p in this case.

In what follows, we treat the complementary case when det(A + B) # 0. For all such matrix
pairs,

o) o)
¢ | g7 (g — DISL(E,n)|’
where the first three steps are immediate from Definition and the last step uses (4.1). In
particular,

(Bo)ap =Y o(0)(Ei)ap = pn)(En)as =
i=0

_ p(n) p(n)
PaB = TSI A ((Ga)a.B = (Gb)a,B)- (4.14)

If det(A + B) = a, then by definition (Gy)a,B = ¢’ |SL(F,n)|~! and (Gp)a,p = 0 for all b €
F\ {0, a}, so that (4.14) gives

p(n) 3 p(n) _ p(n)
¢ (q — 1)|SL(F,n)| (¢ — 1) [SL(F,n)|  ¢"*|SL(F,n)|’

Dy p =
beF\{0,a}
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If, on the other hand, det(A + B) = ¢ for some ¢ € F \ {0,a}, then by definition (G4)a,p = 0 and
likewise (Gp)a,p = 0 for every b # ¢, so that simplifies to

p(n) ~p(n)
(¢ —1DISLEF,n)|  (¢—1)

(PA,B - qnz (GC)A,B == 0 D

We proceed to establish key analytic and metric properties of ®. To begin with,

QO’I’l
1o < 1B+ S Plhe, gy

verjoay 971
leoll1
<+ 3 T lGa—Gol
beF\{0,a}
< 128l g R g H‘P_”i  gg3(n*=1)/2
ber\ (0,0} ¢
< (128¢~ Ah—t=mtD)/2 | gg=(n*=3)/2)=n% o) (4.15)

where the first step uses the triangle inequality, and the third step is a substitution from (4.12)
and equation (4.5) of Lemma To simplify this bound, recall from the theorem hypothesis that
n>k>1and ¢,m > 0. Therefore, £(k — ¢ —m+1) <l(k—0+1) < (k+1)%/4 <n?/4<n? -3
This results in q_("2_3)/2 < ¢ Mh=t=m+1)/2 414 thus 1’ simplifies to
”(I)H < 136q7€(kf€7m+1)/2q7n2H(p”l. (4.16)
Next, we examine ||®||;. We have
|p(n)]
Z P45l = Z |Pa,B| = Z 77ISL(F, n)| = [p(n)],
rk(A+B)=n det(A+B)=a det(A+B)=a q ’
where the first and second steps are immediate from Claim and the last step applies (4.2). Also,

Yo leasl= Y Easl =B~ Y I(Epas

rk(A+B)<n rk(A+B)<n rk(A+B)=n

= [l = le(n)],

where the first step uses Claim [£.5] and the last step invokes Lemma [3.11] These two equations
yield

121 = [l (4.17)
Continuing,
Z Fap®ap= Z Oy p— Z Dup
dom F' det(A+B)=a rk(A+B)=k
p(n) Z
= Y g (E)as
aot(ary=a T SEEM] Sk

= ¢(n) — ¢(k)

= |e(n)| + [o(k)|

= el = > o), (4.18)

r¢{k,n}
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where the second step uses Claim 4.5, the third step invokes Lemma and (| ., and the fourth
step is valid due to Lemma [3.9i)] [(ii)] Finally,

> [@apl= > Pasl+ > |Pasl

dom F rk(A+B)é¢{n,k} rk(A+B)=n

det(A+B)#a
= > |®asl
rk(A+B)¢{n,k}

= Z ’(Esa) )

rk(A+B)¢{n.k}

ré¢{nk}
where the second and third steps use Claim and the last step uses Lemma [3.11] Now

Y Fap®ap 6@ — Y €45l

dom F' dom F'
= llell = dllell =2 >
r¢{n,k}
>11-0-2 > le()] lel, (4.20)
r¢{n,k}

where the first step uses (4.17)—(4.19)), and the last step is legitimate by Lemma [3.9(1)]
Proposition implies, in view of (4.16)) and (4.20]), that

|7 1=5-2 3 fp(r)] | gt g (121)
ré¢{n.k}

Since Y, g g5y [0(1)] < 32¢~™"! by Lemma this proves li The alternative lower

bound (4.11) follows by taking £ = k and m = 0 in (4.21) and noting that > ¢, 13 [o(r)] = 0

in this case (by Lemma [3.9(iii))). [

>
’ 136

By virtue of the approximate trace norm method, Theorem [£.4] yields the following tight lower
bound on the communication complexity of the rank versus determinant problem.

THEOREM (restatement of Theorem [1.7)). There is an absolute constant ¢ > 0 such that for every
finite field F, every field element a € F\ {0}, and all integers n >k > 0,

Qi 1+ (RANKDET,™) > ¢(1 + k?log |F)). (4.22)

574‘]“]6/3

Proof. For k = 0, the claimed lower bound follows from the fact that RANKDETF;Z is nonconstant
and hence has communication complex1ty at least 1 bit. For k > 1, our lower bounds on the
approximate trace norm of RANKDET " ko Are identical to those for RANKF"” (Theorems
and Theorem [3.14] respectively). Accordlngly, the proof here is identical to that of Theorem
with equations (4.10]) and (4.11)) of Theorem {4 m used in place of the corresponding equations 1)

and (3.17)) of Theorem [3. 4l

O‘!

As a consequence, we obtain an optimal communication lower bound for the unrestricted deter-
minant problem.
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THEOREM (restatement of Theorem |1.6). There is an absolute constant ¢ > 0 such that for every
finite field F, every pair of distinct elements a,b € F, and all integers n > 2,
Q1 1 (DETE:;) > cen?log |F|. (4.23)

27 yF(n=17/3

Proof. 1f ab = 0, then DETE’: contains as a subproblem either RANKDETE’:L1 p (when a = 0) or

ﬂRANKDETE’fLa (when b = 0), and therefore 1} follows from Theorem . If @ and b are
both nonzero, Theorem [.3] gives

1
Q4 . (DETI) > ¢n?log |F| — 5 log 24

27 4‘]1:'(77,71)/3

for a small enough constant ¢’ > 0. Taking a weighted average of this lower bound with the trivial

lower bound of 1 bit settles (4.23)). I

5. THE SUBSPACE SUM AND INTERSECTION PROBLEMS

As discussed in the introduction, our analysis of the subspace sum and subspace intersection
problems has similarities with the rank problem but also diverges from it in important ways. Instead
of additively composed matrices whose rows and columns are indexed by elements of Fy*", we now
have matrices with rows and columns indexed by subspaces, and each entry (A, B) depends solely
on the dimension of AN B. While the construction of the univariate dual object is similar to that for
the rank problem, its relation to the singular values of the dual matrix is significantly more intricate,
and computing the spectral norm of the dual matrix is now a challenge. Our study of the spectral
norm is based on ideas due to Knuth [12]. We start in Section by formalizing the equivalence of
the subspace sum and subspace intersection problems, which allows us to focus on the latter problem
from then on. As a first step toward solving the subspace intersection problem, we collect necessary
technical results about subspace combinatorics in Section 5.2} In Section [5.3] we give a formal
definition of subspace matrices, state several auxiliary results, and compare our analysis of their
spectrum to that of Knuth. In Section [5.4] we fully determine the spectrum of subspace matrices.
In Sections [5.5 we use this spectral study along with our techniques developed in Section [3] to
prove optimal lower bounds on the communication complexity of the subspace intersection problem.
Sections[5.8]and conclude with matching communication upper bounds. As in previous sections,
we let g denote an arbitrary prime power and adopt I, throughout as the underlying field.

5.1. Equivalence of the subspace sum and intersection problems. The equivalence of the
subspace sum and subspace intersection problems from the standpoint of communication complexity
is a straightforward consequence of the identity , valid for any linear subspaces S and T in a
finite-dimensional vector space. We formalize this equivalence below.

PROPOSITION 5.1. Let n,m,{ be nonnegative integers with max{m, ¢} < n. Then for all integers
d, D with d # D,

SUME:Z””’Z = INTERSECTE;Zﬁﬁ7m+@, D (5-1)
SUMS™™¢ = INTERSECT ™. (5-2)

Proof. Let S, T C F™ be arbitrary subspaces of dimension m and /¢, respectively. Since dim(S+7T") =
m+ ¢ — dim(SNT), we have

F,n,m( F,n,m,£
SUMdvgm (S,T) = INTERSECT, "/ dmastp(ST),

settling (5.1). Analogously, for any subspaces S,T C F" of dimension m and ¢, respectively, we
have dim(S + 7T') < d if and only if dim(S N T) > m + £ — d, which implies (5.2). i
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We will now prove our main result on the subspace sum problem (stated in the introduction as
Theorems and [1.9)) assuming our corresponding result on subspace intersection (Theorem [1.10)).
In the rest of this work, we will focus on proving Theorem [T.10}

Proof of Theorems and assuming Theorem [L.10] Recall that Theorem is a special case
of Theorem corresponding to v = 1/3. Therefore, it suffices to prove Theorem . Define
r=m+4¢— D and R =m+ ¢ — d. Then the hypotheses max{m, ¢} < d < D < min{m + ¢,n} and
v E [%q_@d_m_@/ 5, l] of Theorem can be equivalently stated as

3
max{0,m+ /¢ —n} <r < R < min{m, (}, (5.3)
= [%qf(erffﬂ%)/S7 %] (54)

Recall from Proposition that SUMg:g’m’z is the same function as INTERSECT%Z’m’Z, which in
turn is the negation of INTERSECTI:;’;’WE. Now the bounds for SUME:EW’Z claimed in Theorem
follow from the bounds for INTERSECTE"’g’m’Z in Theorem [1.10] upon substituting R = m + ¢ — d.
This appeal to Theorem is legitimate due to and (5.4).
Analogously, SUMS’n’m’ is the same function as INTERSECTH;’"””’Z (Proposition, and there-
fore the bounds claimed for SUMS’"’m’K in Theorem 1.9|follow from the bounds for INTERSECTIIF%’"’m’K
in Theorem , upon substituting R =m + ¢ — d. [

5.2. Counting subspaces satisfying combinatorial constraints. When it comes to counting,
one could hope that the transition from subsets to subspaces would be straightforward and amount
to replacing binomial coefficients with their Gaussian counterparts. Unfortunately, this is not the
case. Many basic results for sets have no analogues in the subspace setting. For example, the
well-known inclusion-exclusion formula is valid for two subspaces but does not generalize to
any larger number. As a consequence, it is in general a subtle task to count the subspaces of a given
dimension that satisfy basic combinatorial constraints relative to other given subspaces. We start
by counting, for given subspaces A and C, all d-dimensional subspaces that contain C' and avoid

A\ C.

LEMMA 5.2 (Counting subspaces externally). Let A and C' be linear subspaces of an n-dimensional
vector space V' over Fy. Let d > 0 be an integer. Then the number of dimension-d linear subspaces
X suchthat CCX CVand ANX =ANC 1is

(dim(A)—dim(AnC) (d—dim(C)) (T ~ dim(A4 + C) (5.5)
d—dim(C) ), '

Proof. The lemma is trivially true for d ¢ [dim(C'), n] since the Gaussian binomial coefficient in (/5.5))
is zero in that case. In what follows, we consider the complementary case d € [dim(C), n].

Let 2" be the set of subspaces X in the statement of the lemma. Fix a basis v1,v2,. .., Vgim(c)
for C. Let & be the set of all d-tuples (v1, ..., Vdim(C)s U1, - - - » Ug—dim(c)) Of vectors in V' such that
for all 4,

u; ¢ A+ C + span{uy, ua, ..., ui—1}. (5.6)
Then each element of & is an ordered basis, with
d—dim(C)
‘%| _ H <qn . qdim(A+C)+ifl)_ (5.7)

=1
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CrLAM 5.3. Every subspace X € & has precisely
d—dim(C)
H (qd _ qdim(C)—i-i—l) (58)
i=1
ordered bases in AB.

Proof. Let us say that a sequence of vectors (ui,ug,...,u;) in X is good if (5.6) holds for all
i=1,2,..., k. We will prove that for every good sequence of k vectors in X, where k < d —dim(C),
there are exactly ¢% — g1™(E)+k vectors ug+1 € X such that the sequence (uy,usg, ..., ugy1) is good.
Indeed, letting S, S’, T in Fact be the subspaces X, C + span{u, ug, ..., u}, A, respectively, we
obtain

X N(A+C+span{uy,ug,...,up}t) = (X NA)+ C +span{ug,ug, ..., ug}
= (CNA)+C +span{ug,ug,...,ug}
= C + span{uq,ug, ..., ug}.

Therefore, the only vectors ugi1 € X for which the sequence (u1,ug, ..., urs1) is not good are the
elements of C' + span{ui,us, ..., u;}, which is a subspace of dimension dim(C) + k because it is
spanned by the linearly independent vectors vi, vz, ..., Vgim(c), U1, U2, - - -, ug. In conclusion, out of
the ¢ vectors of X, there are precisely qaim(C)+k
is not good.

It now follows immediately that the number of good sequences (u1,ua, ..., Uq_dim(c)) of vectors
in X is as claimed, with ¢ — ¢dm(©) ways to choose u;, then ¢% — qdim(©)+1 ways to choose

uy given up, then ¢¢ — g@m(©)+2

vectors uy1 for which the sequence uy, ug, ..., g1

ways to choose uz given ui,usz, and so on. 1
CLAIM 5.4. Every element of % is an ordered basis for some subspace in 2.

Proof. Fix a tuple (u1,uz, ..., us_dim(c)) With (5.6) for all i, and let

X = Span{vh -3 Udim(C), UL - - - ud—dim(C)}'
Then clearly X is a d-dimensional subspace with C' C X C V. This in particular means that AN X
contains A N C. It remains to prove the opposite inclusion, AN X C AN C. For this, fix arbitrary
scalars oy, 3; such that

Z o;v; + Z Bj’u]' € A.

If some f; were nonzero, we could take j* = max{j : 3; # 0} and obtain u;+ € Bj_*l (A=>" av; —
Zj <j* Bju;), contradicting . This means that 3; = 0 for all j, with the consequence that the
vector Y a,v; + Y fiju; = > a;v; belongs to C. This settles the containment AN X C AN C and
completes the proof. 1

Claims and imply that |.27| is the quotient of (5.7) by (5.8), namely,

d—dim(C) g — qm(A+C)+i-1
|2 =

d _ 4dim(C)+i—1
Pl q q im(C)+¢

, d—dim(C
qdim(A+C) - dim(A + C)
(0] d—dim(C) ),

_ g(dim(A4)~dim(AnC)) (d—dim(C)) (™ ~ dim(4 + C)
d—dim(C) /,

This completes the proof of the lemma. [
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COROLLARY 5.5 (Counting subspaces internally). Let S’ C S be linear subspaces in a vector space
over Fy. Let d > 0 be an integer. Then the number of dimension-d linear subspaces T with S" C
TCS is

dim(S) — dim(5’)
( d — dim(S") " (5:9)
Proof. Set V.= 5, C =5', and A = {0} in the statement of Lemma [

We now generalize Lemma by allowing AN X to be any subspace of A of a given dimension ¢.

LEMMA 5.6. Let A, B be linear subspaces of an n-dimensional vector space V over Fq. Define
r = dim(A N B). Let d and t be nonnegative integers. Then the number of dimension-d linear
subspaces X such that BC X CV and dim(ANX) =t is

(dim(A)—t)(d—t—dim(B)+r) (7 — dim(A) — dim(B) + 7\ (dim(A) —r
q . . (5.10)
d—t—dim(B) +r " t—r g

Proof. The lemma is trivially true for ¢ ¢ [r,dim(A)] since the last Gaussian binomial coefficient
in is zero in that case. In what follows, we consider the complementary case ¢ € [r, dim(A)].

Let 2 be the set of all dimension-d subspaces X with B C X C V and dim(AN X) =t¢. Let &/
be the set of all dimension-t subspaces A’ with AN B C A’ C A. By Corollary

|| = <dinl(i1)r_ T)q- (5.11)

For any X € 27, the subspace A N X is by definition a dimension-f subspace of A that contains
AN B. This makes it possible to define a function f: 2" — & by f(X)=ANX.

CLAIM 5.7. For every A’ € o,

1 AN (dim(A)—t)(d—t—dim(B)+r) (7 — dim(A) — dim(B) 47
[f (A =q < d—t—dm(B)+r ), (5.12)

Proof. Define C = A’ + B. Then ANC = A’ + AN B by Fact [2.3] which in view of AN B C A’
further yields
ANnC=A. (5.13)
Now
|f1(A")| = |{X : X is a subspace of dimension d with BC X CV and ANX = A’}
= |[{X : X is a subspace of dimension d with C C X CV and AN X = A’}
= |{X : X is a subspace of dimension d with C C X CV and ANX =ANC}

d — dim(C)

where the first step is immediate from the definitions of 2~ and f; the second step holds because the
condition B C X is logically equivalent to A’ + B C X due to A’ C X the third step applies (5.13);
and the final step uses Lemma [5.2]

It remains to calculate the dimensions of the relevant subspaces in . We have dim(C) =
dim(A’+ B) = dim(A’) + dim(B) — dim(A’ N B), which along with AN B = AN B and dim(4’) =
yields

_ g(dim(4)~dim(ANC)) (d—dim(C) <n —dim(A+C )> 7 (5.14)
q

dim(C) =t + dim(B) —r. (5.15)
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It is immediate from (5.13)) that

dim(ANC) = t. (5.16)
Finally, we have dim(A + C) = dim(A + A’ + B) = dim(A + B) and therefore
dim(A + C) = dim(A) + dim(B) — 7. (5.17)

Substituting ((5.15)—(5.17)) into (5.14]), we arrive at the sought equality (5.12)). 1
Claim implies that | 27| is the product of the right-hand side of (5.11)) and the right-hand side
of (5.12)), as was to be shown. ]

COROLLARY 5.8. Let S" C S be linear subspaces in a vector space over Fy. Let d and t be nonnegative
integers. Then the number of dimension-d linear subspaces T C S with dim(S'NT) =t is

. _ . / . ,
—t t
q q
Proof. Invoke Lemma with V =5, A=5' and B = {0}. [

5.3. Subspace matrices. In [12], Knuth defined combinatorial matrices of type (n,t) as matrices
whose rows and columns are indexed by t-element subsets of a fixed n-element set, and whose
(A, B) entry depends only on |A N B|. We begin with analogous definitions in the setting of linear
subspaces. Let F be a given finite field. For each d = 0,1,2,...,n, fix an ordering on the set of
dimension-d subspaces of F".

DEFINITION 5.9. Let n,m, ¢ be nonnegative integers with max{m, ¢} < n. For any r > 0, define
Jf ML 6 be the matrix whose rows are indexed by dimension-m subspaces of F", columns indexed
by dimension-¢ subspaces of ", and entries given by

(JEmm) 4y = {1 if dim(An B) =,

)

0 otherwise,

where the row index A and column index B use the ordering on the subspaces of F"* fixed at the
beginning.

Thus, the (A, B) entry of J}F’n’m’z depends only on the dimension of A N B rather than the
subspaces A, B themselves. By passing to the linear span of all such matrices for fixed F,n,m, ¢,
we obtain a matrix family that we call subspace matrices.

DEFINITION 5.10 (Subspace matrices). For a function ¢: Z — R, we define

min{m, ¢}

Jg,mm,E: Z o(r) JEmmL, (5.19)
r=0

Recall that throughout this manuscript, the underlying field is F = F, for an arbitrary prime power
q. To avoid notational clutter, we will write simply J," M6 and Jg’m’g to mean JTI«F et and Jg’n’m’g,
respectively.

To determine the eigenvalues of combinatorial matrices with rows and columns indexed by t¢-
element subsets of {1,2,...,n}, Knuth investigates a certain homogeneous system of linear equations
with variables indexed by s-element subsets and the equations themselves corresponding to (s —1)-
element subsets. He refers to the solutions to such systems as (n, s)-kernel systems. It turns out
that the linear space of kernel systems has a basis supported on variables labeled by a certain type
of sets, which Knuth calls basic sets and which he fully describes in a combinatorial way. For any
s € {1,2,...,t} and any (n,s)-kernel system (z,), he shows that the corresponding vector (z),
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indexed by t-element subsets w and given by 2z, = >, ., Tu, is an eigenvector for any combinatorial
matrix of type (n,t). These vectors (z,) for various values of s, together with the all-ones vector,
make up a complete set of eigenvectors, and Knuth’s analysis also reveals the associated eigenvalues.

Even setting aside the more subtle combinatorial nature of subspaces described in Section [5.2] it
is not clear how to generalize Knuth’s notion of basic sets to linear subspaces. For this reason, we do
not appeal to combinatorial machinery and rely instead on linear-algebraic arguments. As another
point of departure, our problem requires understanding the singular values of a general subspace
matrix Jg’m’£7 whereas Knuth studied combinatorial matrices that are symmetric (analogous to the
symmetric subspace matrices Ji""" in our setting). We note that the eigenvalues of symmetric
subspace matrices J;"""" were also determined by Delsarte [10] and Eisfeld [I1], and their properties
were studied in [3| [8]. However, these previous analyses do not seem to apply to the general case of
interest to us, namely, that of subspace matrices Jf,f’m’g for arbitrary m, £.

We start by studying the subspace matrices J,? ’m’k, which play a particularly important role in
our analysis. The following lemma investigates their rank.

LEMMA 5.11. Let n,m, k be nonnegative integers with m >k >0 and n > m + k. Then

rk Sk = <"> . (5.20)
k
q

Proof. In the degenerate case n = 0, the matrix J,?’m’k = Jg,o,o = [1} clearly has rank (8)q = 1.
In what follows, we treat the case n > 1. Here, we will exhibit reals zg, z1,..., 2z such that for all

k-dimensional subspaces A, B C Fy,

b ?k

Z Zdim(Anx) (S ) x,B = Odim(AnB) k- (5.21)

XCFg: dim X=m

Put differently, this means that every vector of the standard basis e, es,... can be obtained as a

linear combination of the rows of J;' ’m’k, immediately implying (5.20). Rewriting (5.21]),

k
Yoamoo > (™ xs = ddimans) k VA, B. (5.22)
=0 XCFy: dim X=m,
dim(ANX)=i

The inner summation equals the number of m-dimensional subspaces X with B C X C Fy and
dim(A N X) =i. Applying Lemma we find that (5.22]) is equivalent to

k
. : — 2k k—
Zziq(k—z)(m—z—k—i-r)( n ‘ T > ( _ r) =01, r=0,1,...,k, (5.23)
, m—i—k+r i—r ’
=0 q q
where r corresponds to dim(A N B) in (5.22). Write (5.23) in matrix form as
Mz=[0 0 --- 0 1], (5.24)

where M = [M, ;] is the real matrix of order k + 1 given by

M, ; = qlk=)m—i=k+r) n—2k+r k—r
" m—i—k+r) \i-r/,
k—r)

for r,i € {0,1,...,k}. All entries of M below the diagonal are zero because (i_r .= 0 for r > 1.

The diagonal entries, on the other hand, are
q

m—k
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which is nonzero because n — 2k 4+ r > m — k by the hypothesis that n > m 4 k. This makes M an
upper triangular matrix with nonzero entries on the diagonal. Then M is invertible, and a solution

z to (5.24) is guaranteed to exist. [

We will recover the k-th eigenspace of Jg"™"™ as the image of ker Jg’_kfl’k

n,m,k
Jk

under the linear map

n,m,k
Ji

. The first step is to understand how the map acts on ker Jg;kl_l’k for different values

of 3.

LEMMA 5.12. Let n = m > k be positive integers. Then for all © = 0,1,....k — 1 and = €
ker JiK 1R

i q i1

x. (5.25)

Proof. Consider the matrix product M = J ’m’kfl,]:’fkfl’k. Let us compute the generic entry

Ma,p, where A, B C Fy are subspaces of dimension m and k, respectively. By definition, Ma p
is the number of (k — 1)-dimensional subspaces X C B such that dim(A N X) = 4. Invoking
Corollary with S = B and S’ = AN B, we obtain

) . kE—r r
n,m,k—1 ynk—1.k _ (r=i)(k—1-1)
(Jz Jk—l )A7B q (k? 1 i>q<i>q’

where r = dim(A N B). Rewriting this equation in matrix form,

k
: : k—r T
Jﬂ,m,k—ljn,k—l,k _ (r—i)(k—1—1) Jn,m,k.
i k=1 Zroq k—1-i) \i),~"

In this equation, the product of the g-binomial coefficients vanishes whenever r > i+ 1 or r < i.
Therefore, the above summation contains only two nonzero terms, namely,

Z q(r—i)(k—l—i)< k—r > (T) J;’L,m,k.
k—1—1 G \t/ g

Jn,m,kflJn,kfl,k

A k—1
refii+1}
Simplifying,
n,m,k—1 m,k—1,k qk_i -1 n,m,k k—1—1 qH_l -1 n,m,k
Ji Sl = q_lf‘]i +q . Jii1
Applying this matrix equation to a vector x € ker J,?;kfl’k gives
k—1 i+1
q -1 n,m,k k—1—i 4 - n,m,k
O=——J"""z+ T
q— 1 A q q— 1 i+1
which directly implies (5.25)). 1
COROLLARY 5.13. Let n = m = k be positive integers. Then for all v = 0,1,...,k and x €

n,k—1,k
ker . 7,

J;l,m,kx — (*1)k_rq(k?) <l;:) J:’m’kx. (5.26)
q



60 ALEXANDER A. SHERSTOV AND ANDREY A. STOROZHENKO

Proof. The proof is by induction on k — r for fixed integers n,m, k. For the base case r = k, the
equality in (5.26) is trivial. For the inductive step with & —r > 0, we have

+1
k ko1 47 =1
S e = =g 'mﬁﬁ x
+1
k—r—1 ¢ -1 k—r—1 (k_r_l) k n,m,k
=—q e (= 1) q+ 2 S
g T —1 r+1 q
k—r k‘
= (1) g
"/ q
where the first step uses Lemma and the second step applies the inductive hypothesis. ]

Let A, B C Fy be arbitrary subspaces of dimension m and ¢, respectively. Recall from Fact
that for fixed n,m, ¢, the dimension of AN B is uniquely determined by the dimension of A+ N B

This makes the subspace matrix Jg’m’é identical, up to a permutation of the rows and columns, to
the subspace matrix Jg,’”_m’n_z for an appropriate function ¢’. We record this fact as our next

lemma. Its role in our work will be to simplify the calculation of the singular values of .Ji M- and the
eigenvalues of J"™" by reducing the general case to the case m+/¢ < n and m < n/2, respectively.

LEMMA 5.14. Let n,m,{ be nonnegative integers with max{m,¢} < n. Let ¢: Z — R be given.
Then:

(i) Jg’m’e = PJZ,’"fm’"feQ, where P, (Q are permutation matrices and ¢’: Z — R is defined by
@' (t) =t +m+ L —n);

(i) Jy™" = PJZ;,n_m’"_mP_l, where P is a permutation matrix and ¢”: Z — R is defined by
" (t) = o(t +2m —n).

Proof. Recall that for any d € {0,1,...,n}, the map S+~ S+ is a bijection between the subspaces
of Fy of dimension d and those of dimension n — d. For subspaces A, B C Fy of dimension m and
£, respectively, we have
(J3™) a8 = (dim(A N B))
= o(dim(At N B+ m + £ —n)
= ¢'(dim(A+ N B1))

= (J‘Z;n—m,n—é)AL’BL ,

where the second step uses Fact Rewriting this conclusion in matrix form,
J:;ﬂnl — [(JZ;H—W,N—Z)AL7BL]A7B7

where A, B range over all subspaces of dimension m and ¢, respectively. The matrix on the right-
hand side is clearly Jz;n_m’"_g, up to a reordering of the rows and columns. This settles m
An argument analogous to the above yields

Jo = (o) 4L g,

where A, B range over all subspaces of dimension m. The matrix on the right-hand side is the result

of permuting the rows and columns of JZ,’,” ~MRTM aecording to the same permutation, which is

another way of phrasing [

5.4. Eigenvalues and eigenvectors of subspace matrices. Our description of the spectrum
of each Jg’m’g is in terms of a function which we now define.
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DEFINITION 5.15. For nonnegative integers n, m, ¢, r, k with max{m,¢} < n and k < min{m, ¢},

define
k . .
(K i N(n—m—1 m—k+1
An,m,Z k) = _1)¢ ( )—i—(m—r)((—r—z) )
) g( )<z’>qq2 t—r—i) \r—k+i),
More generally, for any ¢: Z — R, define
min{m,¢}
AL R) = Y (A (k).
r=0

As part of our analysis of the eigenvalues of J,"""™, we will determine its eigenspaces and show
that they are pairwise orthogonal. The orthogonality will follow from the pairwise distinctness of
the corresponding eigenvalues, with the following lemma playing a crucial role.

LEMMA 5.16. Let n,m be nonnegative integers with m < n/2. Then the numbers AJ"™"™ (k) for
k=0,1,...,m are pairwise distinct.

Proof. For r = 0, the ¢g-binomial coefficient (T__::Z.i)q in Definition [5.15 vanishes unless i = k. As a
result,
k n—m-—=k
AT (Y — (1) (2)+m(m—k)

0 (k) = (—1)"q m—k ,

= (—1)fsg(B)mlmry (7= K

n —2m q
For k € {0,1,...,m}, the ¢-binomial coefficient in the last expression is clearly positive and a
nonincreasing function of k, whereas the exponent of ¢ is a strictly decreasing function of k. It
follows that the numbers |Ay"™"™ (k)| for k = 0,1,...,m form a strictly decreasing sequence. ]

As in [12], we treat the all-ones eigenvector separately.

PROPOSITION 5.17. Let n,m, ¢, r be nonnegative integers with max{m, ¢} < n. Then

gt 1 — glm=r)(e=) (” - m) (m> 1 (5.27)
{—r J\T /4

= AP0 1, (5.28)

nm ) _ (m—r)(l-r) n—m m n )
72 = g ()0, (5.29)

More generally, for p: 7 — R,

nmdt 4 _ Anml
Ty = Amm(0) 1, (5.30)
min{m,¢}
n,m m—r)(l—r) (T =T m n
172 = ()| ¢ )(€_T> <T> <m> . (5.31)
r=0 q q q

Proof. Let A C Fy be a subspace of dimension m. By definition, (J ot 1) 4 is the number of /-
dimensional subspaces X C Fy with dim(A N X) = r. Taking $’ = A and S = Fy} in Corollary

we obtain

nml 1y, — (m—r)(t—r) (W — M m ]
(Jr Ja=d t—r ) \r/,
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This settles (5.27)), which in turn implies (5.28)) by Definition 5.15} Since there are exactly (:l)q
subspaces A C Fy of dimension m, equation (5.29) is immediate from (5.27). Equation (5.30)
follows by linearity from (5.19) and (5.28)). Analogously, (5.31]) follows from (5.19)) and (5.29) since

[

the matrices J™* for r > 0 have disjoint support.

The following lemma is the cornerstone of our analysis of the spectrum of subspace matrices
Jg’m’e. It generalizes Knuth’s work from sets to subspaces (m = ¢) and further to the asymmetric
case of interest to us (m # /).

LEMMA 5.18. Let n,m,{ be positive integers with n > m + {. Let k € {1,2,...,min{m,¢}} and
x € ker J,?’_kl_l’k be given. Then for all integers t > 0,

le,m,EJ]?,e,kx _ A;"m’e(k:)J,?’m’kx. (532)
More generally, for all p: Z — R,
R R A (O W/ (5.33)

Proof. Fix an arbitrary integer ¢ > 0 and define M = J;" ’m’ZJ,?’Z’k. Let us compute the generic entry
My, B, where A, B are subspaces of Fy of dimension m and k, respectively. By definition, My p is
the number of ¢-dimensional subspaces X such that dim(AN X) =t and B C X C Fy. Lemma
implies that

-—m—k+r\ (m—r
J’nvmvéjn:éJC — (m—t)(f—t—k-‘rT’) n m
SO C—t—k+r ) \t—r);

where r = dim(A N B). Rewriting this equation in matrix form, we obtain

k
n,ml bk _ (m—t)(l—t—k+r) [TV — T — k+r m-=r n,m,k
T ;q (E—t—k—H“ Nt qJ’" ‘

Applying this matrix identity to a vector x € ker Jg’fl—l’k, we find

k
nml bk (m—t)(b—t—k+r) [TV — 10— k+r m-=r n,m,k
T x—;)q <£—t—k+r N7 qu *

k
_ Z q(mft)(éftkarr) <ng_ m _kk + T> <m - T) . (_1)kfrq(kgr) (k> Jg,m,kl_
= —t—k—+r q t—r q T/
k
— (m—t)(b—t—k+r) (V= T — k+r m=r\ _ 1)k (kﬂ') k Jn,m,k
;q <€—t—k+r JNE=T ), (=1)""qt k—qu .

k . .
i —m — —k i\ [k
= E :q(mft)(@ftfz) <”€ T .z> <1? X +.z) .(_1)1(1(2)(') Jg,m,%
=0 AV PAN S L/ g

= AP (k) T

where the second step uses Corollary [5.13] the fourth step is a change of variable, and the last step
is immediate by Definition [5.15, This settles (5.32)). Now for any ¢: Z — R,

min{m, ¢} min{m, ¢}
Temt e = Y e e = Y A W) e = AR R
t=0 t=0

where the first step uses (5.19)), the second step applies (5.32)), and the last step is valid by Defini-
tion [5.15] [
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We are now in a position to describe the eigenvalues of every symmetric subspace matrix.

THEOREM 5.19 (Eigenvalues of J;"™"™). Let n > m > 0 be given integers.

n,m,m

(i)  If m < n/2, then the eigenvalues of Jy’ for a given function p: Z — R are Ag’m’m(k)
for k=0,1,...,m, with correspondmg multiplicities (Z)q — (" ) fork=0,1,...,m

(ii)  Ifm > n/2, then the eigenvalues of J;"™™ for a given function p: Z — R are A" R 0!
fork =0,1,...,n—m, with corresponding multiplicities (k)q—( - )q fork = ,n—m,
with ¥: Z — R gz’ven by ¥ (t) = p(t+ 2m —n).

Proof. We first show that|(i impliesm Recall from Lemmantha‘c Jo"™™ is permutation-similar
to Jn MR with ¢p: Z — R given by 1(t) = ¢(t + 2m — n). The eigenvalues of Jg’n_m’”_m are,

by part of this theorem, AZ” TR for k= 0,1,...,n—m, with corresponding multiplicities
(Z)q - (kﬁl)q for k=0,1,...,n—m. It follows that these are also the eigenvalues of J;"™"" because

a similarity transformation preserves the eigenvalues and their multiplicities. This settles
It remains to prove where by hypothesis

m < g (5.34)
Define subspaces Sy, S1, . - ., Sm of the (:’1) q—dimensional real vector space by

So = span{1},

Sy = {Jg’m’kx :x € ker J,:’_kfl’k}, k=1,2,...,m.

CramM 5.20. Let k € {0,1,...,m}. Then dim S = (3), — (,"4),-

Proof. We need only consider k > 1, the claim being trivial otherwise. Observe from ([5.34]) and
Lemma (5.11|that J;' MK has rank (Z)q. Put another way, its columns are linearly independent. Since

Sy is the image of ker J:’kl_l’k under Jg’m’k, it follows that

dim Sy, = dimker J{5 1k, (5.35)
nkk 1

Another appeal to and Lemma [5.11|reveals that the columns of J,. "
dent. This makes J," k VR — (T A matrix of order (k—l)q X (Z)q w1th linearly independent

are linearly indepen-

rows, whence dim ker J" k Lh — (Z)q - (kﬁl)q' In view of ([5.35)), the proof is complete. ]
CrLAaM 5.21. Let k € {0,1,...,m}. Then every vector of Sy is an eigenvector of Jy""™ with

eigenvalue A" (k).

Proof. For k = 0, the claim is immediate from ([5.30) of Proposition Consider now the

complementary case k € {1,2,...,m}. Here, n and m are positive integers. Invoking Lemma
with £ =m and (5.34)) yields Jo'"™"™"v = A" (k)v for all v € Sk, as desired. i

CLAIM 5.22. For any k, k' € {0,1,...,m} with k # k', the subspaces Sy and Sy are orthogonal.

Proof. Taking ¢ = 1;g) in Claim shows that Sy, S1,...,Sn are eigenspaces of the symmetric
matrix Jy*""™ with eigenvalues Ay (0), AG"™™ (1), ..., Ay (m), respectively. But these m +
1 numbers are pairwise distinct by (5.34)) and Lemma It now follows from Fact that

i

S0, 51, - .., 9m are pairwise orthogonal.
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As we just established with Claim [5.22] the subspaces Sp, S1, ..., Sy, are pairwise orthogonal.
Since they are subspaces over the reals, we infer that dim(>";" ; Sk) = Y-, dim Si. Using dim Sj, =

(Z)q - (kﬁl)q from Claim , we arrive at

o ($) -5 (), G0 - 6, (), (),

In other words, a basis for the vector space in question can be obtained by concatenating bases

for Sp, S1,...,Sm. Lastly, recall from Claim that Sg (for £k = 0,1,...,m) is an eigenspace of
Jo"™ with eigenvalue A" (k). This settles |(i)| and completes the proof of the theorem.

At last, we adapt the previous proof to the asymmetric case (m # ¢) and determine the singular

. 4
values of every subspace matrix Jg""".

THEOREM 5.23 (Singular values of Jg’m’g). Let n,m, £ be nonnegative integers with max{m, ¢} < n.

(i)  If m+ € < n, then the singular values of Jg’m’g for a given function p: 7Z — R are

VAL () AL (R), k=0,1,..., min{m, 0},
with corresponding multiplicities (Z)q - (kfl)q for k=0,1,..., min{m, ¢}.
(ii)  If m+ £ = n, then the singular values of Jg’m’é for a given function p: Z — R are
PLL k) 78 3y 7‘67 - .
\/Azn o (k:)AZn k), k=0,1,...,min{n —m,n — (},
with corresponding multiplicities (Z)q — (kﬁl)q for k =0,1,...,min{n — m,n — £}, where

Y: Z — R is given by (t) = ¢(t +m + £ —n).

Proof. We first show that implies Recall from Lemma |5.14| that the matrix Jg’m’e is

the same, up to a reordering of the rows and columns, as Jg’nfm’nf with ¢: Z — R given by

¥(t) = o(t + m + € — n). The singular values of Jg’n_m’”_e are, by part |(i)| of this theorem,

\/AZ’"_m’n_g(k) AZ’"_é’n_m(k) for k = 0,1,...,min{n — m,n — £}, with corresponding multiplic-
ities (Z)q — (kﬁl)q for k = 0,1,...,min{n — m,n — ¢}. It follows that these are also the singular

values of Jg’m’e because reordering the columns or rows does not change the singular values or their
multiplicities. This establishes .
It remains to settle [(1), where by hypothesis

m+ £ < n. (5.36)
We may further assume that
m < L, (5.37)

for otherwise we can work with the transposed matrix (Jg’m’Z)T = Jg’é’m, the singular values being

invariant under matrix transposition. By (5.36), (5.37]), and Fact

(:)q < <Z>q (5.38)

Another consequence of (5.36) and (5.37) is that m < n/2, which makes it possible to define
subspaces Sg, S1,...,9m of the (Z) -dimensional real vector space as in the proof of part (i) of

Theorem [5.19] In particular, Claims apply as before.
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CrLAaM 5.24. Let k € {0,1,...,m}. Then every vector of Sy is an eigenvector of Jg’m’g.]g’é’m with
. n,m.l nt,m
eigenvalue Ay (k)Ay™" (k).

Proof. For k = 0, a double application of Proposition yields Jg’m’el]g’z’m 1= Jg’m’eAg’e’m(()) 1=

AZ™H0)AL5™(0) 1, as desired. Consider now k € {1,2,...,m}. In this case, due to (5.37), the

integers n, m, ¢ are positive and satisfy min{m, ¢} = m. Then for any x € ker J,?’_kl_l’k,

(J;L,m,fjgﬂm)(]g:m:kx — J;L,m,f(l]g,f,mjl?,m,kx)

_ Jg,m,Z(AZ,Z,m(k)J:,&kx)

_ AZ’K’m(k)JQm!J:Lk:E

— 7£, 5 7é n7m7k

= AL (k)AL ()
where the second and fourth steps apply Lemma with (5.36) (note that the roles of m and ¢
are reversed in the first application). We have shown that for each = € ker J;L;kl_l’k, its image under
J,:”’m’k is an eigenvector of J2™ J2E™ with eigenvalue A" (k)AL™ (k). Since Sy, is by definition

the image of ker J,?’_kl_l’k under J;! Mk the claim is proved. [

Recall from Claims and that the subspaces Sy, S1,...,9, are pairwise orthogonal,
with dim S, = (Z)q - (kil)q' As in the proof of Theorem , this implies that the real vector

space in question is a direct sum of Sy, S1,...,Sn,. In view of Claim we conclude that the
eigenvalues of Jg’m’ZJg’g’m are Ag’m’e(k)Ag’g’m(lﬁ) for k =0,1,...,m, with corresponding multiplic-

ities (Z)q - (kﬁl)q for K =0,1,...,m. This completes the proof since the singular values of Jg’m’z

are, by (5.38]) and Fact the square roots of the eigenvalues of Jg’m’z(Jg’m’Z)T = Jg’m’éJg’g’m,
counting multiplicities. [

5.5. Normalized subspace matrices. To study the communication complexity of the subspace
intersection problem, we now define normalized versions of subspace matrices.

DEFINITION 5.25. Let n,m, ¢ be nonnegative integers with m + ¢ < n, and let F be a finite field.
Define

7]F7n7m7€ _ ]' . F,n,m,f

r = T TFoamin r y r = O,l,2,...,min{m,€}. (539)
17
For any function ¢: Z — R, define
e ; min{m,¢} L .
D DRI (O W (5.40)
r=0

The requirement m + ¢ < n in Definition serves to ensure that Jo ™™ £ 0 for each
r = 0,1,...,min{m, ¢}, so that the normalization in (5.39)) is meaningful. As elsewhere in this

. . . . . . ¢ ¢
manuscript, we will work with the generic field F = F, and will henceforth write jf’m’ and T;’m’
. —=IF l —=F ¢
instead of J,""" and Jw’n’m’ .

. . . . . 14
The following lemma relates the metric properties of a normalized subspace matrix J Z’m’ to the
corresponding univariate function .
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LEMMA 5.26 (Metric properties of jz,’m’z). Let n,m, £ be nonnegative integers with m + ¢ < n. Let
p: Z — R be a given function. Then:

) 7e .
> (T s = e(r), r=0,1,...,min{m,(}. (5.41)
SEJ’(]F;‘,m),
TeS (F70):
dim(SNT)=r
Moreover,
min{m, ¢}
b 7Z
175" =D le(r)l- (5.42)
r=0

Proof. We have

min{m,¢}

Z (jzm’Z)S,T = Z Z Hj(’i(i)f (T
i 1

S, T:dim(SNT)=r S, T:dim(SNT)=r 1=0

= > e (S s,

n,m,l
srdim(snr)=r 197l
QO(T) n,m,l
= mdy > s
1 S, T:dim(SNT)=r

= ¢(r), (5.43)

where the second step uses (J;" ,m,e) st =0 for i # r, and the final step is valid because (J;" ,m,e) ST
equals 1 if dim(S NT) = r and 0 otherwise. This proves (5.41)). An analogous argument yields

', 7£
> (T, ) szl = lp(r)-
S, T:dim(SNT)=r
Summing this equation over r gives ([5.42)). ]

. . . . 14 . .
To describe the singular values of a normalized subspace matrix J Z’m’ , we introduce a normalized
counterpart of the function A from Definition [5.15]

DEFINITION 5.27. Let n,m, ¢, k be nonnegative integers with m+¢ < n and k¥ < min{m, ¢}. Define

< n,m ].
A ’Z(k) = WA?””’E(/{:), r=0,1,...,min{m, ¢}.
[ It
More generally, for any ¢: Z — R, define
B . min{m,¢} B .
AR = Y ()R (k).
r=0

With this notation, we obtain the following counterpart of Theorem [5.23] for normalized subspace
matrices.

THEOREM 5.28. Let n,m, ¢ be nonnegative integers with m + £ < n. Let p: Z — R be given.
Then the singular values oij’m’e are: \/K:’m’z(k:)x (k) with multiplicity (Z)q - (kfl)q, where
k=0,1,...,min{m, ¢}.

n,m
@)
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Proof. By definition, jZ’m’E = J%™¢ with ¢ Z — R given by

@
/ o(r)/IIT7™ 1 it r € 40,1, min{m, £}},
¢(r) = .
0 otherwise.
Recall from Theorem [5.23| that the singular values of JZ}m’e are \/ Ag}m’z(k) AZ}E’m(k) with multi-
plicity (Z)q - (kﬁl)q, where k = 0,1,...,min{m, ¢}. Since AZ}m’E(k) = K;L’m’é(k;) and Az;fvm(k) =
K;}’g’m(k) by Definition [5.27] the proof is complete. [

With our next lemma, we establish key algebraic and analytic properties of A, ’m’e(k).

LEMMA 5.29. Let n,m, ¥, k be nonnegative integers with m + € < n and k < min{m, ¢}. Then:

(i)  for n,m, L,k fized, Kn’m’e(k) as a function of r € {0,1,...,min{m, l}} is a polynomial in

q" of degree at most k;
(ii) |K;L’m’e(k¢)\ < 8(”);1q_k(m_7")/2 forr=0,1,...,min{m, ¢}.

m

Proof. Let r € {0,1,...,min{m, ¢}} be given. Then

- n,m,¢ 1 ¢
A (k) = — = AT (R)
177y
k ) .
1 Kk i N [TV — M — 1 m—k-+1
= e S0 () g (T (R
| ,£”1; v/ q b—r—i q r—k+i q
_ i . n—m-—i m—k+i
- <”> 1i(—1)i<k> iy (=), . (v, (5.44)
m)y i)q gD (=, (),

where the first step restates Definition [5.27] the second step applies Definition [5.15] and the final
step uses Proposition To simplify (5.44)), observe that

(Z:T;l)q - qf—r -1 qf—r —q qZ—r . qi—l
(72:7:)(1 - grmm—1 gvm—ygq g — qi—l'
Indeed, if £ — r — i < 0, then the left-hand side is zero by definition, and the right-hand side also

evaluates to zero. In the complementary case £ —r — i > 0, one obtains (5.45) directly from the
definition of Gaussian binomial coefficients. One analogously verifies that

(5.45)

(milffi) T _ 1 ro_ r_ k—i—1

r—k+i/q 4 q q 4 q 546)
™, ¢ -1 q"—q  q"—g " &
r/q

by considering the cases r — k +i < 0 and r — k + ¢ > 0. Substituting (5.45)) and (5.46) into ([5.44])

gives

-1 k _ _ — i—
= () S (F) @ £ 0 a6 ma
" - \m i) 1 grm —1 gvm—gq gn—m — gi—1
a4 =0 q
qr -1 qr —q qr _ qkfzfl
..... P (5 47)
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To verify the algebraic property , rewrite ((5.47) to obtain

-1 k .

A () = (n) Z(_l)i (k;) S i ‘—d d-q gt — g ti1
T - . —-m __ —-m __ —m _ qi—1
(Ol dma g

qm — 1 qm" —q qm — qkfifl

The i-th summand in this expression is, for fixed values of n,m, ¢, k, clearly a polynomial in ¢" of
degree at most i + (k — i) = k. This settles
We now turn to the analytic property, Dropping the zero terms from the summation in ,
and applying the triangle inequality,
—1 min{k(—r}

) 0— 0— l— i—
|K"»myf(k)‘ < n Z k: q(;)_(m—’l“)l . q -1 . q " ... 7(] T ql '
T ~ m i qnfm -1 qnfm —q qnfm _ qifl
9 i=max{0,k—r} q
er_l.qr_q'““qr_qkfifl
qm -1 qm —q qm _ qk—i—l :

The first i fractions on the right-hand side are each bounded by ¢‘~"/¢"~™, whereas the other k —i
fractions are each bounded by ¢"/¢™. Using these estimates leads to

¢ WA (R i Ji | g (m—r) (k=)
KA nm, 5)—(m—r)i —r—n+m)i . ,—(m—r)(k—i
o< ()X (5) ’ q
9 j=max{0,k—r} q
N LT Jin-(m—r) (k—)
i(k—i)+(2)—(m—r)i+(l—r—n+m)i—(m—r)(k—i
() TE e
9 j=max{0,k—r}
n —1 min{k(—r} (ki) <Z> : Vi ki)
i(k—1)+ —(m—r)i—ri—(m—r)(k—1
< <m> > 4 2
9 j=max{0,k—r}
min{k,{—r}

1 )
_ <n> Z A==+ () —k(m—r) (5.48)

m
9 j=max{0,k—r}

where the second step uses Corollary [2.14] and the third step is valid since n > m+ £ by hypothesis.
Let A(7) denote the exponent of ¢ in (5.48]). Then A(7) is an integer-valued function of i that strictly
decreases on [k — r,00). As a result, (5.48) yields

_1 o
|K;1,m,€(k:)‘ < <::L) Z4qA(max{0,k—7‘})—t
q t=0

-1
<8 <n> qA(max{O,k—r})7
m q

where the second step uses a geometric series along with g > 2. Therefore, the proof of will be
complete once we show that

k(m —r)
—
There are two cases to consider. If k& < r, then A(max{0,k—r}) = A(0) = —k(m—r) < —k(m—r)/2,
where the last step uses the hypothesis that r < m. If & > r, then A(max{0,k —r}) = Ak —r) =
(k;r) —k(m—r)<k(k—7)/2—=k(m—r) < —k(m —r)/2, where the last step uses the hypothesis
that k& < m. This settles (5.49) and completes the proof of the lemma. ]

A(max{0,k —r}) < — (5.49)
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5.6. Approximate trace norm of the subspace problem. We have reached a pivotal point in
our study of the subspace intersection problem, where we analyze the approximate trace norm of its
characteristic matrix. As in our analysis of the rank problem (Section , we start by constructing
a suitable univariate dual object.

LEMMA 5.30. Let A, R,dy,ds be nonnegative integers with 0 < R < A — dy — ds. Then there is a
function ¥: {0,1,..., A} = R such that:

i) (0) =—1;

(i)  »(R) > 0;
(i) w(r)=0forre{0,1,....,A}\({R+di+1L,R+d+2,...,A—ds}U{0,R});
(tv) ZTA:O Y(r)€(q") = 0 for every polynomial £ of degree at most A — R — dy — da;
(V) Xrefo,.anfo.ry [0 <32¢70T

Proof. By hypothesis, di+ds < A— R < A. As a result, we may invoke Lemma with parameters
n,k,¢,m set to A, A — R, dy di, respectively, to obtain a function ¢: {0,1,..., A} — R such that:

@) (A =1
(i) p(A-R) <
(iii")  p(r)=0 for r E {0,1,...,A}\ ({da,da+1,....A—R—d; — 1} U{A — R, A});
(iv') ZTA:() ©(r)€(¢~") = 0 for every polynomial £ of degree at most A — R — dy — da;
(V) e, ania-ray ()] <327

Define ¢: {0,1,...,A} = R by ¢(r) = —¢(A . Then |(1)| [(i1)} |(ii1)], and |(v)| are immediate from
(i)} [(i11)} and |(v")] respectlvely The remalnlng item |(iv)| follows from |(iv’)| via

A
D w(r)Elgn) = - Z@(A —1)éq R %) =~ 2290(%')5(41_z -q%) =0. i
r=0 r=0 =0

With the univariate dual object ¥ now constructed, we will use the associated subspace matrix

d = j,Z s as a dual witness to prove our sought lower bound on the approximate trace norm. The
theorem below only treats a canonical case of the subspace intersection problem. However, we will
see shortly that this result allows us to tackle all parameter settings.

THEOREM 5.31. Let n,m, ¢, R be given integers with 0 < R < min{m, ¢} and m + ¢ < n. Let F
be the characteristic matriz of INTERSECTFq’an. Then for all reals § = 0 and all nonnegative
integers di,dy with di + do < min{m, ¢} — R,

1/2 1/2
5> 1 1—-6— 674 n n q(min{m,ﬂ}—R—(h—d2+1)(m+€—2 min{m, (}+2d2)/4
8 qatl ) \m ¢ ,

q q

(5.50)

1-6/n 1/2 n 1/2 B

q q

Proof. Structurally, the proof is similar to that of Theorem[3.14] Let A = min{m, ¢}. Then 0 < R <
A — dy — dy by hypothesis. Let ¢: {0,1,..., A} — R be the function constructed in Lemma
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and extend v to all of Z by defining ¢(r) = 0 for r ¢ {0,1,...,A}. Then

N Y f)
N Fso(T" )sr — 61T, > T sl
dom F dom F

n,m,l n,m.l n,m,l
== > (Tysr+ D>, (T )se =Ty h

dim(SNT)=0 dim(SNT)=R
n,m,l
- > (T sl
dim(SNT)¢{0,R}

—(0) + ¥(R) = [l — D |w(r)]

r¢{0,R}
= [WO)[+ [b(R)| = dl[vlh — D [e(r)|
r¢{0,R}
=1=9vh-2 >
r¢{0,R}
>(1-0-2 > [ ¢, (5.52)
r¢{0,R}

where the second step uses Lemma the third step is valid by Lemma [5.30(1)H(i1), and the fifth
step is justified by Lemma [5.30(1)|

We now analyze the spectral norm of jg’m’e. Recall from Lemma |5.29(i)| that for fixed n,m, ¢

and fixed k € {0,1,..., A}, the quantity Kf’m’g(k:) as a function of r € {0,1,..., A} is a polynomial
in ¢" of degree at most k. As a result,

nmf n,,m
A A k
Ke{0.1, A Td; d2}\/ (k) A" (k)

max
ke{o,l, SA—R—di1—da}
_ AVY™MEY 0
reton By VAT (R)
=0, (5.53)

where the first step applies Definition and the second step uses Lemma [5.30(iv)} Next, for all
ke {0,1,..., A},

A
r=0
A—dg E A— d2 E
_ Zd}( nm Zd) n m )
r=0

N

) 74 A 747
ol max dQ\A:“” ( >\-\\¢\\1T:0{r;%d2|A£‘ ")

n n
<l (1) amsrzs(y) s
m q q
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where the first step applies Definition [5.27, the second step uses Lemma [5.3()(iii), and the last step
invokes Lemma to bound A" (k) and then again (with the roles of m and £ interchanged)
to bound A" (k). It follows that

T

—n,m,l —n,tm
Ay (k) Ky (k
kE{ARd1md%)~(H,...,A1,A}\/ 4 (k) (4 ()

—-1/2
n T\ k(m—A+4ds)/2, k(l—A+ds)/2
<
S b (A Rodi a1, A-1A} Bl <<m>q<€>qq 1 )
—1/2
_ 8l <<n> (n) q(A—R—dl—d2+1)(m+€—2A+2d2)/2> . (5.54)
m l
q q
As a result,
—=n,m,l —n,m,l —n,l,m
7o) = max VR R AN
—-1/2
< 8|v|h n n q(A—R—ch—d2+1)(m+€—2A+2d2)/2 (5.55)
m q ¢ q 7

where the first step appeals to Theorem and the second step substitutes the upper bounds

from (5:53) and (5.54).
—=n,m,l

We are now in a position to complete the proof of the theorem. Proposition with @ = J,,

implies, in view of (5.52)) and (5.55)), that

1 n\ 2 () 1?2 (A—R—dy—da+1)(m—+¢—2A+2d2) /4
IFllss > g [1-0-2 > [o()] <) <> q e o

m 14
r¢{0,R} q q
Since Y, gy [¥(r)] < 32¢~4~! by Lemma 5.3q(v)|, this settles ([5.50]). In the special case dy =0
and dp = A — R, we have Y, 4y gy [¢(r)] = 0 from Lemma 5.3!](iii)|, whence lj [

5.7. Communication lower bounds. We will now prove an optimal lower bound on the com-
munication complexity of the subspace intersection problem. To simplify the exposition, we will
first consider the canonical case where Alice and Bob need to determine whether the intersection of
their subspaces has dimension 0 versus dimension R, corresponding to the approximate trace norm
result that we just obtained. The general lower bound for all parameter settings will then follow
using the reduction of Proposition [2:26]

LEMMA 5.32. Let F be a finite field with q = |F| elements. Let n,m, ¢, R be nonnegative integers
with

0 < R < min{m, ¢}, (5.56)

R < max{m,(}, (5.57)

m+ £ < n. (5.58)
Then

QE‘PV)/Q(INTERSECngg’m’E) > c(log, [q™ By + 1)(log, [¢" B~ +1)logq (5.59)

for all v € [%q_(m+€_2R)/5, 1], where ¢ > 0 is an absolute constant independent of F,n,m, ¢, R,~.

Proof. Due to the symmetry between m and ¢ in the statement of the lemma, we may assume that
m={, (5.60)
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corresponding to the mnemonic “m for more, ¢ for less.” The hypotheses ([5.58)) ensures that there is
a pair of subspaces in .7 (F", m) x . (F", £) whose intersection has dimension 0; analogously, (5.56))
and (5.58)) ensure that there is a pair of subspaces in . (F", m) x . (F", £) whose intersection has

dimension R. This makes INTERSECTE’Z’m’e a nonconstant function, with the trivial lower bound

Q{_)2(INTERSECT ™) > 1. (5.61)
It suffices to prove that the characteristic matrix F' of this communication problem satisfies
1/2 1/2
el " ¢ (ogg[a™~y1+1) (log, [¢"~Fy]+1) (5.62)

for some absolute constant ¢ > 0. Indeed, once this lower bound is established, an appeal to
Theorem yields

Q{2 INTERSECT ™)

1 : ¢ ¢ 1084 [a™ 71 +1)(log, [~ 171 +1)
> -
9 % 3
d m—R I—R 1.3
*(logq [q" "y + 1)(10gq [q ﬂ +1)logq — - 5 log . (5.63)

Taking a weighted arithmetic average of (5.61)) and ( settles
In what follows, we prove (| - We ﬁrst examine the case y < g E+2 Equation

of Theorem [5.31] yields

1/2 1/2
ST n q(m+€—2R)/4
T8 \m g / g

1 7\ Y2 /) 12
> — q(m+€—23)/207 (5.64)
24 \'m 14
q q
where the second step uses the lemma hypothesis that v > %q*(mM*ZR)/ 5. Moreover,
m+¥{—-—2R>m—R

1
1 1 (-R

> S(m—R+1) - 5 (log,[¢" 9] +1)
1 _ _

> < (log,[q" ] + 1) (log, [a" 7] + 1), (5.65)

where the first step uses , the second step is valid by (5.57) and (5.60)), the third step is
legitimate because v < ¢~ ¢H1+23 in the case under consideration, and the last step uses the lemma
hypothesis that v < 1. Equations (5.64) and ( 1mply - for ¢ = 1/960.

We now examine the complementary case, v > g {TE+23 This assumption on ~, along with
the lemma hypothesis that v < 1, implies that the integer d; = [log,(128/7)] is an element of
{0,1,2,...,¢— R}. This in turn means that the integer do = [({ — R — d;1)/2] is also an element of
{0,1,2,...,/—R}. We have di+dy = di+[({—R—d1)/2] < di+({—R—d;) = {—R = min{m, {}—R,
where the last step uses . As a result, Theorem is applicable with parameters d; and ds,
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and equation ((5.50)) yields

1 64
IFlsaer > § (1 o

1/2 1/2
”) (”) q(min{m,f}fRfdl7d2+1)(m+872 min{m,0}+2da)/4
8

¢ q

1/2 1/2
n> <n> q(éfRfdl7d2+1)(m7€+2d2)/4
4

WV
| =
N
2
|

Q
2l o
4|
AN

q

(f*R*d17d2+1)(m*€+2d2)/4

WV
—_
B
7N
3 3
\_/
< —

Ry

S

7 N

~ 3
~
(s} —

~

S

Q

1/2 1/2
> e <n> <n q(f*R*Ull)(m*R*dl)/8
16 \'m q 14 a
1 /N2 7o\ 12
- (£—R—|log,(128/7)])(m—R—|log,(128/7)])/8—log,(1/7) 5.66
16 K : (5.66)
m q q

where the second step applies , the third and fifth steps use the definition of dy, and the
fourth step uses the definition of da. Recall that v > ¢~ 1423 in the case under consideration,
and v € [%q_(mH_QR)/E’, 1] by the lemma hypothesis. We may therefore use Claim stated and
proved below, to simplify to the right-hand side of as follows:

1 1/2 1/2
s - (" n (log, [¢™~Fy]+1)(log, [¢*~B~]+1)/160
[F 51— 2 q :
16\m/, \t/,
This establishes (5.62)) with ¢/ = 1/160, completing the proof of the lemma. [

CLAIM 5.33. For any « with max{q~+1+23, %q_(m“‘f_QR)/‘r’} <v <1,

1 128 128 1
oo ) o 2) v

1

> 150 108s[a™ 1 + 1) (log,[q" 7] +1). (5.67)

Proof. The proof is somewhat tedious but straightforward. To begin with,

1 128 128 1
s (0 [rog, 22 ) (m - R~ o, ) o,
1 ¢ By 128 1
=3 {logq 123 m — R — |log, 7 — log, ?

1 ¢ Ry 128 1 1
> g ’71qu 128 m— R — 1qu 7 — 5 logq ; s (568)

where the last step uses the fact that £[log,(q’~®y/128)] > 2 due to the hypothesis v > ¢~ “+#+23,
We now bound from below the factors in (5.68). We have
{—R {—R [quR,Y‘I

a g _ {—R
128 > log, q7 T = log, (¢ ] —-82

> log, (log,[¢" ™41+ 1), (5.69)

log,

N | —
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where the second and fourth steps are valid because ¢~ > ¢?3 by hypothesis. The other factor
in (5.68) can be bounded as follows:
128J 1 1 q"

m—R—{logq 5 ilogq’y2m—R—loqu
7

q
(max{q—é+R+237 %q—(m+£—2R)/5})3/2

>m — R —log,
3 . 1

>m—R—7—2m1n{€—R—23,5(m+€—2R)+2}
3 . 2

>m—R—7—2m1n{m—R—23,5(m—R)+2}

>m—R—7—3<1(m—R—23)+2(i(m—R)—i—Q))

2\3 3
1 )
1 .
> - (log, [ ] +1), (5.70)

where the first step applies the bound 128 < ¢ and drops the floor operator, the second step uses
the hypothesis for v, the fourth step is valid by (5.60)), the fifth step replaces the minimum by a
weighted average, and the last step is legitimate because v < 1 by hypothesis. Now ((5.67) follows

i

from 7.

We now extend the previous lemma to all possible parameter settings, thus obtaining the desired
communication lower bound for subspace intersection.

THEOREM 5.34. Let ¢ > 0 be the absolute constant from Lemma [5.32 Let F be a finite field with
q = |F| elements, and let n,m,f,r, R be integers with max{0,m + ¢ —n} < r < R < min{m, (}.
Then max{m, ¢} < n. Furthermore, for all v € [%q_(mM_QR)/E), 1],

1 fR=m=1/

5, (INTERSECT. ™) > ’
QlTW( R c(log,[¢™Fv] + 1)(log,[¢" ] + 1) logq  otherwise.
Proof. The hypothesis max{0,m+/¢—n} <r < R < min{m, ¢} implies that m+/¢—n < min{m, ¢},
which is equivalent to max{m, ¢} < n.

Recall from Proposition that for each integer d € [max{0,m + ¢ — n}, min{m, £}], there are
subspaces S € .7 (F",m) and T € .%(F",{) with dim(S N T) = d. This makes INTERSECT, 7"
a nonconstant function, which means that its e-error quantum communication complexity for each
e € [0,1/2) is at least 1 bit. This settles the claimed communication lower bounds in the case
R=m=2¢.

In what follows, we focus on the complementary case when R, m, ¢ are not all equal. In view of
R < min{m, ¢}, we infer that R < max{m,¢}. This new inequality, and the theorem hypotheses

that m +¢—n <r < R < min{m, ¢} and v € [%q*(m”*m)ﬁ’, 1], can be equivalently stated as

R —r <max{m —r,{—r}, (5.71)
0<R—r<min{m—r{l—r}, (5.72)
(m—r)+{l—r)<n—r, (5.73)
= [%q*((mfv")+(€*r)*2(RfT))/57 1]. (5.74)
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Now
Qf1-)/2(INTERSECT, ™) > Qf;_, /2(INTERSECTE;IQ:QW—M—T)

> c(logy[q"™ 7] + 1) (log,[q" 5] + 1) logq, (5.75)

where the first step uses Proposmon m and the second step is valid by Lemma [5.32] whose
application is in turn justified by (5.71 [

Theorem settles the quantum communication lower bound of Theorem for the promise
subspace intersection problem, and hence also the randomized communication lower bound for the
total subspace intersection problem.

5.8. Communication upper bounds for small error. In this section and the next, we prove
communication upper bounds matching our lower bound for the subspace intersection problem. We
start with a technical lemma.

LEMMA 5.35. Let n,m,l,r, A be nonnegative integers with r < min{m, ¢} and max{m,(} < n. Fizc
a finite field F, and let S € .7 (F",m) and T € .7 (F", ) be given subspaces. Let X € F(mHi-—r+A)xn
and Y € FmHt=2r+38)x(m+l=r+d) be yniformly random matrices. Then with probability at least
1 —16|F|=2~1, one has

dim(X(5)) = dim(5), (5.76)
dim(X (7)) = dim(7T), (5.77)
dim(Y ((X(5))™1)) = dim((X(5))"), (5.78)
dlm(Y(( (T))L)) = dim((X(T))"). (5.79)
Assuming (5.76) — , the subspaces S' =Y ((X(8))1) and T' = Y ((X(T))*) satisfy
dlm( ) —K—T—G—A (5.80)
dim(T") =m —r + A, (5.81)
dim(S'NnT ) =m+L—r+A—-dim(X(S+T))

+dim((X(8)" + (X(T))1) — dim(Y ((X(8))" + (X(T))1).  (5.82)

Proof. Abbreviate ¢ = |F|. Let Ej, Es, E3, E4 be the events that correspond to (5.76])—(5.79), re-
spectively. Applying Lemma witht=m—1andd=m+ /¢ —r+ A gives

P[-E] < 4~ TATD g7 AL (5.83)
Analogously, applying Lemma witht=/¢—1 and d = m + ¢ — r + A shows that

P[—Ey] < 4~ M7 AR L g AL (5.84)
Conditioned on Fq A Eo, we have

dim((X(S)1)=m+£—r+ A —dim(X(S)) =L -7+ A, (5.85)

dim(X(T)YH) =m+L—r+ A —dim(X(T)) =m —r+ A. (5.86)
As a result, invoking Lemma witht=¢—r+ A —1and d=m+ £ — 2r + 3A shows that

P[-Fs3 | By A By < 4q*(m+272r+3A)+(ffr+Afl) < 4q72A—1' (5.87)

Analogously, invoking Lemma witht=m—r+ A —1and d=m+ ¢ — 2r + 3A shows that
P[—|E4 | o /\Ez] < 4q—(m+€—2r+3A)+(m—r+A—1) < 4q—2A—1‘ (5.88)
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Now
P[E1 N Ex N Es N E4] = P[E1 AN Es]P[Es A Ey | E1 A Es]
> P[E1 N B3] — P~ (E3 A Ey) | Eq A Eg
> 1— P[-E)| — P[-Fs] — P[-E3 | E1 A Eo] — P[-E, | E1 A B3]
>1-16¢g 27",

where the last step uses (5.83)—([5.88]). This settles the first part of the lemma.

In what follows, we assume (5.76)(5.79). Then (5.80) follows from dim(S’) = dim((X(S))*) =
i (5.81]

{—r+A, where the last step uses (5.85)). Analogously, ([5.81)) follows from dim(7”) = dim((X (T))*) =
m —r + A, where the last step uses (5.86)). Toward the remaining equation (5.82)), we have

dim((X(8))" + (X(T))") = dim(((X(5)) N (X(T)))*)
=m+{—r+A—dim((X(S)) N (X(T)))
=m+{—r+A— (dim(X(S)) + dim(X (7)) — dim(X (S) + X(T)))
=—r+A+dim(X (S—i—T)),

where the first step uses Fact and the last step uses , -, and the linearity of X. With
this substitution, (5.82) is equivalent to

dim(S' NT") =m + £ — 2r + 2A — dim(Y (X (S))* + (X (T))1)). (5.89)
Due to (5:80), B81), and Y((X(S)) + (X(T)L) = Y((X(S))1) + Y(X(T)") = 8 + T, equa-
tion ([5.89) is a restatement of dim(S’N7T”) = dim(S")+dim(7”) —dim(S"+7"), which is a well-known
identity valid for any subspaces S’,T". 1

We are now ready to prove our communication upper bound for subspace intersection in the
regime where the error probability is a small constant or tends to 0. In the next section, we will
generalize this result to the more challenging regime where the error tends to 1/2.

THEOREM 5.36 (Small error). Let F be a finite field with ¢ = |F| elements. Let n,m, ¢, R be integers
with 0 < R < min{m, ¢} and max{m, £} <n. Then for each 0 < ¢ < 1/3,

1 1
R.(INTERSECT""") = O <(m ~ R+ {logq D <e ~ R+ [logq D log q> . (5.90)
€ 3
If in addition m = € = R, then for each 0 < e < 1/3,

R.(INTERSECTS"™) = 0 (log i) . (5.91)

Proof. Define r = R — 1. For an integer A > 0 to be set later, consider the following protocol II.
On input a pair of subspaces S € . (F", m) for Alice and T' € . (F",¢) for Bob, the parties use
their shared randomness to pick independent and uniformly random matrlces X e Flmti—r+i)xn
and Y e FmH=2r+38)x(m+-r+A) Next, they verify the four Condltlons - This can be
done using only two bits of communication, with Alice and Bob verifying the condltlons pertaining
to their respective inputs. If any of these conditions fail, they output a uniformly random value in
{—1,1}. In the complementary case, Alice and Bob compute

S' =Y ((X(5)),
T' =Y ((X(T))"),

respectively. The owner of the smaller of the subspaces S’ and T” sends it to the other party in the
form of a basis, who then computes dim (S’ N7”) and outputs 1 if and only if dim(S'N7T") < A.
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We first analyze the communication cost of II. If any of the conditions (5.76)—(5.79) fail, the
communication cost is 2 bits. If all four conditions hold, then dim(S’") = ¢ —r + A and dim(7") =
m — 1+ A by Lemma [5.35 As a result, a basis for the smaller of the subspaces S’ and T” can be
communicated using (m + ¢ — 2r + 3A)(min{m, £} —r + A)[log ¢] bits, where the first factor is the
dimension of the ambient space. Altogether, the communication cost is at most

2+ (2max{m, ¢} — 2r + 3A)(min{m, £} —r + A)[logq] + 1
=0(m—-r+A){—r+A)logq). (5.92)

We now analyze the correctness probability. To this end, we prove the following claim.

CrAM 5.37. The output of the protocol is correct whenever the matrices X,Y satisfy (5.76))—(5.79))

as well as the additional conditions

dim(X(S+ 7)) > min{dim(S +T),m + £ —r}, (5.93)
dim(Y (X ()" + (X(T))7)) = dim((X(S))* + (X(T))*). (5.94)
Proof. Recall from Lemma [5.35] that (5.76)—(5.79) force , which in view of simplifies to
dim(S'NT)=m+0—r+ A —dim(X(S+7T)). (5.95)

We first consider the case dim(S N7T) < r. Here dim(S + T') > m + ¢ — r, which along with
implies that dim(X (S + T')) > m + ¢ — r. Substituting this lower bound into (5.95) gives
dim(S'NT") < A. As a result, II outputs the correct value in this case.

In the complementary case dim(S N7T) > r + 1, we have dim(S +7) < m+ ¢ —r — 1 and
therefore also dim(X (S + 7)) < m + £ — r — 1. Substituting this upper bound into gives
dim(S'NT") > A + 1, showing that the output of II is correct in this case as well. [

Condition (5.93)) fails with probability at most 4¢~*~!, by Lemma withd=m+£L—r+ A
and ¢ = min{dim(S + T'),m + ¢ — r} — 1. Moreover, conditioned on (5.76)) and (5.77]), one has

dim((X(S)* + (X (7)) < dim((X(5))*) + dim((X(T))*)
=2(m+ €1+ A) — dim(X(S)) — dim(X(T))
<m+4—2r+2A

and hence @ fails with probability at most 4q~(MT{=2r+3A)+(m+L-2r+2A-1) < g,=A-1 Y}y
Lemma@ with d = m + € — 2r + 3A and t = dim((X(S))* + (X(T))*) — 1. Since (5.76)(5.79)
are simultaneously true with probability at least 1 — 16¢~ 21 (by Lemma w, we conclude
that the six conditions (5.76)(5.79), (5.93), (5.94) hold simultaneously with probability at least
1-16¢ 2 1 —4¢g 2" 1—4¢ 21 =1-24¢7>"1. Now Claimimplies that the described protocol
II has error probability at most 24¢~“~!. Since we calculated II’s cost to be , we conclude
that

Ry g1 INTERSECT ™) = O((m — 1 + A)(¢ — 7 + A) log q).
Taking A = [log,(24/¢)| now settles (5.90). For the additional upper bound ([5.91)), observe that

INTERSECT%”M’E for m = £ = R is the equality problem with domain .&#(F",m) x . (F", m).
The claimed upper bound now follows because it is well-known [I4, Chapter 3.3] that the equality
problem over any domain has e-error randomized communication complexity O(log(1/¢)). 1l

5.9. Communication upper bounds for large error. To study the large-error regime, we recall
a basic fact on vector spaces.

PROPOSITION 5.38. Let A, A’ be subspaces such that A’ C A. Then for any subspace B,
dim(A N B) — dim(A' N B) < dim(A) — dim(4’). (5.96)
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Proof. Since AN B+ A’ is a subspace of A, we have dim(AN B + A’) < dim(A). Expanding the
left-hand side yields dim(AN B) 4+ dim(A’) — dim(AN BN A") < dim(A), which is clearly equivalent
to (5.96). ]

We now revisit the subspaces S” and 7" in Lemma and study the distribution of dim(S’N7T").

LEMMA 5.39. Let n,m,l,r, A be nonnegative integers with r < min{m, ¢} and max{m,l} < n. Fizc
a finite field F with ¢ = |F| elements, and let S € #(F",m) and T € #(F™,{) be given subspaces.
Let X € Fimtt=rtl)xn qpqy ¢ Fntl=2r+38)x(m+L=1+A) po yniformly random matrices. Let Z be
the indicator random variable for the event that (5.76)—(5.79) hold. Define S' = Y ((X(S))!) and
T =Y ((X(T))*). Then:
(i) E[Z¢iENT)] < g2 (1 + 8¢~2)? whenever dim(SNT) < 7;
(i) E[ZgMir{dim(S'NT),A+1}) > (AL — 16¢g=2~1) whenever dim(SNT) > r + 1.
Proof. Consider the random variables
A=m+{—r —min{dim(X(S+T)),m+ £ —r},
B = dim((X(5))" + (X(T))") = dim(Y ((X(5))* + (X(T))1)).
Then the inequality
quim(S/ﬂT/) < ZqA+B+A (597)
is trivially true for Z = 0 and follows from equation ([5.82)) of Lemma for Z = 1. The hypothesis

dim(SNT) < r implies that dim(S +7') = dim(S) + dim(7") —dim(SNT) > m+ ¢ —r. As a result,
applying Lemma [2.20| with d = m + ¢ —r+ A and T = m + £ — r gives

g[qf‘] < 14874 (5.98)
Now, let Z’ be the indicator random variable for the event that (5.76]) and (5.77) hold. Then Z’ = 1
implies that
dim((X(8))" + (X(T))") < dim((X(5))*) + dim((X(T))")
=2(m+/{—r+A)—dim(X(S)) — dim(X(T))
<m+0—2r+2A.
As a result, Lemma is applicable with d = m+ ¢ —2r +3A and T = dim((X(S))* + (X(T))*)
and gives
Z’];[qB | X1 < Z'(1+8¢72). (5.99)

It remains to put these ingredients together:
E[quim(S’ﬂT,)] g E[ZqA+B+A]
g E[Z/qA+B+A}
A A rzl B
=q¢"Eq¢"Z'E X
¢~ Eq¢"Z Elq” | X]
< EqZ'(1+8¢7%)
< Eg(1+8¢7%)
<q*(1+8¢72),

where the first step uses (5.97)), the second step is justified by Z < Z’, the fourth step applies (5.99)),
and the last step uses (5.98)).
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[(if)] Assume now that dim(SNT) > r + 1. For Z = 1, equation (5 of Lemma [5.35] gives
dim(S'NTY=m+L—r+ A —dim(X(S+T))
>m+L—r+A—dim(S+1T)
=m+L—r+A—dim(S) — dim(7) + dim(SNT)

(X
(
(
)

=—r+A+dim(SNT
> A+ 1.
Now
E[Zgmin{dim(S'0T),A+1}) 5 (A+L gy 7]
> ¢ T (1160757,
where the second step uses Lemma m i

At last, we are in a position to prove our claimed communication upper bound for the subspace
intersection problem.

THEOREM 5.40 (Large error). Let F be a finite field with ¢ = |F| elements, and let n,m,l, R be
integers with max{0,m + ¢ —n} < R < min{m, }. Then max{m,{} < n and
R, . (INTERSECTR""™") < 2. (5.100)

27 16qm+€72R+16

Furthermore, for each ~ € [1q~(mT¢=2R0)/3 1],

R(1_)/2(INTERSECT;™"™") = O((log, [v¢™ ] + 1)(log,[v¢" %] + 1) log q). (5.101)
If in addition m = ¢ = R, then

R, j3(INTERSECT};""™") = O(1). (5.102)

Proof. The hypothesis max{0,m + ¢ — n} < R < min{m, ¢} implies that m + ¢ — n < min{m, ¢},
which is equivalent to max{m, £} < n. The bound is immediate from Theorem [5.36]

In the rest of the proof, define r = R — 1. We will first settle . Let A be a nonnegative
integer to be chosen later. Consider the following protocol II'. On input a pair of subspaces
S € L (F",m) for Alice and T € . (F", ) for Bob, the parties use their shared randomness to pick
independent and uniformly random matrices X € F(m+i=r+8)xn gndy g Fm+f=2r+38)x(m+l—r+A)
Alice and Bob compute §’ = Y((X(S))*) and T" = Y ((X(T))"), respectively. Note that S’ and T"
are subspaces in an ambient vector space V of dimension m + ¢ — 2r + 3A. Let Z be the indicator
random variable for the event that the four conditions (5.76} - - 5.79)) hold. Alice and Bob use shared
randomness to pick a uniformly random vector v € V. They output 1 in the event that Z = 1
and v € S’ NT’, and output a uniformly random +1 value otherwise. The communication cost of
this protocol is 2 bits since Alice can privately verify the conditions , , and v € §’, and
likewise Bob can privately verify the conditions , , and v € T'. Observe further that

E[H/(S, T) | )(7 Y] — qulm(S’ﬁT’)f(m+€f2r+3A)
Passing to expectations over X and Y, we arrive at
H/(S T) — qf(m+572T+3A) E[quim(S’ﬁT/)].

Applying Lemma [5.39] we find that IT'(S, T) has expectation at most o/ = g~ ¢+2r=28(1 4-.8¢=2)2
if dim(SNT) < 7, and at least 3 = ¢~ H2r=28¢(1 — 16¢~271) if dim(S N T) > r + 1. Taking
A =7, one calculates that 3/ — o/ > ¢~™ 2"~ /2 Now Proposition implies that

R: . (-INTERSECTZ™"™") < 2,

27 16qm+572r+14
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which is equivalent to (5.100)).
In what follows, we prove the remaining upper bound ([5.101)). Due to the symmetry between m

and ¢, we may assume without loss of generality that

m = /. (5.103)
Let £ and A be nonnegative integers to be set later, where
1<kt~ (5.104)

We will adapt IT' to obtain a new protocol II” that satisfies the following inequalities for all subspaces
S, T C F" of dimension m and ¢, respectively:

B{IV/(S,T) | X, Y] > - Zgmintdam(sn).a41) (5.105)
E[II"(S,T) | X,Y] < ¢ 2 2¢m50T), (5.106)

On input S and T, Alice and Bob in II” choose uniformly random matrices X and Y as before.
They then compute the indicator random variable Z, which is a function of X,Y,S,T. If Z = 0,
they output a uniformly random =+1 value. Clearly, ((5.105) and (5.106]) hold in this case.

In the complementary case Z = 1, Alice and Bob compute S’ = Y ((X(S))*) and T" = Y (X (T))4),
respectively. Lemma with Z = 1 implies that S’ and T are subspaces of dimension £ —r + A
and m —r + A, respectively, in an ambient vector space of dimension m + £ — 2r 4+ 3A. This makes
it possible for Bob to find a subspace U of dimension m —r + A + k such that 77 C U, and send U
to Alice. An application of Proposition yields

dim(8'NU) —dim(S'NT") < dim(U) — dim(7T") = k. (5.107)
What Alice does next depends on the dimension of S' N U.

(i) Ifdim(S'NU) > k+ A+1, then implies that dim(S’ N'T’) > A + 1. Therefore,
and amount to the requirement that the protocol’s output have expectation
at least ¢~ *+1 and at most ¢ F—ATdmENT) ¢ [o=F+1 50) To meet this requirement, Alice
simply outputs a random =+1 value with expectation ¢—**1.

(i) Ifdim(S'NU) < k+ A, Alice identifies a (k+ A)-dimensional subspace S” with the property
that S"NU C §” C §’, which exists because k + A < £ —r + A due to . She then
picks a uniformly random vector v € S” and sends it to Bob, who outputs 1 if v € 77 and a
uniformly random =1 value otherwise. In this case, Alice and Bob’s expected output is

dim(S"”"NT") dim(S”NT") dim(S”"NUNT") dim(S'NUNT") dim(S'NT")

q _q _q _q _q

qdim(S”) - qk+A - qk+A - qk+A - qk‘-l-A ’

where the second step uses 7" C U, the third step uses the defining property S'n\U C S” C 5’
of the set S”, and the last step is valid due to 7" C U. This agrees with (5.105|) and (5.106]),
min{d
q

which require that the protocol’s output have expectation between ¢~ *=2 lim(S'N17),A+1}

and gk~ gdim($'NT").

The proof of (5.105]) and (5.106|) is now complete.

Since U has co-dimension ¢ — r + 2A — k, it can be communicated in the form of a basis for U+
using (£ —r 4+ 2A — k)(m 4+ £ — 2r + 3A)[log q] bits. The vector v takes (m + ¢ — 2r + 3A)[log q|
bits to send. In view of (5.103|), we conclude that

cost(I") = O((l —r+2A —k+1)(m —r+ A)[logq]| + 1). (5.108)

Lastly, we will show that IT” is a distinguisher for the subspace intersection problem. For this, pass
to expectations with respect to X and Y in (5.105]) and (5.106| to obtain

E 1—[//(57 T) > qflcfA E[quin{dim(S’ﬂT’),AJrl}]’ (5109)
EII"(S,T) < ¢ "2 E[zg" ), (5.110)
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Now Lemma implies that IT”(S, T') has expectation at most o/ = ¢~ (14+8¢~2)? if dim(SNT) <
r, and at least 7 = ¢~ **1(1 — 16¢=2~1) if dim(S N T) > r + 1. Taking A = 7, one calculates that
B’ —a" = q7%/2. Now (5.108)) and Proposition imply that

Ry 1 (-INTERSECTZ"™) = O((¢ —r —k +1)(m —r+ 1)logq) (5.111)

16¢k
for every positive integer k < £ — 7.

Let v € [%qf(mH*zR)/?’,%] be given. For v € [q*4,%], one obtains (5.101]) from the bound

R1/3(INTERSECT£’”’m’Z) = O(({—R+1)(m—R+1)logq) of Theorem For v € [%q*(mM*m)/?’, 1,
setting k& = min{[log,(1/v)] —3,¢ —r} in (5.111)) gives
R(l_w)/Q(—'INTERSECT%n’m’e) =O0((¢ —r — min{ Llogq(l/’y)J —3,4—r}+1)(m—r+1)logq)
max{[log,(v¢"")],0} +4)(m —r + 1) log )
log,[vq" "1 + 1)(m — 7 + 1) log q)
log,[v4" " + 1)(m — R+ 1) log q)
log,[v¢"~ ] + 1) (log, [v¢™ ] + 1) log q),
where the last step uses |j and v > %q*(m”*ﬂ”/ 3. This completes the proof of li ]

Theorem [5.40] settles the randomized communication upper bounds of Theorem [I.10] for the total
subspace intersection problem, and hence also the quantum communication upper bound for the
promise subspace intersection problem.

e~~~ =~
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PROPOSITION A.1 (Sun and Wang). For any integers n > 1 and r € {0,1,...,n},

Lp(n,r)= E wXutt X
Xe

n

Proof (due to Sun and Wang). Let X,Y, Z be independent and uniformly random nonsingular ma-
trices of order n. Then by Proposition the product X1I,Y is a uniformly random matrix of
rank r. Therefore,

Fn(n, ,r) — Ew(Z,XI,,.Y)
_ EW(XTZYT,]T)
= EwIr)

— Bt Xe o+ X

)

where the second step uses Fact [2.2(ii), and the third step is legitimate because XTZY T is a
uniformly random nonsingular matrix by Proposition 1

We are now ready to establish our result of interest.

LEMMA (restatement of Lemma. For any integers n > 1 and r € {0,1,...,n},
(~1)7gl)
(@ =" —q) (@ —q¢ ")
Proof. Consider independent random matrices X and L of order n, where X is a uniformly random
nonsingular matrix and L is a uniformly random nonsingular lower-diagonal matrix. By Proposi-

tion [2.19(1)} the product X L is a uniformly random nonsingular matrix. Therefore, Proposition
implies that

Fn(n, T) — szgzl(XL)i,i'
We will say that X is nice if X; ; = 0 for all (¢, j) pairs such that i € {1,2,...,7} and j > 1.

Lp(n,r) =

CrLAIM A.2. One has
B [uTia0rs | x] = {(—D’"(q— )" if X is nice,

L 0 otherwise.

This claim, to be proved shortly, implies that
(=1)" o
r = —P[X : Al
n(n,r) =17 [X is nice] (A.1)
The probability of the nonsingular matrix X being nice is straightforward to calculate: there are

q — 1 choices for the first row, ¢(¢ — 1) choices for the second row, ¢*(¢ — 1) choices for the third
row, and so on up to row r, whence

[limid'(a—1)
(" =D(¢" =) (¢"— ¢
Making this substitution in (A.1)) completes the proof. [

P[X is nice] =
X
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Proof of Claim [A22] Conditioned on X, the columns of XL are independent random variables.
Therefore,

=1 (XL)i } — [ (XL)i,i }
]E [w 1 | X Zl:[l}i—) w | X

_ ﬁ]g [WZ?ZZ' Xi gl | X} ) (A.2)
i=1

The entries of L are independent random variables, with the diagonal entries distributed uniformly
on [y \ {0} and the subdiagonal entries distributed uniformly on FF,. If X is not nice, then X # 0
for some i € {1,2,...,r} and k > 4, which means that the corresponding summation Z?:Z Xi;Lj;
is a uniformly random field element. This forces to vanish, due to . When X is nice, on
the other hand, simplifies as follows:

r r
1_{]%‘ [wzjm‘ XijLj,i | X} — 1_11:]%1 [in,iLi,i | X]
i= i=

r
as

e RIEANG)

B ZaE]Fq wr—1\"
g1
(="

(¢—1)’
where the second step is legitimate because X; ; is nonzero and L;; is a uniformly random nonzero
field element, and the last step uses (2.14)). I

APPENDIX B. MULTIPARTY LOWER BOUNDS VIA SYMMETRIZATION

The purpose of this appendix is to prove Proposition [I.11] which gives a generic method for
transforming two-party communication lower bounds for a class of problems into corresponding
multiparty lower bounds. Recall that we adopt the number-in-hand blackboard model of multiparty
communication, reviewed in the introduction. The notation R, (F’) stands for the e-error randomized
communication complexity of the two-party or multiparty problem F. The cost of a protocol II,
denoted cost(II), is the total number of bits written to the blackboard in the worst-case execution
of II.

PROPOSITION (restatement of Proposition [1.11)). Let (X,+) be a finite Abelian group, and let
f: X — {=1,1,%} be a given function. Fort > 2, let F;: Xt — {—1,1,%} be the t-party com-
munication problem given by Fy(x1,xo,...,x¢) = f(x1 + 22+ -+ +2¢). Then for all t > 2,

1
Ry 6(Ft) > ﬁtR1/3(F2)~

Proof. The proof uses the symmetrization technique of Phillips, Verbin, and Zhang [20]. Let II be
a randomized protocol for F; with error probability 1/6. We will use II to construct a protocol for
the two-party problem F, with error probability 1/3 and communication cost at most cost(II)-12/t.

The protocol for Fj is as follows. On input (a,b) € X x X, Alice and Bob use their shared
randomness to pick uniformly random elements 71,792, ...,7:—1 € X and uniformly random integers
1,7 with 1 <7 < j < n. Let

x = (ri,re,...,7—1,—11 —ro2— -+ —1r4—1) + (0,...,0,a,0,...,0,b,0,...,0),
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where the rightmost tuple has a in the i-th component, b in the j-th component, and zeroes every-
where else. Since the components of x sum to a + b, we have

Fy(x) = Fy(a,b). (B.1)

Moreover, x is a uniformly random tuple whose components sum to a + b because the first t — 1
components are distributed independently and uniformly at random on X, whereas the sum of the
components is a + b. In particular, x and (4, j) are independent random variables.

By construction, Alice knows all the components of x except for the j-th, and Bob knows all
the components except for the i-th. This makes it possible for them to run II on x, with Alice
simulating all the parties other than the j-th, and Bob simulating all the parties other than the
i-th. When II requires the i-th party to speak, Alice sends his message to Bob, and analogously for
the j-th party. For k = 1,2,...,t, consider the random variable C(x, k) defined as the total number
of bits sent in II by the k-th party on input x. Then the number of bits exchanged by Alice and
Bob is C(x,1i) + C(x, j). Using the independence of x and (i, j), we can now bound Alice and Bob’s
expected communication cost on input (a, b) as follows:

E[C(x, ) + C(x, j)] = %E[C(x, D4+ O, 8)] < % cost(TT). (B.2)

By , the described two-party protocol computes Fy with the same error probability that II
computes F;, namely, 1/6. Furthermore, by , the expected communication cost of the two-party
protocol on any given input is at most cost(II) - 2/t. By Markov’s inequality, the probability of Alice
and Bob exchanging at least cost(IT) - 12/t bits is at most 1/6. Therefore, one can obtain a protocol
for F» with error 1/6 +1/6 = 1/3 by terminating the described protocol as soon as |[cost(II) - 12/¢]
bits have been communicated. 1
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