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Abstract

One of the earliest models of weak randomness is the Chor-Goldreich (CG) source. A (t, n, k)-
CG source is a sequence of random variables X = (X1, . . . ,Xt) ∼ ({0, 1}n)t, where each Xi has
min-entropy k conditioned on any fixing of X1, . . . ,Xi−1. Chor and Goldreich proved that there is no
deterministic way to extract randomness from such a source. Nevertheless, Doron, Moshkovitz, Oh, and
Zuckerman showed that there is a deterministic way to condense a CG source into a string with small
entropy gap. They gave applications of such a condenser to simulating randomized algorithms with small
error and to certain cryptographic tasks. They studied the case where the block length n and entropy rate
k/n are both constant.

We study the much more general setting where the block length can be arbitrarily large, and the
entropy rate can be arbitrarily small. We construct the first explicit condenser for CG sources in this
setting, and it can be instantiated in a number of different ways. When the entropy rate of the CG source
is constant, our condenser requires just a constant number of blocks t to produce an output with entropy
rate 0.9, say. In the low entropy regime, using t = poly(n) blocks, our condenser can achieve output
entropy rate 0.9 even if each block has just 1 bit of min-entropy. Moreover, these condensers have
exponentially small error.

Finally, we provide strong existential and impossibility results. For our existential result, we show
that a random function is a seedless condenser (with surprisingly strong parameters) for any small family
of sources. As a corollary, we get new existential results for seeded condensers and condensers for CG
sources. For our impossibility result, we show the latter result is nearly tight, by giving a simple proof
that the output of any condenser for CG sources must inherit the entropy gap of (one block of) its input.
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1 Introduction

Randomness is extremely useful in computing, yet it is difficult or expensive to obtain high-quality random-
ness. It is therefore important to understand what can be done with low-quality, or weak, random sources.
Researchers have studied models of weak random sources for decades. One of the earliest models is the
Chor-Goldreich (CG) source [CG88], which generalized the related Santha-Vazirani source [SV86].

Definition 1. The min-entropy of a random variable X is given byH∞(X) = minx∈support(X) log2(
1

Pr[X=x]).
We say X is an (n, k) source if X is over {0, 1}n and has min-entropy H∞(X) ≥ k.

Definition 2. A random variable X = (X1, . . . ,Xt) ∼ ({0, 1}n)t is called a (t, n, k)-CG source if for all
i ∈ [t] and all (x1, . . . , xi−1) ∈ ({0, 1}n)i−1, it holds that H∞(Xi|X1 = x1, . . . ,Xi−1 = xi−1) ≥ k. Each
Xi is called a block.

We would like to make use of a CG source knowing only the parameters t, n, and k. That is, our
algorithms should work for all (t, n, k)-CG sources; an adversary can pick a (t, n, k)-CG source after seeing
our algorithm.

The most natural way to use a weak source is to convert it into high quality randomness. However,
generalizing the argument by Santha and Vazirani, Chor and Goldreich showed that it is impossible to
deterministically extract even one nearly-uniform bit from a CG source (if k ≤ n − 1). It was therefore
accepted by the community that one needed to add more randomness, either in the form of a random seed
or a second CG source, to do anything useful.

That changed recently when Doron, Moshkovitz, Oh, and Zuckerman [DMOZ23] showed how to deter-
ministically condense a CG source. Specifically, they showed how to efficiently output a string Z ∼ {0, 1}m
with small entropy gap, defined as g := m − H∞(Z). (Strictly speaking, their condenser only outputs a
string that is close in variation distance to a distribution with small entropy gap.)

Distributions with small entropy gap are useful in certain applications. They can be used to simulate
algorithms with small error probability. They are also useful for unpredictability applications in cryptogra-
phy. For example, they can be used as the input for a one-way function, and as the key to generate message
authentication codes. Note that seeded extractors are not so useful in these applications, since cycling over
seeds is not realistic in a cryptographic setting. For more on the utility of small entropy gap, see the work of
Doron et al. [DMOZ23].

Thus, CG sources are intermediate in the following sense. A very general source, such as an (n, k)-
source (which is a CG source with t = 1), does not admit any deterministic condensing. Other, less general
sources such as affine sources admit deterministic extraction. CG sources are one of the few models where
we can do something extremely useful deterministically, even though we can’t extract a single random bit.

Doron et al. construct their deterministic condenser by using the CG source to take a random walk on a
lossless expander. They show that for any constant block length n, constant entropy rate k/n, and constant
error ε, they can output a string that contains a constant fraction of the original entropy, and has a constant
entropy gap.

In this paper, we study whether their results can be generalized to the case of a small number t of long
blocks, as well as to subconstant entropy rate. This is natural and important for a few reasons. First, small
t allows for much more general sources; indeed, t = 1 gives the most general model of an (n, k)-source.
It is interesting to find the most general model of a weak source where we can condense deterministically,
and CG sources with few blocks seem like a natural candidate. Second, such CG sources often appear
as intermediate objects in extractor constructions, where they are often called block sources. Third, long
blocks seem even more likely to model natural defective random sources. It allows for more short-range
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correlations, and if there aren’t too many long-range correlations then it should be a CG source with long
blocks.

It appears hard to generalize the techniques of [DMOZ23] to work for long blocks. This is because
known constructions of lossless expanders are not good enough. First, to obtain results for any entropy rate,
Doron et al. had to use a two-level construction, where one level relied on a brute force construction of a
small lossless expander. For long block lengths this is infeasible.

Second, for longer blocks, one could try higher degree lossless expanders, such as those by Guruswami,
Umans, and Vadhan [GUV09]. However, the price of their extremely good lossless expansion is that the
entropy gap becomes too large.

We study deterministic condensers for CG sources with few large blocks, and obtain improved results.
Before describing our constructions, we briefly mention that we show the entropy gap g′ in the output of
any condenser for CG sources must always be at least the entropy gap g = n− k of the last block Xt of the
CG source. Thus, our goal is to ideally achieve g′ = O(g), while preserving almost all of the entropy.

1.1 Our results

Explicit constructions

For our main theorem, we construct the first explicit condenser for Chor-Goldreich sources that can be
instantiated with any block length n, any min-entropy k, and any error ε. We present the general version of
our condenser below, and then proceed to highlight two interesting instantiations.

Theorem 1 (Explicit condensers for CG sources). For any α > 0, there is a constant C ≥ 1 such that the
following holds. For all t, n ∈ N and δ, ε > 0, there is an explicit condenser Cond : ({0, 1}n)t → {0, 1}m
for (t, n, k = δn = n − g)-CG sources with output length m = k′ + g′, output entropy k′ ≥ (1 − α)kt,
output gap g′ ≤ C · (1/δ)C · (g + log(1/ε)), and error ε.

Thus, our explicit condenser is able to preserve 99% of the min-entropy, while achieving a gap that is
only poly(1/δ) times larger than the gap g of a single block. Moreover, there is no restriction on how the
input parameters can be set, and we highlight two interesting settings below.

We first consider the case where the entropy rate δ is constant, as in [DMOZ23]. Here, we obtain
qualitatively similar results, but ours works for arbitrarily large blocks (instead of constant-sized blocks)
and has exponentially small error. Moreover, we only need the number of blocks t to be a large enough
constant to output entropy rate 0.9. This constant is a polynomial in 1/δ.

Corollary 1. For any constant δ > 0, there exists a constant C > 0 such that the following holds. For any
t, n ∈ N, there exists an explicit condenser Cond : ({0, 1}n)t → {0, 1}k′+g′ for (t, n, k := δn)-CG sources,
which has output entropy k′ ≥ 0.99kt, output gap g′ ≤ Cn, and error ε = 2−n.

Next, we dramatically improve the entropy requirement from k = 0.01n to just k = 1, while the entropy
gap grows by just a polynomial factor. As a result, we only need a polynomial number of blocks t to output
entropy rate 0.9.

Corollary 2. There exists a universal constant C > 0 such that the following holds. For any t, n ∈ N,
there exists an explicit condenser Cond : ({0, 1}n)t → {0, 1}k′+g′ for (t, n, k := 1)-CG sources, which has
output entropy k′ ≥ 0.99kt, output gap g′ ≤ nC , and error ε = 2−n.
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In fact, looking at Theorem 1, our condenser can even handle CG sources that have min-entropy k ≪ 1,
while achieving error ε ≪ 2−n. However, it is worth pointing out that this result is only useful when the
stated output gap g′ is less than tg, since this is the original entropy gap in the input CG source.

Overall, as we mentioned, our condensers work for smaller entropy rates and larger blocks than those
in [DMOZ23]. Moreover, our condensers achieve exponentially small error, while the constructions in
[DMOZ23] have constant error. Nevertheless, their condenser does have some advantages over ours. First,
their condenser works in an online manner, and ours doesn’t. Second, they analyzed their condenser for
almost-CG sources, and we haven’t. That said, our condensers do extend to at least one notion of “almost,”
as we describe next.

Remark 1 (Explicit condensers for almost CG sources). Our explicit condensers can also be extended to
certain notions of almost CG sources, such as suffix-friendly almost CG sources, as defined in [DMOZ23].
This is because such sources can be reduced to standard block sources, simply by grouping together blocks.
While such a reduction will produce uneven block lengths (unlike standard CG sources), our constructions
can easily be adapted to handle this more general setting.

Existential results

We complement our explicit constructions with strong existential results. For our main existential result,
we show that a random function is a seedless condenser (with surprisingly strong parameters) for any small
family of sources. Throughout, we use capital letters to denote exponential versions of lower-case letters.1

Theorem 2 (Existential results for any small family). There exist universal constants C, c > 0 such that the
following holds. Let X be a family of (n, k)-sources. For any ℓ ∈ [0, k] and g > 0 such that m := k− ℓ+ g
is an integer, and any ε ∈ (0, 1], the following holds. If |X | ≤ 2cεKψ, where

ψ = max

{
g − 1

⌊L⌋
log(1/ε)− C, g − 1

⌊L⌋
log(C2gg/ε)

C2g

g

}
,

then there exists a condenser Cond : {0, 1}n → {0, 1}m for X with loss ℓ, gap g, and error ε.

The above can be viewed as a condenser version of the classic result that there exist good seedless
extractors for any small family of sources. In fact, it strictly generalizes it.2 Overall, this result shows
that condensers can handle much larger families of sources than extractors, while outputting much more of
the original min-entropy. In particular, the classical existential result for extractors only works for families
of size 2Ω(ε2K), and requires the extractor to lose ℓ = 2 log(1/ε) bits of min-entropy. The above result
shows that condensers can handle families of size up to 2Ω(gεK), provided the gap is of the form g =
O( 1L log(1/ε)). This means that allowing just g = 1 bit of gap can significantly increase the size of the
family that can be handled, while decreasing the loss to ℓ = log log(1/ε)+O(1). Furthermore, the loss can
be decreased all the way to ℓ = 0, at the price of a slightly larger gap g = O(log(1/ε)).3

As an immediate corollary, we get improved existential results for seeded condensers.

1For example, L := 2ℓ,K := 2k, and so on.
2This is because the extractor case corresponds to the case where the error is ε/2 and the gap is g = ε/2, as this implies an error

of ε and a gap of 0.
3In fact, note that this gap can be reduced to g = 1 log(1/ε) +O(1) if we only wish to handle families of size 2Ω(εK).
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Corollary 3 (Existential results for seeded condensers). There is a universal constant C ≥ 1 such that the
following holds. There exists a seeded condenser sCond : {0, 1}n × {0, 1}d → {0, 1}m for (n, k)-sources
with output length m = k + d− ℓ+ g, error ε, loss ℓ, and gap

g ≤ 1

⌊L⌋
log(1/ε) + C,

provided that d ≥ log(n−kε ) + C.

We note that we can improve the seed length requirement to d ≥ log(n−kεg ), if one is willing to increase
the gap to g = 2

⌊L⌋ log(1/ε) + C.4 Previously, a work of Aviv and Ta-Shma [AT19] established similar
existential bounds for seeded condensers, but in the lossless regime ℓ = 0 their result required entropy gap
g = O( log(1/ε)ε ), while we only require g = O(log(1/ε)).5

For our last existential result, we show the existence of good condensers for Chor-Goldreich sources.
Since the number of such sources is very large, we cannot apply Theorem 2 to obtain this result. Instead,
we show that one can iteratively condense CG sources using seeded condensers (in the spirit of [NZ96], but
with a correlated seed). Then, we plug in the seeded condensers from Corollary 3 to obtain the following,
which we take some time to digest immediately after.

Corollary 4 (Existential results for CG sources). There is a constant C ≥ 1 such that the following hold.

• Two blocks: There exists a condenser Cond : ({0, 1}n)2 → {0, 1}m for (2, n, k = n−g)-CG sources
with output length m = 2k − ℓ+ g, error ε, loss ℓ, and gap

g′ ≤ g +
1

⌊L⌋
(g + log(1/ε)) + C,

provided that k ≥ log(g/ε) + C.

• More than two blocks: There exists a condenser Cond : ({0, 1}n)t → {0, 1}m for (t, n, k = n− g)-
CG sources with output length m = kt+ g′, error ε, loss ℓ = 0, and gap

g′ ≤ g + 2C(log∗ t)2 · (g + log(1/ε) + C log∗ t),

provided that k ≥ log(g/ε) + C.

On the other hand, if m = kt− ℓ+ g′ and the loss is ℓ = 2(log∗ t)2, then one can obtain gap

g′ ≤ g + C · 2− log∗ t · (g + log(1/ε)) + C log∗ t,

provided that k ≥ log(g/ε) + 2 log∗ t+ C.

Thus, it is possible to condense Chor-Goldreich sources, even when there are just t = 2 blocks with
logarithmic min-entropy. In the multi-block setting t > 2, we obtain a full tradeoff between the loss ℓ
and gap g′ (Section 6.3), but only highlight the extreme regimes above, for simplicity. In particular, the

4Moreover, Theorem 2 can be used to give a more general version of the above result, which recovers known existential results
for seeded extractors, but we only present the above version for simplicity.

5It is worth noting that they focused on strong seeded condensers, while we focus on standard seeded condensers, since our
result is just a corollary of our existential seedless condensers (Theorem 2), for which there is no notion of “strong.” However, it
should be relatively straightforward to extend our result to obtain strong seeded condensers, using standard tricks.
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above shows that in the lossless regime ℓ = 0, one can condense from multi-block CG sources with a
modest multiplicative blow-up of 2O((log∗ t)2) in the gap (where log∗ denotes the iterated logarithm). On the
other hand, if one is willing to lose a little more min-entropy, this blow-up can be improved to an additive
O(log∗ t). Moreover, we note that at the expense of a significantly greater loss in min-entropy, it is possible
to blow-up the gap by an additive constant (with no dependence on t), and refer the reader to Section 6.3.2
for more.

Impossibility results

Finally, we show a lower bound, which says that the gap in the CG source must propagate to the output.

Theorem 3 (Impossibility results for CG sources). Fix any 0 ≤ g ≤ m ≤ n ∈ N and ε ∈ [0, 1). For every
function Cond : ({0, 1}n)t → {0, 1}m, there exists a (t, n, n− g)-CG source X such that Cond(X) is ε-far
from every (m,m− g + cε)-source, where cε := log( 1

1−ε).
6

This impossibility result is a strengthening of the fact that it is impossible to condense general (n, k)-
sources, and was independently obtained by Chattopadhyay, Gurumukhani, and Ringach [CGR24].7

Organization The rest of this paper is organized as follows. We start with an overview of our techniques
in Section 2. Then, after some preliminaries in Section 3, we provide a collection of (mostly new) tools and
tricks around block sources in Section 4, which we’ll use throughout the paper. In Section 5, we provide our
main explicit condenser for Chor-Goldreich sources, and prove Theorem 1. Following this, we provide our
existential results in Section 6 and our impossibility results in Section 7. Finally, we conclude with some
open problems in Section 8.

2 Overview of our techniques

To begin, we give an informal overview of the techniques used in our constructions and proofs.

2.1 Explicit constructions

As discussed in the introduction, it seems difficult to extend the techniques of Doron et al. [DMOZ23] to
obtain a condenser that can handle CG sources with long blocks. This is because their construction involves
the use of excellent lossless expanders, which we don’t know how to explicitly construct. They get around
this problem by considering constant block length n, which allows them to obtain the lossless expanders via
a brute-force search. But since we want to work with a larger block length, this is no longer possible. Thus,
we need a new idea.

High-level plan

Our idea is to return to a classical paradigm in the construction of seedless extractors for independent
sources, and show that it can be adapted to get seedless condensers for Chor-Goldreich sources. Intuitively,

6We remark that cε is an unavoidable term, since sources with 0 min-entropy are still ε-close to min-entropy cε.
7Beyond this impossibility result, there is little overlap between our two works, which will both appear at FOCS 2024. This

is because we focus on explicit condensers for CG sources, whereas [CGR24] focuses on existential and impossibility results for
almost CG sources, and other more general models.
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this makes sense given that CG sources are a natural generalization of independent sources, and condensers
are a natural generalization of extractors.

The well-known paradigm that we use involves taking a single independent source, expanding it into a
table where one row is uniform (or has high entropy), and gradually collapsing that table (with the help of the
other independent sources) until all that remains is that one good row [Ta-96,Rao09,BRSW12,Li13,Coh16].
Our goal is to extend this paradigm so that it still works even if the sources are not truly independent sources,
but blocks coming from a CG source.

In order to make this happen, the core tool that we use is a simple observation, which says that every
seeded condenser (and thus seeded extractor) still works even if its seed is “CG-correlated” with the source.
In more detail, suppose that a seeded condenser was expecting to receive an (n, k)-source X and independent
seed Y ∼ {0, 1}d as input, but instead received an (n, k)-source X and a correlated seed Y ∼ {0, 1}d,
which is only guaranteed have min-entropy d − g on each fixing of X. The core tool we use says that the
error of the seeded condenser blows up from ε → ε2g, while its output gap g′ blows up from g′ → g′ + g.
This key observation has appeared a few times in prior work, with slightly weaker parameters [BCDT19] or
in a slightly different context [BGM22]. We record it as Lemma 8.

By combining the paradigm for extracting from independent sources with the above tool, we now have
a very high-level plan for condensing CG sources with long blocks. However, several challenges arise along
the way, since the known tools for collapsing the table (such as non-malleable extractors and mergers)8

cannot be ported over in a black-box manner. Instead, we must construct our own non-malleable condensers
(for CG sources) from scratch, and we do so via a simple composition of seeded extractors. With this
high-level plan in mind, we proceed with a more detailed description of our condenser.

A detailed description of our condenser

Given a CG source (or block source)9 X = (X1, . . . ,Xt), we work backwards starting with Xt, and try
to extract (almost) all of the entropy out of X while preserving a small entropy gap. To get the condenser,
we first convert the block Xt into a somewhere high-entropy source, which is a table with some number
of rows such that at least one row has high entropy rate. If the entropy rate of Xt is relatively large (e.g.,
any constant), we can use well-known somewhere condensers [BKS+10, Raz05], which produce a small
(constant) number of rows with exponentially small error.

Our next step is to use the other blocks to reduce the number of rows in this table, while preserving
almost all of the entropy. If the blocks were independent, prior work shows that we could eventually reduce
the table to a single row that is close to uniform (which gives an extractor). However, when we only have a
block source, for technical reasons we’ll soon explain, this is no longer possible and eventually we get one
row with large entropy and small entropy gap. This gives a condenser.

The non-malleable condenser The key ingredient in achieving this is a new merger (or non-malleable
condenser, similar to those defined in [Li12, Li15]), that we design to merge two rows in the table while
using a few additional blocks. Our final condenser is obtained by repeatedly applying this merger, until
the number of rows in the table reduces to one. To illustrate our ideas, let’s consider the simplified case of
merging two rows in the table (say Y1,Y2), where at least one row is uniform (but we don’t know which

8Here, a non-malleable extractor can roughly be thought of as a seeded extractor sExt : {0, 1}n×{0, 1}d → {0, 1}m that offers
an additional “robustness” guarantee. This robustness guarantee says that the output of sExt not only looks uniform, but also looks
independent of (an output produced by) an additional call to sExt on the same source and a correlated seed. Such an object can be
used to break the correlation between pairs of rows in the table, while keeping the good row looking uniform (or high-entropy).

9Recall that a block source is a generalization of a CG source in that the blocks need not have the same length.
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one). Our basic merger works as follows. First take two other blocks (say X1,X2), and take two slices: Z1

from Y1 and Z2 from Y2. We use a standard seeded extractor sExt which works even when the seed only
has entropy rate 0.9 [GUV09], and compute W1 = sExt(X2,Z1),W2 = sExt(X2,Z2). In this step we
make sure that the sizes of these random variables satisfy

|W1| ≫ |W2| ≫ |Z2| ≫ |Z1|.

Next we apply the seeded extractor again and compute S1 = sExt(X1,W1) and S2 = sExt(X1,W2),
where |S1| = |S2|. Finally, we output V = S1 ⊕ S2, where ⊕ denotes bit-wise XOR.

The analysis For the analysis, let us first consider the case where all the blocks are independent. We have
two cases. If Y1 is the uniform row, then Z1 is uniform and therefore W1 is uniform (ignoring the error
of the extractor). Since |W1| ≫ |W2| ≫ |Z2|, we can fix Z2 and W2, and conditioned on this fixing,
(with high probability) W1 still has entropy rate say > 0.9. Notice at this point, X1 is still independent of
W1. Now we can further fix S2 = sExt(X1,W2), which is a deterministic function of X1 since W2 is
fixed. Conditioned on this fixing, X1 still has good entropy as long as the size of S2 is not too large. Hence,
S1 = sExt(X1,W1) is close to uniform and so is V = S1 ⊕ S2.

In the other case, Y2 is the uniform row, and thus Z2 is uniform.10 Now we first fix Z1 and W1.
Notice that since |Z2| ≫ |Z1|, conditioned on this fixing Z2 still has entropy rate > 0.9. Furthermore
when Z1 is fixed, W1 is a deterministic function of X2. Thus conditioned on the further fixing of W1,
X2 and Z2 are still independent while X2 still has good entropy as long as the size of W1 is not too large.
Therefore W2 = sExt(X2,Z2) is close to uniform even conditioned on W1. Now, we can further fix
S1 = sExt(X1,W1), which is a deterministic function of X1 since W1 is fixed. Conditioned on this fixing,
X1 is still independent of W2 and still has good entropy as long as the size of S1 is not too large. Hence,
S2 = sExt(X1,W2) is close to uniform and so is V = S1 ⊕ S2.

Extending the analysis to correlated blocks Now let us see what happens if the blocks are not indepen-
dent, but rather form a block source. We will again use the core observation that for any seeded extractor, if
the seed and the source form a block source, then the output of the extractor becomes a source that suffers
roughly the same entropy gap as the seed.

With this property in hand, our previous analysis can go through with a few modifications. Most impor-
tantly, some of the random variables in {W1,W2,S1,S2,V} will no longer be uniform, since the entropy
gap of the seed will be inherited in the output when we apply a seeded extractor. In addition, we need
to set the errors in the extractors appropriately so that the blow up factor 2g in the error can be absorbed.
Finally, in the analysis, when we fix certain random variables (e.g., Z1,Z2,W1,W2), this may affect other
blocks besides the block from which the random variable is produced, because now the blocks are no longer
independent. However, as long as we keep the sizes of the random variables relatively small compared to
the entropy in each block, after conditioning the blocks still have enough entropy left and thus they are still
(close to) a block source.

Tracking the gap Notice that if initially the “good” row in Y1,Y2 has some entropy gap g′, then the
final entropy gap g′′ of our basic merger will be a constant factor larger than g′, due to our conditioning
argument and the requirement that the seed used in the extractor has entropy rate > 0.9. Therefore when

10Note that we are only analyzing the case where at least one of Y1,Y2 are uniform, since this is true for some pair of consecutive
rows in the table, and we don’t care what happens when we merge other pairs of consecutive rows.
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we repeatedly apply the basic merger, the entropy gap will increase by a constant factor at each step. As
a result, the final entropy gap will become larger than g, the entropy gap of each block in the CG source.
To see this, consider the case where k = δn for some constant δ > 0 and we start with a somewhere high-
entropy condenser as in [BKS+10, Raz05]. If we boost the entropy rate to say 0.99, then the initial entropy
gap of the good row will be poly(δ)g, since the length of each row in the table is poly(δ)n. However,
the table itself also has poly(1/δ) rows, so by the above analysis, we eventually get an entropy gap of
C log(poly(1/δ)) poly(δ)g = poly(1/δ)g, since each time we use the non-malleable condenser, we halve the
number of rows in the table, but blow up the gap by a constant factor C. Thus if δ was originally a constant,
the final entropy gap is poly(1/δ)g = O(g). Note that this is as expected since our impossibility result
shows that an entropy gap of g is necessary.

This also results in another modification we must make in our constructions. Specifically, when the
entropy gap becomes large in the process of repeated merging, in order to obtain a seed for the extractor
with entropy rate > 0.9, it is no longer enough to just use the entropy from one block. Rather, at this point
we need to use the concatenation of several blocks as the source in the seeded extractor to get sufficient
entropy. In doing so, we need a slightly larger seed length over time, but this does not drastically change
any of the parameters. In fact, since the seed length must grow anyway, we can (for free) force the error of
each merging step to be half the error of the prior step, resulting in a geometric series of errors. As a result,
the overall error of the condenser is simply the error of the first (somewhere-condensing) step, which is just
2−poly(δ)n if we start with a (t, n, δn)-CG source.

Pre- and post-processing Finally, we have just two loose ends that we need to tie up. First, the discussion
above assumed that we started with a (t, n, δn)-CG source for some constant δ > 0, so that we could apply
the somewhere-condensers of [BKS+10, Raz05] to create the initial table. However, what if we want to
condense from CG sources with sub-constant δ? As it turns out (and is well-known), these somewhere-
condensers can actually handle an input source of min-entropy δn = n0.99, and thus the construction can
still be applied even if we start off with a CG-source with δn = n0.99. More importantly, if we start off
with a (t, n, δn)-CG source with δn ≪ n0.99, we can always turn it into a (t/b, nb, δnb)-CG source with
δnb ≥ (nb)0.99, via a pre-processing step, where we simply group the blocks into “super-blocks” containing
sufficiently many blocks b each. This will slightly impact the parameters of our condenser, but not enough
to be noticeable (when compared to the impact of the other steps).

Second, the discussion above gave a detailed overview of how we can condense the CG source into a
string Z with high entropy rate, but what if this was done using a relatively small number of blocks in the
CG source, and most of the entropy in the CG source still remains (i.e., in the unused blocks X⋆)? To
deal with this, we append a simple post-processing step to our condenser. As it turns out, since we already
have obtained a (perhaps short) string with high entropy rate, it is relatively easy to condense the rest of
the min-entropy out of the CG source. Indeed, since the entropy rate is so high, we can use our core tool
that a seeded extractor can handle CG-correlated seeds, and suffer very little loss. Thus, a first attempt to
get the rest of the min-entropy out may involve calling a seeded extractor with X⋆ as the source and Z as
the seed. However, it may be the case that X⋆ is extremely long compared to Z, which would make this
approach fail. Instead, the right approach is to use classic block-source extraction framework of Nisan and
Zuckerman [NZ96], or rather a slight generalization that works for condensers and a CG-correlated seed.
With this approach, we can successfully condense the rest of the min-entropy out of X⋆, even if Z is very
tiny in comparison.
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2.2 Existential results

Next, we briefly discuss the ideas that go into our existential results. As a reminder, our main result shows
that there exist great seedless condensers for any small enough family X of sources. As a corollary (i.e.,
by picking the appropriate family X ), we immediately get our existential results for seeded condensers.
Then, by plugging these seeded condensers into the (slight generalization of the) block-source extraction
framework described in the paragraph above, we immediately get our existential results for CG sources.
Thus, all that remains is to show that there exist great seedless condensers for any small family of sources.

In order to show the above, we show that a random function f : {0, 1}n → {0, 1}m is, with high
probability, a great seedless condenser for a single source X ∼ {0, 1}n (and apply a union bound over all
X ∈ X ). As it turns out, if one wishes to get good parameters, this is quite nontrivial to show.

The overall approach is as follows. First, we recall that a random variable f(X) ∼ {0, 1}m is ε-close
(in statistical distance) to min-entropy k′ iff for every S ⊆ {0, 1}m, it holds that

Pr[f(X) ∈ S] ≤ |S| · 2−k′ + ε.

Thus, it is tempting to fix a set S, show that the above is true with high probability over f , and then union
bound over all S ⊆ {0, 1}m. However, there are simply too many sets S for this to yield good parameters.

As a second approach, one may recall a classical lemma (in, e.g., [GUV09, Lemma 6.2]), which says
that if you want to ensure that f(X) is ε-close to min-entropy k′, it is enough to show that there exists no
small set S ⊆ {0, 1}m of size ≤ ε2k

′
such that

Pr[f(X) ∈ S] ≥ ε.

This is much better, since we have greatly reduced the number of sets S ⊆ {0, 1}m that we ultimately need
to union bound over. However, we can still do even better.

The key realization (which is inspired by existence proofs for lossless condensers) is that we can specify
S ⊆ {0, 1}m by instead specifying its preimage f−1(S). Thus, instead of counting sets from {0, 1}m (for
the union bound), we can count sets from support(X). This is much better when support(X) ≪ 2m, which
happens when we are targetting a regime where the gap of the condenser will need to exceed the loss (e.g.,
the lossless regime) and X is flat.11 But what if X is not flat? When talking about seeded condensers, one
can often assume that X is flat for free. But this is not true for seedless condensers (for an explanation why,
see Section 6.1).

In order to deal with an (n, k)-source X that may not be flat, we break its support into two parts X1, X2.
We pick some threshold T and let X1 contain the heaviest T elements in support(X), while X2 contains the
rest. Then, instead of analyzing the performance of f on the entirety of X, we analyze it on the subdistri-
butions of X over X1 and X2 (and make sure that the images of X1 and X2 do not interact too much). If
we pick the threshold T correctly, then the subdistribution on X1 will look roughly flat, while the subdis-
tribution on X2 has much higher entropy than X. This is exactly what we want, because the former allows
us to safely count tests via their preimages in X1, while the latter allows us to safely count tests by picking
them from {0, 1}m (since f will be nowhere close to the lossless regime for the subdistribution on X2, as
it has much higher min-entropy than X). All that remains is to ensure that the images of X1 and X2 do not
interact too much, which follows without too much additional trouble.

11As a reminder, a flat source is uniform over its support.
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2.3 Impossibility results

Finally, our impossibility result for condensing CG sources is a simple extension and generalization of the
well-known impossibility result for extracting from CG sources [CG88], which uses backwards induction
on the blocks. Indeed, the latter can be viewed as a special case of the former.

3 Preliminaries

Before we dive into our main proofs, we collect some preliminaries that will be used throughout the paper.

Notation We adopt the convention that capital letters denote the exponential version of lower-case letters.
For example, N := 2n, D := 2d, and so on. Given a string x ∈ {0, 1}n, we let xi denote the value it holds
at its ith index, and for a set S ⊆ [n] we let xS denote (xi)i∈S (concatenated in increasing order of i). We
also use x<i as shorthand for x[1,i−1], and we define x≤i, x>i, and x≥i similarly. All logs are base 2, unless
otherwise noted. In particular, we write log() := log2() and ln() := loge().

3.1 Probability

We use bold letters, such as X, to refer to random variables (which we often call sources). We let Un denote
the uniform random variable over {0, 1}n, and more generally say that a random variable X is flat if it is
uniform over its support. Furthermore, if support(X) ⊆ V , we say that X is supported on V and denote this
by X ∼ V . Finally, for any two random variables X,Y defined over the same space, and y ∈ support(Y),
we let (X | Y = y) denote a random variable that hits x with probability Pr[X = x | Y = y].

Statistical distance

Next, we introduce a standard way to measure the distance between two random variables.

Definition 3 (Statistical distance). The statistical distance between random variables X,Y ∼ V is defined

|X−Y| := max
S⊆V

Pr[X ∈ S]− Pr[Y ∈ S] =
1

2

∑
v∈V

|Pr[X = v]− Pr[Y = v]|.

We say that X,Y are ε-close and write X ≈ε Y iff |X−Y| ≤ ε. If X,Y are 0-close then we write X ≡ Y.
If X,Y are not ε-close, we say they are ε-far and write X ̸≈ε Y.

Statistical distance is a metric, which means that it satisfies the triangle inequality.

Fact 1 (Triangle inequality). For any random variables X,Y,Z ∼ V ,

|X− Z| ≤ |X−Y|+ |Y − Z|.

Throughout this paper, we will often want to bound the statistical distance between random variables. A
classic tool for this is the following.

Fact 2 (Data-processing inequality). For any random variables X,Y ∼ V and function f : V →W ,

|X−Y| ≥ |f(X)− f(Y)|.
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Another tool that is useful for bounding statistical distance is the coupling lemma:

Lemma 1 (Coupling lemma). For any two random variables X,Y ∼ V , the following holds. For every
pair of jointly distributed random variables (X′,Y′) with X′ ≡ X and Y′ ≡ Y, it holds that

|X−Y| ≤ Pr[X′ ̸= Y′].

Moreover, there exists a pair of jointly distributed random variables (X⋆,Y⋆) with X⋆ ≡ X and Y⋆ ≡ Y
such that

|X−Y| = Pr[X⋆ ̸= Y⋆].

Convex combinations

We will also frequently use the notion of convex combinations. We say X is a convex combination of
distributions from Y if there exist probabilities {pi} summing to 1 and distributions Yi ∈ Y such that
X =

∑
i piYi, meaning that X samples from Y with probability pi. The following fact will be quite useful.

Fact 3. Let X ∼ V and A ∼ W be (arbitrarily correlated) random variables, and let X be a family of
random variables over V . Suppose that Pra∼A[X /∈ X | A = a] ≤ ε. Then X is ε-close to a convex
combination of random variables from X .

Proof. For every fixed a such that (X | A = a) ∈ X , define Ya := (X | A = a). For all other a, define
Ya to be an arbitrary member of X . Consider the convex combination Y⋆ :=

∑
a Pr[A = a] ·Ya. Clearly,

it is a convex combination of distributions from X . It is also straightforward to verify Y⋆ ≈ε X.

Concentration bounds

Finally, we will use the following version of the multiplicative Chernoff bound, which works even if we
only know an upper bound on the expectation of the random variable of interest.

Theorem 4 (Chernoff bound). Let X1, . . . ,Xn be a sequence of independent random variables, where each
Xi ∼ {0, pi} for some pi ∈ [0, 1], and let X :=

∑
iXi denote their sum. Then for any δ > 0 and µ ≥ E[X],

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

3.2 Entropy

In extractor theory, the standard way to measure the randomness content of a source is via its min-entropy.

Definition 4 (Min-entropy). The min-entropy of a random variable X ∼ {0, 1}n is defined

H∞(X) := min
x∈support(X)

log

(
1

Pr[X = x]

)
,

while its min-entropy gap is defined as n−H∞(X).12

12For convenience, from here on out, whenever we say “entropy” we really mean “min-entropy.”
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It is often the case that a random variable X ∼ {0, 1}n does not exactly have high min-entropy, but is
(statistically) close to a random variable that does. In many applications, this is just as good as X having
high min-entropy itself, and as a result, this notion has earned its own name: smooth min-entropy. In order
to formally introduce this definition, we first let Bε(X) denote the set of random variables Y ∼ {0, 1}n that
are ε-close to X in statistical distance. Then, we define smooth min-entropy as follows.

Definition 5 (Smooth min-entropy). The ε-smooth min-entropy of a random variable X ∼ {0, 1}n is
defined as

Hε
∞(X) := sup

Y∈Bε(X)
H∞(Y) = max

Y∈Bε(X)
H∞(Y).

Looking at this definition, a few remarks are in order. First, we note that we were able to replace the
supremum with a maximum due to standard tools from analysis.13 (In doing so, we know there always
exists some distribution Y ≈ε X such that H∞(Y) = Hε

∞(X).) Next, in order to highlight that smooth
min-entropy is a weaker notion than standard min-entropy (and thus easier to obtain), we point out that there
are other well-studied notions of entropy that imply much better guarantees on the former than the latter.14

Finally, we mention two strange artifacts of the above definition, which distinguish it from other notions of
entropy: First, note that a constant random variable has ε-smooth min-entropy cε := log( 1

1−ε), which is> 0
for ε > 0. Second, notice that when ε is large, the smooth min-entropy of X can actually depend on the
ambient space on which X was defined! While this may seem concerning at first, one may find comfort in
thinking of smooth min-entropy simply as convenient shorthand for the expression in Definition 5, instead
of as a true “entropy.”

Next, we record a very useful characterization of smooth min-entropy, which will be used throughout.
This has appeared a few times in prior work, albeit in slightly different forms (see, e.g., [Zuc07, Lemma 2.2]
or [GUV09, Lemma 6.2]).

Lemma 2 (A characterization of smooth min-entropy). For any X ∼ {0, 1}n and k ≤ n,

Hε
∞(X) ≥ k ⇐⇒ ∀S : Pr[X ∈ S] ≤ |S| · 2−k + ε.

Proof. ( =⇒ ) Let X′ ∼ {0, 1}n be a source of min-entropy at least k such that X′ ≈ε X. Then for any S,

Pr[X ∈ S] ≤ Pr[X′ ∈ S] + ε ≤ |S| · 2−k + ε.

( ⇐= ) Let Heavy be the set of elements that X assigns probability> 2−k, and let Light := {0, 1}n\Heavy.
Notice that since n ≥ k, we have Pr[X ∈ Heavy] − 2−k · |Heavy| ≤ 2−k · |Light| − Pr[X ∈ Light]. In
other words, there is a way to shift the excess weight that X assigns to Heavy onto Light without going over
probability 2−k on any of these elements. Let X′ ∼ {0, 1}n denote this new source, and note H∞(X′) = k.
By our construction of X′ and the hypothesis, we have

|X−X′| = max
S

|Pr[X ∈ S]− Pr[X′ ∈ S]|

= Pr[X ∈ Heavy]− Pr[X′ ∈ Heavy]

≤ |Heavy| · 2−k + ε− |Heavy| · 2−k

≤ ε,

13In particular, one can argue that Bε(X) is closed and bounded, and by the Heine-Borel theorem for finite-dimensional normed
vector spaces, it is also compact. Then, since the min-entropy function H∞() is continuous, H∞(Bε(X)) is also compact (and
therefore closed and bounded). It follows that supH∞(Bε(X)) ∈ H∞(Bε(X)), allowing us to replace sup with max.

14Consider the Rényi entropy of a random variable, defined H2(X) := log
(

1∑
x Pr[X=x]2

)
. Comparing this to min-entropy, we

have H∞(X) ≥ 1
2
H2(X), but if we compare this to smooth min-entropy, it is known that Hε

∞(X) ≥ H2(X)− log(1/ε) [RW04,
Lemma 4.2]. A similar connection was used in [DMOZ23] in order to use the ℓq norm as a proxy for smooth min-entropy.
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as desired.

In fact, notice that the proof of the lemma above actually proved the following stronger result.

Lemma 3 (A characterization of smooth min-entropy). For any X ∼ {0, 1}n, 0 ≤ k ≤ n, and ε ∈ [0, 1], the
following holds. If we define Heavy :=

{
x ∈ {0, 1}n : Pr[X = x] > 2−k

}
, then we have the equivalence

Hε
∞(X) ≥ k ⇐⇒ Pr[X ∈ Heavy] ≤ |Heavy| · 2−k + ε.

Finally, we record one technical lemma that will be useful later on.

Claim 1. Consider any random variables A,A′ ∼ A and B,B′ ∼ B such that (A,B) ≈ε (A
′,B′). Then

Pr
a∼A

[Hγ
∞(B | A = a) < k] ≤ Pr

a∼A′
[Hγ/2

∞ (B′ | A′ = a) < k] + 4ε/γ + ε.

Proof. Let BAD := {a : Hγ
∞(B | A = a) < k}, let BAD′ := {a : H

γ/2
∞ (B′ | A′ = a) < k}, and define

S := BAD \ BAD′. Note that

Pr
a∼A

[Hγ
∞(B | A = a) < k] = Pr

a∼A
[a ∈ BAD]

≤ Pr
a∼A

[a ∈ S] + Pr
a∼A

[a ∈ BAD′]

≤ Pr
a∼A

[a ∈ S] + Pr
a∼A′

[a ∈ BAD′] + ε

= Pr
a∼A

[a ∈ S] + Pr
a∼A′

[Hγ/2
∞ (B′ | A′ = a) < k] + ε,

and thus all that remains is to bound Pra∼A[a ∈ S]. Towards this end, notice that for every a ∈ S, it holds
that Hγ

∞(B | A = a) < k and Hγ/2
∞ (B′ | A′ = a) ≥ k. In other words, (B′ | A′ = a) is (γ/2)-close to the

family X of sources with min-entropy at least k, yet (B | A = a) has distance > γ from this same family.
By the triangle inequality, this means (B | A = a) has distance > γ/2 from (B′ | A′ = a).

Now, define p := Pr[A ∈ S], and partition S into subsets X1, X2 such that Pr[A = a] ≥ Pr[A′ = a]
for all a ∈ X1, and Pr[A = a] < Pr[A′ = a] for all a ∈ X2. Since X2, X2 is a partition, it must hold
that either Pr[A ∈ X1] ≥ p/2 or Pr[A ∈ X2] ≥ p/2. Suppose the former is true, and recall that for all
a ∈ X1 ⊆ S, it holds that (B | A = a) ̸≈γ/2 (B

′ | A′ = a). By definition of statistical distance, this means
that for every a ∈ X1 there is a set Qa such that Pr[(B | A = a) ∈ Qa]− Pr[(B′ | A′ = a) ∈ Qa] ≥ γ/2.
Thus

|(A,B)− (A′,B′)| ≥
∑

a∈X1,b∈Qa

Pr[(A,B) = (a, b)]− Pr[(A′,B′) = (a, b)]

=
∑

a∈X1,b∈Qa

Pr[A = a] · Pr[B = b | A = a]− Pr[A′ = a] · Pr[B′ = b | A′ = a]

≥
∑

a∈X1,b∈Qa

Pr[A = a] · (Pr[B = b | A = a]− Pr[B′ = b | A′ = a])

=
∑
a∈X1

Pr[A = a]
∑
b∈Qa

(Pr[B = b | A = a]− Pr[B′ = b | A′ = a])

≥ γ

2

∑
a∈X1

Pr[A = a] ≥ pγ/4.
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Consider now the case that Pr[A ∈ X2] ≥ p2, and recall that for all a ∈ X2 ⊆ S it holds that (B | A =
a) ̸≈γ/2 (B′ | A′ = a). By definition of statistical distance, for every a ∈ X2 there is a set Qa such
that Pr[(B′ | A′ = a) ∈ Qa] − Pr[(B | A = a) ∈ Qa] ≥ γ/2. By definition of X2, we know that
Pr[A′ = a] > Pr[A = a] for all a ∈ X2, which implies that Pr[A′ ∈ X2] ≥ p/2. Thus

|(A,B)− (A′,B′)| ≥
∑

a∈X2,b∈Qa

Pr[(A′,B′) = (a, b)]− Pr[(A,B) = (a, b)]

=
∑

a∈X2,b∈Qa

Pr[A′ = a] · Pr[B′ = b | A′ = a]− Pr[A = a] · Pr[B = b | A = a]

≥
∑
a∈X2

Pr[A′ = a]
∑
b∈Qa

(Pr[B′ = b | A′ = a]− Pr[B = b | A = a])

≥ γ

2

∑
a∈X2

Pr[A′ = a] ≥ pγ/4.

Thus we see that no matter what, |(A,B)− (A′,B′)| ≥ pγ/4. And since this statistical distance is at most
ε by the hypothesis, we get that p ≤ 4ε/γ. Since p was defined to be Pra∼A[a ∈ S], the result follows.

3.3 Condensers

At last, we are ready to present a formal definition for the main objects of study in this paper.

Definition 6 (Condenser). Let X be a family of (n, k)-sources. A function Cond : {0, 1}n → {0, 1}m is
called a condenser for X with error ε, loss ℓ ∈ [0, k], and gap g, if m = k − ℓ+ g and for every X ∈ X ,

Hε
∞(Cond(X)) ≥ k − ℓ.

We call k′ := k − ℓ the output entropy of the condenser.

Note that after specifying the family X and the error ε of the condenser, there are many equivalent ways
to describe the remaining parameters. In particular, one may choose to specify its loss and gap, or its output
entropy and gap, or its loss and output length, and so on (and the other parameters can be inferred).15 Our
choice will often depend on whichever feels the most appropriate in context. One important note, however,
is that the output entropy simply describes a lower bound on the actual (smooth) min-entropy of the output,
while the output gap describes an upper bound on the actual gap. Indeed, the parameters of the condenser
should not change as you plug in different sources from X !

Now, while the above definition seems to describe “deterministic” or “seedless” condensers, it is easy to
see that it also captures seeded condensers, simply by setting X to consist of all sources of the form (X,Y),
where X is an (n, k)-source and Y is an independent (d, d)-source. Still, it is helpful to introduce a separate
(perhaps redundant) definition, which makes it easier to refer to their parameters.

Definition 7 (Seeded condenser). A function sCond : {0, 1}n×{0, 1}d → {0, 1}m is an (n, k)× (d, d) →ε

(m, k′) seeded condenser if for any (n, k)-source X, it holds that Hε
∞(sCond(X,Ud)) ≥ k′.

Next, note that condensers (as put forth in Definition 6) strictly generalize extractors, which correspond
to the case where g = 0. As a result, the same is true of seeded condensers and seeded extractors. Still, it
will be handy to record a separate definition of these objects, for ease of reference.

15When there is a notion of “gap” in the input, we often refer to the gap of the condenser as the “output gap” to avoid confusion.
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Definition 8 (Seeded extractor). A function sExt : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-seeded extractor
if for any (n, k)-source X, it holds that sExt(X,Ud) ≈ε Um.

Note that such a seeded extractor is automatically a (n, k)× (d, d) →ε (m,m)-seeded condenser.
Finally, we record a useful “trick,” which can be thought of as a trivial condenser. In the world of

extractors, it is well-known that you can shorten the output length “for free,” simply by taking a prefix (i.e.,
this operation won’t harm the other parameters of the extractor). In the world of condensers, this may harm
the overall output entropy rate k′/m, but it cannot harm the absolute gap.

Fact 4. If X ∼ {0, 1}n has min-entropy gap ≤ g, its prefix X[p] of length p has min-entropy gap ≤ g.

Proof. Let x be the most likely element hit by X[p], and suppose it is hit with probability 2−ℓ. Conditioned
on X[p] = x, there is some element y ∈ {0, 1}n−p hit by X[p+1,n] with probability at least 2−(n−p). This
means X hits (x, y) with probability at least 2−ℓ−(n−p). Since X has min-entropy gap ≤ g, this means that
p− ℓ ≤ g, and the result follows.

4 Basics of block sources

In this section, we’ll introduce some definitions, facts, and tools related to CG sources and block sources.
Many of the tools we develop here are new, and they find good use throughout the rest of the paper.

4.1 Definitions

First, recall that an (n, k)-source is simply a random variable X ∼ {0, 1}n with min-entropy at least k.
Chor-Goldreich sources generalize (n, k)-sources in the following way:

Definition 9 (CG sources). A source X ∼ ({0, 1}n)t is called a (t, n, k)-Chor-Goldreich source if

H∞(Xi | X<i = x) ≥ k

for all i ∈ [t] and x ∈ ({0, 1}n)i−1.

Note that a (1, n, k)-Chor-Goldreich source is exactly an (n, k)-source. A (t, 1, k)-Chor-Goldreich
source, on the other hand, is known as a Santha-Vazirani source [SV86]. Next, the following allows us
to assume that every Chor-Goldreich source has some nice structure.

Fact 5. If X ∼ ({0, 1}n)t is a (t, n, k)-Chor-Goldreich source, then it is a convex combination of (t, n, k)-
Chor-Goldreich sources X′ ∼ ({0, 1}n)t such that for any i ∈ [t] and x ∈ ({0, 1}n)i−1,

(Xi | X<i = x)

is a flat (n, k)-source.

Proof. It is well-known that any (n, k)-source (with k an integer) is a convex combination of flat (n, k)-
sources [Vad12, Lemma 6.10]. Iteratively apply this to blocks X1, . . . ,Xt, using the fact that under any
conditioning on X<i, the block Xi is still an (n, k)-source (by definition of Chor-Goldreich source).

In our constructions, we’ll often need to work with a generalization of CG sources, where the block
lengths are uneven. These are called block sources.
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Definition 10 (Block sources). A source X = (X1, . . . ,Xt) is called an ((n1, k1), (n2, k2), . . . , (nt, kt))-
block source if each Xi is over ni bits, and

H∞(Xi | X<i = x) ≥ ki

for all i ∈ [t] and x ∈ {0, 1}n1 × {0, 1}n2 × · · · × {0, 1}ni−1 .

Note that a (t, n, k)-CG source is just a block source with n1 = · · · = nt = n and k1 = · · · = kt = k.
To streamline our proofs, it will be convenient to take this generalization two steps further. We use the

following definition, which generalizes block sources by only requiring each block Xi to be close to having
a min-entropy guarantee, and only requiring this closeness to hold for most fixings of the prefix X<i.

Definition 11 (Almost block sources). A source X = (X1, . . . ,Xt) is called an ((η1, γ1), . . . , (ηt, γt))-
almost ((n1, k1), . . . , (nt, kt))-block source if each Xi is over ni bits, and for every i ∈ [t] it holds that

Pr
x∼X<i

[(Xi | X<i = x) is γi-close to an (ni, ki)-source] ≥ 1− ηi.

This notion is a generalization of the first type of almost block sources studied in [DMOZ23, Definition
1.3] (which correspond to the special case where γ1 = · · · = γt = γ and η1 = · · · = ηt = 0), and a
specialization of the third type of almost block sources studied in [DMOZ23, Definition 8.3] (with λ = 0).

4.2 Almost block sources are close to block sources

As it turns out, it is not too difficult to show that an almost block source is close to a true block source.

Lemma 4. If X = (X1, . . . ,Xt) is an ((η1, γ1), . . . , (ηt, γt))-almost ((n1, k1), . . . , (nt, kt))-block source,
then X is ε-close to an ((n1, k1), . . . , (nt, kt))-block source X⋆, where ε =

∑
i∈[t](ηi + γi).

The key tool is the following, which can be viewed as a tightness result for a key lemma (on amplify-
ing statistical distance) of Chattopadhyay, Goodman, and Zuckerman [CGZ22, Lemma 1, ECCC version].
More formally, it can be viewed as a “local-to-global” closeness result for sequences of correlated random
variables. It also generalizes the classic fact that a sequence of independent random variables, each close to
uniform, is itself (relatively) close to uniform (e.g., [Rao09, Proposition 2.11]).

Lemma 5. Let X ∼ V1×· · ·×Vt and Y ∼ V1×· · ·×Vt each be a sequence of (not necessarily independent)
random variables. Suppose that for every i ∈ [t] and v ∈ support(X<i) ∩ support(Y<i),

|(Xi | X<i = v)− (Yi | Y<i = v)| ≤ εi.

Then
|X−Y| ≤

∑
i∈[t]

εi.

We first prove the key tool above.

Proof. We proceed via a coupling argument. Namely, we will define jointly distributed random variables
X′,Y′ ∼ V1 × · · · × Vt such that X′ ≡ X,Y′ ≡ Y, and so that it is easy to get a good upper bound on
Pr[X′ ̸= Y′]. The result will then follow by the first part of the coupling lemma (Lemma 1).

In order to actually construct X′,Y′, we will use the second part of the coupling lemma (Lemma 1).
In more detail, we define these random variables iteratively (from i = 1, 2, . . . , t), as follows. For every
i ∈ {1, 2, . . . , t}, we will define a new pair of jointly distributed random variables (X′

i,Y
′
i) such that for

every (u, v) ∈ support(X′
<i,Y

′
<i), all of the following bullet points hold:
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•
(
X′
i | (X′

<i,Y
′
<i) = (u, v)

)
≡ (Xi | X<i = u).

•
(
Y′
i | (X′

<i,Y
′
<i) = (u, v)

)
≡ (Yi | Y<i = v).

• Pr[X′
i ̸= Y′

i | (X′
<i,Y

′
<i) = (u, v)] = |(Xi | X<i = u)− (Yi | Y<i = v)|.

We now show (via induction on i) that such (X′
i,Y

′
i) exist, and that X′

≤i ≡ X≤i and Y′
≤i ≡ Y≤i.

When i = 1, we know that such random variables (X′
1,Y

′
1) exist via the second part of the coupling

lemma (Lemma 1).16 Furthermore, the bullet points tell us that X′
≤1 ≡ X≤1 and Y′

≤1 ≡ Y≤1.
When i > 1, we assume (via the induction hypothesis) that X′

<i ≡ X<i and Y′
<i ≡ Y<i. As a result,

(u, v) ∈ support(X′
<i,Y

′
<i) implies that both u ∈ support(X<i) and v ∈ support(Y<i), and so (Xi |

X<i = u) and (Yi | Y<i = v) are well-defined. Thus, the second part of the coupling lemma (Lemma 1)
once again tells us that there exist random variables (X′

i,Y
′
i) satisfying all three bullets. Furthermore, we

assert that X′
≤i ≡ X≤i and Y′

≤i ≡ Y≤i. To see why the former holds, note that for all x ∈ support(X′
≤i),

Pr[X′
≤i = x] = Pr[X′

<i = x<i] · Pr[X′
i = xi | X′

<i = x<i]

= Pr[X<i = x<i] · Pr[X′
i = xi | X′

<i = x<i],

since the induction hypothesis tells us that X′
<i ≡ X<i. Then, by the law of total probability,

Pr[X′
i = xi | X′

<i = x<i] =
∑

y∈support(Y′
<i|X′

<i=x<i)

Pr[X′
i = xi ∧Y′

<i = y | X′
<i = x<i]

=
∑

y∈support(Y′
<i|X′

<i=x<i)

Pr[Y′
<i = y | X′

<i = x<i] · Pr[X′
i = xi | X<i′ = x<i,Y

′
<i = y]

= Pr[Xi = xi | X<i = x<i] ·
∑

y∈support(Y′
<i|X′

<i=x<i)

Pr[Y′
<i = y | X′

<i = x<i]

= Pr[Xi = xi | X<i = x<i],

where the penultimate equality follows from the first bullet above. Thus

Pr[X′
≤i = x] = Pr[X<i = x<i] · Pr[X′

i = xi | X′
<i = x<i]

= Pr[X<i = x<i] · Pr[Xi = xi | X<i = x<i]

= Pr[X≤i = x].

As a result, we have that X′
≤i ≡ X≤i, and an identical argument shows that Y′

≤i ≡ Y≤i.
Finally, we now have joint random variables X′,Y′ such that X′ ≡ X and Y′ ≡ Y. Thus, by the first

part of the coupling lemma (Lemma 1), we know that

|X−Y| ≤ Pr[X′ ̸= Y′],

16Formally, note that when i = 1, the phrase “for every (u, v) ∈ support(X′
<i,Y

′
<i)” is removed, and there is no conditioning.
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and so all that remains it to upper bound this probability. To do so, note that

Pr[X′ ̸= Y′] =
∑
i∈[t]

Pr[X′
i ̸= Y′

i ∧X′
<i = Y′

<i]

=
∑
i∈[t]

∑
(v,v)∈support(X′

<i,Y
′
<i)

Pr[X′
i ̸= Y′

i ∧ (X′
<i,Y

′
<i) = (v, v)]

=
∑
i∈[t]

∑
(v,v)∈support(X′

<i,Y
′
<i)

Pr[(X′
<i,Y

′
<i) = (v, v)] · Pr[X′

i ̸= Y′
i | (X′

<i,Y
′
<i) = (v, v)]

=
∑
i∈[t]

∑
(v,v)∈support(X′

<i,Y
′
<i)

Pr[(X′
<i,Y

′
<i) = (v, v)] · |(Xi | X<i = v)− (Yi | Y<i = v)|

≤
∑
i∈[t]

εi ·
∑

(v,v)∈support(X′
<i,Y

′
<i)

Pr[(X′
<i,Y

′
<i) = (v, v)]

≤
∑
i∈[t]

εi,

where the last equality follows from the third bullet point above, and the penultimate inequality follows from
the lemma hypothesis, since

(v, v) ∈ support(X′
<i,Y

′
<i) =⇒ v ∈ support(X′

<i)∩support(Y′
<i) =⇒ v ∈ support(X<i)∩support(Y<i).

Thus
|X−Y| ≤ Pr[X′ ̸= Y′] ≤

∑
i∈[t]

εi,

as desired.

With this tool in hand, it is now easy to show that almost block sources are close to true block sources.

Proof of Lemma 4. Let X = (X1, . . . ,Xt) be an ((η1, γ1), . . . , (ηt, γt))-almost ((n1, k1), . . . , (nt, kt))-
block source. We first show how to “zero out” the ηi terms, and then the γi terms.

Zeroing out the ηi terms in X. We start by defining, for every i ∈ [t], the set

Goodi := {x ∈ support(X<i) : (Xi | X<i = x) is γi-close to an (ni, ki)-source}.

Then, we define a source X′ = (X′
1, . . . ,X

′
t) such that for every i ∈ {1, 2, . . . , t} and x ∈ support(X′

<i),

(
X′
i | X′

<i = x
)
≡

{
(Xi | X<i = x) if x ∈ Goodi,

Uni otherwise.

It is immediate that X′ is an ((0, γ1), . . . , (0, γt))-almost ((n1, k1), . . . , (nt, kt))-block source.
Furthermore, observe that for any x ∈ {0, 1}n1 × · · · × {0, 1}nt with x<i ∈ Goodi for all i ∈ [t],

Pr[X′ = x] = Pr[X = x].
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Thus, for any set S ⊆ {0, 1}n1 × · · · × {0, 1}nt , we have that

Pr[X ∈ S] ≤ Pr [X ∈ S ∧X<i ∈ Goodi, ∀i ∈ [t]] + Pr [∃i ∈ [t] : X<i /∈ Goodi]

≤ Pr
[
X′ ∈ S ∧X′

<i ∈ Goodi,∀i ∈ [t]
]
+
∑
i∈[t]

Pr[X<i /∈ Goodi]

≤ Pr[X′ ∈ S] +
∑
i∈[t]

ηi.

In other words, X′ is
(∑

i∈[t] ηi

)
-close to X.

Zeroing out the γi terms in X′. Since X′ is an ((0, γ1), . . . , (0, γt))-almost ((n1, k1), . . . , (nt, kt))-block
source, we know that for every i ∈ [t] and x ∈ support(X′

<i), it holds that
(
X′
i | X′

<i = x
)

is γi-close to an

(ni, ki)-source, which we will call Z(x)
i . Using this, we define a new source X⋆ = (X⋆

1, . . . ,X
⋆
t ) such that

for every i ∈ {1, 2, . . . , t} and x ∈ support(X⋆
<i),

(X⋆
i | X⋆

<i = x) ≡

{
Z
(x)
i if x ∈ support(X′

<i),

Uni otherwise.

It is immediate that X⋆ is an ((0, 0), . . . , (0, 0))-almost ((n1, k1), . . . , (nt, kt))-block source; or in other
words, an ((n1, k1), . . . , (nt, kt))-block source.

Furthermore, observe that for any i ∈ [t] and x ∈ support(X′
<i) ∩ support(X⋆

<i),∣∣(X′
i | X′

<i = x)− (X⋆
i | X⋆

<i = x)
∣∣ ≤ γi.

As a result, Lemma 5 immediately tells us that X⋆ is
(∑

i∈[t] γi

)
-close to X′.

Wrapping up By a standard application of the triangle inequality, we get that X⋆ is ε-close to X, where
ε =

∑
i∈[t](ηi + γi). Since X⋆ is an ((n1, k1), . . . , (nt, kt))-block source, this completes the proof.

4.3 Keeping a block source fresh while fixing correlated randomness

In extractor theory, the situation often arises that you have a collection of independent random variables
X1, . . . ,Xt, and additional random variables X′

1, . . . ,X
′
t where each X′

i is a deterministic function Xi.
The latter variables often get in the way of the analysis, and the goal is usually to condition (“fix”) them to
constant values, while keeping the entropy and independence in X1, . . . ,Xt. The classic tool used for this
is the chain rule for min-entropy.

Lemma 6 (Min-entropy chain rule [MW97]). For any random variables X ∼ X and Y ∼ Y ,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log(|Y |)− log(1/ε)] ≥ 1− ε.

Indeed, as long as the entropy in each Xi is larger than the length (support size) of each X′
i, the above

lemma can be used to fix X′
1, . . . ,X

′
t without losing the independence of X1, . . . ,Xt or too much entropy.

But what if X1, . . . ,Xt,X
′
1, . . . ,X

′
t have correlations among them? As we will see, this situation will

frequently arise in our analysis of CG sources. In this section, we establish a formal way to deal with this.
We prove the following, which shows how to keep a block source “fresh” (looking like a block source) while
fixing a series of correlated random variables.
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Lemma 7. Let X = (X1,X2, . . . ,Xt) be an ((n1, k1), (n2, k2), . . . , (nt, kt))-block source, and let X′ =
(X′

1,X
′
2, . . . ,X

′
t) be another sequence of (possibly correlated) random variables satisfying the following.

• X′
i is supported on a set of size at most 2n

′
i , for every i ∈ [τ ].

• The random variables
(
Xi | X<i = x,X′

≥i = x′
)

and (X′
<i | X<i = x,X′

≥i = x′) are independent,
for every i ∈ [t], x ∈ {0, 1}n1 × · · · × {0, 1}ni−1 , x′ ∈ {0, 1}n′

i × · · · × {0, 1}n′
t .

Then

Pr
x′∼X′

[
(X | X′ = x′) is not t

√
ε-close to an ((n1, ℓ1), (n2, ℓ2), . . . , (nt, ℓt))-block source

]
≤ t

√
ε,

where each ℓi := ki −
∑

j≥i n
′
j − log(1/ε).

When we construct our condenser, it is crucial that the entropy loss on Xi only comes from X′
j , j ≥ i.

Proof. Pick any index i ∈ [t], and define ℓi := ki −
∑

j≥i n
′
j − log(1/ε). Note that for every fixed x,

(Xi | X<i = x) has min-entropy at least ki (since it is a block source), and thus the min-entropy chain rule
(Lemma 6) tells us that

Pr
x′∼X′

≥i

[H∞(Xi | X<i = x,X′
≥i = x′) < ℓi] ≤ ε.

By the independence guaranteed in the second bullet of the lemma, we know that for any fixed x, x⋆, the
distributions (Xi | X<i = x,X′ = x⋆) and

(
Xi | X<i = x,X′

≥i = x⋆≥i
)

are identical. Thus we know that

Pr
x⋆∼X′

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≤ ε

for every fixed x. As a result, we have that

Pr
x⋆∼X′
x∼X<i

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≤ ε.

Using an averaging argument, this gives

Pr
x⋆∼X′

[
Pr

x∼X<i

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≥
√
ε

]
≤

√
ε,

and a union bound tells us

Pr
x⋆∼X′

[
∃i ∈ [t] : Pr

x∼X<i

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≥
√
ε

]
≤ t

√
ε,

In other words, we get that X becomes an
√
ε-almost ((n1, ℓ1), (n2, ℓ2), . . . , (nt, ℓt))-block source except

with probability at most t
√
ε over fixing X′ = x⋆. Applying Lemma 4 completes the proof.

4.4 Seeded condensers automatically work for two-block sources

A core tool we use is the fact that seeded condensers can be used on block sources, while suffering just a
small loss in parameters. This observation has been made in prior work, with slightly weaker parameters
[BCDT19, Lemma 28], or using a slightly different language [BGM22, Proof of Theorem 4.4].
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Lemma 8. Let sCond : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (n, k) →ε (m, k
′) condenser. Then for

any ((n, k), (d, d− g))-block source (X,Y), it holds that H2gε
∞ (sCond(X,Y)) ≥ k′ − g.

In other words, the output loses g bits of entropy, and the error blows up by a factor of 2g.

Proof. Let (X,Y) ∼ {0, 1}n × {0, 1}d be an ((n, k), (d, d− g)) block source, and let Y∗ ∼ {0, 1}d be an
independent uniform random variable. Notice that for any fixed x, S we have

Pr[sCond(x, (Y | X = x)) ∈ S] ≤ 2g · Pr[sCond(x,Y∗) ∈ S],

since if we define Sx := {y : sCond(x, y) ∈ S} then Pr[sCond(x,Y∗) ∈ S] = 2−d|Sx| and
Pr[sCond(x, (Y | X = x)) ∈ S] ≤ 2−(d−g)|Sx|. Thus we have

Pr[sCond(X,Y) ∈ S] =
∑
x

Pr[X = x] · Pr[sCond(x, (Y | X = x)) ∈ S]

≤ 2g
∑
x

Pr[X = x] · Pr[sCond(x,Y∗) ∈ S]

= 2g Pr[sCond(X,Y∗) ∈ S].

Since sCond is a seeded (n, k) →ε (m, k
′) condenser, the above expression is at most

≤ 2g · (|S| · 2−k′ + ε)

= |S| · 2−k′+g + 2gε.

The result now follows by the standard characterization of smooth min-entropy (Lemma 2).

4.5 Iterative condensing of multi-block sources

Finally, the following generalizes well-known block-source extraction and condensing results, such as in
[NZ96, DMOZ23]. For example, if instantiated with an ((n1, k1), . . . , (nt−1, kt−1), (nt, nt))-block-source
and seeded condensers with gap 0 (i.e., seeded extractors), then you get well-known results about extracting
from block sources with a small seed (which is constant for constant error). We will use this framework in
both our explicit and existential constructions, in order to handle sources with a very large number of blocks.

Lemma 9. Consider a sequence of functions sCond1, sCond2, . . . , sCondt−1, where each sCondi :
{0, 1}ni ×{0, 1}mi+1 → {0, 1}mi is a seeded (ni, ki) →εi (mi,mi−gi) condenser. Furthermore, consider
any pair of nonnegative real numbers (nt, kt) such that mt = nt, and define gt := nt − kt and εt := 0.

Now, define a function Cond′ : {0, 1}n1×{0, 1}n2×· · ·×{0, 1}nt → {0, 1}m1×{0, 1}m2×· · ·×{0, 1}mt

as Cond′(x1, x2, . . . , xt) := (y1, y2, . . . , yt), where yt := xt, and for all other i ∈ [t− 1],

yi := sCondi(xi, yi+1).

Then the function Cond : {0, 1}n1×{0, 1}n2×· · ·×{0, 1}nt → {0, 1}m1 defined as Cond(x1, x2, . . . , xt) :=
y1 is a condenser for ((n1, k1), (n2, k2), . . . , (nt, kt))-block sources with output gap g :=

∑
i∈[t] gi and

error ε :=
∑

i∈[t] εi · 2
∑

j∈(i,t] gj .

Proof. Let X = (X1,X2, . . . ,Xt) be an arbitrary ((n1, k1), (n2, k2), . . . , (nt, kt))-block source, and define
Y = (Y1,Y2, . . . ,Yt) := Cond′(X1,X2, . . . ,Xt) as in the lemma statement. We will prove a stronger
claim than in the lemma, and show that for every a ∈ [t] and x ∈ support(X<a),
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(Ya | X<a = x) is ε′a-close to an (ma,ma − g′a)-source,

where ε′a :=
∑

i∈[a,t] εi · 2
∑

j∈(i,t] gj , and g′a :=
∑

i∈[a,t] gi.
17

The proof will proceed via backwards induction on a. We start by noting the claim is easy when a = t.
Indeed, recall that Yt := Xt, and that X is an ((n1, k1), (n2, k2), . . . , (nt, kt))-block source. This means
that for every fixing of X<t, it holds that Xt (and thus Yt) is an (nt, kt)-source. In other words, every
(Yt | X<t = x) is ε′t-close to an (mt,mt − g′t)-source, since ε′t = 0 and (mt,mt − g′t) = (nt, kt).

Next, consider any 1 ≤ a < t and x ∈ support(X<a), and assume the claim holds for a+1. Recall that
Ya := sConda(Xa,Ya+1), and thus

(Ya | X<a = x) = (sConda(Xa,Ya+1) | X<a = x).

Now, since X is a block source, we know that (Xa | X<a = x) is an (na, ka)-source. Further-
more, the induction hypothesis tells us that for every x′ ∈ support(Xa | X<a = x), it holds that
(Ya+1 | X<a = x,X′

a = x′) is ε′a+1-close to an (ma+1,ma+1 − g′a+1)-source. This means that the source

((Xa,Ya+1) | X<a = x)

is an
(
(0, 0), (0, ε′a+1)

)
-almost

(
(na, ka), (ma+1,ma+1 − g′a+1)

)
-block source. And by Lemma 4, this

means it is ε′a+1-close to some (
(
(na, ka), (ma+1,ma+1 − g′a+1)

)
-block source (X⋆

a,Y
⋆
a+1). Thus, by a

standard application of the data-processing inequality (Fact 2), we have that

(Ya | X<a = x) = (sConda(Xa,Ya+1) | X<a = x)

≈ε′a+1
sConda(X

⋆
a,Y

⋆
a+1).

Now, using the fact that seeded condensers automatically work for block sources (Lemma 8), we get that
sConda(X

⋆
a,Y

⋆
a+1) is

(
2g

′
a+1εa

)
-close to some (ma,ma− ga− g′a+1)-source. Thus, the triangle inequality

tells us (Ya | X<a = x) is
(
ε′a+1 + 2g

′
a+1εa

)
-close to an (ma,ma− ga− g′a+1)-source. And by definition,

ε′a+1 + 2g
′
a+1εa =

 ∑
i∈[a+1,t]

εi · 2
∑

j∈(i,t] gj

+
(
2
∑

j∈[a+1,t] gjεa

)
=
∑
i∈[a,t]

εi · 2
∑

j∈(i,t] gj = ε′a,

and

ga + g′a+1 = ga +
∑

i∈[a+1,t]

gi =
∑
i∈[a,t]

gi = g′a.

Thus, we get that (Ya | X<a = x) is ε′a-close to an (ma,ma − g′a)-source, as desired.
To conclude, we now know that for all a ∈ [t] and x ∈ support(X<a),

(Ya | X<a = x) is ε′-close to an (ma,ma − g′)-source,

where ε′ =
∑

i∈[a,t] εi·2
∑

j∈(i,t] gj and g′a =
∑

i∈[a,t] gi. This completes the proof, since the lemma statement
corresponds to the special case where a = 1.

17We also note that when a = 1, the expression (Ya | X<a = x) should be interpreted as just Y1.
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5 Explicit constructions

We are now ready to build our condenser for Chor-Goldreich sources, and ultimately prove Theorem 1.

5.1 Somewhere-condensers from non-malleable condensers

Our condenser will be built by expanding the last block of the CG source into a somewhere-random source,
and iteratively purifying it until we are left with just a single row that has high entropy. To make things
formal, we’ll need some definitions.

Definition 12 (Somewhere-ℓ-sources). A source Y ∼ ({0, 1}m)D is called a somewhere-ℓ-source if there
exists some i ∈ [D] such that Yi has min-entropy at least ℓ.

Definition 13 (Somewhere-condensers for CG sources). A function sCond : ({0, 1}n)t → ({0, 1}w)D is a
somewhere-ℓ-condenser for (t, n, k)-CG sources with error ε if for any (t, n, k)-CG source X ∼ ({0, 1}n)t,
sCond(X) is ε-close to a convex combination of somewhere-ℓ-sources.

Definition 14 (Non-malleable condensers for block sources). A function nmCond : {0, 1}n × {0, 1}n ×
{0, 1}w×[2] → {0, 1}m is a non-malleable condenser (with advice) for ((n, k), (n, k), (w, ℓ))-block sources
with error ε and output entropy r if the following holds. For any X,Y ∼ {0, 1}n and Z1,Z2 ∼ {0, 1}w
such that at least one of the sequences (X,Y,Z1) and (X,Y,Z2) is an ((n, k), (n, k), (w, ℓ))-block source,

nmCond(X,Y,Z1, 1)⊕ nmCond(X,Y,Z2, 2)

is ε-close to an (m, r)-source.

In our first key lemma, we show how a non-malleable condenser can be used to improve the quality of a
somewhere-condenser. We prove the following, which we will eventually apply iteratively.

Lemma 10 (Purifying a somewhere-condenser). Suppose you have the following objects.

• sCond : ({0, 1}n)t → ({0, 1}w)2d a somewhere-ℓ-condenser for (t, n, k)-CG sources with error ε1.

• nmCond : {0, 1}nb × {0, 1}nb × {0, 1}w × [2] → {0, 1}m a non-malleable condenser (with advice)
for ((nb, kb−d− log(1/ε2)), (nb, kb−d− log(1/ε2)), (w, ℓ))-block sources, which has error ε2 and
output entropy r.

Consider the function sCond⋆ : ({0, 1}n)b × ({0, 1}n)b × ({0, 1}n)t → ({0, 1}m)2d−1
whose ith output is

sCond⋆i (X,Y, Z) := nmCond(X,Y, sCond(Z)2i−1, 1)⊕ nmCond(X,Y, sCond(Z)2i, 2).

Then, sCond⋆ is a somewhere-r-condenser for (2b+ t, n, k)-CG sources with error ε = ε1 + 4
√
ε2 + ε2.

The core technical claim we use is the following.

Claim 2. Let X,Y ∼ {0, 1}n and Z := (Z1, . . . ,ZD) ∼ ({0, 1}w)D be random variables such that:

• (X,Y) is an ((n, k), (n, k))-block source.

• ∀x, y ∈ {0, 1}n, (Z | X = x,Y = y) is ε1-close to a convex combination of somewhere-ℓ-sources.

Then (X,Y,Z) is (ε1 + 4
√
ε2)-close to a convex combination of sources of the form (X′,Y′,Z′), where:
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• ∃i ∈ [D] s.t. (X′,Y′,Z′
i) is an ((n, k− d− log(1/ε2)), (n, k− d− log(1/ε2)), (w, ℓ))-block source.

Proof. By the lemma hypothesis, we know that for every fixed x, y, (Z | X = x,Y = y) is ε1-close to
a convex combination of somewhere-ℓ-sources. This means that for every fixed x, y, there is some convex
combination of the form Rx,y :=

∑
i∈[D] p

x,y
i ·Rx,y,i such that

(x, y, (Z | X = x,Y = y)) ≈ε1 (x, y,Rx,y), (1)

where we may assume that each Rx,y,i ∼ ({0, 1}w)D is not only a somewhere-ℓ-source, but in fact has its
entropy in its ith row. That is, Rx,y,i

i ∼ {0, 1}w has min-entropy at least ℓ. Moreover, since Equation (1) is
true for all fixed x, y, it follows that

(X,Y,Z) ≈ε1 (X,Y,RX,Y).

We henceforth focus on (X,Y,RX,Y). Towards this end, recall that RX,Y is a convex combination of
the form RX,Y =

∑
i∈[D] p

X,Y
i · RX,Y,i, where for every fixed x, y it holds that Rx,y,i ∼ {0, 1}w has

min-entropy at least ℓ. Notice that because of this structure, we can equivalently sample (X,Y,RX,Y) as
follows. First, define a new random variable A ∼ [D] that depends on X,Y in the following way: for every
fixed x, y, define

Pr[A = i | X = x,Y = y] := px,yi .

Then, for every fixed x, y define a new random variable Tx,y ∼ ({0, 1}w)D independent of X,Y18 such
that

(Tx,y | A = i) ≡ Rx,y,i.

This means that the random variable (Tx,y | A = i) ∼ ({0, 1}w)D has entropy at least ℓ in its ith row: in
other words, (Tx,y

i | A = i) ∼ {0, 1}w has entropy at least ℓ for all fixed x, y, i. Given these definitions, it
is straightforward to verify that

(X,Y,RX,Y) ≡ (X,Y,TX,Y).

This is useful, because the latter three random variables are defined in the same space as another random
variable A ∼ [D], which has the property that (TX,Y

i | A = i) ∼ {0, 1}w has min-entropy at least ℓ for all
i. Moreover, recall that (X,Y) is an ((n, k), (n, k))-block source. Thus we can apply our lemma on fixing
randomness against block sources (Lemma 7) to get

Pr
i∼A

[(X,Y | A = i) is not 2
√
ε2-close to an ((n, k′), (n, k′))-block source] ≤ 2

√
ε2,

where k′ = k− d− log(1/ε2). Thus we get that upon fixing A = i, both of the following hold (except with
probability at most 2

√
ε2):

• (X,Y | A = i) is 2
√
ε2-close to an ((n, k′), (n, k′))-block source, and

• (TX,Y
i | A = i) ∼ {0, 1}w has min-entropy at least ℓ. In fact, for all fixed x, y, it remains true that

(TX,Y
i | A = i,X = x,Y = y) ∼ {0, 1}w has min-entropy at least ℓ.

Applying a standard fact about convex combinations (Fact 3), we therefore get that (X,Y,TX,Y) ∼
{0, 1}n × {0, 1}n × ({0, 1}w)D is 2

√
ε2-close to a convex combination of distributions of the form

(X⋆,Y⋆,Z⋆) ∼ {0, 1}n × {0, 1}n × ({0, 1}w)D satisfying:
18By this, we mean Tx,y is independent of X,Y. Later, we will use TX,Y , which is of course not independent of X,Y.

However, the independence assumption tells us that (TX,Y | X = x,Y = y) ≡ (Tx,y | X = x,Y = y) ≡ Tx,y .
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• (X⋆,Y⋆) ∼ {0, 1}n × {0, 1}n is 2
√
ε2-close to an ((n, k′), (n, k′))-block source, and

• Z⋆ ∼ ({0, 1}w)D admits some i ∈ [D] such that H∞(Z⋆i | X⋆ = x,Y⋆ = y) ≥ ℓ for all x, y.

Finally, let (X⋆⋆,Y⋆⋆) be the ((n, k′), (n, k′))-block source that (X⋆,Y⋆) is 2
√
ε2-close to, and define a

new random variable Z⋆⋆ as follows:

(Z⋆⋆ | X⋆⋆ = x,Y⋆⋆ = y) ≡

{
(Z⋆ | X⋆ = x,Y⋆ = y) if (x, y) ∈ support(X⋆,Y⋆),

U otherwise.

It is straightforward to verify the following about (X⋆⋆,Y⋆⋆,Z⋆⋆) ∼ {0, 1}n × {0, 1}n × ({0, 1}w)D.

• (X⋆⋆,Y⋆⋆) is an ((n, k′), (n, k′))-block source.

• There exists some i ∈ [D] such that H∞(Z⋆⋆i | X⋆⋆ = x,Y⋆⋆ = y) ≥ ℓ for all x, y.

• (X⋆⋆,Y⋆⋆,Z⋆⋆) ≈2
√
ε2 (X⋆,Y⋆,Z⋆⋆).

Note that the first two conditions in fact imply that there exists some i ∈ [D] such that (X⋆⋆,Y⋆⋆,Z⋆⋆i ) is an
((n, k′), (n, k′), (w, ℓ))-block source, where recall that k′ = k−d−log(1/ε2). Thus (X⋆⋆,Y⋆⋆,Z⋆⋆) has the
exact structure we were originally looking for. To summarize, recall that (X,Y,Z) ≈ε1 (X,Y,RX,Y) ≡
(X,Y,TX,Y), and the latter is 2

√
ε2-close to a convex combination of distributions (X⋆,Y⋆,Z⋆) of the

form specified above, and each of these is 2
√
ε2-close to a distribution (X⋆⋆,Y⋆⋆,Z⋆⋆) of the desired

structure. Applying the triangle inequality (Fact 1), we immediately get that (X,Y,Z) is (ε1+4
√
ε2)-close

to a convex combination of distributions (X⋆⋆,Y⋆⋆,Z⋆⋆) of the desired form.

Given the above claim, it is now straightforward to show that a non-malleable condenser can be used to
purify a somewhere-condenser.

Proof of Lemma 10. Let B ∼ ({0, 1}n)2b+t be a (2b + t, n, k)-CG source. Observe that we can parse it as
an ((nb, kb), (nb, kb), (nt, kt))-block source (X,Y,Z) ∼ ({0, 1}n)b × ({0, 1}n)b × ({0, 1}n)t, with the
additional property that for every fixed x, y, (Z | X = x,Y = y) is a (t, n, k)-CG source. The goal is to
show sCond⋆(X,Y,Z) is ε-close to a somewhere-r-source A ∼ ({0, 1}m)2d−1

. Recalling the definition of
sCond⋆, this means we must show that the random variable

T :=

(
nmCond(X,Y, sCond1(Z), 1)⊕ nmCond(X,Y, sCond2(Z), 2),

nmCond(X,Y, sCond3(Z), 1)⊕ nmCond(X,Y, sCond4(Z), 2),

...

nmCond(X,Y, sCondD−1(Z), 1)⊕ nmCond(X,Y, sCondD(Z), 2)

)

is ε-close to a convex combination of somewhere-r-sources. Towards this end, define for each i ∈ [D] a
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random variable Wi := sCondi(Z) ∼ {0, 1}w, and let W := (W1,W2, . . . ,WD). We can rewrite T as

T :=
(

nmCond(X,Y,W1, 1)⊕ nmCond(X,Y,W2, 2),

nmCond(X,Y,W3, 1)⊕ nmCond(X,Y,W4, 2),

...

nmCond(X,Y,WD−1, 1)⊕ nmCond(X,Y,WD, 2)
)

Now, recall that Z is a (t, n, k)-CG source, even conditioned on any fixing of X = x,Y = y. Further-
more, recall that sCond is a somewhere-ℓ-condenser for (t, n, k)-CG sources with error ε1. We can therefore
say the following about the random variables X,Y,W:

• (X,Y) is an ((nb, kb), (nb, kb))-block source.

• ∀x, y ∈ {0, 1}nb, (W | X = x,Y = y) is ε1-close to a convex combination of somewhere-ℓ-sources.

Applying our core technical claim (Claim 2), we know that (X,Y,W) is (ε1 + 4
√
ε2)-close to a convex

combination of sources of the form (X′,Y′,W′) where:

• ∃i ∈ [D] such that (X′,Y′,W′
i) is an ((nb, kb− d− log(1/ε2)), (nb, kb− d− log(1/ε2)), (w, ℓ))-

block source.

By a straightforward application of the data-processing inequality (Fact 2), this means that T is (ε1 +
4
√
ε2)-close to a convex combination of distributions of the form

T′ =
(

nmCond(X′,Y′,W′
1, 1)⊕ nmCond(X′,Y′,W′

2, 2),

nmCond(X′,Y′,W′
3, 1)⊕ nmCond(X′,Y′,W′

4, 2),

...

nmCond(X′,Y′,W′
D−1, 1)⊕ nmCond(X′,Y′,W′

D, 2)
)
,

where (X′,Y′,W′) have the guarantee that there exists some i ∈ [D] such that (X′,Y′,W′
i) is an

((nb, kb− d− log(1/ε2)), (nb, kb− d− log(1/ε2)), (w, ℓ))-block source. Call this the “good” index i.
Now, for all i ∈ [D/2], define

R′
i := nmCond(X′,Y′,W′

2i−1)⊕ nmCond(X′,Y′,W′
2i))

so that we may write
T′ = (R′

1,R
′
2, . . . ,R

′
D/2).

If i⋆ denotes the “good” index, then the definition of non-malleable condensers (Definition 14) tells us
that R′

i⋆ is ε2-close to an (m, r)-source R′′
i⋆ ∼ {0, 1}m. Furthermore, we can define a random variable

R′′
−i⋆ ∼ ({0, 1}m)D/2−1 such that for every fixed r ∈ {0, 1}m,

(R′′
−i⋆ | R′′

i⋆ = r) ≡

{
(R′

−i⋆ | R′
i⋆ = r) if r ∈ support(R′

i⋆),

U otherwise.
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Then, if we define T′′ := (R′′
i⋆ ,R

′′
−i⋆) ∼ ({0, 1}m)D/2, it is straightforward to verify that T′′ ≈ε2 T′, and

moreover T′′
i⋆ is an (m, r)-source. In other words, T′′ is a somewhere-r-source, and thus T′ is ε2-close to

a somewhere-r-source. Recall that at the beginning, we showed that T is (ε1 + 4
√
ε2)-close to a convex

combination of such sources T′, and we now know that each such source T′ is ε2-close to a somewhere-r-
source T′′. As a result, it immediately follows that T is (ε1 +4

√
ε2 + ε2)-close to a convex combination of

somewhere-r-sources, as desired.

5.2 Non-malleable condensers from seeded extractors

While it is known how to explicitly construct somewhere-condensers, it is not known how to construct non-
malleable condensers for block sources. In this section, we show how to use basic seeded extractors to
construct them. Later, we’ll instantiate the recipe below in order to obtain our non-malleable condensers.

Lemma 11 (Non-malleable condensers from seeded extractors). Suppose you have the following objects.

• sExt1 : {0, 1}n × {0, 1}p1 → {0, 1}d1 a (k0, ε1)-seeded extractor.

• sExt′1 : {0, 1}n × {0, 1}d1 → {0, 1}m a (k0, ε
′
1)-seeded extractor.

• sExt2 : {0, 1}n × {0, 1}p2 → {0, 1}d2 a (k0, ε2)-seeded extractor.

• sExt′2 : {0, 1}n × {0, 1}d2 → {0, 1}m a (k0, ε
′
2)-seeded extractor.

Consider the function nmCond : {0, 1}n × {0, 1}n × {0, 1}w × [2] → {0, 1}m defined as

nmCond(X,Y, Z, b) := sExt′b(X, sExtb(Y, Z[pb]))

Then nmCond is a non-malleable condenser (with advice) for ((n, k), (n, k), (w,w−g))-block sources with
output entropy m− (g+2d1+ p2+ log(1/ε1)+ log(1/ε2)) and error 2g+p2+3ε

1/4
1 +2g+4ε

1/4
2 , as long as:

• k ≥ k0 +m+ 2d1 + d2 + p2 + log(1/ε1) + log(1/ε2)

• ε1 = ε′1 and ε′2 = ε2 · 2−2d1

Proof. Consider any X,Y ∼ {0, 1}n and Z1,Z2 ∼ {0, 1}w such that either (X,Y,Z1) or (X,Y,Z2) is
an ((n, k), (n, k), (w,w− g))-block source. Unwrapping the definition of nmCond, the goal is to show that

sExt′1(X, sExt1(Y,Z
1
[p1]

))⊕ sExt′2(X, sExt2(Y,Z
2
[p2]

))

is ε-close to an (m, r)-source. We must show this to be true in two cases: the case where (X,Y,Z1) is the
block source, and the case where (X,Y,Z2) is the block source. We proceed with each case separately. But
for both cases, it will be useful to define the following auxiliary random variables:

Z1 := Z1
[p1]

Z2 := Z2
[p2]

W1 := sExt1(Y,Z
1) W2 := sExt2(Y,Z

2)

S1 := sExt′1(X,W1) S2 := sExt′2(X,W2)

With this notation, the goal is simply to show that S1 ⊕ S2 is ε-close to an (m, r)-source. Let’s get started.
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Case 1. In this case, we assume that (X,Y,Z1) is the block source. In order to show that S1 ⊕ S2 is
ε-close an (m, r)-source, the idea is to find a sequence of fixings that will force S2 to become a constant,
but under which S1 can be shown to have high min-entropy. In order to fix S2, we will actually fix the entire
sequence of random variables (S2,W2,Z

2), and argue that the sequence (X,Y,Z1) maintains its structure.
To make things more formal, let’s start by better understanding the structure of (X,Y,Z1). Recall that

in this case, we assumed that (X,Y,Z1) is an ((n, k), (n, k), (w,w− g))-block source. This means that for
every fixing of X,Y, Z1 still has min-entropy at least w − g. And if Z1 has min-entropy at least w − g, it
is not hard to show that its prefix Z1 = Z1

[p1]
of length p1 has entropy at least p1 − g (Fact 4). This tells us

that (X,Y,Z1) is a ((n, k), (n, k), (p1, p1 − g))-block source.
Next, let’s better understand the structure of (S2,W2,Z

2), and how it relates to (X,Y,Z1). Towards
this end, first note that S2,W2 and Z2 are supported on sets of size 2m, 2d2 and 2p2 , respectively. Then,
observe the following independence relationships between (X,Y,Z1) and (S2,W2,Z

2):

• Upon fixing X,Y,Z2, the random variables S2,W2 become a constant. As a result, we know that
(Z1 | X = x,Y = y,Z2 = z2) and (S2,W2 | X = x,Y = y,Z2 = z2) are independent, ∀x, y, z2.

• Upon fixing X,W2,Z
2, the random variable S2 becomes a constant. As a result, we know that

(Y | X = x,W2 = w2,Z
2 = z2) and (S2 | X = x,W2 = w2,Z

2 = z2) are independent,
∀x,w2, z2.

Because of these independence relationships between (X,Y,Z1) and (S2,W2,Z
2), it turns out that

we can safely fix the latter sequence without severely affecting the structure of the former. In particular, by
combining the above observations with our lemma on fixing randomness against block sources (Lemma 7),
we immediately get the following, for any γ > 0.

Pr
(s2,w2,z2)∼(S2,W2,Z

2)

[
(X,Y,Z1 | S2 = s2,W2 = w2, Z

2 = z2) is not 3
√
γ-close to an (2)

((n, k′), (n, k′), (p1, ℓ
′))-block source

]
≤ 3

√
γ,

where k′ = k − (m + d2 + p2 + log(1/γ)) and ℓ′ = p1 − (g + p2 + log(1/γ)). The reason why this
bound will be useful is because it says that with high probability over fixing S2,W2,Z

2, it follows that
(X,Y,Z1) is still a block source, and of course S2 is also a constant. Thus, if we can just show that
S1 = sExt′1(X, sExt1(Y,Z

1)) has high entropy whenever (X,Y,Z1) is a block source, we will be done,
since we just needed S1⊕S2 to have high entropy, and this is true if S1 has high entropy and S2 is constant.

More formally, consider an arbitrary ((n, k′), (n, k′), (p1, ℓ
′))-block source (A,B,C). Let’s analyze

what sExt′1(A, sExt1(B,C)) looks like. By definition of block source, we know that for every a, it holds that
(B,C | A = a) is an ((n, k′), (p1, ℓ

′))-block source. Furthermore, recall that sExt1 : {0, 1}n × {0, 1}p1 →
{0, 1}d1 is a (k0, ε1)-seeded extractor, and thus it is trivially a seeded (n, k0) →ε1 (d1, d1) condenser. Since
every seeded condenser also works for block sources (Lemma 8), it follows that sExt1(B,C | A = a)
is (2p1−ℓ

′
ε1)-close to a source Qa ∼ {0, 1}d1 with min-entropy at least d1 − (p1 − ℓ′), provided that

k′ ≥ k0. Since it holds that (a, sExt1(B,C | A = a)) ≈2p1−ℓ′ε1
(a,Qa) for every fixed a, it follows that

the random variables (A, sExt1(B,C)) and (A,QA) enjoy the same statistical distance bound. And by a
straightforward application of the data-processing inequality (Fact 2), it also follows that

sExt′1(A, sExt1(B,C)) ≈2p1−ℓ′ε1
sExt′1(A,QA).
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Moreover, observe that (A,QA) is in fact a ((n, k′), (d1, d1 − (p1 − ℓ′)))-block source. Repeating an
identical analysis to what was done above, we can thus conclude that

sExt′1(A,QA) ≈2p1−ℓ′ε′1
R⋆,

where R⋆ ∼ {0, 1}m is some source with min-entropy at least m− (p1 − ℓ′), provided that k′ ≥ k0.
To summarize, we get that for any ((n, k′), (n, k′), (p1, ℓ

′))-block source (A,B,C),

sExt′1(A, sExt1(B,C)) ≈2p1−ℓ′ (ε1+ε′1)
R⋆,

where R⋆ is some source with min-entropy at least m − (p1 − ℓ′), provided that k′ ≥ k0. Moreover, it
is straightforward to see that if (A,B,C) is actually only ξ-close to a block source (A⋆,B⋆,C⋆) of the
above type, then the data-processing inequality (Fact 2) tells us that sExt′1(A, sExt1(B,C)) is ξ-close to
sExt′1(A

⋆, sExt1(B
⋆,C⋆)), which we showed above to be 2p1−ℓ

′
(ε1 + ε′1)-close to R⋆.

Thus, we get that for any (A,B,C) that is ξ-close to an ((n, k′), (n, k′), (p1, ℓ
′))-block source,

sExt′1(A, sExt1(B,C)) ≈2p1−ℓ′ (ε1+ε′1)+ξ
R⋆,

where R⋆ is an (m,m− (p1 − ℓ′))-source, provided that k′ ≥ k0.
Put differently, if sExt′1(A, sExt1(B,C)) is not (2p1−ℓ

′
(ε1 + ε′1) + ξ)-close to any such source R⋆,

then we know that (A,B,C) is not ξ-close to an ((n, k′), (n, k′), (p1, ℓ
′))-block source. Thus, if we define

g′ := p1 − ℓ′, ξ′ := 2p1−ℓ
′
(ε1 + ε′1) + ξ, and ξ = 3

√
γ, we can combine the above with Equation (2) to

obtain

Pr
(s2,w2,z2)∼(S2,W2,Z

2)

[
(S1 ⊕ S2 | S2 = s2,W2 = w2,Z

2 = z2) is not ξ′-close to an (m,m− g′)-source
]

= Pr
(s2,w2,z2)

[
(S1 ⊕ s2 | S2 = s2,W2 = w2,Z

2 = z2) is not ξ′-close to an (m,m− g′)-source
]

= Pr
(s2,w2,z2)

[
(S1 | S2 = s2,W2 = w2,Z

2 = z2) is not ξ′-close to an (m,m− g′)-source
]

= Pr
(s2,w2,z2)

[ (
sExt′1(X, sExt1(Y,Z

1)
)
| S2 = s2,W2 = w2,Z

2 = z2) is not

ξ′-close to an (m,m− g′)-source
]

≤ Pr
(s2,w2,z2)

[
(X,Y,Z1 | S2 = s2,W2 = w2,Z

2 = z2) is not

ξ-close to an ((n, k′), (n, k′), (p1, ℓ
′))-block source

]
≤ ξ.

To summarize, we’ve shown that there exists a random variable V := (S2,W2,Z
2) such that

Pr
v∼V

[
(S1 ⊕ S2 | V = v) is not ξ′-close to an (m,m− g′)-source

]
≤ ξ.

By a standard fact about convex combinations (Fact 3), it immediately follows that S1 ⊕ S2 is ξ-close to a
convex combination of sources that are ξ′-close to an (m,m− g′)-source. As such, it holds that S1 ⊕ S2 is
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(ξ+ ξ′)-close to a convex combination of (m,m−g′)-sources. Since a convex combination of (m,m−g′)-
sources is, itself, an (m,m−g′)-source, we conclude that S1⊕S2 is (ξ+ξ′)-close to an (m,m−g′)-source.
Finally, recall that

ξ + ξ′ = 6
√
γ + 2p1−ℓ

′
(ε1 + ε′1) = 6

√
γ + 2g+p2+log(1/γ)(ε1 + ε′1),

for any γ > 0. If we set ε1 = ε′1 and γ = (2ε1)
1/2, this is at most 2g+p2+3ε

1/4
1 . Furthermore, recall that

g′ = p1 − ℓ′ = g + p2 + log(1/γ) ≤ g + p2 + log(1/ε1)

Recall that to make everything work, we needed k′ ≥ k0, and plugging in our definition of k′ from before,
this requirement becomes (no worse than)

k ≥ k0 +m+ d2 + p2 + log(1/γ) = k0 +m+ d2 + p2 + log(1/ε1).

Thus, we get that the output of the non-malleable condenser is 2g+p2+3ε
1/4
1 -close to an (m,m− (g + p2 +

log(1/ε1)))-source, as long as k ≥ k0 +m+ d2 + p2 + log(1/ε1) and ε1 = ε′1.

Case 2. We now proceed to the second case, where we assume that (X,Y,Z2) is the block source. In
order to show that S1 ⊕ S2 is ε-close to an (m, r)-source, we now seek a sequence of fixings that will force
S1 to be constant, but under which S2 can be shown to have high min-entropy.

To start, recall that (X,Y,Z2) is an ((n, k), (n, k), (w,w − g))-block source. Using an identical argu-
ment to the one appearing at the beginning of the previous case, we know this implies that (X,Y,Z2) is an
((n, k), (n, k), (p2, p2 − g))-block source. Next, we’d like to argue that (X,W2) is close to a block source
(X′,W′

2). For technical reasons that we will soon see, we actually need a slightly more involved result. In
particular, we need to show there is a sequence (X′,W′

2,S
′
1,W

′
1) such that:

• (X′,W′
2,S

′
1,W

′
1) is close to (X,W2,S1,W1),

• (X′,W′
2) is a block source, and

• S′
1 is constant upon any fixing of X′,W′

1.

We start by constructing (X′,W′
2). To do so, first recall that (X,Y,Z2) is a ((n, k), (n, k), (p2, p2−g))-

block source. This means that for every fixed x, (Y,Z2 | X = x) is an ((n, k), (p2, p2 − g))-block source.
Now, recall that sExt : {0, 1}n × {0, 1}p2 → {0, 1}d2 is a (k0, ε2)-seeded extractor, and is therefore also
a seeded (n, k0) →ε2 (d2, d2) condenser. Since every seeded condenser also works for block sources
(Lemma 8), it follows that sExt2(Y,Z2 | X = x) is 2gε2-close to a source Qx ∼ {0, 1}d2 with min-entropy
at least d2 − g, provided that k ≥ k0. Since it holds that

(x, sExt2(Y,Z
2 | X = x)) ≈2gε2 (x,Qx)

for every fixed x, it follows that (X,W2) = (X, sExt2(Y,Z
2)) ≈2gε2 (X,QX). Moreover, observe that

(X,QX) is an ((n, k), (d2, d2 − g))-block source. We define (X′,W′
2) = (X,QX).

Next, let us proceed with constructing S′
1,W

′
1. This is not too difficult. First, we define W′

1 by asserting
that for every fixed x,w2,

(W′
1 | X′ = x,W′

2 = w2) ≡

{
(W1 | X = x,W2 = w2) if (x,w2) ∈ support(X,W2)

U otherwise.
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Then, we define S′
1 := sExt′1(X

′,W′
1). This trivially satisfies the condition that S′

1 is constant upon any
fixing of X′,W′

1. Moreover, recall from above that (X′,W′
2) is an ((n, k), (d2, d2−g))-block source. Thus

all that remains is to show that (X′,W′
2,S

′
1,W

′
1) is close to (X,W2,S1,W1). To see why this is true, first

observe that by construction, it holds that for any (x,w2) ∈ support(X,W2),(
(X′,W′

2,S
′
1,W

′
1) | X′ = x,W′

2 = w2

)
≡ ((X,W2,S1,W1 | X = x,W2 = w2)) .

Combining this with the fact that (X′,W′
2) is 2gε2-close to (X,W2) by construction, it is straightforward

to verify that
(X′,W′

2,S
′
1,W

′
1) ≈2gε2 (X,W2,S1,W1).

Thus, we have successfully constructed a sequence (X′,W′
2,S

′
1,W

′
1) with all of the properties originally

desired. Now, let’s see how to use it.
Recall that we originally wanted to show that S1 ⊕ S2 is ε-close to an (m, r)-source, and planned to do

so by performing some fixings that force S1 to be constant. The fixings that we will perform are exactly on
the random variables (S1,W1). To analyze the probability that S1⊕S2 is ε-close to an (m, r)-source under
these fixings, we will use the above-constructed sequence for help. In more detail, let ξ and g′ be parameters
that we will set later. Then, note that

Pr
(s1,w1)∼(S1,W1)

[
(S1 ⊕ S2 | S1 = s1,W1 = w1) is not ξ-close to an (m,m− g′)-source

]
= Pr

(s1,w1)∼(S1,W1)

[
(s1 ⊕ S2 | S1 = s1,W1 = w1) is not ξ-close to an (m,m− g′)-source

]
= Pr

(s1,w1)∼(S1,W1)

[
(S2 | S1 = s1,W1 = w1) is not ξ-close to an (m,m− g′)-source

]
= Pr

(s1,w1)∼(S1,W1)

[(
sExt′2(X,W2) | S1 = s1,W1 = w1

)
is not ξ-close to an (m,m− g′)-source

]
.

Now, since we know that (S1,W1,X,W2) is 2gε2-close to (S′
1,W

′
1,X

′,W′
2), we can apply Claim 1 to

upper bound the above by

≤ Pr
(s1,w1)∼(S′

1,W
′
1)

[
(sExt′2(X

′,W′
2) | S′

1 = s1,W
′
1 = w1) is not (3)

ξ/2-close to an (m,m− g′)-source
]
+ 4 · 2gε2/ξ + 2gε2.

In order to continue bounding this probability, we can now apply our fixing lemma (Lemma 7) as fol-
lows. First, note that we are dealing with random variables (X′,W′

2) and (S′
1,W

′
1), where (X′,W′

2) is
an ((n, k), (d2, d2 − g))-block source, and S′

1,W
′
1 are supported on sets of size 2m and 2d1 , respectively.

Furthermore, note that (W′
2 | X′ = x,W′

1 = w1) and (S′
1 | X′ = x,W′

1 = w1) are independent, for all
fixed x,w1. Indeed, this is simply because we constructed S′

1 to be constant upon any fixing of X′,W′
1.

Plugging these observations into Lemma 7, we immediately get that

Pr
(s1,w1)∼(S′

1,W
′
1)

[
(X′,W′

2 | S′
1 = s1,W

′
1 = w1) is not 2

√
ν-close to an ((n, k′′), (d2, ℓ

′′))-block source
]
≤ 2

√
ν,

where k′′ = k−(m+d1+log(1/ν)) and ℓ′′ = d2−(g+d1+log(1/ν)). Now, consider any ((n, k′′), (d2, ℓ
′′))-

block source (A,B), and think about what happens when you plug it into sExt′2 : {0, 1}n × {0, 1}d2 →
{0, 1}m, which also works as a seeded (n, k0) →ε′2

(m,m) condenser. Since every seeded condenser also
works for block sources (Lemma 8), it follows that sExt′2(A,B) is (2d2−ℓ

′′ · ε′2)-close to a source with min-
entropy at least m − (d2 − ℓ′′), provided that k′′ ≥ k0. Moreover, as we saw before, if (A,B) is η-close
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to an ((n, k′′), (d2, ℓ
′′))-block source, then sExt′2(A,B) is still guaranteed to be (2d2−ℓ

′′ · ε′2 + η)-close to a
source with min-entropy at least m− (d2 − ℓ′′). Put differently, if sExt′2(A,B) were not this close to such
a high entropy source, then we know that (A,B) is also not η-close to an ((n, k′′), (d2, ℓ

′′))-block source.
By the discussion above, we know that if we set ξ/2 := (2d2−ℓ

′′
ε′2 + η) and η = 2

√
ν and g′ = d2 − ℓ′′,

we can upper bound Equation (3) by

2
√
ν + 4 · 2gε2/ξ + 2gε2 ≤ 2

√
ν + 5 · 2gε2/ξ.

In summary, we get that

Pr
(s1,w1)∼(S1,W1)

[
(S1 ⊕ S2 | S1 = s1,W1 = w1) is not ξ-close to an (m,m− g′)-source

]
≤ 2

√
ν + 5 · 2gε2/ξ.

By a standard fact about convex combinations (Fact 3), it immediately follows that S1 ⊕ S2 is (2
√
ν +

5 · 2gε2/ξ)-close to a convex combination of sources that are ξ-close to an (m,m − g′)-source. As such,
it holds that S1 ⊕ S2 is (2

√
ν + 5 · 2gε2/ξ + ξ)-close to a convex combination of (m,m − g′)-sources.

And since a convex combination of (m,m− g′)-sources is, itself, an (m,m− g′)-source, we conclude that
S1 ⊕ S2 is (2

√
ν + 5 · 2gε2/ξ + ξ)-close to an (m,m− g′)-source. Finally, recall that

2
√
ν + 5 · 2gε2/ξ + ξ = 6

√
ν +

5 · 2gε2
2d2−ℓ′′ε′2 + 4

√
ν
+ 2d2−ℓ

′′
ε′2

= 6
√
ν +

5 · 2gε2
2g+d1+log(1/ν)ε′2 + 4

√
ν
+ 2g+d1+log(1/ν)ε′2,

where ν > 0 can be taken as anything. Taking it to be ν :=
√
ε′2 allows us to upper bound the above by

≤ 6(ε′2)
1/4 +

6ε2

2d1
√
ε′2

+ 2g+d1
√
ε′2.

Then, taking ε′2 = ε2 · 2−2d1 allows us to upper bound the above by ≤ 2g+4 · ε1/42 .
Furthermore, recall that

g′ = d2 − ℓ′′ = g + d1 + log(1/ν) = g + 2d1 + log(1/ε2)/2.

Recall that to make everything work, we needed k′′ ≥ k0, and plugging in our definition of k′′ from before,
this requirement becomes

k ≥ k0 +m+ d1 + log(1/ν) = k0 +m+ 2d1 + log(1/ε2)/2.

Thus, we get that the output of the non-malleable condenser is 2g+4ε
1/4
2 -close to an (m,m − (g + 2d1 +

log(1/ε2)/2))-source, as long as k ≥ k0 +m+ 2d1 + log(1/ε2)/2 and ε′2 = ε2 · 2−2d1 .

5.3 The main explicit condenser

Using the tools developed above, we can now construct our main explicit condenser for CG sources.

Theorem 5 (The main explicit condenser for CG sources - Theorem 1, restated). For any α > 0, there
exists a constant C ≥ 1 such that the following holds. For all t, n ∈ N and δ, ε > 0, there exists an explicit
condenser Cond : ({0, 1}n)t → {0, 1}k′+g′ for (t, n, k = δn = n − g)-CG sources which has output
entropy k′ ≥ (1− α)kt, output gap g′ ≤ C · (1/δ)C · (g + log(1/ε)), and error ε.
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The proof proceeds via three steps. First, in Section 5.3.1, we explicitly construct a non-malleable
condenser for CG sources (using our framework from Section 5.2). Then, in Section 5.3.2, we present the
main part of our condenser, which uses our new non-malleable condenser in the “purification” framework
from Section 5.1 in order to condense CG sources to rate 0.99. Finally, in Section 5.3.3, we show how to get
the remaining entropy out of the source, while maintaining a very small gap, by showing that the classical
iterative condensing framework of Nisan and Zuckerman [NZ96] can be extended to handle a correlated
seed.

5.3.1 Building a non-malleable condenser

We proceed to build our non-malleable condenser for CG sources. We prove the following.

Theorem 6 (Explicit non-malleable condensers). For every constant α > 0, there exist constants C ≥ 1
and γ > 0 such that the following holds. There exists an explicit non-malleable condenser (with advice)
nmCond : {0, 1}n×{0, 1}n×{0, 1}d× [2] → {0, 1}m for ((n, k), (n, k), (d, (1−γ)d))-block sources with
error ε, output length m = ⌊(12 − α)k − C log(n/ε) − d⌋, and output gap g′ ≤ C log(n/ε) + d, provided
that d ≥ C log(n/ε).

Our construction will follow by simply plugging in known seeded extractors into our recipe from Sec-
tion 5.2. We will use the following classical extractors of Guruswami, Umans, and Vadhan.

Theorem 7 (Explicit seeded extractors [GUV09]). For every constant α > 0, there is a constantC > 0 such
that the following holds. There exists an explicit (k, ε)-seeded extractor sExt : {0, 1}n×{0, 1}d → {0, 1}m
with output length m ≥ (1− α)k, as long as d ≥ C log(n/ε).

With this tool in hand, we are ready to construct our non-malleable condensers.

Proof of Theorem 6. We simply plug Theorem 7 into Lemma 11, and pick parameters appropriately.
In more detail, we need to find extractors

• sExt1 : {0, 1}n × {0, 1}p1 → {0, 1}d1 a (k0, ε1)-seeded extractor,

• sExt′1 : {0, 1}n × {0, 1}d1 → {0, 1}m a (k0, ε
′
1)-seeded extractor,

• sExt2 : {0, 1}n × {0, 1}p2 → {0, 1}d2 a (k0, ε2)-seeded extractor,

• sExt′2 : {0, 1}n × {0, 1}d2 → {0, 1}m a (k0, ε
′
2)-seeded extractor,

with parameters p1, d1, p2, d2, d1,m, d2, k0, ε1, ε′1, ε2, ε
′
2 that result in the non-malleable condensers we

claim (using Lemma 11). To make this easy, we start by focusing on achieving error ε. In order to do
so, we define g := γd (for some constant γ to be fixed later), and note that Lemma 11 says that we can
just pick ε1 such that 2g+p2+3ε

1/4
1 ≤ ε/2 and 2g+4ε

1/4
2 ≤ ε/2. Moreover, it always requires that we have

ε1 = ε′1 and ε′2 = ε2 · 2−2d1 . Thus we pick errors ε1 = ε42−4(g+p2+4), ε′1 = ε1, ε2 = ε4 · 2−(g+5)4, and
ε′2 = ε−2d1

2 . This satisfies the error requirement.
Now, in order to explicitly construct these extractors, we invoke Theorem 7 so that we can handle the

smallest possible seed length. Thus, we pick

• p2 = C log(n/ε2) = 4C · (log(n/ε) + g + 5) = O(log(n/ε) + g),

• p1 = C log(n/ε1) = 4C · (log(n/ε) + g + p2 + 4) = O(log(n/ε) + g),
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• d1 = C log(n/ε′1) = 4C · (log(n/ε) + g + p2 + 4) = O(log(n/ε) + g),

• d2 = C log(n/ε′2) = 4C · (log(n/ε) + g + 5 + d1/2) = O(log(n/ε) + g).

To make this work, Lemma 11 also says that we need k0 ≤ k − (m + 2d1 + d2 + p2 + log(1/ε1) +
log(1/ε2)), and recall that the right hand side is at least k − m − O(log(n/ε) + g). Thus we pick k0 to
be this value, and all that remains is to check that we didn’t ask one of the extractors to output more bits
than (1 − α)k0. For this, we simply need that m ≤ (1 − α)k0 = (1 − α)(k − m − O(log(n/ε) + g)),
or rather that m ≤ (1/2 − α)k − O(log(n/ε) + g). Furthermore, recall that p1, p2 are prefixes of d, so
we need d ≥ p1, p2 = O(log(n/ε) + g). Now that all the conditions are satisfied, we get from Lemma 11
that the entropy gap is O(g + log(n/ε)). To conclude, recall that g = γd, and set γ to a sufficiently small
constant.

5.3.2 Condensing to rate 0.99

Now that we have our non-malleable condensers, we are ready to construct the core component of our main
explicit condenser for CG sources. In this section, we prove the following.

Lemma 12 (Condensing to rate 0.99). For any constants α,C0 > 0, there exist constants C1, C2, C3 ≥ C0

such that the following holds. There exists an explicit condenser Cond : ({0, 1}n)t → {0, 1}m for (t, n, δn)-
CG sources with output length m ∈ [0.05δnτ⋆, δnτ⋆], output entropy k′ ≥ (1−α)m, and error ε, provided

t ≥ τ⋆ := C1 ·
(
(1/δ)C2 + (1/δ)C3 log(1/ε)/n

)
.

As discussed, the key idea is to instantiate our purification framework from Section 5.1 with a baseline
somewhere-condenser and a non-malleable condenser. For our non-malleable condenser, we’ll use the new
one constructed above. For the baseline somewhere-condenser, we’ll use a classical construction due to
Barak, Kindler, Shaltiel, Sudakov, and Wigderson [BKS+10] and Raz [Raz05] (see also [Zuc07, Theorem
3.2]).

Theorem 8 (Explicit somewhere-condensers [BKS+10, Raz05]). For every constant β > 0, there exist
constants C1, C2, C3 ≥ 1 such that the following holds. For any δ = δ(n) > 0, there exists an explicit
somewhere-k′-condenser sCond : {0, 1}n → ({0, 1}m)D for (n, δn)-sources with output length m =

⌊δC1n⌋, output entropy k′ ≥ (1− β)m, error ε = 2−δ
C2n, and D = ⌈(1/δ)C3⌉ rows.

We are now ready to condense CG sources to rate 0.99, and prove the core lemma of this paper.

Proof of Lemma 12. Let X ∼ ({0, 1}n)t be a (t, n, k := δn)-CG source. The idea is to expand the last
block of X into a somewhere-random (SR) source (using Theorem 8), and then proceed in iterations. In
each iteration, we will halve the number of rows in the SR source, using our non-malleable condenser
(Theorem 6) and our purification lemma (Lemma 10).

At a high level, in order for this to work, the row length of the SR source must line up with the seed
length requirement of the non-malleable condenser, and the entropy rate of the (good row of the) SR source
must line up with the seed (entropy) rate requirement of the non-malleable condenser (which is roughly
0.99). Furthermore, after we have halved the number of rows in the SR source with one application of the
purification lemma, we need to make sure that the new SR source has a row length and row entropy rate
that is good enough for another application of the purification lemma. To make sure this happens, the output
entropy rate of the first non-malleable condenser calls must be at least 0.99. But since the output gap of the
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non-malleable condenser is always a constant factor larger than the gap of its seed (see Theorem 6), we must
make sure that its output length is also a constant factor larger than the length of its seed. And to make this
happen, we must make sure that each of the two input sources to the non-malleable condenser has enough
min-entropy. This is possible by concatenating several blocks of the CG source into a single “super-block.”
Finally, we will continue to iterate until there is just a single row left in the SR source.

Thus, the game plan is as follows. First, we fix an arbitrary constant α > 0, which will represent
the allowed missing entropy rate in the final output of the condenser. Then, we let ε > 0 denote another
parameter, which will represent the target final error of the condenser.19 We also set up intermediate error
values ε0, ε1, ε2, . . ., which will represent the allowed error in each iteration of the procedure outlined above.
We make sure that these are in a decaying geometric series, so that they will sum up to our overall target error
ε. Finally, we determine the number of blocks that must be concatenated at each iteration (before passing
them into the non-malleable condenser to collapse the SR source) in order satisfy all the requirements
mentioned above. At the end, we sum up the total number of blocks we needed to fully collapse the SR
source, and define τ to be exactly this value, in order to finish the proof.

More formally now, fix a parameter β > 0 to either α (from the current lemma statement) or γ (from
Theorem 6, when its first parameter is fixed to 0.01) - whichever is smaller.20 Then, let b0 ∈ N be a “block
parameter” that we will fix later, and let sCond0 : {0, 1}nb0 → ({0, 1}m0)D be an explicit somewhere-k′0-
condenser for (nb0, δnb0)-sources with output length m0 = ⌊δC1nb0⌋, output entropy k′0 ≥ (1 − β)m0,
error ε0 = 2−δ

C2nb0 , and D = ⌈(1/δ)C3⌉2 rows, where ⌈x⌉2 denotes the rounding of x up to the closest
power of 2. Such an explicit somewhere-condenser exists due to Theorem 8.21

Next, suppose there exists a sequence of explicit functions nmCond1, nmCond2, . . . , nmCondd, where
each nmCondi is an explicit non-malleable condenser (with advice) for ((nbi, κi), (nbi, κi), (mi−1, k

′
i−1))-

block sources with error εi, output length mi = ⌊0.49κi − C4 log(nbi/εi) − mi−1⌋, and output entropy
k′i ≥ mi − C4 log(nbi/εi)−mi−1, where:

• κi := kbi − d− log(1/εi),

• C4 is the constant C from Theorem 6 (when the first constant in that theorem is set to 0.01), and

• all other parameters (appearing above) not yet set will be set later.

If such a sequence of explicit functions nmCond1, . . . , nmCondd actually exists, our purification lemma
(Lemma 10) immediately tells us that we can use them (along with sCond0) to iteratively create a sequence
of explicit somewhere-condensers sCond1, . . . , sCondd, where sCondd is in fact an explicit condenser for
(τ, n, k)-CG sources with error

ε0 +

d∑
i=1

(4
√
εi + εi),

output length md, output entropy k′d, and τ = b0 + 2
∑d

i=1 bi.
Thus, all that remains is to set the error parameters ε0, ε1, . . . , εd and block parameters b0, b1, . . . , bd

so that (1) the explicit non-malleable condensers (described above) actually exist, (2) the overall error is
at most ε, and (3) the output length m := md is in the range md ∈ [δnτ/4, δnτ ], (4) the output entropy
k′ := kd satisfies k′d ≥ (1− β)md, and (5) the threshold value τ matches its value in the lemma statement.

19Note that ε can depend on all other parameters arbitrarily, and thus need not be a constant.
20Furthermore, if both α, γ > 1/2, set β := 1/2.
21Theorem 8 technically doesn’t guarantee that the number of rows will be a power of 2, but we can easily make this happen by

appending the appropriate number of dummy rows (each set to the all zeroes string) to the output of the somewhere-condenser.
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Let’s start by satisfying the error requirement, listed as item (2) above. Towards this end, recall that we
actually already set ε0 := 2−δ

C2nb0 above, so we can only control the parameter ε0 via the unset parameter
b0. On the other hand, we have not yet set the other error parameters. We do so now, and set εi := ( ε

10·2i )
2

for every i ∈ [d], making the overall error of the condenser at most ε0 + ε/2. Thus, in order to ensure that
the overall error is at most ε, we just need that ε0 = 2−δ

C2nb0 ≤ ε/2, or rather that b0 ≥ log(2/ε)

δC2n
. Thus, the

only unset parameters remaining are the block parameters b0, b1, . . . , bd, and as long as we ultimately set b0
so that it satisfies the above inequality, then the error requirement will be satisfied.

We now turn towards satisfying requirement (1) from above, which states that the explicit non-malleable
condensers nmCond1, . . . , nmCondd actually exist. In order for this to happen, we just need to make sure
that each non-malleable condenser is given a long enough seed, and that this seed has a high enough entropy
rate (as dictated by Theorem 6). Towards this end, notice that for each i ∈ [d], the non-malleable condenser
nmCondi defined above is given an (mi−1, k

′
i−1)-source as a seed, where

m0 = ⌊δC1nb0⌋, (4)

k′0 = (1− β)m0, (5)

and for every i ∈ [2, d],

mi−1 = ⌊0.49κi−1 − C4 log(nbi−1/εi−1)−mi−2⌋ , (6)

k′i−1 ≥ mi−1 − C4 log(nbi−1/εi−1)−mi−2, (7)

where recall that we defined

κi−1 := kbi−1 − d− log(1/εi−1)

= kbi−1 − log⌈(1/δ)C3⌉2 − log(1/εi−1)

≥ kbi−1 − C3 log(1/δ)− 1− log(1/εi−1).

Now, Theorem 6 tells us that in order for the non-malleable condensers to exist, we just need the following:

• Sufficient seed length: mi−1 ≥ C4 log(nbi/εi) for all i ∈ [d].

• Sufficient seed entropy: k′i−1 ≥ (1− β)mi−1 for all i ∈ [d].

Notice that when i = 1, the sufficient seed entropy condition is already satisfied. And when i > 1, the
sufficient seed entropy condition becomes mi−1 ≥ C4

β log(nbi−1/εi−1) +
1
βmi−2, due to the known lower

bound on k′i−1 given earlier. Thus, we just need to set block parameters so that the following are satisfied:

m0 ≥ C4 log(nb1/ε1),

mi−1 ≥ C4 log(nbi/εi) + C4 log(nbi−1/εi−1)/β +mi−2/β, for all i ∈ [2, d].

In order to make sure the above inequalities are satisfied, let us make them easier to digest. To do so,
recall that we previously set the intermediate error parameters so that 1 ≥ ε1 ≥ · · · ≥ εd, and we will later
set block parameters so that 2 ≤ b1 ≤ · · · ≤ bd.22 Next, note that mi−2 ≤ kbi−2 for all i ≥ 2. Using these

22This will allow us to use convenient estimates, such as log(bi−1) ≥ 1 and log(
bibi−1

εiεi−1
) ≤ 2 log(bi/εi) for all i ≥ 2.
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observations, it is straightforward to plug in the actual values for mi−1 (from Equations (4) and (6)) so that
the conditions above (that we need to satisfy) are satisfied if both of the following hold:

δC1nb0 ≥ 2C4 log(nb1/ε1),

kbi−1 ≥ 3C3 log(1/δ) +
18C4

β
log(

nbi
εi

) +
6

β
kbi−2, for all i ∈ [2, d].

Now, recall that we previously defined the error parameters as εi = ( ε
10·2i )

2, for all i ∈ [d]. Thus we
have ε1 ≥ (ε/20)2, and since we previously defined d = log⌈(1/δ)C3⌉, we get εi ≥ (εδC3/20)2 for all
i ∈ [2, d]. Thus the two conditions above are satisfied if both of the following hold:

δC1nb0 ≥ 24C4 log(nb1/ε),

kbi−1 ≥
39C3C4

β
log(1/δ) +

216C4

β
log(nbi/ε) +

6

β
kbi−2, for all i ∈ [2, d].

We can rewrite these in terms of block requirements as follows (recalling that k = δn):

b0 ≥
24C4

δC1n
log(nb1/ε),

bi−1 ≥
39C3C4

βδn
log(1/δ) +

216C4

βδn
log(nbi/ε) +

6

β
bi−2, for all i ∈ [2, d].

Now, if we define the constant C5 := 256C1C2C3C4/β, then the above conditions are satisfied if both

b0 ≥ C5 log(nb1/ε)/(δ
C5n), (8)

bi−1 ≥ C5 log(nbi/ε)/(δ
C5n) + C5bi−2, for all i ∈ [2, d]. (9)

Furthermore, recall that in order for the overall condenser to have error ε, we needed b0 ≥ log(2/ε)/(δC2n),
and this is indeed implied by the first condition above. Thus, we have arrived at sufficient conditions on the
block parameters b0, . . . , bd for the explicit non-malleable condensers nmCond1, . . . , nmCondd to actually
exist, and for the overall error of the final condenser to be at most ε. In fact, using an almost identical
argument to the one given above, it is also straightforward to show that the overall output length md is in
the range md ∈ [0.4kbd, 0.49kbd], and the overall output entropy is k′d ≥ (1− β)md, as long as

bd ≥ C6 log(nbd/ε)/(δ
C6n) + C6bd−1 (10)

for some constant C6 ≥ 1.23 Thus, we now wish to set block parameters so they satisfy Equations (8)
to (10).

Towards this end, we let A ∈ N be a sufficiently large constant, and set block parameters as follows:

b0 :=

⌈
log(1/ε)

δAn

⌉
,

bi := A · bi−1, for all i ∈ [d− 1],

bd :=
⌈
AC3 log(1/δ)+1

⌉
· b0

23Recall that we actually originally requested that md ≥ kτ/4, instead of m ≥ 0.4kbd. However, we will soon show that this
follows from our setting of τ .
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It is straightforward to verify that for all sufficiently large A (as a function of the constants C5, C6), all
of Equations (8) to (10) hold. Moreover, we make sure to pick A ≥ C0.

All that remains is to check the total number of blocks used, and to ensure that the overall output length
md is sufficiently large. Towards this end, the total number of blocks used is

τ := b0 + 2
d∑
i=1

bi

≤ 8A ·
(
(1/δ)C3 logA + (1/δ)C3 logA+A log(1/ε)/n

)
=: τ⋆,

while the overall output length is in the range md ∈ [0.4kbd, 0.49kbd], which means

md ≥ 0.4kbd

≥ 0.2Ak ·
(
(1/δ)C3 logA + (1/δ)C3 logA+A log(1/ε)/n

)
≥ 0.025kτ⋆.

Of course, the fact that md ≤ 0.49kbd also implies that md ≤ kτ⋆ (since we set τ⋆ ≫ bd above). Thus,
to conclude, as long as our CG-source originally started off with

t ≥ τ⋆ := 8A ·
(
(1/δ)C3 logA + (1/δ)C3 logA+A log(1/ε)/n

)
blocks, we can obtain md ∈ [0.01kτ⋆, kτ⋆] output bits that are ε-close to min-entropy k′d ≥ (1−β)md.

5.3.3 Condensing the rest of the entropy out

In this final step, we show how to get the rest of the entropy out of the CG source, while maintaining the
gap, via iterative condensing. We prove the following, which will later be combined with our core lemma
(Lemma 12) in order to yield our main theorem (Theorem 5).

Lemma 13 (Condensing the rest of the entropy out). For every constant α > 0, there is a constant
C > 0 such that there exists an explicit condenser Cond : {0, 1}n1 × · · · × {0, 1}nt → {0, 1}m for
((n1, k1), . . . , (nt, kt))-block sources with output length m ≥ (1−α)k1, output gap g′ = g := nt−kt, and
error ε, provided

ki+1 ≥ C(log(ni/ε) + (t− i) + g)

for all i ∈ [t− 1].

Proof. We simply plug the GUV extractor (Theorem 7) into our iterative condensing framework (Lemma 9),
recalling that an extractor is simply a condenser with output gap 0.

In more detail, if we define mt := nt, then by Theorem 7, the following holds. There exists a sequence
of explicit functions sCond1, sCond2, . . . , sCondt−1, where each sCondi : {0, 1}ni×{0, 1}mi+1 → {0, 1}mi

is a seeded (ni, ki) →εi (mi,mi) condenser with output length mi ≥ (1− α)ki, as long as

(1− α)ki+1 ≥ CGUV log(ni/εi)
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for every i ∈ [t − 1] (where CGUV is a constant depending only on α).24 Since we may assume that
α < 1/2,25 this requirement is satisfied when ki+1 ≥ C log(ni/εi), where we have used C := 2CGUV. And
if we set εi := ε · 2−g−(t−i) for all i ∈ [t− 1], then the requirement is satisfied when

ki+1 ≥ C(log(ni/ε) + (t− i) + g)

for all i ∈ [t−1]. Now, by our iterative condensing framework (Lemma 9), this sequence of explicit functions
sCond1, sCond2, . . . , sCondt−1 can be composed to create an explicit condenser for ((n1, k1), . . . , (nt, kt))-
block sources with output length m1 ≥ (1− α)k1, output gap g′ :=

∑
i∈[t−1](mi −mi) + g = g, and error∑

i∈[t−1]

εi · 2g = ε
∑

i∈[t−1]

2−(t−i) ≤ ε,

as desired.

While the above lemma is quite general, the following corollary will be more useful for our purposes.

Corollary 5 (Condensing a geometric block source with a high-rate final block). For any constants α0 > 0
and C0 ≥ 1, there exist constants β > 0 and C ≥ 1 such that the following holds. There exists an
explicit condenser for ((n1, k1), . . . , (nt, kt))-block sources with output length m ≥ (1−α0)k1, output gap
g′ = g := nt − kt, and error ε, provided that all of the following hold:

• k1 ≥ 4k2 ≥ 42k3 ≥ · · · ≥ 4t−1kt.

• n1 ≤ (C0n2)
2 ≤ (C0n3)

22 ≤ · · · ≤ (C0nt)
2t−1

.

• kt ≥ (1− β)nt.

• nt ≥ C log(1/ε) + C.

Proof. Let C⋆ be the second constant from Lemma 13, when the first constant is set to α. It suffices to show

ki+1 ≥ C⋆(log(ni/ε) + (t− i) + g)

for all i ∈ [t− 1]. This is straightforward via a backward induction on i (using the bullet points).

Putting everything together

At last, with all of our ingredients in place, we are ready to prove our main theorem.

Proof of Theorem 5. Recall that we wish to construct an explicit condenser Cond : ({0, 1}n)t → {0, 1}k′+g′

for (t, n, k = δn = n − g)-CG sources, which has output entropy k′ ≥ (1 − α)kt, output gap g′ ≤
(1/δ)C · (g+ log(1/ε)), and error ε. Towards this end, let X = (X1, . . . ,Xt) be a (t, n, k)-CG source. The
main idea is to use Lemma 12 to condense the last few blocks in X to a block with rate 0.99, and then to use
this high-rate block to get the rest of the entropy out of the source, using Corollary 5.

More formally, set the constants α0, C0 in Corollary 5 to α/2 and 100/α (respectively), and let β⋆, C⋆

denote the constants β,C (in that theorem) that come out. Then, set the constants α,C0 in Lemma 12 to β⋆

24Note that when i = t−1, the requirement is actually mi+1 = ni+1 ≥ CGUV log(ni/εi), which is weaker than what is written.
25This is because the lemma statement only claims a lower bound on the output length m.
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and 2C⋆ (respectively), and let C1, C2, C3 be the constants that come out (corresponding to the same-named
constants in that lemma statement). Finally, define a size parameter s as

s :=
⌈
C1 ·

(
(1/δ)C2 + (1/δ)C3 log(2/ε)/n

)⌉
,

and let w be the largest integer such that s ·
∑w

i=1⌈4/α⌉w−i ≤ t. Note that if w < 2, then the claimed gap
in the theorem statement is trivial, in that it can be achieved simply by applying the identity function.

Now, henceforth assuming that w ≥ 2, define (for every i ∈ [w])

si :=

{
s · ⌈4/α⌉w−i if i > 1,

t− s ·
∑w

i=2⌈4/α⌉w−i if i = 1.

Note that s1 ∈ [s · ⌈4/α⌉w−1, s · ⌈4/α⌉w+1], and define a new source Y = (Y1, . . . ,Yw), where Y1

consists of the first s1 blocks of X, Y2 consists of the next s2 blocks of X, and so on. Note that Y is an
((ns1, ks1), . . . , (nsw, ksw))-block source.

Now, by Lemma 12, there exists an explicit function Cond1 such that Z := Cond1(Yw) is (ε/2)-
close to a source with length mw ∈ [0.025δns, δns] and min-entropy k′w ≥ (1 − β⋆)mw, and moreover,
this is true for every fixing of the random variables Y1, . . . ,Yw−1. Thus, Y⋆ := (Y1, . . . ,Yw−1,Z) is
a ((0, 0), . . . , (0, 0), (0, ε/2))-almost ((ns1, ks1), . . . , (nsw−1, ksw−1), (mw, (1 − β⋆)mw))-block source.
Thus, by Lemma 4, Y⋆ is (ε/2)-close to an ((ns1, ks1), . . . , (nsw−1, ksw−1), (mw, (1 − β⋆)mw))-block
source, Y⋆⋆. Now, it is straightforward to verify (given our setting of parameters) that Y⋆⋆ satisfies the
requirements of Corollary 5, and thus there is an explicit function Cond2 such that Cond2(Y⋆⋆) is ε/2-close
to a source of length m ≥ (1 − α/2)ks1 and gap g′ ≤ β⋆mw, and thus the data-processing inequality tells
us that Cond2(Y⋆) is ε-close to a source of length m ≥ (1 − α/2)ks1 and gap g′ ≤ β⋆mw. Furthermore,
note that by our setting of si, we have m ≥ (1− α)kt, and gap

g′ ≤ β⋆mw ≤ mw ≤ δns ≤ δn · 2C1

(
(1/δ)C2 + (1/δ)C3 log(2/ε)/n

)
,

which is at most

C · (1/δ)C · (n+ log(1/ε)) (11)

for some constant C ≥ 1. Finally, we may assume that the original gap was g > β⋆n, since otherwise we
could easily obtain an output gap of the form g′ ≤ C · (1/δ)C · (g + log(1/ε)), simply by replacing Cond1
with the identity function. Thus, we can upper bound Equation (11) by

C

β⋆
· (1/δ)C · (g + log(1/ε)),

which is again at most C ′ · (1/δ)C′ · (g + log(1/ε)) for a slightly larger constant C ′, as desired.

6 Existential results

In this section, we present and prove all our existential results. We start by showing that a random function is
a good seedless condenser for any small family (Theorem 2). Then, we instantiate this result to get improved
parameters for non-explicit seeded condensers (Corollary 3). Finally, we plug the latter existential result into
the iterative condensing framework in to get our existential results for CG and block sources (Corollary 4).
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6.1 A random function is a seedless condenser (for any small family)

In order to show that a random function is a good seedless condenser for any small family, we show that a
random function is (with high probability) a good condenser for a single source. We prove the following,
which can be viewed as the condenser version of the classic observation that a random function is a good
extractor [Vad12, Proposition 6.12]. (In fact, we will see that it generalizes it.)

Theorem 9 (A random function is a condenser for a single source). There exist universal constants C, c > 0
such that the following holds. Let X be an arbitrary (n, k)-source. For any ℓ ∈ [0, k] and g > 0 such that
m := k−ℓ+g is an integer, and any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m is a uniformly
random function, then

Pr
f
[Hε

∞(f(X)) < k − ℓ] < C · 2−cεKψ,

where

ψ := max

{
g − 1

⌊L⌋
log(1/ε)− C, g − 1

⌊L⌋
log(C2gg/ε) · C2

g

g

}
.

Note that ψ evaluates to the first argument when the gap exceeds a sufficiently large constant, and the
second argument for all other g > 0 (where 2g becomes a constant). In all applications, one should set the
gap g so that ψ = Ω(g) or ψ = 1.

Before we continue, we take a moment to make some remarks about the above theorem. First, we
emphasize that it works for any (n, k)-source, not just flat ones. This is crucial to showing the existence of
good seedless condensers for small families, since (unlike in the seeded setting) you cannot assume such
families only contain flat sources.26 We also note that the above strictly generalizes the classic result that
a random function is a good extractor (i.e., condenser with g = 0) with probability 1 − 2−Ω(ε2K). This
is because we can instantiate our theorem with gap g = ε/2 and error ε/2, since a source with gap g is
g-close to a source with gap 0. Moreover, our generalization reveals that the well-known required loss of
ℓ = 2 log(1/ε) for extractors generalizes to roughly ℓ = 2 log(1/g), meaning that the loss is primarily due
to the gap, not the error. Furthermore, the success probability generalizes to 1 − 2−Ω(gεK). Overall, this
means that even if you are in the regime g < 1 (which is close to the extractor regime of g = ε/2), you can
benefit by applying the condenser result instead of the extractor result.

Next, we record the following corollary, which is immediate via the probabilistic method.27

Corollary 6 (A random function is a condenser for any small family). There exist universal constants
C, c > 0 such that the following holds. Let X be a family of (n, k)-sources. For any ℓ ∈ [0, k] and g > 0
such that m := k − ℓ+ g is an integer, and any ε ∈ (0, 1], the following holds. If

|X | ≤ c · 2cεKψ,

where ψ is as defined in Theorem 9, then there exists a condenser Cond : {0, 1}n → {0, 1}m for X with
loss ℓ, gap g, and error ε.

26This is because such existential results proceed by counting the number of sources in the family X , and arguing that there are
not too many. And while it is true that every (n, k)-source is a convex combination of flat sources, it is not true that it is a convex
combination of flat sources in that family, which is the collection whose size was actually estimated. The family X ′ of flat sources
that arises by decomposing each X ∈ X into a convex combination of flat sources may have size much larger |X |.

27In particular, apply Theorem 9 to each X ∈ X and use a union bound.
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We now proceed to prove Theorem 9. First, we prove it in the extractor (small gap) regime, via The-
orem 10. Then, we prove it in the much more challenging condenser (large gap) regime, via Theorem 11.
Combined, these two theorems immediately yield Theorem 9. We briefly note that from here onwards, we
often simplify notation and use [N ] to represent {0, 1}n, and [M ] to represent {0, 1}m. Furthermore, we
always use µ to represent the density of a set S, not the mean of a random variable (though they will often
coincide). The set to which µ corresponds will always be clear from context.

6.1.1 The extractor regime: small gap, large loss

We start by proving our existential result for the extractor (small gap) regime.

Theorem 10 (Theorem 9, Part I). Let X be an arbitrary (n, k)-source. For any ℓ ∈ [0, k] and g > 0 such
that m := k − ℓ + g is an integer, and any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m is a
uniformly random function, then

Pr
f
[Hε

∞ (f(X)) < k − ℓ] < 2
− εK

2
(g− 1

L
3G
g

log( 2Gg
ε

))
.

Note that this result is most useful in the extractor regime, i.e., when the gap is a constant or even in the
range g ∈ (0, 1]. (Recall that the exact extractor regime is when g = ε/2.) In this regime, the above bound is

of the form 2
− εK

2
(g−O( 1

L
1
g
log(g/ε))). Now, in order to prove Theorem 10, we use the following proposition,

which is just a restatement of (one direction of) Lemma 2.

Proposition 1 (Necessary condition for condensing failure). For any fixed function f : {0, 1}n → {0, 1}m,
any (n, k)-source X, and any k′ ∈ [0,m], ε > 0, and g := m− k′,

Hε
∞(f(X)) < k′ =⇒ ∃S ⊆ [M ] of density µ := |S|/M such that Pr[f(X) ∈ S] > µG+ ε.

In particular, we’ll use the following corollary.

Corollary 7. If Hε
∞(f(X)) < k′, then for any threshold value τ ∈ [M ], one of the following must hold:

• ∃S ⊆ [M ] of size |S| < τ and density µ := |S|/M such that Pr[f(X) ∈ S] > µG+ ε.

• ∃S ⊆ [M ] of size |S| = τ and density µ := |S|/M such that Pr[f(X) ∈ S] > µG.

Proof. By Proposition 1, there exists some set S ⊆ [M ] of density µ such that Pr[f(X) ∈ S] > µG+ ε. If
|S| < τ , then the first bullet holds. If |S| ≥ τ , then let S⋆ denote the τ elements in S hit by f(X) with the
highest probability (breaking ties arbitrarily), and let µ⋆ denote the density of S⋆. Then

Pr[f(X) ∈ S⋆] ≥ |S⋆|
|S|

· Pr[f(X) ∈ S] =
µ⋆

µ
Pr[f(X) ∈ S] > µ⋆(G+ ε/µ) ≥ µ⋆G,

and the second bullet holds, as desired.

Now, the idea is to eventually pick some threshold τ so that for a random function, both bullets happen
with low (and close to the same) probability. We start with the first bullet.

Claim 3. Let f : {0, 1}n → {0, 1}m be a uniformly random function, let X be an (n, k)-source, and let
S ⊆ [M ] be a set of density µ := |S|/M . Then for any ε > 0 and G ≥ 0,

Pr
f

[
Pr
X

[f(X) ∈ S] ≥ µG+ ε

]
≤ G−εK .
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Proof. We may assume that µ > 0, since the claim trivially holds if µ = 0 (as this implies S is empty).
Now, for each x ∈ {0, 1}n, define the random variable

Zx := 1[f(x) ∈ S] · Pr[X = x] ·K.

Note that its randomness comes from f , and it is supported on the interval [0, 1], since H∞(X) ≥ k.
Furthermore, if we define Z :=

∑
x Zx, it is easy to verify that Z = PrX[f(X) ∈ S] ·K, and we also have

E[Z] = K|S|/M = µK. Combining these observations with the Chernoff bound (Theorem 4), we have

Pr
f

[
Pr
X
[f(X) ∈ S] ≥ µG+ ε

]
= Pr

f

[
Pr
X
[f(X) ∈ S] ·K ≥ µGK + εK

]
= Pr [Z ≥ E[Z] ·G+ εK]

= Pr [Z ≥ (G+ ε/µ)E[Z]]

≤

(
eG−1+ε/µ

(G+ ε/µ)G+ε/µ

)µK
(12)

= exp (−εK ((1 + α)(lnG+ ln(1 + 1/α)− 1) + α/G))

for α := µG/ε.28 Finally, using routine calculus, it is straightforward to verify that the function

ϕ(α, g) := (1 + α)(lnG+ ln(1 + 1/α)− 1) + α/G

is ≥ g ln 2 for all g ≥ 0, α > 0. The result follows.

Next, we bound the probability that bullet two in Corollary 7 occurs for a uniformly random function.
Using the same parameters and objects as defined in Claim 3, we have the following.

Claim 4.
Pr
f

[
Pr
X

[f(X) ∈ S] > µG

]
≤ exp

(
− µGK(lnG− 1 + 1/G)

)
.

Proof. The claim is immediate via the proof of Claim 3 up to Equation (12), setting ε = 0.

Using the above claims, we can show that the necessary conditions for condensing failure (Corollary 7)
happen with low probability, allowing us to prove that a random function is a good condenser (Theorem 10).

Proof of Theorem 10. Let k′ := k− ℓ, g := m− k′, and suppose that Hε
∞(f(X)) < k′. By Corollary 7, we

know that for any threshold value τ ∈ [M ] (to be set momentarily), one of the following must hold:

• ∃S ⊆ [M ] of size |S| < τ and density µ := |S|/M such that Pr[f(X) ∈ S] > µG+ ε.

• ∃S ⊆ [M ] of size |S| = τ and density µ := |S|/M such that Pr[f(X) ∈ S] > µG.

By combining this with Claim 3 and Claim 4, we get the following.

Pr
f

[
Hε

∞(f(X)) < k′
]
≤ Pr

f
[∃S ⊆ [M ], |S| < τ : Pr[f(X) ∈ S] > µG+ ε]

+ Pr
f
[∃S ⊆ [M ], |S| = τ : Pr[f(X) ∈ S] > µG]

≤
(
M

< τ

)
2−gεK +

(
M

τ

)
exp (−τL(lnG− 1 + 1/G)) .

28Here and henceforth, we may assume that ε > 0, since the claim trivially holds if ε = 0.
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Now, consider the quantity ϕ := (lnG − 1 + 1/G) log e. If gεK ′/ϕ < 1, then we set τ := ⌈gεK ′/ϕ⌉.
Otherwise, we set τ := ⌊gεK ′/ϕ⌋. Notice that in the first case, the probability that produced the first term
in the above sum would have actually realized to 0. And in the second case, observe that gεK ≥ τLϕ. Thus
the above expression can be bounded by

≤
(
M

≤ τ

)
2−τLϕ ≤ 2−τL(ϕ−

1
L
log(eM/τ)) ≤ 2

− gεK
2ϕ

(ϕ− 1
L
log( 2eGϕ

gε
))
. (13)

Finally, it is straightforward to verify that

2

g ln 2
≤ g

ϕ
≤ 2G

g ln 2
,

and using this observation, we can upper bound Equation (13) by

2
− εK

2
(g− 1

L
1
g

2G
ln 2

) log( g·eG ln 2
ε

)

as desired.

6.1.2 The condenser regime: large gap, small loss

Next, we turn to prove our existential result for the much more challenging condenser regime.

Theorem 11 (Theorem 9, Part II). Let X be an arbitrary (n, k)-source. For any ℓ ∈ [0, k] and g > 0 such
that m := k − ℓ + g is an integer, and any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m is a
uniformly random function, then

Pr
f
[Hε

∞(f(X)) < k − ℓ] ≤ 4 · 2−
εK
6

(g− 1
⌊L⌋ log(1/ε)−16)

.

As in the previous section, we consider several conditions which are necessary for condenser failure, and
show that each happens with small probability. Similar to before, these conditions have to do with whether
certain sets S ⊆ [M ] are assigned too much probability. This time, however, we’re in a regime where we
want to be able to handle very small loss, by paying some price in the gap, and thus the output length. As a
result, it will be too expensive to check tests S ⊆ [M ] by choosing them from the set [M ], which may now
be very large. Instead, we’ll have to implicitly specify them using their preimages.

The above plan would work well if X had a small support size, which would be the case if X were flat.
However, we don’t want to make any such assumption, and therefore need a new idea. Our idea is to split
the support of X into two sets: one which is small (and therefore easy to choose sets from), and one which
is big (but is guaranteed to have better “local” entropy). Then, we ultimately check whether f(X) fails the
appropriate tests S ⊆ [M ] by specifying them through their preimages in these sets.

We now proceed to present the formal conditions we’re looking for that indicate condenser failure.

Proposition 2 (Necessary conditions for condensing failure). Let f : {0, 1}n → {0, 1}m be a fixed function,
and let X be an (n, k)-source whose support is partitioned into sets X1, X2. Fix any ℓ ∈ [0, k] and ε > 0,
and define k′ := k − ℓ and g := m− k′. If Hε

∞(f(X)) < k′, there must exist some set S ⊆ [M ] of density
µ such that at least one of the following holds:

1. X1 has bad smooth min-entropy: Pr[f(X) ∈ S ∧X ∈ X1] > µG+ ε/3.
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2. X2 has bad smooth min-entropy: Pr[f(X) ∈ S ∧X ∈ X2] > µG/L+ ε/3.

3. X1, X2 have bad “joint” smooth min-entropy: Both of the following hold:

• Pr[f(X) = v ∧X ∈ X1] >
L−1
L · 1

K′ for all v ∈ S.

• Pr[f(X) ∈ S ∧X ∈ X2] > ε/3.

Proof. By definition of smooth min-entropy, we know that if Hε
∞(f(X)) < k′, then there is some set

S ⊆ {0, 1}m of density µ such that Pr[f(X) ∈ S] > µG+ ε, by Proposition 1. Partition S into sets S1, S2
such that S1 contains all elements v ∈ {0, 1}m satisfying

Pr[f(X) = v ∧X ∈ X1] >
L− 1

L
· 1

K ′ .

Suppose that neither the first nor third case in the proposition hold. Then

Pr[f(X) ∈ S1] = Pr[f(X) ∈ S1 ∧X ∈ X1] + Pr[f(X) ∈ S1 ∧X ∈ X2]

≤ |S1|
M

G+ ε/3 + ε/3

=
|S1|
M

G+ 2ε/3.

Furthermore, if the second case also does not hold, then

Pr[f(X) ∈ S2] = Pr[f(X) ∈ S2 ∧X ∈ X1] + Pr[f(X) ∈ S2 ∧X ∈ X2]

≤ L− 1

L
· |S2|
K ′ +

|S2|
M

G/L+ ε/3

=
|S2|
M

G+ ε/3.

But this implies that Pr[f(X) ∈ S] ≤ µG+ ε, contradicting our original assumption.

We now show that each of these three events happens with low probability, starting with the second one.

Case 2: The subdistribution on X2 has bad smooth min-entropy.

We prove the following, which bounds the probability that the second bullet in Proposition 2 can occur.

Lemma 14 (A random function condenses the subdistribution on X2). Let X ∼ {0, 1}n be a source, and
let X ⊆ support(X) be a set with maxx∈X Pr[X = x] ≤ 1/K. For any ℓ ∈ [0, k] and g ≥ 0 such that
m := k−ℓ+g is an integer, and any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m is a uniformly
random function, then

Pr
f

[
∃S ⊆ [M ] : Pr

X
[f(X) ∈ S and X ∈ X] > µG+ ε

]
≤ 2−

εK
2

(g− 1
L
log(2eG/ε)−log e).

Just as in the proof of Theorem 10, we will upper bound the above probability by splitting the event in
two, as prescribed by Corollary 7. To help us with this, we need subdistribution versions of Claim 3 and
Claim 4, which we prove next.
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Claim 5 (Claim 3, subdistribution version). Let f : {0, 1}n → {0, 1}m be a uniformly random function, let
X ∼ {0, 1}n be a source, and let X ⊆ support(X) be a set with maxx∈X Pr[X = x] ≤ 1/K. Then for any
set S ⊆ [M ] of density µ := |S|/M , and any ε > 0 and G ≥ 0,

Pr
f

[
Pr
X

[f(X) ∈ S and X ∈ X] > µG+ ε

]
≤ G−εK .

Proof. We may assume that µ > 0, since the claim trivially holds if µ = 0 (as this implies S is empty).
Now, for each x ∈ X , define the random variable

Zx := 1[f(x) ∈ S] · Pr[X = x] ·K.

Note that its randomness comes from f , and it is supported on the interval [0, 1], since maxx∈X ≤ 1/K.
Furthermore, if we define Z :=

∑
x∈X Zx, it is easy to verify that Z = PrX[f(X) ∈ S and X ∈ X] · K

and E[Z] = (K|S|/M) Pr[X ∈ X] = µK Pr[X ∈ X] ≤ µK. Using these observations, we have

Pr
f

[
Pr
X
[f(X) ∈ S and X ∈ X] ≥ µG+ ε

]
= Pr

f

[
Pr
X
[f(X) ∈ S and X ∈ X] ·K ≥ µGK + εK

]
= Pr

f
[Z ≥ (G+ ε/µ)µK]

≤

(
eG−1+ε/µ

(G+ ε/µ)G+ε/µ

)µK
, (14)

where the last inequality follows from the fact that the Chernoff bound (Theorem 4) can be used with just
an upper bound µK on the expectation E[Z]. The remainder of the proof is now identical to the proof of
Claim 3, following Equation (12).

Next, using the same parameters and objects as described in the claim above, we prove the following.

Claim 6 (Claim 4, subdistribution version).

Pr
f

[
Pr
X
[f(X) ∈ S and X ∈ X] > µG

]
≤ exp (−µGK(lnG− 1 + 1/G)) .

Proof. The claim is immediate via the proof of Claim 5 up to Equation (14), setting ε = 0.

With these claims in hand, it is now easy to prove Lemma 14.

Proof of Lemma 14. Just as in the proof to Theorem 10 (substituting in Claim 5 for Claim 3 and Claim 6 for
Claim 4), we have

Pr
f

[
∃S ⊆ [M ] : Pr

X
[f(X) ∈ S and X ∈ X] > µG+ ε

]
≤ 2

− gεK
2ϕ

(ϕ− 1
L
log( 2eGϕ

gε
))
, (15)

where ϕ := (lnG− 1 + 1/G) log e. It is straightforward to verify that for all g ≥ 0, we have

g − log e ≤ ϕ ≤ g.

Using this observation, we can upper bound Equation (15) by

2−
εK
2

(g− 1
L
log( 2eG

ε
)−log e)

as desired.
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Case 1: The subdistribution on X1 has bad smooth min-entropy.

Next, we upper bound the probability that the first bullet in Proposition 2 can occur.

Lemma 15 (A random function condenses the subdistribution on X1). Let X be an (n, k)-source, and let
X ⊆ support(X) be an arbitrary set. For any ℓ ∈ [0, k] and g ≥ 0 such that m := k − ℓ+ g is an integer,
and any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m is a uniformly random function, then

Pr
f
[∃S ⊆ [M ] : Pr[f(X) ∈ S and X ∈ X] > µG+ ε] ≤ 2−

εK
2

(g− 1
L
log(

|X|
εK

)−5.886).

As before, we will upper bound this event by splitting it in two. This time, however, we will not
ultimately specify the sets S by picking them from [M ]. Instead, we will specify them implicitly, via their
preimages. To do this, it will be useful to define a notion of “superlevel sets.” Given an (n, k)-source X and
element v ∈ {0, 1}n, we let SLv denote its superlevel set, defined as follows:

SLv := {x ∈ {0, 1}n : Pr[X = x] ≥ Pr[X = v]}.

Given this definition, we are ready to prove the preimage versions of the key claims we have been using.

Claim 7 (Claim 3, preimage version). Let X be an (n, k)-source. For any ℓ ∈ [0, k] and g ≥ 0 such that
m := k − ℓ+ g is an integer, any ε ∈ (0, 1], and any S ⊆ {0, 1}n with µ := |S|/M , the following holds. If
f : {0, 1}n → {0, 1}m is a uniformly random function, then

Pr
f

[
|f(S)| = |S| and Pr

X
[∃v ∈ S : f(X) = f(v) and X ∈ SLv] > µG+ ε

]
≤
(eµ
ε

)εK
Proof. Let f : {0, 1}n → {0, 1}m be a uniformly random function. For a fixed function h : S → {0, 1}m,
let fh : {0, 1}n → {0, 1}m be a function such that fh(x) = h(x) for all x ∈ S, and fh(x) is an independent,
uniformly random value from {0, 1}m for all other x. By the law of total probability, there exists a worst-
case fixing h⋆ that is injective on S such that

Pr
f

[
|f(S)| = |S| and Pr

X
[∃v ∈ S : f(X) = f(v) and X ∈ SLv] > µG+ ε

]
≤ Pr

fh⋆

[
Pr
X
[∃v ∈ S : fh⋆(X) = fh⋆(v) and X ∈ SLv] > µG+ ε

]
.

For ease of notation, we will henceforth use f ′ to denote fh⋆ .
Now, for all v ∈ S and x ∈ SLv \ S, define the random variable

Zx,v := 1[f ′(x) = f ′(v)] · Pr[X = x] ·K.

Then, for all x ∈ (∪v∈SSLv) \ S, define

Zx :=
∑

v∈S:x∈SLv

Zx,v,

and finally let Z :=
∑

x∈(∪v∈SSLv)\S Zx. Let us now make some observations about these random variables.
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First, note that the randomness in these random variables comes exclusively from f ′, and each random
variable Zx is supported on [0, 1], since H∞(X) ≥ k and since 1[f ′(x) = f ′(v)] can only equal 1 for at
most one value v ∈ S (since f ′ is injective on S). Furthermore, observe that

Z =
∑

v∈S,x∈SLv\S

Zx,v = K · Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv \ S].

Looking back at the probability we must analyze, it would be much more convenient if the expression above
had the condition X ∈ SLv instead of X ∈ SLv \ S. Luckily, it is easy to verify that

Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv]

=Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv \ S] + Pr

X
[X ∈ S]

=
1

K
· Z+ Pr

X
[X ∈ S]

≤ 1

K
(Z+ |S|)

≤ 1

K
(Z+ µGK),

where the penultimate inequality is because X has min-entropy at least k, and the final inequality is because
G ≥M/K. Next, we can upper bound the expected value of Z as follows:

E[Z] =
∑

v∈S,x∈SLv\S

E[Zx,v] =
K

M

∑
v∈S,x∈SLv\S

Pr[X = x] =
K

M

∑
v∈S

Pr[X ∈ SLv \ S] ≤
K

M
· |S| = µK.

Finally, since each Zx is independent, and Z =
∑

x Zx, we are ready to apply a Chernoff bound to upper
bound our desired probability. In particular, we have

Pr
f ′

[
Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv] > µG+ ε

]
= Pr

f ′

[
Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv] ·K > µGK + εK

]
≤ Pr

f ′
[Z+ µGK > µGK + εK]

= Pr
f ′

[Z > (ε/µ)µK] .

Since we showed above that µK ≥ E[Z], the Chernoff bound (Theorem 4) tells us that the above is

≤
(

eδ

(1 + δ)1+δ

)µK
≤
(

e

1 + δ

)(1+δ)µK

for δ := ε/µ− 1.29 Plugging this value of δ into the expression above yields

≤ (eµ/ε)εK ,

as desired.
29Note that we may assume δ > 0, since otherwise µ/ε ≥ 1 and the bound in the claim trivially holds.
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Next, using the same parameters as in the claim above (with k′ := k − ℓ), we prove the following.

Claim 8 (Claim 4, preimage version).

Pr
f

[
|f(S)| = |S|, and for all v ∈ S, Pr

X
[f(X) = f(v) and X ∈ SLv] > 1/K ′

]
≤
(
4e

G

)µGK
.

Proof. As in the proof of Claim 7, it suffices to show the claimed upper bound on the quantity

Pr
f ′

[
∀v ∈ S : Pr

X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′

]
, (16)

where f ′ is some function that is injective (and fixed to constants) on S, and uniformly random on all other
inputs. Now, let us once again proceed with defining random variables so that we can upper bound this
quantity via a Chernoff bound. We must be a little more careful this time.

Towards this end, for all v ∈ S and x ∈ SLv \ S, we once again want to define a random variable Zx,v.
But this time, we base the definition on just how likely x is to be hit. In particular, let X⋆ denote the 2K
most probable elements in support(X), breaking ties arbitrarily. Then, define

Zx,v :=

{
1[f ′(x) = f ′(v)] if x ∈ X⋆,

1[f ′(x) = f ′(v)] · Pr[X = x] · 2K otherwise.

Now, as before, for all x ∈ (∪v∈SSLv) \ S, define

Zx :=
∑

v∈S:x∈SLv

Zx,v,

and let Z :=
∑

x∈(∪v∈SSLv)\S Zx. Let us now make some observations about these random variables.
First, the randomness in these random variables comes exclusively from f ′. Next, we claim that each

random variable Zx is supported on [0, 1]. To see why, observe that only one term Zx,v in the sum that
defines Zx can be nonzero, since f ′ is injective on S. Then, note that such a nonzero term Zx,v is always in
the range [0, 1]: for the first definition of Zx,v, this is clear. For the second definition, simply note that all
elements x ∈ support(X) that are not among the 2K most probable must be hit with probability < 1/(2K),
because otherwise the sum of Pr[X = x] over all elements x will exceed 1 - a contradiction.

Next, observe that

E[Z] =
∑

v∈S,x∈(SLv\S)∩X⋆

E[Zx,v] +
∑

v∈S,x∈(SLv\S)\X⋆

E[Zx,v]

≤ |S||X⋆|/M + 2K|S|/M
= 4µK.

Finally, for our last step before applying the Chernoff bound, we must relate Z to the event in Equa-
tion (16). Towards this end, fix some v ∈ S and suppose the following inequality holds (note that the
equality always holds, by the injectivity of f ′ on S):

Pr
X
[f ′(X) = f ′(v) and X ∈ SLv] = Pr

X
[f ′(X) = f ′(v) and X ∈ SLv \ S] + Pr

X
[X = v] > 1/K ′.
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Then, since X has min-entropy ≥ k, and 1/K ′ = L/K, f ′ must send at least L+ 1 elements from SLv to
f ′(v). We consider two cases. First, if at least L of these elements occur in X⋆, then there must be at least
L elements that f ′ maps from (SLv \ S) ∩X⋆ to f ′(v). As such, we have∑

x∈SLv\S

Zx,v ≥
∑

x∈(SLv\S)∩X⋆

Zx,v ≥ L = K · 1/K ′.

On the other hand, if less than L of these elements occur in X⋆, then there must be at least 2 elements that
f ′ maps from (SLv \ S) \X⋆ to f ′(v). In this case, by definition of SLv, we have that∑

x∈SLv\S

Zx,v =
∑

x∈(SLv\S)∩X⋆

Zx,v +
∑

x∈(SLv\S)\X⋆

Zx,v

≥ K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ S) ∩X⋆]

+ 2K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ S) \X⋆]

= K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) ∩X⋆]

+ 2K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) \X⋆] (by injectivity of f ′ on S)

≥ K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) ∩X⋆]

+K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) \X⋆]

+K · Pr[f ′(X) = f ′(v) and X = v]

= K · Pr[f ′(X) = f ′(v) and X ∈ SLv]

> K · 1

K ′ .

Combining these two cases, we get that

Pr
X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′ =⇒

∑
x∈SLv\S

Zx,v ≥ K · 1/K ′,

and moreover,

Pr
X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′ for all v ∈ S =⇒ Z =

∑
v∈S

∑
x∈SLv\S

Zx,v ≥ K|S|/K ′.

With all of these observations in hand, we are finally ready to apply a Chernoff bound to upper bound
our desired probability. Towards this end, we have

Pr
f ′

[
∀v ∈ S : Pr

X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′

]
≤ Pr

f ′

[
Z ≥ K|S|/K ′]

= Pr
f ′
[Z ≥ (4µK)(G/4)].

Since we showed that 4µK ≥ E[Z], the Chernoff bound (Theorem 4) tells us that the above is

≤
(

eδ

(1 + δ)1+δ

)4µK

≤
(

e

1 + δ

)(1+δ)4µK

51



for δ := G/4− 1.30 Plugging this value of δ into the expression above yields

(4e/G)µGK ,

as desired.

Using these claims, it is easy to prove Lemma 15.

Proof of Lemma 15. Fix a function f : {0, 1}n → {0, 1}m, and suppose there is a set S ⊆ [M ] with density
µ := |S|/M such that Pr[f(X) ∈ S and X ∈ X] > µG + ε. We may assume each v ∈ S has a preimage
in X , since otherwise we could remove v from S, while keeping the probability guarantee. For the same
reason, we may assume that Pr[f(X) = v and X ∈ X] > 1/K ′ for each v ∈ S.

Now, let τ ∈ [M ] be a threshold we will set later. Observe that one of the following must hold:

• ∃S ⊆ [M ] with size < τ and density µ := |S|/M such that Pr[f(X) ∈ S and X ∈ X] > µG+ ε.

• ∃S ⊆ [M ] with size τ and density µ := τ/M such that Pr[f(X) = v and X ∈ X] > 1/K ′, ∀v ∈ S.

Indeed, this follows immediately from the discussion above, since if the original set S had size < τ , then
the first bullet holds, and if it had size ≥ τ , then any subset of S of size τ satisfies the second bullet.

Next, regardless of which bullet holds, we let S ⊆ [M ] denote the set referred to in that bullet, and
define a new set S⋆ ⊆ X as follows. First, for each v ∈ S, let v⋆ denote the element in f−1(v) ∩ X that
receives the least probability under X. Then, define the set S⋆ := {v⋆ : v ∈ S}, and observe the following:

• If S originally referred to the first bullet above, then all of the following hold:

– S⋆ ⊆ X and |S⋆| < τ .

– |f(S⋆)| = |S⋆|.
– PrX[∃v⋆ ∈ S⋆ : f(X) = f(v⋆) and X ∈ SLv⋆ ] = PrX[f(X) ∈ S and X ∈ X] > µG+ ε.

• If S originally referred to the second bullet above, then all of the following must hold:

– S⋆ ⊆ X and |S⋆| = τ .

– |f(S⋆)| = |S⋆|.
– PrX[f(X) = f(v⋆) and X ∈ SLv⋆ ] = PrX[f(X) = f(v⋆) and X ∈ X] > 1/K ′,∀v⋆ ∈ S⋆.

By combining these observations with Claim 7 and Claim 8, we get the following.

Pr
f
[∃S ⊆ [M ] : Pr[f(X) ∈ S and X ∈ X] > µG+ ε]

≤ Pr
f

[
∃S ⊆ X, |S| < τ : |f(S)| = |S| and Pr

X
[∃v ∈ S : f(X) = f(v) and X ∈ SLv] > µG+ ε

]
+ Pr

f

[
∃S ⊆ X, |S| = τ : |f(S)| = |S| and Pr

X
[f(X) = f(v) and X ∈ SLv] > 1/K ′,∀v ∈ S

]
≤
(
|X|
< τ

)( eτ
εM

)εK
+

(
|X|
τ

)(
4e

G

)τL
.

30Note that we may assume δ > 0, since otherwise 4/G ≥ 1 and the bound in the claim trivially holds.
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Finally, we check if εK/L < 1. If this holds, we set τ = ⌈εK/L⌉ ≤ 2εK/L, and observe that
the probability that produced the term

(|X|
<τ

) (
eτ
εM

)εK would have actually been 0. If εK/L ≥ 1, we set

τ = ⌊εK/L⌋ ≥ (εK/L)/2, and observe that
(
eτ
εM

)εK ≤
(
e
G

)τL. In either case, we can upper bound the
above sum by

≤
(
|X|
≤ τ

)(
4e

G

)τL
≤ 2−τL(g−

1
L
log( 2eL

ε
· |X|
K

)−log(4e)) ≤ 2−
εK
2

(g− 1
L
log(

|X|
εK

)−5.886),

as desired.

Case 3: The subdistributions on X1,X2 have bad joint smooth min-entropy.

Finally, we upper bound the probability that the third bullet in Proposition 2 can occur.

Lemma 16 (A random function jointly condenses the subdistributions on X1, X2). Let X be an (n, k)-
source. For any ℓ ∈ [0, k] and g ≥ 0 such that m := k − ℓ + g = k′ + g is an integer, and any ε ∈ (0, 1]
the following holds. Suppose the support of X is partitioned into sets X1, X2, where X1 contains the
min{⌈4KL⌉, N} highest probability elements, and X2 the rest. If f : {0, 1}n → {0, 1}m is a uniformly
random function, then

Pr
f

[
∃S ⊆ [M ] : Pr

X
[f(X) = v ∧X ∈ X1] >

L− 1

L
· 1

K ′∀v ∈ S, and Pr
X
[f(X) ∈ S ∧X ∈ X2] > ε

]
≤ 2 · 2−

εK
2

(g− 1
⌊L⌋ log(1/ε)−11)

.

Proof. We start by claiming that we can assume L ≥ 2, since otherwise the result is easy to prove. To see
why, suppose that L < 2 (and thus ⌊L⌋ = 1). In order for the bad event (in the probability expression above)
to hold, the random function f must map> ε weight fromX2 into the set f(X1). But here, the size ofX1 is
at most ⌈4KL⌉ < ⌈8K⌉, and thus the size of f(X1) is also < ⌈8K⌉. Since f acts independently on X1, X2

(as they are disjoint), we get that the bad event above holds with probability at most

Pr
f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
,

where f is a uniformly random function, and S⋆ is an (adversarially) fixed set of size < ⌈8K⌉. Now, by
definition of X2, each x ∈ X2 is hit by X with probability at most 1/(4K). Thus, applying Claim 5 (setting
parameters appropriately), we get

Pr
f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
≤ 2−2εK(g−log(36/ε)) = 2

−2εK(g− 1
⌊L⌋ log(36/ε))

,

as desired. Thus, we can henceforth assume that L ≥ 2.
Now, let E denote the (bad) event in the lemma statement, and let τ ∈ [M ] be a threshold value that we

will set later. Since f acts independently on X1, X2 (as they are disjoint), observe that

Pr
f
[E ] ≤ Pr

f

[
∃S ⊆ [M ], |S| = τ : Pr

X
[f(X) = v ∧X ∈ X1] >

L− 1

L
· 1

K ′ ,∀v ∈ S

]
+ Pr

f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
,
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where S⋆ ⊆ [M ] is an arbitrary fixed set of size τ − 1.31 By Claim 5 (setting parameters appropriately), and
the fact that each x ∈ X2 is hit by X with probability at most 1/(4KL), we have

Pr
f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
≤ 2−2εKL log( εM

2τ
).

Finally, consider any fixed set S ⊆ [M ] of size τ . Then, by Claim 8 (used in a similar manner as in the
proof to Lemma 15), we have

Pr
f

[
∃S ⊆ [M ], |S| = τ : Pr

X
[f(X) = v ∧X ∈ X1] >

L− 1

L
· 1

K ′ ,∀v ∈ S

]
≤
(
|X1|
τ

)(
4eL

G(L− 1)

)τ(L−1)

≤
(
e⌈4KL⌉

τ

)τ
·
(
8e

G

)τ(L−1)

≤ 2−τL(
L−1
L

(g−log(8e))− 1
L
log(8eKL/τ)).

And thus, we have

Pr
f
[E ] ≤ 2−2εKL log( εM

2τ
) + 2−τL(

L−1
L

(g−log(8e))− 1
L
log(8eKL/τ)).

Finally, setting τ := ⌈ε(L−1)/LK ′⌉ yields

Pr
f
[E ] ≤ 2 · 2−

εK
2

(g− 1
L
log(1/ε)−11),

as desired.

Putting everything together

By combining the necessary conditions for condensing failure (Proposition 2) with the fact that each such
condition happens with low probability (Lemmas 14 to 16), we are finally able to prove that a random
function is a good condenser (Theorem 11).

Proof of Theorem 11. Before we start, we note that we may assume ℓ ≤ g/4. This is because if ℓ > g/4,
then combining Proposition 1 and Lemma 14 (observing that log(G)/L ≤ log(4ℓ)/L ≤ 2) yields the result.

Now that we may assume ℓ ≤ g/4, the result is almost immediate, via the sketch above. In particular,
we first set k′ := k − ℓ, and let X1 denote the heaviest min{⌈4KL⌉, N} elements in support(X), and X2

the rest. Then, by Lemma 15, we know that the first condition in Proposition 2 holds with probability at
most

2−
εK
6

(g− 1
L
log(

3⌈4KL⌉
εK

)−5.886)

≤ 2−
εK
6

(g− 1
L
log( 1

ε
)−16).

31Notice that the second term realizes to 0 if τ = 1.
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Next, define G̃ = G/L, ε̃ = ε/3, K̃ = 4KL, and L̃ = K̃G̃/M = 4L. Since each x ∈ X2 is hit with
probability at most 1/(4KL) = 1/K̃, Lemma 14 tells us that the second condition in Proposition 2 holds
with probability at most

2−
ε̃K̃
2

(g̃− 1
L̃
log(2eG̃/ε̃)−log e)

≤ 2−
4εKL

6
(g−ℓ− 1

4L
log(6eG/ε)−log e)

≤ 2−
4εKL

6
(3g/4− 1

4L
log(6eG/ε)−log e) (since we assumed ℓ ≤ g/4)

≤ 2−
εKL
6

(2g− 1
L
log(6e/ε)−4 log e)

≤ 2−
εKL
6

(2g− 1
L
log(1/ε)−10).

Finally, by Lemma 16, the third condition in Proposition 2 holds with probability at most

2 · 2−
εK
6

(g− 1
⌊L⌋ log(3/ε)−11)

≤ 2 · 2−
εK
6

(g− 1
⌊L⌋ log(1/ε)−13)

.

Thus, by a simple union bound, one of the conditions in Proposition 2 holds with probability at most

4 · 2−
εK
6

(g− 1
⌊L⌋ log(1/ε)−16)

.

By the statement of Proposition 2, the result follows.

6.2 A random function is a seeded condenser

Using our main existential result from the previous section, it is now straightforward to obtain our existential
results for seeded condensers.

Theorem 12 (A random function is a seeded condenser). There exists a universal constant C ≥ 1 such
that for any ℓ ∈ [0, k + d] and g ≥ 0 such that m := k + d − ℓ + g is an integer, and any ε ∈ (0, 1], the
following holds. If d ≥ log

(
n−k
ε

)
+ C and g ≥ 1

⌊L⌋ log
(
1
ε

)
+ C, then there exists a seeded condenser

sCond : {0, 1}n × {0, 1}d → {0, 1}m for (n, k)-sources with loss ℓ, gap g, error ε, and seed length d.

Proof. This is an immediate corollary of our main existential result (Theorem 9), by considering the family
X of sources of the form (X,Y), where X is an (n, k)-source and Y ∼ {0, 1}d is a uniform independent
seed.

We remark that a more general theorem can be established (that allows for gap g ∈ [0, C] and recovers
known existential results for seeded extractors), but we only record the one above for simplicity.

6.3 Existential condensers for block sources

In this section, we show our existential results for Chor-Goldreich sources, and ultimately prove Corol-
lary 4 from the introduction. As a reminder, we cannot simply invoke our black box result on the ex-
istence of seedless condensers for any small family (Corollary 6), because the family of CG sources is
not small. Indeed, a rough estimate would indicate that the number of (t, n, k)-CG sources is roughly(
N
K

)K0+K1+···+Kt−1

≈ 2gK
t
. However, since each such source contain kt bits of min-entropy, applying

Corollary 6 would only work if we allowed the gap blow-up by a factor of at least 1/ε. Here, we aim to do
much better, and in fact prove such results for the more general setting of block sources.
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6.3.1 Two blocks (via seeded condensers)

We start by showing existential results for condensing block sources that contain only two blocks. As a
reminder, we let gi := ni − ki denote the entropy gap in the ith block of the input block source.

Theorem 13 (Existential results for block sources with two blocks). There is a universal constant C ≥ 1
such that the following holds. There exists a (non-explicit) condenser Cond : {0, 1}n1×{0, 1}n2 → {0, 1}m
for ((n1, k1), (n2, k2))-block sources with output length m = k1 + k2 − ℓ+ g, error ε, loss ℓ, and gap

g ≤ g2 +
1

⌊L⌋
(g2 + log(1/ε)) + C,

provided that k2 ≥ log(g1/ε) + C.

Proof. This is an immediate corollary of our existential result for seeded condensers (Theorem 12), com-
bined with fact that seeded condensers work for CG-correlated seeds (Lemma 8).

Before we move on to the multi-block setting, a few remarks are in order. First, note that the first bullet
in Corollary 4 is an immediate corollary of the above, since CG sources are less general than block sources.
Next, we note that when there are not too many blocks (say, t = O(1), and they all have similar lengths),
the above result will give the best parameters. This is because one may simply group together the first t− 1
blocks into a single block, and this will only add about log(t) onto the min-entropy requirement, which is
not bad when t is small. Finally, we mention that using this idea and the above result, one may recover the
parameters of the explicit condensers in [DMOZ23] (for constant-sized blocks), by brute-force searching
for an excellent block-source condenser (using the above existential result), which condenses to rate 0.99.
Then, one can apply the explicit instantiation of the iterative condensing framework, instantiated with the
GUV extractor (as in Section 5.3.3).

6.3.2 More than two blocks (via iterative condensing)

We now turn to prove our existential result for the multi-block setting. As above, we do so by combining
our existential seeded condensers with the fact that such condensers can handle correlated seeds. This time,
however, we’ll need to iterate, and apply a sequence of several condensers. We present our main existential
result for the multi-block setting below, and remind the reader that we always use gi := ni − ki to denote
the entropy gap in the ith block.

Theorem 14 (Existential results for block sources with many blocks). There is a universal constant C ≥ 1
such that the following holds. There exists a (non-explicit) condenser Cond : {0, 1}n1 × · · · × {0, 1}nt →
{0, 1}m for ((n1, k1), . . . , (nt, kt =: nt − g))-block sources with output length m = (

∑
i∈[t] ki) − ℓ + g′,

error ε, loss ℓ, and gap

g′ ≤ g + exp

(
6⌈ 4t2

ℓ+1⌉

⌊L
1
2t ⌋

)
·

(
6⌈ 4t2

ℓ+1⌉

⌊L
1
2t ⌋

)
· (gt + log(1/ε) + Ct) + Ct

provided that ki+1 ≥ log(gi/ε) + ℓ/t+ C for all i ∈ [t− 1].

While the above theorem is quite general and can work for nearly any block source, the parameters may
be a bit difficult to digest. Soon, we will show exactly what this theorem can yield for the less general (and
more standard) setting of CG sources (in Corollary 8, Corollary 9, and Corollary 10). But first, we present
its proof, which relies on the following lemma (allowing for a more careful fine-tuning of parameters).
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Lemma 17 (Existential results for block sources with many blocks). There is a universal constant C ≥ 1
such that for any (not necessarily constant) parameters ℓ ≥ 0 and τ ≥ 1, the following holds. There exists
a (non-explicit) condenser Cond : {0, 1}n1 × · · · × {0, 1}nt → {0, 1}m for ((n1, k1), . . . , (nt, kt))-block
sources with output length m = (

∑
i∈[t] ki)− ℓ⋆ + g⋆, error ε, loss ℓ⋆ ≤ ℓt+ ⌊(t− 2)/τ⌋t, and gap

g⋆ ≤ gt + e
6τ
⌊L⌋ · 6τ

⌊L⌋
· (gt + log(1/ε) + Ct) + Ct

provided that ki+1 ≥ log(gi/ε) + ℓ+ ⌊ t−(i+1)
τ ⌋+ C for all i ∈ [t− 1].

Given this lemma, it is straightforward to prove our main existential result for block sources with many
blocks (Theorem 14). Indeed, it just involves picking the best settings of the parameters ℓ, τ .

Proof of Theorem 14. Let ℓ0 := ℓ/(2t), τ0 := ⌈ 4t2

ℓ+1⌉, and set these as the first two parameters in Lemma 17.

At last, we are ready to prove our core lemma. We do so, below.

Proof of Lemma 17. Let sCond1, sCond2, . . . , sCondt−1 be a sequence of functions, where each sCondi :
{0, 1}ni ×{0, 1}mi+1 → {0, 1}mi is a seeded (ni, ki) →εi (mi,mi− g′i) condenser. Then, define mt := nt
and

mi := ki +mi+1 − ℓi + g′i

for every i ∈ [t− 1], where ℓi is some parameter to be set later. Our existential result for seeded condensers
(Theorem 12) says that such condensers must exist, provided that each mi is a positive integer and both of
the following hold, for every i ∈ [t− 1] (where C > 0 is a universal constant):

• Seed length requirement: mi+1 ≥ log (gi/εi) + C.

• Output gap requirement: g′i ≥ 1
⌊Li⌋ log(1/εi) + C.

Moreover, our iterative condensing framework (Lemma 9) says that given such seeded condensers, there
exists a condenser Cond : {0, 1}n1 × · · · × {0, 1}nt → {0, 1}m1 for ((n1, k1), . . . , (nt, kt))-block sources
with output length m1, output gap g′ = gt+

∑
i∈[t−1] g

′
i, and error ε′ =

∑
i∈[t−1] εi ·2

gt+
∑

j∈(i,t−1] g
′
j . Thus,

our goal is to set parameters εi, ℓi, g′i for every i ∈ [t − 1] such that each seeded condenser sCondi exists,
and so that the final condenser Cond achieves the parameters claimed in the theorem statement.

We start by introducing some intermediate parameters, which will help keep our calculations tidy. In
particular, we define ℓt := 0, and for every i ∈ [t− 1], we define

k≥i :=
∑
j∈[i,t]

kj ,

ℓ≥i :=
∑
j∈[i,t]

ℓj ,

g′≥i := gt +
∑

j∈[i,t−1]

g′j .

Using these definitions, it is easy to verify that each output length parameter mi, i ∈ [t] takes the form

mi = k≥i − ℓ≥i + g′≥i.
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Thus, the final condenser Cond will have output length m1 = k≥1 − ℓ≥1 + g′≥1, output gap g′ = g′≥1, and

error ε′ =
∑

i∈[t−1] εi · 2
g′≥i+1 . With these observations in hand, we are ready to start setting parameters.

To start, we focus on setting the error parameters εi. We would like to set them so that the overall error
ε′ is at most some target error ε. Looking at the expression for ε′ above, this can be done by setting εi to a
geometric series. In particular, for every i ∈ [t− 1], we define

εi := ε · 2−(t−i) · 2−g
′
≥i+1 .

In doing so, it is straightforward to verify that the overall error ε′ is at most ε, as desired.
Next, before we set each ℓi, g′i, let’s see how the setting of εi affected the seed length and output length

requirements of the seeded condensers. First, plugging in our value of εi (and using our observation about
the form of each mi), our seed length requirement becomes the following, for every i ∈ [t− 1]:

k≥i+1 − ℓ≥i+1 ≥ log(gi/ε) + (t− i) + C.

In fact, by incrementing the universal constantC by 1, it suffices to satisfy the following, for every i ∈ [t−1]:

ki+1 − ℓi+1 ≥ log(gi/ε) + C. (17)

Let’s see how our output gap requirement changed. Plugging in our εi, it becomes, for every i ∈ [t− 1]:

g′i ≥
1

⌊Li⌋
(log(1/ε) + t− i+ g′≥i+1) + C.

Moreover, if we add g′≥i+1 to both sides, the output gap requirement becomes:

g′≥i ≥
1

⌊Li⌋
(log(1/ε) + t− i) + (1 +

1

⌊Li⌋
)g′≥i+1 + C. (18)

Finally, recall that each mi = k≥i − ℓ≥i + g′≥i must be a positive integer.
Now, let’s turn to setting the loss parameters ℓi. We would like to set them so that the overall loss is not

too high, but also so that the output gap requirement (which depends on 1/Li) stays low. Looking ahead,
the final gap g′≥1 will depend roughly on the sum of the terms 1/Li, and thus we set the loss parameters so
{1/Li} forms a geometric series. We give ourselves some freedom over the shape of this geometric series,
using the parameters ℓ ≥ 0 and τ ≥ 1 from the theorem statement. Then, for every i ∈ [t− 1] we define

ℓi := ℓ+

⌊
t− (i+ 1)

τ

⌋
.

τ should be thought of as a controller for how much additional loss (between [0, 1]) should be experienced
by each successive seeded condenser. Notice that all τ > t− 2 yield an additional loss of zero.

Given this setting of loss parameters, observe that the total loss of the final condenser will be

ℓ⋆ = ℓ≥1 =
∑

i∈[t−1]

(
ℓ+

⌊
t− (i+ 1)

τ

⌋)
≤ ℓt+

⌊
t− 2

τ

⌋
t,

as desired. Furthermore, observe that our seed length requirement (Equation (17)) is satisfied if

ki+1 ≥ log(gi/ε) + ℓ+

⌊
t− (i+ 1)

τ

⌋
+ C
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for every i ∈ [t− 1], as provided in the theorem statement.
Thus, all that remains is to set the gap parameters g′i for all i ∈ [t − 1]. Towards this end, we pick the

smallest values satisfying Equation (18), and so that each mi = k≥i − ℓ≥i + g′≥i is a positive integer. By
rounding up, notice that the latter requirement can always be satisfied as long as the former requirement is
satisfied with the universal constantC incremented by 1, and so we can safely ignore it. Thus, we henceforth
focus on picking the smallest values g′i satisfying Equation (18). That is, we define each g′i, i ∈ [t − 1] so
that

g′≥i =
1

⌊Li⌋
(log(1/ε) + t− i) + (1 +

1

⌊Li⌋
)g′≥i+1 + C

Then, we observe the following inequality.

g′≥i ≤
1

⌊Li⌋
(log(1/ε) + t− 1) + (1 +

1

⌊Li⌋
)(g′≥i+1 + C)

Finally, we just need to upper bound g⋆ ≤ g′≥1. Recalling that g′≥t = gt, we solve the recurrence above.

g′≥1 ≤

−1 +
∏

i∈[t−1]

(1 +
1

⌊Li⌋
)

 (log(1/ε) + t− 1) +

 ∏
i∈[t−1]

(1 +
1

⌊Li⌋
)

 (gt + C(t− 1))

≤
(
e
∑

i∈[t−1]
1

⌊Li⌋ − 1
)
(log(1/ε) + t) +

(
e
∑

i∈[t−1]
1

⌊Li⌋
)
(gt + Ct)

≤
(
e
∑

i∈[t−1]
1

⌊Li⌋ − 1
)
log(1/ε) +

(
e
∑

i∈[t−1]
1

⌊Li⌋
)
(gt + C ′t),

where the last step set C ′ := C + 1. Now, plugging in our parameter setting ℓi := ℓ + ⌊ t−(i+1)
τ ⌋ (and

recalling the convention Li = 2ℓi), we can bound the term in the exponent as follows.∑
i∈[t−1]

1

⌊Li⌋
≤ 1

⌊L⌋
∑

i∈[t−1]

1

2⌊
t−(i+1)

τ
⌋

≤ 2

⌊L⌋
∑

i∈[t−1]

2
i+1−t

τ

≤ 4

⌊L⌋
∑

i∈[t−1]

2−
i
τ

=
4

⌊L⌋
· 1− 2−(t−1)/τ

21/τ − 1

≤ 4

⌊L⌋
· τ

ln 2

≤ 6τ

⌊L⌋
.

Plugging this expression back into our bound for g′≥1, we get

g′≥1 ≤ (e6τ/⌊L⌋ − 1) log(1/ε) + e6τ/⌊L⌋(gt + C ′t).

Now, since ex − 1 ≤ exx for all x ≥ 0, we get

g⋆ ≤ g′≥1 ≤ gt + e6τ/⌊L⌋ · 6τ

⌊L⌋
(log(1/ε) + gt + C ′t) + C ′t,

as desired. This completes the proof.
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Corollaries for Chor-Goldreich sources

Now that we have proven our existential result for multi-block sources, we are ready to see what parameters
it yields in the more well-behaved CG-source setting. We present our main existential result for multi-block
CG sources, and note that log∗() denotes the extremely slow-growing iterated logarithm function.

Corollary 8 (Existential results for CG sources with many blocks). There is a universal constant C ≥ 1
such that the following holds. There exists a (non-explicit) condenser Cond : ({0, 1}n)t → {0, 1}m for
(t, n, k =: n− g)-CG sources with output length m = kt− ℓ+ g′, error ε, loss ℓ, and gap

g′ ≤ g + exp

(
6⌈4(log

∗ t)2

ℓ+1 ⌉

⌊L
1

2 log∗ t ⌋

)
·

(
6⌈4(log

∗ t)2

ℓ+1 ⌉

⌊L
1

2 log∗ t ⌋

)
· (g + log(1/ε) + C log∗ t) + C log∗ t

provided that k ≥ log(g/ε) + ℓ/ log∗ t+ C.

Before we present its proof, we take some time to digest its parameters. In particular, we list two
immediate corollaries, which are presented as bullet two in Corollary 4. In the first corollary, we show what
happens to the gap if one asks for a lossless condenser for CG sources. In the second, we show that if one is
willing to lose a very small amount of min-entropy, the gap can be very well maintained.

Corollary 9 (Existential results for CG sources with many blocks - lossless regime). There is a universal
constant C ≥ 1 such that the following holds. There exists a (non-explicit) condenser Cond : ({0, 1}n)t →
{0, 1}m for (t, n, k =: n− g)-CG sources with output length m = kt+ g′, error ε, loss ℓ = 0, and gap

g′ ≤ g + exp(C(log∗ t)2) · (g + log(1/ε) + C log∗ t),

provided that k ≥ log(g/ε) + C.

Corollary 10 (Existential results for CG sources with many blocks - small gap regime). There is a universal
constant C ≥ 1 such that the following holds. There exists a (non-explicit) condenser Cond : ({0, 1}n)t →
{0, 1}m for (t, n, k =: n− g)-CG sources with output length m = kt− ℓ+ g′, error ε, loss ℓ ≤ 2(log∗ t)2,
and gap

g′ ≤ g + C · 2− log∗ t · (g + log(1/ε)) + C log∗ t,

provided that k ≥ log(g/ε) + 2 log∗ t+ C.

With these results in hand, we turn to prove Corollary 8.

Proof of Corollary 8. Let t′ ∈ N and b1, . . . , bt′ ∈ N be parameters that we will set later, so that
∑

i bi = t.
Then, define n1, . . . , nt′ and k1, . . . , kt′ such that ni := nbi and ki := kbi. Notice that any (t, n, k)-CG
source is automatically an ((n1, k1), . . . , (nt, kt))-block source, simply by grouping the blocks into buckets.

The goal is to find the smallest number of buckets t′ that we can divide the CG source into, while
maintaining a relatively modest entropy requirement. In particular, recall that in order to get the strong
upper bound on the final gap g′ provided in Theorem 14, the min-entropy of the block source must satisfy

ki+1 ≥ log(gi/ε) + ℓ/t′ + C

for all i ∈ [t′ − 1], where gi := ni − ki. Using our block parameters b1, . . . , bt′ and the relations described
above, this min-entropy requirement becomes

kbi+1 ≥ log(gbi/ε) + ℓ/t′ + C, (19)

for all i ∈ [t′ − 1].
Now, define the parameter t′ and block parameters b1, . . . , bt′ such that the following hold:32

32Note that we may assume that we started off with t > 2 blocks, for otherwise this result holds via Theorem 13.
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• bt′ := 2,

• bi ≤ 2bi+1 for every i ∈ [t′ − 1],

• bt′ ≤ bt′−1 ≤ · · · ≤ b1,

• b1 + · · ·+ bt′ = t,

• t′ ∈ N is the smallest integer for which there exist b1, . . . , bt′ satisfying the above constraints.

Notice that for such parameters, the min-entropy requirement (given in Equation (19)) is satisfied if

kbi+1 ≥ log(g/ε) + bi+1 + ℓ/t′ + C,

or rather
bi+1(k − 1) ≥ log(g/ε) + ℓ/t′ + C

for every i ∈ [t′ − 1]. But observe that if we simply require

k ≥ log(g/ε) + ℓ/t′ + C,

then all of these conditions must hold, as the above implies that (k− 1) ≥ k/2 (when k ≥ 2), and we know
from our constraints that bi+1 ≥ 2.

Thus for any (t, n, k)-CG source and parameters b1, . . . , bt′ satisfying the above constraints, we know
that we can condense (with an output gap as promised in Theorem 14) as long as k ≥ log(g/ε) + ℓ/t′ +C.
All that remains is to check how big t′ can be, and in particular provide an upper bound on it. Towards this
end, looking at the constraints on our parameters bi and the minimality of t′, it is straightforward to verify
that t′ cannot exceed the iterated logarithm of t. In other words, t′ ≤ log∗ t, as desired.

To conclude this section, we note that one may wish for an existential result for CG sources with
many blocks, where the output gap has no dependence on the number of blocks t. It is straightforward
to combine the above ideas to obtain such a result, albeit with significantly more loss. In particular,
one can instantiate the iterative condensing framework with optimal seeded extractors, instead of seeded
condensers, so that the output gap is exactly equal to the input gap g, but the loss becomes roughly
O((log∗ t)(log∗ t + g + log(1/ε))), and more importantly the required starting min-entropy (per block)
becomes roughly k ≥ log(n/ε) + 0.99n. This required starting min-entropy can then be reduced to
k ≥ C log(n/ε) (for some constant C) by adding in (at the beginning) a single call to an optimal seeded
condenser with seed length that has dependence 1 log(1/ε) on the error. This will not significantly affect
the overall loss, and the final gap will be of the form g +O(1).

7 Impossibility results

We conclude the technical portion of the paper with simple, but useful, impossibility results.

7.1 An impossibility result for condensing general sources

First, we show a condenser version of the classic extractor impossibility result.
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Theorem 15 (There do not exist condensers for general sources). Fix any function f : {0, 1}n → {0, 1}m
and gap g such that 0 ≤ g ≤ n. Then for any 0 ≤ ε < 1 there exists a source X ∼ {0, 1}n with min-entropy
gap g such that

Hε
∞(f(X)) ≤ min{n,m} −min{m, g}+ log

(
1

1− ε

)
.

The term cε := log( 1
1−ε) is merely an artifact of the definition of smooth min-entropy (see Section 3.2).

Proof. Let g′ := min{m, g}. By definition of probability, there must be a prefix σ ∈ {0, 1}g′ such that
Pr[f(Un)[g′] = σ] ≥ 2−g

′
. Thus there is a set X ⊆ {0, 1}n of density exactly 2−g

′
such that f(X)[g′] =

{σ}. Let S = f(X) be the image of this set, and note it has size |S| ≤ 2min{n,m}−g′ , since S is the image
of a set of size 2n−g

′
, and since S is a subset of {0, 1}m where all prefixes of length g′ are the same (leaving

at most m− g′ coordinates unfixed). Now, by the characterization of smooth min-entropy (Lemma 2),

1 = Pr[f(X) ∈ S]

≤ |S| · 2−Hε
∞(f(X)) + ε

= 2min{n,m}−g′−Hε
∞(f(X)) + ε.

Solving for Hε
∞(f(X)) completes the proof.

7.2 An impossibility result for condensing block sources

Finally, we extend the above argument to show that it is impossible to condense a CG source without the
gap of one of the input blocks showing up in the output.

Theorem 16 (Condensers for CG sources must maintain the gap). Fix any function f : ({0, 1}n)t →
{0, 1}m and gap g such that 0 ≤ g ≤ n. Then for any 0 ≤ ε < 1 there exists a (t, n, n − g)-CG source
X ∼ ({0, 1}n)t such that

Hε
∞(f(X)) ≤ m− g + log

(
1

1− ε

)
.

Proof. By induction. By the proof above, we know that for any function f : {0, 1}n → {0, 1}m there is
a set X ⊆ {0, 1}n of size 2n−g

′
such that the g′-prefix of the set f(X) is a constant σ. Consider now a

function f : ({0, 1}n)t → {0, 1}m and all of its restrictions fα := f(α, ·). By induction, for each α there
is a (t− 1, n, n− g′)-CG source Xα such that the g′-prefix of f(α,Xα) is a constant σ. By averaging, this
constant σ must be the same for some 2−g

′
fraction of α’s. Let A be uniform over these, and consider the

(t, n, n − g′) source (A,XA). By construction, the prefix of f is constantly σ on (A,XA). Moreover, if
we define S as the image of this source, we know it has size at most 2m−g′ , since its g′-prefix is fixed. We
also know that it has size at most 2t(n−g

′), given the entropy of (A,XA). Thus

1 = Pr[f(A,XA) ∈ S]

≤ |S| · 2−Hε
∞(f(A,XA)) + ε

≤ 2min{m−g′,t(n−g′)}−Hε
∞(f(A,XA)) + ε.

Solving for Hε
∞(f(A,XA)) completes the proof.
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8 Open problems

The most attractive open problem is to get better explicit seeded condensers. If one could explicitly construct
such condensers with seed length that has dependence 1 log(1/ε) on the error (and a reasonably small output
gap), then it would become trivial to condense CG sources with even better parameters than in this paper.
Indeed, all of the work behind our CG source condensers goes into creating a single block of entropy rate
0.99, and any good enough seeded condenser (i.e., with the above parameters) can do this in a single step.33

Even if such seeded condensers remain out of reach, other natural questions remain about condensing
CG sources. For example, while we were able to construct explicit condensers for CG sources with very
low entropy, we could only do so while blowing up the gap by a polynomial factor.34 It would be great to
see if one could explicitly condense CG sources whose blocks have min-entropy (say) n0.99, while keeping
the gap blow-up to just a constant factor. This would seem to require completely new techniques.

Finally, it would be interesting to study other natural classes of sources for which we cannot deterministi-
cally extract, but can deterministically condense, and try to construct the corresponding explicit condensers.
Chor-Goldreich sources are just one family in this new category of sources, and we hope that the study of
other such families will lead to a long line of fruitful research.
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