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Abstract

The coding theorem for Kolmogorov complexity states that any string sampled from a com-
putable distribution has a description length close to its information content. A coding theorem
for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in
average-case complexity, yet whether any samplable distribution admits a coding theorem for
randomized time-bounded Kolmogorov complexity (rKpoly) is open and a common bottleneck
in the recent literature of meta-complexity. Previous works bypassed this issue by considering
probabilistic Kolmogorov complexity (pKpoly), in which public random bits are assumed to be
available.

In this paper, we present an efficient coding theorem for randomized Kolmogorov complexity
under the non-existence of one-way functions, thereby removing the common bottleneck. This
enables us to prove rKpoly counterparts of virtually all the average-case results that were proved
only for pKpoly, and enables the resolution of the following concrete open problems.

1. The existence of a one-way function is characterized by the failure of average-case sym-
metry of information for randomized time-bounded Kolmogorov complexity, as well as a
conditional coding theorem for randomized time-bounded Kolmogorov complexity. This
resolves the open problem of Hirahara, Ilango, Lu, Nanashima, and Oliveira (STOC’23).

2. Hirahara, Kabanets, Lu, and Oliveira (CCC’24) showed that randomized time-bounded
Kolmogorov complexity admits search-to-decision reductions in the errorless average-case
setting over any samplable distribution, and left open whether a similar result holds in
the error-prone setting. We resolve this question affirmatively, and as a consequence,
characterize the existence of a one-way function by the average-case hardness of computing
rKpoly with respect to an arbitrary samplable distribution, which is an rKpoly analogue of
the pKpoly characterization of Liu and Pass (CRYPTO’23).

The key technical lemma is that any distribution whose next bits are efficiently predictable
admits an efficient encoding and decoding scheme, which could be of independent interest to
data compression.
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1 Introduction

Shannon’s source coding theorem is a centerpiece of information theory. It shows that if m
independent samples are drawn from a distribution D, then the m samples can be encoded into
a string of expected length m · (H(D) + o(1)), where H(D) denotes the Shannon entropy of D.
A computationally efficient variant of Shannon’s source coding theorem was given by Impagliazzo
and Zuckerman [IZ89], who showed that m independent samples drawn from any polynomial-
time samplable distribution D can be (inefficiently) compressed into a string of expected length
m · (H(D) + o(1)) that can be decoded in polynomial time. Thus, the amortized encoding length
of one string in the many samples from D approaches to H(D), which is information-theoretically
optimal.

Less understood is a “one-shot” setting, in which one string x is drawn from a distribution D,
and the question is whether x has a short description. Information theoretically, for any distribution
D over {0, 1}∗, there exists an encoding scheme that compresses any string x in the support of a
distribution D into a string of length log 1

D(x) + O(1), where D(x) denotes the probability that
x is sampled from D. In terms of Kolmogorov complexity, this result is often referred to as the
coding theorem for Kolmogorov complexity (coined in [LO21]; it is also called a source compression
theorem [Lee06]). It states that any string x in the support of a computable distribution D satisfies
that

K(x) ≤ log
1

D(x)
+O(1),

where K(x) denotes the Kolmogorov complexity of x, i.e., the length of a shortest program that
prints x, and the constant O(1) depends only on the distribution D. Note that Kolmogorov com-
plexity does not impose any time bound on the time it takes to print x. This limits the applicability
of the coding theorem in the literature of computational complexity theory. More relevant to com-
plexity theory is a coding theorem for resource-bounded Kolmogorov complexity measures, such as
Kt(x), i.e., the length of a shortest program that prints x in time t.

The coding theorem is one of the most fundamental properties of Kolmogorov complexity,1 and is
the key to establishing fundamental theorems of average-case complexity theory. For example, Levin
[Lev86] initiated the theory of average-case NP-completeness by presenting a natural distributional
problem which is complete for NP with respect to the class PComp of polynomial-time computable
distributions. Here, a distribution is said to be polynomial-time computable if the cumulative
distribution function is computable in polynomial time. Levin showed this completeness result by
showing that PComp admits an efficient coding theorem for Kt, that is, that any string in the
support of a polynomial-time computable distribution D can be compressed into a polynomial-
time program of length log 1

D(x) + O(1) in polynomial time. We refer the reader to the survey of

Bogdanov and Trevisan [BT06] for the background on average-case complexity theory.
Can we obtain a coding theorem for resource-bounded Kolmogorov complexity with respect to

a wider class of distributions? The most standard class of distributions considered in the literature
of average-case complexity theory is the class PSamp of (polynomial-time) samplable distributions.
A distribution D = {Dn}n∈N is said to be (polynomial-time) samplable if there exists a randomized
polynomial-time algorithm that, on input 1n, outputs a string that is distributed according to
Dn. Under a plausible derandomization assumption, Antunes and Fortnow [AF09] proved a coding
theorem for Kpoly with respect to any samplable distribution. The assumption can be removed if
we consider a randomized variant of Kpoly in which public random bits are given to short programs.
The t-time-bounded probabilistic Kolmogorov complexity of a string x, denoted by pKt [GKLO22], is

1According to Lee [Lee06], a coding theorem is one of the four “pillars” of Kolmogorov complexity.
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defined to be the minimum integer k such that the probability that Kt(x | r) ≤ k over a uniformly
random r ∈ {0, 1}t is at least 2

3 , where Kt(x | r) denotes the conditional Kolmogorov complexity
of x given r, i.e., the length of a shortest program that prints x given r as input in time t. Lu,
Oliveira, and Zimand [LOZ22] showed that any samplable distribution admits a coding theorem
for probabilistic Kolmogorov complexity. Note that the notion of pKt deviates from the standard
notion of Kolmogorov complexity in that depending on the public random bits r, the shortest
program that prints x on input r may be different. In fact, pKpoly is essentially equivalent to (the
logarithm of the reciprocal of) the time-bounded universal probability [HN23], which is technically
useful but somewhat artificial from the perspective of data compression.2

A more natural randomized variant of time-bounded Kolmogorov complexity is randomized
Kolmogorov complexity. The t-time-bounded randomized Kolmogorov complexity of a string x, de-
noted by rKt(x), is defined to be the length of a shortest randomized program that prints x in time
t with probability 2

3 over the internal randomness of the randomized program. This is arguably

more natural than pKpoly in that the program is fixed irrespective of the random bits used by the
program. It is evident that pKt(x) ≤ rKt(x) ≤ Kt(x), and thus the compression power of rKt is
in between pKt and Kt. Partial progress towards obtaining coding theorems for randomized Kol-
mogorov complexity was made by Lu and Oliveira [LO21] and Lu, Oliveira, and Zimand [LOZ22],
who proved a (information-theoretically sub-optimal) coding theorem for an exponential-time vari-
ant of rKpoly (the randomized variant of Levin’s Kt-complexity [Oli19]). No optimal coding theorem
for rKpoly is known for any class of distributions larger than PComp. This leads us to the following
question: For which distributions (and when) does a coding theorem for rKpoly holds?

Answering this question is indispensable for a closely related area of research — data compres-
sion. The main question investigated in the literature of data compression [GS91; TVZ05; Wee04;
BSW03; HLR07; HMS23] is which class of distributions admits efficient coding theorems rather
than (existential) coding theorems. The difference between the two types of the coding theorems
is that in the latter, we do not care about the efficiency of an encoding algorithm. In an efficient
coding theorem for a distribution D, we require that there exists a polynomial-time algorithm that
takes a string x drawn the distribution D and outputs a compressed string of length close to its
information content log 1

D(x) . Goldberg and Sipser [GS91] and Trevisan, Vadhan, and Zuckerman

[TVZ05] identified several classes of distributions that admit efficient coding theorems, such as
distributions samplable with logspace machines [TVZ05], high entropy sources [GS91; TVZ05], and
samplable witness sets for NP [TVZ05]. However, no efficient coding theorem for any class of dis-
tributions that strictly contains PComp is known, just because even existential coding theorems
for rKpoly are unknown.

1.1 Interplay between One-Way Functions and Kolmogorov Complexity

Faced with the lack of a coding theorem for rKpoly, previous works in the recent literature of
meta-complexity bypassed this issue by considering probabilistic Kolmogorov complexity pKpoly or
resource-unbounded Kolmogorov complexity K. There has been a flurry of new characterizations
of the existence of one-way functions based on Kolmogorov complexity [LP20; RS21; LP21; IRS22;
ACMTV21; LP22; LP23a; LP23b; HILNO23; Hir23; IL90; HN23], starting from the influential work
of Liu and Pass [LP20]. A one-way function is one of the most fundamental cryptographic primitives
because its existence is equivalent to the existence of a variety of cryptographic primitives, such as

2In terms of data compression, the difference between rKpoly and pKpoly can be explained as follows. In pKpoly, we
assume that an inefficient encoding algorithm and an efficient decoding algorithm share random bits, which may not
be the case in practice. In rKpoly, an efficient decoding algorithm is allowed to be randomized, but the random bits
are private and not shared with an encoding algorithm.
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a private-key encryption scheme [GM84], a pseudorandom generator [HILL99], a digital signature
[Rom90], and a commitment scheme [Nao91]. The new “meta-computational” characterizations of
one-way functions provide us with the hope that the improved understanding of one-way functions
might lead us to the resolution of long-standing open problems, such as the elimination of Pessiland
[Imp95] (i.e., does the average-case hardness of NP imply the existence of a one-way function?).
Among the characterizations, we highlight the characterizations that are based on an arbitrary
samplable distribution.

1. Hirahara, Ilango, Lu, Nanashima, and Oliveira [HILNO23] showed that average-case asymme-
try of information for probabilistic Kolmogorov complexity pKpoly characterizes the existence
of a one-way function. That is, a one-way function can be constructed if and only if for some
samplable distribution D, the symmetry of information for pKpoly, i.e.,

pKpoly(x | y) + pKpoly(y) ≈ pKpoly(x, y) ≈ pKpoly(y | x) + pKpoly(x)

does not hold with a non-negligible probability over (x, y) drawn from D.

2. Impagliazzo and Levin [IL90] and Hirahara and Nanashima [HN23] showed that a one-way
function exists if and only if approximating time-bounded universal probability is hard with
respect to some samplable distribution.

3. Ilango, Ren, and Santhanam [IRS22] characterized the existence of a one-way function by the
average-case hardness of Kolmogorov complexity K with respect to an arbitrary samplable
distribution.

4. Liu and Pass [LP23b] characterized the existence of a one-way function by the average-
case hardness of computing probabilistic Kolmogorov complexity pKpoly with respect to an
arbitrary samplable distribution.

These results provide fascinating approaches to construct one-way functions in that it suffices
to construct some samplable distribution that witnesses asymmetry of information or the computa-
tional intractability of computing Kolmogorov complexity measures, which appears to be intuitively
easier. However, the results do not extend to randomized Kolmogorov complexity rKpoly, precisely
because of the lack of a coding theorem for rKpoly. Indeed, all the proofs of the results above rely
on a coding theorem for corresponding Kolmogorov complexity measures; for example, the result
of [IRS22] relies on the coding theorem for resource-unbounded Kolmogorov complexity K.

1.2 Our Results

In this paper, we identify a class of distributions that contains PComp and admits an efficient
coding theorem for rKpoly. Roughly speaking, we present an efficient and information-theoretically
optimal coding theorem for a distribution D if there exists a “next-bits predictor” for D in the
sense that any next bit of a given arbitrary prefix is predictable with high accuracy in randomized
polynomial time. This enables us to show that rKpoly, pKpoly and K are all approximately equal to
each other on average if one-way functions do not exist. In particular, we demonstrate that virtually
all the average-case results that were previously shown to hold only for pKpoly can be translated
into rKpoly counterparts. This enables us to resolve the main open problems left in previous works
[HILNO23; HMS23; HKLO24]. We describe details below.
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1.2.1 Symmetry of Information for rKpoly versus One-Way Functions

Symmetry of information for Kolmogorov complexity [ZL70] is one of the most fundamental
properties of Kolmogorov complexity and is yet another one of the four “pillars” of Kolmogorov
complexity [Lee06]. It states that for all strings x and y of length n,

K(x | y) + K(y) ≈ K(x, y) ≈ K(y | x) + K(x),

where the approximate equality holds up to an additive O(log n) term. The original proof of
symmetry of information due to Kolmogorov and Levin [ZL70] relies on an exhaustive search, and
thus does not extend to the case of resource-bounded Kolmogorov complexity. As early as the
1960s, Kolmogorov suggested that it is an interesting avenue of research to investigate symmetry
of information for time-bounded Kolmogorov complexity [LR05]. After a long line of research
[ZL70; LM93; LW95; LR05; Hir21; Hir22; GK22; GKLO22], Hirahara, Ilango, Lu, Nanashima,
and Oliveira [HILNO23] presented two characterizations of an average-case variant of symmetry of
information:

1. The average-case asymmetry of information for pKpoly characterizes the existence of a one-way
function.

2. The average-case asymmetry of information for rKquasipoly characterizes the existence of a
one-way function secure against quasi-polynomial-time algorithms.

It was left as a main open problem (highlighted by Osamu Watanabe in [HILNO23]) whether
the failure of the average-case symmetry of information for rKpoly characterizes the existence of a
standard one-way function (i.e., secure against polynomial-time algorithms).

We resolve this open problem affirmatively and obtain the following new characterization of the
non-existence of one-way functions through the validity of symmetry of information for rKpoly, as
well as an average-case conditional coding theorem.

Theorem 1.1. The following are equivalent.

1. One-way functions do not exist.

2. (Infinitely-Often Average-Case Symmetry of Information for rKt) For every polynomial-
time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and every poly-
nomial q, there exists a polynomial p such that for infinitely many n ∈ N, the following holds
for all t ≥ p(n),

Pr
(x,y)∼Dn

[
rKt(x | y) ≤ rKt(x, y)− rKt(y) + log t

]
≥ 1− 1

q(n)
.

3. (Infinitely-Often Average-Case Conditional Coding for rKt) For every polynomial-
time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and every poly-
nomial q, there exists a polynomial p such that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
,

where Dn(x | y) denotes the probability that (x, y) is sampled from Dn conditioned that the
second item being sampled is y.
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4. (Infinitely-Often Average-Case Efficient Conditional Coding for rKt) For every
polynomial-time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and
every polynomial q, there exists a polynomial p such that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Moreover, it admits an efficient encoder in the following sense: there exists an efficient al-
gorithm Enc that outputs, for given (x, y) ∼ Dn, a description of a p(n)-time program Π of
length at most − logDn(x | y) + log p(n) with probability at least 1 − 1/q(n) over the choice
of (x, y) ∼ Dn and randomness for Enc, such that Π outputs x for given y and randomness
r ∼ {0, 1}p(n) with probability at least 2/3 over the choice of r.

Our proof is fundamentally different from the previous proof of [HILNO23] for rKquasipoly. The
proof of [HILNO23] relies on the reconstructive extractors of Trevisan [Tre01] and Raz, Reingold,
and Vadhan [RRV02], whose advice complexity of the reconstruction procedure is information-
theoretically sub-optimal by an additive O(log3 n) term, and this term is what forced [HILNO23]
to consider quasi-polynomial-time one-way functions. Roughly speaking, the additive error term
corresponds to the seed length of an extractor. Even without the reconstructive property, the state-
of-the-art extractor construction due to Guruswami, Umans, and Vadhan [GUV09] has seed length
O(log2 n). Thus, in order to obtain Theorem 1.1 using the approach of [HILNO23], we would need
to improve the seed length of the state-of-the-art extractor construction to O(log n). We sidestep
this issue by taking a new approach based on the proof techniques of Goldberg and Sipser [GS91]
and Trevisan, Vadhan, and Zuckerman [TVZ05].

Haitner, Mazor, and Silbak [HMS23] obtained an efficient coding theorem for pKpoly with respect
to any samplable distribution under the non-existence of a one-way function; that is, any samplable
distribution D admits a polynomial-time encoding and decoding scheme of expected length H(D)+
O(1) when shared random bits are available. Item 4 of Theorem 1.1 provides the same conclusion
(up to an additive logarithmic term) without any shared random bit, which resolves the natural
open problem left in [HMS23]. We also make progress towards the uniform version of the main
result of [HMS23] by showing that any distribution incompressible to k bits without shared random
bits has (1− ϵ)k−O(log n) bits of uniform-next-bit pseudoentropy for any constant ϵ > 0; we defer
the details to Section 4.2.3.

Theorem 1.1 elucidates that the non-existence of a one-way function is both necessary and
sufficient for the conditional version of an average-case coding theorem for rKpoly. Moreover, both
efficient and existential coding theorems for rKpoly are equivalent to each other (Items 3 and 4).
We also mention that rKpoly, pKpoly, and K are all approximately equal to each other on average
under the non-existence of a one-way function, which enables us to translate any average-case result
about pKpoly into an rKpoly counterpart (unless a one-way function exists); see Lemma 5.2.

We also have an analogous result for infinitely-often one-way functions. In this case, using the
notion of computational depth [AFMV06], we obtain a characterization for a worst-case variant of
symmetry of information for rKpoly, which comes tantalizingly closer to the worst-case symmetry
of information for Kpoly investigated by Longpré and Mocas [LM93] and Longpré and Watanabe
[LW95]. A t-time-bounded computational depth cdt(x) is defined as pKt(x)− K(x).

Theorem 1.2. The following are equivalent.

1. Infinitely-often one-way functions do not exist.
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2. (Almost-Everywhere Average-Case Conditional Coding for rKt) For every polynomial-
time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, there exists a
polynomial p such that for all n, k ∈ N,

Pr
(x,y)∼Dn

[
rKp(n,k)(x | y) ≤ log

1

Dn(x | y)
+ log p(n, k)

]
≥ 1− 1

k
.

3. (Almost-Everywhere Worst-Case Conditional Coding for rKt with Computational
Depth) There exists a constant c > 0 such that the following holds. For every computable
distribution family {Dn}n∈N supported over {0, 1}n×{0, 1}n, all n, t ∈ N such that t ≥ n and
all (x, y) ∈ Support(Dn),

rK(2α·t)c(x | y) ≤ log
1

Dn(x | y)
+ c · (log t+ α),

where α := cdt(x, y).

4. (Almost-Everywhere Average-Case Symmetry of Information for rKt) For every
polynomial-time samplable distribution family {Dn}n∈N supported over {0, 1}n×{0, 1}n, there
exists a polynomial p such that for all n, k ∈ N and t ≥ p(n, k),

Pr
(x,y)∼Dn

[
rKt(x | y) ≤ rKt(x, y)− rKt(y) + log t

]
≥ 1− 1

k
.

5. (Almost-Everywhere Worst-Case Symmetry of Information for rKt with Compu-
tational Depth) There exists a constant c > 0 such that the following holds. For all n, t ∈ N
such that t ≥ n and all x, y ∈ {0, 1}n,

rK(2α·t)c(x | y) ≤ rKt(x, y)− rKt(y) + c · (log t+ α),

where α := cdt(x, y).

1.2.2 Error-Prone Average-Case Search-to-Decision Reductions for rKpoly

Next, we investigate the open question left by Hirahara, Kabanets, Lu, and Oliveira [HKLO24]
and an rKpoly counterpart of the pKpoly characterization of Liu and Pass [LP23b]. Whether a search-
to-decision reduction exists for the problem of computing time-bounded Kolmogorov complexity
is a long-standing open problem that dates back to as early as the 1960s [Tra84], and recently
there has been progress on this question [CIKK16; Hir18; Ila20; LP20; MP24; HKLO24]. Hirahara,
Kabanets, Lu, and Oliveira [HKLO24] presented a search-to-decision reduction for computing rKpoly

in the errorless average-case setting: if there exists an efficient errorless average-case algorithm for
computing rKpoly on average, then there exists an efficient errorless average-case algorithm that
finds a shortest randomized program of length rKpoly(x) on a random input x drawn from an
arbitrary samplable distribution. Designing such a reduction is well motivated by the fact that
such a reduction is necessary for excluding (an errorless variant of) Pessiland from Impagliazzo’s
five worlds [Imp95]; see [HKLO24] for more details on the background.

The proof of [HKLO24] is based on a highly non-trivial combination of a reconstructive disperser
of [Hir20] and a non-reconstructive disperser of [TUZ07], and does not extend to the error-prone
average-case setting. Designing a similar reduction in the error-prone average-case setting was left
as one of the main open questions in [HKLO24]. The difference between error-prone and errorless
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average-case complexities [HS22; HN22] is that in the latter, an average-case algorithm is not
allowed to make any error and instead allowed to indicate its failure of an algorithm, which is
equivalent to the notion of average-polynomial-time [Imp95; BT06].

Using our new coding theorem, we present a search-to-decision reduction in the error-prone
average-case setting, thereby answering the open problem of [HKLO24]. To state the result formally,
we need a couple of definitions. For λ ∈ [0, 1), let λ-MINrKT be the following promise problem
(YES,NO):

YES :=
{
(x, 1s, 1t, 1ℓ) | rKt

λ(x) ≤ s
}
,

NO :=
{
(x, 1s, 1t, 1ℓ) | rKt

λ−1/ℓ(x) > s
}
.

We say that an algorithm A decides (YES,NO) on input x if x ∈ YES implies A(x) = 1 and x ∈ NO
implies A(x) = 0. The promise problem has a natural search version. For x ∈ {0, 1}n, t ∈ N and
0 < ε, λ < 1, we say that a randomized program M is an ε-rKt

λ-witness of x if

• |M | ≤ rKt
λ(x), and

• M outputs x within t steps with probability at least λ − ε over the internal randomness of
M .

For λ ∈ [0, 1), let λ-Search-MINrKT be the following search problem: Given (x, 1t, 1ℓ), where
x ∈ {0, 1}∗, t, ℓ ∈ N, find an (1/ℓ)-rKt

λ-witness of x.

Theorem 1.3. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Search-MINrKT is easy on average over polynomial-time samplable distributions)
For every λ ∈ [0, 1], every polynomial-time samplable distribution family {Dn}n∈N, where each
Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic polynomial-time algorithm
A such that for all n, s, ℓ, k ∈ N, and all t ≥ ρ(n),

Pr
x∼Dn,A

[
A(x, 1t, 1ℓ, 1k) outputs an (1/ℓ)-rKt

λ-witness of x
]
≥ 1− 1

k
.

3. (MINrKT is easy on average over polynomial-time samplable distributions) For
every λ ∈ [0, 1), every polynomial-time samplable distribution family {Dn}n∈N, where each
Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic polynomial-time algorithm
A such that for all n, s, ℓ, k ∈ N, and all t ≥ ρ(n),

Pr
x∼Dn,A

[
A(−, 1k) decides λ-MINrKT on input (x, 1s, 1t, 1ℓ)

]
≥ 1− 1

k
.

4. (MINrKT is easy on average over the uniform distribution) There exist a polynomial
ρ and a probabilistic polynomial-time algorithm A such that for all n, s, ℓ, k ∈ N,

Pr
x∼{0,1}n,A

[
A(−, 1k) decides (2/3)-MINrKT on input (x, 1s, 1ρ(n), 1ℓ)

]
≥ 1− 1

k
.

This extends the pKpoly characterization of one-way functions by Liu and Pass [LP23b] to the
rKpoly counterparts.
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1.2.3 Optimal Coding Theorems for Next-Bits Predictable Distributions

The key lemma behind all the results above is an unconditional efficient coding theorem for
rKpoly with respect to next-bits predictable distributions.

Definition 1.4 (See also Definition 4.1). For a family D = {Dn}n∈N of distributions and a function
ε : N→ (0, 1), a next-bits predictor for D with accuracy ε is a randomized polynomial-time algorithm
such that for every n ∈ N, every x ∈ Support(Dn), every i ∈ {1, · · · , |x|}, and every b ∈ {0, 1},

Pr
P

[
D∗

n(b | x[i−1])− ε(n) ≤ P (x[i−1], b, 1
n) ≤ D∗

n(b | x[i−1]) + ε(n)
]
≥ 1− ε(n),

where D∗
n(b | x[i−1]) denotes the probability, over X ∼ Dn, that the i-th bit of X is b conditioned

that the first (i− 1)-bits prefix of X is equal to that of x.3 We say that D is next-bits predictable
if for all polynomials q, there exists a next-bits predictor for D with accuracy 1/q.

This definition should be compared with Yao’s next-bit predictor [Yao82; Vad12]. There are
three differences between Yao’s next-bit predictor and our next-bits predictor.

1. For a distribution D, Yao’s next-bit predictor only predicts the i-th bit given the first i − 1
bits of a random string x sampled from D for some index i ∈ {1, · · · , |x|}. In contrast, the
definition of a next-bits predictor requires that for all indices i ∈ {1, · · · , |x|}, the i-th bit is
predictable given the first i− 1 bits of x .

2. We require that the accuracy of the prediction can be made arbitrarily small, whereas Yao’s
next-bit predictor is accurate with a non-negligible probability.

3. The output of Yao’s next-bit predictor is considered to be correct if the bit produced by Yao’s
next-bit predictor is equal to the next bit, whereas a next-bits predictor aims to estimate the
probability density function of the next bits. For example, the uniform distribution is next-
bits predictable, but does not have Yao’s next-bit predictor. In this sense, our notion of
next-bits predictor is close in spirit to the notion of KL predictor of Vadhan and Zheng
[VZ12].

For next-bits predictable distributions, we present an optimal and efficient coding theorem for
rKpoly up to an additive O(log n) term. This extends the previous work of Levin [Lev86] because
any polynomial-time computable distribution is next-bits predictable.

Theorem 1.5 (See also Theorem 4.13). For any next-bits predictable family D = {Dn}n∈N of dis-
tributions, and for every polynomial q, there exists an efficient encoding and decoding scheme whose
expected encoding length is H(Dn) + log q(n); that is, there exists a pair (Enc,Dec) of randomized
polynomial-time algorithms such that for every n ∈ N,

E
x∼Dn,Enc

[|Enc(1n, x)|] ≤ H(Dn) + log p(n)

and for every x ∈ Support(Dn),

Pr
Enc,Dec

[Dec(1n,Enc(1n, x)) = x] ≥ 2

3
.

3Throughout this paper, we only consider a family D of distributions such that every x ∈ Support(Dn) has length
at most p(n) for some polynomial p.
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Moreover, we obtain a worst-case coding theorem for rKpoly optimal up to a (1 + ϵ)-factor for
every constant ϵ > 0, which is instrumental in Section 4.2.3.

Theorem 1.6 (See also Theorem 4.14). For any next-bits predictable family D = {Dn}n∈N of
distributions, for every ϵ > 0, there exists a polynomial p such that for every n ∈ N and every
x ∈ Support(Dn),

rKp(n)(x) ≤ (1 + ϵ) log
1

Dn(x)
+ log p(n).

These results could be interesting to practical data compression. Data compressors in practice
(see [SM10]) work by predicting next symbols by a deterministic algorithm. Our results show that
compression is possible even if a predictor is randomized and makes a small additive error.

Although it remains open whether an existential coding theorem for rKpoly with respect to
PSamp can be obtained unconditionally, we remark that the non-existence of a one-way function is
necessary for an efficient coding theorem for rKpoly. Thus, Theorem 1.5 is unlikely to be extended
to any samplable distribution.

Theorem 1.7. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. For every polynomial-time samplable distribution D = {Dn}n∈N, there exists an efficient
encoding and decoding scheme whose expected encoding length is H(Dn) +O(log n).

3. For any constant ε > 0, for every polynomial-time samplable distribution over {0, 1}n with
entropy nε, there exists a polynomial-time encoding and decoding with expected length n− 3.

2 Proof Overview

At a high level, our proof of symmetry of information for rKpoly under the non-existence of
one-way functions proceeds as follows.

1. To prove an efficient coding theorem for rKpoly with respect to next-bits predictable distri-
butions (Theorem 1.5), we apply arithmetic encoding [cf. CT06, Sections 5.9 and 13.3] to a
randomized next-bits predictor and then “pseudo-derandomize” the encoding by using the
techniques of Goldberg and Sipser [GS91] and Trevisan, Vadhan, and Zuckerman [TVZ05].

2. Using the distributional inverter of Impagliazzo and Luby [IL89] (as in [IL90; HN23]), it
can be shown that under the non-existence of one-way functions, any samplable distribution
has a next-bits predictor (on average). This enables us to deduce the average-case efficient
conditional coding theorem for rKpoly under the non-existence of one-way functions (Item 1
=⇒ Item 4 in Theorem 1.1) from Theorem 1.5.

3. Average-case symmetry of information follows from the average-case conditional coding the-
orem, as in [HILNO23].

We emphasize the simplicity over the previous work [HILNO23], which we view as the strength of
this work. Below, we explain the proof ideas of the coding theorem for rKpoly in Section 2.1 and
then the proof of the search-to-decision reduction in Section 2.2.
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2.1 Optimal Coding Theorems for rKpoly

The starting point of this work is the insightful work of Haitner, Mazor, and Silbak [HMS23],
who showed that any distribution incompressible to k bits has k − 2 bits of next-bit pseudoen-
tropy for non-uniform algorithms. Although we defer the definition of next-bit pseudoentropy to
Section 4.2.3, their proof proceeds as follows.

1. If a distribution D does not have k − 2 bits of next-bit pseudoentropy, then by the work of
Vadhan and Zheng [VZ12], there exists a “KL predictor” P that predicts any next bit with
a reasonably high accuracy.

2. The predictor P induces a polynomial-size-computable distribution DP (i.e., a non-uniform
analogue of PComp) such that DP and D are close in terms of KL divergence.

3. Applying the arithmetic encoding to DP as in the work of Levin [Lev86], they obtain an
efficient coding theorem for DP and thus for D; i.e., D admits an encoding and decoding
scheme that can be computed by polynomial-size circuits.

The main idea of the proof of (Item 1 =⇒ Item 4) in Theorem 1.1 is to replace the KL
predictor in the proof of [HMS23] with the next-bits predictor that can be constructed from [IL89;
IL90; HN23]. However, this poses a technical challenge: We consider a one-way function secure
against uniform algorithms, in which case the next-bits predictor P is a randomized algorithm, and
arithmetic encoding may not be applicable. This issue was also noted in [HMS23] and prevented
Haitner, Mazor, and Silbak from obtaining the uniform version of their results when shared random
bits are not available. To explain the issue briefly, let us explain how the arithmetic encoding works.
Assuming that the cumulative distribution function FD(x) :=

∑
y<xD(x) is efficiently computable

by a deterministic algorithm, a string x can be encoded into the first ⌈− logD(x)⌉ + 1 bits of the
value FD(x) + D(x)/2. If FD(x) is efficiently approximated by a randomized algorithm P , the
arithmetic encoding of x may largely depend on the internal randomness of P . To address this
issue, we would need a pseudo-deterministic algorithm that approximates FD(x), i.e., an algorithm
that produces a fixed approximate value for FD(x) with high probability.

We pseudo-derandomize arithmetic encoding by using the techniques of “adding noise and
rounding” developed by Goldberg and Sipser [GS91] and Trevisan, Vadhan, and Zuckerman [TVZ05],
where they addressed similar issues to obtain randomized compression algorithms for flat sources
over a language in P [GS91] and a witness set for NP [TVZ05]. The rough ideas are as follows.
When we execute the next-bits predictor for approximating FD(x) and D(x), we add a random
noise and round the noised value to the nearest value in the integer multiples of a certain real
value. As was shown in the previous works, the outcome of the next-bits predictor is fixed with
high probability over the choice of the random noise, where the random noise is required to be
shared between the encoder and decoder, but the description length of the random noise is loga-
rithmically small. This idea enables us to make the next-bits predictor pseudodeterministic only
with a logarithmic amount of shared randomness.

The techniques of “adding noise and rounding” can cause another issue with the accuracy of the
next-bits predictor. More specifically, adding noise and rounding yield an additional accuracy error,
and when the error is much larger than the next-bit probability, the accuracy of the approximation
of the next-bit probability can become insufficient for decoding in arithmetic encoding. To address
this issue, we avoid using the approximate value produced by the next-bits predictor when the
next-bit probability is small, and in this case, we embed the next bit into the encoding with the
position. We call a next bit with a small next-bit probability a light next bit. Namely, our encoding
algorithm first determines whether the next bit is light by using the next-bits predictor and if
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so, it embeds the next bit into the encoding; otherwise, it uses the next-bit prediction with the
techniques of addition noise and rounding. Using these ideas, we can show that, for each string
x ∈ {0, 1}n in the support of the distribution D, the length of the encoding is roughly at most
− logD(x) + O((m(x) + 1) · log n), where m(x) is the number of the light next bits of x. We can
easily observe that the number of the light next-bits of x is 0 with high probability over x ∼ D,
which implies the optimal coding property for rKpoly with an efficient encoder. The same idea
enables us to prove the conditional coding because the next-bits predictor can approximate the
next-bit probability starting from any conditional string.

2.2 Error-Prone Average-Case Search-to-Decision Reductions for rKpoly

We describe the proof ideas behind Theorem 1.3. First of all, it was implicitly shown in [LP20]
that average-case tractability of (decisional) MINrKT over the uniform distribution implies the
non-existence of one-way functions. Then, to show Theorem 1.3, it suffices to show that if one-
way functions do not exist, then Search-MINrKT can be solved on average over polynomial-time
samplable distributions.

At a high level, our proof follows the approach in [LP20], which shows that the non-existence of
one-way functions implies the average-case tractability of Search-MINKT over the uniform distribu-
tion. Here Search-MINKT is the problem of finding a minimum t-time program (or, a Kt-witness)
of a given string. In fact, their result can be generalized to any polynomial-time computable distri-
bution. Next, we describe this approach in more detail.

Roughly put, the approach consists of the following steps:

1. Construct a function f such that if f can be inverted on average over uniformly random
inputs of f , then one can obtain an average-case algorithm for finding Kt-witnesses, over the
distribution where each x has probability mass 2−Kt(x).

2. Show that such an average-case algorithm also works for any fixed-polynomial-time com-
putable distribution.

The authors of [LP20] construct a function f as follows: f takes an integer i ∈ [n + O(1)],
representing the length of a program, and a program Π ∈ {0, 1}i. It then obtains the output string
x of Π after running for t steps. Finally, it outputs (i, x).

Let us first suppose that we can invert f in the worst case. Then, given x, one can find the
smallest i∗ such that (i∗, x) is inverted successfully, in which case we obtain a program of length i∗

that outputs x within t steps. Such a program will be a Kt-witness of x.
In the case that we can invert f on average over uniformly random inputs, such a search

algorithm will succeed on average over x sampled according to Df , which is the distribution induced
by f (over uniformly random inputs). It is easy to observe that for each x, Df will output x with

probability at least about 2−Kt(x). In this case, we have that Df dominates4 the distribution Qt,

which is defined as the (semi-)distribution that assigns each x with probability mass 2−Kt(x). As a
result, the average-case search algorithm that works for Df also works for Qt. This completes the
description of the first step.

For the second step, we want to show that the same average-case search algorithm also works
for any fixed-polynomial-time computable distribution D. Again, it suffices to show that for a
sufficiently large polynomial t, Qt dominates D. In other words, for every x, 2−Kt(x) ≳ D(x).
Note that this essentially follows from the known coding theorem for polynomial-time computable
distributions with respect to the measure Kpoly [Lev86].

4Recall that a distribution D dominates another distribution D′ if D(x) ≥ D′(x)/poly(n) for every x.
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Next, we describe how to apply the above approach to obtain an average-case algorithm for
finding an (1/ℓ)-rKt-witness of x while x is sampled over a polynomial-time samplable distribution.
More specifically, we will do the following.

1. Construct a function f such that if f can be inverted on average over uniformly random
inputs, then one can obtain an average-case algorithm for finding an (1/ℓ)-rKt-witnesses, over
the distribution where each x has probability mass 2−rKt(x).

2. Show that such an average-case algorithm also works for any fixed-polynomial-time samplable
distribution.

We will need new ideas in both steps described above.
Our construction of the function f is as follows: f takes an integer i ∈ [n+O(1)], a randomized

program Π ∈ {0, 1}i, as well as a string r ∈ {0, 1}t, which will be used as the internal randomness
for running Π. We then obtain x, which is the output of Π running with randomness r after t
steps. Now the key step here is that we will ensure that Π is a random program that outputs x
with probability at least 2/3− 1/ℓ. This is done using a randomized polynomial algorithm V with
the following property: With high probability, for every (Π, x),

• if within t steps, Π outputs x with probability at least 2/3, then V accepts, and

• if within t steps, Π outputs x with probability less than 2/3− 1/ℓ, then V rejects.

(For the sake of simplicity in this proof overview, think of V as a deterministic algorithm.) Finally,
if (Π, x) passes the test of V , we output (i, x). Otherwise, we output ⊥.

The idea is that for such a function f , if we invert an image (i, x) successfully, then we will
obtain a randomized program Π along with some randomness r such that Π, running on r for t
steps, outputs x. Moreover, it holds that (Π, x) passes the test of V , which means Π outputs x
with probability at least 2/3−1/ℓ. Therefore, by finding the smallest i∗ such that (i∗, x) is inverted
successfully, we can obtain an (1/ℓ)-rKt-witness of x.

Also, when considering the distribution Df induced by f (over uniformly random inputs), note

that for every x, if a rKt-witness of x is picked, which happens with probability at least 1
O(n) ·2

−rKt(x),

then after running Π for t steps, we will obtain x with probability at least 2/3. Moreover, (Π, x)
will pass the test of V . Therefore, for every x, Df will output x with probability at least about

2−rKt(x).
As discussed previously, this allows us to obtain an average-case search algorithm for Search-

MINrKT over the distribution Qt, which assigns each x with probability mass 2−rKt(x). Now, to show
that the same (average-case) search algorithm also works for any fixed-polynomial-time samplable
distribution D, it suffices to show that Qt dominates D. Another key observation here is that to
show the former, we do not necessarily need Qt to dominate D in the worst case; it suffices for Qt

to dominate D on average. In other words, for almost all x ∼ D, 2−rKt(x) ≳ D(x). Then this follows
from our average-case coding theorem for polynomial-time samplable distributions with respect to
rKpoly under the non-existence of one-way functions (Item 1 =⇒ Item 2 in Theorem 1.2).

Acknowledgements. Zhenjian Lu received support from the UKRI Frontier Research Guarantee
Grant EP/Y007999/1.
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3 Preliminaries

3.1 Notation

We use the notation ε to represent an empty string.
For a distribution D supported over {0, 1}n×{0, 1}n and y ∈ {0, 1}n, we let D(· | y) denote the

conditional distribution of D on the first half given that the second half is y.
For n, n′ ∈ N with n ≤ n′, let [n : n′] = {n, n + 1, . . . , n′}. Let [n] := [1 : n] = {1, . . . , n} for

each n ∈ N.
For a string x ∈ {0, 1}∗ and S ⊆ [|x|], let xS denote a substring of x indicated by S, i.e.,

xS = xi1 ◦ · · · ◦ xik for S = {i1, . . . , ik}, where i1 < · · · < ik. Particularly, x[i] = x1 ◦ · · · ◦ xi and
x[i:j] = xi ◦ xi+1 ◦ · · · ◦ xj . For simplicity, let x[0] = ε for every x ∈ {0, 1}∗.

For a distribution D over {0, 1}∗ and strings x, y ∈ {0, 1}∗, we define D∗(x | y) ∈ [0, 1] as

D∗(x | y) := Pr
z∼D

[
z[|y|+1:|y|+|x|] = x

∣∣z[|y|] = y
]
.

When y = ε, we drop “|y” from the notation above, i.e.,

D∗(x) := Pr
z∼D

[
z[|x|] = x

]
.

For every distribution D over {0, 1}∗, every x ∈ {0, 1}∗, and k ∈ N, we use the notation
Next(D;x) to refer to the conditional distribution of the next bit of a subsequent string of x
selected according to D. Namely, for each b ∈ {0, 1},

Pr
b′∼Next(D;x)

[b′ = b] = D∗(b | x).

When we consider a polynomial-time decoding algorithm, the time bound is regarded as a
function in the length of the original string before being encoded rather than the given encoding
or input.

3.2 Useful Tools

Theorem 3.1 (Coding Theorem [Lev74]). Let E be a distribution whose cumulative distribution
function can be computed by some program p. Then for every x ∈ Support(E),

K(x | p) ≤ log
1

E(x)
+O(1).

Lemma 3.2 (See, e.g., [HILNO23, Lemma 9]). There exists a universal constant b > 0 such that
for every distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, every n ∈ N, and every
y ∈ {0, 1}n,

Pr
x∼Dn(·|y)

[
K(x | y) < log

1

Dn(x | y)
− α

]
<

nb

2α
.

Fact 3.3. For every x ∈ {0, 1}∗ and t ∈ N,

K(x) ≤ rKt(x).

Lemma 3.4 (Success Amplification for rKt). For any string x ∈ {0, 1}∗, time bound t ∈ N, and
q ∈ N, we have

rKt′

1−1/q(x) ≤ rKt(x) +O(log log q),

where t′ := t ·O(log q).
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Lemma 3.5 (See, e.g., [HN23, Lemma 6.14]). For every polynomial-time samplable distribution
family {Dn}n∈N, there exists a polynomial ρ such that for every n ∈ N, every t ≥ ρ(n), and every
α ∈ N,

Pr
x∼Dn

[
cdt(x) > α

]
≤ 2−α+O(logn).

Lemma 3.6 (Implicit in [IL90; IL89]; see also [HN23]). If almost everywhere (resp. infinitely-often)
secure one-way functions do not exist, then for every samplable distribution family {Dn}n∈N, where
each Dn is over {0, 1}ℓ(n) for an efficiently computable ℓ(n) ≤ poly(n), and for every polynomial
p, there exists a polynomial-time randomized algorithm Ext such that for infinitely many (resp. for
all) n ∈ N,

Pr
x∼Dn

[
∀i ∈ [n], ∆TV

(
Ext

(
x[i−1], 1

n
)
,Next(Dn;x[i−1])

)
≤ 1

p(n)

]
≥ 1− 1

p(n)
,

where ∆TV(, ) represents the total variation distance between two distributions.

Particularly, we obtain the following.

Theorem 3.7. If almost everywhere (resp. infinitely-often) secure one-way functions do not exist,
then for every samplable distribution family {Dn}n∈N, where each Dn is over {0, 1}n×{0, 1}n, there
exists a probabilistic polynomial-time algorithm Ext such that for all ε−1, δ−1 ∈ N and for infinitely
many (resp. for all) n ∈ N,

Pr
y∼D(2)

n

[
∆TV

(
Ext(y; 1ε

−1
, 1δ

−1
),Dn(· | y)

)
≤ ε

]
≥ 1− δ,

where D(2)
n denotes the marginal distribution of the second element of Dn.

4 Coding for rKpoly Based on Next-bits Prediction

In this section, we first present a meta-theorem showing that the approximation of next-bit
probability yields a coding theorem for rKpoly with an efficient encoder, where the encoding length
can be worse than optimal depending on the number of light next-bits defined below. Then, we
prove Theorems 4.11 and 4.12 as corollaries.

We introduce some notions to state the meta-theorem. First, we present the definition of next-
bits prediction on a subset of the support. For a distribution family D = {Dn}n and a subset
S ⊆ Support(D), we use the notation Sn to represent S ∩ Support(Dn) for each n ∈ N throughout
the section.

Definition 4.1. Let D = {Dn}n be a distribution family over {0, 1}∗. For S ⊆ Support(D) and a
polynomial q, the distribution D is said to be next-bits-predictable on S with error parameter q if
there exists a randomized polynomial-time algorithm P such that for every n ∈ N, every x ∈ Sn,
every i ∈ [|x|], and every b ∈ {0, 1},

Pr
P

[
P (x[i−1], b, 1

n) ∈ [D∗
n(b | x[i−1])− 1/q(n),D∗

n(b | x[i−1]) + 1/q(n)]
]
≥ 1− 1/q(n).

Next, we introduce the key notion of light next-bits, which affects the bound on the length of
encoding in the meta-theorem.
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Definition 4.2 (Light next-bit). For a distribution D over {0, 1}∗, δ ∈ [0, 1], x ∈ Support(D), and
i ∈ [|x|], we say that b ∈ {0, 1} is a δ-light next-bit of x[i−1] (with respect to D) if D∗(b | x[i−1]) ≤ δ.
Moreover, we say that x has a δ-light next-bit if there exists i ∈ [|x|] such that xi is a δ-light
next-bit of x[i−1].

Definition 4.3 (mD,δ). For a distribution D over {0, 1}∗, δ ∈ [0, 1], and x ∈ Support(D), we define
mD,δ(x) as the number of δ-light next-bits in x, i.e.,

mD,δ(x) = |{i : xi is a δ-light next-bit of x[i−1]}|.

For j, j′ ∈ [|x|] with j < j′, we also define mj,j′

D,δ(x) as

mj,j′

D,δ(x) = |{i ∈ [j, j′] : xi is a δ-light next-bit of x[i−1]}|.

We often omit the subscript “D” from mD,δ and mj,j′

D,δ when D is trivially identified in context.
The following property immediately follows from the definition.

Proposition 4.4. Let D be a distribution over {0, 1}∗. For any x ∈ Support(D), the following
hold:

• For every i, j ∈ [|x|] with i < j and every δ, δ′ ∈ [0, 1] with δ ≤ δ′, mi,j
δ (x) ≤ mi,j

δ′ (x).

• For every δ ∈ [0, 1] and every i, j, i′j′ ∈ [|x|] such that [i : j] ⊆ [i′ : j′], mi,j
δ (x) ≤ mi′,j′

δ (x).

A sample x has no δ-light next-bit if and only if mδ(x) = 0. It is easily observed that x has no
light next-bit with respect to a distribution D with high probability over the choice of x ∼ D.
Proposition 4.5. For every n ∈ N, δ ∈ [0, 1] and every distribution D over {0, 1}n,

Pr
x∼D

[x has a δ-light next-bit with respect to D] ≤ nδ.

Proof. Sampling according to D can be performed sequentially as xi ∼ Next(D;x[i−1]) for i =
1, . . . , n (in this order). For each i, the probability that a δ-light next-bit is sampled is at most
δ by the definition. Therefore, by the union bound, the probability that the sample has a δ-light
next-bit is at most n · δ.

Now, we formally state the meta-theorem.

Theorem 4.6. For any distribution family D = {Dn}, where Dn is over {0, 1}ℓ(n) for an efficiently
computable function ℓ(n) ≤ poly(n), and any polynomial q, there exists a polynomial p such that if
D is next-bits-predictable on S ⊆ Support(D) with error parameter p, then for every n ∈ N, every
x ∈ Sn, and every i ∈ [|x|]

rKp(n)(x[i:ℓ(n)] | x[i−1]) ≤ − logD∗
n(x[i:ℓ(n)] | x[i−1]) +m

i,ℓ(n)
1/q(n)(x) ·O(log ℓ(n)) +O(log nℓ(n)q(n)),

where the hidden constants in O(·) are independent of ℓ and q. In particular,

rKp(n)(x) ≤ − logDn(x) +m1/q(n)(x) ·O(log ℓ(n)) +O(log nℓ(n)q(n)).

Moreover, there exists a polynomial-time randomized algorithm Enc that outputs, for given input
(x, 1n, i), a description of a polynomial-time (randomized) program that outputs x[i:ℓ(n)] when x[i−1]

is given, and the description length satisfies the upper bound on rKp(n)(x[i:ℓ(n)] | x[i−1]), where the
success probability of Enc is at least 1− 1/q(n).

In Section 4.1, we present the proof of Theorem 4.6. In Section 4.2, we derive Theorems 4.11
and 4.12 and the almost optimal worst-case coding theorem and optimal (average-case) coding
theorem for next-bits-predictable source from Theorem 4.6.
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4.1 Proof of Theorem 4.6

First, we make a next-bits predictor pseudo-deterministic with the help of short advice that
depends on the input. Note that the auxiliary advice can be selected with high probability from
uniformly random sampling but is required to be selected for each encoded string.

Lemma 4.7. For every distribution family D = {Dn}, where Dn is over {0, 1}ℓ(n) for an efficiently
computable function ℓ(n) ≤ poly(n), and for every polynomial q, if D is next-bits-predictable on
S ⊆ Support(D) with error parameter 32ℓ(n)q(n)3, then there exists a polynomial-time randomized
algorithm P̃ such that for every n ∈ N and every x ∈ Sn, with probability at least 1 − 1/q(n)
over the choices of advice αx ∼ {0, 1, . . . , 2ℓ(n)q(n)− 1} ⊆ N and 2ℓ(n) independent random seeds
r1, r

′
1, . . . , rℓ(n), r

′
ℓ(n) for P̃ , the following properties hold for all i ∈ [ℓ(n)] and all b ∈ {0, 1},

1. (P̃ is pseudo-deterministic.)

P̃ (x[i−1], b, αx, 1
n; ri) = P̃ (x[i−1], b, αx, 1

n; r′i); (1)

2. (P̃ determines a distribution.)

P̃ (x[i−1], 0, αx, 1
n; ri) + P̃ (x[i−1], 1, αx, 1

n; r′i) = 1; (2)

3. (P̃ is accurate.)

D∗
n(b | x[i−1])− 1/q(n)2 ≤ P̃ (x[i−1], b, αx, 1

n; ri) ≤ D∗
n(b | x[i−1]) + 1/q(n)2. (3)

Particularly, if b is not an (1/q(n))-light next-bit of x[i−1], then

(1− 1/q(n))D∗
n(b | x[i−1]) ≤ P̃ (x[i−1], b, αx, 1

n; ri) ≤ (1 + 1/q(n))D∗
n(b | x[i−1]).

For convenience, we call the polynomial q above a mordified error parameter.

Proof. Since D is next-bits-predictable on S, there exists a polynomial-time next-bits predictor P
satisfying the properties of Definition 4.1 with error parameter q′(n) := 32ℓ(n)q(n)3.

For given input (x[i−1], b, αx, 1
n), where αx ∼ {0, 1, . . . , 2ℓ(n)q(n) − 1} ⊆ N, the algorithm P̃

first executes v0 ← P
(
x[i−1], 0, 1

n
)
. Then, P̃ applies the technique of adding noise and rounding to

be pseudo-deterministic. Here, the amount of noise is αx,δ · 1/(8ℓ(n)q(n)3). Let ṽ0 be the nearest
value to v0 + αx · 1/(8ℓ(n)q(n)3) in multiples of 1/(4q(n)2) in [0, 1] (i.e., ṽ0 = N · 1/(4q(n)2)) for
some N ∈ {0, 1, . . . , 4q(n)2}), where ties are broken by choosing the smaller one.

If the input b is 0, the algorithm P̃ outputs ṽ0; otherwise (i.e., if b = 1), P̃ outputs ṽ1 := 1− ṽ0.
Note that P̃ uses its internal randomness only for executing P .

We show the three properties in the lemma. Recall that αx ∼ {0, . . . , 2ℓ(n)q(n)− 1}. For each
i ∈ [ℓ(n)], we consider the execution of P̃ (x[i−1], b, αx, 1

n) with the global advice αx. Let v0 be the
value produced by P

(
x[i−1], 0, 1

n
)
during the execution.

Suppose that P does not fail in the sense that∣∣v0 −D∗
n(0 | x[i−1])

∣∣ ≤ 1/q′(n) = 1/(32ℓ(n)q(n)3).

Recall that the property of P shows that the event above occurs with probability at least 1−1/q′(n)
as long as x ∈ Sn.
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We define Ix,i ⊆ [0, 1] as

Ix,i := [D∗
n(0 | x[i−1])− 1/(32ℓ(n)q(n)3),D∗

n(0 | x[i−1]) + 1/(32ℓ(n)q(n)3)] ∩ [0, 1].

Then, v0 ∈ Ix,i as long as P is performed successfully. Note that |Ix,i| ≤ 1/(16ℓ(n)q(n)3), and Ix,i
is independent of αx.

Notice that (i) the noise αx · 1/(8ℓ(n)q(n)3) varies in 1/(8ℓ(n)q(n)3) (> |Ix,i|) increments, and
(ii) the rounded value ṽ0 varies in 1/(4q(n)2) (> (2ℓ(n)q(n)−1) ·1/(8ℓ(n)q(n)3)) increments. Thus,
the number of αx for which there exist two values v0, v

′
0 ∈ Ix,i that are rounded to two distinct

values is at most 1.
Since the same argument holds for all i ∈ [ℓ(n)], we have that with probability at least 1 −

ℓ(n)/(2ℓ(n)q(n)) = 1− 1/(2q(n)) over the choice of αx, for all i ∈ [ℓ(n)], the rounded value ṽ0 for
given x[i−1] always takes the same value as long as P is successfully executed. Below, we observe
the three properties in the lemma under the events that (i) such a good value of αx is selected,
and (ii) all of the 2ℓ(n) executions of P are successfully performed. This completes the proof of
the lemma because, by the union bound, the two events occur simultaneously with probability at
least 1− 1/(2q(n))− 2ℓ(n)/q′(n) ≥ 1− 1/q(n).

The first property (Equation (1)) has already verified because the rounded value ṽ0 always takes
the same value as long as P is successfully executed, and P̃ outputs either of ṽ0 and ṽ1 = 1 − ṽ0
depending on b.

Next, we observe the second property. Let ṽ0 and ṽ1 be the values produced by P̃ given b = 0
and b = 1, respectively, for fixed randomness r. By the construction of P̃ , they always satisfy
ṽ0 + ṽ1 = 1. Let ṽ0

′ and ṽ1
′ be the values produced by P̃ given b = 0 and b = 1, respectively, for

fixed randomness r′ different from r. The first property implies that ṽ0 = ṽ0
′, and it further implies

that ṽ0
′ + ṽ1 = ṽ0 + ṽ1 = 1. Therefore, Equation (2) holds under the same events.

Finally, we observe the third property and complete the proof. Recall that
∣∣v0 −D∗

n(0 | x[i−1])
∣∣ ≤

1/(32ℓ(n)q(n)3) under the condition. Adding the noise (αx,δ · 1/(8ℓ(n)q(n)3)) and rounding to the
multiples of 1/(4q(n)2) only changes the value at most

2ℓ(n)q(n) · 1

8ℓ(n)q(n)3
+

1

4q(n)2
=

1

2q(n)2
.

Thus, we have that
∣∣ṽ0 −D∗

n(0 | x[i−1])
∣∣ ≤ 1/(32ℓ(n)q(n)3) + 1/(2q(n)2) ≤ 1/q(n)2. Notice that∣∣ṽ1 −D∗

n(1 | x[i−1])
∣∣ = ∣∣ṽ0 −D∗

n(0 | x[i−1])
∣∣ ≤ 1/q(n)2.

Therefore, in any case, ∣∣ṽb −D∗
n(b | x[i−1])

∣∣ ≤ 1

q(n)2
,

and Equation (3) holds because P outputs ṽb for the given b. In addition, if b is not an (1/q(n))-light
next-bit of x[i−1], then ∣∣ṽb −D∗

n(b | x[i−1])
∣∣ ≤ 1

q(n)2
≤ 1

q(n)
D∗

n(b | x[i−1]).

By rearranging the above,

(1− 1/q(n))D∗
n(b | x[i−1]) ≤ ṽb ≤ (1 + 1/q(n))D∗

n(b | x[i−1]),

as desired.
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Next, we use the modified next-bits predictor P̃ for the arithmetic encoding (i.e., Shannon–
Fano–Elias coding) to obtain the coding theorem for rKpoly.

Let D = {Dn} be a distribution family that is next-bits-predictable on S ⊆ Support(D), where
Dn is over {0, 1}ℓ(n). The encoding and decoding algorithms are the following, where q(n) represents
an arbitrary polynomial and P̃ represents the algorithm in Lemma 4.7 withmodified error parameter
q′(n) := ℓ(n)q(n)+1. We only consider the encoding of x[k:ℓ(n)] given x[k−1] for x ∈ Sn and k ∈ [ℓ(n)].

Note that, at the end of each round i, the values of the variables p< and p= in the encoding
and decoding algorithms are excepted to be the approximations of

∑
y<x[k:i]

D∗(y | x[k−1]) and

D∗(x[k:i] | x[k−1]), respectively. However, the algorithms ignore the round i when xi is a light next-
bit of xi−1 (i.e., the next-bit probability of xi is regarded to be 1) and embed xi to the encoding
with the position i. The way of update is based on the following expressions:

∑
y<x[k:i]

D∗(y | x[k−1]) =

{∑
y<x[k:i−1]

D∗(y | x[k−1]) if xi = 0∑
y<x[k:i−1]

D∗(y | x[k−1]) +D∗(x[k:i−1] | x[k−1]) · D∗(0 | x[i−1]) if xi = 1,

and
D∗(x[k:i] | x[k−1]) = D∗(x[k:i−1] | x[k−1]) · D∗(xi | x[i−1]).

Algorithm 1: Encq(x[k:ℓ(n)], n;x[k−1])

Input: x[k:ℓ(n)] ∈ {0, 1}ℓ(n)−k, n ∈ N, and a conditional string x[k−1] ∈ {0, 1}k−1, where
x ∈ Sn.

1 Let p< := 0 and p= := 1;
2 Select α ∼ {0, . . . , 2ℓ(n)q′(n)− 1} uniformly at random;
3 Let L be an empty list (where the element is expected to be in [ℓ(n)]× {0, 1});
4 for i := k to ℓ(n) do

5 Execute qi ← P̃ (x[i−1], xi, α, 1
n);

6 if qi ≤ 2/q′(n) then
7 Add (i, xi) ∈ [ℓ(n)]× {0, 1} to L and go to the next loop;

8 end

9 if xi = 1 then p< := p< + p= · P̃ (x[i−1], 0, α, 1
n);

10 p= := p= · qi;
11 end
12 Let v be the first ⌈− log p=⌉+ 1 bits of p< + (p=/2);
13 return (v, L, α, n, k);

It is easily observed that Encq and Decq halt in polynomial time in n since P̃ is polynomial
time. We show that the encoding and decoding algorithms above work with high probability over
the choice of independent random seeds and estimate the length of the encoding.

Lemma 4.8. For every distribution family D = {Dn}, where Dn is over {0, 1}ℓ(n) for an efficiently
computable function ℓ(n) ≤ poly(n), and every polynomial q, if D is next-bits-predictable on S ⊆
Support(D) with error parameter 32ℓ(n)q′(n)3 (= 32ℓ(n)4q(n)3), then for every n ∈ N, every x ∈ Sn,
and every k ∈ [|x|], it holds that

Pr
Encq ,Decq

[
Decq(Encq(x[k:ℓ(n)], n;x[k−1]);x[k−1]) = x[k:ℓ(n)]

]
≥ 1− 1

q(n)ℓ(n)
;
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Algorithm 2: Decq(v, L, α, n;x[k−1])

Input: an encoding (v, αx,δ, n, δ) and a conditional string x[k−1] ∈ {0, 1}k−1.

1 Let p< := 0 and p= := 1;
2 Let x̃ := x[k−1];

3 for i := k to ℓ(n) do
4 if (i, b) ∈ L for some b ∈ {0, 1} then
5 Update x̃ := x̃ ◦ b and go to the next loop;
6 end

7 Compute q0 = P̃ (x̃[i−1], 0, α, 1
n) and q1 = 1− q0;

8 if v ≥ p< + p= · q0 then let x̃ := x̃ ◦ 1, p< := p< + p= · q0, and p= = p= · q1;
9 else x̃ := x̃ ◦ 0 and p= := p= · q0;

10 end
11 return x̃[k:ℓ(n)];

and

Pr
Encq

[
|Encq(x[k:ℓ(n)], n;x[k−1])| ≤ − logDn(x) +m

k,ℓ(n)
1/q(n)(x) ·O(log ℓ(n)) +O(log nℓ(n)q(n))

]
≥ 1− 1

q(n)ℓ(n)
,

where the hidden constants in O(·) are universal independent of ℓ and q.
In particular, for a sufficiently large polynomial p,

rKp(n)(x[k:ℓ(n)] | x[k−1]) ≤ − logDn(x) +m
k,ℓ(n)
1/q(n)(x) ·O(log ℓ(n)) +O(log nℓ(n)q(n)),

and there exists a polynomial-time randomized algorithm Enc that outputs, for given input (x, 1n, k),
a description of a polynomial-time (randomized) program that outputs x[k:ℓ(n)] when x[k−1] is given,

and the description length satisfies the upper bound on rKp(n)(x[k:ℓ(n)] | x[k−1]) above, where the
success probability of Enc is at least 1− 6/(q(n)ℓ(n)).

Note that Theorem 4.6 immediately follows from Lemma 4.8.

Proof. Lemma 4.8 follows from the correctness of the arithmetic encoding and Lemma 4.7.
First, we observe that, in the execution of Decq(Encq(x[k:ℓ(n)], n;x[k−1]);x[k−1]), the next-bits

predictor P̃ is executed only on (x[i−1], b, α, 1
n) for i ∈ [ℓ(n)] and b ∈ {0, 1} as long as the sequential

decoding is performed along x (i.e., x̃ = x[i] for each stage i). Note that Encq and Decq do not share

the randomness for executing P̃ ; thus, they may execute P̃ on the same input but using independent
randomness. However, Lemma 4.7 shows that, with probability at least 1 − 1/(q(n)ℓ(n)) over the
choice of α and randomness for P̃ (i.e., over the randomness for Encq and Decq), all the executions
of P̃ yield consistent values and determine the conditional distribution of each next bit. In this
case, Decq(Encq(x[k:ℓ(n)], n;x[k−1]);x[k−1]) performs the arithmetic encoding [cf. CT06, Sections 5.9

and 13.3] for the distribution induced by executing P̃ on each prefix of x except for the positions i
on which the value of qi is less than 2/q′(n). Namely, under the good choices of α and randomness
as indicated in Lemma 4.7, the value v produced by Encq satisfies that

pEnc< ≤ pEnc< + pEnc= /2− 2−⌈− log pEnc
= ⌉−1 < v < pEnc< + pEnc= ,

19



where pEnc< and pEnc= represent the values of variables p< and p= at the end of the execution of
Encq, respectively. In addition, for every round i in the execution of Decq,{

v < pEnc< + pEnc= ≤ p< + p= · q0 if xi = 0

v ≥ pEnc< ≥ p< + p= · q0 if xi = 1,

where p<, p=, and q0 represent the variables computed in Decq. Thus, whenever qi > 2/q′(n), Decq
successfully decodes the i-th next bit. In the other case where qi ≤ 2/q′(n), the pair (i, xi) is
contained in the list L, and Decq also successfully decodes the next bit. Therefore, we obtain that

Pr
Encq ,Decq

[
Decq(Encq(x[k:ℓ(n)], n;x[k−1]);x[k−1]) = x[k:ℓ(n)]

]
≥ 1− 1

q(n)ℓ(n)
.

Next, we evaluate the length of the encoding. Below we let p= represent the value of the
variable p= at the end of the execution of Encq. We also assume that the randomness for Encq
(i.e., α and randomness for executing P̃ ) satisfies the condition of Lemma 4.7. This event occurs
with probability at least 1− 1/(ℓ(n)q(n)).

Let L be the set of indices i such that qi ≤ 2/q′(n) in the execution of Encq, and letH = [ℓ(n)]\L.
Recall that the variable p= is updated only when i ∈ H. We observe that for every i ∈ L, the i-th
bit xi is a 3/q′(n)-light next bit of x[i−1] because

D∗(xi | x[i−1]) ≤ qi +
1

q′(n)2
≤ 2

q′(n)
+

1

q′(n)2
≤ 3

q′(n)
.

In addition, for every i ∈ H, the i-th bit xi is not an (1/q′(n))-light next bit of x[i−1] because

D∗(xi | x[i−1]) ≥ qi −
1

q′(n)2
>

2

q′(n)
− 1

q′(n)2
≥ 1

q′(n)
.

Without loss of generality, we assume that (⌈− log p=⌉+1) = O(ℓ(n)); otherwise, we can replace
the encoding for x with the canonical encoding of length ℓ(n)+O(1) by embedding x. In addition,
we assume that ℓ(n) ≥ 3. Then, by the standard prefix-free encoding, the output (v, L, α, n, k) of
Encq is represented in

⌈− log p=⌉+ 1 + |H| ·O(log ℓ(n)) +O(log(⌈− log p=⌉+ 1)) +O(log nq(n)ℓ(n))

= − log p= +m
k,ℓ(n)
3/q′(n)(x) ·O(log ℓ(n)) +O(log nq(n)ℓ(n))

≤ − log p= +m
k,ℓ(n)
1/q(n)(x) ·O(log ℓ(n)) +O(log nℓ(n)q(n)) bits,

where all constants in O(·) notations are independent of q and ℓ, and we used

3/q′(n) ≤ 3/(ℓ(n)q(n)) ≤ 1/q(n) and m
k,ℓ(n)
3/q′(n)(x) ≤ m

k,ℓ(n)
1/q(n)(x).

Lemma 4.7 further shows that for every i ∈ H,

(1− 1/q′(n))D∗
n(xi | x[i−1]) ≤ P̃ (x[i−1], b, α, 1

n, 1δ
−1
) ≤ (1 + 1/q′(n))D∗

n(xi | x[i−1])

since xi is not an (1/q′(n))-light next bit of x[i−1] whenever i ∈ H.
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Therefore, at the end of the execution of Encq, the variable p= takes the value

p= =
∏
i∈H

P̃ (x[i−1], xi, α, 1
n)

≥ (1− 1/(ℓ(n)q(n) + 1))|H| ·
∏
i∈H
D∗

n(xi | x[i−1])

≥ (1− 1/(ℓ(n)q(n) + 1))ℓ(n) ·
ℓ(n)∏
i=1

D∗
n(xi | x[i−1])

= (1− 1/(ℓ(n)q(n) + 1))ℓ(n) · D(x)
≥ e−1/q(n) · D(x).

Thus, we have

− log p= ≤ − logD(x) + 1/q(n) + log e ≤ − logD(x) + 3.

Therefore, the length of the encoding is at most

− log p= +m
k,ℓ(n)
1/q(n)(x) · C log ℓ(n) + C · log nℓ(n)q(n)

≤ − logD(x) +m
k,ℓ(n)
1/q(n)(x) · C log ℓ(n) + C log nℓ(n)q(n) + 3,

where C is a universal constant independent of ℓ and q.
The final statement on rK is based on the following probabilistic argument: By the union

bound, with probability at least 1− 2/(ℓ(n)q(n)) over the choice of randomness for Encq and Decq,

it holds that (i) the length of the output of Encq is at most − logD(x) +m
k,ℓ(n)
1/q(n)(x) ·O(log ℓ(n)) +

O(log nℓ(n)q(n)), and (ii) Decq(Encq(x[k:ℓ(n)], n;x[k−1]);x[k−1]) = x[k:ℓ(n)]. By Markov’s inequality,
with probability at least 1 − 6/(ℓ(n)q(n)) over the randomness for Encq, (i) the length of the
encoding satisfies the same bound, and (ii) Decq(Encq(x[k:ℓ(n)], n;x[k−1]);x[k−1]) produces x[k:ℓ(n)]
with probability at least 2/3 over the randomness for Decq. Since Encq and Decq are polynomial-
time algorithms and uniform, the statement on rK holds.

4.2 Corollaries

We derive Theorems 4.11 and 4.12 from Theorem 4.6 in Section 4.2.1 and show Theorem 1.7 in
Section 4.2.1. In Section 4.2.2, we show the almost optimal worst-case coding theorem and optimal
(average-case) coding theorem for next-bits-predictable distributions. In Section 4.2.3, we show the
uniform variant of the result of [HMS23] (stated in the nonuniform model or the uniform model
with shared randomness) at the expense of arbitrarily small multiplicative error.

4.2.1 Proofs of Conditional Coding Theorems

First, we observe that, under the non-existence of one-way functions, every samplable distribu-
tion becomes next-bits predictable on a subset of large weight.

Lemma 4.9. If there is no almost everywhere one-way function, then for every samplable distri-
bution D = {Dn} and every polynomials q(n) and s(n), there exists a subset S ⊆ Support(D) such
that (i) D is next-bits-predictable on S with error parameter q and (ii) for infinitely many n ∈ N,
Prx∼Dn [x ∈ Sn] ≥ 1− 1/s(n).
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Proof. The lemma follows from Lemma 3.6 for almost everywhere one-way functions and the stan-
dard empirical estimation of the probability that the algorithm Ext outputs each bit.

We also obtain the lemma for the infinitely-often security in the same way.

Lemma 4.10. If there is no infinitely-often one-way function, then for every samplable distribution
D = {Dn} and every polynomials q(n) and s(n), there exists a subset S ⊆ Support(D) such that (i)
D is next-bits-predictable on S with error parameter q and (ii) for all n ∈ N, Prx∼Dn [x ∈ Sn] ≥
1− 1/s(n).

Proof. The proof is the same as Lemma 4.9 except we use Lemma 3.6 for infinitely-often one-way
functions.

Now, we prove (Item 1 =⇒ Item 4) in Theorem 1.1, which is restated as follows.

Theorem 4.11. If there is no one-way function, then for every samplable distribution D = {Dn}
supported over {0, 1}n × {0, 1}n and every polynomial q, there exists a polynomial p such that for
infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Moreover, there exists an efficient algorithm Enc that outputs, for given (x, y) ∼ Dn, a description
of a p(n)-time program Π of length at most − logDn(x | y) + log p(n) with probability at least
1− 1/q(n) over the choice of (x, y) ∼ Dn and randomness for Enc, such that Π outputs x for given
y and randomness r ∼ {0, 1}p(n) with probability at least 2/3 over the choice of r.

Proof. Let D = {Dn} be an arbitrary samplable distribution, where each Dn is supported over

{0, 1}n × {0, 1}n. Let D̄ = {D̄n} be another samplable distribution defined as D̄n ≡ D(2)
n ◦ D(1)

n .
Namely, D̄n is distributed over {0, 1}2n.

Let q be an arbitrary polynomial. We apply Theorem 4.6 for D̄ and a polynomial 4q(n)n. Then,
there exists a polynomial p such that if D̄ is next-bits-predictable on S ⊆ Support(D̄) with error
parameter p, then for every n ∈ N, every y ◦ x ∈ Sn with |y| = |x| = n,

rKp(n)(x | y) ≤ − log D̄∗
n(x | y) + (mn,2n

D̄n,1/4q(n)n
(y ◦ x) + 1) ·O(log nq(n))

≤ − logDn(x | y) + (mD̄n,1/4q(n)n(y ◦ x) + 1) ·O(log nq(n)).

Suppose that there is no almost everywhere one-way function. By Lemma 4.9, there exists a
subset S ∈ Support(D̄) such that (i) D̄ is next-bits-predictable on S with error parameter p and
(ii) for infinitely many n ∈ N, Pry◦x∼D̄n

[y ◦ x ∈ Sn] ≥ 1 − 1/(2q(n)). Below, we fix such an n
arbitrarily.

By Proposition 4.5, Pry◦x∼D̄n
[m1/4q(n)n(y ◦x) = 0] ≥ 1− 1/(2q(n)). Thus, by the union bound,

Pr
(x,y)∼Dn

[
mD̄n,1/4q(n)n(y ◦ x) = 0 and y ◦ x ∈ Sn

]
≥ 1− 1

q(n)
.

For any (x, y) satisfying the event above, we obtain that

rKp(n)(x | y) ≤ − logDn(x | y) + (mD̄n,1/4q(n)n(y ◦ x) + 1) ·O(log nq(n))

≤ − logDn(x | y) +O(log nq(n)).
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By selecting a large enough polynomial p′, we conclude that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp′(n)(x | y) ≤ − logDn(x | y) + log p′(n)

]
≥ 1− 1

q(n)
,

where the existence of the efficient encoder follows from that of Theorem 4.6.

Next, we show (Item 1 =⇒ Item 2) in Theorem 1.2 in almost the same way.

Theorem 4.12. If there is no infinitely-often one-way function, then for every samplable distri-
bution D = {Dn} supported over {0, 1}n × {0, 1}n, there exists a polynomial p such that for all
n, k ∈ N,

Pr
(x,y)∼Dn

[
rKp(n,k)(x | y) ≤ log

1

Dn(x | y)
+ log p(n, k)

]
≥ 1− 1

k
.

Proof. Let D = {Dn} be an arbitrary samplable distribution. We define another samplable dis-

tribution D̄ = {D̄⟨n,k⟩}n,k∈N as D̄⟨n,k⟩ ≡ D
(2)
n ◦ D(1)

n for each n, k ∈ N, where ⟨,⟩ is the (stan-
dard) efficiently computable and efficiently invertible one-to-one pairing function satisfying that
max{n, k} ≤ ⟨n, k⟩ ≤ poly(n, k).

We apply Theorem 4.6 for D̄ and a polynomial 4n · n. We use the same argument as the proof
of Theorem 4.11 except we use Lemma 4.10 instead of Lemma 4.9. Then, we can show that there
exists a polynomial p such that for all n, k ∈ N (because of Lemma 4.10),

Pr
(x,y)∼Dn

[
rKp(⟨n,k⟩)(x | y) ≤ − logDn(x | y) + log p(⟨n, k⟩)

]
≥ 1− 1

⟨n, k⟩
≥ 1− 1

k
,

which implies Theorem 4.12 because ⟨n, k⟩ ≤ poly(n, k). Again, the existence of the efficient encoder
follows from that of Theorem 4.6.

Proof of Theorem 1.7. (Item 2 =⇒ Item 3) trivially holds. (Item 3 =⇒ Item 1) has been proved
in [TVZ05, Proposition 3.2] based on Levin’s observation. Thus, it suffices to show (Item 1 =⇒
Item 2).

Theorem 4.12 (in the formulation using (Enc,Dec) of Lemma 4.8) shows that, under the non-
existence of infinitely-often one-way functions, for every samplable distribution D = {Dn} (without
loss of generality, we assume that each Dn is over {0, 1}ℓ(n) for an efficiently computable function
ℓ(n) ≤ poly(n) by padding), there exists a pair of polynomial-time computable functions Enc and
Dec such that for every n ∈ N,

Pr
x∼Dn,Dec,Enc

[Dec(Enc(x, 1n)) = x and |Enc(x, 1n)| ≤ − logD(x) +O(log n)] ≥ 1− 1

4ℓ(n)2
.

By Markov’s inequality, we have

Pr
x

[
Pr

Enc,Dec
[Dec(Enc(x, 1n)) = x and |Enc(x, 1n)| ≤ − logD(x) +O(log n)] ≥ 1− 1

2ℓ(n)

]
≥ 1− 1

2ℓ(n)
. (4)

We consider a modified efficient encoder Enc′ that, for a given x ∼ Dn and 1n, performs the empirical
estimation of the probability that Dec(Enc(x, 1n)) = x and |Enc(x, 1n)| ≤ − logD(x)+O(log n) hold
with additive accuracy error 1/(8ℓ(n)) and with failure probability at most 2−n. If the estimated
probability p̃ is at least 1− 3

4ℓ(n) , the encoder Enc′ sends 0Enc(x, 1n) (executed with fresh random

23



seeds); otherwise, Enc′ sends 1x. We also define a modified efficient decoder Dec′ that outputs for
given encoding e′, if e′ takes the form of 0e, it outputs Dec(e); otherwise if e′ takes the form of 1x,
it outputs x.

We verify the worst-case correctness of (Enc′,Dec′). For every n ∈ N and every x ∈ Support(Dn),
if x passes the empirical test in Enc′ under the condition that the empirical estimation is performed
successfully, the probability that Dec(Enc(x, 1n)) = x holds is at least 1− 3/(4ℓ(n))− 1/(8ℓ(n)) =
1 − 7/(8ℓ(n)). Thus, the failure probability that Dec′(Enc′(x, 1m)) ̸= x given this condition is
at most 7/(8ℓ(n)). By contrast, if x does not pass the test, Dec′(Enc′(x, 1m)) = x holds with
probability 1 given this event. Thus, for every x ∈ Support(Dn), it holds that

Pr
Enc′,Dec′

[Dec′(Enc′(x, 1n)) = x] ≥ 1− 7

8ℓ(n)
− 2−n ≥ 2

3
.

We also evaluate the expected length of the encoding. For every x ∈ Support(Dn), if x satisfies
the event in Equation (4), the probability that x passes the empirical test is at least 1 − 2−n (in
this case, Enc′ outputs Enc(x, 1n)). Thus, the expected length of the encoding under this condition
that x satisfies the event in Equation (4) is at most

2−n · (ℓ(n) + 1) + 1 · |Enc(x, 1n)| ≤ − logD(x) +O(log n).

By contrast, if x does not satisfy the event in Equation (4), the length of the outcome of Enc′(x, 1n)
is always at most ℓ(n) + 1. Thus, we conclude that

E
x∼Dn

[|Enc′(x, 1n)|] ≤ E
x∼Dn

[− logDn(x)] +O(log n) +
ℓ(n) + 1

2ℓ(n)
= H(Dn) +O(log n).

This completes the proof of Theorem 1.7.

4.2.2 Coding Theorems for Next-Bits-Predictable Source

We show that the next-bits prediction on the whole support yields the optimal (average-case)
coding theorem.

Theorem 4.13. If a distribution family D = {Dn}, where each Dn is over {0, 1}n, is next-bits-
predictable on Support(D) with arbitrary polynomial error parameter, then for every polynomial q,
there exists a polynomial p such that for every n ∈ N,

Pr
x∼Dn

[
rKp(n)(x) ≤ − logDn(x) + log p(n)

]
≥ 1− 1

q(n)
.

In particular, there exists a pair (Enc,Dec) of randomized polynomial-time algorithms such that
for every n ∈ N,

E
x∼Dn,Enc

[|Enc(x, 1n)|] ≤ H(Dn) + log p(n)

and for every x ∈ Support(Dn),

Pr
Enc,Dec

[Dec(Enc(x, 1n)) = x] ≥ 2

3
.

Proof. We apply Theorem 4.6 for D and a polynomial nq(n). Then, there exists a polynomial p
such that for every n ∈ N and every x ∈ Support(Dn),

rKp(n)(x) ≤ − logDn(x) +m1/(nq(n))(x) ·O(log n) + log p(n).
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By Proposition 4.5, it holds that for every n ∈ N,

Pr
x∼Dn

[
m1/(nq(n))(x) > 0

]
≤ n

nq(n)
=

1

q(n)
.

From the two expressions above, we obtain

Pr
x∼Dn

[
rKp(n)(x) ≤ − logDn(x) + log p(n)

]
≥ 1− 1

q(n)
.

In particular, Lemma 4.8 shows that there exists a pair (Enc,Dec) of randomized polynomial-time
algorithms such that for every n ∈ N,

Pr
x∼Dn,Enc

[|Enc(x, 1n)| ≤ − logDn(x) + log p(n)] ≥ 1− 1

2n
.

and for every x ∈ Support(Dn),

Pr
Enc,Dec

[Dec(Enc(x, 1n)) = x] ≥ 2

3
.

Without loss of generality, we assume that Enc always outputs the encoding of length at most 2n
for given x ∈ {0, 1}n and 1n; otherwise, we can replace the encoding to the canonical one into which
embedded x. Thus, the expected length of the encoding is bounded as follows:

E
x∼Dn,Enc

[|Enc(x, 1n)|] ≤ E
x∼Dn

[− logDn(x)] +O(log n) +
2n

2n
= H(Dn) +O(log n),

as desired.

Furthermore, the same class of next-bits-predictable distributions admits the almost optimal
worst-case coding theorem in the following sense.

Theorem 4.14. If a distribution family D = {Dn}, where each Dn is over {0, 1}n, is next-bits-
predictable on Support(D) with arbitrary polynomial error parameter, then for every ϵ > 0, there
exists a polynomial p such that for every n ∈ N and every x ∈ Support(Dn),

rKp(n)(x) ≤ −(1 + ϵ) logDn(x) + log p(n).

Note that the term “almost” optimal is due to the arbitrarily small constant ϵ > 0 above.

Proof. Let k ∈ N be a sufficiently large constant (with respect to ϵ−1) specified later. We apply
Theorem 4.6 for D and a polynomial q(n) = nk. Then, there exists a polynomial p such that for
every n ∈ N and every x ∈ Support(Dn),

rKp(n)(x) ≤ − logDn(x) + C ·mn−k(x) log n+O(log n),

where C > 0 is a universal constant independent of k.
For every x ∈ Support(Dn), we can observe that

Dn(x) =

n∏
i=1

D∗(xi | x[i−1]) ≤ (n−k)mn−k (x) = n−km
n−k (x).

25



By rearranging the above,

mn−k(x) log n ≤ −
1

k
logDn(x).

Therefore, by selecting k to be sufficiently large so that C/k ≤ ϵ, we have

rKp(n)(x) ≤ − logDn(x) + C ·mn−k(x) log n+O(log n)

≤ −
(
1 +

C

k

)
logDn(x) +O(log n)

≤ −(1 + ϵ) logDn(x) +O(log n),

as desired.

4.2.3 Towards the Uniform Version of the Haitner–Mazor–Silbak Theorem

Recently, Haitner, Mazor, and Silbak [HMS23] presented the clear relationship between incom-
pressibility and next-bit pseudoentropy in the nonuniform computational model. They further
mentioned that the result holds in the uniform computational model when shared randomness is
available between the encoder and decoder [see HMS23, Remark 6]. Note that the shared random-
ness is used for executing a distinguisher, and polynomially many shared random bits are required
in general. We extend the relationship to the uniform computational model without the usage of
the shared randomness only at the expense of a small multiplicative loss.

First, we review the main result of [HMS23]. For this, we recall the notions of incompressibility
and next-bit pseudoentropy.

Definition 4.15 (Imcompressibility). For k : N→ N, a distribution family D = {Dn} is said to be
nonuniformly k-incompressible if for every nonuniform polynoimal-time algorithms Enc and Dec
such that Dec(Enc(x, 1n)) = x for all x ∈ Support(Dn), it holds that for every large enough n ∈ N,

E
x∼Dn

[|Enc(x, 1n)|] ≥ k(n).

Definition 4.16 (Pseudoentropy). Let (X,B) = {(Xn, Bn)}n be a family of joint distributions
over strings. We say that B has nonuniform-conditional-pseudoentropy (resp. uniform-conditional-
pseudoentropy) k : N → N given X if for every polynomial p, there exists a distribution family
C = {Cn} that jointly distributed with {Xn} as satisfies the following:

• H(Cn | xn) ≥ k(n)− 1/p(n) for each n ∈ N;

• (X,B) and (X,C) are computationally indistinguishable by nonuniform (resp. uniform) ran-
domized polynomial-time algorithms.

Definition 4.17 (Next-bit pseudoentropy). A distribution family D = {Dn}, where each Dn is over
{0, 1}ℓ(n), is said to have nonuniform-next-bit-pseudoentropy (resp. uniform-next-bit-pseudoentropy)
k : N → N if a distribution family {(Dn)In}n, where each In is the uniform distribution over
[ℓ(n)] and (Dn)In represents the In-th bit of Dn, has nonuniform-conditional-pseudoentropy (resp.
uniform-conditional-pseudoentropy) k(n)/ℓ(n) given {(Dn)[In−1]}n.

One of the main theorems of [HMS23] is stated as follows:

Theorem 4.18 ([HMS23, Lemma 1]). For a distribution family D = {Dn}, if D is nonuniformly
k(n)-incompressible, then D has nonuniform-next-bit-pseudoentropy k(n)− 2.
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In this section, we show the uniform variant with a multiplicative loss in the parameter k(n).
First, we present the notion of randomized compression in the uniform computational model, which
was formally studied in [TVZ05].

Definition 4.19 (Randomized compression). We say that a pair (Enc,Dec) of randomized algo-
rithms compresses a distribution family D = {Dn}n∈N to length k : N → N with decoding error
δ : N→ [0, 1] if it satisfies that for infinitely many n ∈ N,5

• for any x ∈ Support(Dn), PrEnc,Dec[Dec(Enc(x, 1n)) = x] ≥ 1− δ(n);

• Ex∼Dn,Enc[|Enc(x)|] ≤ k(n).

We say that D is randomly compressible to length m with decoding error δ if there exists a pair
of randomized polynomial-time algorithms that compresses D to length m with decoding error δ.
Moreover, we say that D is randomly incompressible to length m with decoding error δ if not
randomly compressible to length m with decoding error δ.

It is known that the decoding error can be exponentially reduced.

Lemma 4.20 ([TVZ05, Lemma 2.11]). For a distribution family D = {Dn}, where each Dn is over
{0, 1}ℓ(n), if D is randomly compressible to length m with decoding error δ, then it is also randomly
compressible to the length m+ 3δ · ℓ(n) + 2 with decoding error 2−n.

Now, we state the main result in this section.

Theorem 4.21. For a distribution family D = {Dn} and every constant ϵ > 0, if D is ran-
domly k(n)-incompressible with decoding error 2−n, then D has uniform-next-bit-pseudoentropy
(1− ϵ)k(n)−O(log n).

A large part of the proof follows from that of [HMS23], so we strongly recommend the reader
to refer to the prior work first. Below, we extract the relevant points to our work.

We introduce some notions following from [VZ12; HMS23]. For a function p : {0, 1}∗×{0, 1} →
R>0, we define a conditional probability Cp(·|·) as for each b ∈ {0, 1} and x ∈ {0, 1}∗,

Cp(b | x) =
p(x, b)

p(x, 0) + p(x, 1)
.

For a randomized algorithm P that maps (x, b) ∈ {0, 1}∗×{0, 1} to a real positive value, we extend
the notion above as

CP (b | x) = E
r

[
P (x, b; r)

P (x, 0; r) + P (x, 1; r)

]
.

Notice that

CP (0 | x) + CP (1 | x) = E
r

[
P (x, 0; r) + P (x, 1; r)

P (x, 0; r) + P (x, 1; r)

]
= 1.

Furthermore, for each m ∈ N, we define a distribution DP
m over {0, 1}m as for each x ∈ {0, 1}m,

DP
m(x) =

m∏
i=1

CP (xi | x[i−1]).

The prior work [HMS23] showed the following technical lemma.

5In this work, we consider a randomized compression only on infinitely many n ∈ N to discuss the uniform version
of almost everywhere imcompressibility
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Lemma 4.22 ([HMS23, Section 3.3] building upon [VZ12]). If a distribution family D = {Dn},
where Dn is over {0, 1}ℓ(n), does not have uniform-next-bit pseudoentropy k(n), then there exists a
randomized polynomial-time algorithm P that maps (x, b) ∈ {0, 1}∗ × {0, 1} to a real positive value
so that for infinitely many n ∈ N,

KL(Dn∥DP
ℓ(n)) ≤ k(n)−H(Dn).

We also use the following well-known fact.

Lemma 4.23 ([cf. CT06, Theorem 5.4.3]). For every distributions D and E with KL(D∥E) <∞,

E
x∼D

[− log E(x)] = H(D) + KL(D∥E).

Now, we prove Theorem 4.21 based on Theorem 4.14 and Lemmas 4.22 and 4.23.

Proof of Theorem 4.21. Let k(n) be an arbitrary polynomial. Let D = {Dn} be a distribution
family, where each Dn is over {0, 1}ℓ(n). By Lemma 4.22, if D does not have uniform-next-bit
pseudoentropy k(n), then there exists a randomized polynomial-time algorithm P that maps (x, b) ∈
{0, 1}∗ × {0, 1} to a real positive value so that for infinitely many n ∈ N,

KL(Dn∥DP
ℓ(n)) ≤ k(n)−H(Dn). (5)

We observe that for each n ∈ N, x ∈ Support(DP
ℓ(n))), b ∈ {0, 1}, and i ∈ [ℓ(n)], the conditional

probability DP∗
ℓ(n))(b | x[i−1]) = CP (b | x[i−1]) is predictable with additive error 1/p(n), where p is

an arbitrarily large polynomial, by the empirical estimation of the quantity

E
r

[
P (x, b; r)

P (x, 0; r) + P (x, 1; r)

]
.

Note that the approximation halts in polynomial time in n and p(n).
Therefore, by Theorem 4.14 (in the form of Lemma 4.8), there exists a pair (Enc,Dec) of

randomized polynomial-time algorithms such that for every n ∈ N and every x ∈ Support(DP
ℓ(n)),

it holds that

Pr
Enc,Dec

[Dec(Enc(x, 1n)) = x] ≥ 1− 1

3ℓ(n)
(6)

and
|Enc(x, 1n)| ≤ −(1 + ϵ) logDP

ℓ(n)(x) +O(log n).

Thus, we have that for every n satisfying Equation (5),

E
Enc,x∼Dn

[|Enc(x, 1n))|] ≤ (1 + ϵ) E
x∼Dn

[− logDP
ℓ(n)(x)] +O(log n)

≤ (1 + ϵ)
(
H(Dn) + KL(Dn∥DP

ℓ(n))
)
+O(log n)

≤ (1 + ϵ) · k(n) +O(log n), (7)

where the second inequality follows from Lemma 4.23, and the last inequality follows from Equa-
tion (5).

Thus, from Equations (6) and (7), D is randomly compressible to length (1+ ϵ) ·k(n)+O(log n)
with decoding error 1/(3ℓ(n)). By Lemma 4.20, D is also randomly compressible with decoding
error 2−n to the length

(1 + ϵ) · k(n) +O(log n) +
3ℓ(n)

3ℓ(n)
+ 2 = (1 + ϵ) · k(n) +O(log n).

By retaking k(n) to be (1/1+ ϵ)(k(n)−O(log n)) = (1− ϵ/(1+ ϵ))(k(n)−O(log n)), we obtain the
theorem.
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5 One-Way Functions, Conditional Coding and Symmetry of In-
formation for rKpoly

In this section, we prove Theorem 1.1 and Theorem 1.2. We first show Theorem 1.1, which is
restated below.

Theorem 1.1. The following are equivalent.

1. One-way functions do not exist.

2. (Infinitely-Often Average-Case Symmetry of Information for rKt) For every polynomial-
time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and every poly-
nomial q, there exists a polynomial p such that for infinitely many n ∈ N, the following holds
for all t ≥ p(n),

Pr
(x,y)∼Dn

[
rKt(x | y) ≤ rKt(x, y)− rKt(y) + log t

]
≥ 1− 1

q(n)
.

3. (Infinitely-Often Average-Case Conditional Coding for rKt) For every polynomial-
time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and every poly-
nomial q, there exists a polynomial p such that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
,

where Dn(x | y) denotes the probability that (x, y) is sampled from Dn conditioned that the
second item being sampled is y.

4. (Infinitely-Often Average-Case Efficient Conditional Coding for rKt) For every
polynomial-time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and
every polynomial q, there exists a polynomial p such that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Moreover, it admits an efficient encoder in the following sense: there exists an efficient al-
gorithm Enc that outputs, for given (x, y) ∼ Dn, a description of a p(n)-time program Π of
length at most − logDn(x | y) + log p(n) with probability at least 1 − 1/q(n) over the choice
of (x, y) ∼ Dn and randomness for Enc, such that Π outputs x for given y and randomness
r ∼ {0, 1}p(n) with probability at least 2/3 over the choice of r.

Proof. (Item 1 =⇒ Item 3) follows directly from Theorem 4.11.
We then show the following implications in subsequent sections.

• Item 3 =⇒ Item 2 (Lemma 5.1 in Section 5.1).

• Item 2 =⇒ Item 1 (Lemma 5.4 in Section 5.2).

This will complete the proof of Theorem 1.1.
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5.1 Average-Case Symmetry of Information from Conditional Coding

Lemma 5.1 (Item 3 =⇒ Item 2 in Theorem 1.1). If average-case conditional coding holds for
rKt, then average-case symmetry of information also holds.

We first need the following lemma.

Lemma 5.2. If one-way functions do not exist, then for every samplable distribution family D =
{Dn} supported over {0, 1}n×{0, 1}n and every polynomial q, there exists a polynomial p such that
for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ K(x | y) + log p(n)

]
≥ 1− 1

q(n)
.

Proof. Let D = {Dn} be a polynomial-time samplable distribution family and q be a polynomial.
Assuming one-way functions do not exist, by Theorem 4.11, we have that there exists some p′

such that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[
rKp′(n)(x | y) ≤ log

1

Dn(x | y)
+ log p′(n)

]
≥ 1− 1

2q(n)
.

Also, by Lemma 3.2, we get that for every n, with probability at least 1− (2q(n)) over (x, y) ∼
Dn, we have

K(x | y) ≥ log
1

Dn(x | y)
−O(log q(n)).

By a union bound, we get that for infinitely many n, with probability at least 1 − q(n) over
(x, y) ∼ Dn,

rKp′(n)(x | y) ≤ K(x | y) + log p′(n) +O(log q(n)).

The lemma follows by letting p be a sufficient large polynomial.

We are now ready to show Lemma 5.1.

Proof of Lemma 5.1. Let D = {Dn} be a polynomial-time samplable distribution family and q be
a polynomial.

We show the following claim.

Claim 5.3. There exists a polynomial p′ such that for infinitely many n, both the following hold
with probability at least 1− 1/q(n) over (x, y) ∼ Dn.

1. rKp′(n)(x | y) ≤ logK(x | y) + log p′(n).

2. rKp′(n)(y) ≤ K(y) + log p′(n) +O(log n).

Proof of Claim 5.3. Let D′ := {D′
n} be the polynomial-time samplable distribution family where

each D′
n is sampled by first sampling y ∼ D(2)

n and outputs (y, 0n), where D(2)
n is the marginal

distribution of Dn on the second half.
Finally, let E be the uniform mixture of D and D′.
Suppose one-way functions do not exist. Then by Lemma 5.2, there exists a polynomial p′ such

that for infinitely many n ∈ N,

Pr
(x,y)∼En

[
rKp′(n)(x | y) > K(x | y) + log p′(n)

]
≤ 1

4q(n)
.
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Since En samples Dn with probability 1/2,

Pr
(x,y)∼Dn

[
rKp′(n)(x | y) > K(x | y) + log p′(n)

]
≤ 1

2q(n)
. (8)

Similarly, we get

Pr
(a,b)∼D′

n

[
rKp′(n)(a | b) > K(a | b) + log p′(n)

]
≤ 1

2q(n)
. (9)

Note that the Equation (9) essentially means

Pr
y∼D(2)

n

[
rKp′(n)(y | 0n) > K(y | 0n) + log p′(n)

]
≤ 1

2q(n)
.

Finally, note that rKp′(n)(y) ≤ rKp′(n)(y | 0n)+O(log n) and K(y) ≥ K(y | 0n). Therefore, the above
implies

Pr
y∼D(2)

n

[
rKp′(n)(y) > K(y) + log p′(n) +O(log n)

]
≤ 1

2q(n)
. (10)

The claim follows by taking a union bound over Equations (8) and (10). ⋄

Fix any n and (x, y) such that both the conditions stated in Claim 5.3 hold. Then we have

rKp′(n)(x | y) ≤ K(x | y) + log p′(n, k) (by Item 1 of Claim 5.3)

≤ K(x, y)− K(y) +O(log n) + log p′(n) (by Symmetry of Information for K)

≤ Kt(x, y)− rKp′(n)(y) +O(log n) + 2 log p′(n). (by Item 2 of Claim 5.3)

By letting p be a sufficiently large polynomial, we get that for every t ≥ p(n),

rKt(x | y) ≤ rKt(x, y)− rKt(y) + log t,

as desired.

5.2 Inverting One-Way Functions from Average-Case Symmetry of Information

Lemma 5.4 (Item 2 =⇒ Item 1 in Theorem 1.1). If average-case symmetry of information holds
for rKt, then one-way functions do not exist.

Proof. The proof uses ideas from [LW95].
Let f : {0, 1}n → {0, 1}n be any function that is supposed to be infinitely-often secure. Let

q be any polynomial, we show that, for infinitely many n, we can invert f with high probability
1− 1/q(n) over x ∼ {0, 1}n in time poly(n).

We first observe the following.

Claim 5.5 ([LW95, Lemma 3.5]). For every n and x ∈ {0, 1}n, we have

K(f(x)) ≥ K(x)− log |f−1(f(x))| −O(log n).

31



Proof of Claim 5.5. First of all, for every x ∈ {0, 1}n, we have

K(x | f(x)) ≤ log |f−1(f(x))|+O(log n). (11)

To see this, note that given f(x), we can specify x using the index of x in the set f−1(f(x)), which
takes ≤ log |f−1(f(x))| bits. Then we have

K(x) ≤ K(x | f(x)) + K(f(x))

≤ log |f−1(f(x))|+ K(f(x)) +O(log n), (by Equation (11))

as desired. ⋄

Next, assuming that average-case symmetry of information hods for rKpoly (Item 3 in Theo-
rem 1.1), we show the following.

Claim 5.6. There is a polynomial p such that for infinitely many n, with probability at least
1− 1/q(n)2 over x ∼ {0, 1}n, we have

rKp(n)(x | f(x)) ≤ log |f−1(f(x))|+ log p(n).

Proof of Claim 5.6. Consider the polynomial-time samplable distribution family {Dn} where each
Dn samples x ∼ {0, 1}n and outputs (x, f(x)).

By the assumption that average-case symmetry of information hods for rKpoly (Item 3 in The-
orem 1.1), there exists a polynomial p′ such that for infinitely many n, with probability at least
1− 1/(2q(n)2) over x ∼ {0, 1}n, we have

rKp′(n)(x | f(x)) ≤ rKp′(n)(x, f(x))− rKp′(n)(f(x)) + log p′(n)

≤ rKp′(n)/2(x)− rKp′(n)(f(x)) + log p′(n) +O(log n)

≤ rKp′(n)/2(x)− K(f(x)) + log p′(n) +O(log n)

≤ rKp′(n)/2(x)−
(
K(x)− log |f−1(f(x))| −O(log n)

)
+ log p′(n) +O(log n)

≤ rKp′(n)/2(x)− K(x) + log |f−1(f(x))|+ log p′(n) +O(log n), (12)

where the second inequality uses the fact that given x we can compute f(x) efficiently, and the
second last inequality follows from Claim 5.5.

Note that by a counting argument, for every n, with probability at least 1 − 1/(2q(n)2) over
x ∼ {0, 1}n, we have

K(x) ≥ n−O(log q(n)),

which yields
rKp′(n)/2(x)− K(x) ≤ O(log q(n)). (13)

By Plugging Equation (13) into Equation (12) and by a union bound, we get that, for infinitely
many n, with probability at least 1− 1/q(n)2 over x ∼ {0, 1}n

rKp′(n)(x | f(x)) ≤ log |f−1(f(x))|+ log p′(n) +O(log q(n)).

The claim follows by letting p be a sufficiently large polynomial. ⋄
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In what follows, we fix n so that the condition stated in Claim 5.6 holds.
Next, we observe the following equivalent way of sampling (x, f(x)) while x is uniformly at

random: We first sample y := f(z) for a uniformly random z and then sample x ∼ f−1(y). By an
averaging argument, Claim 5.6 yields that with probability at least 1− 1/q(n) over y sampled this
way, for at least 1− 1/q(n) fraction of the x ∈ f−1(y), we have

rKp(n)(x | y) ≤ log |f−1(y)|+ log p(n). (14)

Consider any good y such that Equation (14) holds for at least 1 − 1/q(n) fraction of the
x ∈ f−1(y). Also, let Sy be the set of x ∈ f−1(y) such that Equation (14) holds. Note that

|Sy| ≥ (1− 1/q(n)) · |f−1(y)|.

Consider the following procedure A that takes n and y as input and does the following.

1. Pick s ∼ [2n],

2. Pick Π ∼ {0, 1}s,

3. View Π as a randomized program, run U(Π, y) for p(n) steps, and return its output.

It is easy to see from the definition of rKt that for every x ∈ Sy (which satisfies Equation (14)),
the above procedure A outputs x with probability at least

1

O(n)
· 1

2log |f−1(y)|+log p(n)
· 2
3
≥ 1

|f−1(y)|
· 1

p(n)2
.

Since the above holds for every x ∈ Sy, we get that the probability that A(1n, y) outputs some
x ∈ Sy is at least

|Sy| ·
1

|f−1(y)|
· 1

p(n)2
≥ 1

poly(n)
.

In other words, with probability at least 1 − 1/k over x ∼ {0, 1}n (in which case f(x) is good),
A(1n, f(x)) outputs some pre-image of f(x) with probability at least 1/poly(n). This breaks the
one-way-ness of f .

5.3 Characterizing Infinitely-Often One-Way Functions

In this subsection, we show Theorem 1.2, which is restated below.

Theorem 1.2. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Almost-Everywhere Average-Case Conditional Coding for rKt) For every polynomial-
time samplable distribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, there exists a
polynomial p such that for all n, k ∈ N,

Pr
(x,y)∼Dn

[
rKp(n,k)(x | y) ≤ log

1

Dn(x | y)
+ log p(n, k)

]
≥ 1− 1

k
.
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3. (Almost-Everywhere Worst-Case Conditional Coding for rKt with Computational
Depth) There exists a constant c > 0 such that the following holds. For every computable
distribution family {Dn}n∈N supported over {0, 1}n×{0, 1}n, all n, t ∈ N such that t ≥ n and
all (x, y) ∈ Support(Dn),

rK(2α·t)c(x | y) ≤ log
1

Dn(x | y)
+ c · (log t+ α),

where α := cdt(x, y).

4. (Almost-Everywhere Average-Case Symmetry of Information for rKt) For every
polynomial-time samplable distribution family {Dn}n∈N supported over {0, 1}n×{0, 1}n, there
exists a polynomial p such that for all n, k ∈ N and t ≥ p(n, k),

Pr
(x,y)∼Dn

[
rKt(x | y) ≤ rKt(x, y)− rKt(y) + log t

]
≥ 1− 1

k
.

5. (Almost-Everywhere Worst-Case Symmetry of Information for rKt with Compu-
tational Depth) There exists a constant c > 0 such that the following holds. For all n, t ∈ N
such that t ≥ n and all x, y ∈ {0, 1}n,

rK(2α·t)c(x | y) ≤ rKt(x, y)− rKt(y) + c · (log t+ α),

where α := cdt(x, y).

Proof. (Item 1 =⇒ Item 2) follows directly from Theorem 4.12. The proof of (Item 2 =⇒ Item 4)
can be easily adapted from that of Lemma 5.1. Also, the proof of (Item 4 =⇒ Item 1) can be
easily adapted from that of Lemma 5.4. This shows the equivalence of Item 1, Item 2, and Item 4.

We then show the following implications in the rest of this subsection.

• Item 2 ⇐⇒ Item 3 (Lemma 5.7 and Lemma 5.8).

• Item 4 ⇐⇒ Item 5 (Lemma 5.9 and Lemma 5.10).

This will complete the proof of Theorem 1.2.

Lemma 5.7. We have (Item 2 =⇒ Item 3) in Theorem 1.2.

Proof. Fix n, t ∈ N such that t ≥ n. Let {Dn}n∈N be any computable distribution family. Also,
Let α be any integer and let c > 0 be a constant to be specified later. It suffices to show that for
any (x, y) ∈ {0, 1}n × {0, 1}n, if cdt(x, y) ≤ α, then

rK(2α·t)c(x | y) ≤ log
1

Dn(x | y)
+ c · (log t+ α). (15)

We will show the contrapositive. That is, if Equation (15) is false, then cdt(x, y) > α.
Let d > 0 be a sufficiently large constant, and let

k := 2α · td.

We defined the following polynomial-time samplable distribution family {Q⟨n,t⟩}n,t∈N, where
each Q⟨n,t⟩ does the following.
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1. Pick s ∼ [2n].

2. Pick r ∼ {0, 1}t.

3. Pick Π ∼ {0, 1}s.

4. Run U(Π, r) for t steps. If we obtain a pair (x, y) ∈ {0, 1}n×{0, 1}n, output (x, y). Otherwise
output (0n, 0n)6.

It is easy to see from the definition of pKt that for every (x, y) ∈ {0, 1}n × {0, 1}n,

Q⟨n,t⟩(x, y) ≥
1

O(n)
· 2
3
· 1

2pK
t(x,y)

. (16)

By applying Item 2 of Theorem 1.2 to {Q⟨n,t⟩} and by letting d be sufficiently large, we have

Pr
(x,y)∼Q⟨n,t⟩

[
rK(tk)d(x | y) ≤ log

1

Q⟨n,t⟩(x | y)
+ d · log(tk)

]
≥ 1− 1

2k
. (17)

Also, by Lemma 3.2, we have

Pr
(x,y)∼Q⟨n,t⟩

[
K(x | y) > log

1

Q⟨n,t⟩(x | y)
− log k −O(log n)

]
≥ 1− 1

2k
. (18)

Moreover, by the coding theorem for (time-unbounded) Kolmogorov complexity (Theorem 3.1), we
have that for every (x, y) ∈ Support(Dn)

K(x | y) ≤ log
1

Dn(x | y)
+O(log n). (19)

By combining Equations (17), (18) and (19), we get that

Pr
(x,y)∼Q⟨n,t⟩

[
rK(tk)d(x | y) ≤ 1

Dn(x | y)
+ 2d · log(tk)

]
≥ 1− 1

k
.

Now, consider the set E of (x, y) such that

rK(tk)d(x | y) ≤ 1

Dn(x | y)
+ 2d · log(tk).

Note that by letting c > d be a sufficiently large constant, for any (x, y) such that Equation (15)
is false, we get that (x, y) ∈ E. Therefore, it suffices to show that for every (x, y) ∈ E, we have
cdt(x, y) > α.

First of all, we have ∑
(x,y)∈E

Q⟨n,t⟩(x, y) ≤
1

k
,

which implies ∑
(x,y)∈E

Q⟨n,t⟩(x, y) · k ≤ 1.

6Here, we let Q⟨n,t⟩ output pairs of strings in {0, 1}n × {0, 1}n. By using padding, we can also ensure that Q⟨n,t⟩

outputs pairs of strings in {0, 1}⟨n,t⟩ × {0, 1}⟨n,t⟩. This will not affect the correctness of the argument. We omit this
technicality for simplicity of presentation.
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We can then define a distribution E whose support is E and E(x, y) = Q⟨n,t⟩(x, y) · k. Note that E
is computable since E is decidable.

Applying the coding theorem (Theorem 3.1) on E , we get that for every (x, y) ∈ E,

K(x, y) ≤ log
1

E(x, y)
+O(log t)

= log
1

Q⟨n,t⟩(x, y) · k
+O(log t). (20)

Finally, we get that for every (x, y) ∈ E,

pKt(x, y)− K(x, y) ≥ log
1

Q⟨n,t⟩(x, y)
− K(x, y)−O(log n) (by Equation (16))

≥ log k −O(log t) (by Equation (20))

> α,

as desired.

Lemma 5.8. We have (Item 3 =⇒ Item 2) in Theorem 1.2.

Proof. Fix n ∈ N and any polynomial-time samplable distribution samplable distribution family
{Dn}.

By Lemma 3.5, there exists a polynomial ρ such that

Pr
(x,y)∼Dn

[
cdρ(n)(x, y) ≤ O(log nk)

]
≥ 1− 1

k
.

Also, by the assumption that Item 3 in Theorem 1.2 is true, there exists a constant c > 0 such that
for t := ρ(n) and all (x, y) ∈ Support(Dn)

rK(2cd
t(x,y)·t)c(x | y) ≤ log

1

Dn(x | y)
+ c · (log t+ cdt(x, y)).

It follows that with probability at least 1− 1/k over (x, y) ∼ Dn,

rK(nkρ(n))O(c)
(x | y) ≤ log

1

Dn(x | y)
+ c · (log ρ(n) +O(log nk)),

which implies

rKp(n,k)(x | y) ≤ log
1

Dn(x | y)
+ log p(n, k),

where p is a polynomial.

Lemma 5.9. We have (Item 4 =⇒ Item 5) in Theorem 1.2.

Proof Sketch. The proof can be easily adapted from that of Lemma 5.7. The idea is to ap-
ply average-case symmetry of information (Item 4 in in Theorem 1.2) to the distribution family
{Q⟨n,t⟩}n,t∈N as defined in the proof of Lemma 5.7. This allows us to say that the set of pairs of
strings where symmetry of information fails must have large computational depth. We omit the
details here.

Lemma 5.10. We have (Item 5 =⇒ Item 4) in Theorem 1.2.

Proof Sketch. The proof is essentially the same as that of Lemma 5.8, using the fact that a
string drawn from any polynomial-time samplable distribution has small computational depth
(Lemma 3.5). We omit the details here.
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6 One-Way Functions and Average-Case Hardness of rKpoly

In this section, we prove Theorem 1.3, which is restated below.

Theorem 1.3. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Search-MINrKT is easy on average over polynomial-time samplable distributions)
For every λ ∈ [0, 1], every polynomial-time samplable distribution family {Dn}n∈N, where each
Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic polynomial-time algorithm
A such that for all n, s, ℓ, k ∈ N, and all t ≥ ρ(n),

Pr
x∼Dn,A

[
A(x, 1t, 1ℓ, 1k) outputs an (1/ℓ)-rKt

λ-witness of x
]
≥ 1− 1

k
.

3. (MINrKT is easy on average over polynomial-time samplable distributions) For
every λ ∈ [0, 1), every polynomial-time samplable distribution family {Dn}n∈N, where each
Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic polynomial-time algorithm
A such that for all n, s, ℓ, k ∈ N, and all t ≥ ρ(n),

Pr
x∼Dn,A

[
A(−, 1k) decides λ-MINrKT on input (x, 1s, 1t, 1ℓ)

]
≥ 1− 1

k
.

4. (MINrKT is easy on average over the uniform distribution) There exist a polynomial
ρ and a probabilistic polynomial-time algorithm A such that for all n, s, ℓ, k ∈ N,

Pr
x∼{0,1}n,A

[
A(−, 1k) decides (2/3)-MINrKT on input (x, 1s, 1ρ(n), 1ℓ)

]
≥ 1− 1

k
.

6.1 Technical Lemmas

Lemma 6.1 ([LP20]). If MINrKT is easy on average over the uniform distribution (i.e., Item 4 in
Theorem 1.3 holds), then infinitely-often one-way functions do not exist.

The following is a key lemma for proving Theorem 1.3.

Lemma 6.2. If infinitely-often one-way functions do not exist, then for every λ ∈ [0, 1), there
exists a probabilistic polynomial-time algorithm A such that for all n, t, ℓ, k ∈ N with t ≥ n1.01, with
probability at least 1− 1/k over the internal randomness of A,∑

x∈{0,1}n
2−rKt

λ(x) · 1[A(x, 1t, 1ℓ, 1k; rA ) ̸∈ λ-Search-MINrKT(x, 1t, 1ℓ)] ≤
poly(n)

k
. (21)

To show Lemma 6.2, we will need the following simple proposition.

Proposition 6.3. For every λ ∈ [0, 1), there is a probabilistic polynomial-time algorithm V such
that for all n, t, ℓ, k ∈ N, the following holds with probability at least 1 − 2k over the interval
randomness of V . For every randomized program Π ∈ {0, 1}≤2n and x ∈ {0, 1}n,

1. if within t steps, Π outputs x with probability at least λ, then V (x,Π, 1t, 1ℓ, 1k) accepts, and

2. if within t steps, Π outputs x with probability less than λ−1/ℓ, then V (x,Π, 1t, 1ℓ, 1k) rejects.
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Proof Sketch. Given a randomized program Π ∈ {0, 1}≤2n and x ∈ {0, 1}n, we repeatedly runs the
randomized program Π for t steps, for poly(n, k, ℓ) times and counts the fraction µ of times that x
is obtained. Using standard concentration bounds, it is easy to show that the following holds with
probability at least 1−2−n2 ·2−k. If the condition stated in the first item of the proposition is true,
then µ ≥ λ− 1/(2ℓ), and if the condition stated in the first item, then µ < λ− 1/(2ℓ). Finally, we
apply a union bound over all Π ∈ {0, 1}≤2n and x ∈ {0, 1}n.

We now show Lemma 6.2.

Proof of Lemma 6.2. We will show the lemma for λ := 2/3. It is not hard to adapt the proof to
any λ ∈ [0, 1).

Let c > 0 be a constant so that rKt(x) ≤ n + c for every x ∈ {0, 1}n and t ≥ n1.01. Let V be
the algorithm in Proposition 6.3 instantiated with λ.

Let f be a polynomial-time computable function defined as follows.

On input (rV , i,Π, rt, rℓ, rk), where rV ∈ {0, 1}
poly(t,ℓ,k), i ∈ [n + c], Π ∈ {0, 1}n+c,

rt ∈ {0, 1}t, rℓ ∈ {0, 1}ℓ rk ∈ {0, 1}k and r2 ∈ {0, 1}k. We run U(Π[i], rt) for t

steps and obtain a string x. If |x| = n and V (x,Π[i], 1
t, 1ℓ, 1k; rV ) = 1, we output

(rV , i, x, 1
t, 1ℓ, 1k); otherwise we output ⊥.

Since we assume infinitely-often one-way functions do not exist (which implies infinitely-often
weak one-way functions do not exist), there is a polynomial-time algorithm Invert such that for all
n, t, ℓ, k ∈ N, it holds that

Pr
[
Invert(rV , i, x, 1

t, 1ℓ, 1k; r
Invert

) succeeds
]
≥ 1− 1

2k2
,

where (rV , i, x, 1
t, 1ℓ, 1k) is sampled according to f , r

Invert
∈ {0, 1}poly(t,ℓ,k) is the internal randomness

of Invert, and “Invert(rV , i, x, 1
t, 1ℓ, 1k) succeeds” means Invert(i, x, 1t, 1ℓ, 1k) returns a pre-image of

(rV ; i, x, 1
t, 1ℓ, 1k).

By an averaging argument, we get that with probability at least 1−1/(2k) over rV (the internal
randomness of V used in the definition of f) and r

Invert
(the internal randomness of Invert), it holds

that

Pr
[
Invert(rV , i, x, 1

t, 1ℓ, 1k; r
Invert

) succeeds
]
≥ 1− 1

k
, (22)

where the above probability is only over i and x. Also, with probability at least 1 − 2−k over a
uniformly random rV , the condition stated in Proposition 6.3 will hold. By a union bound, with
probability at least 1 − 1/k, both Equation (24) and the condition stated in Proposition 6.3 hold
for a uniform random (rV , rInvert). Let us consider any such good pair (rV , rInvert).

By a union bound, Equation (22) yields that for all i ∈ [n+ c],

Pr
[
Invert(rV , i, x, 1

t, 1ℓ, 1k; r
Invert

) succeeds
]
≥ 1− n+ c

k
, (23)

where now the probability is only over x.
Next, for every i ∈ [n + c], let Di be the following distribution (note that we have also fixed a

good rV ):

1. Pick Π ∼ {0, 1}n+c.

2. Pick rt ∼ {0, 1}t.
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3. Run U(Π[i], rt) for t steps and obtain a string x. If |x| = n and V (x,Π[i], 1
t, 1ℓ, 1k; rV ) = 1,

we output x; otherwise output ⊥.
Then Equation (23) implies that for all i ∈ [n+ c],

Pr
x∼Di

[
Invert(rV , i, x, 1

t, 1ℓ, 1k; r
Invert

) fails
]
≤ n+ c

k
. (24)

Now consider the following algorithm A for solving Search-MINrKT:

On input (x, 1t, 1ℓ, 1k), we pick rV ∼ {0, 1}
poly(t,ℓ,k) and r

Invert
∼ {0, 1}poly(t,ℓ,k). We then

try to find the smallest i ∈ [n+c] such that the following holds: Invert(rV , i, x, 1
t, 1ℓ, 1k; r

Invert
)

returns some (rV , i,Π, rt, rℓ, rk) such that after running U(Π[i], rt) for t steps, x is ob-

tained, and that V (x,Π[i], 1
t, 1ℓ, 1k; rV ) = 1. In this case, we output Π[i].

We claim that the algorithm A satisfies the condition stated in the lemma.
First note that in the description of the above algorithm, with probability at least 1− 1/k, the

internal randomness of A, rA := (rV , rInvert), will be good, and hence satisfy Equation (24) and the
condition stated in Proposition 6.3. In what follows, we fix such a good rA .

For the sake of contradiction, suppose∑
x∈{0,1}n

2−rKt(x) · 1[A(x, 1t, 1ℓ, 1k; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)] ≤
nb

k
, (25)

where b > 0 is a constant to be specified later.
Note that for every i ∈ [n+ c] and every x ∈ {0, 1}n such that rKt(x) = i, we have

Di(x) ≥ 2−rKt(x) · 2
3
. (26)

This is because in the sampling procedure of Di, with probability 2−rKt(x), we will pick a Π whose
i-bit prefix corresponds to a rKt-witness of x. In this case, with probability at least 2/3 over rt, we
obtain x. Finally, note that by the property of V and the fact that rV is good, in this case we have
V (x,Π[i], 1

t, 1ℓ, 1k; rV ) = 1 and hence x will be output.
Also, for every i ∈ [n + c] and every x ∈ {0, 1}n such that rKt(x) = i, if there exists an i∗ ≤ i

such that Invert(rV , i
∗, x, 1t, 1ℓ, 1k; r

Invert
) succeeds, then it means we obtain some (rV , i

∗,Π, rt, rℓ, rk)
such that after running U(Π[i∗], rt) for t steps, x is obtained and that V (x,Π[i∗], 1

t, 1ℓ, 1k; rV ) = 1.
Again, by the property of V and the fact that rV is good, Π[i∗] is an (1/ℓ)-rKt-witness of x, which

means A(x, 1t, 1ℓ, 1k; rV ) ∈ Search-MINrKT(x, 1t, 1ℓ).
In other words, for every i ∈ [n+c] and every x ∈ {0, 1}n such that rKt(x) = i, ifA(x, 1t, 1ℓ, 1k; rA) ̸∈

Search-MINrKT(x, 1t, 1ℓ), then for all i∗ ≤ i, Invert(rV , i
∗, x, 1t, 1ℓ, 1k; r

Invert
) fails. In particular, the

latter holds for i∗ = i.
Then we have

nb

k
≤

∑
i∈[n+c]

∑
x∈{0,1}n:
rKt(x)=i

2−rKt(x) · 1[A(x, 1t, 1ℓ, 1k; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)] (by Equation (25))

≤
∑
i

∑
x∈{0,1}n:
rKt(x)=i

3

2
· Di(x) · 1[A(x, 1t, 1ℓ, 1k; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)] (by Equation (26))

≤ 3

2
·
∑
i

∑
x∈{0,1}n:
rKt(x)=i

Di(x) · 1[Invert(rV ,i∗,x,1t,1ℓ,1k;r
Invert

) fails].
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By averaging, the above implies that there exists some i such that∑
x∈{0,1}n:
rKt(x)=i

Di(x) · 1[Invert(rV ,i,x,y,1t,1k;r
Invert

) fails] ≥
2 · nb

3 · (n+ c) · k
,

which contradicts Equation (24) by letting b be a sufficiently large constant.

6.2 Proof of Theorem 1.3

We now show Theorem 1.3.

Proof of Theorem 1.3. (Item 2 =⇒ Item 3) and (Item 3 =⇒ Item 4) are trivial. (Item 4 =⇒ Item 1)
follows from Lemma 6.1. Below, we show (Item 1 =⇒ Item 2).

Let λ ∈ [0, 1), and let {Dn}n be a polynomial-time samplable distribution family. Also let ρ to
be a polynomial to be specified later.

Fix n, ℓ, k ∈ N and t ≥ ρ(n, k).
Let A be the polynomial-time algorithm in Lemma 6.2, and let d > 0 be some constant to be

specified later. We have that with probability at least 1− 1/(2k) over the internal randomness rA
of A, ∑

x∈{0,1}n
2−rKt

λ(x) · 1[
A(x, 1t, 1ℓ, 1(nk)d ; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)

] ≤ 1

(nk)d
. (27)

Also, by Theorem 4.12, there exists a polynomial p such that,

Pr
x∼Dn

[
rKp(n,k)(x | y) ≤ log

1

Dn(x)
+ log p(n, k)

]
≥ 1− 1

4k
. (28)

Fix any good rA such that Equation (27) holds. We claim that

Pr
x∼Dn

[
A(x, 1t, 1ℓ, 1(nk)

d
; rA) ∈ Search-MINrKT(x, 1t, 1ℓ)

]
≥ 1− 1

2k
. (29)

Note that this suffices to show the theorem, since rA is good with probability at least 1− 1/(2k).
Suppose, for the sake of contradiction, Equation (29) is not true. Then

Pr
x∼Dn

[
A(x, 1t, 1ℓ, 1(nk)

d
; rA) ̸∈ Search-MINrKT(x, 1t, 1ℓ)

]
>

1

2k
. (30)

Let E(x) be the event that both the following hold.

• A(x, 1t, 1ℓ, 1(nk)
d
; rA) ̸∈ Search-MINrKT(x, 1t, 1ℓ)

• rKp(n,k)(x) ≤ log 1
Dn(x)

+ log p(n, k).

By Equation (28) and Equation (30), we get that∑
x∈{0,1}n

Dn(x) · 1E(x) ≥
1

4k
. (31)

Note that whenever E(x) holds, we have

Dn(x) ≤
p(n, k)

2rK
p(n,k)(x)

. (32)
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Now we have

1

4k
≤

∑
x∈{0,1}n

Dn(x) · 1E(x) (by Equation (31))

≤
∑

x∈{0,1}n

p(n, k)

2rK
p(n,k)(x)

· 1E(x) (by Equation (32))

≤ p(n, k) ·
∑

x∈{0,1}n
2−Kp(n,k)(x) · 1E(x)

≤ p(n, k) ·
∑

x∈{0,1}n
2−rKp(n,k)(x) · 1[

A(x, 1t, 1ℓ, 1(nk)d ; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)
] (33)

Note that if λ ≤ 2/3, we have 2−rKp(n,k)(x) ≤ 2−rKt
λ(x) for all t ≥ p(n, k). On the other hand,

if λ > 2/3, then by Lemma 3.4, we have 2−rKp(n,k)(x) ≤ 2−rKt
λ(x)+O(log(1/(1−λ)) for t ≥ p(n, k) ·

O(log(1/(1− λ))). In both cases, if t ≥ ρ(n, k) for some sufficiently large polynomial ρ, we have

Equation (33) ≤
(

1

1− λ

)O(1)

· p(n, k) ·
∑

x∈{0,1}n
2−rKt

λ(x) · 1[
A(x, 1t, 1ℓ, 1(nk)d ; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)

].
By rearranging, we get

∑
x∈{0,1}n

2−rKt
λ(x) · 1[

A(x, 1t, 1ℓ, 1(nk)d ; rA ) ̸∈ Search-MINrKT(x, 1t, 1ℓ)
] ≥ (1− λ)O(1)

4k · p(n, k)
.

However, this contradicts Equation (27) by letting d be a sufficiently large constant.
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