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Abstract

We investigate the computational complexity of estimating the trace of quantum state
powers tr(ρq) for an n-qubit mixed quantum state ρ, given its state-preparation circuit of
size poly(n). This quantity is closely related to and often interchangeable with the Tsallis
entropy Sq(ρ) =

1−tr(ρq)
q−1 , where q = 1 corresponds to the von Neumann entropy. For any

non-integer q ≥ 1 + Ω(1), we provide a quantum estimator for Sq(ρ) with time complexity
poly(n), exponentially improving the prior best results of exp(n) due to Acharya, Issa,
Shende, and Wagner (ISIT 2019), Wang, Guan, Liu, Zhang, and Ying (TIT 2024), Wang,
Zhang, and Li (TIT 2024), and Wang and Zhang (ESA 2024). Our speedup is achieved by
introducing efficiently computable uniform approximations of positive power functions into
quantum singular value transformation.

Our quantum algorithm reveals a sharp phase transition between the case of q = 1
and constant q > 1 in the computational complexity of the Quantum q-Tsallis En-
tropy Difference Problem (TsallisQEDq), particularly deciding whether the differ-
ence Sq(ρ0)− Sq(ρ1) is at least 0.001 or at most −0.001:

• For any 1+Ω(1) ≤ q ≤ 2, TsallisQEDq is BQP-complete, which implies that Purity
Estimation is also BQP-complete.

• For any 1 ≤ q ≤ 1 + 1
n−1 , TsallisQEDq is QSZK-hard, leading to hardness of ap-

proximating von Neumann entropy because Sq(ρ) ≤ S(ρ), as long as BQP ⊊ QSZK.

The hardness results are derived from reductions based on new inequalities for the quantum
q-Jensen-(Shannon-)Tsallis divergence with 1 ≤ q ≤ 2, which are of independent interest.
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1 Introduction

In recent years, the development of quantum devices has posed an intriguing challenge of verify-
ing their intended functionality. Typically, a quantum device is designed to prepare an n-qubit
(mixed) state ρ. The problem of (tolerant) quantum state testing aims to design algorithms that
can efficiently test whether a quantum state approximately has a certain property, assuming the
state either nearly has the property or is somehow “far” from having it. This problem is a quan-
tum (non-commutative) generalization of classical (tolerant) distribution testing (see [Can20])
and classical property testing in general (see [Gol17]). Furthermore, this problem is an instance
of the emerging field of quantum property testing (see [MdW16]), which focuses on devising
(efficient) quantum testers for properties of quantum objects.

The general upper bound for (tolerant) quantum state testing depends (at least) linearly on
the dimension (e.g., [MdW16, Section 4.2]), whereas some properties of quantum states can be
tested significantly more efficiently than the general case. A simple and interesting example is
the property Purity, where ρ satisfies the property if and only if it is a pure state. This example
is essentially an instance of estimating the trace of quantum state powers, specifically tr(ρ2). A
natural approach to test Purity is to apply the SWAP test [BCWdW01] to two copies of ρ,
and this algorithm accepts with probability (1 + tr(ρ2))/2, which is equal to 1 if and only if ρ
is pure. Further analysis deduces that Purity can be tolerantly tested with O(1/ϵ2) copies of
ρ.1 Meanwhile, Ekert et al. [EAO+02] presented an efficient quantum algorithm for estimating
tr(ρq) where q > 1 is an integer. These two fundamental works raise two interesting questions:

(i) Is there an efficient quantum algorithm for estimating the trace of quantum state powers
tr(ρq) for any non-integer q > 1?

(ii) Can estimating the trace of quantum state powers, e.g., tr(ρ2), fully capture the compu-
tational power of quantum computing, namely BQP-complete?

Notably, the trace of quantum state powers tr(ρq) is closely related to the power quantum
entropy of order q. Particularly, the quantum q-Tsallis entropy Sq(ρ), which is a non-additive
(but still concave) generalization of the von Neumann entropy S(ρ), with the von Neumann
entropy being the limiting case of the quantum q-Tsallis entropy as q approaches 1:

Sq(ρ) =
1− tr(ρq)

q − 1
and lim

q→1
Sq(ρ) = S(ρ) = − tr(ρ log(ρ)).

As a consequence, Sq(ρ) can naturally provide a lower bound for S(ρ) when considering Sq(ρ)
with q = 1 + ϵ, where ϵ can be a small constant, such as q = 1.0001. This observation serves as
the first reason motivating Question (i).

The study of power entropy dates back to Havrda and Charvát [HC67]. Since then, it has
been rediscovered independently by Daróczy [Dar70], and finally popularized by Tsallis [Tsa88].
Raggio [Rag95] expanded on this study by introducing the quantum Tsallis entropy. Tsallis
entropy has been particularly useful in physics for describing systems with non-extensive prop-
erties, such as long-range interactions, in statistical mechanics (see [Tsa01]).

A notable example is the Tsallis entropy Hq(p) with q = 3/2, which is useful for mod-
eling systems where both frequent and rare events matter.2 For instance, in fluid dynamics,
the distribution that maximizes H3/2 helps model velocity changes in turbulent flows [Bec02].
This example provides the second reason motivating Question (i), as existing efficient quantum
algorithms [BCWdW01, EAO+02] are designed only for integer q ≥ 2. Estimating Sq(ρ) for
non-integer q between 1 and 2, therefore, appears to be computationally challenging.

In this paper, we focus on estimating the trace of quantum state powers, or equivalently,
1The sample (or query) complexity for Purity differs between one-sided or two-sided error scenarios. Our

upper bound applies to the later, while the sample complexity for the former is O(1/ϵ) [MdW16, Section 4.2].
2In contrast, the Tsallis entropy with q = 2 (Gini impurity) is very sensitive to rare events.
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the Quantum q-Tsallis Entropy Difference Problem (TsallisQEDq) and the Quan-
tum q-Tsallis Entropy Approximation Problem (TsallisQEAq). These two problems
constitute the (white-box) quantum state testing problem with respect to the quantum q-Tsallis
entropy. For TsallisQEDq , we consider two polynomial-size quantum circuits (devices), de-
noted as Q0 and Q1, which prepare n-qubit quantum states ρ0 and ρ1, respectively, with access
to the descriptions of these circuits. Our goal is to decide whether the difference Sq(ρ0)−Sq(ρ1)
is at least 0.001 or at most −0.001.3 The setting of TsallisQEAq is similar to TsallisQEDq ,
except that we only consider a single n-qubit quantum state ρ, and the task is to decide whether
the difference Sq(ρ)− t(n) is at least 0.001 or at most −0.001, where t(n) is a known threshold.

Next, we will state our main results and then provide justifications for their significance.

1.1 Main results

We begin by presenting our first main result, which provides a positive answer to Question (i)
for the regime q ≥ 1 + Ω(1):4

Theorem 1.1 (Quantum estimator for q-Tsallis entropy). Given quantum query access to the
state-preparation circuit of an n-qubit quantum state ρ, for any q ≥ 1+Ω(1), there is a quantum
algorithm for estimating Sq(ρ) to additive error 0.001 with query complexity O(1). Moreover,
if the description of the state-preparation circuit is of size poly(n), then the time complexity of
the quantum algorithm is poly(n). Consequently, for any q ≥ 1 + Ω(1), TsallisQEDq and
TsallisQEAq are in BQP.

More specifically, when the desired additive error is set to ϵ, the explicit query complexity
of Theorem 1.1 becomes O(1/ϵ

1+ 1
q−1 ), or expressed as poly(1/ϵ) (see Theorem 3.2). Moreover,

if the state-preparation circuit of ρ is of size L(n) = poly(n), Theorem 1.1 provides a quantum
algorithm with time complexity O(L/ϵ

1+ 1
q−1 ), or equivalently, poly(n, 1/ϵ). Using the same idea,

we can also derive an upper bound Õ(1/ϵ
3+ 2

q−1 ), or expressed as poly(1/ϵ), for the sample com-
plexity needed to estimate Sq(ρ) (see Theorem 3.3). This is achieved by applying the samplizer
from [WZ24b], which allows a quantum query-to-sample simulation.

There are several quantum algorithms for estimating the q-Tsallis entropy of an n-qubit
mixed quantum state ρ for non-integer constant q > 1 proposed in [AISW20, WGL+24, WZL24,
WZ24b], all of which turn out to have time complexity exp(n) in the setting that ρ is given by
its state-preparation circuit of size poly(n).

• In [AISW20, Theorem 3] and [WZ24b, Theorem 1.2], for non-integer constant q > 1, they
proposed quantum algorithms for estimating the q-Rényi entropy of an n-qubit quantum
state ρ by using S = poly(1/ϵ) · exp(n) samples of ρ and T = poly(1/ϵ) · exp(n) quantum
gates.5 Their result implies an estimator for Sq(ρ) with the same complexity, because any
estimator for q-Rényi entropy implies an estimator for q-Tsallis entropy with the same
parameter for q > 1 (as noted in [AOST17, Appendix A]). By preparing each sample of
ρ using its state-preparation circuit of size poly(n), one can estimate Sq(ρ) by using their
estimators with overall time complexity S · poly(n) + T = poly(1/ϵ) · exp(n).

3It is noteworthy that 0.001 is just an arbitrary constant for the precision parameter, which can be replaced
by any inverse polynomial function in general. See Definition 5.1 and Definition 5.2 for formal definitions.

4We implicitly assume that q satisfies 1+Ω(1) ≤ q ≤ O(1). Since Sq(ρ) ≤ o(1) when q = ω(1), it is reasonable
to consider constantly large q.

5The explicit sample complexities of the approaches of [AISW20, Theorem 3] and [WZ24b, Theorem 2] are
O(22n/ϵ2) and O(2

( 4
q
−2)n

/ϵ
1+ 4

q ·poly(n, log(1/ϵ))), respectively, both of which are poly(1/ϵ)·exp(n). The number
of quantum states in the approach of [AISW20, Theorem 3] was mentioned in [WZ24b] to be O((22n/ϵ2)3 ·
polylog(2n, 1/ϵ)) = poly(1/ϵ) · exp(n) by using the weak Schur sampling in [MdW16, Section 4.2.2] and the
quantum Fourier transform over symmetric groups [KS16]. Another possible implementation noted in [Hay24] is
to use the Schur transform in [Ngu23], resulting in O(22n/ϵ2 · 24n · polylog(2n, 1/ϵ)) = poly(1/ϵ) · exp(n).
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• In [WGL+24, Theorem III.9], for non-integer constant q > 1, they proposed a quantum al-
gorithm for estimating Sq(ρ) with query complexity Õ(r1/{

q−1
2

}/ϵ1+1/{ q−1
2

}) = poly(r, 1/ϵ),
where r is (an upper bound on) the rank of ρ and {x} := x−⌊x⌋ denotes the fractional part
of x. In [WZL24, Corollary 5], for non-integer constant q > 1, they proposed a quantum
algorithm for estimating the q-Rényi entropy of a quantum state with query complexity
Õ(r/ϵ

1+ 1
q ) = poly(r, 1/ϵ), which also implies a quantum algorithm for estimating Sq(ρ)

with query complexity poly(r, 1/ϵ) (the reason has been discussed in the last item). For
n-qubit quantum state ρ without prior knowledge, by taking r = 2n, their query com-
pelxity is then poly(2n, 1/ϵ) = poly(1/ϵ) · exp(n), which is exponentially larger than our
poly(n, 1/ϵ).

Our efficient quantum estimator for Sq(ρ) where q ≥ 1+Ω(1) (Theorem 1.1), combined with
our hardness results for TsallisQEDq and TsallisQEAq (Theorem 1.2), indicates a sharp
phase transition between the case of q = 1 and constant q > 1 and answers to Question (i) and
(ii). For clarity, we summarize our main results in Table 1.

q = 1 1 < q ≤ 1+ 1
n−1 1+Ω(1) ≤ q ≤ 2 q > 2

TsallisQEDq
QSZK-complete

[BASTS10]
QSZK-hard

Theorem 1.2(2)
BQP-complete

Theorem 1.1 and Theorem 1.2(1)
in BQP

Theorem 1.1

TsallisQEAq
NIQSZK-complete
[BASTS10, CCKV08]

NIQSZK-hard*
Theorem 1.2(2)

BQP-complete
Theorem 1.1 and Theorem 1.2(1)

in BQP
Theorem 1.1

Table 1: Computational hardness of TsallisQEDq and TsallisQEAq .

Here, QSZK and NIQSZK are the classes of promise problems possessing quantum statistical
zero-knowledge and non-interactive quantum statistical zero-knowledge, respectively, as intro-
duced by [Wat02, Wat09] and [Kob03]. The asterisk in Table 1 indicates that TsallisQEAq is
NIQSZK-hard for a specific q(n) = 1 + 1

n−1 , as detailed in Theorem 1.2(2).
For the case of q = 1, TsallisQEDq and TsallisQEAq coincide with the Quantum En-

tropy Difference Problem (QED) and the Quantum Entropy Approximation Prob-
lem (QEA) introduced in [BASTS10], respectively. Moreover, QED is complete for the class
QSZK [BASTS10], whereas QEA is complete for the class NIQSZK [BASTS10, CCKV08]. These
two classes contain BQP and are seemingly much harder than BQP.6 Meanwhile, the best known
upper bound for QSZK is QIP(2) with a quantum linear-space honest prover [LGLW23], and the
best known upper bound for NIQSZK is qq-QAM [KLGN19], both of which are contained in
QIP(2) ⊆ PSPACE [JUW09].

In terms of quantitative bounds on quantum query and sample complexities, QSZK-hard or
NIQSZK-hard in the white-box setting correspond to rank-dependent complexities in black-box
settings. Specifically, we establish lower bounds for both the easy regime q ≥ 1 + Ω(1) and the
hard regime 1 < q ≤ 1+ 1

n−1 , with the upper bounds for the hard regime derived from those for
estimating quantum Rényi entropy, as detailed in Table 2.

On the other hand, understanding why the regime q ≥ 1+Ω(1) is computationally easy can
be illustrated by the case of q = 2 (Purity Estimation), particularly deciding whether tr(ρ2)
is at least 2/3 or at most 1/3. Let {λk}k∈[2n] be the eigenvalues of an n-qubit quantum state ρ.

6Following the oracle separation between NISZK and PP [BCH+19], it holds that NIQSZKO ̸⊆ PPO and
likewise QSZKO ̸⊆ PPO for some classical oracle O.

7In the regime 1 ≤ q ≤ 1 + 1
n−1

, as the rank r approaches 2n, a sample complexity upper bound of O(4n/ϵ2)
with better dependence on ϵ was given in [AISW20].

8In this bound, c > 0 is a constant that can be made arbitrarily small.
9As the rank r approaches 2n, a better query complexity upper bound of Õ(2n/ϵ1.5) was shown in [GL20].

3



Regime of q Query Complexity Sample Complexity

Upper Bound Lower Bound Upper Bound Lower Bound

q ≥ 1 + Ω(1)
O(1/ϵ

1+ 1
q−1 ) Ω(1/

√
ϵ) Õ(1/ϵ

3+ 2
q−1 ) Ω(1/ϵ)

Theorem 3.2 Theorem 5.12 Theorem 3.3 Theorem 5.14

1 < q ≤ 1 + 1
n−1

Õ(r/ϵ2) Ω(r1/3) Õ(r2/ϵ5)7 Ω(r0.51−c)8

[WZL24] Theorem 5.13 [WZ24b] Theorem 5.15

q = 1
Õ(r/ϵ2)9 Ω̃(

√
r) Õ(r2/ϵ5)7 Ω(r/ϵ)

[WGL+24] [BKT20] [WZ24b] [WZ24b]

Table 2: (Rank-dependent) bounds on query and sample complexities for estimating Sq(ρ).

For any quantum state ρ̂ having eigenvalues at most 1/n, it follows that tr(ρ̂2) =
∑

k∈[2n] λ
2
k ≤

n · n−2 = 1/n, hence 0 provides a good estimate of tr(ρ̂2) to within additive error 1/3. This
intuition implies that only sufficiently large eigenvalues contribute to estimating the value of
tr(ρ2). Consequently, the computational complexity of Purity Estimation is supposed to be
independent of the rank r.

However, this argument is just the first step towards establishing an efficient quantum esti-
mator for Sq(ρ).10 We also need to estimate

∑
k∈Ilarge λ

q
k, where Ilarge is the index set for suffi-

ciently large eigenvalue λk. For the case of integer q > 1, the approach of [BCWdW01, EAO+02]
equipped with quantum amplitude estimation [BHMT02] provides a solution, whereas the case
of non-integer q ≥ 1 + Ω(1) is more challenging and requires more sophisticated techniques.
Notably, the task is finally resolved by our first main result (Theorem 1.1).

Lastly, we provide our second main result, namely the computational hardness for Tsal-
lisQEDq and TsallisQEAq , as stated in Theorem 1.2. Let ConstRankTsallisQEDq and
ConstRankTsallisQEAq denote restricted variants of TsallisQEDq and TsallisQEAq ,
respectively, such that the ranks of the states of interest are at most O(1).

Theorem 1.2 (Computational hardness for TsallisQEDq and TsallisQEAq , informal). The
promise problems TsallisQEDq and TsallisQEAq capture the computational power of their
respective complexity classes in the corresponding regimes of q:11

(1) Easy regimes: For any q ∈ [1, 2], ConstRankTsallisQEDq is BQP-hard under Karp
reduction, and consequently, ConstRankTsallisQEAq is BQP-hard under Turing re-
duction. As a corollary, TsallisQEDq and TsallisQEAq are BQP-complete for 1 +
Ω(1) ≤ q ≤ 2.

(2) Hard regimes: For any q ∈
(
1, 1 + 1

n−1

]
, TsallisQEDq is QSZK-hard under Karp

reduction, and consequently, TsallisQEAq is QSZK-hard under Turing reduction. Fur-
thermore, for q = 1 + 1

n−1 , TsallisQEAq is NIQSZK-hard under Karp reduction.

It is noteworthy that BQP-hardness under Turing reduction is as strong as BQP-hardness
under Karp reduction, due to the BQP subroutine theorem [BBBV97].12 Moreover, Theorem 1.2
implies a direct corollary, offering a positive answer to Question (ii):

Corollary 1.3. Purity Estimation is BQP-hard.
10A similar argument also applies to the classical Tsallis entropy, see [AOST17, Section III.C]. Nevertheless,

this type of argument does not extend to von Neumann entropy (q = 1), see [QKW24, Section 7].
11For detailed definitions of Karp reduction and Turing reduction, please refer to Section 2.2.1.
12Once we have an efficient quantum algorithm A for TsallisQEAq , any problem in BQP can be solved using

A as a subroutine. The BQP subroutine theorem, as stated in [BBBV97, Section 4], implies that BQPA ⊆ BQP.
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Interestingly, the BQP-hardness for a similar problem, specifically deciding whether tr(ρ0ρ1)
is at least 2/3 or at most 1/3, turns out to be not difficult to show.13 However, this result does
not imply Corollary 1.3.

1.2 Proof techniques: BQP containment for q constantly larger than 1

The proof of Theorem 1.1 consists of an efficient quantum (query) algorithm for estimating the
value of tr(ρq) for q > 1, given quantum query access to the state-preparation circuit Q of
the mixed quantum state ρ. Our approach to estimating tr(ρq) is via one-bit precision phase
estimation [Kit95], also known as the Hadamard test [AJL09], equipped with the quantum
singular value transformation (QSVT) [GSLW19]. Our algorithm is sketched in the following
four steps (see Section 3 for more details):

1. Find a good polynomial approximation of xq−1.

2. Implement a unitary block-encoding U of ρq−1 using QSVT, with the state-preparation
circuit Q.

3. Perform the Hadamard test on U and ρ with outcome b ∈ {0, 1}.

4. One can learn the value of tr(ρq) from a good estimate of b via quantum amplitude esti-
mation.

The idea is simple. Similar ideas were ever used to estimate the fidelity [GP22], trace dis-
tance [WZ24a, LGLW23], and von Neumann entropy [LGLW23, WZ24b]. However, all of the
aforementioned quantum algorithms have query or time complexity polynomials in the rank r
of quantum states. Additionally, all these prior works rely on the quantum singular value trans-
formation [GSLW19], which is a technique for designing quantum algorithms by approximating
the target functions.14 The main technical reason is that the functions to be approximated in
their key steps are not smooth in the whole range of [0, 1], so they have to use the polynomial
approximations of piece-wise smooth functions in [GSLW19, Corollary 23] to avoid the bad part
(which is actually the regime of tiny eigenvalues);15 this results in an estimation error depen-
dent on r because, technically, the error for each bad eigenvalue has to be bounded individually
(there are at most r bad eigenvalues), thereby introducing an (at least) linear r-dependence.
Specifically, in their approaches, a target function f(x) is specified and the goal is to estimate
the value of tr(ρf(ρ)). For example, f(x) = − log(x) for estimating the von Neumann entropy.
The target function f(x) is usually only approximated well in the range x ∈ [δ, 1] for some
parameter δ, while leaving the rest range of x unspecified; more precisely, f(x) is approximated
by a polynomial P (x) by, e.g., [GSLW19, Corollary 23], such that

max
x∈[δ,1]

|P (x)− f(x)| ≤ ϵ, max
x∈[−1,1]

|P (x)| ≤ 1, and deg(P ) = O

(
1

δ
log

1

ϵ

)
. (1.1)

Then, they instead estimate the value of tr(ρP (ρ)). The intrinsic error turns out to be

|tr(ρf(ρ))− tr(ρP (ρ))| ≤
∑
λj<δ

|λjf(λj)−λjP (λj)|+
∑
λj≥δ
|λjf(λj)−λjP (λj)| ≤ r ·poly(δ)+O(ϵ).

Here, {λj}1≤j≤2n are the eigenvalues of the state ρ, with each λj satisfying 0 ≤ λj ≤ 1. To make
the intrinsic error bounded, δ must be sufficiently small, e.g., δ = 1/poly(r).

The above standard method has drawbacks: the intrinsic error is r · poly(δ) for the small-
eigenvalue part and O(ϵ) for the large-eigenvalue part. While the ϵ-dependence in the approxi-

13For any BQP circuit Cx, the acceptance probability ∥|1⟩⟨1|outCx|0̄⟩∥22 = tr
(
|1⟩⟨1|outCx|0̄⟩⟨0̄|C†

x

)
= tr(ρ0ρ1),

where ρ0 := |1⟩⟨1|out and ρ1 := trout
(
Cx|0̄⟩⟨0̄|C†

x

)
. Similar observations appeared in [Kob03, Theorem 9].

14For example, estimating the fidelity and trace distance requires to approximate the sign function; and esti-
mating the von Neumann entropy requires to approximate the logarithmic function.

15These eigenvalues correspond to the inputs of the target function.
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mation degree is logarithmic (and thus not the dominating term), the δ-dependence is significant.
This suggests the need for the following trade-off: Can we reduce the error caused by the small-
eigenvalue part, at the cost of a possibly worse error caused by the large-eigenvalue part?

To make this trade-off possible for our purpose, we turn to find polynomials that uniformly
approximate the positive power functions. This is inspired by the Stone-Weierstrass theorem,
stating that any continuous function (e.g., xq) on a closed interval (e.g., [0, 1]) can be uniformly
approximated by polynomials. The study of the best uniform approximation (by polynomials)16

of positive power functions was initiated by Bernstein [Ber14, Ber38] almost a century ago in
an abstract manner.17 The best uniform approximation polynomial of xq was shown with a
non-constructive proof in [Tim63, Section 7.1.41], stating that there is a family of polynomials
Pd(x) of degree d such that

max
x∈[0,1]

|Pd(x)− xq| →
1

dq
, as d→∞, (1.2)

whose approximation range is in sharp contrast to that in Equation (1.1). However, the coeffi-
cients of the leading error terms and the explicit construction of these polynomial approxima-
tions seem still not fully understood (e.g., [Gan02]). Consequently, it is somewhat challenging
to directly use such polynomial approximations (e.g., [Tim63, Section 7.1.41]) in a time-efficient
manner.

Inspired by the result of the best uniform approximation of positive power functions in
[Tim63], we, instead, aim to find a good enough uniform approximation that is also efficiently
computable. This is achieved by employing the construction of asymptotically best uniform ap-
proximation via combining Chebyshev truncations and the de La Vallée Poussin partial sum (cf.
[Riv90, Chapter 3]). Finally, we obtain a family of efficiently computable uniform approximation
polynomials of (scaled) xq that are suitable for QSVT:

max
x∈[0,1]

∣∣∣∣P (x)− 1

2
xq
∣∣∣∣ ≤ ϵ, max

x∈[−1,1]
|P (x)| ≤ 1, and deg(P ) = O

(
1

ϵ1/q

)
. (1.3)

Using these efficiently computable uniform approximation polynomials, we are able to give a
quantum algorithm for estimating tr(ρq). First, we approximate the function xq−1 in the range
[0, 1] to error ϵ by a polynomial of degree O(1/ϵ

1
q−1 ). Then, we can apply the algorithm sketched

at the very beginning of this subsection. With further analysis, we can estimate the value of
tr(ρq) to additive error ϵ with quantum query complexity O(1/ϵ

1+ 1
q−1 ) (see Theorem 3.2). Using

the same idea, we can also estimate tr(ρq) to additive error ϵ by using Õ(1/ϵ
3+ 2

q−1 ) copies of ρ
through the samplizer [WZ24b] (see Theorem 3.3).

To conclude this subsection, it can be seen that our quantum algorithm for estimating
tr(ρq) is naturally applicable to solving TsallisQEDq and TsallisQEAq . Particularly for
the precision in the regime 1/ poly(n) ≤ ϵ ≤ 1, the efficiently-computability of the uniform
approximation polynomials in Equation (1.3) ensures that the description of the quantum circuit
of our algorithm can be computed by a classical deterministic Turing machine in poly(n) time,
which is a significant step to show the BQP-completeness of TsallisQEDq and TsallisQEAq
for 1 + Ω(1) ≤ q ≤ 2 and precision 1/ poly(n) ≤ ϵ ≤ 1.

1.3 Proof techniques: Hardness via QJTq-based reductions

Before we proceed with the proof of Theorem 1.2, we start by defining the (white-box) quantum
state testing problem with respect to the trace distance, which was first introduced in [Wat02].

16The best uniform approximation polynomial of a continuous function f(x) on [−1, 1] is a degree-d polyno-
mial that minimizes maxx∈[−1,1] |f(x) − Pd(x)| over all degree-d polynomials Pd. For a formal definition, see
Section 2.3.1.

17Actually, the function |x|q for x ∈ [−1, 1] is commonly considered in the literature. Nevertheless, we are only
interested in the non-negative part, i.e., the range [0, 1].
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Let ρ0 and ρ1 be n-qubit quantum states such that their purifications can be prepared by
polynomial-size quantum circuits Q0 and Q1, respectively. The Quantum State Distin-
guishability Problem (QSD) is to decide whether the trace distance T(ρ0, ρ1) is at least
1 − ϵ(n) or at most ϵ(n). Furthermore, we need the other two restricted versions of QSD, see
Section 2.2 for formal definitions:

• PureQSD: Both ρ0 and ρ1 are pure states.

• QSCMM: ρ1 is fixed to be the n-qubit maximally mixed state.18

The proof of Theorem 1.2, particularly the hardness results under Karp reduction, utilizes
reductions from the aforementioned variants of QSD to TsallisQEDq or TsallisQEAq for
the respective ranges of q. Next, we will specify two main technical challenges related to the
corresponding inequalities necessary for establishing Theorem 1.2:

(1) For ConstRankTsallisQEDq and TsallisQEDq , the key ingredient of these reductions
is the quantum q-Jensen-(Shannon-)Tsallis divergence (QJTq , see Definition 2.10), first
introduced in [BH09]. We notice that QJTq can be viewed as a distance version of the
quantum q-Tsallis entropy difference for 1 ≤ q ≤ 2,19 and consequently, these reductions
heavily rely on the inequalities between QJTq and the trace distance. However, such
inequalities are only known for the case of q = 1 [FvdG99, Hol73a, BH09], presenting the
first technical challenge.

(2) For TsallisQEAq , the reduction essentially relies on the lower and upper bounds on the
quantum q-Tsallis entropy of a quantum state ρ in terms of the trace distance between the
state and the maximally mixed state, when the trace distance is promised to be a fixed
value. These bounds are also only known for the case of q = 1 [Vaj70, CCKV08, KLGN19],
leading to the second technical challenge.

For clarity, we summarize the correspondence between our reductions for establishing The-
orem 1.2 and the new inequalities in Table 3, where the q-logarithm lnq(x) :=

1−x1−q

q−1 .20

Problem Regime of q Reduction from New inequalities

ConstRank
TsallisQEDq
Theorem 1.2(1)

1≤q≤2
PureQSD is BQP-hard

adapted from [RASW23]
Hq

(
1
2

)
−Hq

(
1−T
2

)
≤ QJTq ≤ Hq

(
1
2

)
T

Theorem 4.1

TsallisQEDq
Theorem 1.2(2)

1≤q≤1+ 1
n−1

QSD is QSZK-hard
[Wat02, Wat09]

Hq

(
1
2

)
−Hq

(
1−T
2

)
≤ QJTq

Theorem 4.1

TsallisQEAq
Theorem 1.2(2)

q = 1+ 1
n−1

QSCMM is NIQSZK-hard
[Kob03, BASTS10, CCKV08]

(
1−T− 1

2n

)
lnq(2

n) ≤ Sq ≤ lnq(2
n(1−T))

Lemma 4.10

Table 3: Reductions for TsallisQEDq and TsallisQEAq , and the corresponding inequalities.

Once we have established these new inequalities, together with our new bounds for the
Tsallis binary entropy Hq(x) ≤ Hq

(
1
2

)√
4x(1− x) (see Theorem 4.2, where previously only the

case of q = 1 was known [Lin91, Top01]), we can establish our three hardness results under Karp
reduction in Theorem 1.2 through relatively complicated and detailed analyses. The additional

18Precisely speaking, the problem called Quantum State Closeness to Maximally Mixed State
(QSCMM) is to decide whether T(ρ, (I/2)⊗n) is at most 1/n or at least 1 − 1/n, which is the complement
of QSD concerning the same states of interest.

19For the case of q = 1, similar observations are implicitly used to show that QED is QSZK-hard [BASTS10],
and recently explicitly emphasized in [Liu23], leading to a simple proof for the QSZK hardness of QED.

20As q approaches 1, the q-logarithm becomes the natural logarithm. For further details and references on
q-logarithm, please refer to the beginning of Section 2.1.
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two hardness results for ConstRankTsallisQEAq and TsallisQEAq under Turing reduction
in Theorem 1.2 follow straightforwardly from a binary search for promise problems.

In the remainder of this subsection, we provide insights into proving the new inequali-
ties in Table 3. The first technical challenge involves establishing the inequalities between
QJTq and the trace distance. The main barrier is to provide the data-processing inequality
QJTq(Φ(ρ0),Φ(ρ1)) ≤ QJTq(ρ0, ρ1) for 1 < q ≤ 2.21 This implies that applying any quantum
channel Φ on states ρ0 and ρ1 does not increase the divergence between them. For q = 1, the
quantum Jensen-Shannon divergence (QJS), defined in [MLP05], can be decomposed into a sum
of quantum relative entropy D(ρ0∥ρ1):

QJS(ρ0, ρ1) := S

(
ρ0 + ρ1

2

)
− S(ρ0) + S(ρ1)

2
=

1

2

(
D

(
ρ0

∥∥∥ρ0 + ρ1
2

)
+D

(
ρ1

∥∥∥ρ0 + ρ1
2

))
. (1.4)

Since the data-processing inequality (essentially, the joint convexity) for the quantum relative
entropy was established decades ago [Lie73, Uhl77], and given the equality in Equation (1.4),
it directly follows that the data-processing inequality also holds for QJS. However, a similar
decomposition does not apply to the quantum q-Tsallis entropy when q ̸= 1. Fortunately, the
joint convexity of QJTq for 1 ≤ q ≤ 2, specifically,

QJTq
(
(1− λ)ρ0 + λρ′0, (1− λ)ρ1 + λρ′1

)
≤ (1− λ)QJTq

(
ρ0, ρ1) + λQJTq(ρ

′
0, ρ

′
1

)
,

was established few years ago [CT14, Vir19], where 0 < λ < 1. As a consequence, once we
establish the data-processing inequality for QJTq , we can then generalize the inequalities between
QJS and the trace distance to QJTq for 1 ≤ q ≤ 2, using the same approach applied to QJS.

For the second technical challenge, specifically the bounds for Sq(ρ) when T(Sq(ρ), (I/2)
⊗n) =

γ is fixed, it suffices to focus on the classical counterpart,22 as the maximally mixed state
commutes with any state ρ. The lower bound can be established by following the approach
in [KLGN19] for q = 1. On the other hand, the upper bound for q = 1 can be derived using
Vajda’s inequality [Vaj70], but similar results for q ̸= 1 are unknown. However, by assuming
an appropriate condition between q and the fixed distance γ, we can deduce an upper bound
analogous to the q = 1 case.

1.4 Discussion and open problems

Our first main theorem (Theorem 1.1) provides an efficiently computable lower bound for the
von Neumann entropy S(ρ). This naturally raises the question:

(i) Is there an efficiently computable upper bound for S(ρ), perhaps based on some relaxed
notion of the von Neumann entropy?

The quantum Tsallis entropy Sq(ρ) in the regime 1 < q < 2 exhibits distinct behavior
compared to both S(ρ) and S2(ρ) = 1− tr(ρ2), leading to another open problem:

(ii) Can we find further applications of estimating Sq(ρ) in the regime 1 < q < 2?
Moreover, two open problems arise regarding quantitative bounds and (NI)QSZK containments:
(iii) Can the query and sample bounds in Table 2 be improved, especially for q ≥ 1 + Ω(1)?

(iv) Can we establish that TsallisQEDq (or TsallisQEAq) in the regime 1 < q < 1 + 1
n−1 ,

as specified in Theorem 1.2(2), is also contained in QSZK (or NIQSZK)?
21We generalize the approach in [BH09] for q = 1. Using the data-processing inequality with a measurement

channel, we can establish the lower bound via the measured version of QJTq (see Equation (2.2)) and the classical
counterpart inequality for JTq in [BH09]. For the upper bound, we construct new states ρ̂0 and ρ̂1 with an ancillary
qubit, making QJTq(ρ̂0, ρ̂1) related to the trace distance for 1 < q ≤ 2 (and coincide with the trace distance for
q = 1). Applying the data-processing inequality with the partial trace, we obtain QJTq(ρ0, ρ1) ≤ QJTq(ρ̂0, ρ̂1).

22More specifically, let p denote the distribution of the eigenvalues of ρ, and let ν be the uniform distribution
over 2n items. This task is exactly equivalent to proving the bounds for Hq(p) when TV(p, ν) = γ is fixed.
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Lastly, it is natural to consider generalizations of the von Neumann entropy tighter than Sq(ρ)

for q > 1, particularly Sq(ρ) for 0 < q < 1 and the quantum Rényi entropy SRα (ρ) :=
ln tr(ρα)
1−α :

(v) What are the containment and hardness of estimating Sq(ρ) in the regime 0 < q < 1?

(vi) Since RényiQEAα for 1 < α ≤ 1
n−1 is intuitively QSZK-hard, as per Theorem 1.2(2), can

we obtain (rigorous) computational hardness results for estimating SRα (ρ) with α > 0?

1.5 Related works

(Quantum) property testing for probability distributions. (Near-)optimal classical es-
timators are known for Shannon, Rényi, and Tsallis entropies [JVHW15, JVHW17, WY16,
AOST17]. Quantum testers for classical probability distributions were initiated in [BHH11].
Quantum algorithms for ℓ1 distance of probability distributions were investigated in [BHH11,
CFMdW10, Mon15, GL20, LWL24]. Quantum estimators for the Shannon and Rényi entropies
were proposed in [LW19, GL20, WZL24]. Notably, matching query lower bounds for estimating
the Shannon entropy and ℓ1 distance from the uniform distribution were shown in [BKT20].

Quantum property testing for quantum states. Quantum sample complexities for a
series of problems have been studied in the literature. For von Neumann entropy and Rényi
entropy estimations, the dimension-dependence was studied in [AISW20], the dependence on the
reciprocal of the minimum non-zero eigenvalue of the quantum state was studied in [WZW23],
and the rank-dependence and time-efficiency were studied in [WZ24b]. Other problems include
tomography [HHJ+17, OW16], spectrum testing [OW21], closeness testing/estimation for fidelity
and trace distance [BOW19, GP22, WZ24a].

The quantum query complexities are also extensively studied. For von Neumann entropy
estimation, the dimension-dependence was studied in [GL20], the dependence on the reciprocal
of the minimum non-zero eigenvalue of the quantum state was studied in [CLW20], the mul-
tiplicative error-dependence was studied in [GHS21], and the rank-dependence was studied in
[WGL+24]. In [SLLJ24], they presented a rank-dependent estimator for the q-Tsallis entropy
with integer q larger than the rank of quantum states. For Rényi entropy estimation, the query
complexity was first studied in [SH21], the rank-dependence was studied in [WGL+24], and was
later improved in [WZL24]. Other problems include tomography [vACGN23], and the estima-
tions of fidelity and trace distance [WZC+23, WGL+24, GP22, WZ24a, Wan24].

In [GH20], the Quantum Entropy Difference Problem (with respect to von Neumann
entropy) with shallow circuits was shown to have (conditional) hardness. The computational
complexity of the space-bounded versions of the Quantum Entropy Difference Problem
and Quantum State Distinguishability Problem were studied in [LGLW23].

2 Preliminaries

We assume that the reader is familiar with quantum computation and the theory of quantum
information. For an introduction, the textbook [NC10] provides a good starting point. We
introduce the following conventions throughout the paper: (1) we denote [n] := {1, 2, . . . , n};
(2) we use both notations, log(x) and ln(x), to represent the natural logarithm for any x ∈ R+;
(3) we utilize the notation |0̄⟩ to represent |0⟩⊗a with a > 1; and (4) we use ∥A∥ to denote the
operator norm (equivalently, the Schatten ∞-norm) of a matrix A.

Notions on linear maps and quantum channels. We recommend [AS17, Section 2.3] as
an introduction on superoperators and quantum channels. Let H1 and H2 be finite-dimensional
Hilbert spaces with dim(Hi) = Ni = 2ni for i ∈ {1, 2}. Let L(H1,H2) denote linear maps from
H1 to H2, and specifically, let L(H) denote linear maps from H to H. A map Φ: L(H1)→ L(H2)
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is called self-adjointness-preserving if Φ(X†) = (Φ(X))† for any X ∈ L(H1). We further say that
a self-adjointness-preserving map Φ: L(H1)→ L(H2) is a quantum channel if Φ is a completely
positive trace-preserving map. Here, a map Φ is trace-preserving if tr(Φ(X)) = tr(X) for any
X ∈ L(H1). Let {|vi⟩}i∈[N1] be an orthonormal basis of H1, and a map Φ is completely positive
if Φ⊗ In is positive for any n ∈ N, where In is the identity matrix of the dimension n.

Let D(H) be the set of all density operators, which are semi-positive and trace-one matrices
on H. Let the trace norm of a linear map X be ∥X∥1 := tr

(√
X†X

)
. For any quantum channels

E and F that act on D(H), the diamond norm distance between them is defined as

∥E − F∥⋄ := sup
ρ∈D(H⊗H′)

∥(E ⊗ IH′)(ρ)− (F ⊗ IH′)(ρ)∥1.

2.1 Closeness measures for distributions and quantum states

Since both classical and quantum Tsallis entropy are central to this paper, we introduce the
q-logarithm function lnq : R+ → R for any real q ̸= 1:

∀x ∈ R+, lnq(x) :=
1− x1−q

q − 1
.

The q-logarithm is a generalization of the natural logarithm, as it is straightforward to verify
that limq→1 lnq(x) = ln(x) for any x ∈ R+. However, the q-logarithm exhibits different behavior
when q ̸= 1, for instance, lnq(xy) = lnq(x)+lnq(y)+(1−q) lnq(x) lnq(y). For additional properties
of the q-logarithm, see the references [Tsa01, Appendix] and [Yam02].

In the rest of this subsection, we provide useful closeness measures for probability distribu-
tions in Section 2.1.1 and for quantum states in Section 2.1.2. For convenience, we use a general
convention D1 ≤ D2 to denote an inequality between two distances or divergences, whether
classical or quantum. In particular, this notation, as seen in the titles of technical lemmas (e.g.,
Lemma 2.5), indicates that D1 is bounded above by a function f of D2, i.e., D1 ≤ f(D2); or
that D2 is bounded below by a function g of D1, i.e., g(D1) ≤ D2.

2.1.1 Closeness measures for classical probability distributions

We begin by defining the total variation distance:

Definition 2.1 (Total variation distance). Let p0 and p1 be two probability distributions over
[N ]. The total variation distance between two p0 and p1 is defined by

TV(p0, p1) :=
1

2
∥p0 − p1∥1 =

1

2

∑
x∈[N ]

|p0(x)− p1(x)|.

Then we define the Tsallis entropy and provide useful properties of the Tsallis entropy.

Definition 2.2 (q-Tsallis entropy and Shannon entropy). Let p be a probability distribution over
[N ]. The q-Tsallis entropy of p is defined by

Hq(p) :=
1−

∑
x∈[N ] p(x)

q

q − 1
= −

∑
x∈[N ]

p(x)q lnq(p(x)).

The Shannon entropy is the limiting case of the q-Tsallis entropy as q → 1:

H1(p) := lim
q→1

Hq(p) = H(p) = −
∑
x∈[N ]

p(x) ln(p(x)).

For N = 2, we slightly abuse the notation by writing the q-Tsallis binary entropy and the
(Shannon) binary entropy as Hq(p0) = Hq(1 − p0) = Hq(p) and H(p0) = H(1 − p0) = H(p),
respectively.
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It is noteworthy that the properties in Lemma 2.3 were also provided in [Tsa88] without
proofs. In addition, by considering the eigenvalues of any quantum state, Lemma 2.3 straight-
forwardly extends to quantum q-Tsallis entropy (see Definition 2.8).

Lemma 2.3 (Basic properties of Tsallis entropy, partially adapted from [Dar70]). Let p and p′

be two probability distributions over [N ] with N ≥ 2, and let ν be the uniform distribution over
[N ]. We have the following properties of the Tsallis entropy Hq(p) with q > 0:

• Concavity: For any λ ∈ [0, 1], Hq((1−λ)p+λp′) ≥ (1−λ)Hq(p)+λHq(p′). Equivalently,
F (q;x) := x−xq

q−1 is concave in x ∈ [0, 1] for any fixed q > 0, and Hq(p) =
∑

i∈[N ] F (q; p(i)).

• Extremes: 0 ≤ Hq(p) ≤ Hq(ν) =
1−n1−q

q−1 . Specifically, Hq(p) = Hq(ν) occurs when p = ν,

and Hq(p) = 0 occurs when p(i) =

{
1, i = k

0, i ̸= 1
for any k ∈ [N ].

• Monotonicity: For any q and q′ satisfying 0 < q ≤ q′, Hq(p) ≥ Hq′(p).

Proof. For the first item, by inspecting the proof of [Dar70, Theorem 6], we know that x−xq
1−21−q ·

1−21−q

q−1 = F (q;x) is concave in x ∈ [0, 1] for any fixed q ̸= 1. It is easy to verify that Hq(p) =∑
i∈[N ] F (q; p(i)), we have that Hq(p) is concave.
For the second item, note that q−1

1−21−q ≥ 0 for q ̸= 1 and limq→1
q−1

1−21−q = 1
ln 2 . Hence,

by [Dar70, Theorem 6], we deduce 0 ≤ Hq(p) ≤ Hq(ν). Moreover, because F (q;x) is non-
negative and F (q;x) = 0 occurs when x = 1, we conclude that Hq(p) = 0 occurs when p satisfies
the desired condition.

For the third item, since limq→1Hq(x) = H(x), it is enough to show that ∂
∂qHq(x) ≤ 0

for any q ̸= 1 and x ∈ [0, 1]. Given that Hq(p) =
∑

i∈[n] F (q; p(i)), it remains to prove that
∂
∂qF (q;x) ≤ 0, specifically:

∂

∂q
F (q;x) = − x− xq

(q − 1)2
− xq log(x)

q − 1
≤ 0⇔ G(q;x) := xq − x− (q − 1)xq log(x) ≤ 0. (2.1)

A direct calculation implies that ∂
∂qG(q;x) = −(q − 1)xq ln2(x) for any x ∈ [0, 1]. This

inequality shows that for any fixed x ∈ [0, 1], G(q;x) is monotonically increasing for 0 < q ≤ 1
and monotonically decreasing for q > 1. Hence, by noticing maxq≥0G(q;x) ≤ G(1;x) = 0 for
any x ∈ [0, 1], we establish Equation (2.1) and the monotonicity.

Next, we define a variant of the Jensen-Shannon divergence based on the q-Tsallis entropy:

Definition 2.4 (q-Jensen-(Shannon-)Tsallis divergence, adapted from [BR82]). Let p0 and p1
be two probability distributions over [N ]. The q-Jensen-(Shannon-)Tsallis divergence between p0
and p1 is defined as

JTq(p0, p1) :=

{
Hq
(p0+p1

2

)
− 1

2 (Hq(p0) + Hq(p1)) , q ̸= 1

H
(p0+p1

2

)
− 1

2 (H(p0) + H(p1)) , q = 1
.

Specifically, the Jensen-Shannon divergence JS(p0, p1) = JT1(p0, p1).

Lastly, we provide a useful bound the divergence JTq, which generalizes the bound H
(
1
2

)
−

H
(
1
2 −

TV(p0,p1)
2

)
≤ JS(p0, p1) in [Top00, Theorem 5] for the case of q = 1:

Lemma 2.5 (TV ≤ JTq, adapted from [BH09, Theorem 9]). Let p0 and p1 be two probability
distributions over [N ]. For any 1 ≤ q ≤ 2, we have the following inequality :23

Hq

(
1

2

)
−Hq

(
1

2
− TV(p0, p1)

2

)
≤ JTq(p0, p1).

23It is evident that Hq

(
1−x
2

)
= Hq

(
1+x
2

)
for any x ∈ [0, 1]. Moreover, the proof of the lower bound in [BH09,

Theorem 9] uses the notation V (p0, p1) :=
∑n

i=1 |p0(i) − p1(i)| = ∥p0 − p1∥1 = 2TV(p0, p1) defined in [Top00],
where p0 and p1 are probability distributions over [N ].
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It is important to note, the joint convexity of JTq [BR82, Corollary 1] plays a key role in
proving Lemma 2.5. And additionally, for N ≥ 3, the joint convexity of JTq holds if and only if
q ∈ [1, 2], as stated in [BR82, Corollary 2].

2.1.2 Closeness measures for quantum states

We start by defining the trace distance and providing useful properties of this distance:

Definition 2.6 (Trace distance). The trace distance between two quantum states ρ0 and ρ1 is

T(ρ0, ρ1) :=
1

2
tr(|ρ0 − ρ1|) =

1

2
tr

((
(ρ0 − ρ1)†(ρ0 − ρ1)

)1/2)
.

Importantly, the trace distance is a measured version of the total variation distance [NC10,
Theorem 9.1]. In particular, for any classical f -divergence Df (·, ·), let ρ0 and ρ1 be two N -
dimensional quantum states that are mixed in general, we can define the measured quantum
f -divergence by considering the probability distributions induced by the POVMM:

Dmeas
f (ρ0, ρ1) = sup

POVM M
Df

(
p
(M)
0 , p

(M)
1

)
where p(M)

b := (tr(ρbM1), · · · , tr(ρbMN )) . (2.2)

Moreover, the trace distance is a distance metric (e.g., [Wil13, Lemma 9.1.8]). In addition,
as indicated in [Wil13, Equation (9.134)], for pure states |ψ0⟩ and |ψ1⟩, we have

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) =
√

1− | ⟨ψ0|ψ1⟩ |2.

Additionally, the trace distance characterizes the maximum success probability of discrimi-
nating quantum states in quantum hypothesis testing, as explained in [Wil13, Section 9.1.4]:

Lemma 2.7 (Helstrom-Holevo bound [Hel67, Hol73b]). Suppose that a mixed quantum state ρ
is given such that either ρ = ρ0 or ρ = ρ1 with equal probability. Then, any POVM distinguishes
the two cases with success probability upper bounded by

psucc ≤
1

2
+

1

2
T(ρ0, ρ1).

Next, we define the quantum q-Tsallis entropy, generalizing the von Neumann entropy:

Definition 2.8 (Quantum q-Tsallis entropy and von Neumann entropy). Let ρ be a (mixed)
quantum state. The quantum q-Tsallis entropy of ρ is defined by

Sq(ρ) :=
1− tr(ρq)

q − 1
= − tr(ρq lnq(ρ)).

Furthermore, as q → 1, the quantum q-Tsallis entropy coincides with the von Neumann entropy:

S1(ρ) := lim
q→1

Sq(ρ) = S(ρ) = − tr(ρ ln(ρ)).

Lemma 2.9 (Pseudo-additivity of Sq, adapted from [Rag95, Lemma 3]). For any quantum
states ρ0 and ρ1, and any q ≥ 1, we have:

Sq(ρ0 ⊗ ρ1) = Sq(ρ0) + Sq(ρ1)− (q − 1)Sq(ρ0)Sq(ρ1).

Specifically, the equality Sq(ρ0 ⊗ ρ1) = Sq(ρ0) + Sq(ρ1) holds if and only if (a) q = 1, or (b) for
q > 1, either of the states ρ0 or ρ1 is pure.

Now we define a variant of the quantum Jensen-Shannon divergence [MLP05] based on the
quantum q-Tsallis entropy, as stated in Definition 2.10. Notably, the study of quantum analogs
of the Jensen-Shannon divergence could date back to the Holevo bound [Hol73a].24

24The quantum Jensen-Shannon divergence (QJS) is a special case of the Holevo χ quantity (the right-hand
side of the Holevo bound [Hol73a]). Following the notations in [NC10, Theorem 12.1], QJS coincides with the
Holevo χ quantity on size-2 ensembles with a uniform distribution.
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Definition 2.10 (Quantum q-Jensen-(Shannon-)Tsallis Divergence, adapted from [BH09]). Let
ρ0 and ρ1 be two quantum states that are mixed in general. The quantum q-Jensen-(Shannon-)Tsallis
divergence between ρ0 and ρ1 is defined by

QJTq(ρ0, ρ1) :=

{
Sq
(ρ0+ρ1

2

)
− 1

2 (Sq(ρ0) + Sq(ρ1)) , q ̸= 1

S
(ρ0+ρ1

2

)
− 1

2 (S(ρ0) + S(ρ1)) , q = 1
.

Specifically, for pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|, QJTq(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) = Sq
( |ψ0⟩⟨ψ0|+|ψ1⟩⟨ψ1|

2

)
.

Furthermore, the quantum Jensen-Shannon divergence QJS(ρ0, ρ1) = QJT1(ρ0, ρ1).

It is worth noting that the square root of QJTq is a distance metric when 0 ≤ q ≤ 2 [Sra21]
(also see [Vir21] for the q = 1 case). Moreover, whereas QJS can be expressed as a symmetrized
version of the quantum relative entropy D(ρ0∥ρ1) := tr(ρ0(ln(ρ0)− ln(ρ1))) by

QJS(ρ0, ρ1) =
1

2

(
D

(
ρ0

∥∥∥ρ0 + ρ1
2

)
+D

(
ρ1

∥∥∥ρ0 + ρ1
2

))
, (2.3)

a similar equality does not hold for QJTq with respect to the quantum Tsallis relative entropy

Dq(ρ0∥ρ1) :=
1−tr(ρq0ρ

1−q
1 )

1−q (see, e.g., [FYK04]).25 In addition to QJS, the work of [FvdG99]
studied a measured variant of the Jensen-Shannon divergence QJSmeas(ρ0, ρ1) in terms of Equa-
tion (2.2), namely the quantum Shannon distinguishability.

Lastly, we provide more useful properties of QJTq . By combining [FYK07, Theorem 1.5] and
[Fur05, Remark V.3], we can immediately derive Lemma 2.11 and Lemma 2.12. In particular, the
equality in Lemma 2.12 holds even in a stronger form: Sq

(∑
i∈[k] µ

q
iρi
)
= Hq(p)+

∑
i∈[k] µiSq(ρi)

for orthogonal quantum states ρ1, · · · , ρk. Additionally, it is noteworthy that Lemma 2.12 admits
a simple proof in [Kim16, Lemma 1].

Lemma 2.11 (Unitary invariance of QJTq , adapted from [FYK07, Theorem 1.5]). For any
quantum states ρ0 and ρ1, and any unitary transformation U acting on ρ0 or ρ1, it holds that :

QJTq(U
†ρ0U,U

†ρ1U) = QJTq(ρ0, ρ1).

Lemma 2.12 (Joint q-Tsallis entropy theorem, adapted from [FYK07, Theorem 1.5]). Let k be
an integer, and let {ρi}i∈[k] be a set of (mixed) quantum states. Let k-tuple µ := (µ1, · · · , µk)
be a probability distribution. Then, for any q ≥ 0, we have the following :

Sq

∑
i∈[k]

µi|i⟩⟨i| ⊗ ρi

 = Hq(µ) +
∑
i∈[k]

µqiSq(ρi).

Following the discussion in [Ras11, Section 3], Fannes’ inequality for QJTq , where 0 ≤ q ≤ 2,
was established in [FYK07, Theorem 2.4]. Notably, for QJTq with q > 1, a sharper Fannes-type
inequality was provided in [Zha07, Theorem 2]:

Lemma 2.13 (Fannes’ inequality for QJTq , adapted from Theorem 2 and Corollary 2 in [Zha07]).
For any quantum states ρ0 and ρ1 of dimension N , we have:

∀q > 1, |Sq(ρ0)− Sq(ρ1)| ≤ T(ρ0, ρ1)
q · lnq(N − 1) + Hq(T(ρ0, ρ1)).

Moreover, for the case of q = 1 (von Neumann entropy), we have:

|S(ρ0)− S(ρ1)| ≤ T(ρ0, ρ1) · ln(N − 1) + H(T(ρ0, ρ1)).

25A symmetrized version of the quantum Tsallis relative entropy will lead to a different quantity, see [JMDA21].
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2.2 Closeness testing of quantum states via state-preparation circuits

We begin by defining the closeness testing of quantum states with respect to the trace distance,
denoted as QSD[α, β],26 along with two variants of this promise problem, as described in Defi-
nition 2.14. In particularly, we say that P = (Pyes,Pno) is a promise problem, if it satisfies the
conditions Pyes ∩ Pno = ∅ and Pyes ∪ Pno ⊆ {0, 1}∗.

Definition 2.14 (Quantum State Distinguishability, QSD, adapted from [Wat02, Section 3.3]).
Let Q0 and Q1 be quantum circuits acting on m qubits (“input length”) and having n specified
output qubits (“output length”), where m(n) is a polynomial function of n. Let ρi denote the
quantum state obtained by running Qi on state |0⟩⊗m and tracing out the non-output qubits. Let
α(n) and β(n) be efficiently computable functions. Decide whether :

• Yes: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≥ α(n);

• No: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≤ β(n).
Furthermore, we denote the restricted version, where ρ0 and ρ1 are pure states, as PureQSD.

In addition to QSD, we can similarly define the closeness testing of a quantum state to the
maximally mixed state (with respect to the trace distance), denoted as QSCMM[β, α]:

Definition 2.15 (Quantum State Closeness to Maximally Mixed State, QSCMM, adapt from [Kob03,
Section 3]). Let Q be a quantum circuit acting on m qubits and having n specified output qubits,
where m(n) is a polynomial function of n. Let ρ denote the quantum state obtained by run-
ning Q on state |0⟩⊗m and training out the non-output qubits. Let α(n) and β(n) be efficiently
computable functions. Decide whether :

• Yes: A quantum circuit Q such that T(ρ, (I/2)⊗n) ≤ β(n);

• No: A quantum circuit Q such that T(ρ, (I/2)⊗n) ≥ α(n).

2.2.1 Input models and the concept of reductions

In this work, we consider the quantum purified access input model, as defined in [Wat02], in both
white-box and black-box scenarios:

• White-box input model: The input of the problem QSD consists of descriptions of
polynomial-size quantum circuits Q0 and Q1. Specifically, for b ∈ {0, 1}, the description of
Qb includes a sequence of polynomially many 1- and 2-qubit gates.

• Black-box input model: In this model, instead of providing the descriptions of the
quantum circuits Q0 and Q1, only query access to Qb is allowed, denoted as Ob for b ∈ {0, 1}.
For convenience, we also allow query access to Q†

b and controlled-Qb, denoted by O†
b and

controlled-Ob, respectively.

Next, the concept of reductions between promise problems is used to address computational
hardness in the context of the while-box input model, particularly in relation to complexity
classes. Following the definitions in [Gol08, Section 2.2.1], we introduce two types of reductions
from a promise problem P = (Pyes,Pno) to another promise problem P ′ = (P ′

yes,P ′
no):

• Karp reduction. A deterministic polynomial-time computable function f is called a Karp
reduction from a promise problem P to another promise problem P ′ if, for every x, the
following holds: x ∈ Pyes if and only if f(x) ∈ P ′

yes, and x ∈ Pno if and only if f(x) ∈ P ′
no.

26While Definition 2.14 aligns with the classical counterpart of QSD defined in [SV03, Section 2.2], it is slightly
less general than the definition in [Wat02, Section 3.3]. Specifically, Definition 2.14 assumes that the input length
m and the output length n are polynomially equivalent, whereas [Wat02, Section 3.3] allows for cases where the
output length (e.g., a single qubit) is much smaller than the input length.
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• Turing reduction. A promise problem P is Turing-reducible to a promise problem P ′ if
there exists a deterministic polynomial-time oracle machine A such that, for every function
f that solves P ′ it holds that Af solves P. Here, Af (x) denotes the output of machine A
on input x when given oracle access to f .

It is noteworthy that Karp reduction is a special case of Turing reduction.

2.2.2 Computational hardness of QSD and QSCMM

Note that the polarization lemma for the total variation distance [SV03] and the trace dis-
tance [Wat02, Wat09] have the same inequalities. Consequently, using the parameters chosen
in [BDRV19, Theorem 3.14], we obtain the QSZK-hardness of QSD:

Lemma 2.16 (QSD is QSZK-hard). Let α(n) and β(n) be efficiently computable functions
satisfying α2(n) − β(n) ≥ 1/O(log n). For any constant τ ∈ (0, 1/2), QSD[α, β] is QSZK-hard
under Karp reduction when α(n) ≤ 1− 2−n

τ and β(n) ≥ 2−n
τ for every n ∈ N.

Following the construction in [RASW23, Theorem 12] (see also [LGLW23, Lemma 17] and
[WZ24a, Theoerm IV.1]), we can establish that PureQSD is BQP-hard under Karp reduction:

Lemma 2.17 (PureQSD is BQP-hard). Let α(n) and β(n) be efficiently computable functions
such that α(n)−β(n) ≥ 1/poly(n). For any polynomial l(n), let n′ := n+1, PureQSD[α(n′), β(n′)]

is BQP-hard when α(n′) ≤
√
1− 2−2l(n′−1) and β(n′) ≥ 2−(l(n′−1)+1)/2 for every integer n′ ≥ 2.

Specifically, by choosing l(n′ − 1) = n′, it holds that : For every integer n′ ≥ 2,

PureQSD
[√

1− 2−2n′ , 2−(n′+1)/2
]

is BQP-hard under Karp reduction.

Proof. Since BQP is closed under complement, it suffices to show that PureQSD is coBQP-
hard under Karp reduction. For any promise problem (Pyes,Pno) ∈ coBQP[b(n), a(n)] with
a(n) − b(n) ≥ 1/ poly(n), we assume without loss of generality that the coBQP circuit Ĉx has
an output length of n. Leveraging error reduction for coBQP via a sequential repetition, for any
polynomial l(n), we can achieve that the acceptance probability Pr[Cx accepts] ≤ 2−l(n) for yes
instances, whereas Pr[Cx accepts] ≥ 1− 2−l(n) for no instances.

Next, we construct a new quantum circuit C ′
x with an additional single-qubit register F

initialized to zero. The circuit C ′
x is defined as C ′

x := C†
xX

†
OCNOTO→FXOCx, where the single-

qubit register O corresponds to the output qubit. It is evident that the output length n′ of C ′
x

satisfies n′ = n + 1. We say that C ′
x accepts if the measurement outcomes of all qubits are all

zero. Then, we have:

Pr[C ′
x accepts]=

∥∥(|0̄⟩⟨0̄|⊗|0⟩⟨0|F)C ′
x(|0̄⟩⊗|0⟩F)

∥∥2
2
=
∣∣⟨0̄|C†

x|1⟩⟨1|OCx|0̄⟩
∣∣2=Pr[Cx accepts]2. (2.4)

Here, the second equality owes to CNOTO→F = |0⟩⟨0|O ⊗ IF + |1⟩⟨1|O ⊗ XF. By defining two
pure states |ψ0⟩ := |0̄⟩ ⊗ |0⟩F and |ψ1⟩ := C ′

x(|0̄⟩ ⊗ |0⟩F) corresponding to Q0 = I and Q1 = C ′
x,

respectively, we can derive the following:

Pr[C ′
x accepts] = | ⟨ψ0|ψ1⟩ |2 = 1− T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|). (2.5)

Combining Equation (2.4) and Equation (2.5), we conclude that:
• For yes instances, Pr[Cx accepts] = | ⟨ψ0|ψ1⟩ | ≤ 2−l(n) implies that

T(ρ0, ρ1) ≥
√
1− 2−2l(n) ≥

√
1− 2−2l(n′−1).

• For no instances, Pr[Cx accepts] = | ⟨ψ0|ψ1⟩ | ≥ 1− 2−l(n) yields that

T(ρ0, ρ1) ≤
√

1− (1− 2−l(n))2 =
√

2−l(n)+1 − 2−2l(n) ≤ 2−(l(n)+1)/2 ≤ 2−(l(n′−1)+1)/2.

Lastly, combining the proof strategy outlined in [Kob03, Section 3] and the reduction from
QEA to QSCMM in [BASTS10, Section 5.3], the NIQSZK hardness of QSCMM was established
in [CCKV08, Section 8.1] with an appropriate parameter trade-off:
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Lemma 2.18 (QSCMM is NIQSZK-hard, adapted from [CCKV08, Section 8.1]).

For any n ≥ 3, QSCMM[1/n, 1− 1/n] is NIQSZK-hard under Karp reduction.

2.2.3 Query and sample complexity lower bounds for states and distributions

We begin by stating a query complexity lower bound for QSD. Note that an n-qubit maximally
mixed state (I/2)⊗n is commutative with any n-qubit quantum states ρ. Consider the spec-
tral decomposition ρ =

∑
i∈[2n] µi|vi⟩⟨vi|, where {|vi⟩}i∈[2n] is an orthonormal basis, we have

T(ρ, (I/2)⊗n) = TV(µ,U2n), where U2n is a uniform distribution over [2n]. Leveraging a similar
argument for ρU defined in Lemma 2.19, we can obtain:

Lemma 2.19 (Query complexity lower bound for QSD, adapted from [CFMdW10, Theorem
2]). For any ϵ ∈ [0, 1/2) and any n-qubit quantum state ρ of rank r, there exists an n-qubit state
ρU, where the eigenvalues of ρU form a uniform distribution on the support of ρ, such that the
quantum query complexity to decide whether T(ρ, ρU) is at least 1− ϵ or at most ϵ, in the purified
quantum query access model, is Ω(r1/3).

It is noteworthy that the quantum query model used in [CFMdW10] differs from the purified
quantum query access model. Nevertheless, this lower bound also applies to our query model,
as the discussion after Definition 3 in [GL20].

Next, we introduce a query complexity lower bound of distinguishing probability distributions
provided in [Bel19], which will be used to prove the quantum query complexity lower bound for
estimating the quantum Tsallis entropy.

Lemma 2.20 (Query complexity for distinguishing probability distributions, [Bel19, Theorem
4]). Suppose that Up and Uq are two unitary operators such that

Up|0⟩ =
∑
j∈[n]

√
pj |j⟩|φj⟩, Uq|0⟩ =

∑
j∈[n]

√
qj |j⟩|ψj⟩,

where p and q are probability distributions on [n], and {|φj⟩} and {|ψj⟩} are orthonormal bases.
Then, any quantum query algorithm that distinguishes Up and Uq requires query complexity

Ω(1/dH(p, q)).

Here, the Hellinger distance is defined as

dH(p, q) =

√√√√1

2

∑
j∈[n]

(√
pj −

√
qj
)2
.

It is noteworthy that Lemma 2.20 was ever used as a tool to prove the quantum query
complexity lower bounds for the closeness testing of probability distributions [LWL24] and the
estimations of trace distance and fidelity [Wan24].

Furthermore, we also need a sample complexity lower bound for QSD, which follows from
[OW21, Theorem 4.2] and is specified in Lemma 2.21. Here, sample complexity denotes the
number of copies of ρ required to accomplish a specific closeness testing task.

Lemma 2.21 (Sample complexity lower bound for QSD, adapted from [OW21, Corollary 4.3]).
For any ϵ ∈ (0, 1/2] and any n-qubit quantum state ρ of rank r, there exists an n-qubit state
ρU, where the eigenvalues of ρU form a uniform distribution on the support of ρ, such that the
quantum sample complexity to decide whether T(ρ, ρU) is at least ϵ or exactly 0 is Ω(r/ϵ2).

2.3 Polynomial approximations

We provide several useful results and tools for polynomial approximations in this subsections.
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2.3.1 Best uniform polynomial approximations

Let f(x) be a continuous function defined on the interval [−1, 1] that we aim to approximate
using a polynomial of degree at most d. We define P ∗

d as a best uniform approximation on [−1, 1]
to f of degree d if, for any degree-d polynomial approximation Pd of f , the following holds:

max
x∈[−1,1]

|f(x)− P ∗
d (x)| ≤ max

x∈[−1,1]
|f(x)− Pd(x)|.

Let Rd[x] be the set of all polynomials (with real coefficients) of degree at most d. Equivalently,
the best uniform approximation P ∗

d to f is the polynomial that solves the minimax problem

min
Pd∈Rd[x]

max
x∈[−1,1]

|f(x)− Pd(x)|.

Especially, we need the best uniform polynomial approximation to positive constant powers:

Lemma 2.22 (Best uniform approximation of positive constant powers, adapted from [Tim63,
Section 7.1.41]). For any positive integer r and order α ∈ (−1, 1), let P ∗

d ∈ R[x] be the best poly-
nomial approximation for f(x)=xr−1|x|1+α of degree d=

⌈
(βα/ϵ)

1
r+α

⌉
, where βα is a constant

depending on α. Then, for sufficiently small ϵ, it holds that maxx∈[−1,1] |P ∗
d (x)− f(x)| ≤ ϵ.

2.3.2 Chebyshev expansion and truncations

We introduce Chebyshev polynomial and an averaged variant of the Chebyshev truncation. We
recommend [Riv90, Chapter 3] for a comprehensive review of Chebyshev expansion.

Definition 2.23 (Chebyshev polynomials). The Chebyshev polynomials (of the first kind) Tk(x)
are defined via the following recurrence relation: T0(x) := 1, T1(x) := x, and Tk+1(x) :=
2xTk(x)− Tk−1(x). For x ∈ [−1, 1], an equivalent definition is Tk(cos θ) = cos(kθ).

To use Chebyshev polynomials (of the first kind) for Chebyshev expansion, we first need to
define an inner product between two functions, f and g, as long as the following integral exists:

⟨f, g⟩ := 2

π

∫ 1

−1

f(x)g(x)√
1− x2

dx. (2.6)

The Chebyshev polynomials form an orthonormal basis in the inner product space induced by
⟨·, ·⟩ defined in Equation (2.6). As a result, any continuous and integrable function f : [−1, 1]→
R whose Chebyshev coefficients satisfy limk→∞ ck = 0, where ck is defined in Equation (2.7),
has a Chebyshev expansion given by:

f(x) =
1

2
c0T0(x) +

∞∑
k=1

ckTk(x), where ck := ⟨Tk, f⟩. (2.7)

Instead of approximating functions directly by the Chebyshev truncation P̃d = c0/2 +∑d
k=1 ckTk, we use an average of Chebyshev truncations, known as the de La Vallée Poussin

partial sum, we obtain the degree-d averaged Chebyshev truncation P̂d′ , which is a polynomial
of degree d′ = 2d− 1:

P̂d′(x) :=
1

d

d′∑
l=d

P̃l(x) =
ĉ0
2

+
d′∑
k=1

ĉkTk(x) where ĉk =

{
ck, 0 ≤ k ≤ d′
2d−k
d ck, k > d

, (2.8)

we can achieve the truncation error 4ϵ for any function that admits Chebyshev expansion.

Lemma 2.24 (Asymptotically best approximation by averaged Chebyshev truncation, adapted
from Exercises 3.4.6 and 3.4.7 in [Riv90]). For any function f that has a Chebyshev expansion,
consider the degree-d averaged Chebyshev truncation P̂d′ defined in Equation (2.8). Let εd(f) be
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the truncation error corresponds to the degree-d best uniform approximation on [−1, 1] to f . If
there is a degree-d polynomial P ∗

d ∈ R[x] such that maxx∈[−1,1] |f(x)− P ∗
d (x)| ≤ ϵ, then

max
x∈[−1,1]

∣∣f(x)− P̂d′(x)∣∣ ≤ 4εd(f) ≤ 4 max
x∈[−1,1]

|f(x)− P ∗
d (x)| ≤ 4ϵ.

2.4 Quantum algorithmic toolkit

In this subsection, we provide several quantum algorithmic tools: the quantum singular value
transformation, three useful quantum algorithmic subroutines, and the quantum samplizer,
which enables a quantum query-to-sample simulation.

2.4.1 Quantum singular value transformation

We begin by introducing the notion of block-encoding:

Definition 2.25 (Block-encoding). A linear operator A on an (n+a)-qubit Hilbert space is said
to be an (α, a, ϵ)-block-encoding of an n-qubit linear operator B, if

∥α(⟨0|⊗a ⊗ In)A(|0⟩⊗a ⊗ In)−B∥ ≤ ϵ,

where In is the n-qubit identity operator and ∥·∥ is the operator norm.

Then, we state the quantum singular value transformation:

Lemma 2.26 (Quantum singular value transformation, [GSLW19, Theorem 31]). Suppose that
unitary operator U is an (α, a, ϵ)-block-encoding of Hermitian operator A, and P ∈ R[x] is a
polynomial of degree d with |P (x)| ≤ 1

2 for x ∈ [−1, 1]. Then, we can implement a quantum
circuit Ũ that is a (1, a+2, 4d

√
ϵ/α+ δ)-block-encoding of P (A/α), by using O(d) queries to U

and O((a+1)d) one- and two-qubit quantum gates. Moreover, the classical description of Ũ can
be computed in deterministic time poly(d, log(1/δ)).

2.4.2 Quantum subroutines

The first subroutine is the quantum amplitude estimation:

Lemma 2.27 (Quantum amplitude estimation, [BHMT02, Theorem 12]). Suppose that U is a
unitary operator such that

U |0⟩|0⟩ = √p|0⟩|ϕ0⟩+
√
1− p|1⟩|ϕ1⟩,

where |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states and p ∈ [0, 1]. Then, there is a quantum
query algorithm using O(M) queries to U that outputs p̃ such that

Pr

[
|p̃− p| ≤

2π
√
p(1− p)
M

+
π2

M2

]
≥ 8

π2
.

Moreover, if U acts on n qubits, then the quantum query algorithm can be implemented by using
O(Mn) one- and two-qubit quantum gates.

The second subroutine prepares a purified density matrix, originally stated in [LC19]:

Lemma 2.28 (Block-encoding of density operators, [GSLW19, Lemma 25]). Suppose that U is
an (n+ a)-qubit unitary operator that prepares a purification of an n-qubit mixed quantum state
ρ. Then, we can implement a unitary operator W by using 1 query to each of U and U † such
that W is a (1, n+ a, 0)-block-encoding of ρ.

The third subroutine is a specific version of one-bit precision phase estimation [Kit95], often
referred to as the Hadamard test [AJL09], as stated in [GP22]:
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Lemma 2.29 (Hadamard test for block-encodings, adapted from [GP22, Lemma 9]). Suppose
that unitary operator U is a (1, a, 0)-block-encoding of an n-qubit operator A. Then, we can
implement a quantum circuit that, on input an n-qubit mixed quantum state ρ, outputs 0 with
probability 1

2 +
1
2 Re[tr(Aρ)] (resp., 1

2 +
1
2 Im[tr(Aρ)]), by using 1 query to controlled-U and O(1)

one- and two-qubit quantum gates.
Moreover, if an (n+ a)-qubit unitary operator O prepares a purification of ρ, then, by com-

bining Lemma 2.27, we can estimate tr(Aρ) to within additive error ϵ by using O(1/ϵ) queries
to each of U and O and O((n+ a)/ϵ) one- and two-qubit quantum gates.

2.4.3 Quantum samplizer

We introduce the notion of samplizer in [WZ24b], which helps us establish the sample complexity
upper bound from the query complexity upper bound.

Definition 2.30 (Samplizer). A samplizer Samplize∗⟨∗⟩ is a mapping that converts quantum
query algorithms (quantum circuit families with query access to quantum unitary oracles) to
quantum sample algorithms (quantum channel families with sample access to quantum states)
such that: For any δ > 0, quantum query algorithm AU , and quantum state ρ, there exists a
unitary operator Uρ that is a (2, a, 0)-block-encoding of ρ for some a > 0, satisfying∥∥Samplizeδ⟨AU ⟩[ρ]−AUρ

∥∥
⋄ ≤ δ,

where ∥·∥⋄ is the diamond norm and E [ρ](·) is a quantum channel E with sample access to ρ.

Then, we include an efficient implementation of the samplizer in [WZ24b], which is based on
quantum principal component analysis [LMR14, KLL+17] and generalizes [GP22, Corollary 21]
and [WZ23, Theorem 1.1].

Lemma 2.31 (Optimal samplizer, [WZ24b, Theorem 4]). There is a samplizer Samplize∗⟨∗⟩ such
that for δ > 0 and quantum query algorithm AU with query complexity Q, the implementation
of Samplizeδ⟨AU ⟩[ρ] uses Õ(Q2/δ) samples of ρ.

3 Efficient quantum algorithms for estimating q-quantum Tsallis
entropy

In this section, we propose efficient quantum algorithms for estimating the quantum Tsallis en-
tropy Sq(ρ) when q ≥ 1+Ω(1), using either queries to the state-preparation circuit or samples of
the state ρ. The key ingredient underlying our algorithms is an efficient uniform approximation
to positive constant power functions. Specifically, our polynomial approximation (Lemma 3.1) is
“full-range”, meaning it maintains a uniform error bound across the entire interval [−1, 1]. This
differs from the polynomial approximations commonly used in QSVT, which typically provide
separate error bounds for the intervals [−δ, δ] and [−1,−δ) ∪ (δ, 1].

Utilizing our “full-range” polynomial approximation, we construct a query-efficient quantum
algorithm for estimating tr(ρq), as established in Theorem 3.2. Consequently, our quantum
query algorithm (Theorem 3.2) directly leads to BQP containments for the promise problems
TsallisQEAq and TsallisQEDq , defined in Section 5. Furthermore, by employing the sam-
plizer in [WZ24b], we develop a sample-efficient quantum algorithm for estimating tr(ρq), as
presented in Theorem 3.3.

3.1 Efficient uniform approximations to positive constant power functions

We provide an efficiently computable uniform approximation to positive constant powers:
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Lemma 3.1 (Efficient uniform polynomial approximation to positive constant powers). Let r be
a positive integer and let α be a real number in (−1, 1). For any ϵ ∈ (0, 1/2), there is a degree-d
polynomial Pd ∈ R[x], where d =

⌈
(β′α/ϵ)

1
r+α

⌉
and β′α is a constant depending on α, that can be

deterministically computed in Õ(d) time. For sufficiently small ϵ, it holds that :

max
x∈[−1,1]

∣∣∣∣12xr−1|x|1+α − Pd(x)
∣∣∣∣ ≤ ϵ and max

x∈[−1,1]
|Pd(x)| ≤ 1.

Furthermore, Pd has the same parity as the integer r − 1.

Proof. Let f(x) := 1
2x

r−1|x|1+α. For any ϵ̃ ∈ (0, 1/8), using Lemma 2.22, we obtain the degree-d̃

best polynomial approximation P ∗
d̃
(x), where d̃ =

⌈
(βα/ϵ̃)

1
r+α

⌉
and βα is a constant depending

on α, such that

max
x∈[−1,1]

∣∣∣∣12xr−1|x|1+α − P ∗
d̃
(x)

∣∣∣∣ ≤ ϵ̃ and max
x∈[−1,1]

∣∣∣P ∗
d̃
(x)
∣∣∣ ≤ 1

2
+ ϵ̃. (3.1)

Next, we consider the degree-d̃ averaged Chebyshev truncation (Equation (2.8)) of f(x). In
particular, let d := 2d̃ − 1 =

⌈
(β′α/ϵ)

1
r+α

⌉
, where β′α is another constant depending on α and ϵ

will be specified later. We obtain the following degree-d polynomial:

Pd(x) =
ĉ0
2

+
d∑

k=1

ĉkTk(x), where ĉk :=

{
ck, 0 ≤ k ≤ d̃
2d̃−k
d̃
ck, k > d̃

and ck := ⟨Tk, f⟩. (3.2)

Using the asymptotically best approximation by averaged Chebyshev truncation (Lemma 2.24)
and Equation (3.1), we can derive that Pd(x) satisfies the following:

max
x∈[−1,1]

∣∣∣∣12xr−1|x|1+α − Pd(x)
∣∣∣∣ ≤ 4ϵ̃ := ϵ and max

x∈[−1,1]
|Pd(x)| ≤

1

2
+ 4ϵ̃ =

1

2
+ ϵ < 1.

It remains to show that Pd(x) can be computed in deterministic time Õ(d). A direct calcu-
lation implies that the Chebyshev coefficient {ck}0≤k≤d in Equation (3.2) satisfy the following:

c2l+1 = c2l−1 ·
r + α− 2l + 1

r + α+ 2l + 1
, c2l = c2l−2 ·

r + α− 2l + 2

r + α+ 2l
,

c0 =
2

π

∫ 1

−1

1
2x

r−1|x|1+α · T0(x)√
1− x2

dx = −−1 + (−1)r

2
√
π

·
Γ
(
1
2(r + α+ 1)

)
Γ
(
1
2(r + α+ 2)

) ,
c1 =

2

π

∫ 1

−1

1
2x

r−1|x|1+α · T1(x)√
1− x2

dx =
1 + (−1)r

2
√
π

·
Γ
(
1
2(r + α+ 2)

)
Γ
(
1
2(r + α+ 3)

) .
Here, the Gamma function Γ(x) :=

∫∞
0 tx−1e−xdt for any x > 0.

Consequently, we can recursively compute the averaged Chebyshev coefficient {ĉk}0≤k≤d in
deterministic time Õ(d). We complete the proof by noting that the Chebyshev polynomials
{Tk(x)}0≤k≤d also can be recursively computed in deterministic time Õ(d).

3.2 Quantum q-Tsallis entropy approximation for q constantly larger than 1

3.2.1 Query-efficient quantum algorithm for estimating tr(ρq)

We now present efficient quantum query algorithms for estimating the q-Tsallis entropy of a
mixed quantum state. For readability, their framework is given in Algorithm 1.

Theorem 3.2 (Trace estimation of quantum state constant powers via queries). Suppose that Q
is a unitary operator that prepares a purification of mixed quantum state ρ. For every constant
q > 1, there is a quantum query algorithm that estimates tr(ρq) to within additive error ϵ by
using O(1/ϵ

1+ 1
q−1 ) queries to Q.
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Algorithm 1 A framework for estimating q-Tsallis entropy for q > 1 (query access)
Input: A quantum circuit Q that prepares a purification of an n-qubit mixed quantum state ρ,

and a precision parameter ϵ ∈ (0, 1).
Output: A single bit b ∈ {0, 1} such that Pr[b = 0] ≈ 1

2 + 1
8 tr(ρ

q).
1: Implement a unitary operator Uρ that is a block-encoding of ρ by Lemma 2.28, using O(1)

queries to Q.
2: Let P (x) be a polynomial that approximates 1

4x
q−1 in the range [0, 1], where P (x) is de-

termined according to ϵ, n, and q. More precisely, for constant q > 1, P (x) is chosen by
Lemma 3.1.

3: Implement a unitary operator UP (ρ) that is a block-encoding of P (ρ) by quantum singular
value transformation (Lemma 2.26), using O(deg(P )) queries to Uρ.

4: Perform the Hadamard test on ρ and UP (ρ) by Lemma 2.29, and return the measurement
outcome.

Proof. Let Q be an (n + a)-qubit unitary operator that prepares a purification of the n-qubit
mixed quantum state ρ. Then, by Lemma 2.28, we can implement a unitary operator Uρ that
is a (1, n+ a, 0)-block-encoding of ρ, by using O(1) queries to Q.

Let ϵp ∈ (0, 1) be a parameter to be determined later. By Lemma 3.1 with r := max{⌊q −

1⌋, 1}, α := q − 1− r, and ϵ := ϵp, there exists a polynomial P ∈ R[x] of degree d = O(1/ϵ
1

q−1
p )

such that
max
x∈[0,1]

∣∣∣∣P (x)− 1

2
xq−1

∣∣∣∣ ≤ ϵp, and max
x∈[−1,1]

|P (x)| ≤ 1.

By Lemma 2.26 with P := 1
2P , α := 1, a := n+ a, ϵ := 0 and d := O(1/ϵ

1
q−1
p ), we can implement

a quantum circuit UP (ρ) that is a (1, n+ a+ 2, δ)-block-encoding of 1
2P (ρ), by using O(1/ϵ

1
q−1
p )

queries to Uρ. Moreover, the classical description of UP (ρ) can be computed in deterministic
time poly(1/ϵp, log(1/δ)).

Suppose that UP (ρ) is a (1, n+ a+ 2, 0)-block-encoding of A, i.e., ∥A− 1
2P (ρ)∥ ≤ δ. Then,

by Lemma 2.29, we can obtain an estimate x̃ of tr(Aρ) to within additive error ϵH by using
O(1/ϵH) queries to each of UP (ρ) and Q such that

Pr
[
|x̃− tr(Aρ)| ≤ ϵH

]
≥ 2

3
. (3.3)

It can be seen that, in the overall quantum circuit to obtain x̃, the number of queries to Q is

O

(
1

ϵH

)
·O

 1

ϵ
1

q−1
p

 = O

 1

ϵHϵ
1

q−1
p

,
and the number of one- and two-qubit quantum gates is

O

 n+ a

ϵHϵ
1

q−1
p

.
Moreover, the classical description of the overall quantum circuit can be computed in determin-
istic time poly(1/ϵp, 1/ϵH , log(1/δ)).

On the other hand, we have∣∣∣∣tr(Aρ)− tr

(
1

2
P (ρ)ρ

)∣∣∣∣ ≤ ∥∥∥∥A− 1

2
P (ρ)

∥∥∥∥ ≤ δ, (3.4)

where we use the inequality |tr(AB)| ≤ ∥A∥ tr(|B|) (which is a special case of the matrix Hölder
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inequality, e.g., [Bau11, Theorem 2]). We also have∣∣∣∣tr(1

2
P (ρ)ρ

)
− tr

(
1

4
ρq
)∣∣∣∣ ≤ 1

2
ϵp. (3.5)

To see Equation (3.5), suppose that ρ =
∑

j λj |ψj⟩⟨ψj | is the spectrum decomposition of ρ with
λj ≥ 0 for all j and

∑
j λj = 1. Then,∣∣∣∣tr(1

2
P (ρ)ρ

)
− tr

(
1

4
ρq
)∣∣∣∣ =

∣∣∣∣∣∣
∑
j

(
1

2
P (λj)λj −

1

4
λqj

)∣∣∣∣∣∣
≤
∑
j

1

2
λj

∣∣∣∣P (λj)− 1

2
λq−1
j

∣∣∣∣
≤ 1

2

∑
j

λjϵp =
1

2
ϵp.

Finally, by combining Equations (3.3) to (3.5), we obtain

Pr
[
|4x̃− tr(ρq)| ≤ 2ϵp + 4ϵH + 4δ

]
≥ 2

3
.

To make 4x̃ an ϵ-estimate of tr(ρq) with high probability, it is sufficient to take ϵp = ϵH = δ =
ϵ/10, thereby using

O

(
1

ϵ
1+ 1

q−1

)
queries to Q.

3.2.2 Sample-efficient quantum algorithm for estimating tr(ρq)

We also study the sample complexity for the trace estimation of quantum state powers, which
is obtained by extending the quantum query algorithm in Theorem 3.2 via the samplizer in
Lemma 2.31. An illustrative framework is given in Algorithm 2.

Algorithm 2 A framework for estimating q-Tsallis entropy for q > 1 (sample access)
Input: Independent and identical samples of an n-qubit mixed quantum state ρ, and parameters

q > 1 and δ, ϵp, δp ∈ (0, 1).
Output: A single bit b ∈ {0, 1} such that Pr[b = 0] ≈ 1

2 + 1
2q+3 tr(ρ

q).

1: function ApproxPower(q, ϵp, δp)U

Input: A unitary (1, a, 0)-block-encoding U of A, and parameters q > 1, ϵp, δp ∈
(0, 1).
Output: A unitary operator Ũ .

2: Let P (x) be a polynomial of degree d = O(1/ϵ
1

q−1
p ) such that maxx∈[0,1]|P (x) −

1
2x

q−1| ≤ ϵp and maxx∈[−1,1]|P (x)| ≤ 1 (by Lemma 3.1).
3: Construct a unitary (1, a+ 2, δp)-block-encoding Ũ of 1

2P (A) (by Lemma 2.26).
4: return Ũ .
5: end function

6: Let b′ be the outcome of the Hadamard test (by Lemma 2.29) performing on the quantum
state ρ and Samplizeδ⟨ ApproxPower(q, ϵp, δp)U ⟩[ρ] (as if it were unitary).

7: return b′.
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Theorem 3.3 (Trace estimation of quantum state constant powers via samples). For every
q ≥ 1+Ω(1), there is a quantum sample algorithm that estimates tr(ρq) to within additive error
ϵ by using Õ(1/ϵ

3+ 2
q−1 ) samples of ρ.

Proof. Let unitary operator U be a (1, a, 0)-block-encoding of A for some a > 0 and let ϵp, δp ∈
(0, 1) be parameters to be determined. By Lemma 3.1 with r := max{⌊q− 1⌋, 1}, α := q− 1− r,

and ϵ := ϵp, there is a polynomial P ∈ R[x] of degree d = O(1/ϵ
1

q−1
p ) such that

max
x∈[0,1]

∣∣∣∣P (x)− 1

2
xq−1

∣∣∣∣ ≤ ϵp, and max
x∈[−1,1]

|P (x)| ≤ 1.

By Lemma 2.26 with P := 1
2P , α := 1, a := n + a, ϵ := 0, δ := δp and d := O(1/ϵ

1
q−1
p ), we

can implement a quantum circuit UP (A) that is a (1, n+ a+ 2, δp)-block-encoding of 1
2P (A), by

using O(1/ϵ
1

q−1
p ) queries to U . Moreover, the classical description of UP (A) can be computed in

deterministic time poly(1/ϵp, log(1/δp)). Let ApproxPower(q, ϵp, δp)U denote the procedure of
implementing UP (A) by using queries to U .

For our purpose, we take A := ρ/2. Suppose that UP ( ρ
2
) is a (1, n+a+2, 0)-block-encoding of

B, then ∥B− 1
2P (

ρ
2)∥ ≤ δp. Let b ∈ {0, 1} be the outcome of the Hadamard test (by Lemma 2.29)

on ρ and UP ( ρ
2
), then

Pr[b = 0] =
1

2
+

1

2
Re[tr(Bρ)]. (3.6)

Let δ ∈ (0, 1) be a parameter to be determined, and let b′ ∈ {0, 1} be the outcome of the
Hadamard test (by Lemma 2.29) on ρ and Samplizeδ⟨ApproxPower(q, ϵp, δp)U ⟩[ρ] (as if it were
UP ( ρ

2
)). Then, ∣∣Pr[b = 0]− Pr[b′ = 0]

∣∣ ≤ δ. (3.7)

Now we repeat the Hadamard test k times, obtaining outcomes b′1, b′2, . . . , b′k ∈ {0, 1}, where k
is an integer to be determined. Let X = 1

k

∑k
j=1 b

′
j . Then, by Hoeffding’s inequality ([Hoe63,

Theorem 2]), we have
Pr
[∣∣X − E[b′]

∣∣ ≤ ϵH] ≥ 1− 2 exp
(
−2kϵ2H

)
. (3.8)

On the other hand, similar to the proof of Theorem 3.2, we have∣∣∣∣Re[tr(Bρ)]− tr

(
1

2
P
(ρ
2

)
ρ

)∣∣∣∣ ≤ ∣∣∣∣tr(Bρ)− tr

(
1

2
P
(ρ
2

)
ρ

)∣∣∣∣ ≤ ∥∥∥∥B − 1

2
P
(ρ
2

)∥∥∥∥ ≤ δp. (3.9)

We also have ∣∣∣∣tr(1

2
P
(ρ
2

)
ρ

)
− tr

(
1

2q+2
ρq
)∣∣∣∣ ≤ 1

2
ϵp. (3.10)

To see Equation (3.5), suppose that ρ =
∑

j λj |ψj⟩⟨ψj | is the spectrum decomposition of ρ with
λj ≥ 0 for all j and

∑
j λj = 1. Then,∣∣∣∣tr(1

2
P
(ρ
2

)
ρ

)
− tr

(
1

2q+2
ρq
)∣∣∣∣ =

∣∣∣∣∣∣
∑
j

(
1

2
P

(
λj
2

)
λj −

1

2q+2
λqj

)∣∣∣∣∣∣
≤
∑
j

1

2
λj

∣∣∣∣∣P
(
λj
2

)
− 1

2

(
λj
2

)q−1
∣∣∣∣∣

≤ 1

2

∑
j

λjϵp =
1

2
ϵp.

Finally, by combining Equations (3.6) to (3.10), we obtain

Pr
[∣∣2q+2(1− 2X)− tr(ρq)

∣∣ ≤ 2q+1(4δ + 4ϵH + 2δp + ϵp)
]
≥ 1− 2 exp(−2kϵ2H).
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By taking δ = ϵH = δp = ϵp := 2−q−5ϵ and k :=
⌈
ln(6)
2ϵ2H

⌉
, we have

Pr
[∣∣2q+2(1− 2X)− tr(ρq)

∣∣ ≤ ϵ] ≥ 2

3
,

which means that 2q+2(1− 2X) is an ϵ-estimate of tr(ρq) with high probability.
To complete the proof, we analyze the sample complexity of our algorithm. The algorithm

consists of k repetitions of the Hadamard test, and each Hadamard test uses one sample of ρ and

one call to Samplizeδ⟨ApproxPower(q, ϵp, δp)U ⟩[ρ]. Here, ApproxPower(q, ϵp, δp)U uses O(1/ϵ
1

q−1
p )

queries to U , and thus by Lemma 2.31 we can implement Samplizeδ⟨ApproxPower(q, ϵp, δp)U ⟩[ρ]

by using Õ(1/(δϵ
2

q−1
p )) samples of ρ. Therefore, the total number of samples of ρ is

k · Õ

 1

δϵ
2

q−1
p

 = Õ

(
1

ϵ
3+ 2

q−1

)
.

4 Properties of quantum Jensen-Tsallis divergence and Tsallis
entropy

In this section, we present inequalities between the quantum q-Jensen-Tsallis divergence (1 ≤
q ≤ 2) and the trace distance. Our results (Theorem 4.1) extend the previous results for the
quantum Jensen-Shannon divergence (q = 1), as stated in [BH09, Theorem 14].

Theorem 4.1 (QJTq vs. T). For any quantum states ρ0 and ρ1, and 1 ≤ q ≤ 2, we have:

Hq

(
1

2

)
−Hq

(
1− T(ρ0, ρ1)

2

)
≤ QJTq(ρ0, ρ1) ≤ Hq

(
1

2

)
· T(ρ0, ρ1)q.

To prove Theorem 4.1, we first need to prove the data-processing inequality for QJTq
(Lemma 4.5), which crucially relies on the relatively recent results on the joint convexity of
QJTq [CT14, Vir19]. Consequently, we can establish Theorem 4.1 by proving the inequalities
in Section 4.2. In particular, the lower bound on QJTq in terms of T (Lemma 4.6) holds for
q ∈ [1, 2], and the upper bound on QJTq in terms of T (Lemma 4.7) for the same range of q.

Next, to utilize Lemma 4.6, we provide bounds of the Tsallis binary entropy in Section 4.3:

Theorem 4.2 (Tsallis binary entropy bounds). For any p = (x, 1 − x), let Hq(x) denote the
Tsallis binary entropy with 1 ≤ q ≤ 2, we have:

Hq(1/2) · 4x(1− x) ≤ Hq(x) ≤ Hq(1/2) · (4x(1− x))1/2.

It is noteworthy that the best known bounds for the Shannon binary entropy (q = 1) are
H(1/2) · 4x(1− x) ≤ H(q) ≤ H(1/2) · (4x(1− x))

1
2H(1/2) , as shown in [Top01, Theorem 1.2]. Our

lower bound on the Tsallis binary entropy (Lemma 4.8) matches the case of q = 1, whereas
our upper bound (Lemma 4.9) only aligns with a weaker bound H(q) ≤ H(1/2) · (4x(1− x))1/2
in [Lin91, Theorem 8] and the proof of Lemma 4.9 is more complicated than in the case of q = 1.

Lastly, we provide the inequalities between the Tsallis entropy of a distribution p and the
total variation distance between p and the uniform distribution ν of the same dimension, as
stated in Lemma 4.10. By adding an additional assumption regarding q and TV(p, ν), this
lemma partially generalizes the previous result for the case of q = 1 (cf. [CCKV08, Fact 8.4]
and [KLGN19, Lemma 16]) to the case of q > 1.
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4.1 Data-processing inequality for QJTq from the joint convexity

With the correspondence between QJS and the quantum relative entropy (Equation (2.3)),
the joint convexity of QJS directly follows from the joint convexity of the quantum relative
entropy [Lie73, Uhl77] (see also [Rus22] for a simple proof). However, since QJTq does not
correspond to a Tsallis variant of quantum relative entropy (e.g., quasi-entropy [Pet07, Equation
(3.23)]) in this sense, the joint convexity of QJTq can only be established by the recent results
of [CT14, Vir19]:

Lemma 4.3 (Joint convexity of QJTq , adapted from [CT14, Vir19]). Let k be an integer. For
any i ∈ [k], let ρ(i)0 and ρ(i)1 be two quantum states. Let k-tuple µ := (µ1, · · · , µk) be a probability
distribution. Then, for any q ∈ [1, 2] and t ∈ (0, 1), the joint convexity of QJTq holds:

QJTq

∑
i∈[k]

µiρ
(i)
0 ,
∑
i∈[k]

µiρ
(i)
1

 ≤∑
i∈[k]

µiQJTq

(
ρ
(i)
0 , ρ

(i)
1

)
.

Proof. Following [CT14, Theorem 2.3(2)], we know that the quantum q-Tsallis entropy Sq(ρ)
for 1 ≤ q ≤ 2 is in the Matrix Entropy Class [CT14, Definition 2.2] (or [Vir19, Definition 2]).
Therefore, as a corollary of [Vir19, Theorem 1], we can obtain: for any 1 ≤ q ≤ 2 and 0 < λ < 1,

QJTq
(
(1− λ)ρ0 + λρ′0, (1− λ)ρ1 + λρ′1

)
≤ (1− λ)QJTq

(
ρ0, ρ1) + λQJTq(ρ

′
0, ρ

′
1

)
. (4.1)

Hence, we can complete the proof by applying Equation (4.1) inductively.

Remark 4.4 (Data-processing inequality for QJTq,t). It is noteworthy that Lemma 4.3 applies
to a generalized version of QJTq , denoted as QJTq,t, such that QJTq,1/2 = QJTq :

∀t ∈ (0, 1), QJTq,t := Sq ((1− t)ρ0 + tρ1)− (1− t)Sq(ρ0)− tSq(ρ1).

Lemma 2.11 also directly extends to QJTq,t, and consequently, Lemma 4.5 holds for QJTq,t with
1 ≤ q ≤ 2. However, the inequalities between QJTq and the trace distance provided in this
work, particularly Lemma 4.6 and Lemma 4.7, do not extend to QJTq,t for 1 ≤ q ≤ 2.

Lemma 4.5 (Data-processing inequality for QJTq). For any quantum state ρ0 and ρ1, any
quantum channel Φ, and 1 ≤ q ≤ 2, we have

QJTq(Φ(ρ0),Φ(ρ1)) ≤ QJTq(ρ0, ρ1).

Interestingly, the inequality in Lemma 4.5 cannot hold for 0 ≤ q < 1. We can see this
by considering pure states |ψ⟩⟨ψ| and |ϕ⟩⟨ϕ|, and their average ρ̂ψ,ϕ := 1

2

(
|ψ⟩⟨ψ| + |ϕ⟩⟨ϕ|

)
, then

QJTq(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = Sq
(
ρ̂ψ,ϕ

)
. Following Lemma 4.5, we have Sq

(
Φ
(
ρ̂ψ,ϕ

))
≤ Sq

(
ρ̂ψ,ϕ

)
for

q ∈ [1, 2]. However, using [FYK04, Corollary 2.6], we have Sq
(
Φ
(
ρ̂ψ,ϕ)

)
≥ Sq

(
ρ̂ψ,ϕ

)
for q ∈ [0, 1).

Proof of Lemma 4.5. The case of q = 1 coincides with the quantum Jensen-Shannon diver-
gence: Using Equation (2.3), QJS(Φ(ρ0),Φ(ρ1)) ≤ QJS(ρ0, ρ1) follows from the data-processing
inequality of the quantum relative entropy [Lin75, Uhl77] (see also [Pet07, Theorem 3.9]).

It remains to prove the case for 1 < q ≤ 2. We use the standard proof strategy to derive the
data-processing inequality from joint convexity, as in [FYK04, Theorem 2.5].

First, we consider the case of the partial trace trB on the quantum registers A and B, where
ρ0, ρ1 ∈ L

(
HAB

)
and dim(HB) = NB. Since QJTq(ρ0 ⊗ ĨB, ρ1 ⊗ ĨB) = QJTq(ρ0, ρ1) where ĨB is

the maximally mixed state in B, it suffices to consider a quantum channel on registers A and B
that is completely depolarizing on B and identity on A, denoted as ΦtrB . Noting that ΦtrB can be
expressed as a convex combination of unitary channels (e.g., [Wil13, Exercise 4.4.9] or [Rus22,
Equation (9)]), for any quantum state ρAB on registers A and B, we can obtain:

ΦtrB(ρAB) := trB(ρAB)⊗ tr(ρAB)ĨB =
∑
l∈[N2

B ]

1

N2
B

(IA ⊗ Ul)ρAB(IA ⊗ Ul)†,
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where Ul is a unitary operator on B for each l ∈ [N2
B].

Leveraging the joint convexity (Lemma 4.3) and the unitary invariance (Lemma 2.11) of
QJSq, we derive the following data-processing inequality concerning the quantum channel ΦtrB :

QJTq (trB(ρ0), trB(ρ1)) = QJTq(ΦtrB(ρ0),ΦtrB(ρ1))

≤
∑
l∈[N2

B ]

1

N2
B

QJTq

(
(IA ⊗ Ul)ρ0(IA ⊗ Ul)†, (IA ⊗ Ul)ρ1(IA ⊗ Ul)†

)
=
∑
l∈[N2

B ]

1

N2
B

QJTq (ρ0, ρ1)

= QJTq(ρ0, ρ1).

(4.2)

Next, we move to the general case. Using the Stinespring dilation theorem (e.g., [AS17,
Theorem 2.25]), for any quantum channel Φ on the registers (A,B), we have the following
representation with some unitary UΦ on the registers (A,B,E) where dim(HE) ≤ dim(HAB)

2:

Φ(ρAB) = trE

(
UΦ(ρAB ⊗ |0̄⟩⟨0̄|E)U †

Φ

)
.

Consequently, we can obtain the following for any quantum channel Φ:

QJTq(Φ(ρ0),Φ(ρ1)) ≤ QJTq

(
UΦ(ρ0 ⊗ |0̄⟩⟨0̄|E)U †

Φ, UΦ(ρ1 ⊗ |0̄⟩⟨0̄|E)U †
Φ

)
= QJTq (ρ0 ⊗ |0̄⟩⟨0̄|E, ρ1 ⊗ |0̄⟩⟨0̄|E)
= QJTq(ρ0, ρ1).

Here, the first line owes to Equation (4.2), the second line is due to the unitary invariance of
QJTq (Lemma 2.11), and the last line is because tr

(
(ρb ⊗ |ϕ⟩⟨ϕ|E)q

)
= tr(ρqb) for any b ∈ {0, 1}

and q ∈ [1, 2]. We now complete the proof.

4.2 Inequalities between the trace distance and QJTq

We begin by establishing the lower bound on QJTq in terms of the trace distance, as stated
in Lemma 4.6. The measured variant of the q-Jensen-Tsallis divergence (JTq), denoted by
QJTmeas

q , is derived from the definition provided in Equation (2.2).

Lemma 4.6 (T ≤ QJTq). For any quantum states ρ0 and ρ1, we have the following inequality :

∀q ∈ [1, 2], Hq

(
1

2

)
−Hq

(
1

2
− T(ρ0, ρ1)

2

)
≤ QJTmeas

q (ρ0, ρ1) ≤ QJTq(ρ0, ρ1).

Proof. The case of q = 1 follows from [BH09, Theorem 14], and can also be derived by combin-
ing [FvdG99, Theorem 1] with the Holevo bound (see [Liu23, Lemma 2.4] for details).

Our focus will be on the cases where 1 < q ≤ 2. We first prove the second inequality. Let
M∗ be an optimal POVM corresponding to QJTmeas

q (ρ0, ρ1), then this POVMM∗ corresponds
to a quantum-to-classical channel ΦM∗(ρ) =

∑N
i=1|i⟩⟨i| tr(ρM∗

i ) (e.g., [AS17, Equatin (2.41)]).
Using the data-processing inequality for QJTq (Lemma 4.5), for 1 < q ≤ 2, we obtain:

QJTmeas
q (ρ0, ρ1) = QJTq (ΦM∗(ρ0),ΦM∗(ρ1)) ≤ QJTq(ρ0, ρ1).

Next, let us move to the first inequality. Let pMb be the induced distribution with respect to
the POVMM of ρb for any b ∈ {0, 1}. Utilizing Lemma 2.5, for 1 < q ≤ 2, we can derive that:

QJSmeas
q,M∗(ρ0, ρ1) ≥ QJSmeas

q,M (ρ0, ρ1) = JTq
(
pM0 , pM1

)
≥ Hq

(
1

2

)
−Hq

(
1

2
−
TV

(
pM0 , pM1

)
2

)
. (4.3)
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We then consider the function g(q;x) and its first derivative ∂
∂xg(q;x):

g(q;x) := Hq

(
1

2

)
−Hq

(
1− x
2

)
=

2−q

q − 1
((1 + x)q + (1− x)q − 2) ,

∂

∂x
g(q;x) =

2−qq

q − 1

(
(1 + x)q−1 − (1− x)q−1

)
.

Since it is easy to see that ∂
∂xg(q;x) ≥ 0 for 0 ≤ x ≤ 1 when 1 < q ≤ 2, we know that g(q;x)

is monotonically increasing for 0 ≤ x ≤ 1. Noting that Equation (4.3) holds for arbitrary POVM
M, and the trace distance is the measured version of the total variation distance (e.g., [NC10,
Theorem 9.1]), we thus complete the proof by choosing the POVM that maximizes T(ρ0, ρ1).

Next, we demonstrate the upper bound on QJTq in terms of the trace distance:

Lemma 4.7 (QJTq ≤ T). For any quantum states ρ0 and ρ1, and any 1 ≤ q ≤ 2, we have:

QJTq(ρ0, ρ1) ≤ Hq

(
1

2

)
· 1
2
tr(|ρ0 − ρ1|q) ≤ Hq

(
1

2

)
· T(ρ0, ρ1)q.

Proof. We begin with the construction for establishing QJTq ≤ ln 2 · T for q = 1 as in [BH09,
Theorem 14]. Our analysis differs since we need to address the cases of 1 ≤ q ≤ 2. Consider
a single qutrit register B with basis vectors |0⟩, |1⟩, |2⟩. Define ρ̂0 and ρ̂1 on H ⊗ B as below,
where B = C3 is the Hilbert space corresponding to the register B:

ρ̂0 :=
ρ0 + ρ1 − |ρ0 − ρ1|

2
⊗ |2⟩⟨2|+ ρ0 − ρ1 + |ρ0 − ρ1|

2
⊗ |0⟩⟨0| := σ2 ⊗ |2⟩⟨2|+ σ0 ⊗ |0⟩⟨0|,

ρ̂1 :=
ρ0 + ρ1 − |ρ0 − ρ1|

2
⊗ |2⟩⟨2|+ ρ1 − ρ0 + |ρ0 − ρ1|

2
⊗ |1⟩⟨1| := σ2 ⊗ |2⟩⟨2|+ σ1 ⊗ |1⟩⟨1|.

Intuitively, σb represents the case where ρb is “larger than” ρ1−b for b ∈ {0, 1} (i.e., ρ0 and
ρ1 are “distinguishable”), while σ2 represents the case where ρ0 is “indistinguishable” from ρ1.
This construction generalizes the proof of the classical analogs (e.g., [Vad99, Claim 4.4.2]).

Noting that QJTq is contractive when applying a partial trace (Lemma 4.5), we obtain:

QJTq(ρ0, ρ1) = QJTq(trB(ρ̂0), trB(ρ̂1))

≤ QJTq(ρ̂0, ρ̂1)

=
1

q − 1

(
tr

((
ρ̂0 + ρ̂1

2

)q)
− 1

2
tr(ρ̂q0)−

1

2
tr(ρ̂q1)

)
.

(4.4)

Noting that σ0 ⊗ |0⟩⟨0|, σ1 ⊗ |1⟩⟨1|, and σ2 ⊗ |2⟩⟨2| are orthogonal to each other, we have:

tr

((
ρ̂0 + ρ̂1

2

)q)
= tr

σ2 ⊗ |2⟩⟨2|+ ∑
b∈{0,1}

σb
2
⊗ |b⟩⟨b|

q = tr

(
σq2 +

σq0
2q

+
σq1
2q

)
,

∀b ∈ {0, 1}, tr(ρ̂qb) = tr ((σ2 ⊗ |2⟩⟨2|+ σb ⊗ |b⟩⟨b|)q) = tr
(
σq2 + σqb

)
.

(4.5)

Plugging Equation (4.5) and the equality Hq
(
1
2

)
= 1−21−q

q−1 into Equation (4.4), we obtain:

QJTq(ρ0, ρ1) ≤ Hq

(
1

2

)
· 1
2
tr(σq0 + σq1)

≤ Hq

(
1

2

)
· 1
2
(tr(σ0)

q + tr(σ1)
q)

= Hq

(
1

2

)
· T(ρ0, ρ1)q.

(4.6)

Here, the second line is due to the monotonicity of the Schatten p-norm (e.g., [AS17, Equation
(1.31)]), equivalently, tr(M q) ≤ tr(M)q for any positive semi-definite matrix M and q ≥ 1. The
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last line owes to the fact that

tr(σb) = (−1)b tr
(ρ0 − ρ1

2

)
+

1

2
tr(|ρ0 − ρ1|) =

1

2
tr(|ρ0 − ρ1|) for b ∈ {0, 1}.

Lastly, since σ0 and σ1 are orthogonal to each other, we complete the proof by plugging the
equality tr(σq0 + σq1) = tr((σ0 + σ1)

q) = tr(|ρ0 − ρ1|q) into the first line in Equation (4.6).

4.3 Bounds for the Tsallis binary entropy

In this subsection, we establish lower and upper bounds (Lemma 4.8 and Lemma 4.9, respec-
tively) for the Tsallis binary entropy, which are useful when applying the lower bound on QJTq
in terms of the trace distance (Lemma 4.6).

We begin by proving an lower bound, which extends the bound H(1/2) · 4x(1 − x) ≤ H(x)
from the specific case of q = 1, as stated in [Top01, Theorem 1.2], to a broader range of q:

Lemma 4.8 (Tsallis binary entropy lower bound). For any p = (x, 1− x), let Hq(x) denote the
Tsallis binary entropy with q ∈ [0, 2] ∪ [3,+∞), we have:

Hq(1/2) · 4x(1− x) ≤ Hq(x).

Proof. We need only consider the cases where q ∈ I := [0, 1)∪ (1, 2]∪ [3,+∞), as the case q = 1
directly follows from [Top01, Theorem 1.2]. Our proof strategy is inspired by the approach used
in that theorem. We start by defining functions F (q;x) and G(q;x) on 0 ≤ x ≤ 1 and q ∈ I:

F (q;x) :=
Hq(x)

x(1− x)
=

1− xq − (1− x)q

(q − 1)x(1− x)
and G(q;x) :=

xq−1 − 1

(q − 1)(x− 1)
.

It is evident that F (q; 0) = F (q; 1) = ∞ and F (q; 1/2) = 4Hq(1/2). We then assume that
G(q;x) is convex on x ∈ [0, 1] for any fixed q ∈ I:

For any x ∈ [0, 1] and q ∈ (1, 2],
∂2G(q;x)

∂x2
=

(q−2)xq−3

x−1
− 2xq−2

(x−1)2
+

2(xq−1−1)
(x−1)3(q−1)

≥ 0. (4.7)

Since F (q;x) = G(q;x)+G(q; 1−x), Equation (4.7) implies that F (q, x) is convex on x ∈ [0, 1]
for any fixed q ∈ I. By noticing that F (q;x) = F (q; 1−x) for any x ∈ [0, 1], we can obtain that:
for any q ∈ I, F (q;x) is monotonically decreasing on x ∈ (0, 1/2) and monotonically increasing
on x ∈ (1/2, 1). Consequently, we establish the lower bound by noticing that:

For any x ∈ [0, 1] and q ∈ I, F (q;x) ≥ F (q; 1/2) = 4Hq(1/2).

It remains to prove Equation (4.7). Noting that (x−1)3 ≤ 0 for any 0 ≤ x ≤ 1, Equation (4.7)
holds if and only if the following holds:

f(q;x) := (q − 2)(x− 1)2xq−3 − 2(x− 1)xq−2 +
2(xq−1 − 1)

q − 1
≤ 0.

A direct calculation implies that ∂
∂xf(q;x) = (q − 3)(q − 2)(x − 1)2xq−4 ≥ 0 for any q ∈ I

and x ∈ [0, 1] since I ∪ (2, 3) = ∅. Hence, for any fixed q ∈ I, f(q;x) is monotonically increasing
for any x ∈ (0, 1). Therefore, we complete the proof by concluding that

max
x∈[0,1]

f(q;x) ≤ f(q, 1) = 0.

Next, we will demonstrate an upper bound for the range of 1 < q ≤ 2 that is weaker than
the best known upper bound for the case of q = 1 as shown in [Top01, Theorem 1.2]:27

27Numerical evidence suggests that Lemma 4.9 can be improved to Hq(x) ≤ Hq

(
1
2

)
· (4x(1−x))

1
2Hq(1/2) for any

0 ≤ x ≤ 1 and 1 ≤ q ≤ 2, which coincides with the bound H(q) ≤ H(1/2)(4x(1− x))
1

2Hq(1/2) in [Top01].
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Lemma 4.9 (Tsallis binary entropy upper bound). For any p = (x, 1−x), let Hq(x) denote the
Tsallis binary entropy with 1 ≤ q ≤ 2, we have:

Hq(x) ≤ Hq(1/2) · (4x(1− x))1/2.

Proof. The case of q = 1 follows directly from [Lin91, Theorem 8], it remains to address the
range 1 < q ≤ 2. We will establish the bound separately for x ∈ Iinner and x ∈ Iouter, where
Iinner ∪ Iouter = [0, 1]. Specifically, these intervals are defined as Iinner := [0, 1/8] ∪ [1/8, 1] and
Iouter := [1/2− τ(q), 1/2 + τ(q)], where τ(q) will be specified latter.

The outer interval case. We start with the case of x ∈ Iouter. Since Hq(x) = Hq(1− x) for
any 0 ≤ x ≤ 1, it is sufficient to consider the case of 0 ≤ x ≤ 1/8. Noting that q − 1 ≥ 0, it
suffices to show that: For any 0 ≤ x ≤ 1/8 and 1 < q ≤ 2,

(q−1)

(
Hq

(1
2

)√
4x(1− x)−Hq(x)

)
=
(
2− 22−q

)√
x(1− x)−(1− xq − (1− x)q) ≥ 0. (4.8)

Leveraging the Taylor expansion of 1− (1− x)q at x = 0, we obtain that:

1− (1− x)q =
∞∑
k=1

(−1)k+1

k!

k−1∏
r=0

(q − r)xk :=
∞∑
k=1

αkx
k ≤ qx. (4.9)

Here, notice that 1 < q ≤ 2, the last inequality owes to the fact that α1 = q > 0 and αk ≤ 0 for
all integer k ≥ 2. Plugging Equation (4.9) into Equation (4.8), it remains to prove that:

F1(q;x) :=
−xq + qx√
x(1− x)

≤ 2− 22−q.

A direct calculation implies that F1(q; 1/8) = (q−23−3q)/
√
7 satisfies 2−22−q−F1(q; 1/8) > 0

for 1 < q ≤ 2.28 As a consequence, it is enough to show that F1(q, x) is monotonically non-
decreasing on x ∈ [0, 1/8] for any fixed q ∈ (1, 2], specifically:

∂

∂x
F1(q;x) =

1

2
(x(1− x))−3/2 (qx+ (1 + 2q(x− 1)− 2x)xq) ≥ 0. (4.10)

Noting that 1
2(x(1− x))

−3/2 ≥ 0, Equation (4.10) holds if and only if the following holds:

F2(q;x) := (2(1− q)x+ 2q − 1)xq−1 ≤ q.

A direct calculation implies that F2(q; 1/8) = 21−3q(7q − 3) satisfies that q − F2(q; 1/8) > 0
for 1 < q ≤ 2. Consequently, it suffices to show that F2(q;x) is monotonically non-decreasing
on x ∈ [0, 1/8] for any fixed q ∈ (1, 2], particularly:

∂

∂x
F2(q;x) = xq−2(q − 1)(2q(1− x)− 1) ≥ 0. (4.11)

Since xq−2(q − 1) > 0 for any q ∈ (1, 2] and x ∈ [0, 1/8], Equation (4.11) holds if and only if
F3(q;x) := 2q(1− x)− 1 ≥ 0. It is evident that F3(q;x) ≥ 0 is equivalent to x ≤ 1− 1/2q < 1/2
for 1 < q ≤ 2, and thus we complete the proof of the outer interval case.

The inner interval case. Next, we move to the case of x ∈ Iinner. Let x = (1 + t)/2, then
it suffices to consider the case of 0 ≤ t ≤ 1 since Hq(x) = Hq(1− x) for any 0 ≤ x ≤ 1. Noting
that 2q/(q− 1) > 0 for 1 < q ≤ 2, it suffices to show that: For any 0 ≤ t ≤ 2τ(q) and 1 < q ≤ 2,

2q

q − 1

(
Hq

(1
2

)√
4x(1− x)−Hq(x)

)
= (1−t)q+(1+t)q−

(
2q + (2− 2q)

√
1− t2

)
≥ 0. (4.12)

28It is noteworthy that 2 − 22−q − F1(q; 1/2) = 2 − 21−q − q < 0 for 1 < q ≤ 2, and consequently, the outer
interval case is not enough to establish our Tsallis binary entropy upper bound for any 0 ≤ x ≤ 1.
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Utilizing the Taylor expansion of (1− t)q + (1 + t)q at t = 0, we obtain that:

(1− t)q + (1 + t)q =
∞∑
k=0

2

(2k)!

2k−1∏
r=0

(q − r)t2k :=
∞∑
k=0

βkt
2k ≥ β0 + β21 = 2 + q(q − 1)t2. (4.13)

Here, the last inequality is because βk ≥ 0 for all integer k ≥ 0. Substituting Equation (4.13)
into Equation (4.12), it remains to show that:

2 + q(q − 1)t2 ≥ 2q + (2− 2q)
√
1− t2. (4.14)

A direct calculation implies that Equation (4.14) holds for the following range of t:

|t| ≤
√
(2q2 − 2q + 2− 2q)(2q − 2)

q(q − 1)
= 2τ(q) where τ(q) :=

√
(q2 − q + 1− 2q−1)(2q−1 − 1)

q(q − 1)
.

It is easy to see that limq→1+ τ(q) =
√
ln 2(1− ln 2) ≈ 0.4612 and τ(2) = 1. Assume that

τ(q) is monotonically non-decreasing for q ∈ (1, 2], we obtain that [1/2−
√

ln 2(1− ln 2), 1/2 +√
ln 2(1− ln 2)] ⊆ Iinner, and consequently, Iinner ∪ Iouter = [0, 1].

It is left to show that τ(q) is monotonically non-decreasing for q ∈ (1, 2], specifically:

d

dq
τ(q) =

2

q3(q − 1)3
(
2q − q2 + q − 2

)︸ ︷︷ ︸
g1(q)

(
2− 2q − 2qq2 ln 2 + q

(
21+q + 2q ln 2− 4

))︸ ︷︷ ︸
g2(q)

≥ 0 (4.15)

Note that g1(q) = 0 corresponds to an intersection between a quadratic function and an
exponential function, indicating that g1(q) has at most three zeros. It is evident that g1(1) =
g1(2) = g1(3) = 0 and g(3/2) = 2

√
2− 11/4 ≈ 0.078, and thus g1(q) ≥ 0 for 1 ≤ q ≤ 2.

For g2(q), notice that g2(1) = 0. Assuming that g2(q) is monotonically non-decreasing on
1 ≤ q ≤ 2, we obtain g2(q) ≥ g2(1) = 0 for 1 ≤ q ≤ 2 by. In particular, it remains to prove that:

For any q ∈ [1, 2], g3(q) :=
d

dq
g2(q) = 2q(−(ln 2)2q2 + (ln 2)2q + 2)− 4 ≥ 0. (4.16)

Since g3(q) + 4 is the product of a quadratic function and an exponential function, g3(q)
has at most two zeros. Therefore, we establish Equation (4.16), and thus Equation (4.15), by
noticing that g3(1) = 0, g3(2) = 4− 8(ln 2)2 > 0, and g3(3) = 12− 48(ln 2)2 < 0.

4.4 Useful bounds on Tsallis entropy

In this subsection, we present a useful bound on Tsallis entropy. Lemma 4.10 establishes inequal-
ities between the Tsallis entropy of a distribution p and the total variation distance between p
and the uniform distribution of the same dimension.

Lemma 4.10 (Tsallis entropy bounds by closeness to uniform distribution). Let p be a probability
distribution over [N ] with N ≥ 2, and let ν be the uniform distribution over [N ]. Then, for any
q > 1 and 0 ≤ TV(p, ν) ≤ 1− 1/N , it holds that :

(1− TV(p, ν)− 1/N) lnq(N) ≤ Hq(p).

Moreover, for any q > 1 and N satisfying 1/q ≤ TV(p, ν) ≤ 1− 1/N , it holds that :

Hq(p) ≤ lnq
(
N(1− TV(p, ν))

)
.

Proof. Let γ := TV(p, ν), and let ∆N be the set of probability distributions of dimension N . It
is evident that 0 ≤ TV(p, ν) ≤ 1 − 1/N . To establish the lower bound, it suffices to minimize
the Tsallis entropy Hq(p) subject to the constraint TV(p, ν) = γ, which is equivalent to solve
the convex optimization problem in Equation (4.17).29

29A similar formulation also appeared in the proof of [KLGN19, Lemma 16].

30



minimize Hq(p
′)

subject to p′ ∈ ∆n,

TV(p′, ν) ≤ γ

(4.17)
pmin(i) =


1
N , if i ∈ [kmin]
1
N + γ, if i = kmin + 1
ε
N , if i = kmin + 2

0, otherwise

,

where kmin := ⌊N(1− γ)⌋ − 1,

ε := N(1−γ)− ⌊N(1−γ)⌋.

(4.18)

Note that Hq(p) is concave (Lemma 2.3) for any fixed q > 1, and the constraints in Equa-
tion (4.17) form a closed convex set. Since the minimum of a concave function is attained at some
extreme point (e.g., [Roc70, Corollary 32.3.1]) and the Tsallis entropy is permutation-invariant,
we deduce an optimal solution pmin to Equation (4.17), as stated in Equation (4.18).

Next, we can deduce the lower bound of the Tsallis entropy by evaluating Hq(pmin):

Hq(pmin) =
1

q − 1

(
1− kmin

( 1

N

)q
−
( 1

N
+ γ
)q
−
( ε
N

)q)
≥ 1

q − 1

(
(⌊N(1− γ)⌋ − 1)

N
+

ε

N
− (⌊N(1− γ)⌋ − 1 + εq)

( 1

N

)q)
≥ 1

q − 1

(
1− γ − 1

N
−
(
1− γ − 1

N

)( 1

N

)q−1
)

=

(
1− γ − 1

N

)
lnq(N).

Here, the second line excludes terms corresponding to pmin(kmin + 1), and the third line follows
from the fact that εq ≤ ε for q ≥ 1 and 0 ≤ ε ≤ 1.

To demonstrate the upper bound, it remains to maximize the Tsallis entropy Hq(p) subject
to the constraint TV(p, ν) = γ, which is equivalent to solve a non-convex optimization problem
analogous to Equation (4.17). This task is challenging in general, but we consider only the
regime TV(p, ν) ≥ 1/q.30. Particularly, we focus on the following optimization problem:

maximize Hq(p
′)

subject to p′ ∈ ∆n,

TV(p′, ν) ≥ γ ≥ 1/q

(4.19)

It is not too hard to obtain an optimal solution pmax to Equation (4.19), where ε is defined
as in Equation (4.18), as stated in Proposition 4.10.1. The proof is deferred in Appendix A.1.

Proposition 4.10.1. For the optimization problem presented in Equation (4.19), an optimal
solution is the distribution provided in Equation (4.20), where ε = N(1− γ)− ⌊N(1− γ)⌋:

pmax(i) =

{
1
N + γ

kmax
, if i ∈ [kmax]

ε
N(N−kmax)

, otherwise
,where kmax := ⌊N(1− γ)⌋. (4.20)

Consequently, we can derive the upper bound of the Tsallis entropy by evaluating Hq(pmax):

Hq(pmax) =
1

q − 1

(
1− kmax

( 1

N
+

γ

kmax

)q
− (N − kmax)

( ε

N(N − kmax)

)q)
=

1

q − 1

(
1−

(
1− ε

N

)q( 1

(N(1− γ)− ε

)q−1
−
( ε
N

)q( 1

Nγ + ε

)q−1
)

30For the regime 0 ≤ TV(p, ν) ≤ 1/q, the optimal solution to Equation (4.19) depends on the choice of q.
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≤ 1

q − 1

(
1−

( 1

(N(1− γ)

)q−1
)

= lnq

(
N(1− γ)

)
.

Let F (q;N, ε, γ) :=
(
1− ε

N

)q
(N(1− γ)− ε)1−q +

(
ε
N

)q
(Nγ + ε)1−q, then the third line holds by

assuming that F (q;N, ε, γ) is monotonically non-decreasing on 0 ≤ ε ≤ 1 for any fixed γ, q, and
N satisfying qγ ≥ 1 and N ≥ q/(q − 1).

It remains to prove ∂
∂εF (q;N, ε, γ) ≥ 0 the aforementioned range of x, γ, q, and N . By a

direct calculation, we complete the proof by noticing all terms in the following are non-negative:

∂

∂ε
F (q;N, ε, γ) =

(
1− ϵ

N

)q (N(γq − 1) + ϵ)

(N − ϵ)(N(1− γ)− ϵ)q
+
( ϵ
N

)q (γNq + ϵ)

ϵ(γN + ϵ)q
≥ 0.

5 Hardness and lower bounds via QJTq-based reductions

In this section, we will establish reductions from the closeness testing of quantum states via
the trace distance to testing via the quantum q-Tsallis entropy difference. Our proof crucially
depends on the properties of the quantum Jensen-Tsallis divergence (QJTq) demonstrated in
Section 4. Using these reductions, we will prove computational hardness results and query
complexity lower bounds for several problems related to the quantum q-Tsallis entropy difference
under various circumstances.

We begin by defining the Quantum q-Tsallis Entropy Difference and the Quantum
q-Tsallis Entropy Approximation, denoted by TsallisQEDq [g(n)] and TsallisQEAq [t(n), g(n)],
respectively. These definitions generalize the counterpart definitions in [BASTS10] from the von
Neumann entropy (i.e., QJTq with q = 1) to the quantum q-Tsallis entropy for 1 ≤ q ≤ 2.

Definition 5.1 (Quantum q-Tsallis Entropy Difference, TsallisQEDq). Let Q0 and Q1 be
quantum circuits acting on m qubits and having n specified output qubits, where m(n) is a
polynomial in n. Let ρi be the quantum state obtained by running Qi on |0⟩⊗m and tracing out
the non-output qubits. Let g(n) be a positive efficiently computable function. Decide whether :

• Yes: A pair of quantum circuits (Q0, Q1) such that Sq(ρ0)− Sq(ρ1) ≥ g(n);

• No: A pair of quantum circuits (Q0, Q1) such that Sq(ρ1)− Sq(ρ0) ≥ g(n).

Definition 5.2 (Quantum q-Tsallis Entropy Approximation, TsallisQEAq). Let Q be a quan-
tum circuit acting on m qubits and having n specified output qubits, where m(n) is a polynomial
in n. Let ρ be the quantum state obtained by running Q on |0⟩⊗m and tracing out the non-output
qubits. Let g(n) and t(n) be positive efficiently computable functions. Decide whether :

• Yes: A quantum circuit Q such that Sq(ρ) ≥ t(n) + g(n);

• No: A quantum circuit Q such that Sq(ρ) ≤ t(n)− g(n).

It is worth highlighting that the quantum q-Tsallis entropy of any pure state is zero. Hence,
it is reasonable to define constant-rank variants of TsallisQEDq and TsallisQEAq :

(1) ConstRankTsallisQEDq : the ranks of ρ0 and ρ1 are at most O(1).

(2) ConstRankTsallisQEAq : the rank of ρ is at most O(1).
Additionally, similar to Section 2.2, we define constant-rank variants of TsallisQEDq and
TsallisQEAq , denoted as ConstRankTsallisQEDq and ConstRankTsallisQEAq , re-
spectively.

Next, we present the main theorem in this section:
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Theorem 5.3 (Computational hardness for TsallisQEDq and TsallisQEAq). The promise
problems TsallisQEDq and TsallisQEAq capture the computational power of their respective
complexity classes in the corresponding regimes of q:

(1) For any q ∈ [1, 2] and n ≥ 3, it holds that : For 1/ poly(n) ≤ gq(n) ≤ 2qHq(1/2)
(
1− 2−

qn
2
+1
)
,

ConstRankTsallisQEDq [gq(n)] is BQP-hard under Karp reduction. Consequently, Con-
stRankTsallisQEAq with g(n) = Θ(1) is BQP-hard under Turing reduction.

(2) For any q ∈
(
1, 1 + 1

n−1

]
and n ≥ 90, it holds that : For 1/poly(n) ≤ g(n) ≤ 1/400,

TsallisQEDq [g(n)] is QSZK-hard under Karp reduction. Consequently, TsallisQEAq
with g(n) = Θ(1) is QSZK-hard under Turing reduction.

(3) For any n ≥ 5, it holds that : For 1/poly(n) ≤ g(n) ≤ 1/150, TsallisQEA1+ 1
n−1

with
g(n) is NIQSZK-hard.

In particular, Theorem 5.3(1) is derived from the pure-state reduction (Lemma 5.4), and the
detailed statements are Theorem 5.7 and Theorem 5.8. Moreover, Theorem 5.3(2) is obtained
through a mixed-state reduction (Lemma 5.5), and the detailed statements are Theorem 5.9 and
Theorem 5.10. Furthermore, Theorem 5.3(3) follows from a tailor-made mixed state reduction
for QSCMM (Lemma 5.6), and the detailed statement is Theorem 5.11.

Lastly, using the reductions in Lemma 5.5, we derive lower bounds on the quantum query and
sample complexity for estimating Sq(ρ) where 1 < q ≤ 1+ 1

n−1 , as presented in Theorem 5.13 and
Theorem 5.15. There theorems build on prior works in quantum query complexity [CFMdW10]
and sample complexity [OW21] lower bounds for the trace distance. In addition, we provide
quantum query and sample complexity lower bounds for estimating Sq(ρ) when q ≥ 1+Ω(1),
leveraging the hard instances from [Bel19], as detailed in Theorem 5.12 and Theorem 5.14.

5.1 Pure-state reduction: PureQSD ≤ ConstRankTsallisQEDq for 1 ≤ q ≤ 2

The reduction in Lemma 5.4 is from the trace distance between two n-qubit pure states (PureQSD)
to the quantum q-Tsallis entropy difference between two new constant-rank (n+1)-qubit states
(ConstRankTsallisQEDq), for 1 ≤ q ≤ 2.

Lemma 5.4 (PureQSD ≤ ConstRankTsallisQEDq). Let Q0 and Q1 be quantum circuits
acting on n qubits and having the same number of output qubits. Let |ψi⟩ be the quantum state
obtained by running Qi on |0⟩⊗n. For any b ∈ {0, 1}, there is a new quantum circuit Q′

b acting
on n+3 qubits, using O(1) queries to controlled-Q0 and controlled-Q1, as well as O(1) one- and
two-qubit gates. The circuit Q′

b prepares a new quantum state ρ′b, which has constant rank and
acts on n′ := n + 1 qubits, such that for any efficiently computable functions α(n) and β(n),
where β(n) +

√
1− α(n)2 < 1, and any q ∈ [1, 2], the following holds:

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥ α(n) ⇒ Sq(ρ
′
0)− Sq(ρ

′
1) ≥ gq(n′) = gq(n+ 1),

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤ β(n) ⇒ Sq(ρ
′
1)− Sq(ρ

′
0) ≥ gq(n′) = gq(n+ 1),

where gq(n+ 1) := 2−q ·Hq(1/2) ·
(
1− β(n)q −

√
1− α(n)2

)
.

Proof. Our proof strategy is inspired by the proof of [Liu23, Corollary 4.3 and Lemma 4.4].
We begin by considering the following constant-rank quantum states ρ′0 and ρ′1, which can be
prepared by the quantum circuits Q′

0 and Q′
1, respectively:

ρ′0 := (p0|0⟩⟨0|+ p1|1⟩⟨1|)⊗
1

2
(|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|)

ρ′1 :=
1

2
|0⟩⟨0| ⊗ |ψ0⟩⟨ψ0|+

1

2
|1⟩⟨1| ⊗ |ψ1⟩⟨ψ1|.
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Here, (p0, p1) is some two-element probability distribution will be specified later. Moreover, for
any b ∈ {0, 1}, the quantum circuit Q′

b uses O(1) queries to controlled-Q0 and controlled-Q1 as
well as O(1) one- and two-qubit gates, as presented in [Liu23, Figure 1 and Figure 2].

Using the pseudo-additivity of Sq (Lemma 2.9), we can obtain that:

Sq(ρ
′
0) = Hq(p0) + Sq

(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
− (q − 1) ·Hq(p0) · Sq

(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
= Hq(p0) + (1− (q − 1)Hq(p0)) · Sq

(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
.

(5.1)

By the joint q-Tsallis entropy theorem (Lemma 2.12), we have:

Sq(ρ
′
1) = Hq(1/2) + 2−q(Sq(|ψ0⟩⟨ψ0|) + Sq(|ψ1⟩⟨ψ1|)) = Hq(1/2). (5.2)

Combining Equation (5.1) and Equation (5.2), we conclude that:

Sq(ρ
′
0)− Sq(ρ

′
1) = (1− (q − 1)Hq(p0)) · Sq

(
|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|

2

)
+Hq(p0)−Hq

(1
2

)
= (1− (q − 1)Hq(p0)) ·QJTq(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) + Hq(p0)−Hq

(1
2

)
.

(5.3)

Next, we choose p0 ∈ (0, 1/2) satisfying the following equality:

Hq

(1
2

)
−Hq(p0) =

1− (q − 1)Hq(p0)

2

(
Hq

(1
2

)
−Hq

(1− α
2

)
+Hq

(1
2

)
· βq
)
. (5.4)

As a consequence, we can derive that:

• For the case where T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥ α, plugging the lower bound on QJTq in terms
of the trace distance (Lemma 4.6) into Equation (5.3) and Equation (5.4), we obtain

Sq(ρ
′
0)− Sq(ρ

′
1) ≥ (1− (q − 1)Hq(p0)) ·

(
Hq

(1
2

)
−Hq

(1− α
2

))
+Hq(p0)−Hq

(1
2

)
=

1− (q − 1)Hq(p0)

2

(
Hq

(1
2

)
· (1− βq)−Hq

(1− α
2

))
:= g̃q.

• For the case where T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤ β, plugging the upper bound on QJTq in terms
of the trace distance (Lemma 4.7) into Equation (5.3) and Equation (5.4), we obtain

Sq(ρ
′
0)− Sq(ρ

′
1) ≤ (1− (q − 1)Hq(p0)) · βq ·Hq

(1
2

)
+Hq(p0)−Hq

(1
2

)
= −1− (q − 1)Hq(p0)

2

(
Hq

(1
2

)
· (1− βq)−Hq

(1− α
2

))
= −g̃q.

It is left to show a lower bound on g̃(n). Using Hq(x) ≤ Hq(1/2) in Lemma 2.3, we have

1− (q − 1) ·Hq(p0)
2

≥ 1

2
− q − 1

2
·Hq

(1
2

)
= 2−q. (5.5)

Plugging the Tsallis binary entropy upper bound (Lemma 4.9) and Equation (5.5) into g̃(n),
we complete the proof by concluding the following:

g̃q(n) ≥ 2−q ·Hq(1/2) ·
(
1− β(n)q −

√
1− α2(n)

)
:= gq(n+ 1) = gq(n

′).

5.2 Mixed-state reductions

In this subsection, we present two reductions for mixed states. The first reduction is from the
trace distance between two n-qubit states (QSD), to the quantum q-Tsallis entropy difference
between two new (n + 1)-qubit states (TsallisQEDq), for 1 ≤ q ≤ 2, under appropriate
assumptions about Sq(ρ0) and Sq(ρ1), as stated in Lemma 5.5. The second reduction is from the
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trace distance between an n-qubit quantum state (QSCMM) and the n-qubit maximally mixed
state to the quantum q-Tsallis entropy of the state (TsallisQEAq) for q = 1+ 1

n−1 , as state in
Lemma 5.6.

5.2.1 QSD ≤ TsallisQEDq for 1 ≤ q ≤ 2

Lemma 5.5 (QSD ≤ TsallisQEDq). Let Q0 and Q1 be quantum circuits acting on m qubit,
defined in Definition 5.1, that prepares the purification of n-qubit mixed states ρ0 and ρ1, respec-
tively. For any b ∈ {0, 1}, there is a new quantum circuits Q′

b acting on m+ 3 qubits, requiring
O(1) queries to controlled-Q0 and controlled-Q1, as well as O(1) one- and two- qubit gates, that
prepares a new n′-qubit mixed state ρ′b, where n′ := n+1, such that : For any ρ0 and ρ0 satisfying
max{Sq(ρ0), Sq(ρ1)} ≤ γ(n) with Sq(I/2) ≤ γ(n) ≤ Sq((I/2)

⊗n), any ε(n) ∈ (0, 1/2), and any
q ∈ [1, 2], there is a g(n) > 0 with appropriate ranges of γ, ε, and n such that

T(ρ0, ρ1) ≥ 1− ε(n) ⇒ Sq(ρ
′
0)− Sq(ρ

′
1) ≥ gq(n′) = gq(n+ 1),

T(ρ0, ρ1) ≤ ε(n) ⇒ Sq(ρ
′
1)− Sq(ρ

′
0) ≥ gq(n′) = gq(n+ 1),

where gq(n) := 1
2Hq

(
1
2

)
− γ(n)

(
1
2−

1
2q

)
−
(
1
2+

1
2q

)( ε(n)q
2q lnq

(
2n
)
+Hq

(
1
2

)√
ε(n)(2−ε(n))

)
.

Proof. Our proof strategy is somewhat inspired by [BASTS10, Section 5.4]. We start by consid-
ering the following mixed states ρ′0 and ρ′1:

ρ′0 := (ϑ|0⟩⟨0|+ (1− ϑ)|1⟩⟨1|)⊗ ρ+, where 2Hq(ϑ) = Hq

(
1

2

)
and ρ+ :=

ρ0 + ρ1
2

,

ρ′1 :=
1

2
|0⟩⟨0| ⊗ ρ0 +

1

2
|1⟩⟨1| ⊗ ρ1.

These states ρ′0 and ρ′1 can be prepared by the quantum circuits Q′
0 and Q′

1, respectively.
For instance, adapting the constructions in [Liu23, Figure 1 and Figure 2], for any b ∈ {0, 1},
the quantum circuit Q′

b uses O(1) queries to controlled-Q0 and controlled-Q1, as well as O(1)
one- and two-qubit gates.

Utilizing the pseudo-additivity of Sq (Lemma 2.9), we have:

Sq(ρ
′
0) = Hq(ϑ) + (1− (q − 1)Hq(ϑ))Sq(ρ+) =

1

2
Hq

(
1

2

)
+

(
1− q − 1

2
·Hq

(
1

2

))
Sq(ρ+). (5.6)

Using the joint q-Tsallis entropy theorem (Lemma 2.12), we obtain:

Sq(ρ
′
1) = Hq

(
1

2

)
+

1

2q
(Sq(ρ0) + Sq(ρ1)). (5.7)

Combining Equation (5.7) and Equation (5.6), we obtain:

Sq(ρ
′
0)− Sq(ρ

′
1) =

(
1− q − 1

2
·Hq

(
1

2

))
Sq(ρ+)−

1

2
Hq

(
1

2

)
− 1

2q
(Sq(ρ0) + Sq(ρ1)) (5.8)

Next, we can consider the following two cases:

• For the case where T(ρ0, ρ1) ≥ 1− ε, using the lower bound on QJTq(Lemma 4.6), we have:

Sq(ρ+)−
1

2
(Sq(ρ0) + Sq(ρ1)) = QJTq(ρ0, ρ1) ≥ Hq

(
1

2

)
−Hq

(
1− T(ρ0, ρ1)

2

)
. (5.9)

Substituting Equation (5.9) into Equation (5.8), we obtain:

Sq(ρ
′
0)− Sq(ρ

′
1)

≥
(
1− q−1

2 ·Hq
(
1
2

))(
1
2(Sq(ρ0) + Sq(ρ1)) + Hq

(
1
2

)
−Hq

(
ε
2

))
− 1

2Hq
(
1
2

)
− 1

2q (Sq(ρ0) + Sq(ρ1))

≥
(
1
2 −

1
2q −

q−1
4 Hq

(
1
2

))
(Sq(ρ0) + Sq(ρ1)) +

(
1− q−1

2 Hq
(
1
2

))
Hq
(
1
2

)(
1−

√
ε(2− ε)

)
− 1

2Hq
(
1
2

)
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≥
(
1
2 + 1

2q

)
Hq
(
1
2

)(
1−

√
ε(2− ε)

)
− 1

2Hq
(
1
2

)
= 1

2qHq
(
1
2

)
−
(
1
2 + 1

2q

)
Hq
(
1
2

)√
ε(2− ε) := g̃Yq (ε).

Here, the third line uses the Tsallis binary entropy upper bound (Lemma 4.9) and the fact that
1− q−1

2 Hq
(
1
2

)
> 0 for q ∈ [1, 2]. The last line relies on the following facts: (a) Sq(ρ) ≥ 0 for any

state ρ; (b) 2
(
1
2 −

1
2q −

q−1
4 Hq

(
1
2

))
= 1

2 −
1
2q ≥ 0 for q ∈ [1, 2]; and (c) 1− q−1

2 Hq
(
1
2

)
= 1

2 +
1
2q ;

• For the case where T(ρ0, ρ1) ≤ ε, by Fannes’ inequality for QJTq (Lemma 2.13), we have:

Sq(ρ+) ≤
|Sq(ρ+)− Sq(ρ0)|

2
+
|Sq(ρ+)− Sq(ρ1)|

2
+

Sq(ρ0) + Sq(ρ1)

2

≤ T(ρ+, ρb)
q · lnq(2n − 1) + Hq(T(ρ+, ρb)) +

Sq(ρ0) + Sq(ρ1)

2

≤
(
T(ρ0, ρ1)

2

)q
lnq
(
2n
)
+Hq

(
T(ρ0, ρ1)

2

)
+

Sq(ρ0) + Sq(ρ1)

2

(5.10)

Here, the first line is due to the triangle inequality, and the last line is because lnq(x) is
monotonically increasing on x > 0 for any fixed q > 1.

Plugging Equation (5.10) into Equation (5.8), we can derive that:

Sq(ρ
′
0)− Sq(ρ

′
1)

≤
(
1− q−1

2 Hq
(
1
2

))((
ε
2

)q
lnq
(
2n
)
+Hq

(
ε
2

)
+ 1

2(Sq(ρ0) + Sq(ρ1))
)
− 1

2Hq
(
1
2

)
− 1

2q (Sq(ρ0) + Sq(ρ1))

≤
(
1
2−

1
2q−

q−1
4 Hq

(
1
2

))
(Sq(ρ0)+Sq(ρ1))+

(
1− q−1

2 Hq
(
1
2

))((
ε
2

)q
lnq
(
2n
)
+Hq

(
1
2

)√
ε(2−ε)

)
− 1

2Hq
(
1
2

)
≤
(
1
2 −

1
2q

)
· γ +

(
1
2 + 1

2q

)((
ε
2

)q · lnq(2n)+Hq
(
1
2

)√
ε(2− ε)

)
− 1

2Hq
(
1
2

)
:= −g̃Nq (ε, n, γ).

Here, the third line uses the Tsallis binary entropy upper bound (Lemma 4.9) and the fact that
1− q−1

2 Hq
(
1
2

)
> 0 for q ∈ [1, 2]. The last line relies on the following facts: (a) 1− q−1

2 Hq
(
1
2

)
=

1
2+

1
2q ; (b) 2

(
1
2 −

1
2q −

q−1
4 Hq

(
1
2

))
= 1

2−
1
2q ≥ 0 for q ∈ [1, 2]; and (c) Sq(ρ) ≤ γ ≤ Sq((I/2)

⊗n)

for any n-qubit state ρ.

It is evident that g̃Nq (ε, n, γ) is monotonically decreasing on γ ≥ 0 for any fixed q, ε, and
n. Consequently, it remains to show that g̃Yq (ε) ≥ g̃Nq (ε, n,Hq(1/2)) ≥ g̃Nq (ε, n, γ) for Hq(1/2) =
Sq(I/2) ≤ γ ≤ Sq((I/2)

⊗n). In particular, by noting that (ε/2)q · lnq
(
2n
)
≥ 0 for q ≥ 1 and

ε ≥ 0, we obtain:

g̃Yq (ε)− g̃Nq
(
ε, n,Hq

(
1

2

))
=

1

2q
Hq

(
1

2

)
+

(
1

2
+

1

2q

)(ε
2

)q
lnq
(
2n
)
− 1

2
Hq

(
1

2

)
+

(
1

2
− 1

2q

)
Hq

(
1

2

)
=

(
1

2
+

1

2q

)(ε
2

)q
lnq
(
2n
)

≥ 0.

Therefore, we complete the proof by choosing gq(n) = g̃Nq (ε(n), n, γ(n)), specifically:

gq(n) :=
1

2
Hq

(
1

2

)
−γ(n)

(
1

2
− 1

2q

)
−
(
1

2
+

1

2q

)(
ε(n)q

2q
lnq
(
2n
)
+Hq

(
1

2

)√
ε(n)(2−ε(n))

)
.

5.2.2 QSCMM ≤ TsallisQEAq for q(n) = 1 + 1
n−1

Lemma 5.6 (QSCMM ≤ TsallisQEAq). Let Q be a quantum circuit acting on m qubit,
defined in Definition 5.2, that prepares the purification of n-qubit mixed states ρ, respectively.
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For any ρ, any n ≥ 5, and any q(n) = 1 + 1/(n− 1), let t(n) := 1
4

(
3n− n1+

1
n − 1

)
, we have:

T
(
ρ, (I/2)⊗n

)
≤ 1/n ⇒ Sq(ρ) > t(n) + 1/150,

T
(
ρ, (I/2)⊗n

)
≥ 1− 1/n ⇒ Sq(ρ) < t(n)− 1/150.

Proof. Let ρ =
∑

i∈[2n] λi|vi⟩⟨vi| be the spectral decomposition of ρ, where {vi}i∈[2n] is an or-
thonormal basis and p := (λ1, · · · , λ2n) is a probability distribution of dimension 2n. And let
ν be the uniform distribution of dimension 2n. Noting that ρ and (I/2)⊗n commute, we have
T(ρ, (I/2)⊗n) = TV(p, ν) and Sq(ρ) = Hq(p).

Let t(n) := 1
4

(
3n− n1+

1
n − 1

)
. Next, we can consider the following two cases:

• For the case where T(ρ, (I/2)⊗n) ≤ 1/n, by the lower bound on Hq(p) in Lemma 4.10, it
follows that

Sq(ρ) ≥ ln1+ 1
n−1

(
2n
)
·
(
1− T

(
ρ, (I/2)⊗n

)
− 2−n

)
≥ (n− 1)

(
1− 1

2
·
(1
2

) 1
n−1

)(
1− 1

n
− 2−n

)
:= τY(n).

By a direct calculation, we obtain:

Sq(ρ)− t(n) ≥ τY(n)− t(n) = g1(n) + g2(n) + g3(n)−
7

4
,

where g1(n) := 2−n +
1− 2

n
1−n

n
+ 2

n2

1−n (n− 1) +
n

4

(
1− 2

1
1−n

)
,

g2(n) := 2
1

1−n − 2−nn, g3(n) :=
n

4

(
n

1
n − 2

1
1−n

)
.

(5.11)

Through a fairly tedious calculation, we know that g1(n), g2(n), and g3(n) defined in Equa-
tion (5.11) satisfy the properties in Fact 5.6.1, and the proof is deferred in Appendix A.2.

Fact 5.6.1. Let g1(n), g2(n), and g3(n) be functions defined in Equation (5.11). It holds that :

(1) For n ≥ 3, g1(n) ≥ 0.

(2) For n ≥ 3, g2(n) and g3(n) are monotonically increasing.

Combining Equation (5.11) and Fact 5.6.1, we obtain that:

∀n ≥ 5, Sq(ρ)− t(n) ≥ τY(n)− t(n) ≥ g2(n) + g3(n)−
7

4
>

1

150
. (5.12)

• For the case where T(ρ, (I/2)⊗n) ≥ 1−1/n, by noting T(ρ, (I/2)⊗n)q ≥
(
1− 1

n

)(
1 + 1

n−1

)
= 1

and using the upper bound on Hq(p) in Lemma 4.10, it holds that

Sq(ρ) ≤ ln1+ 1
n−1

(
2n
(
1− T

(
ρ, (I/2)⊗n

)))
≤ ln1+ 1

n

(
2n
(
1− T

(
ρ, (I/2)⊗n

)))
≤ n

(
1− 1

2
· n1/n

)
:= τN(n).

Here, the second line is because lnq(x) < lnq′(x) for q > q′ > 0 and 1
n−1 >

1
n .

Similarly, a direct calculation implies that:

t(n)− Sq(ρ) ≥ t(n)− τN(n) =
g4(n)− 1

4
, where g4(n) := n

(
n

1
n − 1

)
. (5.13)

Next, we will prove that g4(n) is monotonically non-decreasing for n ≥ 2. We proceed by
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expressing the first and second derivative of g4(n):

d

dn
g4(n) =

n
1
n

n
(n− log(n) + 1)− 1, and

d2

dn2
g4(n) =

n
1
n

n3

(
(log(n)− 1)2 − n

)
.

Since
√
n > log n, we know that d2

dn2 g4(n) has one zero at n = 1. As d2

dn2 g4(n)
∣∣
n=e

=

−e < 0, we have that d
dng4(n) is monotonically decreasing for n ≥ 2, and thus, d

dng4(n) ≥
limn→∞

d
dng4(n) = 0 for n ≥ 2. Hence, we conclude that g4(n) is monotonically non-decreasing

for n ≥ 2. Consequently, combining with Equation (5.13), we obtain:

∀n ≥ 3, t(n)− Sq(ρ) ≥ t(n)− τN(n) =
g4(n)− 1

4
>

1

13
. (5.14)

Lastly, we finish the proof by comparing Equation (5.12) with Equation (5.14).

5.3 Computational hardness results

In this subsection, we present the computational hardness results for various settings of Tsal-
lisQEDq and TsallisQEAq by using our reductions established in Section 5.1 and Section 5.2.

5.3.1 BQP hardness results

Theorem 5.7 (ConstRankTsallisQEDq is BQP-hard for 1 ≤ q ≤ 2). For any q ∈ [1, 2] and
any n ≥ 3, the following holds:

∀gq(n) ∈
[

1

poly(n)
, 2−qHq

(
1

2

)(
1− 2−

qn
2
+1
)]
, ConstRankTsallisQEDq [gq(n)] is BQP-hard.

Proof. Using Lemma 2.17, we have that PureQSD
(√

1− 2−2n̂, 2−(n̂+1)/2
)

is BQP-hard for
n̂ ≥ 2. Let Q0 and Q1 be the corresponding BQP-hard instance such that these circuits
are polynomial-size and prepare the pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|, respectively. Leverag-
ing the reduction from PureQSD to ConstRankTsallisQEDq (Lemma 5.4), there are two
polynomial-size quantum circuits Q′

0 and Q′
1, which prepares the purifications of constant-rank

states ρ′0 and ρ′1, such that: For any 1 ≤ q ≤ 2 and any n = n̂+ 1 ≥ 3,

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≥
√

1− 2−2n̂ ⇒ Sq(ρ
′
0)− Sq(ρ

′
1) ≥ gq(n) = gq(n̂+ 1),

T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) ≤ 2−(n̂+1)/2 ⇒ Sq(ρ
′
1)− Sq(ρ

′
0) ≤ gq(n) = gq(n̂+ 1).

Hence, we complete the proof by a direct calculation:

gq(n) := 2−q ·Hq(1/2) ·
(
1− 2−

qn
2 −

√
1−

(
1− 2−2(n−1)

))
≥ 2−q ·Hq(1/2) ·

(
1− 2−

qn
2
+1
)
.

Theorem 5.8 (ConstRankTsallisQEAq is BQP-hard under Turing reduction for 1 ≤ q ≤ 2).
For any q ∈ [1, 2] and any n ≥ 3, the following holds:

ConstRankTsallisQEAq with g(n) = Θ(1) is BQP-hard under Turing reduction.

Proof. For any 1 ≤ q ≤ 2 and n ≥ 3, since ConstRankTsallisQEDq [ĝq(n)] is BQP-hard under
Karp reduction (Theorem 5.7), where ĝq(n) := 2−qHq(1/2)

(
1− 2−n/2+1

)
, it suffices to provide an

algorithm for ConstRankTsallisQEDq [ĝq(n)] by using ConstRankTsallisQEAq [t(n), g(n)]
as subroutines, with appropriately adaptive choices of t(n) and g(n).

LetQ0 andQ1 be the corresponding BQP-hard instance such that these circuits are polynomial-
size and prepare the constant-rank states ρ0 and ρ1, respectively. Let TsallisQEAq(Q, t(n), g(n))
be the subroutine for decide whether Sq(ρ) ≥ t(n) + g(n) or Sq(ρ) ≤ t(n)− g(n). Next, we esti-
mate Sq(ρb) to within additive error ĝq(n)/2 for b ∈ {0, 1}. This procedure, inspired by [Amb14,
Appendix A.2 Part 1], is denoted by BiSearch, as presented in Algorithm 3.
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Algorithm 3 Tsallis entropy estimation BiSearch(Q, τ, g) via queries to TsallisQEAq.

Input: A quantum circuit Q that prepares the purification of ρ, an upper bound τ on the
q-Tsallis entropy Sq(ρ), and a precision parameter g.

Output: Return t such that |t− Sq(ρ)| ≤ g/2.
1: Let δ ← g/2, and set the interval [a, b]← [0, τ ].
2: while b− a > ĝ/2 do
3: Query TsallisQEAq

(
Q, a+b2 , δ4

)
to decide whether Sq(ρ) ≥ a+b

2 + δ
4 or Sq(ρ) ≤ a+b

2 −
δ
4 .

4: if Sq(ρ) ≥ a+b
2 + δ

4 then

5: [a, b]←
[
a+b
2 −

ĝ
4 , b
]
.

6: else
7: [a, b]←

[
a, a+b2 + ĝ

4

]
.

8: end if
9: end while

10: return a+b
2 .

To solve ConstRankTsallisQEDq [ĝq(n)], noting that max{rank(ρ0), rank(ρ1)} ≤ r ≤
O(1), we choose τ(n) = Sq((I/2)

⊗r). Subsequently, let t0(n) = BiSearch(Q0, τ(n), ĝq(n)) and
t1(n) = BiSearch(Q1, τ(n), ĝq(n)), we obtain:

Sq(ρ0)− Sq(ρ1) ≥ ĝq(n) ⇒ t0(n)− t1(n) ≥ Sq(ρ0)−
ĝq(n)

2
−
(
Sq(ρ1) +

ĝq(n)

2

)
≥ 0,

Sq(ρ0)− Sq(ρ1) ≤ −ĝq(n) ⇒ t0(n)− t1(n) ≤ Sq(ρ0) +
ĝq(n)

2
−
(
Sq(ρ1)−

ĝq(n)

2

)
≤ 0.

(5.15)
Note that ĝq(n) = 2−qHq(1/2)(1−2−n/2+1) ≥ 2−

√
2

2q+1 Hq(1/2) for n ≥ 3 and τ(n) ≤ S((I/2)r) ≤
O(1). Since each query to TsallisQEAq in BiSearch decreases the size of the interval [a, b]
by almost a half, we can conclude that the number of adaptive queries to TsallisQEAq in
BiSearch(Q0, τ(n), ĝq(n)) and BiSearch(Q1, τ(n), ĝq(n)) is O(log(1/ĝq(n))) = O(1).

5.3.2 QSZK hardness results

Theorem 5.9 (TsallisQEDq is QSZK-hard for 1 < q ≤ 1+ 1
n−1). For any q ∈

(
1, 1 + 1

n−1

]
and any n ≥ 90, it holds that

∀g(n) ∈ [1/ poly(n), 1/400], TsallisQEDq [g(n)] is QSZK-hard.

Proof. Following Lemma 2.16, we have that QSD
[
1− 2−n̂

0.49
, 2−n̂

0.49
]

is QSZK-hard for n̂ ≥ 1.
Let Q0 and Q1 be the corresponding QSZK-hard instance such that these circuits are polynomial-
size and prepare the purification of ρ0 and ρ1, respectively. Leveraging the reduction from QSD
to TsallisQEDq (Lemma 5.5), there are two polynomial-size quantum circuits Q′

0 and Q′
1,

which prepare the purifications of n-qubit ρ′0 and ρ′1 where n := n̂+ 1, respectively, such that:

T(ρ0, ρ1) ≥ 1− 2−n̂
0.49 ⇒ Sq(ρ

′
0)− Sq(ρ

′
1) ≥ gq(n) = gq(n̂+ 1),

T(ρ0, ρ1) ≤ 2−n̂
0.49 ⇒ Sq(ρ

′
1)− Sq(ρ

′
0) ≤ gq(n) = gq(n̂+ 1).

Since
√
2−n̂0.49

(
2− 2−n̂0.49

)
≤ 2

1−n̂0.49

2 and γ(n) ≤ Sq
(
(I/2)⊗n̂

)
= 1−2n̂(1−q)

q−1 , we have

gq(n̂) ≥
1

2
Hq

(
1

2

)
− 1− 2n̂(1−q)

q − 1

(
1

2
− 1

2q

)
︸ ︷︷ ︸

G1(q;n̂)

−
(
1

2
+

1

2q

)
2−n̂

0.49q

2q
lnq
(
2n̂
)

︸ ︷︷ ︸
G2(q;n̂)

−
(
1

2
+

1

2q

)
Hq

(
1

2

)
2

1−n̂0.49

2︸ ︷︷ ︸
G3(q;n̂)

.
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It remains to show that gq(n̂) ≥ G1(q; n̂) − G2(q; n̂) − G3(q; n̂) > 0 for 1 ≤ q ≤ 1+ 1
n̂ and

large enough n. By the Taylor expansion of G1(q; n̂), G2(q; n̂), and G3(q; n̂) at q = 1, we obtain:

gq(n̂) ≥ G1(q; n̂)−G2(q; n̂)−G3(q; n̂)

≥
(
log(2)

2
− 1

4
(2n̂+ 1) log2(2)(q − 1)

)
− log(2)

2
· n̂2−n̂0.49 − log(2) · 2

1−n̂0.49

2 := G(q; n̂)

Noting that ∂
∂qG(q; n̂) = −

1
4(2n̂ + 1) log2(2) < 0 for n̂ ≥ 1, we know that G(q; n̂) is mono-

tonically decreasing on q > 1 for any fixed n̂ ≥ 1. As a consequence, as 1 ≤ q ≤ 1 + 1
n̂ , it is left

to show that G
(
1 + 1

n̂ ; n̂
)
> 0 for large enough n̂, specifically:

G

(
1+

1

n̂
; n̂

)
=

log(2)

4

(
2− 2 log(2)− 21−n̂

0.49
n̂− 4 · 2

1−n̂0.49

2 − log(2)

n̂

)
> 0.

A direct calculation implies that

d

dn̂
G

(
1+

1

n̂
; n̂

)
=

log(2)

200

(
49
√
21−n̂0.49 n̂1.49 log(2) + 2−n̂

0.49
n̂2
(
49n̂0.49 log(2)− 100

)
+ 50 log(2)

)
Since it is evident that 49n̂0.49 log(2) − 100 > 0, we can deduce that d

dn̂G
(
1+ 1

n̂ ; n̂
)
> 0.

As 49n̂0.49 log(2) − 100 > 0 holds when n̂ ≥ 10, we obtain that G
(
1+ 1

n̂ ; n̂
)

is monotonically
increasing for n̂ ≥ 10. Therefore, we complete the proof by noticing n̂ = n−1 and the following:

For any q ∈
(
1, 1+

1

n̂

]
and n̂ ≥ 89, gq(n̂) ≥ G(q; n̂) ≥ G

(
1+

1

n̂
; n̂

)
≥ G

(
1+

1

89
; 89

)
>

1

400
.

Theorem 5.10 (TsallisQEAq is QSZK-hard under Turing reduction for 1 < q ≤ 1 + 1
n−1).

For any q ∈
(
1, 1 + 1

n−1

]
and any n ≥ 90, the following holds:

TsallisQEAq with g(n) = Θ(1) is QSZK-hard under Turing reduction.

Proof. This proof is very similar to the proof of Theorem 5.8. For any 1 < q ≤ 1 + 1
n−1

and n ≥ 90, since TsallisQEDq [ĝq(n)] is QSZK-hard under Karp reduction (Theorem 5.9),
where ĝq(n) = 1/400, it suffices to provide an algorithm for TsallisQEDq [ĝq(n)] by using
TsallisQEAq [t(n), g(n)] as subroutines, with appropriately adaptive choices of t(n) and g(n).

Let Q0 and Q1 be the corresponding QSZK-hard instance such that these circuits are
polynomial-size and prepare the states ρ0 and ρ1, respectively. Let TsallisQEAq(Q, t(n), g(n)) be
the subroutine for decide whether Sq(ρ) ≥ t(n)+ g(n) or Sq(ρ) ≤ t(n)− g(n). Next, we estimate
Sq(ρb) to within additive error ĝq(n)/2 for b ∈ {0, 1} via the procedure BiSearch, as specified
in Algorithm 3. To solve TsallisQEDq [ĝq(n)], noting that max{rank(ρ0), rank(ρ1)} ≤ 2n, we
choose τ(n) = Sq((I/2)

⊗n). Subsequently, let t0(n) = BiSearch(Q0, τ(n), ĝq(n)) and t1(n) =
BiSearch(Q1, τ(n), ĝq(n)), we obtain the same inequalities in Equation (5.15).

Note that ĝq(n) = 1/400 for n ≥ 90 and τ(n) ≤ S((I/2)n) < 1/(q − 1) ≤ O(1). Since
each query to TsallisQEAq in BiSearch decreases the size of the interval [a, b] by almost a half,
we complete the proof by concluding that the number of adaptive queries to TsallisQEAq in
BiSearch(Q0, τ(n), ĝq(n)) and BiSearch(Q1, τ(n), ĝq(n)) is O(log(1/gq(n))) = O(1).

5.3.3 NIQSZK hardness result

Theorem 5.11 (TsallisQEAq is NIQSZK-hard for q = 1+ 1
n−1). For any n ≥ 5, it holds that :

∀g(n) ∈ [1/ poly(n), 1/150], TsallisQEA1+ 1
n−1

with g(n) is NIQSZK-hard.

Proof. Utilizing Lemma 2.18, we know that QSCMM[1/n, 1− 1/n] is NIQSZK-hard for n ≥ 3.
Following the reduction from QSCMM to TsallisQEA1+ 1

n−1
for n ≥ 5 (Lemma 5.6), and the

specific choice of t(n) in the reduction, we can conclude that g(n) ≥ 1/150.
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5.4 Quantum query complexity lower bounds

In this subsection, we present two quantum query complexity lower bounds for estimating the
quantum Tsallis entropy Sq(ρ): When q is constantly larger than 1, the lower bound is indepen-
dent of the rank of ρ (Theorem 5.12). However, when q > 1 is inverse-polynomially close to 1
or even closer, the lower bound depends polynomially on the rank of ρ (Theorem 5.13).

Theorem 5.12 (Query complexity lower bound for estimating quantum Tsallis entropy with
q constantly above 1). For any q ≥ 1 + Ω(1) and sufficiently small ϵ > 0, the quantum query
complexity for estimating the q-Tsallis entropy of a quantum state to within additive error ϵ, in
the purified quantum query access model, is Ω(1/

√
ϵ).

Proof. Consider the task of distinguishing two quantun unitary operators Uϵ and U0 correspond-
ing to two probability distributions pϵ and p0, where px := (1 − x, x), Ux is a unitary operator
satisfying

Ux|0⟩ =
√
1− x|0⟩|φ0⟩+

√
x|1⟩|φ1⟩,

with |φ0⟩ and |φ1⟩ being any orthogonal unit vectors. By the quantum query complexity of
distinguishing probability distributions given in Lemma 2.20, we know that distinguishing Uϵ and
U0 requires quantum query complexity Ω(1/dH(pϵ, p0)), where dH(·, ·) is the Hellinger distance
between two probability distributions. Direct calculation shows that if ϵ ∈ (0, 1),

dH(pϵ, p0) =
1√
2

√(√
1− ϵ− 1

)2
+
(√
ϵ− 0

)2 ≤ √ϵ.
Thus the query complexity of distinguishing U0 and Uϵ is Ω(1/

√
ϵ).

On the other hand, Ux prepares a purification of ρx := (1 − x)|0⟩⟨0| + x|1⟩⟨1|. Then, for
sufficiently small ϵ > 0, we have

|Sq(ρϵ)− Sq(ρ0)| =
1− (1− ϵ)q − ϵq

q − 1
= Ω(ϵ).

Therefore, any quantum query algorithm that can compute the q-Tsallis entropy of a quantum
state to within additive error Θ(ϵ) can be used to distinguish Uϵ and U0, thus requiring query
complexity Ω(1/

√
ϵ).

Theorem 5.13 (Query complexity lower bound for estimating quantum Tsallis entropy with
q > 1 near 1). For any q ∈

(
1, 1+ 1

n−1

]
with n ≥ 90, and any mixed state ρ of rank r ≥ 2, the

quantum query complexity for estimating Sq(ρ), in the purified quantum query access model, is
Ω(r1/3).

Proof. Following Lemma 2.19, there exists an n-qubit quantum state ρ of rank r ≥ 2 and the
corresponding “uniform” state ρU of rank r on the same support as ρ such that the quantum
query complexity to decide whether T(ρ, ρU) is at least 1− 2−n

0.49 or at most 2−n0.49 is Ω(r1/3).
For any q ∈

(
1, 1+ 1

n−1

]
, utilizing the reduction from QSD to TsallisQEDq(Lemma 5.5) with

the parameters choosing in Theorem 5.9, there are two corresponding quantum states ρ′0 and ρ′1
of rank at most 2r such that the quantum query complexity for deciding whether Sq(ρ′0)−Sq(ρ

′
1)

is at least 1/400 or at most −1/400 is Ω(r1/3). Consequently, estimating Sq(ρ
′
b) for b ∈ {0, 1}

to within additive error 1/800 requires at least the same number of quantum queries.

5.5 Quantum sample complexity lower bounds

In this subsection, we present two quantum sample complexity lower bounds for estimating
the quantum Tsallis entropy Sq(ρ): When q is constantly larger than 1, the lower bound is
independent of the rank of ρ (Theorem 5.14). However, when q > 1 is inverse-polynomially close
to 1, the lower bound depends polynomially on the rank of ρ (Theorem 5.15).
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Theorem 5.14 (Sample complexity lower bound for estimating quantum Tsallis entropy with
q constantly above 1). For any q ≥ 1 + Ω(1) and sufficiently small ϵ > 0, the quantum sample
complexity for estimating the quantum q-Tsallis entropy of a quantum state to within additive
error ϵ is Ω(1/ϵ).

Proof. Consider the hypothesis testing problem where the given quantum state ρ is promised to
be either ρ0 or ρϵ, each with equal probability. Specifically, the states are defined as

∀x ∈ [0, 1], ρx := (1− x)|0⟩⟨0|+ x|1⟩⟨1|.

For sufficiently small ϵ > 0, we know that |Sq(ρϵ) − Sq(ρ0)| = Ω(ϵ), as shown in the proof of
Theorem 5.12. Now, assume that there is a quantum estimator for Sq(ρ) to within additive error
Θ(ϵ) with sample complexity S. This estimator can then be used to distinguish these two states
ρ0 and ρϵ with success probability psucc ≥ 2/3. On the other hand, by Lemma 2.7, we have

psucc ≤
1

2
+

1

2
T
(
ρ⊗S
0 , ρ⊗S

ϵ

)
.

By applying the Fuchs–van de Graaf inequalities [FvdG99, Theorem 1], we have

T
(
ρ⊗S
0 , ρ⊗S

ϵ

)
≤
√
1− F

(
ρ⊗S
0 , ρ⊗S

ϵ

)2
,

where F(ρ, σ) = tr(
√√

σρ
√
σ) is the fidelity of quantum states. A direct calculation shows that

F(ρ0, ρϵ) =
√
1− ϵ, which gives that

psucc ≤
1

2
+

1

2

√
1− (1− ϵ)S.

By combining this with the condition psucc ≥ 2/3, we conclude that S = Ω(1/ϵ).

Theorem 5.15 (Sample complexity lower bound for estimating quantum Tsallis entropy with
q > 1 near 1). For any q ∈

(
1, 1+ 1

n−1

]
, and any mixed state ρ of sufficiently large rank r, the

quantum sample complexity for estimating Sq(ρ) is Ω(r0.51−c) for any constant c > 0.

Remark 5.16 (Dependence on τ = 0.49 in the lower bound). As the sample complexity lower
bound in Theorem 5.15 is Ω(r1−τ−c), with τ = 0.49 chosen for establishing the QSZK-hardness
(Theorem 5.9). Notably, this bound can further be improved by selecting a smaller τ that still
satisfies all requirements in the reduction (Lemma 5.5), which is left for future work.

Proof of Theorem 5.15. By Lemma 2.21 with ϵ = 1/2, there exists an n̂-qubit state ρ̂ of rank
r̂ ≥ 2 and the corresponding “uniform” state ρ̂U of rank r on the same support as ρ̂ such that
the quantum sample complexity to decide whether T

(
ρ̂, ρ̂U

)
is at least 1/2 or exactly 0 is Ω(r̂).

We apply the polarization lemma for the trace distance to the states ρ̂ and ρ̂U, particularly
using only the tensor-product lemma [Wat02, Lemma 8].31 Let ρ := ρ̂⊗r̂

k and ρU := ρ̂⊗r̂
k

U be the
resulting states, where k is a parameter to be determined later. Then, for any constant k > τ

1−τ
with τ = 0.49 and for sufficiently large r̂, the following holds:

T(ρ̂, ρ̂U) ≥ 1/2 ⇒ T(ρ, ρU) ≥ 1− exp(−r̂k/8) ≥ 1− 2−r
τ
,

T(ρ̂, ρ̂U) = 0 ⇒ T(ρ, ρU) ≤ r̂k · 0 = 0 ≤ 2−r
τ
.

As a consequence, the sample complexity of deciding whether T(ρ, ρU) is at least 1− 2−r
τ or

at most 2−rτ is Ω(r
1

1+k ), where r := r̂·r̂k = r̂1+k. For any q ∈
(
1, 1+ 1

n−1

]
⊆
(
1, 1+ 1

r−1

]
, utilizing

the reduction from QSD to TsallisQEDq (Lemma 5.5) with parameters from Theorem 5.9,
there are two corresponding states ρ′0 and ρ′1 of rank at most 2r such that the quantum sample
complexity for deciding whether Sq(ρ′0)−Sq(ρ′1) is at least 1/400 or at most −1/400 is Ω(r

1
1+k ) =

31This inequalities can also be derived using the polarization lemma for the measured quantum triangular
discrimination, specifically combining Theorem 3.3 and Lemma 4.11 in [Liu23].
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Ω(r1−τ−c) = Ω(r0.51−c) for any constant c > 0. Therefore, estimating Sq(ρ
′
b) for b ∈ {0, 1} to

within additive error 1/800 requires at least the same number of copies of ρ.
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A Omitted proofs

A.1 Omitted proof in Section 4

Proposition 4.10.1. For the optimization problem presented in Equation (4.19), an optimal
solution is the distribution provided in Equation (4.20), where ε = N(1− γ)− ⌊N(1− γ)⌋:

pmax(i) =

{
1
N + γ

kmax
, if i ∈ [kmax]

ε
N(N−kmax)

, otherwise
,where kmax := ⌊N(1− γ)⌋. (4.20)

Proof. We begin by noting that Hq(p) = 1
q−1

(
1−

∑
i∈[N ] p(i)

q
)

is concave (Lemma 2.3) for any
fixed q > 1. Consequently, an optimal solution pmax to the optimization problem specified in
Equation (4.19) has a particular form. Specifically, pmax is one of probability distributions p(k)

for integer k ∈ [⌊N(1− γ)⌋] defined in Equation (A.1) with a maximum Tsallis entropy:32

Hq(pmax) = max
k∈[⌊N(1−γ)⌋]

Hq

(
p(k)
)
, where p(k)(i) :=

{
1
N + γ

k , if i ∈ [k]
1
N −

γ
N−k , otherwise

. (A.1)

Plugging Equation (A.1) into Equation (4.19), it suffices to solve the following optimization
32It is easy to verify that 1

N
− γ

N−k
≥ 0 holds if and only if k ≤ N(1− γ) holds.
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problem with q > 1:

minimize Fq(N, k, γ) :=
∑
i∈[N ]

p(i)q = k ·
(

1

N
+
γ

k

)q
+ (N − k) ·

(
1

N
− γ

N − k

)q
subject to 1/q ≤ γ ≤ 1− 1/N,

1 ≤ k ≤ ⌊N(1− γ)⌋,
k,N ∈ Z+

(A.2)

To establish that Equation (4.20) is an optimal solution to Equation (A.2), it remains to
show that the objective function Fq(N, k, γ) is monotonically non-increasing in k for N , γ, and
q > 1 satisfying the constraints in Equation (A.2). Equivalently, it needs to be shown that
∂
∂kFq(N, k, γ) ≤ 0 for 1/q ≤ γ ≤ 1− 1/N and 1 ≤ k ≤ ⌊N(1− γ)⌋, specifically:

∂

∂k
Fq(N, k, γ) =

(k − γN(q − 1))
(γ
k + 1

N

)q
k + γN

+

(
1
N −

γ
N−k

)q
(γN(q − 1) +N − k)

γN − (N − k)
≤ 0. (A.3)

Since it is evident that γ
k + 1

N ≥ 0, k + γN ≥ 0, and k ≤ ⌊N(1− γ)⌋ ≤ N(1 − γ), we can
deduce Equation (A.3) by combining the following inequalities:

k − γN(q − 1) ≤ N(1− γ)− γN(q − 1) = N(1− qγ) ≤ 0,

1

N
− γ

N − k
≥ 1

N
− γ

N −N(1− γ)
= 0,

γN(q − 1) +N − k ≥ N(q − 1) +N −N(1− γ) = Nqγ ≥ N > 0,

γN − (N − k) ≤ N − (N −N(1− γ)) = 0.

Here, the first and the third line hold also due to γ ≥ 1/q. This completes the proof.

A.2 Omitted proof in Section 5

Fact 5.6.1. Let g1(n), g2(n), and g3(n) be functions defined in Equation (5.11). It holds that :
(1) For n ≥ 3, g1(n) ≥ 0.

(2) For n ≥ 3, g2(n) and g3(n) are monotonically increasing.

Proof. We begin by defining f1(n) := 2−n + 1−2
n

1−n

n , f2(n) := 2
n2

1−n (n − 1), and f3(n) :=
n
4

(
1− 2

1
1−n

)
such that g1(n) = f1(n) + f2(n) + f3(n). We then prove the first item separately:

• For f1(n), since 2
n

1−n = 2−(1+
1

n−1), we know that f1(n) is monotonically decreasing for
n ≥ 2, and thus, f1(n) ≥ limn→∞ f1(n) = 0 for n ≥ 2.

• For f2(n), noting that d
dnf2(n) =

2n
2/(1−n)

n−1

(
− log(2)n2 + (1 + log(2))n− 1

)
, we obtain that

f2(n) is monotonically decreasing for n ≥ 3 >
1+2 log(2)+

√
1+4 log(2)2

2 log(2) ≈ 2.9544, and conse-
quently, f2(n) ≥ limn→∞ g2(n) = 0 for n ≥ 3.

• For f3(n), it suffices to show that 21/(1−n) ≤ 1 for n ≥ 3. Since 21/(1−n) is monotonically
increasing for n ≥ 3, we prove the first item by noting that 21/(1−n) ≤ limn→∞ 21/(1−n) = 1.

For g2(n), noting that d
dng3(n) =

2
1

1−n log(2)
(n−1)2

+ 2−n(n log(2)− 1) and n log(2) ≥ 1 for n ≥ 2,
we obtain that g3(n) is monotonically increasing for n ≥ 2.

For g3(n), since 2−1/x is monotonically increasing for x ≥ 1, we have g3(n) ≥ 1
4n(n

1/n −
2−1/n). It remains to show that g̃3(n) := 1

4n(n
1/n − 2−1/n) are monotonically increasing for
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n ≥ 3, namely:
d

dn
g̃3(n) =

1

4n

(
n1/n − 2−1/n log(2)

)
︸ ︷︷ ︸

f4(n)

+
1

4n

(
n1/nn− n1/n log(n)− n2−1/n

)
︸ ︷︷ ︸

f5(n)

≥ 0. (A.4)

Noting that d
dnf4(n) = −

1
n2

(
n1/n(log(n)− 1) + 2−1/n log2(2)

)
< 0 for n > e, namely f4(n)

is monotonically decreasing for n ≥ 3, we obtain that f4(n)
4n ≥ 1

4n limn→∞ f4(n) =
1
4n > 0. Let

f6(n) :=
(

1
2n

)1/n. Notice that d
dnf6(n) = 2−1/n

(
1
n

) 1
n
+2 (− log

(
1
n

)
− 1 + log(2)

)
≥ 0 for n ≥ e/2,

we have that f6(n) =
(

1
2n

)1/n ≥ f6(2) = 1/2 for n ≥ 2. Consequently, we can derive that:(
1

n

) 1
n df5(n)

dn
=

(log(n)− 1) log(n)−
(

1
2n

) 1
nn log(2)

4n3
≤ 1

4n2

(
(log(n)− 1) log(n)

n
− log(2)

2

)
< 0.

Here, the last inequality follows by assuming f7(n) :=
log(n)(log(n)−1)

n < log(2)
2 . A direct calcula-

tion implies that d
dnf7(n) = −

1
n2 ((log(n)− 3) log(n) + 1) = 0 have two zeros at n = exp(3±

√
5

2 ).
Therefore, we establish Equation (A.4) by noticing

f7(n) ≤ max

{
f7

(
3−
√
5

2

)
, f7

(
3 +
√
5

2

)}
<

log(2)

2
.

53
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


