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Abstract

We study uniquely decodable codes and list decodable codes in the high-noise regime, specif-
ically codes that are uniquely decodable from 1−ε

2 fraction of errors and list decodable from 1−ε
fraction of errors. We present several improved explicit constructions that achieve near-optimal
rates, as well as efficient or even linear-time decoding algorithms. Our contributions are as
follows.

• Explicit Near-Optimal Linear Time Uniquely Decodable Codes: We construct a
family of explicit F2-linear codes with rate Ω(ε) and alphabet size 2poly log(1/ε), that are
capable of correcting e errors and s erasures whenever 2e+ s < (1− ε)n in linear-time. To
the best of our knowledge, this is the first fully explicit linear time decodable code over an
alphabet of size 2o(1/ε), that beats the O(ε2) rate barrier.

• Explicit Near-Optimal List Decodable Codes: We construct a family of explicit
list decodable codes with rate Ω(ε) and alphabet size 2poly log(1/ε), that are capable of list
decoding from 1−ε fraction of errors with a list size L = exp exp exp(log∗ n) in polynomial
time. To the best of our knowledge, this is the first fully explicit list decodable code with
polynomial-time list decoding over an alphabet of size 2o(1/ε), that beats the O(ε2) rate
barrier.

• List Decodable Code with Near-Optimal List Size: We construct a family of ex-
plicit list decodable codes with an optimal list size of O(1/ε), albeit with a suboptimal rate
of O(ε2), capable of list decoding from 1 − ε fraction of errors in polynomial time. Fur-
thermore, we introduce a new combinatorial object called multi-set disperser, and use it to

give a family of list decodable codes with near-optimal rate ε
log2(1/ε)

and list size log2(1/ε)
ε ,

that can be constructed in probabilistic polynomial time and decoded in deterministic
polynomial time.

Our techniques are based on plurality analysis and graph-concatenated codes, which are widely
used in the literature. We also introduce new decoding algorithms that may prove valuable for
other graph-based codes.
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1 Introduction

Error-correcting codes are fundamental objects designed to ensure the accurate transmission of data
across channels subject to noise or adversarial errors. They can be described simply as a function
C : Σ̃k 7→ Σn, which maps a k-symbol message over one alphabet Σ̃ to an n-symbol codeword
over another alphabet Σ (in many cases we simply use Σ = Σ̃). Given any code, the two most
important parameters are the information rate R and the distance d. The rate R is defined as

R = k log(|Σ̃|)
n log(|Σ|) , which measures the amount of information in any codeword and hence represents

the efficiency of the code. A higher rate is preferred, as it reduces the redundancy in the encoded
message. The distance d, is defined as the smallest Hamming distance between any two distinct
codewords. The ratio of the distance to the codeword length is referred to as the relative distance
δ. These two parameters are important because in many situations, they characterize exactly the
number (or fraction) of adversarial errors that the code can correct. For example, it is well known
that a code with distance d can correct exactly up to ⌊d−1

2 ⌋ adversarial errors (symbol corruptions),
if one wishes to recover the original message uniquely. This corresponds to the well studied area of
unique decoding. On the other hand, with a slight relaxation of outputting a small list of possible
messages (that contains the correct message), one can hope to tolerate close to d adversarial errors.
This corresponds to another well studied area of list decoding. Therefore, a larger distance is also
preferred.

However, it is also well known that R and d (or δ) cannot both be large, and in fact there
are many well established trade-offs between these two parameters. For example, one of the most
general bounds, known as the Singleton bound, states that any code must satisfy δ+R ≤ 1. If one
restricts the alphabet size, then tighter bounds (such as the Hamming bound) are known. One of
the major goals in coding theory is to design explicit codes with good trade-offs between R, δ, and
the alphabet size. Equally importantly, it is desirable to have efficient or fast decoding algorithms
for the explicitly designed codes. Indeed, most of the research in algorithmic coding theory focuses
on the above two goals, and so does this paper. Here, we focus on the case of high error, that is, to
uniquely decode from 1−ε

2 fraction or list decode from 1 − ε fraction of adversarial errors, for any
constant ε > 0. For unique decoding, the goal is to try to achieve the smallest possible alphabet
size, while for list decoding the goal is to try to achieve the smallest possible alphabet size as well as
the smallest possible list size. Simultaneously, we will also try to design fast decoding algorithms.
We now discuss previous works in these two cases in more details below.

Unique decoding In the regime of unique decoding, by the Singleton bound one cannot hope to
correct more than 1/2 fraction of errors. Therefore, the natural goal is to construct codes that can
correct up to 1−ε

2 fraction of errors, for any constant ε > 0, which corresponds to a relative distance
of roughly δ = 1− ε. For such codes, the Hamming bound and the Plotkin bound imply that the
alphabet size has to be Ω(1/ε) if one wishes to have a positive rate, while the Gilbert-Varshamov
bound implies that an alphabet of size O(1/ε) is enough to achieve rate Ω(ε).

In terms of explicit codes, Reed-Solomon codes [RS60] achieve rate ε with an alphabet size
of Ω(n), which is necessary for any code that meets the Singleton bound. On the other hand,
explicit algebraic geometry codes can achieve rate Ω(ε) with an alphabet size poly(1/ε), however
the decoding algorithm for such codes runs in a fairly large polynomial time.

Over the years (near) linear time decodable/encodable codes for 1−ε
2 fraction of errors have also

been studied, and most of the constructions are based on variants of expander-based codes [SS96].
Such fast decoding algorithms enable the codes to be used with a lot of practical benefits, and
hence is the focus of much research. For example, [GI01] introduced a family of codes capable of
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correcting 1−ε
2 fraction of errors, with rate Ω(ε) and slightly super linear time decoding, or rate

Ω(ε2) and linear-time decoding. Subsequently, building on the near-MDS linear-time codes for
decoding from erasures introduced in [AEL95], [GI02] constructed codes that are both linear-time
encodable and decodable, that can correct up to a 1−R−ε fraction of errors with rate R. However,
the alphabet size in all these codes is exponential in 1/ε. In a subsequent improvement [RTS06], the

authors constructed a family of codes with rate Ω(ε) and alphabet size 22
poly log log(1/ε)

. However, the
unique decoding algorithm still runs in slightly super-linear time. We refer the reader to Table 1
for a detailed list of previous works.

List Decoding As stated before, list decoding is another important and well studied area in
coding theory, which applies when the fraction of errors exceeds δ

2 , rendering unique decoding
infeasible. In such situations, the decoder is allowed to output a small list with L ≥ 1 codewords.
Formally, a code C ⊆ Σn is called (ρ, L)-(combinatorially) list decodable if, for every y ∈ Σn, there
are at most L codewords in C whose relative distance from y is less than ρ. Beyond its natural
application, list decoding is also closely rated to many other areas in theoretical computer science.

A fundamental goal in the study of list decodable codes is to construct codes that achieve the list
decoding capacity, which can be summarized as follows. Fix any q ≥ 2, 0 ≤ ρ ≤ 1− 1/q, and ε > 0,
then there exist (ρ, L)-list decodable codes over an alphabet of size q with rate R ≤ 1−Hq(ρ)− ε
and L = O(1/ε). On the other hand, for any (ρ, L) code with rate 1 − Hq(ρ) + ε, we must have
L = qΩ(n) where n is the codeword length. In particular, when the alphabet size is sufficiently large,
a random code with rate R will, with high probability, be list decodable from 1 − R − ε fraction
of errors. This gets close to the Singleton bound. However, providing explicit constructions with
the best possible trade-off between these parameters and efficient decoding algorithms remains a
significant challenge.

Similar to the case of unique decoding, here we consider the high-error regime, and study
codes that can list decode from 1 − ε fraction of errors. In this case, using the probabilistic
method it is easy to show the existence of (1 − ε,O(1/ε))-list decodable codes with rate Ω(ε)
and alphabet size O(1/ε2). However, for a while only explicit constructions with rate Ω(ε2)
are known, until Guruswami [Gur04] gave the first explicit construction that can achieve rate
Ω(ε/ log(1/ε)) assuming one has an explicit construction of optimal strong seeded extractor. The
alphabet size is 2O(ε−1 log(1/ε)) and the list size is O(1/ε). However, to date no explicit construc-
tion of such optimal strong seeded extractors is known1; and with known explicit constructions
of strong seeded extractors, the code in [Gur04] only achieves list size 2O(

√
n logn), where n is the

codeword length. In the following improvement [RTS06], the authors again reduced the alpha-

bet size to 22
poly log log(1/ε)

while keeping the other parameters roughly unchanged. We also mention
that through another line of research which constructs capacity achieving list decodable codes
[GR08][Gur09][GW13][Kop15][GX13][GK16][HRZW19][KRRZ+20] [GRZ21][GX22], we now have
explicit codes with rate R that can list decode from 1 − R − ε fraction of errors. By setting for
example R = ε, this also gives explicit codes that can list decode from 1− ε fraction of errors with
rate Ω(ε). In [AGL24], the authors showed that a code with rate R, achieving a list decoding radius
of 1 − R − ε and a constant list size, requires an alphabet size of 2Ω(1/ε), and the best known list
size, as in [GRZ21], is still 2poly(1/ε).

Another line of research in list decoding focuses on minimizing the list size while approaching the
Singleton bound. A series of works [GLS+24, BGM23, GZ23, AGL23, BDGZ24] demonstrated that
most Reed-Solomon codes and algebraic-geometric codes are list-decodable with an optimal list size.
Later, [RZVW24] extended the definition of GM-MDS to ’polynomial ideal codes’ and proposed an

1They can be constructed in probabilistic polynomial time though.
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efficient list decoding algorithm for random polynomial ideal codes. However, these codes are not
fully explicit, as they are obtained through random puncturing. For explicit constructions, progress
has been made in reducing the list size. Several works, including [DL12, KRZSW23, Tam24, Sri24],
have achieved optimal list-decodable codes with a constant list size. Most recently, in [CZ24],
the authors presented explicit codes that achieve list decoding capacity with an optimal list size
of L = ⌈1ε⌉. Despite these advances, all such codes still require large alphabet sizes, which are
polynomial in n for (Folded) Reed-Solomon codes or exponential in 1/ε for AG codes.

We refer the reader to Table 2 for a detailed list of previous works.

1.1 Our results

We give explicit constructions of codes in both the unique decoding regime and the list decoding
regime. In the former, our codes can correct up to 1−ε

2 fraction of errors; and in the latter, our
codes can list decode from up to 1− ε fraction of errors. Our codes significantly improve previous
results in several aspects, which we discuss below.

In the unique decoding regime, our codes achieve rate Ω(ε) and alphabet size 2poly log(1/ε),
together with truly linear decoding time for any constant ε > 0. This improves upon the best
known previous results of [GI02], which has linear time decoding and rate Ω(ε), but with alphabet

size 2poly(1/ε); and the subsequent work [RTS06], which has rate Ω(ε) and alphabet size 22
poly log log(1/ε)

,
but super-linear decoding time2. Specifically, we have the following theorem.

Theorem 1.1. For any ε > 0, there exists an explicit family of F2-linear codes over an alphabet of
size quasipoly (1/ε) = exp(polylog(1/ε)), which have rate Ω(ε) such that a code with block length
n in the family can be decoded from e errors and s erasures as long as 2 · e+ s < (1− ε)n in time
O(n · polylog(1/ε)).

To the best of our knowledge, this is the first fully explicit code to achieve a linear-time decoding
algorithm with an alphabet size smaller than 2O(1/ε), and rate beating the O(ε2) barrier. Indeed,
the best known previous linear-time uniquely decodable code with rate Ω(ε) was presented in [GI02],
with an alphabet size of 2poly(1/ε). Our codes thus give a substantial improvement.

As in previous works [GI02, RTS06], our construction is based on the use of certain extremal
graphs. Specifically, we use an explicit disperser with constant error and constant entropy loss. In
more details, a bipartite graph G : (L⊔R,E) with uniform left degree D is called a (K, δ)-disperser
if for every subset of left vertices S ⊆ L(G) of size at most K, the size of its neighbors |Γ(S)| is at
least (1− δ)|R(G)|. Here, δ is the error, and log

(
KD

|R(G)|

)
is called the entropy loss of this disperser.

Optimally, but non explicitly, there exists a disperser with constant error and entropy loss, and
left degree D = Θ(log(1ε )) when K = Θ(N). Such a disperser can be constructed in probabilistic
polynomial time. Using this disperser, we can further reduce the alphabet size to poly (1/ε).

Theorem 1.2. For any ε > 0, there exists a family of F2-linear codes over an alphabet of size
poly(1/ε), which have rate of Ω(ε) such that a code with block length n in the family can be decoded
from e errors and s erasures as long as 2 · e+ s < (1− ε)n in time O(n · polylog(1/ε)), and can be
constructed in probabilistic time poly(n, log(1/ε)) with success probability at least 1−exp(− log(1/ε)·
n).

We refer the reader to Table 1 for a detailed comparison of our results and previous results.

2As noted before, algebraic geometry codes can correct up to 1−ε
2

fraction of errors with rate Ω(ε) and alphabet
size poly(1/ε), but the decoding takes a large polynomial time.
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Rate R Alphabet size
Poly-time
construc-

tion

Decoding
time

[GI01] ε exp(1ε ) D n1+γ

[GI01] ε2 exp( 1
ε2
) D n/ε2

[GI02] ε exp(poly(1ε )) D n/ε6

[RTS06] ε exp(exp(poly log log(1ε ))) D n1+γ

[RTS06] ε exp(poly log(1/ε)) P n1+γ

Our Work ε exp(poly log(1ε )) D n·poly log(1/ε)

Our Work ε poly(1/ε) P n·poly log(1/ε)

Table 1: Uniquely decodable codes capable of decoding a (1 − ε)/2 fraction of errors, where γ
is a constant affecting the rate by a constant factor. The fourth column indicates whether such
codes can be obtained in polynomial time, either deterministically or probabilistically. We use D
for deterministic polynomial time and P for probabilistic polynomial time. In order to keep things
concise here, we have omitted the O(·) and Ω(·) notations.

In the list decoding regime, we provide several improved constructions. Our first construction
also achieves rate Ω(ε) and alphabet size 2poly log(1/ε), with a list size of exp(exp(exp(log∗ n))). This
significantly improves the previous work of [RTS06], which has rate Ω(ε/poly log(1/ε)), alphabet size

22
poly log log(1/ε)

, and list size 2O(
√
n logn). Compared to the work of [GRZ21], their list size is smaller

(2poly(1/ε)) when ε is a constant, but our alphabet size is much smaller (2poly log(1/ε) compared to
2O(1/ε2 log(1/ε)) in [GRZ21]). If we use an optimal (but non-explicit) disperser, then we can further
reduce the alphabet size to poly(1/ε). Specifically, we have the following theorem.

Theorem 1.3. For any ε > 0, there exists an explicit family of codes over an alphabet of size
quasipoly (1/ε) which have rate Ω(ε) such that a code with block length n in this family can be list
decoded up to (1 − ε) fraction of errors with list size L = exp exp expε(log

∗ n) in time polyε(n).
Moreover, there exists a family of codes over an alphabet of size poly(1/ε) that maintains the same
rate and list-decoding properties, and a code with block length n in this family can be constructed
in probabalistic time poly(n, log(1/ε)) with success probability at least 1− exp(− log(1/ε) · n).

To the best of our knowledge, this is the first fully explicit list decodable code with polynomial-
time list decoding that beats both the 2Ω(1/ε) alphabet size barrier and the O(ε2) rate barrier.
Indeed, the constructions in [Gur04] and subsequently [RTS06] need to use non-explicit optimal
strong seeded extractor to achieve this, otherwise their list sizes become as large as 2O(

√
n logn), and

hence require super-polynomial decoding time.
We also give constructions that can list decode from 1− ε fraction of errors with an optimal list

size of O(1/ε). Fully explicitly, we construct a code with rate Ω(ε2) and alphabet size 2poly log(1/ε).
While the rate here is sub-optimal, it is still the best known in any explicit construction with
list size O(1/ε), and it significantly improves the alphabet size in the previously best known such
explicit code, which is 2O(1/ε log(1/ε)) [GI01]3. Next, we present a method to achieve near-optimal
list size and rate simultaneously, by introducing a generalization of standard disperser which we

3We note that [GI01] also has a non-explicit construction giving the same parameters as ours. Furthermore, such
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call a multi-set disperser. We show that given an optimal multi-set disperser as an ingredient in

our graph based construction, we can obtain a (1 − ε,O( log
2(1/ε)
ε ))-list decodable code with rate

Ω( ε
log2(1/ε)

) and alphabet size poly(1/ε). Hence, all the parameters are close to optimal. We note

that this construction is semi-explicit, as in many previous works [GI01, GI02, Gur04, RTS06],
since such a multi-set disperser can be constructed in probabilistic polynomial time (a random
graph is such a disperser with high probability). However, the semi-explicit construction in [GI01]
which achieves similar rate and list size requires an alphabet size of 2O(1/ε log(1/ε)). In addition, the
semi-explicit construction in [GI01] does not give a polynomial-time list decoding algorithm (even
assuming the optimal non-explicit object). In contrast, we provide a polynomial time list decoding
algorithm for all our codes. Specifically, we have the following two theorems.

Theorem 1.4. Given any ε > 0, there exists an explicit family of codes over an alphabet of size
quasipoly

(
1
ε

)
, which have rate Ω(ε2) such that a code with block length n in this family can be list

decoded up to (1− ε) fraction of errors with list size L = O(1ε ) in time polyε(n).

Definition 1.5. A (K, δ)-multi-set disperser is a bipartite graph G = (L⊔R,E), where |L(G)| = N
and |R(G)| = M , with a uniform left degree denoted as D, which has the property that for every
t ≥ 2 and t different subsets S1, . . . ,St of R(G) with |Si∆Sj | ≥ δ · |R(G)| for each i and j, the
number of v ∈ L(G) such that Γ(v) is contained in some (Si∆Sj)c is at most t ·K.

There is a mutual conversion relationship between dispersers and multi-set dispersers. Specifi-

cally, a (K, δ)-multi-set disperser is a (2K, δ)-disperser. Conversely, a (K, δ)-disperser is a (
√

KN
2 , δ)-

multi-set disperser. However, a disperser with constant entropy loss does not necessarily imply a
good multi-set disperser, where we aim to achieve M/KD = Ω(1). The existence of such a multi-set
disperser can be proven by standard probabilistic argument, and we have the following theorem.

Theorem 1.6. For every integers N > 0, 0 < K < N/2, and 0 < δ < 1, there exists an (K, δ)-
multi-set dispersers G : (L ⊔R,E), where |L| = N , |R| = M , with left degree D and

• M = ⌊K/N log(N/K)⌋ ·N

• D = ⌈4 log(N/K)/δ⌉.

Moreover, a random bipartite graph with N left vertices, M right vertices, and left-degree D as
specified above above is a (K, δ)-multi-set disperser with probability at least 1−exp(1−log(N/K)N).

Based on that, we provide a semi-explicit list decodable code with near-optimal list size and
near-optimal rate.

Theorem 1.7. For any ε > 0, there exists a family of codes over an alphabet of size poly(1/ε),

which has rate Ω
(

ε
log2(1/ε)

)
such that a code with block length n in the family can be list decoded from

up to 1−ε fraction of errors with list size L = O
(
log2(1/ε)

ε

)
in time polyε(n), and can be constructed

in probabalistic time poly(n, log(1/ε)) with success probability at least 1− exp(− log(1/ε) · n).

We point out that this is the first near-optimal, efficiently list-decodable code in the high-noise
regime that achieves the optimal list size with a polynomial-sized alphabet. It is worth noting that
this result does not contradict the lower bound provided in [AGL24], where q ≥ exp(1/ε), because
the rate of our code is a function of ε. We refer the reader to Table 2 for a detailed comparison.

parameters are easy to achieve by the Johnson bound from any code with relative distance 1− ε2, but this does not
give polynomial time decoding algorithms.

5



Rate R Alphabet size List size
Poly-time
construc-

tion

Decoding
time

[GI01] ε2 exp(1/ε log(1/ε)) 1
ε D n2

[GI01] ε exp(1/ε log(1/ε)) 1
ε P exp(nγ)

[GI02] ε2 exp(poly log(1ε ))
1
ε P n2poly log n

[GI02] t−3ε2+
2
t 1/εb (b > t) t2

ε1+1/t P n1/ε

[Gur04] ε
poly log(1/ε) exp(1/ε log(1/ε)) exp(

√
n log n) D exp(n1/2)

[RTS06] ε
poly log(1/ε) exp(exp(poly log log(1ε ))) exp(

√
n log n) D exp(n1/2)

[RTS06] ε
poly log(1/ε) exp(poly log(1/ε)) exp(

√
n log n) P exp(n1/2)

[GRZ21] ε exp(1/ε2 log(1/ε)) exp(poly(1/ε)) D poly(n)

[RZVW24] ε expϵ(n)
1
ε P poly(n)

[CZ24] ε poly(n) 1
ε D poly(n)

Our Work ε exp(poly log(1ε )) exp exp exp(log∗ n) D poly(n)

Our Work ε2 exp(poly log(1ε ))
1
ε D poly(n)

Our Work ε
log2(1/ε)

poly(1/ε) log2(1/ε)
ε P poly(n)

Table 2: List decodable codes capable of decoding a (1− ε) fraction of errors, where γ is a constant
affecting the rate by a constant factor. The fifth column indicates whether such codes can be
obtained in polynomial time, either deterministically or probabilistically. We use D for deterministic
polynomial time and P for probabilistic polynomial time. In order to keep things concise here, we
have omitted the O(·) and Ω(·) notations. When presenting the decoding algorithm, we treat ε as
a constant.

1.2 Proof Overview

At a high level, our constructions are based on using certain extremal graphs to achieve the desired
properties from a weaker code, that is easier to construct. Such constructions are widely used in
previous works (e.g., [ABN+91] [GI01][GI02][Gur04][RTS06]). Here, we use modified constructions
and provide new decoding algorithms. Our constructions require two fundamental components: a
bipartite graph (usually a variant of disperser) and a weaker code to start with (often called the
mother code).

Graph-concatenated code Dispersers and expanders are often used to amplify the distance
or achieve other desired properties of a code, together with a well designed mother code. In the
following, we represent a disperser by a bipartite graph G : (L ⊔R,E).

Consider a bipartite graph G with N left vertices and M right vertices, each left vertex having
a uniform degree D. Starting with a mother code C of length M over an alphabet Σ, we construct
a graph-concatenated code G(C) of length N over the alphabet ΣD. This construction is carried
out by placing each codeword c ∈ C on the right side of the graph, that is, each right vertex
corresponds to a coordinate in c. Each left vertex then receives D symbols from all its neighbors,
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which are juxtaposed to form a new symbol. Consequently, each position in the concatenated code
G(C) corresponds to a left vertex, forming a new codeword G(c). The complete set of these new
codewords form the code G(C), which maintains a one-to-one correspondence with the original
codewords in C. Importantly, the linearity of C is inherited in G(C); that is, if C is F-linear over
some field F, then G(C) remains F-linearity over a larger field.

Distance Amplification Rather than using expansion properties of the graph as in previous
works, we directly argue about the distance of G(C) by using the disperser property. To demonstrate
how the distance of the code G(C) is amplified by the disperser G, we analyze the distance between
each pair of codewords in G(C) by examining the corresponding codewords in C.

Recall that a (K, δ)-disperser has the property that for every subset of left vertices S ⊆ L(G)
of size at most K, the size of its neighbors |Γ(S)| is at least (1 − δ)|R(G)|. Consider a code C
on the right with distance δM . For any two codewords c1, c2 in C, at most a (1 − δ) fraction of
the vertices are identical. Using the disperser property, we can bound the number of left vertices
whose neighbors fall entirely into this set. Specifically, if G is a (K, δ/2)-disperser, the subset of
left vertices where G(c1) and G(c2) have identical values is less than K. This implies that the
corresponding codewords G(c1) and G(c2) in G(C) have less than K identical symbols, and hence
the distance of C is at least N −K.

The rate of the final code is R(C)M
ND = R(C)

δ · KN ·
δM
KD , and our goal is to achieve rate Ω(ε).

Therefore, we set K/N = Θ(ε), and both R(C)
δ and δM

KD to be constants independent of K/N . To

ensure R(C)
δ is a constant, we simply use an asymptotically good code as the mother code, since this

implies that both R(C) and δ are absolute constants. To ensure δM
KD is a constant, we use a disperser

with constant entropy loss. This is possible since we can set the error of the disperser to be δ/2 as
discussed before, which is an absolute constant. If we use the explicit disperser in [CRVW02], this
gives Theorem 1.1, while using an optimal (but non-explicit) disperser gives Theorem 1.2.

Compared to previous works, our construction uses a better unbalanced disperser as given in
[CRVW02]. This improves upon the balanced disperser/expander in [GI01] and the unbalanced
disperser with poor degree in [FMS+06]. This gives us the improvement over previous results.

Unique Decoding Algorithm For similar constructions of graph-based codes, [GI01] presents
two algorithms for unique decoding, where the decoding can be interpreted as a voting operation
on the right side, with each vertex being assigned the majority symbol from its neighbors. The
first algorithm, which applies to codes achieving a rate of Ω(ε), requires the mother code to be
list-decodable. This is because, after the voting operation, we cannot guarantee that the correct
bits in the mother code constitute a majority, so list decoding is needed to generate a filtered
list that can be checked individually. As a result, the decoding time is superlinear. The second
algorithm achieves linear-time decoding since, after the voting process, it runs the linear-time
decoding algorithm of the mother code, based on the expander code from [SS96]. However, this
approach requires the graph to possess certain additional properties, specifically that it is derived
from a Ramanujan graph with D = O( 1

ε2
). The Ramanujan graph ensures that most right-side

vertices vote for the correct bits. Nonetheless, these strict graph requirements result in a worse
rate (Ω(ε2)) and larger alphabet size (2O(1/ε2)). The construction and unique decoding algorithm in
[RTS06] build on work in [GI01], by transitioning from a balanced bipartite graph to an unbalanced
one. While this improves the alphabet size, the unique decoding algorithm still depends on the list
decoding algorithm of the mother code, and hence takes super linear time. The linear-time unique
decoding algorithm in [GI02], on the other hand, use a new construction by considering each right
vertex as a Reed-Solomon code with length equal to the right degree of the graph. However, the
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disadvantage of this construction is that it requires a large alphabet size for the mother code and
a large degree for the graph, resulting in an exponentially large alphabet size in the final code.

Here we develop a new unique decoding algorithm for our near-optimal codes, by introducing
erasure operations for the received word. Specifically, upon receiving a word y, we distribute all
values from the left side to the right, in the graph G. Our next crucial step involves identifying any
inconsistent values. Specifically, if there are two vertices on the left, u and v, and indices i, j ∈ [D],
where Γi(u) = Γj(v) for the neighbors on the right (i.e., the i’th neighbor of u and the j’th neighbor
of v are the same vertex on the right) but y(u)i ̸= y(v)j for the corresponding values, this indicates
inconsistent values on the right side and therefore there must be at least one error. In this case, we
replace the values on u and v by a symbol ⊥, i.e., treat them as erasures. This process continues
until, for each vertex w on the right, either every vertex in Γ(w) is ⊥ or all non-⊥ values in Γ(w)
are consistent. Finally, if there are real erasures in the received word y which results in ‘empty’
right vertices, we just fill them with arbitrary values. We can now apply the linear time unique
decoding algorithm of the mother code C, which is again based on expander codes.

We show that our decoding algorithm succeeds as long as the condition 2e + s < (1 − ε)n is
satisfied, where e is the number of errors that occurred and s is the number of erasures that occurred.
Note that in each iteration where we replace a pair of vertices on the left by ⊥, at least one of these
vertices is erroneous. Here, we set the code length n to be equal to the number of left vertices N .
Since e < (1 − ε)n/2, after the iterations, at least n − 2e = εn = K left vertices remain. Let S
denote the set of these vertices. By the disperser property, we know that |Γ(S)| ≥ (1− δ/2)M , and
each vertex v ∈ Γ(S) receives at least one correct value from the left. Consequently, the proportion
of correct symbols on the right is at least 1 − δ/2. Therefore, the unique decoding algorithm for
the mother code can be effectively applied.

We note that as long as the mother code is uniquely decodable in linear time, the whole process
can be implemented in linear time, since the graph has constant degree. Therefore, we employ
expander codes as mother codes, which possess unique decoding algorithms up to a sufficient
decoding radius.

List Decodable Codes and Decoding Algorithm Our list decodable codes are also based on
using a graph together with a mother code. In particular, we use a list recoverable code as the
mother code. Informally, a list recoverable code has the property that if we know each symbol of
the codeword is contained in a small list of size ℓ, then the total number of such possible codewords
is also small. List recoverable codes have been widely used as ingredients to construct list decodable
codes. Here, our construction is similar in spirit to that of [Gur04] and the follow up work [RTS06],
where the mother code is a so called extractor code, which has good list recovery properties. In
fact, list recoverary from extractor codes does not need each candidate symbol to be contained in a
small list. Instead, it suffices if the total number of all candidate symbols and their corresponding
positions is bounded. However, the drawback is that the currently best known explicit constructions
result in a large, sub-exponential output list size. Here, we use a more general list recoverable code
as the mother code and provide an enhanced algorithm, allowing for efficient list decoding with
better parameters.

Specifically, our first construction uses a list recoverable code in [HRZW19] as the mother code.
We set the list size, ℓ, to 2

ε and maintain both the rate and list recovery radius as constants. The
graph, which is a (K, δ)-disperser, satisfies K/N = ε

2 , and δ is no more than the list recovery radius
of the mother code.

Upon receiving a word y, the initial step involves distributing all values from the left side to
the right side. On average, each right vertex receives ND

M = O(1/ε) values. Given that this graph
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is not necessarily bi-regular, some right vertices may receive a lot more values. Thus, we adopt
our strategy from unique decoding, by deleting some inconsistent values. To manage the list size
for list recovery effectively, we ensure that no right vertex receives more than ℓ different values;
otherwise, we eliminate ℓ different values and erase the corresponding positions on the left, since
we know at most one of the values is correct. We set ℓ to be 2

ε so that the total number of correct
vertices removed during this process is at most ε

2 fraction. Consequently, at least ε
2N correct left

vertices remain. By the disperser property, these vertices span at least (1− δ) fraction of the right
vertices, sufficiently covering the required positions for the list recovery algorithm.

We note there may be cases where a left vertex has parallel edges to the same right vertex but
distributes different values. If this happens, we know that this left vertex is erroneous and erase it
in the first step.

After obtaining a list from the list recovery algorithm of the mother code, we also get a list of
the codewords of the new code, just by running the encoding algorithm. We then individually check
the distance between the candidate codewords and the received word to obtain an appropriate list.

List Decoding with Near Optimal List Size However, with the above approach it will be
difficult for the new code to achieve an optimal list size, as this would require a very strong list
recoverable mother code. To address this, we consider a stronger property known as ‘average-radius
list decoding’, as defined in [RW14]. Specifically, we say a code C is (1 − ε, L − 1)-average-radius
list decodable, if the following holds: For any set of L different codewords, denoted Λ, we have∑

j∈[n]

plj(Λ) < εnL, (1)

where plj(Λ) denotes the plurality at the j’th coordiante (i.e., the number of the symbol which
appears the most). It is important to notice that a (ρ, L)-average-radius list decodable code is also
(ρ, L)-combinatorially list decodable. Therefore, to prove that a code is list decodable, we only
need to bound

∑
j∈[n] plj(Λ) for any L different codewords.

We first start with a preliminary result, using plurality to prove a simple conclusion and laying
the groundwork for subsequent proofs. Fix an asymptotically good mother code C with constant
relative distance and constant rate. We show that when the rate of the concatenated code G(C)
provided by the disperser is Ω(ε2), the resulting code can list decode from a 1− ε fraction of errors
with an optimal list size of O(1/ε). To illustrate this, we examine any two different codewords
c1, c2 in G(C). We prove that the number of left vertices where G(c1) and G(c2) share the same
value does not exceed O(ε2n). Finally, we use a double counting method to show that the sum of
the plurality does not exceed O(ε2L2n) = O(εLn) by taking L = O(1/ε).

The above argument merely matches the Johnson bound, and is too loose to achieve a near-
optimal rate. To address this, we analyze a more intricate property which we call the plurality
condition. Specifically, we say that a code C satisfies the (β, δ, L)-plurality condition if, for any L
different codewords Λ and a uniformly randomly chosen index j, the probability that plj(Λ) ≥ βL
is at most δ. Setting β = δ = Θ(ε) leads to a feasible (1 − ε, L)-list decodable code, though the
rate of a random code satisfying this property is only Ω(ε2). To overcome this barrier, we show the
following modified property: if a code satisfies the (β, δ, L)-plurality condition for all β, δ such that
β · δ = ε, then this code is (1 − O(ε log(L)), L)-list decodable. by choosing L = O(1/ε), the list
decoding radius is within a logarithmic factor of the optimal. Moreover, our crucial observation is
that, implicitly, a random code over a large enough alphabet with rate Ω(ε) satisfies the (β, δ, L)-
plurality condition for all β and δ such that β · δ = ε with L = O(1/ε) with high probability.

However, to satisfy this property using graph concatenated codes is non-trivial. Specifically,
it is hard to show that dispersers with K = Ω(εN) are enough give such codes where β · δ = ε.
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Therefore, we introduce a generalization and strengthening of standard dispersers, which we call
multi-set dispersers, and show that such objects can be used to achieve both near-optimal rate and
near-optimal list size. The key part of our proof is establishing a connection between the multi-set
disperser and the plurality condition. Furthermore, we show that a random graph satisfies the
desired multi-set disperser property with high probability.

We replace the disperser in the construction with a multi-set disperser G, and start from an
asymptotically good binary mother code C with constant relative distance δ. For each L different
codewords Λ ⊆ C, define Si as the indices where the i-th codeword equals 1. To bound the size of
the set Q ⊆ L(G) where the vertices in Q have plurality at least βL for Λ, we claim that we can
select ⌈ 2β ⌉ codewords T from Λ and a subset Q′ ⊆ Q with size at least 0.3|Q|, such that for each

v ∈ Q′, we can always find two codewords from T whose values are identical at v. This implies
that all neighbors of this vertex are contained in (Si∆Sj)

c for some ci, cj ⊆ T . By the multi-set
disperser property, we can bound the size of Q′, and thus also the size of Q. This gives our near
optimal list decodable code which can be constructed in probabilistic polynomial time.

In this construction, the plurality condition analysis does not give us a decoding algorithm.
To get such an algorithm, we need to use again the list decoding algorithm from our previous
list decodable code. However, we cannot simply replace the mother code with the previous one
since, in our new construction, the mother code for the multi-set disperser needs to be binary.
To address this, we introduce a folding operation that combines two different codes with the same
message space and codeword length. This operation allows the resulting code to inherit all decoding
properties of the two original codes. For the first code, we use an efficient list decodable code, but
the list size is not optimal. For the second code, we use a code that is list decodable with a near-
optimal list size, but no decoding algorithm. Putting them together, the folded code has both a
near-optimal list size and an efficient decoding algorithm.

Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we provide the necessary notations and
definitions. In Section 3, we present the framework of our construction. In Section 4, we prove
Theorem 1.1 and Theorem 1.2 for linear-time uniquely decodable codes. In Section 5, we prove
Theorem 1.3 for efficiently list decodable codes. In Section 6, we prove Theorem 1.4, introduce the
definition of multi-set dispersers, and prove Theorems 1.6 and 1.7. In Section 7, we pose some open
problems.

2 Preliminary

We employ standard Landau notation O(·),Ω(·),Θ(·) to denote the asymptotic order of a function.
Additionally, we use poly(·) to refer to polynomial functions, exp(·) to refer exponential growth
functions, and quasipoly(·) is defined as exp(polylog(·)). We introduce Ox(·), Ωx(·),Θx(·), polyx(·)
and expx(·) to specify consideration with respect to a fixed factor x. All logarithms are base-2
unless stated otherwise. The iterated logarithm of a number n, denoted as log∗(n), is defined as
the number of times the logarithm function must be applied to n before the result is less than or
equal to 1. For integer n, let [n] denote the set {1, . . . , n}, and Σn denotes the set of all strings of
length n over alphabet Σ. For a string s ∈ Σn and an index i ∈ [n], si denotes the i-th symbol of s.

When the context is clear, we use the notation Sc to denote the complement of the set S, and
Si∆Sj to denote the symmetric difference of two sets Si and Sj . Specifically, Si∆Sj = (Si\Sj) ∪
(Sj\Si).
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Given a binomial coefficient
(
N
K

)
, we will utilize the inequality(

N

K

)
≤

(
eN

K

)K

(2)

in the following proofs. Additionally, we employ the Chernoff bound through the following lemma:

Lemma 2.1. Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0 with probability
1− pi, and all Xi are independent. Let µ = E(X) =

∑n
i=1 pi. Then

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

<

(
e

1 + δ

)(1+δ)µ

(3)

for any δ > 0.

A code C ⊆ Σn consists of words of equal length n over a fixed alphabet Σ. The dimension of a
code C, denoted k(C), is defined as k(C) := log|Σ| |C|, and its rate R(C) is given by R(C) := k(C)

n =
log|Σ| |C|

n . The distance of a code C, denoted d(C), is defined as d(C) := minc1 ̸=c2∈C d(c
1, c2), where

d(·, ·) represents the Hamming distance between two words, and the relative distance δ(C) is given
by δ(C) = d(C)

n .

A code with distance d can decode up to
⌊
d
2

⌋
− 1 errors. That is, for any y ∈ Σn, there is

at most one codeword c ∈ C such that d(y, c) < d
2 . In coding theory, there is another type of

corruption called erasures, where some symbols in y are replaced by a symbol not in Σ, denoted as
⊥. Considering both errors and erasures, a code with distance d can decode up to e errors and s
erasures whenever 2e + s < d. We often refer to 2e + s as the number of ‘half errors’, where one
erasure counts as one half error and one error counts as two half errors.

A code C ⊆ Σn is called (ρ, L)-(combinatorially) list-decodable if, for every y ∈ Σn, the number
of codewords c ∈ C within a Hamming distance ρn from y is at most L. Furthermore, a code C ⊆ Σn

is (ρ, L)-average-radius list decodable if, for any L + 1 distinct codewords c1, c2, . . . , cL+1 ∈ C and
any vector y ∈ Σn, the average Hamming distance from y to c1, c2 . . . , cL+1 is strictly greater than
ρn. It is noteworthy that average-radius list decoding is stronger than combinatorial list decoding:
any (ρ, L)-average-radius list decodable code is also (ρ, L)-combinatorially list decodable. A code
C ⊆ Σn is said to be (ρ, ℓ, L)-list recoverable if, for every collection of ℓ sets S1, S2, . . . , Sn ⊆ Σ
and every received vector y ∈ Σn, the number of codewords c ∈ C such that ci ∈ Si for at least
(1− ρ)n positions is at most L. List-recoverable codes generalize list-decodable codes by allowing
the received symbols to belong to sets of possible values rather than a single value.

A disperser is a combinatorial structure designed to ensure that for any subset of a given size,
the output size remains high when passed through the disperser. Essentially, dispersers are utilized
to extract randomness from weakly random sources, thus reducing the predictability of the output.
Typically, a disperser can be represented using a bipartite graph as follows.

Definition 2.2. A (K, δ)-disperser is a bipartite graph G : (L ⊔ R,E) with a uniform left degree
denoted as D, which has the property that for every subset S ⊆ L(G) with size at least K, its
neighbors Γ(S) have size at least (1− δ)|R|. δ is called the error of this disperser, and log

(
KD
M

)
=

log(K) + log(D)− log(M) is the entropy loss of this disperser.

The pursuit of constructing better dispersers has long been a goal in much research. Generally,
given N,K, δ, we have two main objectives: one is to reduce the degree D, and the other is
to minimize the entropy loss. Optimally but not explicitly constructed, we have the following
parameter scheme for a disperser.
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Lemma 2.3. For every integers N > 0, 0 < K < N , and 0 < δ < 1, there exists a (K, δ)-disperser
G : (L ⊔R,E) with left degree D, where |L| = N , |R| = M with

• D = O(log(N/K)/δ), and

• M = Θ(KD/ log(1/δ)).

Moreover, a random bipartite graph with N left vertices, M right vertices, and left-degree D as
specified above above is a (K, δ)-disperser with probability at least 1− exp(1− log(N/K)N).

The existence of dispersers with these parameters can be proven by probabilistic arguments.
However, current explicit constructions still have significant room for improvement in both aspects.
With a fixed constant δ, several constructions have achieved constant entropy loss, while the degree
is a polynomial function of log(N/K). In [CRVW02], the authors unify various randomness ob-
jects into a framework known as randomness conductors and introduce the concept of ‘extracting
conductors’, which is a stronger version of extractors. Note that a random extractor has stronger
properties than a disperser. In this paper, we just employ the ‘disperser’ property of such objects,
and the results can be presented as follows.

Theorem 2.4. [CRVW02] For every integers N > 0, 0 < K < N , and 0 < δ < 1, there exists a
(K, δ)-disperser G : (L ⊔R,E) with left degree D, where |L| = N , |R| = M with

• D = poly(log(N/K), 1/δ), and

• M = Θ(KD/δ2).

Moreover, if K = Θ(αN) for some constant α, then this disperser can be constructed in time
polyα(N).

3 Graph-concatenated code

In this section, we introduce how to construct a new code G(C) from a bipartite graph G : (L⊔R,E)
with left degreeD, and a code C ⊆ ΣR, which is defined on the right vertices of G. This construction
was first introduced in [GI01], and subsequently developed in [GI02, Gur04, RTS06]. We adopt
their framework here.

For each codeword in C, which can be represented by a function c : R 7→ Σ, we concatenate c
with graph G, denoted as G(c) : L 7→ ΣD, which is given by

G(c)(l) = (c (Γ1(l)) , c (Γ2(l)) , . . . , c (ΓD(l))) , (4)

for each l ∈ L, where Γi(l) ∈ R represents the i-th neighbor of l ∈ L. The concatenated code G(C)
is then defined as:

G(C) = {G(c)|c ∈ C}. (5)

We observe that this construction distributes the values of each codeword through the bipartite
graph from the right side to the left side, forming new codewords on the left. Because each value is
transmitted multiple times to the left side, this results in a reduction in rate and an increase in the
alphabet size. Specifically, the resulted code G(C) is over alphabet ΣD and of length |L|. The rate

of G(C) can be computed as R(C)|R(G)|
D|L(G)| . Moreover, if C is a Fq -linear code for some prime power q,

then G(C) is also Fq -linear. At the same time, this enhances the robustness of the code, leading
to strong capabilities in unique decoding and list decoding, which we will discuss in the following
sections.
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4 Linear-time uniquely decodable code

In this section, we present a linear-time uniquely decodable code with optimal rate-distance trade-
off based on graph-code concatenation. We begin with a mother code C, which is a binary code with
a constant rate and desirable distance. To achieve a linear-time decoding algorithm, we start with
a code that is uniquely decodable in linear time. Therefore, we employ expander codes, which have
shown significant progress in recent years. Specifically, we utilize the explicit expanders presented
in [Gol24] and the expander code decoding analysis provided in [Vid13].

Definition 4.1. For real number 0 < ε < 1, a bipartite graph G : (L ⊔R,E) with N left vertices,
M right vertices, and uniform left-degree D is called a (K, (1 − ε)D)-lossless expander for some
K < N , if for every subset S ⊆ L with size at most K, it holds that |Γ(S)| ≥ (1− ε)D|S|.

The graph G is called (D,C)-biregular if every left vertex has degree D and every right vertex
has degree C, with the constraint ND = MC. If we can achieve arbitrarily small ε, we term this a
‘lossless expander’. In particular, explicit constructions of lossless expanders with small degrees D
and small expansion cutoff α = K/N are always of interest. Recently, [Gol24] provided an explicit
construction of constant-degree lossless expanders with an arbitrary ratio between the sizes of the
left vertex set and the right vertex set, presented as follows:

Lemma 4.2 ([Gol24]). For every β, ε > 0, there is an infinite explicit family of (αN, (1 − ε)D)-
lossless expanders G with |R(G)|/|L(G)| > β, and with

D = O

(
(log(1/ε) + log(1/β))2

ε3

)
and

α = Ω

 ε4β(
log 1

ε + log 1
β

)2

 .

The expander code C corresponding to the graph G is defined as the set of all binary vectors
x ∈ FN

2 such that xH = 0, where H is the parity-check matrix based on the adjacency matrix of the
bipartite graph G. Expander codes are known for their good distance and efficient decoding algo-
rithms, as demonstrated in numerous previous studies, such as [SS96, FMS+06, Vid13, CCLO23].

Lemma 4.3 ([Vid13]). If G is an (K, (1− ε)D)-expander for some ε < 1/3 and C is a code defined
by it, then C is decodable in linear time from (1− ε

1−2ε)K errors.

Combining these two results, we choose ε = 1/4 and β = 1/2. This graphG has |R(G)|/|L(G)| =
1/2 and is an (αN, (1− ε)D)-expander with α = 1/50000 and ε = 1/4, which implies the following
codes.

Corollary 4.4. There exists an explicit family of binary codes with a rate of 1/2 that is uniquely
decodable from 1

100,000 fraction of errors in linear time.

We present our first theorem, which gives the unique decoding property of the graph-concatenated
code G(C) based on the properties of C and G.

Theorem 4.5. Given that C is a code of length M over the alphabet Σ, which has relative distance
δ, and can be uniquely decoded from up to δ/2 fraction of errors in time T , and G = (L⊔R,E), with
|L| = N , |R| = M , and left degree D, is a (K, δ/2)-disperser, then G(C) has relative distance at
least (1−K/N) and can be uniquely decoded from e errors and s erasures as long as 2e+s < (N−K)
in time O(ND log(|Σ|)) + T .
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Proof. We first establish the distance of G(C). The unique decoding algorithm and its proofs will
be provided later. For any two different codewords c1, c2 ∈ C, let S denote the subset of L(G) where
G(c1) and G(c2) are identical. We claim that |S| < K; otherwise, since G is a (K, δ)-disperser,
|Γ(S)| ≥ (1− δ/2)M . By our construction, c1 and c2 take the same value for each position in Γ(S),
and thus d(c1, c2) ≤ δM

2 , which contradicts the condition that the relative distance of C is at least
δ.

In our proof, we allowed an extra 1
2δ room for the disperser’s error. While this might make the

distance a bit loose, it is necessary for the subsequent unique decoding algorithm. By employing a
specific code which is uniquely decodable in linear time stated in Corollary 4.4, we get the following
results.

Corollary 4.6. For any ε > 0, there exists an explicit family of F2-linear codes over an alphabet
of size quasipoly (1/ε), which have rate Ω(ε) such that a code with block length n in the family can
be decoded from e errors and s erasures as long as 2 · e+ s < (1− ε)n in time O(n · polylog(1/ε)).

Proof. We use the code described in Lemma 4.4 as C. We then select a disperser as shown in
2.4 by setting δ = 1

50,000 and K = εN . The alphabet size of G(C) is computed by 2D, which is

quasipoly(1/ε), and the rate of G(C) is given by R(C)N
MD = Ω(ε). Since the expander code C is a

linear binary code, G(C) inherits its F2 linearity.

If we replace the disperser given in Theorem 2.4 with an disperser with optimal degree given
by Lemma 2.3, we can reduce the alphabet size of G(C) as follows.

Corollary 4.7. For any ε > 0, there exists a family of F2-linear codes over an alphabet of size
poly(1/ε), which have rate Ω(ε) such that a code with block length n in the family can be decoded from
e errors and s erasures as long as 2·e+s < (1−ε)n in time O(n·polylog(1/ε)), and can be constructed
in probabalistic time poly(n, log(1/ε)) with success probability at least 1− exp(− log(1/ε) · n).

Linear Time Unique Decoding

We will present a linear-time decoding algorithm for such a code, based on the decoding algorithm
for the mother code C.

Given a received word y : L(G) 7→ ΣD, we distribute all values from the left side to the right
side via the graph. We then execute the erasure process to turn some ‘errors’ into ‘erasures’ by
identifying inconsistencies on the right side.

If two vertices on the left, u and v, satisfy y(u), y(v) ̸=⊥ and Γi(u) = Γj(v) for some i, j ∈ [D],
but y(u)i ̸= y(v)j , then we replace the values at u and v with ⊥ (erasures). This process repeats
until no such pair u, v exists. Subsequently, for each vertex w ∈ R(G), there are two possible
scenarios: either all neighboring values of w are erased, or w receives one or more values from the
left, all of which are identical. In the first case, we assign an arbitrary value to w; in the latter case,
w is assigned that value. This yields a word z ∈ ΣR on the right side. We then apply a unique
decoding algorithm to obtain the correct codeword c and encode it using the graph to get G(c).
The algorithm is provided in Algorithm 1.

Lemma 4.8. Suppose y has s erasures and e different (non-erasure) values from some codeword
G(c) ∈ G(C). Then, as long as 2e + s < N − K, this algorithm will always return the correct
codeword G(c).
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Algorithm 1: Unique Decoder for G(C)
Input: Received word y : L 7→ ΣD

Output: A codeword G(c) ∈ G(C)
foreach w ∈ R(G) do

while ∃u, v ∈ L(G) with y(u), y(v) ̸=⊥ and i, j ∈ [D] such that w = Γi(u) = Γj(v),
y(u)i ̸= y(v)j do

y(u)←⊥;
y(v)←⊥;

end
if ∃u ∈ L(G) and i ∈ [D] such that v = Γi(u) and y(u) ̸=⊥ then

z(v)← y(u)i;
end
else

z(v) is assigned an arbitrary value in Σ;
end

end
Perform unique decoding algorithm on z to obtain z̄ ∈ C;
if The half distance between G(z̄) and y is less than N −K then

return G(z̄);
end
else

return Failed;
end

Proof. During the while loop, define E ⊆ L as the subset of left vertices where errors (values that
differ from G(c)) occur for y, and S ⊆ L as the subset where erasures occur for y. Let Y = L\(E∪S)
be the vertices with correct symbols.

For each execution of the while loop and each pair (u, v) (they could be the same), if they are
both not erased and ∃i, j ∈ [D] such that Γi(u) = Γj(v) but y(u)i ̸= y(v)j , then at least one of u
or v is from E. Otherwise, if u and v are both from Y , then we would have y(u)i = y(v)j = c(w)
for w = Γi(u), contradicting the assumption that y(u)i ̸= y(v)j .

This indicates that after each execution of the while loop, the size of S increases by at most 2,
and the size of E decreases by at least 1 (if u = v, then the size of S increases by 1, and the size
of E decreases by 1). Since before the algorithm 2|E|+ |S| < N −K, this condition always holds
during the algorithm, ensuring that |Y | ≥ K. Suppose Ȳ is the set of left vertices with consistent
values with G(c) after exiting the while loop, which is also of size at least K. We claim that for
each w ∈ Γ(Ȳ ), w will always receive one correct symbol, since for each v ∈ Ȳ , it always stays in Y
and is never erased. Considering the disperser property, we infer |Γ(Ȳ )| ≥ (1− δ/2)M , which tells
us that z has at least (1− δ/2)M positions consistent with c. Then, the decoding algorithm for C
will always return c given z.

Note that the distribution from left to right takes time O(ND log |Σ|), and checking the condi-
tion in the while loop only requires scanning all received values and performing at most 1

2N erasure
processes. Meanwhile, for each value erased at v ∈ L(G), we only need to modify D symbols on
the right side. Therefore, the entire algorithm can be completed in time O(ND log |Σ|) + T .
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5 Polynomial-time list decodable codes

In this section, we will deal with list-decodable codes. Similar to the construction of uniquely
decodable codes, we will use the disperser provided by Theorem 2.4. However, the mother code
we employ is stronger than that used for uniquely decodable codes, as we require a list-recoverable
code, utilizing a construction from [HRZW19].

Lemma 5.1. [HRZW19] For any ℓ, there exists a prime power q = ℓO(1), and a family of determin-
istically polynomial-time constructible Fq-linear codes C of rate 1

2 and relative distance δ = Ω(1).
A code of length n in this family is (ρ, ℓ, L)-list recoverable in time polyq,ℓ(n), where ρ = Ω(1) and
L = exp (exp (exp (log∗ n))).

The following theorem provide a bridge from a list recoverable code C to a list decodable code
G(C) using a disperser G.

Theorem 5.2. Given that C is a code of length M over the alphabet Σ, which can be (ρ, ℓ, L̄)-
list recoverable in time T , and G : (L ⊔ R,E), with |L| = N , |R| = M , and left degree D, is a
(K, ρ)-disperser, then G(C) is (1− 1

ℓ −K/N, L̄)-list decodable in time O(ND log |Σ|) + T .

We will leave the list decoding algorithm and its proof for G(C) to the next paragraph. Here, we
present the specific results derived from this theorem. We take C as the code described in Lemma
5.1 by setting ℓ = 2

ε . The dispersers are taken from Theorem 2.4 for the explicit version and Lemma
2.3 for the semi-explicit version, with K = εN

2 and error δ = ρ as specified in the code. We have
the following corollary.

Corollary 5.3. For any ε > 0, there exists an explicit family of codes over an alphabet of size
quasipoly(1/ε) which have rate Ω(ε) such that a code with block length n in this family can be
list decoded up to (1− ε) fraction of errors with list size L = exp exp expε(log

∗ n) in time polyε(n).
Moreover, there exists an family of codes over an alphabet of size poly(1/ε) that maintains the same
rate and list-decoding properties, and a code with block length n in this family can be constructed
in probabalistic time poly(n, log(1/ε)) with success probability at least 1− exp(− log(1/ε) · n).

Polynomial Time List decoding Algorithm

The algorithm in unique decoding is no longer valid because the number of incorrect left vertices
often exceeds the number of correct vertices. However, the condition that C is list recoverable also
provides us with one advantage: we do not need to reduce the number of candidates for the value of
each right vertex to 1; we only need to keep them within ℓ. Therefore, if the number of candidates
for some w ∈ R(G) exceeds ℓ, we can find no more than ℓ candidates to remove. To ensure that
enough correct left vertices remain, we need to ensure that for each correct symbol erased, at least
(ℓ−1) incorrect symbols are also erased. To achieve this, we need to find ℓ distinct values sent to a
single vertex on the right. For each vertex w ∈ R(G), if there are ℓ different values corresponding to
it, we are required to erase them. To be specific, if there are ℓ left vertex u1, . . . , uℓ such that there
are ℓ indices ti, . . . , tℓ, with w = Γti(ui) for all i, but y(ui)ti are all different. Then we will replace
the value of each left vertex y(ui) with ⊥. However, we need to be careful for the cases where one
left vertex has repeated neighbors on the right. In this case, the erased incorrect vertices could be
much smaller. Thus, before taking the above step, we will find all cases where Γi(u) = Γj(u), but
y(u)i ̸= y(u)j for some i ̸= j, and erase these u. The algorithm is provided in Algorithm 2.

Similar to unique decoding, we will prove the following lemma:
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Algorithm 2: List Decoder for G(C)
Input: Received word y : L 7→ ΣD

Output: A Set S containing all codeword G(c) ∈ G(C) with d(G(c), y) ≤ (1− γ)N , where
γ = 1

ℓ +K/N
foreach w ∈ R(G) do

while ∃u ∈ L(G), with y(u) ̸=⊥ and i ̸= j ∈ [D] such that w = Γi(u) = Γj(u) but
y(u)i ̸= y(u)j do

y(u)←⊥
end
while ∃u1, . . . , uℓ ∈ L with y(ut) ̸=⊥ for all t ∈ [ℓ] and i1, . . . , iℓ ∈ [D] such that
w = Γit(ut), and y(ut)it ̸= y(uk)ik for all t ̸= k ∈ [ℓ] do

y(ut)←⊥ for all t ∈ [ℓ];
end
Set T (w) = {y(u)i : Γi(u) = w} ;

end
Perform list recovery algorithm on T (w)’s to obtain a list S ′, with size at most L̄;
foreach z ∈ S ′ do

if d(y,G(z))) < 1− γ then
S = S ∪G(z);

end

end
return S;

Lemma 5.4. Denote γ = 1
ℓ +K/N . Suppose y has distance at most (1−γ)N from some codeword

G(c) ∈ G(C). Then G(c) will be contained in S, and |S| ≤ L̄.

Proof. During the while loop, define E ⊆ L as the subset of left vertices where errors (values that
differ from G(c)) occur for y, and S ⊆ L as the subset where erasures occur for y. Let Y = L\(E∪S)
be the vertices with correct symbols.

Claim 5.5. If u enters the first while loop, then u ∈ E. After the first while loop, E will decrease
by 1 and S will increase by 1.

Proof. If u ∈ Y , then c(w) = y(u)i = y(u)j , which leads to a contradiction. Since u /∈ S, we know
that u ∈ E. After the while loop, u will move into S.

Claim 5.6. If u1, . . . , uℓ enter the second while loop, then at most one of them is in Y . After the
second while loop, E will decrease by at least ℓ− 1 and S will increase by ℓ.

Proof. After the first while loop, we know that these ui’s are all different, and among them, at least
ℓ − 1 of them belong to E. Otherwise, suppose ut ̸= uk for some t ̸= k ∈ [ℓ] and they are both in
Y , then y(ut)it = y(uk)ik = c(w), which leads to a contradiction.

Suppose in the whole algorithm the first while loop takes w1 iterations and the second while
loop takes w2 iterations. It is easy to see that w2 ≤ N

ℓ . The final size of S will be w1 + ℓw2, which
is at most N . Initially, |E| ≤ (1− γ)N , which is decreased by w1 +(ℓ− 1)w2 during the algorithm.
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Therefore, after the first for loop, we have:

|E|+ |S| ≤(1− γ)N − w1 − (ℓ− 1)w2 + w1 + ℓw2

=(1− γ)N + w2

≤(1− γ)N +
N

ℓ

=(1− γ +
1

ℓ
)N

=(1− K

N
)N.

(6)

Thus, |Y | ≥ K finally.
In the algorithm, the while loop will continue until no w ∈ R(G) receives more than ℓ different

symbols from left vertices. If some v ∈ L(G) remains in Y finally, it must have been in Y initially,
since Y is never enlarged during this process, and the value on v is exactly G(c)(v). Therefore,
for any w ∈ R(G), |T (w)| ≤ ℓ, and if w ∈ Γ(Y ), then c(w) ∈ T (w). Considering the disperser
property, we infer |Γ(Y )| ≥ (1− δ)M . Thus, for at least 1− δ fraction of the vertices w, the value
of c(w) will be in T (w). By the list decoding property of C, this algorithm will always produce a
list S ′ with size at most L̄ containing c. Therefore, |S| ≤ L̄ and G(c) ∈ S.

The distribution and erasure process for list decoding is similar to unique decoding, and thus
we requires O(ND log(Σ|)) + T time.

6 List decodable code with near-optimal list size

The above analysis indicates that the list decodability and decoding algorithm of the concatenated
code rely on the list-recoverability of the mother code. In this section, we will present a method
to construct a list decodable code with near-optimal list size using the same framework but with a
different analysis method. Specifically, we explore average-radius list decoding, a stronger condition
compared to combinatorially list decoding. The mother code we start with does not necessarily
need to have the list-recoverable condition. Instead, we will demonstrate that a code with constant
distance and constant rate is already sufficient. We present the definition of average-radius list
decoding again to emphasize it.

Definition 6.1. A code C is said to be (ρ, L)-average-radius list decodable if for every y ∈ Σn and
all different codewords c1, . . . , cL+1 ∈ C,

∑L+1
i=1 δ(ci, y) > (L+ 1)ρ.

The benefit of adopting average-radius list decoding lies in its ability to simplify the problem
by converting it into a linear format, which is well analyzed in [RW14]. Specifically, we will provide
the following definitions and propositions to clarify this method.

Definition 6.2. For a set Λ ⊆ Σn, let plj(Λ) denote the plurality of index j ∈ [n]:

plj(Λ) = max
α∈Σ
|{c ∈ Λ : cj = α}| . (7)

Proposition 6.3. Consider a code C over Σ with length n. If, for any set of L different codewords
Λ, the inequality ∑

j∈[n]

plj(Λ) < εnL

holds, then C is (1− ε, L− 1)-average-radius list decodable.
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The proposition presented above demonstrates that by examining the plurality for each set of L
independent codewords within a code, we can infer the list decodability of the code. In the following
analysis, to demonstrated that a code is list decodable with list size L − 1, we will demonstrated
that for each L codewords Λ ⊆ C,

∑
j∈[n] plj(Λ) is bounded. It is not hard to prove by probabilistic

argument that a random code with length n and rate Ω(ε) will, with high probability, satisfy the
condition that for any L = O(1/ε) different codewords,∑

j∈[n]

plj(Λ) < εnL.

To illustrate how this can be applied, we begin with a preliminary example to explain the
analysis method through the following theorem. Here, we directly use the conclusion provided by
Theorem 4.5, proving that it is list decodable up to the optimal list size.

Theorem 6.4. For any small ε > 0, there exists an explicit family of codes over an alphabet of size
quasipoly

(
1
ε

)
, which have rate Ω(ε2). Moreover, a code in this family of length n is (1− ε, L)-list

decodable in time polyε(n), where L = O(1ε ).

Proof. In this proof, we treat N = n for the sake of convenience. Note that Theorem 4.5 tells
us that we can start from a code with constant rate and constant distance and, by applying a
(K, δ/2)-disperser with K = ε2N/2, and δ corresponding to the distance of the mother code and
the resulted code has distance 1−ε2/2, and rate Ω(ε2). And we will claim that this code is actually
(1 − ε, L − 1)-list decodable for L = ⌊2ε⌋. The proof we present here is similar to the proof of
the Johnson bound. We use a double counting method to determine number of occurrences where
G(ci)(v) = G(cj)(v) for different ci ̸= cj ∈ Λ and some v ∈ L(G). Since the distance of code is
1−ε2/2, fixing two codewords ci ̸= cj , we know that the number of such v is at most ε2/2N . Fixing
one vertex v, the number of code pairs G(ci) ̸= G(cj) which are the same values on v is at least(
plv
2

)
+ 1, thus, we have ∑

v∈L(G)

plv(Λ) ≤ N +
∑

v∈L(G)

(
plv(Λ)

2

)

≤ N +

(
L

2

)
· 1
2
ε2N

< εLN.

(8)

Therefore, this code is (1− ε, ⌊2ε⌋ − 1)-list decodable.
To construct a list decoding algorithm for this code, we employ the code provided by Lemma

5.1 as the mother code C. In this case, the our disperser needs K = εN . By setting the input size
ℓ as ⌈2ε⌉ for the code C, the error δ of the disperser is set to be the half of the distance, or recovery
radius, of the mother code C, whichever is smaller. Applying Algorithm 2, and the final list size
will be bounded by ⌊2ε⌋ − 1.

Next, we will explain that in our graph-concatenation model, the plurality of the code can
also be bounded if the rate is near optimal, say Ω(ε/poly log(1/ε)). We believe that the rate can
actually be Ω(ε), which we leave as an open question. However, we present a result that already
beats the Johnson bound. Our graphs are based on what we call multi-set dispersers with optimal
parameters, which are not fully explicit but can be randomly constructed. In other words, we assert
that most graphs will work for our construction.

Before introducing the objects we used, we will provide a counting result that will be used in
the later proof.
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Lemma 6.5. For any set S of size L and arbitrary N subsets S1, . . . ,SN of S, each of size βL
(where β ≤ 1

2 and βL ≥ 2), there exists a subset T of S of size ⌈ 2β ⌉, such that at least 0.3N subsets
in S1, . . . ,SN have an intersection with T of size at least 2.

Proof. We randomly select a subset T of S with size ⌈ 2β ⌉, and compute

E(|Si : |Si ∩ T | ≥ 2|) =
∑
i∈[N ]

Pr(|Si ∩ T | ≥ 2). (9)

For each subset Si, the probability that the size of the intersection |Si∩T | is less than 2 is at most:

(1− β)
⌈ 2
β
⌉
+ ⌈ 2

β
⌉ · β (1− β)

⌈ 2
β
⌉−1 ≤ 1

e2
+

4

e2
< 0.7. (10)

Therefore, the probability that |Si ∩ T | ≥ 2 is greater than 0.3 for each i ∈ [N ], which implies
that

E(|Si : |Si ∩ T | ≥ 2|) > 0.3N. (11)

Thus, such a subset T exists, completing the proof.

We will introduce a completely new concept called a multi-set dispersers here, which will be
used in later code constructions.

Definition 6.6. A (K, δ)-multi-set disperser is a bipartite graph G : (L⊔R,E) with a uniform left
degree denoted as D, which has property that for every t ≥ 2 and t different subsets S1,S2 . . . ,St
of R with |Si∆Sj | ≥ δ · |R| for each i ̸= j ∈ [t], the number of left vertices v ∈ L(G) such that Γ(v)
is contained in some (Si∆Sj)c is at most t ·K.

A multi-set disperser is a generalization of a disperser, by considering several symmetric differ-
ences of sets on the right. However, there is also a conversion relationship between these two objects.
Specifically, a (K, δ)-multi-set disperser is a (2K, δ)-disperser. Conversely, a (K, δ)-disperser is a

(
√

KN
2 , δ)-multi-set disperser.

Lemma 6.7. For every integers N > 0, 0 < K < N/2, and 0 < δ < 1, there exists an (K, δ)-multi-
set dispersers G : (L ⊔R,E), where |L| = N , |R| = M , with left degree D and

• M = ⌊K/N log(N/K)⌋ ·N

• D = ⌈4 log(N/K)/δ⌉.

Moreover, a random bipartite graph with N left vertices, M right vertices, and left-degree D as
specified above above is a (K, δ)-multi-set disperser with probability at least 1−exp(1−log(N/K)N).

Proof. We prove this by a probabilistic argument. Denote K/N = α. Take a random bipartite
graph. By definition, we only need to discuss the case where t < 1

α . Fix such a t and t different
subsets S1,S2, . . . ,St of R with |Si∆Sj | ≥ δ ·M for each i ̸= j ∈ [t]. Let T be the set of all vertices
v ∈ L such that the support of Γ(v) is contained in some (Si∆Sj)c. For each v ∈ L,

Pr(v ∈ T ) ≤
(
t

2

)
(1− δ)D

≤t2(1− δ)
4
δ
log(1/α)

≤t2e−4 log(1/α)

≤tα4 log(e)−1 ≤ tα4.

(12)
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By the Chernoff bound, the probability that |T | > tK is at most(
e · tα

4

tα

)tK

= (eα3)tK . (13)

By the union bound for all t < 1
α and all possible different t subsets S1,S2, . . . ,St, the probability

that this graph is not a (K, δ)-multi-set disperser is at most

⌊ 1
α
⌋∑

t=1

2tM (eα3)tK

≤ 1

α
· α−tαN · (eα3)tK

≤αN(2−log(e))−1

≤α
N
2
−1,

(14)

which is exponentially decreasing. Therefore, such multi-set dispersers exist.

Next, we present the main theorem: we can use multi-set dispersers as graphs for concatenation,
resulting in codes with improved list decoding properties.

Theorem 6.8. Given that C is a binary code of relative distance δ, and G : (L⊔R,E), with |L| = N ,
|R| = M , and left degree D, is a (K, δ)-multi-set disperser, then G(C) is (1−10K

N (ln(L̄)+2), L̄−1)-
list decodable for L̄ = ⌈ N

5K ⌉.

Before proving this theorem, we will introduce additional notations.

Definition 6.9. Given 0 < β, δ < 1, and an integer L, a code C of length n is said to satisfy the
(β, δ, L)-plurality condition if, for any set of L different codewords Λ ⊆ C, the condition

|{j ∈ [n] : plj(Λ) ≥ βL}| ≤ δn

holds.

Lemma 6.10. Given any 0 < ε < 1, if C satisfies the (β, ε/β, L)-plurality condition for all ε <
β ≤ 1

2 , then for any set of L different codewords Λ ⊆ C,∑
j∈[n]

plj(Λ) ≤ εLn(ln(L) + 2). (15)

Proof. By Abel summation, the left side of the inequality is∑
j∈[n]

plj(Λ) =
∑

j:plj(Λ)≤ 1
2
L

plj(Λ) +
∑

j:plj(Λ)≥ 1
2
L

plj(Λ)

≤
⌊L/2⌋∑
i=1

⌊
εLn

i

⌋
+ 2εLn

≤εLn(ln(L) + 2).

(16)
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Proof of Theorem 6.8. For L̄ different codewords c1, c2, . . . , cL̄ valued on the right vertices R(G),
we use Si to denote the subset of R(G) where ci takes value 1. Therefore, Si∆Sj is exactly the
subset of right vertices where ci and cj have different values, and thus |Si∆Sj | ≥ δM .

For any β > 10K
N , which is also greater than 2/L̄, let Qβ be the set of all vertices v with

plv(Λ) > βL̄. We denote maj(v) as the symbol that appears most frequently on v for these L
codewords and denote T (v) as all codewords whose value on v is maj(v). By Lemma 6.5, we know
that there is a subset Q′

β ⊆ Qβ with size at least 0.3|Qβ| and a subset T ⊆ Λ of size ⌈ 2β ⌉, such that

|T (v) ∩ T | ≥ 2 for all v ∈ Q′
β.

The condition |T (v) ∩ T | ≥ 2 implies that there are two codewords ci ̸= cj from T such that
G(ci) and G(cj) take the same value on v, which gives Γ(v) ⊆ (Si∆Sj)c. By the multi-set disperser
property, this gives that |Q′

β| ≤ ⌈
2
β ⌉K.

|Qβ| <
10

3
|Q′

β| ≤
10

3
· ⌈ 2

β
⌉K ≤ 10

β
K. (17)

Thus, this code satisfies the (β, 10KβN , L̄)-plurality condition for all 10K
N < β ≤ 1

2 . By Lemma

6.10, we get that this code satisfies that for any L̄ codewords,∑
j∈[N ]

plj(Λ) < 10KL̄(ln(L̄) + 2). (18)

Therefore, it is (1− 10K
N (ln(L̄) + 2), L̄− 1)-list decodable for L̄ = ⌈ N

5K ⌉.

In our context, the mother code must be binary due to the definition of the multi-set disperser.
Specifically, we consider the symmetric difference of two subsets of the right vertices, so Si cor-
responds to the bits where ci has a value of 1. Consequently, we cannot employ a list recovery
algorithm. To address this issue, we use the ”folding” operation to combine a code with an efficient
list decoding algorithm and a code that is list-decodable with a small list size. This approach allows
us to achieve a polynomial-time list decoding algorithm for the above codes.

Given any ε > 0, let C1 be (ρ, ℓ, L)-list recoverable code given by Lemma 5.1 with length M by
setting the input list size ℓ = 2

ε . This code is over alphabet Fq for some prime power q = ℓO(1), and
it has constant relative distance δ. Let C2 be a binary code with size |C2| = q, constant rate, and
constant distance δ′ (the code length of C2 is Θ(q) = Θ(log(1/ε))). Such a code exists and can be
found by brute force. Denote C1 ◦ C2 as the concatenated code by using C1 as the outer code and
C2 as the inner code. It is easy to compute that C1 ◦ C2 is a binary code with constant rate and
constant relative distance δδ′, and the length of this code is M ′ = Θ(log(1/ε)M). For simplicity, we
use the notation fC2(c) to denote the mapping from a codeword c ∈ C1 to a corresponding codeword
in C1 ◦ C2.

Let G1 be a (K, ρ)-disperser with N left vertices and M right vertices, with parameters given by
Lemma 2.3 with K = Θ(εN). Let G2 be a (K ′, δδ′)-multi-set disperser with N ′ left vertices and M ′

right vertices, with parameters given by Lemma 6.7 with K ′ = Θ(εN ′). Since M = Θ(ε log(1/ε)N)
for G1 and M ′ = Θ(ε log(1/ε)N ′) for G2, we know that N2 = Θ(N1/ε). We set t = ⌊N2

N1
⌋ =

Θ(log(1/ε)).
Then, we use these four objects to construct a new code, denoted as G1(C1) ⋆ G2(C1 ◦ C2), of

length N over the alphabet FD
q × (FD

2 )
t, with the same message space as that of C1. For a codeword
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c ∈ C1, the decoded codewords, denoted as G1(c) ⋆ G2(fC2(c)) ∈ G1(C1) ⋆ G2(C1 ◦ C2) is given by:


G1(c)1

G2(fC2(c))1
G2(fC2(c))2

...
G2(fC2(c))t

 ,


G1(c)2

G2(fC2(c))t+1

G2(fC2(c))t+2
...

G2(fC2(c))2t

 , . . . ,


G1(c)N

G2(fC2(c))t(N−1)+1

G2(fC2(c))t(N−1)+2
...

G2(fC2(c))tN



 ∈ (FD
q × (FD

2 )
t)N .

We lose some values of G2(fC2(c)) when performing the folding operation on it, but since this
proportion is at most Θ(1/ε), the impact on the code rate is at most a constant factor. It can be
computed that the rate of this code is still Ω(ε) and the alphabet size is at most (t+ 1)poly(1/ε),
which is still poly(1/ε) since t = Θ(log(1/ε))

Similarly, it can be observed that this code is still (1 − O(ε log(1/ε)), L)-list decodable for list
size L = O(1/ε) given that G2(C1 ◦ C2) is (1 − O(ε log(1/ε)), L)-list decodable. For the decoding
algorithm, we use the list decoding algorithm for G1(C1) to get a list of codewords S ′ from G1(C1)
with a size of at most Oq(M). Then, for each G1(c) ∈ S ′, we compute G1(c) ⋆ G2(fC2(c)) and
compute the distance from y to check whether we should keep it. By screening all candidates in
this list, we can downsize the list to at most O(1/ε). The algorithm is provided in Algorithm 3.

Algorithm 3: List Decoder up to Near-Optimal List Size

Input: Received word y : L 7→ FD
q × (FD

2 )
t

Output: A set S containing all codewords G1(c) ⋆ G2(fC2(c)) ∈ G1(C1) ⋆ G2(C1 ◦ C2) with
d(G1(c) ⋆ G2(fC2(c)), y) ≤ (1− γ)N for some γ = O(ε log(1/ε))

Set y′ : L 7→ FD
q as the words achieved by restricting the value of y to FD

q ;

Use Algorithm 2 to decode y′ in G1(C1) and get a list S ′ with size Oq(M);
foreach G1(z

′) ∈ S ′ do
z = G1(z

′) ⋆ G2(fC2(z
′));

if d(y, z) ≤ (1− γ)N then
S = S ∪ z;

end

end
return S;

By slightly adjusting the parameters to achieve a list decoding radius of 1 − ε, we obtain the
following result.

Corollary 6.11. For any ε > 0, there exists a family of codes over an alphabet of size poly(1/ε),

which has rate Ω
(

ε
log2(1/ε)

)
such that a code with block length n in the family can be list decoded from

up to 1−ε fraction of errors with list size L = O
(
log2(1/ε)

ε

)
in time polyε(n), and can be constructed

in probabalistic time poly(n, log(1/ε)) with success probability at least 1− exp(− log(1/ε) · n).

7 Open Problems and Future Directions

7.1 Reducing the Degree of Explicit Dispersers

One of our open problems is to reduce the degree in explicit dispersers. In our code construction,
we use explicit dispersers given by [CRVW02]. While achieving an entropy loss of Oδ(1), the degree
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of the disperser is polyδ(N/K), which is not optimal. This results in the concatenated code having
an alphabet size of quasipoly(1/ε). Optimally, but not explicitly, the degree of the disperser can be
reduced to Oδ(log(N/K)), while maintaining a constant entropy loss for a fixed δ. However, how
to derandomize this construction remains unknown.

7.2 Improving Results in Plurality Analysis

In the analysis of list-decodable codes with optimal list sizes, we adopt plurality analysis, but some
results still need improvement or derandomization. In the analysis of Theorem 6.8, we question
whether the rate can be improved from Ω( ε

log2(1/ε)
) to Ω(ε) and whether the list size can be improved

from O( log
2(1/ε)
ε ) to O(1ε ). We conjecture that this can be achieved by improving the analysis

method without changing the code structure. Our most interesting question, of course, is to
completely derandomize the multi-set disperser with optimal parameters as stated in the Lemma
6.7, which would directly yield an explicit list-decodable code with near optimal list size and near
optimal rate.

The plurality analysis does not explicitly provide a list decoding algorithm. Instead, we combine
such codes with codes provided by Theorem 5.2 and essentially follow the previous decoding method
by employing the folding operation. An interesting question is whether we can directly start from
plurality analysis to provide an effective decoding algorithm.

7.3 Applications to Other Regimes

We use graph concatenation to construct uniquely decodable codes and list decodable codes in
the high-noise regimes. One interesting future direction is to provide codes in other regimes or to
construct codes with different properties. An intriguing possibility is to develop codes that achieve
the general Singleton bound: R = 1 − δ − ε or the general list decoding capacity: R = 1 − ρ − ε.
Additionally, we question whether this method can be applied to codes over smaller alphabets, such
as binary codes.
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