
Binary Codes with Distance Close to Half

Dean Doron∗

We survey recent and classical results and techniques concerning binary codes in the large
distance (or, high-noise) regime, and the closely related notion of ε-balanced codes. Our (hopefully
small-biased) column will mainly discuss encoding, and decoding from adversarial errors.

A previous version of this text originally appeared as an ACM SIGACT News Complexity Theory
Column [Dor24].

1 Introducing Our Codes

The hero of this column is a linear error correcting code C ⊆ Fn
2 of large relative distance, of the

form 1
2 − ε for some small ε > 0. That is, we require Pri∼[n][ci ̸= c′i] ≥ 1

2 − ε for any distinct c, c′ ∈ C.
Since our set C is always a linear subspace, it suffices to require that the Hamming weight of every
nonzero codeword is at least (12 − ε)n.

As the reader is probably aware, large distance allows us to communicate even in the presence
of many corruptions. However, there is an obvious tension: How large can C be? This is captured
by the code’s rate, defined as R = k/n, where k is the dimension of C. Viewing C as an encoding
map that encodes a message x ∈ Fk

2 as a codeword C(x) (and we will do this implicitly from now on,
identifying the subspace C with the image of the encoding map C), a large C translates to adding
little redundancy to the original information. The Gilbert–Varshamov bound tells us that there
exist large-distance codes with rate Ω(ε2).

Theorem 1.1 ([Gil52, Var57]). For every δ ∈ [0, 1/2) there exists a family of linear binary codes
with rate R ≥ 1 − h2(δ) and relative distance δ, where h2 is the binary entropy function. When
δ = 1

2 − ε, we have 1− h2(δ) = Θ(ε2). Allowing some slackness η > 0, a uniformly random code of
rate R ≥ 1− h2(δ)− η will have relative distance at least δ with probability 1− 2−ηn.

Studying rate vs. distance tradeoffs is one of the most fundamental questions, which makes it
natural to ask for a lower bound on R:

Theorem 1.2 ([MRRW77], see also [NS09]). The rate R of a family of binary linear codes of
distance 1

2 − ε satisfies R = O(ε2 · log 1
ε ).

This already brings us to our first open problem: Investigating the O(log 1
ε ) gap.

Open Problem 1. Is the GV bound tight for binary codes with distance close to half? Or is it the
case that there exists a family of codes with distance 1

2 − ε and rate ω(ε2)?
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In this column, we will discuss the encoding (that is, computing C) and also the decoding of
such codes—where an adversary can corrupt some (arbitrary) p fraction of the symbols of C(x), and
the goal is to recover the message x itself. It is not hard to see that unique decoding is impossible
whenever p is greater than half the distance of C, which puts a bound of p < 1

4 . Unique decoding
can be relaxed to list decoding by allowing to output a list of potential candidates, one of which is
x. We say C is (ρ, L) list-decodable if for any word w ∈ Fn

2 there are at most L codewords in C with
relative distance at most ρ from w.

It turns out that in our regime, list decoding can almost double the number of corruptions we
can handle! The Johnson bound (see, e.g., [GRS, Section 7.3]) tells us that any code of distance
1
2 − ε is (ρ, L) list-decodable for ρ = 1

2 −
√
ε, and L = O(1/ε). Better yet, the list decoding capacity

theorem tells us that there exist codes of rate roughly ε2 that are list decodable all the way up to
radius 1

2 − 2ε (even a random one will be good with high probability).

1.1 Small-Biased Codes in Pseudorandomness

Beyond being a fundamental object in coding theory (and an interesting mathematical structure in
itself), our codes have great importance in pseudorandomness.

Small-Bias Sets. We say that a set S ⊆ {0, 1}n is ε-biased if the uniform distribution over the
elements of S is indistinguishable from uniform by every linear test. That is, S is ε-biased if for
every nonempty T ⊆ [n] it holds that Prs∼S [

⊕
i∈T si = 1] ∈ [1−ε

2 , 1+ε
2 ]. Now, looking at our code

C, assume that not only is the relative Hamming weight of each nonzero codeword at least 1
2 − ε,

but it is also bounded from above by 1
2 + ε. Such codes are called ε-balanced,1 and we know that

(linear) ε-balanced codes and ε-biased sets are essentially the same: S is 2ε-biased if and only if the
|S| × n matrix AS whose rows are the elements of S is a generating matrix of an ε-balanced code
(so C(x) = AS · x).

Efficiently generated ε-biased sets (also called ε-biased generators) are one of the most funda-
mental objects in pseudorandomness, and serve as building blocks in countless constructions, from
two-source extractors to pseudorandom generators that fool various kinds of branching programs. We
refer the reader to the excellent survey by Hatami and Hoza [HH24] for examples of pseudorandom
generators that use ε-biased generators.

Randomness Extractors. The theory of randomness extractors (and related objects such as
condensers and dispersers) aims to utilize very weak sources of randomness, both for practical and
theoretical applications. For example, whenever randomness is used—whether because it is necessary
or just because it is faster and simpler in practice, as in many randomized algorithms, protocols,
and other applications—an unlimited supply of independent, unbiased bits is often assumed. It is
essential, therefore, that the crude randomness generated by such sources be purified. A function
Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (strong, seeded) extractor for min-entropy ℓ, if for any ℓ-source2

X and an independent uniform seed Y , it holds that Ext(X,Y ) is close to uniform in statistical

1The added restriction on the maximal weight does not seem to make much difference. All the bounds above still
hold, and the best large distance code constructions we have are also balanced.

2A distribution X ∼ {0, 1}n is an ℓ-source if it has ℓ min-entropy, namely the probability of each x ∼ X is at most
2−ℓ.
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distance, even conditioned on a typical Y .3 When m = 1, which is already a challenging setting, we
have a (near) equivalence between extractors and list-decodable codes.

Proposition 1.3. For a code C : Fk
2 → Fn

2 we define ExtC : {0, 1}n×{0, 1}d → {0, 1} by ExtC(x, y) =
C(x)y. If C is (ρ = 1

2 − τ, L) list decodable then ExtC is a strong (ℓ = log L
τ + 1, 2τ) extractor, and if

ExtC is a strong (ℓ, τ) extractor then C is (ρ = 1
2 − τ, L = 2ℓ − 1) list decodable.

Note that by the Johnson bound, a code with distance 1
2 − ε and rate R = εO(1) readily gives an

extractor with ℓ = O(log(1/ε)), error O(ε), and seed length d = log n+O(log(1/ε)). By working
over larger alphabets, one can extend Proposition 1.3 to m > 1 (see also [TZ04] for a complete
equivalence between extractors and soft-decision list-decoding).

Hardness Amplification. Given a function f : {0, 1}n → {0, 1} that is hard for Boolean circuits
of size s (namely, no circuits of size s compute f correctly on all inputs), hardness amplification is

the worst-case to average-case procedure of transforming it to some f ′ : {0, 1}n
′
→ {0, 1} such that

for any size-s′ circuit C it holds that Prx[C(x) = f(x)] ≤ 1
2 + ε. Ideally, we want the procedure

to be efficient and with minor loss in parameters (that is, s′ ≈ s and n′ ≈ n, as a function of ε of
course).

In pseudorandomness and derandomization, the classical and prevalent approach for constructing
pseudorandom generators for polynomial-sized circuits (that suffices to derandomize BPP, the
complexity class of languages solved by a polynomial-time randomized algorithms) goes via hardness
amplification, and lets us derandomize randomized algorithms assuming only worst-case hardness.

Following a sequence of beautiful works starting from [STV01], we know that (black-box)
hardness amplification procedures are tightly connected to local list decoding of large-distance
binary codes (see, e.g., [GGH+07, GSV18, SV22, DPT24] for more recent constructions and insights).
Specifically, we can take f ′ = C(f), where we view f as a truth-table of length 2n, and C maps
2n bits to 2n

′
bits. While a relative distance of 1

2 − ε is necessary for hardness amplification via
local list decoding (since the decoding should be from only 1

2 + ε fraction of agreement), local list
decoding does not readily follow from the distance property, and the notion of locality warrants its
own separate discussion.

2 Explicit Constructions

Constructing efficiently encodable codes of distance 1
2 − ε—even without an efficient decoding

algorithm—is already challenging, and has been the subject of extensive and fruitful research over
the past decades.4 A prominent and natural way of constructing such codes is via code concatenation
(e.g., as in [AGHP92, BT13]), and we discuss this in Section 2.1. In code concatenation, we have
some outer code Cout over a large field, say Fq, and an inner binary code Cin that encodes messages
of length log2 q. The resulting code C = Cout ◦ Cin is obtained by encoding the input message x with
Cout, and then encoding each symbol of Cout(x) using Cin. Explicit concatenation-based constructions
have proven useful (and influential), yet they do not approach rate R = ε2.

In a breakthrough result, Ta-Shma [Ta-17] was able to achieve a rate of ε2+o(1) using a bias
amplification method, which we discuss in Section 2.2. This approach, first used by Naor and

3Formally, Ext is a strong (ℓ, ε) extractor if (Ext(X,Y ), Y ) is ε-close, in total variation distance, to Um × Y , where
Um is the uniform distribution over m bits.

4Note that for small-bias sets and randomness extractors, efficient encoding is all we need.
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Naor [NN93], starts with a code of bias ε0 and then transforms it (mainly using expander-based
techniques) to a code of bias ε ≪ ε0, hopefully without hurting the rate too much. Bias amplification
constructions turned out to be amenable to highly efficient decoding algorithms, which we discuss
in Section 3.

A third approach, which we will not cover in depth here, is trace codes. This method also start
with an outer code Cout, but then “traces down” each symbol by applying a linear transformation
from Fq to F2 on each symbol. When Cout is Reed–Solomon, this gives the dual BCH code,5 and
a variant of this construction was used in [AGHP92], giving a vanishing rate of R = Ω(ε2 · k−1),
where k is the code’s dimension. Very recently, this approach was revisited by Kopparty, Ta-Shma,
and Yakirevich, that asked what happens when one uses an Algebraic-Geometric (AG) code as Cout,
and made some partial progress when Cout is the Hermitian code (see [Ta-24]).

Finally, one can also consider “semi random” constructions, where structured randomness
can help both in reducing the amount of randomness used for the constructing the code, and in
facilitating efficient decoding. We defer the discussion on structured randomness to Section 4.

2.1 Concatenation-Based Constructions

Let Cout be a linear code6 Cout ⊆ Fnout
q of dimension kout for some large q of characteristic 2, and let

Cin be a smaller inner binary linear code Cin ⊆ Fnin
2 with dimension kin = log q. The concatenated

code C = Cout ◦ Cin ⊆ Fn
2 with n = noutnin has dimension k = koutkin, and every message x ∈ Fkout

q

(which we can view as a binary message of length k,

C(x) = (Cin(Cout(x)1), . . . , Cin(Cout(x)nout)) ∈ Fn
2 .

It is not hard to see that the distance of C is at least the product of the distances, and we refer to
this fact as the “concatenation property”.

The natural approach to constructing a good concatenated code is to start with Cout that has
an optimal rate vs. distance tradeoff, which is indeed easy for a large q. Alon, Goldreich, H̊astad,
and Peralta [AGHP92] chose Cout to be the Reed–Solomon code (which achieves the GV bound)
and Cin to be the Hadamard code, resulting in a code with a vanishing rate of R = Ω(ε2 · k−1).
The correctness follows from the “degree mantra” – the fundamental yet highly useful fact that a
degree-d polynomial has at most d roots.

Ben-Aroya and Ta-Shma [BT13] used the Hermitian code as Cout and obtained R = Ω(ε5/2 ·k−1/4).
There, instead of evaluating univariate polynomials over an arbitrary subset of Fq (as we do with
Reed–Solomon), they choose the set of evaluation points more carefully, and evaluate low-degree
bivariate polynomials on the Hermitian curve xp + x − yp+1 = 0 for q = p2. One can show that
no low-degree polynomial intersects the set of points along the curve too much, which leads to a
better rate-distance tradeoff in most settings of parameters. Instead of the Hermitian curve, one
can use a more subtly chosen set of evaluation points by considering curves of higher dimensions.
Using the Riemann–Roch theorem, one can show that evaluating rational functions (rather than
just polynomials) over the Garcia–Stichtenoth curve [GS96] gives R = Ω(ε3). We will not get into
more details regarding AG codes, but the interested reader can refer to [GS06, Sti09, Coh22].

5This is not completely accurate, as one needs to exclude certain polynomials on which the Weil bound cannot be
applied. Also, [AGHP92] worked with the quadratic residue (a multiplicative character) rather than the trace function
(an additive one), which somewhat changes the choice of polynomials, and the choice of Fq, but does not affect the
overall result.

6In fact, it suffices for Cout to only be F2-linear for the concatenated code C to be linear.
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However, in general, this approach will not achieve the GV bound. If we do not assume any
additional properties of Cout and Cin and simply use the concatenation property, then all we can hope
for is R = O(ε3). This is known as the Zyablov bound [Zya71] (so in this sense, using AG codes
gives the optimal rate vs. distance tradeoff). Note, however, that the structure of concatenated
codes lends itself to natural decoding schemes. We discuss the possibility of attaining the GV bound
via concatenated codes in Section 4, where we also mention their decoding.

2.2 Bias Amplification, and Ta-Shma Codes

Suppose we already have some code C0 ⊆ Fn
2 with bias ε0 and rate R0, and we want to amplify its

bias to some ε ≪ ε0, hopefully with a good rate. A successful way of doing so is via direct sum codes.
Let W = {W1, . . . ,Wn} ⊆ [n]t be a family of subsets, and for each z ∈ Fn

2 , we define dsumW(z) to
be the string y ∈ Fn

2 , where yi =
∑

j∈Wi
zj , and the sum is taken modulo 2. The lifted code C is

defined as
C = dsumW(C0) = {dsumW(z) : z ∈ C0} .

The notion of parity sampler7 captures how well W helps in reducing the bias of a code.

Definition 2.1. W ⊆ [n]t is an (ε0, ε) parity sampler if for every z ∈ Fn
2 that is ε0-biased

8, it holds
that dsumW(z) is ε-biased.

When W = [n]t, it is not hard to see that W improves any bias ε0 to bias εt0. But this would
lead to a (rapidly) vanishing rate. Our goal is thus to sparsify this trivial W.

Random Walks on Expanders. A natural first attempt, suggested already by Rozenman and
Wigderson (see [Bog12]), is to take random walks over an expander. Let G be a λ-spectral expander9

over the vertex set V = [n], and let W be the set of length-t walks over G. If G is D-regular (say
that D and λ < 1 are constants), then |W| = n ·Dt−1, a substantial improvement over the trivial
nt. The next theorem shows that random walks do reduce the bias pretty well.

Theorem 2.2 (see [Ta-17]). For any ε0 and an even t, W is an (ε0, ε) parity sampler for ε =
(ε0 + 2λ)t/2.

If one chooses C0 with any constant bias and rate that depends only on ε0 (say, the one in
[NN93]), then the parameters can be set so that C = dsumW(C0) is ε-biased with rate R = Ω(ε4).

Establishing Theorem 2.2 can go as follows. Given z ∈ Fn
2 , let Πz denote the diagonal n × n

matrix that has (−1)zi in Πz[i, i]. Then, one can verify that the bias of dsumW(z) is given by∣∣∣∣ 1n1†(ΠzG)t1

∣∣∣∣ ≤ ∥∥(ΠzG)t
∥∥ ,

7To picture W as a sampler, one can think of a bipartite graph, where each vertex on the left-hand side corresponds
to an element of W, the right-hand side is simply [n], and each Wi on the left-hand side is connected to its t elements.
While we will soon see that the standard random walks sampler is also a parity sampler, not every standard sampler
(see [Gol11] for the definition) is a parity sampler. For example, the bounded-independence sampler is not a parity
sampler.

8The bias of a string z ∈ Fn
2 is defined as

∣∣Ei∼[n] [(−1)zi ]
∣∣.

9Letting λn ≤ . . . ≤ λ1 = 1 be the eigenvalues of the normalized adjacency matrix of G, we say that G is a
λ-spectral expander if max {λ2,−λn} ≤ λ.
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where 1 is the all-ones vector, and ∥·∥ is the operator norm ∥A∥ = maxx ̸=0 ∥Ax∥2 / ∥x∥2. As
a first attempt we could try to bound

∥∥(ΠzG)t
∥∥ ≤ ∥ΠzG∥t. When a vector v is perpendicular

to 1, we have that ∥ΠzGv∥2 ≤ ∥Gv∥2 ≤ λ ∥v∥2. But when v is parallel to 1, we have that
∥ΠzGv∥2 = ∥Gv∥2 = ∥v∥2 because G1 = 1, meaning that ∥ΠzG∥ = 1.

The key observation is that, in the case where v is parallel to 1, the second step works in
our favor, because Πz1 is mostly perpendicular to 1. In particular, ∥ΠzGΠzG1∥2 ≤ (λ+ ε0) ∥1∥2.
Intuitively, at least one out of every two steps “work”, and it’s not just a mere artifact of the proof.
Indeed, the first application of Πz might map the current vector to 1, and if that happens, the
second application of G is wasted.

Random Walks on the Wide Replacement Product. To break the R = Ω(ε4) barrier,
Ta-Shma used an intricately designed random walk on a graph product called the s-wide replacement
product, originally introduced by Ta-Shma and Ben-Aroya in [BT11]. Let us first discuss the
standard replacement product.

We have two graphs: A D-regular “large” graph G = (V1 = [n], E1), and a d-regular “small”
graph H = (V2 = [D], E2). The vertices of the replacement product G r○H are simply V1 × V2,
and we think of the vertices (v, 1), . . . , (v,D) as the “cloud” of v, and we put a copy of H on
each cloud. The edges can then be partitioned into intercloud edges and intracloud edges. The
intracloud edges are determined by H, and the intercloud edges connect the clouds in the natural
way: each original edge {u, v} ∈ E1 is mapped to some {(u, i), (v, j)} in a way that there is only one
intercloud edge connected to each vertex. A step on the replacement product G r○H amounts to
taking a (random) intracloud edge, followed by a (deterministic) intercloud one. Our bias can then
be similarly bounded by

∥∥(ΠzGH)t
∥∥, where each linear operator acts only on the corresponding

component.
Ta-Shma observed that this walk still does not “protect” from unruly applications of Πz, as

described earlier. But since (the adversarial) Πz does not act on the H component, there’s hope
that a clever “H mechanism” would make it such that if a certain step fails to reduce the bias,
many following steps will work well.

To make the idea work, we make V2 larger, namely V2 = Ds, and treat each vertex of H as
comprising s registers, each containing an instruction in [D]. Since we now have |V2| > D, we
need to explain how to map a vertex of u = (u0, . . . , us−1) ∈ V2 to an instruction in [D] for G:
at the i-th step of the walk, we choose the instruction uimod s. That is, while in the standard
replacement product, the intercloud steps were precisely determined by the current vertex of H,
now each intercloud step is determined by some register, depending on i, of the current vertex of H.
Crucially, the amount of randomness invested in each step remains log d.

Algebraically, bounding the bias amounts to bounding the spectral norm of

t−1∏
i=0

ΠzGimod sH,

where Gi specifies one intercloud edge for each vertex (v, u) ∈ V1 × V2, which goes to the cloud
whose G-component is v[ui] (and again, each operator acts only on the corresponding component).

The hope here is that now, if we do get mapped to 1, we are uniform over the cloud and
potentially H mixes so well that the labels we get in the next few steps are completely uniform,
and independent of Πz. Indeed, by choosing the λ-expander H carefully, if we fail once, the next
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s−O(1) steps would work perfectly. Thus, instead of an ε0 → (ε0 +O(λ))t/2 amplification, we get,

for a small enough ε0, an ε0 → (ε0 +O(λ))
s−O(1)

s
·t amplification.

Working out the parameters, as well as the expanders and the base code C0, we get the following
ε-balanced code.

Theorem 2.3 (informal; see [Ta-17]). There exists an explicit ε-balanced code C ⊆ Fn
2 with rate

R = ε2 · 2−Õ(log(1/ε)2/3)

Moreover, C = dsumW(C0) for some base code C0, where W is a collection of length-t walks over a
suitable s-wide replacement product.

Random Walks on Hypergraphs. In the [Ta-17] construction, we used fresh randomness for
every step (that is, log d uniform bits), and ensured that most steps work. Another approach, taken
in [BD22], aims only for one out of every two steps to work, but shares randomness between the
two steps in order to make them as cheap as a single step.

Specifically, let G1 and G2 be two degree-d expanders on the same set of n vertices. In order
to take two correlated steps from some vertex v1, we draw a random i ∈ [d], move to v2, the i-th
neighbor of v1 in G2, and then move to v3, the i-th neighbor of v2 in G2. Since we use the same
label i for both steps, this walk can take t “double steps” at the cost of only t steps. If we can
guarantee that a double step is as productive as two independent steps, the rate of the resulting
code would be ε2+o(1).

For the double step to work, clearly there must be some relation between the two expanders.
Otherwise, G2, for example, could always reverse the step taken by G1. Hence, we would like to
think of G1 and G2 together as a single primitive: for each vertex v1, there are d choices for the
pair (v2, v3). As a result, one can think of G1 and G2 together as a single d-regular 3-uniform
hypergraph, and consider walks on that hypergraph, H = (V = [n], EH). A step on H, according to
an instruction i ∈ [d], starting from some vertex v, amounts to choosing the i-th hyperedge e that
touches v according to some fixed ordering in which v = e[1], recording w = e[2], and moving to
u = e[3]. A length-t walk is the sequence of recorded w-s.

To analyze the parity sampling capabilities of W ⊆ [n]t that consists of length-t walks over
3-uniform hypergraphs, one can define a linear operator A = A(Πz, H), under which the bias can be
bounded by

∥∥At
∥∥. Which property of H leads to a good amplification? Blanc and Doron study two

expansion notions. When H is “λ-mixing”, they get an ε0 → (ε0 +O(λ log(1/λ)))t amplification.
Under a stronger notion of “λ-spectral”, they get an ε0 → (ε0 + λ)t amplification.

Clearly, there’s still the issue of the dependence between the degree d and the expansion
parameter λ. Unfortunately, we do not currently have good enough explicit hypergraphs, but one
can show that a random one is λ-mixing, with λ = O(1/

√
d), with very high probability. This leads

to the following (conditional) construction.

Theorem 2.4 (informal; see [BD22]). There exists an ε-balanced code C ⊆ Fn
2 with rate

R = ε2 · 2−Õ
(√

log(1/ε)
)

that can be constructed in probabilistic polynomial time. Moreover, C = dsumW(C0) for some base
code C0, where W is a collection of length-t walks over a mixing 3-regular hypergraph.
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In [BD22], they also showed that assuming sufficiently good λ-spectral hypergraphs (which we
don’t know exist), one can get extremely close to the optimal rate, namely R = ε2 · 1

polylog(1/ε) .
To conclude this section, we ask:

Open Problem 2. Can the bias amplification method be pushed further? Specifically, is there a
sparse set W of random walks (over an expander, hypergraph, or a high-dimensional expander), and
an explicit base code C0, for which dsumW(C0) achieves the GV bound?

3 Decoding Small-Biased Codes

Our focus in this section is on unique decoding and list decoding from adversarial errors, i.e.,
when an adversary is allowed to corrupt any δ-fraction of the coordinates of a received codeword
c = C(x) ∈ Fn

2 . We will concentrate on decoding from direct sum codes, as described above in
Section 2.2. Thus, we will assume that we have a base code C0 which is unique- or list-decodable
with sufficiently good parameters (and when we do not insist on the optimal rate vs. distance
tradeoff, we do have such codes), and a family of subsets W , and we will ask the following question:
Under which conditions on W, can we come up with efficient decoding algorithms? This question
will give rise to interesting properties.

We leave the discussion about decoding concatenated codes to Section 4, where we discuss (more)
probabilistic constructions.

3.1 Decoding from Regularity

For many combinatorial objects, one can define what it means for them to be pseudorandom, and
then a dual notion of structure naturally emerges. This phenomenon gives rise to regularity lemmas
applicable to, e.g., graphs and certain families of matrices.

Consider a (structured) family of functions F ⊆ X → [−1, 1] where X is some finite space.
We want to approximate any function g : X → [−1, 1] by a function gsimple which consists only
of weighted sums of functions from F . While impossible in general,10 what if we put on our
pseudorandomness lens, and only wish gsimple to approximate g from a point of view of only functions
from F? That is, we want

E
x∼µ

[f(x) · (g(x)− gsimple(x))] ≤ δ (1)

for some associated probability measure µ. By a gradient-descent like argument, one can show that
existentially, we can construct gsimple as a combination of only 1

δ2
functions from F .11

How can we harness regularity for the task of decoding, and specifically for the goal of reducing
the unique- or list-decoding of dsumW(C0) to that of decoding C0? The approach suggested by
Jeronimo, Srivastava, and Tulsiani [JST21] goes as follows. Given a corrupt w ∈ Fn

2 , where we
identify [n] with the elements of W, we wish to find x (or x-s) for which ∆(w, C(x)) is smaller
than the decoding radius. For now, we aim to find x that minimizes this Hamming distance, or

10It is possible, in general, if one wishes to write g as gsimple + h, where h being the “pseudorandom” part with
respect to the structure of F .

11A well-known instantiation of this fact is weak regularity lemmas for dense graphs, wherein one decomposes
the adjacency matrix as a weighted sum of a small number of cut matrices, and one can use this decomposition to
approximate the number of edges between any two subsets. The algorithmic problem of finding those cut matrices can
be reduced to approximating a solution to a certain semidefinite program.
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alternatively, find z ∈ C0 that minimizes ∆(w,dsumW(z)). Let X = [n]t, and let g : X → [−1, 1] be
the function

g(i) =

{
(−1)zi i ∈ W,

0 otherwise.

Following the definition of dsumW , it’s not hard to see that for any z ∈ Fn
2 (not necessarily z ∈ C0),

1− 2 ·∆(w,dsumW(z)) =
nt

|W|
E

i∼[n]t
[g(i) · χz(i1) · · ·χz(it)] ≜

nt

|W|
E

i∼[n]t

[
g(i) · χ⊗t

z (i)
]
,

where χz(i) = (−1)zi . While g is (somewhat) arbitrary, the function we want to “fool” is structured.
Specifically, χ⊗t

z belongs to the class

F = {±χz1 ⊗ . . .⊗ χzt : z1, . . . , zt ∈ Fn
2} , (2)

so the regularity lemma will tell us that there exists gsimple =
∑

k∈[ℓ] ck · χzi,1 ⊗ · · · ⊗ χzi,t such that

E
i∼[n]t

[
(g(i)− gsimple(i)) · χ⊗t

z (i)
]

is small. Now, if indeed we manage to efficiently find such a gsimple, and the error above is sufficiently
small, we are left with the task of finding z ∈ C0 that maximizes Ei∼[n]t

[
gsimple(i) · χ⊗t

z (i)
]
. Due to

the parity sampling properties of W, we can even range over all z ∈ Fn
2 . In fact, [JST21] ranges

over all z ∈ [−1, 1]n and then deduce a z ∈ Fn
2 by a random rounding.

Why is our life easier now? Our objective only depends on the inner product between gsimp and
χ⊗t
z , so in particular, it only depends on 2ℓt indicator functions! We can then partition [n] into 2ℓt

subsets, and only iterate over z ∈ [−1, 1]n (after a suitable discretization), each of which gets the
same value on every subset. After deducing a z ∈ Fn

2 that (approximately) maximizes our objective,
we simply unique-decode C0. List decoding is similar: For any z ∈ Fn

2 that is obtained by that
process, try to uniquely decode it according to C0 (so say z0 ∈ C0 is sufficiently close to z), and add
it to the output list if ∆(w,dsumW(z0)) is small enough. The Johnson bound guarantees a small
output list.12

Notice that we still have not used any property of W besides its parity sampling properties, and
indeed, the existential regularity in (1) is neither strong enough for us nor efficient. In order to
facilitate efficient decoding, Jeronimo, Srivastava, and Tulsiani use splittable families of subsets.

Splittable W-s. A family of tuples is τ -splittable if various graphs that originate from partitions
of W are τ -expanders. A bit more formally:

Definition 3.1 (τ -splittability). For 1 ≤ a ≤ b ≤ t, let W[a,b] = {(ia, . . . , ib) : (i1, . . . , it) ∈ W}.
We say that W is τ -splittable, if for any triple 1 ≤ a ≤ r < b ≤ t, whenever we consider the bipartite
graph S(a,r,b) with vertex sets W[a,r] and W[r+1,b], and edges (w1, w2) whenever w1 ◦w2 ∈ W[a,b], then
S(a,r,b) is a τ -expander.

12While a runtime which is exponential in 2ℓt does not sound too promising (and that is given gsimple, which we have
yet to discuss how to achieve), it is only a function of ε, and independent of n. Thus, when ε is large, this gives us an
efficient algorithm (see Theorem 3.2 for the details).
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When t = 2, this is simply a bipartite expander. It is also fairly easy to see that the collection of
length-t random walks is splittable. An important milestone was achieved by Jeronimo, Quintana,
Srivastava, and Tulsiani [JQST20], where they showed that the collection of random walks on the
wide replacement product (discussed in Section 2.2), is also τ -splittable! A bit more specifically, if
we set the parameters in (a slight modification of) Ta-Shma’s code so that the rate is Ω(ε2+o(1)),
then the corresponding parity sampler is τ -splittable for τ which is exponential in − log(1/ε)1/6.

Where does splittability help with regularity? Utilizing the splittable structure, [JST21] prove
a “splittable mixing lemma”, which is a higher-order analogue of the expander mixing lemma.
Using the splittable mixing lemma, they show a much stronger (existential) weak regularity lemma
for families of “split functions”, such as F in (2). Still, in order to use gsimple above, we need to
find it. The tensor structure of F allows [JST21] to devise an algorithmic weak regularity lemma.
Combining matrix cut norm approximation [AN04] with fast SDP solvers for sparse matrices, they
get an algorithm which runs in time Õt,τ (|W|).

Getting back to our decoding algorithm, after finding gsimple, recall that we go over all (discretized)
z ∈ [−1, 1]n which are constant over 2ℓt subsets of [n], and apply the unique decoding algorithm of
our inner code C0. Setting parameters appropriately, we can get the following decoding of Ta-Shma
codes.

Theorem 3.2 ([JST21]). There exists an explicit family of ε-balanced binary linear codes C ⊆ Fn
2

of rate

ε2 · 2−O((log(1/ε))5/6)

such that:

1. Unique decoding: There exists a randomized algorithm that uniquely decodes C up to half the
distance in time c1(ε) · Õ(n), where c1(ε) is doubly-exponential in logα(1/ε) for some α < 1.

2. List decoding: There exists a randomized algorithm that list-decodes C up to radius

ρ =
1

2
− 2−O((log(1/ε))1/6)

in time c2(ε) · Õ(n), where c2(ε) is triply-exponential in logα(1/ε) for some α < 1.

While the algorithm runs in nearly-linear time in the code’s length n, the dependence on ε is
quite bad. The regime of small (or even mildly-small) ε is also of great interest. For example, for
the pseudorandomness applications we saw in Section 1.1, a small ε (even polynomially-small in
the code’s dimension) is often crucial. Moreover, note that the list decoding radius is far from the
Johnson bound of 1

2 −
√
ε, let alone from the “list decoding capacity”, that says we can potentially

get arbitrarily close to 1
2 − ε.

Sampling W-s. Splittability is a “structured pseudorandomness” property, and does not hold for
a sparse random W. To see this, consider for example the t = 4 case. For splittability, we require,
in particular, that the bipartite graphs between pairs (i1, i2) and (i3, i4), which are connected if
(i1, i2, i3, i4) ∈ W, are expanders. However, as also observed in [JST21], for a random W of size
O(n), such a bipartite graph is a matching with high probability. Recall that in [BD22], the parity
sampler is based on walks on 3-regular hypergraphs, and a random such hypergraph is sufficiently
good. This suggests that the [BD22] parity sampler is not splittable.
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However, in [BD22] they identify that a weaker property suffices to enact the decoding framework
of [JST21], which they dub “τ -sampling”. This property tells us that we can use W to sample any
set, starting from any prefix.

Definition 3.3 (τ -sampling). W is τ -sampling if for any S ⊆ [n], j ∈ [t], and X ⊆ [n]j−1, it holds
that ∣∣∣∣ Pri∼W

[ij ∈ S | (i1, . . . , ij−1) ∈ X]− ρ(S)

∣∣∣∣ ≤ τ

ρ(X)
,

where ρ(X) is the density of X.

Using the strong sampling property of random walks on hypergraphs, [BD22] provide an analogue
of Theorem 3.2, wherein both the rate and the list decoding radius are slightly better (namely, one
can replace the 5/6 and 1/6 with 1/2), but the code itself is constructible in randomized polynomial
time.

In a very recent work, Dikstein and Hopkins [DH24] defined a similar expansion notion, complete
splittability, on uniform partite complexes, and used completely splittable complexes for efficient
decoding of “ABNNR codes” [ABN+92] (see also [DHK+21], who were the first to instantiate list
decoding of ABNNR codes on high-dimensional expanders). Dikstein and Hopkins observed that W
is splittable if and only if it is completely splittable, and this in turn implies that the complex is
τ -sampling.

3.2 Semidefinite-Programming Based Decoding

Another successful approach for decoding direct sum codes is Sum-of-Squares (SoS) decoding,
initiated by Alev, Jeronimo, Quintana, Srivastava, and Tulsiani in [AJQ+20], and further developed
in [JQST20].13 A unifying theme in decoding-based SoS algorithms is to reduce the task of decoding
to the task of solving instances of constraint satisfaction problems using SDP solvers. While
the decoding parameters of [JQST20, AJQ+20] are somewhat comparable to the regularity-based
decoding in Theorem 3.2 (and in particular do not reach the Johnson bound), the runtime in those
works is worse.

More recently, Richelson and Roy were able to list-decode Ta-Shma’s code, using SDPs, all the
way up to the Johnson bound!

Theorem 3.4 ([RR23]). There exists an explicit family of ε-balanced binary linear codes C ⊆ Fn
2

with rate Ω(ε2+o(1)) such that for any θ > 0, there exists a randomized algorithm that list-decodes C
up to radius

ρ =
1

2
−
√
ε− θ

in time poly(npoly(1/ε), log(1/θ)).

Recall that since we list-decode up to the Johnson bound, the list size is guaranteed to be O(1/ε).
It is also important to note that the seminal work of Guruswami and Rudra [GR08b] gives binary

13The SoS framework can itself be seen as a (major) extension of decoding based on approximating k-CSPs on
expanders [DHK+21, AJT19]. We also note that the splittability notion used in the regularity-based framework was
already used in [JQST20, AJQ+20], and one can draw some similarities between the two approaches.
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codes of rate Ω(ε3) that are list decodable up to capacity.14 Thus, if one is only interested in the list
decoding radius of binary codes with non-vanishing rate, [GR08b] still outperforms Theorem 3.4.

As mentioned above, the algorithm given in [RR23] is an SDP-based one, and it follows the
framework esablished in [AJQ+20]. We will not get into the machinery of SDP hierarchies, and
only give a very brief outline of the approach. Given a corrupt word w ∈ Fn

2 , note the our goal is to
recover x ∈ C0 such that ∣∣∣∣ E

i∼W
[wixi1 · · ·xit ]

∣∣∣∣ ≥ 2
√
ε+ 2θ,

where wi is simply (−1)wi , and likewise for x. In SDP-based decoding, the steps are roughly as
follows.

1. Use w to set up and solve an SoS hierarchy. We will not specify the SDP variables in detail,
and only mention that they correspond to subsets of the vertices of the expander up to a
certain size (say r), and an assignment to the elements of those subsets. We also have “distance
constraints” variables which are the ones that are problem-specific. Solving the SDP hierarchy
will give a pseudodistribution.15

2. Using SDP rounding, round the pseudodistributions to a real distribution on Fn
2 .

3. Sample z from that distribution. With sufficiently high probability, that sample has a good
agreement with the base code, and we can unique decode to find x. Indeed, the SDP is set
such that |Ei∼W [zi1xi1 · · · zitxit ]| ≥ 2ε will imply

∣∣Ei∼[n] [zixi]
∣∣ ≥ 2ε0.

The runtime of the solver is dominated by, roughly, nO(r). Thus, while the SoS framework is
powerful, the runtime of SoS-based decoding algorithms seems to be inherently slower than
regularity-based decoding algorithms.

The analysis of the decoding algorithm can be seen as mimicking the analysis of expander-based
encoding algorithms; i.e., we need to interpret the distance of the direct sum code of [Ta-17] as an
“SoS proof”.16 Generally speaking, Richelson and Roy come up with an improved rounding step that
utilizes the observation that the same argument Ta-Shma used to bound the distance of his code also
works in proving the correctness of the list-decoding algorithm. They show that Ta-Shma’s proof
can be phrased as an SoS proof and can be applied to the pseudodistributions that are obtained from
the SDP-solving part. Moreover, they manage to show that there is essentially no loss in making
the standard distance analysis into an SoS version (thereby improving the “parity sampling proof”
step of [AJQ+20]) . We also remark that recently, Jeronimo, Srivastava, and Tulsiani [JST23] gave
SoS distance proofs for other families of codes, such as LDPC Tanner codes and expander-based
AEL distance amplification codes over large alphabets, leading to better list decoding algorithms
for those codes.

We can summarize the current state of affairs regarding decoding as follows. While existing
constructions have near-optimal rate, Ω(ε2+o(1)), where the o(1) term goes to 0 as ε → 0, the

14There too, the dependence on ε is bad, not only in the list decoding runtime, but also in the encoding (unless one
resorts to randomized constructions).

15We can think of a pseudodistribution as a collection of local distributions over subsets of [n]. Or, a bit more
formally, as an oracle that gets any subset S ⊆ [n] of size at most r, and (randomly) generates an assignment to the
elements of S. The properties of the SDP will ensure certain consistency requirements.

16More basically, the random-walks based parity sampler of Section 2.2 can be proven using relatively basic inequalities
(such as Cauchy–Schwarz), and it has been known that those can often be applied to the pseudodistributions which
result from solving the SDP hierarchy.
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ε-dependence on other parameters, like the running time of algorithms or the list-decoding radius,
can be quite bad, sometimes doubly or even triply exponential. Thus, even given the exciting recent
progress, there is still much room for improvement!

Open Problem 3. Construct an explicit code C ⊆ Fn
2 or relative distance 1

2−ε and rate approaching

ε2, that is list decodable up to the Johnson bound, in time poly(1/ε) · Õ(n), or even poly(n/ε). The
decoding (or even the encoding) can be randomized.

What about codes that achieve the list decoding capacity? There, even the combinatorial list
decoding question is open.

Open Problem 4. Construct an explicit code C ⊆ Fn
2 of relative distance 1

2 −ε and rate approaching
ε2, that is (ρ, L) list decodable up to radius 1

2 − 2ε and L = poly(1/ε).

4 Encoding and Decoding with Structured Randomness

We already saw one example for structured randomness in Section 2.2 where we talked about
the [BD22] parity sampler. In this section, we concentrate on the natural framework of code
concatenation, introduced in Section 2.1, and ask whether randomness can facilitate optimal
constructions and good decoding algorithms.

As mentioned earlier, a prominent concatenation-based approach for constructing good codes
is to choose Cout ⊆ Fnout

q , of dimension kout, with the optimal rate-vs.-distance tradeoff (say, a
Reed–Solomon code). Letting Cin ⊆ Fnin

2 be our inner code of dimension kin = log q, if nin is
sufficiently small, we can use brute force to find a Cin that sits on the GV bound. But if we do
not assume any additional properties on Cout and Cin, and simply use the concatenation property,
then setting the parameters so that C = Cout ◦ Cin has distance 1

2 − ε, the rate of C will be at most
roughly ε3. This is known as the Zyablov bound [Zya71] (see also [GRS]).17

The Thomessen Construction. Instead of using a single inner code, several works have focused
on a related construction, originally due to Thomessen [Tho83], which uses i.i.d. random inner codes
for each coordinate. It can be shown that the resulting code does lie on the GV bound with high

probability over the independent C(1)
in , . . . , C(nout)

in . While this construction requires n log q random
bits, not too far from a uniformly random linear code, its structure allows for efficient decoding,
and this was already used in [GI04, Rud07, GR10, HRW19].

To see this, let w ∈ Fn
2 be the corrupt word we wish to decode, and break it up into w =

(w1, . . . , wnout), each wi ∈ Fnin
2 . Since we think of nin as small, we can brute-force list-decode, and

find a list Si ⊆ Fq such that for any α ∈ Si, C(i)
in (α) is close to wi, for some suitable chosen closeness

parameter. Since originally, w was close to some C(x) (or to some C(x1), . . . , C(xL) in the case of
list decoding), and since most inner codes are good in the sense that they also achieve list decoding
capacity, one can show that many of the Si-s will be small, say 1− ρ fraction of them.

We are thus left with the following task: Given S1, . . . , Snout , where at least 1− ρ fraction of
them have size at most ℓ = ℓ(ε), return the set of x-s for which Cout(x)i ∈ Si. This is (one variant
of) the list recovery problem, a fascinating notion which warrants its own discussion. Hemenway,

17Notice that the concatenation property is pessimistic, and lower bounds the weights of each Cin(α), where
α ∈ Fq \ {0}, by the minimal distance of Cin. Soon, we will ask whether codewords of Cout can be so adversarial.
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Ron-Zewi, and Wootters [HRW19] constructed good list recoverable codes, which led to the following
decoding result of the Thomessen construction.

Theorem 4.1 ([HRW19]). There exists a family of ε-balanced binary codes C ⊆ Fn
2 of rate Ω(ε2)

that can be constructed in probabilistic polynomial time, and there exists a randomized algorithm
that uniquely decodes C up to half the distance in time c(ε) · n1+1/t, where t ≈ logloglog n, and c(ε)
is triply-exponential in poly(1/ε). The decoding algorithm was later derandomized in [KRRZ+20].

The [HRW19] construction can also be used for list decoding up to the Zyablov bound. We
note that unique decoding up to the Zyablov bound18 can by done using the classical Generalized
Minimum Distance (GMD) decoding due to Forney [For66].

A Single Inner Code. Being unsatisfied with a construction that uses many random bits, and
hoping to have some path towards explicit construction of rate Ω(ε2), we can go back to the idea of
using a single inner code, and ask: Are there any concatenated (linear) codes Cout ◦Cin that meet the
GV bound with high probability over Cin? If so, what are the conditions on Cout that will guarantee
this?

Concatenating a random Cout with a fixed-sized random Cin was initially studied by Barg,
Justesen, and Thommesen [BJT01], who showed that Cout ◦ Cin, for random Cout and Cin, approaches
the GV bound in some cases (see also [BM10]). They also demonstrate suitable Cin-s of small
constant size. For low-rate codes of arbitrary lengths, the recent work of Doron, Mosheiff, and
Wootters [DMW24], shows that most codes Cout are good.

Theorem 4.2 ([DMW24]). Suppose that Cout ⊆ Fnout
q and Cin ⊆ Fnin

2 are random linear codes of

rate ε so that q ≥ 2Ω(ε−3). Then, C = Cout ◦ Cin has rate ε2, and with high probability, the relative
distance of C is at least 1

2 −O(ε).

Note that while both codes are random, a codeword c ∈ Cout ◦ Cin is not uniform over Fn
2 , and

hence Theorem 4.2 is (seemingly) not trivial.
Proving Theorem 4.2 uses a moments-based argument. Let {b1, . . . , bnin} be the rows of the

generating matrix G0 of Cin,19 each of length log q. For any nonzero message m ∈ Fkout
q , let

c = (Cout ◦ Cin)(m) ∈ Fn
2 , and one can verify that the bias of c can be expressed as

Xm =
∑

i∈[nout]

∑
j∈[nin]

(−1)⟨Cout(m)i,bj⟩,

where we think of each Fq-symbol as a kin = log q bit-string. The goal is now to show that
|Xm| = O(εn), and this is done by bounding Em ̸=0[X

r
m] for some large enough r. If the bound is

sufficiently small, a simple application of Markov’s inequality, followed by a union bound, would
show that there are no messages with bias above our desired O(εn) bound. In fact, in Theorem 4.2,
we don’t need Cin to be random, we just need C⊥

in to have, approximately the “right” weight
distribution.20

18Or more generally, up to half the distance that is given to us by the concatenation property, namely d(Cout) ·d(Cin).
19That is, G0 ∈ Fnin×kin

2 represents the linear transformation Cin : Fkin
2 → Fnin

2 , and recall that kin = log q.
20Namely, that the number of c ∈ C⊥

in of weight i is roughly
(
nin
i

)
· 2εnin . Establishing the bound on Em ̸=0[X

r
m] first

goes through expressing it in terms of C⊥
out, the dual subspace of Cout, as is often the case in Fourier-analytic proofs. A

bit more specifically, we need to count the number vectors in C⊥
out that can arise from certain combinations of at most

r rows of G0 in each coordinate.
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Importantly, the proof technique in [DMW24] suggests future avenues towards making Cout
explicit. Note that by making Cout explicit and choosing Cin uniformly at random, we only need
to invest nin · log q random bits in order to generate C. The first avenue towards constructing an
explicit Cout, is requiring that C⊥

out satisfy some good list decodability from soft information, wherein
one gets a distribution Di ∼ Fq for each coordinate, representing some prior information about the
i-coordinate, and the goal is bounding the probability that a word drawn from D1 × . . .×Dn is a
codeword. In [DMW24], they define a distribution D ∼ Fq, so that if

Pr
x∼Dn

[
x ∈ C⊥

out \ {0}
]
≤ (1 + ∆)q−kout

for some small ∆, then Cout ◦ Cin lies on the GV bound with high probability over just a random Cin.
Note that the q−kout term is the probability that a completely random vector lies in C⊥

out.
The second sufficient condition on Cout, an arguably very natural one, concerns the symbol

distribution of codewords, and requires the codewords of Cout to be smooth enough, meaning roughly,
that every nonzero codeword has a fairly uniform distribution of symbols from Fq. To illustrate why
smoothness is desirable, let us consider the two extremes. The bad extreme is when there exists a
codeword c that is supported on only a single symbol, say c = (σ, . . . , σ) for some σ ∈ Fq. Then,
the relative weight of c ◦ Cin, for a random Cin of rate ε, might be 1

2 − Ω(
√
ε), much worse than the

desired 1
2 −O(ε). The other, optimistic, extreme is where the symbol distribution of each nonzero

codeword of Cout is uniform over Fq. In this case, one can show that Cout ◦ Cin will approach the GV
bound for a random Cin.

It turns out that it suffices for every nonzero codeword c to have a symbol distribution that has
Θ(εnout) copies of the same symbol (say, the zero symbol), while the remaining symbols in c are
uniformly distributed over a set of size only q1−ε. A more general condition can be phrased in terms
of the symbol distribution’s “smooth min-entropy” (see [DMW24] for the details).

We note that instead of aiming for a single Cin, one can consider an explicit Cout, and derandomize

the Thomessen construction, that is, generate (possibly distinct) C(1)
in , . . . , Cnout

in using few random
bits. A randomness-efficient ensemble of codes is given in the well-known Justesen construction of
asymptotically good codes [Jus72], but it is not clear how to utilize this construction to get the
binary code we want. We thus conclude with the following open question.

Open Problem 5. Find an explicit Cout such that Cout ◦ Cin has rate Ω(ε2) and relative distance
1
2 −O(ε) with high probability over a uniform Cin, in the regime where nin ≪ nout. More generally,
give an efficient probabilistic construction of a binary code that approaches the GV bound and uses
o(n) random bits.

Interestingly, any such randomness-efficient construction would need to evade the naive union
bound over all qkout codewords. Finally, we note that a Thomessen-like construction was shown to
achieve list-decoding capacity by Guruswami and Rudra [GR08a], where Cout is a uniformly random
code, or the folded Reed–Solomon code. It would thus be interesting to study the capabilities of
single inner code concatenations to achieve list decoding capacity.

5 Conclusion

We surveyed some of the recent developments, and some important classical results, related to
binary codes in the large distance regime, focusing on combinatorial properties (i.e., rate-distance
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tradeoff), and decoding from adversarial errors. We note that other exciting, and sometimes related,
progress has been recently made in studying locality (e.g., locally testable codes and relaxed locally
correctable codes), decoding of good codes over larger alphabets, and decoding good binary codes
in other corruption models. We did not attempt to cover those topics here.

We presented several open problems, starting from purely combinatorial, through coming up
with explicit constructions, and designing efficient decoding algorithms. One important takeaway is
that while the dependence on ε in the rate of the code is now near-optimal, the dependence on ε in
things such as the runtime or list-decoding parameters, still leaves much to be desired. The small ε
regime is important for pseudorandomness, and we believe that making progress on that front will
come with novel techniques, potentially contributing to other areas in coding theory.
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