
Computationally Hard Problems Are Hard for QBF
Proof Systems Too
Agnes Schleitzer !

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Olaf Beyersdorff !�

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Abstract
There has been tremendous progress in the past decade in the field of quantified Boolean formulas
(QBF), both in practical solving as well as in creating a theory of corresponding proof systems and
their proof complexity analysis. Both for solving and for proof complexity, it is important to have
interesting formula families on which we can test solvers and gauge the strength of the proof systems.
There are currently few such formula families in the literature.

We initiate a general programme on how to transform computationally hard problems (located in
the polynomial hierarchy) into QBFs hard for the main QBF resolution systems Q-Res and QU-Res
that relate to core QBF solvers. We illustrate this general approach on three problems from graph
theory and logic. This yields QBF families that are provably hard for Q-Res and QU-Res (without
any complexity assumptions).

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases QBF, proof complexity, resolution

Funding Agnes Schleitzer : DFG grant BE 4209/3-1
Olaf Beyersdorff : Carl-Zeiss Foundation and DFG grant BE 4209/3-1

1 Introduction

The primary goal of proof complexity is to examine the size of proofs within various formal
proof systems. Originating from computational complexity [20], proof complexity has
significant connections to other domains, especially logic [29, 19] and solving techniques
[17]. Proof complexity serves as the main theoretical framework to evaluate the strength of
modern solving methods.

A key challenge in proof complexity is to establish lower bounds on proof size and to
obtain separations between different calculi. This requires specific formula families that
witness these lower bounds. In propositional proof complexity, particularly for propositional
resolution – well-studied also due to its close ties with SAT solving [17, 33, 1, 5] – there
is extensive literature on difficult formulas from various fields such as combinatorics [e.g.,
23, 16], graph theory [38], logic [28], random formulas [4], and many more [29, 36].

In contrast, proof complexity of quantified Boolean formulas (QBF) is relatively nascent.
While there are several QBF proof systems, Q-Resolution [Q-Res, 27] and QU-Resolution [QU-
Res, 39] are most notable. These systems extend propositional resolution by incorporating a
universal reduction rule that allows for the elimination of specific universal variables from
clauses.

Similar to SAT, QBF resolution systems are deeply intertwined with QBF solving methods
[cf. 14, for a recent overview], with Q-Res and its extension long-distance Q-Resolution [LD-Q-
Res 3] corresponding to quantified conflict-driven clause learning [QCDCL, cf. 14, 40, 6, 30].

However, compared to the plethora of hard formulas for propositional resolution, there
is a scarcity of interesting QBF families suitable for proof-theoretic analysis. Only few
families (and their variations) have been utilised for lower bounds and separations in the

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 162 (2024)

mailto:agnes.schleitzer@uni-jena.de
mailto:olaf.beyersdorff@uni-jena.de
https://orcid.org/0000-0002-2870-1648

2 Computationally Hard Problems Are Hard for QBF Proof Systems Too

QBF literature. Most notable among these are the KBKF formulas introduced in the initial
Q-Res paper [27], equality formulas [10], parity formulas [11], and CR formulas [26]. These
comprise the primary toolkit for QBF proof complexity and are used for nearly all known
separations. We recently introduced a method to construct new hard QBF families – this
method can also be used to generate the KBKF and equality formulas – but they are highly
structured and handcrafted.

Thus there is a strong need for more interesting and especially natural QBFs that are
challenging for Q-Res or QU-Res. Such QBFs could not only advance proof complexity but
also serve as benchmarks in solving, aiding in the comparison of different solving techniques.1

It is also not straightforward to use the large pool of hard propositional formulas for QBF
purposes. Although the existentially quantified version of any CNF hard for propositional
resolution is also hard for Q-Res and QU-Res, our focus is on ‘genuine’ QBF hardness arising
from quantifier alternations rather than from the propositional base system.2

Our Contributions. We present a general method for constructing families of hard QBFs
from computationally complex mathematical problems.

Specifically, we consider three problems, two from graph theory and one from logic,
convert them into QBFs and show that these QBFs require exponential-size proofs in QU-
Res (thereby also in Q-Res). The first problem Succinct k-Radius asks whether a graph,
represented succinctly as a circuit, has radius ≤ k for fixed k. The problem is known to be
complete for the third level Σp

3 of the polynomial hierarchy PH. The second graph problem
k-Clique Colouring is complete for Σp

2. We complement this with a problem from logic
ALL-EQUAL∃∀3SAT, also complete for Σp

2. As the problems are in PH, they can be expressed
naturally as sequences of QBFs.

Our main technical work goes into showing that these formulas are hard for the QBF
resolution systems QU-Res and Q-Res. For this we use the semantic size-cost lower-bound
technique for QBF calculi, developed by Beyersdorff et al. [10]. This involves constructing
explicit ‘critical’ instances of graphs or formulas on which the universal player demonstrably
needs a large winning strategy. The workflow for our construction is depicted in Figure 1.

We view these three explicit problems and hardness construction as case studies towards
the far more general claim that any computationally hard problem can be shown to give
rise to hard QBFs via our method (though specific problems will likely require individual,
hand-crafted instances for the argument, cf. the discussion in Section 7).

We mention that the hardness results actually extend to more powerful QBF proof
systems, namely all systems with bounded capacity, cf. [10]. In particular, our QBF families
are hard not only for QU-Res, but also for the QBF versions of polynomial calculus and
cutting planes [10, 9].

The idea to use computationally complex problems for hard QBFs is quite natural. Indeed,
we can take any PSPACE-complete problem L (or a problem complete for some level Σp

k with
k ≥ 2), express it as QBFs (this is possible as deciding validity of QBFs is PSPACE complete
as well), and these QBFs will be hard for any QBF proof system Q assuming NP ̸= PSPACE
(or NP ̸= Σp

k, resp.).3

1 A track of crafted formulas was introduced into QBFEval 2020, and a tool to generate the mentioned
QBF families was presented by Beyersdorff et al. [15].

2 A formal framework for ‘genuine’ QBF hardness was introduced by Beyersdorff et al. [13]. All the
aforementioned QBF examples – KBKF, equality, and parity – are genuinely hard in this sense.

3 This follows as short Q-proofs for QBF translations of L could be guessed non-deterministically, thus
placing L ∈ NP and implying NP = PSPACE (or NP = Σp

k, respectively).

A. Schleitzer, O. Beyersdorff 3

computationally hard problem
given: a (set of) mathematical structure(s) S
Question: Has S property P?

QBF formulation of the problem
construct a QBF which is true iff S has
property P

critical family
find a family of structures that only just fail
to have property P

hard QBF family
critical families result in QBFs with high cost

Figure 1 The basic procedure we use to construct families of hard QBFs from mathematical
problems.

While using PSPACE-hard problems such as games for QBF instances is a natural idea
[22, 37, 24], such formulas have never been shown to be formally hard for QBF proof systems,
a task that appears daunting due to the syntactically complex QBF translations [37]. Our
main achievement here is that our hardness results hold unconditionally without assuming
any unproven conjectures from computational complexity.

We highlight that such results are not known in propositional proof complexity. The clique
formulas are a famous example [7]. They express the NP-complete problem that a given
graph contains a k-clique. Hence by the same argument as above, they will give rise to hard
CNFs (for suitably chosen graphs) for any propositional proof system assuming NP ̸= co-NP.
To show this unconditionally is a very hard problem in propositional proof complexity. So far
the claim has been shown unconditionally for tree-like resolution [8] and, in a break-through
result, for regular resolution [2], while the case of general resolution is wide open. In contrast,
our method allows to show such results for QBF proof systems very elegantly.

Organisation. We start in Section 2 with preliminaries on QBF and relevant proof systems.
Section 3 contains our generic construction of hard QBFs from mathematical problems.
Sections 4-6 each present a mathematical problem, the QBF translations, and the hardness
argument. We conclude in Section 7 with a discussion.

2 Preliminaries

A Conjunctive Normal Form (CNF) is a conjunction of clauses, where each clause is a
disjunction of literals. A literal l is a propositional variable x or its negation x, we denote
this by vars(l) = x. We also write CNFs as sets of clauses; the size of a CNF is the number
of its clauses.

QBFs. A Quantified Boolean Formula (QBF) in closed prenex form ϕ = P · φ consists of a
quantifier prefix P and a propositional formula φ, referred to as the matrix. The prefix is
a sequence of quantifiers Q ∈ {∀,∃}, each followed by a set of variables. For a closed QBF
(which is our focus), P quantifies exactly the variables appearing in φ. Consequently, for
P = Q1X1Q2X2 . . . QnXn, the matrix φ is expressed in terms of the variables

⋃
i∈[n] Xi and

we write vars(P · φ) = vars(φ) =
⋃

i∈[n] Xi. Since a closed QBF has no free variables, it is
either true or false. We denote the set of existential variables (associated with ∃) in P · φ by
vars∃(φ), the set of universal variables (associated with ∀) by vars∀(φ). A QBF with a CNF
matrix is termed a QCNF.

4 Computationally Hard Problems Are Hard for QBF Proof Systems Too

Axiom
C

C is a non-tautologous
clause in the matrix φ.

Q-Res C1∪{x} C2∪{x}
C1∪C2

C1 ∪ C2 is non-
tautologous; x ∈
vars∃(ϕ).

QU-Res C1∪{x} C2∪{x}
C1∪C2

C1 ∪ C2 is non-
tautologous.

∀Red C∪{u}
C

u ∈ vars∀(ϕ) and quanti-
fied right of each existen-
tial variable in C regard-
ing P.

Figure 2 Rules of the QBF proof systems Q-Res and QU-Res for a QBF ϕ = P.φ.

An assignment is a mapping of variables to (Boolean) truth values in {0, 1}. Sometimes,
we represent an assignment as a set of variable-value pairs. We write ⟨V ⟩ for the set of all
possible assignments to V .

Closed QBFs can be viewed as a two-player game between an existential and a universal
player, who assign truth values to all variables in the order dictated by the quantifier prefix.
The existential player assigns values to existential variables, while the universal player assigns
values to universal ones. The existential player wins if the resulting assignment satisfies the
matrix; otherwise, the universal player wins. For any closed QBF, one of the players has a
winning strategy. This game is known as the assignment game.

A countermodel is a winning strategy for the universal player. While countermodels are
often described as a collection of functions (one for each universal variable), we prefer to
consider them as a single function that outputs an assignment to the universal variables (cf.
e.g. [12]). The range of a countermodel is the number of distinct assignments to the universal
variables that can be produced under the strategy. The range of a countermodel on a single
universal block is the number of different assignments to the variables of that block.
Proof systems. Resolution (Res) is a refutational proof system for propositional formulas
with two inference rules. For an input CNF χ, any clause C ∈ χ can be used as an axiom.
Additionally, from two clauses C1 ∪ x and C2 ∪ x, the resolvent C1 ∪ C2 can be derived by
resolving over the pivot x.

Q-Res [27] lifts the resolution method to QBFs. The system adapts the resolution rule
to Q-Res, whereby only existential pivots are permitted and tautological resolvents are
prohibited. Universal variables are eliminated using universal reduction (∀Red). The rules
are shown in Figure 2.

QU-Res [39] extends the weaker system Q-Res by allowing resolution over universal pivots.
The size |π| of a proof π is defined as the number of clauses in π.

3 From Hard Problems to Hard QBFs

Our aim is to construct hard formulas for QU-Res from difficult mathematical problems. The
hardness should be intuitively easy to understand. For this purpose, we use the lower bound
technique via cost introduced by Beyersdorff et al. [10]. We start by recalling it.

▶ Definition 1 (Cost [10]). We consider all countermodels for a false QBF ϕ and determine
for each of them the largest range on a single universal block. The minimum over these

A. Schleitzer, O. Beyersdorff 5

cardinalities is the cost of ϕ.

For Σb
3 formulas (i.e., with only one universal block), cost coincides with the minimum

cardinality of the range of a countermodel for ϕ. Cost is an absolute lower bound for proof
size in QU-Res (and Q-Res):

▶ Theorem 2 ([10]). Let ϕ be a false QCNF. Then QU-Res refutations of ϕ have size at
least cost(ϕ).

Figure 1 shows the basic procedure we use to construct new families of hard QBFs. At
this point, it is not yet clear exactly what it means that a ‘critical’ structure only just
fails to have a property. This will become clear later and has to do with the fact that the
non-fulfilment of the property must not be too obvious, i.e. there must be numerous ways of
almost proving the property (and failing finally).

In the following, we will analyse selected hard problems in more detail. We use problems
from the polynomial hierarchy, Schaefer and Umans [34] provide a good overview.

4 Succinct k-Radius

First we deal with the radius of graphs – more precisely with the question of whether there is
a vertex in a given (directed) graph from which every other vertex can be reached in at most
k steps. We will define this problem formally soon, but first let us consider representations
of graphs. It is not difficult to verify that the described problem is easy if the graph is given
as an adjacency matrix4. We therefore consider succinct representations, one of which is the
following:

▶ Definition 3 (Galperin-Widgerson Representation). Given a directed graph G = (VG, EG)
with V = {0, 1}n, we call a circuit C a Galperin-Widgerson representation of G iff C has
exactly 2n input gates and one output gate and it holds that C(x, y) = 1 ↔ (x, y) ∈ E for
any x, y ∈ V . Note that there can be more than one Galperin-Widgerson representation of a
graph.

With the help of this circuit representation it is possible to represent graphs with 2n vertices
much more succinctly, possibly even by circuits of polynomial size in n.

In order to formally describe the problem, we still need to define some concepts related
to k-radius and reachability:

▶ Definition 4 (k-reachable, k-isolated, k-center, radius). With respect to a vertex v ∈ V , we
call a vertex u ∈ V, u ̸= v k-reachable if there is a path of length at most k between v and u
in G = (V,E). Otherwise we refer to u as k-isolated (with respect to v).

For a graph G = (V,E), a vertex v ∈ V is called a k-center if any u ∈ V , u ̸= v is
k-reachable from v.

The radius of a graph G = (V,E) is the smallest k ∈ N for which there exists a k-center
of G.

We now define the problem we want to analyse:

4 Since the representation as adjacency matrix has polynomial size in the number n of vertices, we can
efficiently check all approximately nk potential paths for each vertex and determine whether all vertices
are reached.

6 Computationally Hard Problems Are Hard for QBF Proof Systems Too

▶ Definition 5 (Succinct k-Radius [25]). Given a Galperin-Widgerson representation C

of a directed graph G = (VG, EG) and an integer k. Succinct k-Radius(G) asks, whether
G has radius at most k.

This problem is Σp
3-complete for any fixed k ≥ 2 [25].

4.1 QBF Encodings of Succinct k-Radius

We will now construct QBFs describing Succinct k-Radius. We first need variables rep-
resenting vertices from G. For |VG| = n we use variables Pi = {pi

1, . . . , p
i
log n} for i ∈ [0, k],

which encode vertices p0, . . . , pk ∈ VG. We want the matrix to state that p0 . . . pk is a path
in G. We must also consider the case where the length of the path is smaller than k. We
will therefore allow p = p0 . . . pk to repeat the same vertex multiple times (even without the
corresponding loop being contained in G).

Let φedge(i, j) be a propositional formula that encodes the circuit C with input Pi, Pj .
Please note that this formula is not necessarily a CNF. We will address this problem later,
for now the encoding as a propositional formula suffices (allowing us to express C without
additional variables).

Let φequal(i, j) :=
∧

k∈log n

(
(pi

k ∨ pj
k) ∧ (pi

k ∨ pj
k)

)
be a formula checking the encodings of

pi, pj (which are represented by Pi, Pj) for bitwise equality. Now it is quite easy to assemble
prefix and matrix:

∃P0∀Pk∃P1 . . . Pk−1·∧
i∈[k]

(φequal(i− 1, i) ∨ φedge(i− 1, i)) .

The size of this formula is O(k(logn+ |φedge|)).
As noted above, the formula presented so far is not necessarily a CNF. Although the

bitwise equality checks have already been formulated as CNF, this does not apply to the
encoding of the circuit C (for edge checking) and therefore the entire matrix. However, a
Tseitin transformation (TTF in the formula below) allows us to construct a satisfiability-
equivalent formula whose size is linear in the size of the original formula, i.e. O(logn+|φedge|).
This involves inserting additional variables VTseitin, which we simply add to the last existential
block.

This yields the following formula:

SRk(G) := ∃P0∀Pk∃P1 . . . Pk−1VTseitin·

TTF

 ∧
i∈[k]

(φequal(i− 1, i) ∨ φedge(i− 1, i))

 .

Finally, we have to show that the constructed formulas actually express the graph problem.

▶ Lemma 6. SRk(G) is true iff G has radius at most k.

Proof. Let G = (V,E) be a directed graph and k ∈ N. Suppose, G has radius ≤ k. Then
there is a vertex v ∈ V so that every other vertex u ∈ V can be reached from v by a path of
length at most k. Let us now consider the formula SRk(G). The existential player has the
following winning strategy: the P0 variables are chosen to represent the k-center v described
above. The universal player then assigns the Pk variables, which in turn represent a vertex
u ∈ V . Let vp1 . . . pl−1u be a path in G of length l ≤ k from v to u. Such a path must
exist due to the k-center-property of v. The existential player now chooses the P1, . . . , Pk−1

A. Schleitzer, O. Beyersdorff 7

variables so that P1, . . . , Pl−1 represent the vertices p1, . . . , pl−1 and Pl, . . . , Pk−1 each repeat
the vertex pl−1 if l < k. Now let us take a look at the matrix. This consists of subformulas
that state for each two consecutive vertices in the path that they are either equal or that
there is an edge between them. Since the variables have been selected as described so that
they represent a path of length ≤ k between v and u and, if necessary, the last vertex of the
path (before u) is repeated, all subformulas and thus also their conjunction are satisfied.

Let us now assume that SRk(G) is true. Then the existential player has a winning strategy.
Due to the construction of SRk(G), this means no more than that the existential player can
find a vertex v ∈ V (and assign the P0 variables accordingly), so that for each vertex u ∈ V

that can be chosen by the universal player, there exists a sequence p1, . . . , pk−1 of vertices
that, apart from possible repetitions, represent a path between v and u. Obviously, then,
there is a path of length at most k between v and u, namely the sequence just mentioned
excluding the repetitions. Then, as desired, v is a k-center of G and thus G has radius at
most k. ◀

4.2 Constructing a Critical Graph Family
To show hardness of the SR() formulas, we need a family of directed graphs which can be
succinctly represented by small circuits and whose instances do not have radius at most k,
but a lot of vertices, which are almost k-centers (this is what we called a critical family in
Figure 1). This should translate to large strategy size resp. cost of the formulas, which allows
us to show hardness via Theorem 2. To better describe the graphs and our requirements for
them, we define the concept of an almost k-center.

▶ Definition 7 (almost-k-center, corruptor). We call a vertex v ∈ V an almost-k-center of
G = (V,E), if there is a vertex u ∈ V, u ̸= v which is k-isolated from v, but any vertex in
V \ {u, v} is k-reachable from v. We call u the corruptor of v.

Note that (according to the definition of Succinct k-Radius) we actually consider
directed graphs. In the following we will construct a family of undirected graphs, all
previously defined concepts are easily transferable. To finally obtain undirected graphs, all
edges can easily be realised in both directions.

The idea is to use chains of length k + 1 (i.e. they consist of k + 2 vertices each), such
that the last vertex of a chain is not k-reachable from the first one (and is thus its corruptor).
Now, to make the first vertices almost-k-centers, we need to combine the chains such that
the last vertices of other chains are k-reachable. This can be done via connections, which, in
a sense, skip a vertex. We realise this by connecting the first vertex of a chain with the third
vertex of each other chain. The resulting graph Gk

n is shown in Figure 3.
The next claim is easy to verify with this intuition:

▶ Lemma 8. The graph Gk
n constructed as described above has radius > k and n almost-k-

centers with pairwise different corruptors for n ≥ 2, k > 2.

Proof. It is easy to see that these graphs have radius > k if you look at Figure 4. Let’s
consider an arbitrary chain, say, with index i. From the first vertex v1

i , the last vertex vk+2
i

is not k-reachable. From any other vertex va
i , a ̸= 1, the last vertex vk+2

j , j ̸= i of any
other chain is not k-reachable. This is because every path from a vertex va

i to vk+2
j must

contain the path v3
j v

4
j . . . v

k+2
j , which already has length k − 1. Within the chain with index

i, however, v3
j is only incident with v1

i and can therefore only be reached from there with
just one step. At least two steps are required from every other vertex va

i , which results in a

8 Computationally Hard Problems Are Hard for QBF Proof Systems Too

v1
1

v1
2

v1
n

v2
1

v2
2

v2
n

v3
1

v3
2

v3
n

v4
1

v4
2

v4
n

v5
1

v5
2

v5
n

vk+2
1

vk+2
2

vk+2
n

. . .

. . .

. . .

...

any v1
i ∈ V 1 is connected to any v3

j ∈ V 3 with j ̸= i

n
C

ha
in

s
of

le
ng

th
k

+
1

Figure 3 Graph Gk
n with radius > k and n almost-k-centers v1

i with corresponding corruptors
vk+2

i . Note that the subgraph induced by V 1 = {v1
i | i ∈ [n]} and V 3 = {v3

i | i ∈ [n]} is almost a
complete bipartite graph K{n,n}, missing only one edge {v1

i , v
3
i } per vertex.

v1
i

v1
j

v2
i

v2
j

v3
i

v3
j

v4
i

v4
j

v5
i

v5
j

vk+2
i

vk+2
j

. . .

. . .

...

Figure 4 The graphs Gk
n have radius > k for n ≥ 2, k > 2. The green vertex v1

i needs a path of
length k + 1 to reach the green circled vertex vk+2

i . All blue vertices v2
i , . . . , v

k+2
i require paths of

length > k to reach the blue circled vertex vk+2
j (i, j are arbitrary with i ̸= j).

path of length > k. As a result, no vertex of the chain with index i is a k-centre of Gk
n - and

since i was chosen arbitrarily, there is no such k-centre in Gk
n, which must therefore have

radius > k.
However, it is also very easy to see that every first vertex v1

i of a chain (i ∈ [n]) is an
almost k-centre. This is because, apart from the last one, every vertex in the chain with
index i can obviously be reached in at most k steps. The same applies to all vertices in
chains with other indices j ̸= i. Here, the first three vertices v1

j to v3
j can be reached in a

maximum of 3 steps. For va
j with a > 3, the path from v1

i is always one step shorter than
the path from v1

j , using the shortcut between v1
i and v3

j . This leads to paths of length at
most k from v1

i to each vertex in a chain with index j ̸= i. Thus, for n ≥ 2, k > 2, Gk
n has n

almost-k-centers.
It remains to be shown that the corruptors of these almost-k-centres are pairwise different.

This is very easy to see, as the last vertex of a chain is the corruptor of the first vertex of
the same chain. ◀

The constructed graphs have |V | = (k + 2) · n ∈ O(n) vertices and |E| = (k + 1) · n+ n ·
(n− 1) = n2 + kn ∈ O(n2) edges (since k is a constant).

As we want to use the technique from Theorem 2, it is important that the graphs can be
represented succinctly by circuits. We will specify small circuits of size O(logn) that receive
two vertices as input and determine the (non-)existence of an edge between these vertices.
Note that the circuits include the above-mentioned step of realising each undirected edge in
both directions, thus representing directed graphs as desired.

A. Schleitzer, O. Beyersdorff 9

Output

j′ = j + 1

i = i′

j = j′ + 1

j = 1

j′ = 3

i ̸= i′

j = 3

j′ = 1

bi
n(

i)
bi

n(
i′)

bi
n(

j
)

bi
n(

j
′)

Input

Indicator Nodes

ed
ge

s
w

it
hi

n
a

ch
ai

n
ed

ge
s

be
tw

ee
n

V
1

an
d

V
3

Figure 5 Sketch of a Boolean circuit that calculates whether or not an edge exists between two
input vertices using the indicator nodes presented. i, i′ are indices of chains, j, j′ indices within a
chain.

▶ Lemma 9. The family of Gk
n graphs as described in this section can be represented by

circuits of logarithmic size.

Proof. We have log(n · (k + 2)) bits available for the encoding of a single vertex. As the
vertices in our graphs are arranged in a grid (see Figure 3), we encode the coordinates i and
j for vj

i (this is an easy task because i ∈ [n], j ∈ [k+ 2], log(n · (k+ 2)) = log(n) + log(k+ 2)).
For input i, j, i′, j′, the circuit must now provide indicator nodes for the following situations:

• j = 1, j′ = 1, • j = 3, j′ = 3,
• i = i′, i ̸= i′ • j′ = j + 1, j = j′ + 1.

So overall we need a binary incrementer, testing for equality (between two n-bit numbers
as well as between an n-bit number and a constant) and testing for inequality (between
two n-bit numbers). Any of these calculations can be performed in linear size (in the input
length):

Incrementing can be done by a chain of log(n) halfadders (each consisting of two gates).
Testing for equality can be done bitwise with negated XOR-gates (XNOR). The bit-by-bit
results must then be aggregated in a tree-like circuit of depth ⌈log log(n)⌉ consisting of
and-gates (which adds < logn gates to the subcircuit).
Testing for inequality can be achieved simply by negating the result of a circuit that tests
for equality.

Using these indicator nodes, we can now easily construct circuits that output 1 if there is
an edge between the input vertices and 0 otherwise (see Figure 5). These circuits obviously
have size O(logn) as desired. ◀

4.3 Hardness of the QBFs for QU-Res
The number of almost-k-centers and their pairwise different corruptors in Gk

n as stated in
Lemma 8 together with Lemma 9 imply that the formulas constructed from this graph family
have exponential cost:

▶ Theorem 10. cost(SRk(Gk
n)) ≥ n for n ≥ 2, k > 2.

10 Computationally Hard Problems Are Hard for QBF Proof Systems Too

Proof. Let Gk
n and SRk(Gk

n) be constructed according to the descriptions in Sections 4.2 and
4.1. Then SRk(Gk

n) has size O(logn) because Gk
n can be represented by circuits of logarithmic

size according to Lemma 9. By Lemma 8, Gk
n has n almost-k-centers with pairwise different

corruptors. A winning strategy for the universal player must take all these corruptors into
account, as the existential player can specify the corresponding almost-k-centers in his moves
for the first existential block. SRk(Gk

n) therefore has cost ≥ n, which is exponential in the
size of the formula. ◀

From Theorems 2 and 10 we infer:

▶ Corollary 11. SRk(Gk
n) require QU-Res proofs of size at least 2n.

5 k-Clique Colouring

For our next problem, we will deal with cliques in graphs as well as with special colourings.
Let us first introduce some definitions concerning different types of colourings that will be
important in this section.

▶ Definition 12 ((proper) (k-)graph-colouring, (k-)clique-colouring). A graph-colouring c :
V → C colours the vertices of a graph G = (V,E). It is called proper if for any e = (u, v) ∈ E,
u ≠ v the vertices u, v are coloured differently, i.e. c(u) ̸= c(v). A k-graph-colouring uses at
most k colours, thus |c(V)| ≤ k. A graph G is k-colourable if it has a proper k-colouring.

A (k-)clique-colouring of G is a (k-)graph-colouring of G such that for any maximal
clique C ⊆ V there are two vertices u, v with {u, v} ⊆ C and c(u) ̸= c(v) (i.e. there are no
monochromatic maximal cliques).

We can now define the problem of interest:

▶ Definition 13 (k-Clique Colouring [31]). Given a graph G = (V,E) and an integer k,
k-Clique Colouring asks, whether there is a k-clique-colouring for G.

This problem is Σp
2-complete for any k ≥ 2 [31].

5.1 QBF Encodings of k-Clique Colouring

The QBFs we will construct from this question shall express the following process: The
existential player chooses a k-colouring of the vertices. The universal player then selects a
(maximal) clique of the graph. Finally, the existential player selects two vertices from the
clique with different colours. If the existential player has a winning strategy, the graph is
k-clique-colourable and the QBF is true. If, on the other hand, the universal player has a
winning strategy (i.e. he finds a monochromatic maximum clique for each colouring), the
graph is not k-clique-colourable and the QBF is false.

To realise this, we first introduce a few variables. We assume G to have vertex set
V = {v1, . . . , vn}.

bij , i ∈ [n], j ∈ [k]: vi is coloured with j.
ci, i ∈ [n]: vi is contained in the considered clique.
ti, i ∈ [n]: ti is chosen as witness for non-monochromaticity.

It is immediately clear that this enumeration already anticipates the division of the
variables into the quantifier blocks: The prefix will be ∃B∀C∃T , where B = {bij | i ∈ [n], j ∈
[k]}, C = {ci | i ∈ [n]}, T = {ti, i ∈ [n]}.

We divide the construction of the matrix into individual sub-statements in order to
increase clarity:

A. Schleitzer, O. Beyersdorff 11

1 B represents a k-colouring.
2 C represents a clique (we identify C with this clique as well).
3 C is maximal.
4 The vertices selected by T are in C.
5 There are at most two vertices selected by T .
6 The vertices selected by T are coloured differently.

The exact formulas that express the statements 1 - 6 are listed in the following
1 B represents a k-colouring. Therefore, we must ensure that each vertex has at least and

at most (i.e. exactly) one colour:

1 ≡

 ∧
i∈[n]

bi1 ∨ · · · ∨ bik

 ∧

∧

i∈[n]
j,j′∈[k]

j ̸=j′

bij ∨ bij′

 .

| 1 | ∈ O(k · n+ 2k2 · n) = O(k2 · n).
2 C represents a clique. It is sufficient to ensure that for each edge not in E there is an

incident vertex not in C:

2 ≡
∧

{vi,vj }/∈E

ci ∨ cj .

| 2 | ∈ O(2n2) = O(n2).
3 C is maximal. This means that adding another vertex from V violates the clique property

in any case. In other words, for every vi /∈ C there is a vj ∈ C with {vi, vj} /∈ E:

3 ≡
∧

i∈[n]

ci →
∨

j∈[n]
j ̸=i

{vi,vj }/∈E

cj

 .

| 3 | ∈ O(n · (1 + n)) = O(n2).
4 The vertices selected by T are in C.

4 ≡
∧
i∈n

ti → ci.

| 4 | ∈ O(2n) = O(n).
5 There are at most two vertices selected by T .

5 ≡
∧

i,j,l∈[n]
i ̸=j ̸=l ̸=i

ti ∨ tj ∨ tl.

| 5 | ∈ O(3n3) = O(n3).
6 The vertices selected by T are coloured differently.

6 ≡
∧

i,j∈[n]
l∈[k]

(ti ∧ tj) → (bil ∨ bjl).

| 6 | ∈ O(4k · n2) = O(k · n2).
Thus, from a graph G = (V,E) with |V | = n and a number k of colours, we obtain a formula
CCk(G) = ∃B∀C∃T · 1 ∧ [(2 ∧ 3) → (4 ∧ 5 ∧ 6)] whose size is cubic in n.

12 Computationally Hard Problems Are Hard for QBF Proof Systems Too

u

u′

v v′

w

(a)
(b)

Figure 6 (a) Grötzsch graph, the smallest non 3-colourable graph and (b) how to build an
independent set of size 3 (marked red) whose vertices must be coloured pairwise differently in any
3-Clique-Colouring. We call (b) the Gips

3 -graph.

5.2 Constructing a Critical Graph Family
To find a graph family that allows us to assess the k-Clique Colouring formulas in terms
of proof complexity using Theorem 2, let us examine the relationship between k-colourability
and k-clique-colourability: Obviously, k-colourability coincides with k-clique-colourability if
we consider triangle-free graphs (since maximal cliques in triangle-free graphs are always two
vertices connected by an edge or single, isolated vertices). A triangle-free graph that is not
k-colourable is therefore also not k-clique-colourable. The smallest interesting example of
such graphs is the Grötzsch graph ([32, 18]; see Figure 6). The construction can be extended
arbitrarily for k > 3 (as Mycielsky graphs [32]). However, we will just use the case k = 3.

For our purposes, we do not just need a single graph that is not 3-clique-colourable, but a
whole family. In addition, it should be possible to force the universal player to select certain
cliques by skilful moves of the existential player (selection of special colourings).

▶ Definition 14 (k-colour-selectability). We call a maximal clique C ⊆ V within a graph
G = (V,E) k-colour-selectable, if we can find a k-colouring of V , which colours C monochro-
matically, but any other maximal clique is not monochromatic.

We need exponentially many 3-colour-selectable cliques in our graphs. To generate such
graphs inductively, we use the following idea: Given a non-3-clique-colourable graph with
m 3-colour-selectable cliques. How can we modify the graph by adding a constant number of
vertices so that the new graph has, for example, 3m 3-colour-selectable cliques? The idea is to
add three vertices which build an independent set, but must be coloured pairwise differently
in each clique colouring. If we then connect each vertex of the original graph to each vertex
of the independent set, we get three new (maximal) cliques from each old (maximal) clique –
and in the case of a monochromatic clique, exactly one of the three resulting new cliques
must be monochromatic again.

Conveniently, the Grötzsch graph is useful to us in this construction in several ways: On
the one hand, it serves as the start of the induction, as it cannot be 3-clique-coloured, but
the result after removing any edge can (which means that any edge is 3-colour-selectable,
see Figure 7 for visualization). On the other hand, we use it to construct the three vertices

A. Schleitzer, O. Beyersdorff 13

Figure 7 Grötzsch graph colourings violating the colouring property with exactly one monochro-
matic edge (marked red) each. Since the graph is highly symmetric, all other edges are covered by
isomorphism. Note that the colourings shown are not unique - there are others with this property.

that must necessarily be coloured differently. We reach this with the graph Gips
3 , which

contains an independent set of size 3 whose vertices must be colored pairwise differently in
each 3-clique coloring due to the special structure of the graph. In the following, we will
describe how Gips

3 can be created on the basis of a Grötzsch graph. This is quite simple
(please also note Figure 6(b) for visualization):

A Grötzsch graph in which an arbitrary edge {u, u′} has been removed is 3-clique-
colourable.
Each 3-clique colouring will colour the two vertices u, u′ incident with the removed edge
identically (otherwise, the Grötzsch graph would be 3-clique-colourable).
If there is a path u− v − w − u′ of length three between these two vertices, then the two
additional vertices v, w in the path must be coloured with the two remaining colours (we
are still in a triangle-free graph, so every edge is a maximum clique).
By attaching another Grötzsch graph to one of these two path vertices, w.l.o.g. to v, in
which an edge {v, v′} incident with v has been removed, we force v, v′ to be coloured
identically.
If we now look at the vertices u, v′, w, they build an independent set but they must still
be coloured pairwise differently.

Let us take a look at the inductive construction of Gn = (Vn, En). For n = 1 we choose
Gn = G1 to be the Grötzsch graph, which has 11 vertices and 20 edges. Each of these edges
is 3-colour-selectable, so we have m = 20 3-colour-selectable cliques. We generate Gn+1 as
follows (see also Figure 8):

Take Gn and add Gips
3 shown in Figure 6(b) (You may need to rename vertices of Gn to

avoid duplication).
Connect each vertex from Gn with each vertex from the independent set {u, v′, w} in
Gips

3 .
The result is Gn+1.

Note that the maximal cliques resulting from the connection of Gn and Gips
3 are n+ 2-cliques,

while the maximal cliques inside Gips
3 (as a subgraph of Gn+1) are still edges. Figure 8 shows

the inductive construction of the graphs Gn. For better understanding, the smallest case
(construction of G2 from G1) is illustrated in Figure 9.

14 Computationally Hard Problems Are Hard for QBF Proof Systems Too

w
u v′

u′ v

Gn

G
ip

s
3

G
n

+
1

Figure 8 From Gn to Gn+1. The double red edges indicate that all vertices in Gn are adjacent
with u, v′ and w.

The number of vertices of these graphs is linear, the number of edges quadratic in n:

|V1| = 11
|Vn| = |Vn−1| + 23 for n > 1

= 11 + (n− 1) · 23
= 23n− 12
∈ O(n) and

|E1| = 20
|En| = |En−1| + 41 + 3 · |Vn−1| for n > 1

= |En−1| + 41 + 3 · (23 · (n− 1) − 12)
= |En−1| + 69n− 64

= 1
2(69n2 − 59n+ 30)

∈ O(n2)

for n ∈ N.
The following statement is shown by induction, working along the composition of the

graphs:

▶ Lemma 15. The graph Gn constructed as described above has at least 3n−1 · 20 ∈ Ω(3n) 3-
colour-selectable cliques and is not 3-clique-colourable.

Proof. We will show this by induction over n. For n = 1 we look at the Grötzsch graph. As
mentioned above, it is not 3-clique-colourable and each of its 20 edges is 3-colour-selectable.

Now suppose we have a proper 3-clique-coloring for Gn+1. Among other things, such
a colouring must be a proper 3-clique colouring for Gips

3 , since this is a subgraph of Gn+1
(and all maximal cliques of this subgraph are also maximal cliques in Gn+1). We have
already considered above that u, v′, w must then be coloured with three different colours.
However, every vertex of Gn is adjacent to every vertex in u, v′, w, but the vertices in u, v′, w

build an independent set. This means that each maximal clique from Gn forms three new
maximal cliques in Gn+1, each adding one vertex from {u, v′, w}. However, this means that
the colouring must not colour any maximal clique in Gn monochromatically - otherwise one
of the three corresponding maximal cliques in Gn+1 would also be monochromatic, which
contradicts a proper 3-clique colouring. In turn, the restriction of the colouring to the vertices
of Gn is a correct 3-clique colouring for Gn, which contradicts the induction assumption.

A. Schleitzer, O. Beyersdorff 15

w

u

v′

u′

v

G1 Gips
3

G2

Figure 9 From G1 to G2.

Let us now consider the number c(n+1) of 3-colour-selectable cliques in Gn+1. Obviously,
each 3-colour-selectable clique in Gn becomes three 3-colour-selectable cliques in Gn+1 -
because we are completely free in the exact assignment of the colours to the vertices {u, v′, w},
i.e. we find suitable 3-clique colourings of Gips

3 in each case. So overall we have

c(1) = 20 (the edges of the Grötzsch graph)

c(n) = 3 · c(n− 1) (because each maximal clique

= 3n−1 · 20 is tripled)

∈ Ω(3n)

as desired. ◀

5.3 Hardness of the QBFs for QU-Res
Since any 3-colour-selectable clique must be part of any winning strategy for the univer-
sal player, their exponential number (Lemma 15) immediately implies that the formulas
constructed from Gn have exponential cost:

▶ Theorem 16. cost(CC3(Gn)) ≥ 20 · 3n−1 for n ∈ N.

Proof. Let Gn be a graph constructed according to the descriptions in Section 5.2 and
CC3(Gn) be constructed as described in Section 5.1. Then according to Lemma 15, Gn has
20 · 3n−1 3-colour-selectable cliques. This means (as the formula just describes the problem

16 Computationally Hard Problems Are Hard for QBF Proof Systems Too

of 3-clique-colouring), that any of them must be part of a winning strategy for the universal
player. CC3(Gn) therefore has cost ≥ 3n−1 · 20. ◀

From Theorem 16 and Theorem 2 we obtain:

▶ Corollary 17. CC3(Gn) require proofs of exponential size in QU-Res.

The construction is also possible for more colours: The graphs Gips
k become larger for

k > 3, but retain constant size. The Mycielsky graphs then serve as starting points of the
construction instead of the Grötzsch graph.

6 ALL-EQUAL∃∀3SAT

Finally, let us analyse a problem from logic:

▶ Definition 18 (ALL-EQUAL∃∀3SAT). Given a 3-CNF formula φ(X,Y), where (X,Y) is a
partition of vars(φ), ALL-EQUAL∃∀3SAT asks, whether there is an assignment to the variables
in X such that for each assignment to the variables in Y there is at least one clause that
contains only true or only false literals.

ALL-EQUAL∃∀3SAT is Σp
2-complete, since it is the complement of NOT-ALL-EQUAL∀∃3SAT [21]

which we know to be Πp
2-complete.

6.1 QBF Encodings of ALL-EQUAL∃∀3SAT

Constructing QBFs from ALL-EQUAL∃∀3SAT is straightforward. The X-variables form the
first existential block and the Y -variables the following universal block. We add logn selector
variables C = {c1, . . . , clog n} in a second existential block to select a clause.

The matrix is intended to express: If clause Ci ∈ φ(X,Y) was selected using the C-
variables, all literals in Ci should be identically true or false. Thus, we need the following
subformulas:

χi to express, that clause Ci ∈ φ(X,Y) was selected using the C-variables and
ψi to express, that all literals in Ci are identically true or false.

Now, given a 3-CNF φ(X,Y) =
∧n

i=1 Ci with Ci = (li1, li2, li3), the matrix can be written as a
simple conjunction of implications:

AE(φ(X,Y)) = ∃X∀Y ∃C ·
∧

i∈[n]

χi → ψi, (1)

We replace the implication with a disjunction, since we finally aim to obtain a CNF:∧
i∈[n]

χi → ψi ≡
n∧

i=1

χi ∨ ψi.

Let us now take a closer look at the subformulas. ψi corresponds to a DNF: (l1 ∧ l2 ∧
l3) ∨ (l1 ∧ l2 ∧ l3). This can easily be converted into a CNF:

ψi = (l1 ∧ l2 ∧ l3) ∨ (l1 ∧ l2 ∧ l3)
≡ {(l1, l3), (l1, l2), (l1, l2), (l1, l3)}.

Let us now focus on the selection mechanism. The clause Ci should be considered selected
if the C variables in the order specified by the prefix result in the binary representation [i]2

A. Schleitzer, O. Beyersdorff 17

of i. It is quite easy to express this fact as a term χi of length logn (for i ∈ [n]), where
[i]2{k} is the kth bit of [i]2:

χi ≡
∧

k∈log i
[i]2{k}=1

ck ∧
∧

k∈log i
[i]2{k}=0

ck.

χi is the premise of implication (1). When converted into a disjunction, it is therefore
negated and thus becomes a clause.

χi ≡
∨

k∈log i
[i]2{k}=1

ck ∨
∨

k∈log i
[i]2{k}=0

ck.

This gives us a CNF equivalent to χi ∨ ψi with 4 clauses of length logn+ 2 for each i ∈ [n].
Now we can assemble the QBF, using a conjunction over all i ∈ [n] to combine the matrix.

AE(φ(X,Y)) = ∃X∀Y ∃C ·
∧

i∈[n]

[χi → ψi]

≡∃X∀Y ∃C ·
∧

i∈[n]

[χi ∨ ψi]

≡∃X∀Y ∃C·∧
i∈[n]

Ci=(l1,l2,l3)

[
χi ∨ [(l1, l2), (l1, l3), (l1, l2), (l1, l3)]

]
≡∃X∀Y ∃C·∧

i∈[n]
Ci=(l1,l2,l3)

[(
χi, l1, l2

)
∧

(
χi, l1, l3

)
∧

(
χi, l1, l2

)
∧

(
χi, l1, l3

)]
,

where the occurrence of χi within a clause merely stands for the union of χi with the
surrounding clause.

6.2 Constructing a Critical Formula Family
It is quite simple to construct corresponding (propositional) formulas that allow us to prove
hardness using Theorem 2. We therefore define φn(Xn, Yn) for n ∈ N as following: Let
Xn = {xa

i , x
b
i | i ∈ [n]} and Yn = {yi | i ∈ [n]}. Let Ci = {xa

i , x
b
i , yi} for i ∈ [n] and

φn(Xn, Yn) =
∧

i∈[n]

Ci.

The special feature of these formulas is that certain assignments from ⟨Xn⟩ force certain
assignments from ⟨Yn⟩ to ensure that each clause contains both true and false literals. We
capture this in a definition:

▶ Definition 19 (non-monotonicity-enforceable assignments). We call an assignment β ∈ ⟨Yn⟩
non-monotonicity-enforceable5 with respect to φn(Xn, Yn), iff there is an assignment α ∈ ⟨Xn⟩
such that α together with β results in every clause containing both true and false literals, but
α combined with any assignment from ⟨Yn⟩ \ {β} results in at least one clause containing
only true or only false literals.

5 Please note that this monotonicity concept differs from the one generally used for clauses, where the
polarity of the literals (and not their assignment) is considered.

18 Computationally Hard Problems Are Hard for QBF Proof Systems Too

It is easy to see that any assignment β ∈ ⟨Yn⟩ is enforceable by assigning α(xa
i) = α(xb

i) =
β(yi) for i ∈ [n]:

▶ Lemma 20. φn(Xn, Yn) has 2n non-monotonicity-enforceable assignments to the variables
in Yn.

Proof. We consider any i ∈ [n] and some assignment α ∈ ⟨Xn⟩ which assigns xa
i and

xb
i identically. Then, obviously, the only possibility to assign Yn in compliance with the

non-monotonicity condition is to assign yi precisely as the xi-variables (because otherwise
Ci would only contain true or false literals). There are 2n different assignments in ⟨Xn⟩,
which assign xa

i and xb
i identically for every i ∈ [n]. Thus, there are 2n non-monotonicity

enforceable assignments to Yn. ◀

6.3 Hardness of the QBFs for QU-Res
The findings from Lemma 20 immediately lead to the conclusion, that AE(φn(Xn, Yn)) has
high cost, since any non-monotonicity-enforceable assignment needs to be part of a winning
strategy for the universal player:

▶ Theorem 21. cost(AE(φn(Xn, Yn))) ≥ 2n.

Proof. Let φn(Xn, Yn) and AE(φn(Xn, Yn)) be constructed according to the descriptions
in Section 6. Then according to Lemma 20, there are 2n non-monotonicity-enforceable
assignments to Yn. This means (as the QBF just describes the problem of finding assignments
which ensure non-monotonicity), that any of them must be part of a winning strategy for
the universal player. AE(φn(Xn, Yn)) therefore has cost ≥ 2n. ◀

From Theorem 21 and Theorem 2 we infer:

▶ Corollary 22. AE(φn(Xn, Yn)) require proofs of exponential size in QU-Res.

7 Discussion

The contribution of the article lies less in the concrete formulas presented, but rather in the
demonstration of a general approach: Generating hard QBFs from difficult mathematical
problems. We know a lot of hard mathematical problems and quantifier alternations naturally
appear in many of them. The potential of our method therefore appears to be large and it
should be possible to construct numerous new hard QBF families. In particular, it becomes
clear that for the hardness of the formulas, a family of the underlying mathematical structures
must be found, which has special properties in each case. If, on the other hand, families
that do not completely fulfil these conditions (or even random families) are used for the
construction, formulas may be created that could be well suited as benchmarks for solver
competitions. Also, it appears interesting to generate formulas from such mathematical
structures that make them just not easy, i.e. intermediate between short (polynomial-size)
proofs and exponential hardness. These could lead to interesting test cases for different
solvers.

The special feature of our formulas lies in their naturalness – the selection of mathematical
problems from the polynomial hierarchy results in very natural quantifier alternations in
the constructed QBFs. The close link to mathematical problems is also advantageous for
hardness proofs, as the underlying structures can be used to argue for high strategy size
without having to analyse syntactic details of the sometimes quite complex QBFs.

REFERENCES 19

References

1 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms
with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.

2 Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nord-
ström, and Alexander A. Razborov. Clique is hard on average for regular resolution. J.
ACM, 68(4):23:1–23:26, 2021.

3 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.
Formal Methods in System Design, 41(1):45–65, 2012.

4 P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In Proc.
37th IEEE Symposium on the Foundations of Computer Science, pages 274–281. IEEE
Computer Society Press, 1996.

5 Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR), 22:319–351,
2004.

6 Olaf Beyersdorff and Benjamin Böhm. Understanding the Relative Strength of QBF
CDCL Solvers and QBF Resolution. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 12:1–12:20, 2021.

7 Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander Razborov. Parameterized
bounded-depth Frege is not optimal. ACM Transactions on Computation Theory, 4(3),
2012.

8 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity of DPLL
search procedures. ACM Transactions on Computational Logic, 14(3):20:1–20:21, 2013.

9 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Understanding cutting
planes for QBFs. Inf. Comput., 262:141–161, 2018.

10 Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, cost, and capacity: A semantic
technique for hard random QBFs. Logical Methods in Computer Science, 15(1), 2019.

11 Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. New resolution-based QBF calculi
and their proof complexity. ACM Transactions on Computation Theory, 11(4):26:1–26:42,
2019.

12 Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Hardness characterisations
and size-width lower bounds for QBF resolution. In Proc. ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 209–223. ACM, 2020.

13 Olaf Beyersdorff, Luke Hinde, and Ján Pich. Reasons for hardness in QBF proof systems.
ACM Transactions on Computation Theory, 12(2), 2020.

14 Olaf Beyersdorff, Mikolás Janota, Florian Lonsing, and Martina Seidl. Quantified boolean
formulas. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, pages
1177–1221. IOS Press, 2021.

15 Olaf Beyersdorff, Luca Pulina, Martina Seidl, and Ankit Shukla. Qbffam: A tool for
generating QBF families from proof complexity. In Chu-Min Li and Felip Manyà, editors,
Theory and Applications of Satisfiability Testing (SAT), volume 12831 of Lecture Notes
in Computer Science, pages 21–29. Springer, 2021.

16 Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the
relative complexity of resolution refinements and cutting planes proof systems. SIAM
J. Comput., 30(5):1462–1484, 2000. doi: 10.1137/S0097539799352474. URL http:
//dx.doi.org/10.1137/S0097539799352474.

http://dx.doi.org/10.1137/S0097539799352474
http://dx.doi.org/10.1137/S0097539799352474

20 REFERENCES

17 Sam Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, pages 233–350. IOS Press, 2021.

18 Vašek Chvátal. The minimality of the mycielski graph. Graphs and Combinatorics, pages
243–246, 1974.

19 Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cam-
bridge University Press, 2010.

20 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

21 Thomas Eiter and Georg Gottlob. Complexity results for some eigenvector problems.
International Journal of Computer Mathematics, 76(1):59–74, 2000.

22 Aviezri S Fraenkel and Elisheva Goldschmidt. PSPACE-hardness of some combinatorial
games. Journal of Combinatorial Theory, Series A, 46(1):21–38, 1987.

23 Amin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

24 Yifan He, Abdallah Saffidine, and Michael Thielscher. Solving two-player games with
QBF solvers in general game playing. In Mehdi Dastani, Jaime Simão Sichman, Natasha
Alechina, and Virginia Dignum, editors, Proceedings of the 23rd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 807–815. International
Foundation for Autonomous Agents and Multiagent Systems / ACM, 2024.

25 Edith Hemaspaandra, Lane A. Hemaspaandra, Till Tantau, and Osamu Watanabe. On
the complexity of kings. Theor. Comput. Sci., 411(4-5):783–798, 2010.

26 Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-
resolution. Theor. Comput. Sci., 577:25–42, 2015.

27 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

28 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60
of Encyclopedia of Mathematics and Its Applications. Cambridge University Press,
Cambridge, 1995.

29 Jan Krajíček. Proof complexity, volume 170 of Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, 2019.

30 Florian Lonsing, Uwe Egly, and Allen Van Gelder. Efficient clause learning for quantified
Boolean formulas via QBF pseudo unit propagation. In Proc. International Conference
on Theory and Applications of Satisfiability Testing (SAT), pages 100–115, 2013.

31 Dániel Marx. Complexity of clique coloring and related problems. Theor. Comput. Sci.,
412(29):3487–3500, 2011.

32 Jan Mycielski. Sur le coloriage des graphs. In Colloquium Mathematicae, volume 3, pages
161–162, 1955.

33 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers
as resolution engines. Artif. Intell., 175(2):512–525, 2011.

34 Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hierarchy:
A compendium. SIGACT news, 33(3):32–49, 2002.

35 Agnes Schleitzer and Olaf Beyersdorff. Classes of hard formulas for QBF resolution. J.
Artif. Intell. Res., 77:1455–1487, 2023.

36 Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic, 13
(4):417–481, 2007.

37 Irfansha Shaik, Valentin Mayer-Eichberger, Jaco van de Pol, and Abdallah Saffidine.
Implicit QBF encodings for positional games. In Michael Hartisch, Chu-Hsuan Hsueh,

REFERENCES 21

and Jonathan Schaeffer, editors, Advances in Computer Games - 18th International
Conference, ACG 2023, Revised Selected Papers, volume 14528 of Lecture Notes in
Computer Science, pages 133–145. Springer, 2023.

38 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.
39 Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula

solving. In Proc. Principles and Practice of Constraint Programming (CP), pages 647–663,
2012.

40 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean
satisfiability solver. In Proc. IEEE/ACM International Conference on Computer-aided
Design (ICCAD), pages 442–449, 2002.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

