
On defining PPT -search problems
and PPT -optimization problems

Roei Tell *

October 24, 2024

Abstract

This note revisits the study of search problems that are solvable in probabilistic
polynomial time. Previously, Goldreich (2011) introduced a class called “BPP-
search”, and studied search-to-decision reductions for problems in this class.

In Goldreich’s original formulation, the definition of what counts as “success-
fully solving” a BPP-search problem is implicit, and this opens the door to mul-
tiple possible interpretations. We suggest two approaches:

1. We propose our preferred definition for the notion of solving BPP-search
problems. The resulting class of search problems is useful, since it captures
natural problems of interest, and since it has valuable technical properties.
However, the a-priori rationale for studying the class is not fully satisfying.

2. We propose an alternative formulation of the class of search problems solv-
able in ppt, which is focused on optimization (i.e., finding a solution of best
quality). The resulting class has a clearer meaning, and it turns out to be
computationally equivalent to the class resulting from our aforementioned
definition of BPP-search (under deterministic polynomial-time reductions).

The optimization-based definition seems cleaner and more appealing. How-
ever, since the two classes above are computationally equivalent, it can be useful
to use whichever definition is technically more convenient in the relevant context.

On the companion paper. This paper presents my perspective on a joint project
conducted together with Oded Goldreich, whereas Oded’s perspective is pre-
sented in the companion paper [Gol24]. The technical contents of both papers has
significant overlap, and both papers propose the same definition that is referred
to in the current text as PPT -optimization (i.e., Definition 5).

*The University of Toronto, Department of Computer Science. Email: roei@cs.toronto.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 163 (2024)

Contents

1 Introduction 1

2 The definition from [Gol11] and the challenges it presents 2
2.1 Modeling search problems as promise problems 2
2.2 The original definition, and what needs to be explicit in it 2
2.3 Our suggested definition: Solving means weakly solving 3

3 Optimization: An alternative that avoids these shortcomings 5
3.1 The suggested definition of PPT -optimization 5
3.2 Equivalence of PPT -search and PPT -optimization 6
3.3 Properties of PPT -optimization . 8

Appendix A Critiques of some other alternatives 10

Appendix B Deferred proofs 12

i

1 Introduction

This note revisits the study of the class of search problems that are solvable in proba-
bilistic polynomial time, which was introduced by Goldreich [Gol11] as “BPP-search”.
As usual in complexity theory, search problems are arguably more natural than deci-
sion problems, and our focus on the latter is typically justified by a search-to-decision
reduction. Accordingly, a technical result in [Gol11] studied reductions of BPP-search
problems to prBPP (i.e., to decision promise-problems).

The current text is motivated by the observation that the original definition and
result did not fully resolve the issue. Specifically, the notion of successfully solving a
BPP-search problem is addressed there in an implicit way, and this opens the door
to multiple interpretations. Unfortunately, none of the definitions for this notion that
we are aware of seems fully satisfactory: Some definitions yield a class that does not
support a search-to-decision reduction, or that contains infeasible search problems,
whereas other definitions have conceptual shortcomings.

The contribution of this text is to propose two approaches for handling this chal-
lenge. First, we suggest our preferred definition for the notion of successfully solving
BPP-search problems. In Section 2 we present this suggestion, and demonstrate that
the definition yields a useful class of search problems. In particular, we show that the
resulting class captures natural problems of interest, and has several technical proper-
ties we would like such a class to have (e.g., a search-to-decision reduction). We also
point out the conceptual shortcomings of this interpretation.

Secondly, we suggest an alternative formulation for the class of search problems
solvable in ppt, via a definition that is focused on optimization (i.e., on finding a
solution of best quality). This alternative formulation has a clearer meaning, and the
resulting class of problems is computationally equivalent to the class given by our first
approach (i.e., solving any problem from one class reduces in deterministic polynomial
time to solving a problem from the other class). In Section 3 we present this alternative
formulation, the equivalence result, and some technical properties of the class.

Lastly, in Appendix A we discuss other possible formulations, and explain some
of the issues leading us to view these formulations less favorably.

Notation. Throughout the text, we will follow some of the notation and terminology
introduced in the companion paper by Goldreich [Gol24]. In particular, we will refer to
BPP-search problems as “PPT -search” problems, and we will use similar notations
for the new optimization-based formulation that is presented in Section 3.

A quick comparison with the companion paper. The second formulation that we
suggest is identical to the main suggestion in Goldreich’s companion paper [Gol24],
and both texts suggest this formulation as an appealing alternative to the original def-
inition from [Gol11]. However, the first formulation that we suggest is not presented
as an appealing alternative in the companion paper, due to conceptual reasons that
are explained in [Gol24, Section 2.3]. Also, while the technical results underlying the
computational equivalence between the two formulations appear in [Gol24], they are
not interpreted there as yielding an equivalence.

1

2 The definition from [Gol11] and the challenges it presents

Recall that a standard approach for specifying a search problem is to use a relation
R ⊆ {0, 1}∗ × {0, 1}∗, where a pair (x, y) represent an instance x to the problem and
a candidate solution y for the instance x. The fact that (x, y) ∈ R means that y is a
valid solution for x, and the search task is “given x, output y such that (x, y) ∈ R, if it
exists”. For any instance x, we define the set of solutions R(x) = {y : (x, y) ∈ R}.

2.1 Modeling search problems as promise problems

Motivated by the generic appeal of promise problems, and by the desire to present
a more general definition (that would capture more efficiently solvable search prob-
lems), Goldreich [Gol11] suggested considering promise problems in this context. A
first and more standard step is to consider a promise on the instances to the problem,
whose meaning is as usual: Some instances are irrelevant and will never be encoun-
tered (or can be efficiently recognized and discarded). The less standard step was to
also consider a promise on candidate solutions to the problem.

Specifically, in this formulation, a search problem is specified by two sets of instance-
solution pairs Π = (ΠY, ΠN) where ΠY, ΠN ⊆ {0, 1}∗ × {0, 1}∗ and ΠY ∩ΠN = ∅.
Then, any fixed instance x yields a tripartition of the potential solutions y: There are
solutions y ∈ ΠY(x),1 which we think of as good and valid solutions; and solutions
y ∈ ΠN(x), which we think of as bad and invalid solutions; and solutions y “in limbo”
such that y /∈ ΠY(x) ∪ΠN(x), whose meaning is less clear.

Thus, whenever we specify a search problem as a promise problem (i.e., regardless
of whether or not the problem lies in some complexity class), we encounter two re-
lated questions: What is the meaning of the tripartition, and in particular what is the
meaning of the solutions in limbo; and what do we define as solving the problem,
and in particular whether limbo solutions count as valid ones in this context.

Two notions of “solving”. For a search problem Π = (ΠY, ΠN), we say that a search
algorithm strongly solves Π if, when given x such that ΠY(x) ̸= ∅ it outputs y ∈ ΠY(x);
and we say that a search algorithm weakly solves Π if, when given x such that ΠY(x) ̸=
∅ it outputs y satisfying the weaker requirement y /∈ ΠN(x).2

2.2 The original definition, and what needs to be explicit in it

Intuitively, we wish to focus on problems wherein solutions can be both efficiently
found and efficiently recognized, where “efficiently” in this context means probabilis-
tic polynomial time. (Problems in which solutions cannot be efficiently recognized

1Recall that for Π = (ΠY , ΠN) we define ΠY(x) =
{

y : (x, y) ∈ ΠY
}

and ΠN(x) =
{

y : (x, y) ∈ ΠN
}

.
2Indeed, these definitions pose no requirements of the search algorithm (whether it is weak or strong)

when it is given x such that ΠY(x) = ∅. If the decision problem of Π can be solved efficiently (i.e., an
efficient algorithm accepts ΠY and rejects ΠN), then we may assume wlog that any algorithm that weakly
solves Π always outputs either a valid solution (i.e., y /∈ ΠN(x)) or ⊥.

2

may still be interesting, but defining corresponding classes requires more care; see
discussion of “the meaningfulness principle” in [Gol24, Section 3.3].)

Combining the two requirements, we obtain the original definition from [Gol11,
Definition 3.2], to which we will refer as “PPT -search” (following [Gol24]):

Definition 1 (PPT -search, originally called “BPP-search”). We say that Π = (ΠY, ΠN)
is in PPT -search if the following two conditions hold:

1. There is a ppt algorithm V that solves the decision problem of Π (i.e., accepts pairs in
ΠY and rejects pairs in ΠN).

2. There is a ppt algorithm F that, when given x such that ΠY(x) ̸= ∅, satisfies
Prr[F(x, r) ∈ ΠY(x)] ≥ 2/3.

Note that the algorithm in Item (2) of Definition 1 strongly solves the problem;
that is, for a problem to be in PPT -search, we require the existence of an algorithm
strongly solving the problem. However, this definition does not explicitly specify
what is the meaning of the tripartition and of limbo solutions, and in particular does
not specify what do we define as solving the search problem (i.e., weakly solving
or strongly solving). This is important, since a main question we are interested in is
“what is the complexity of solving PPT -search problems” (and specifically, whether
all PPT -search problems are solvable in deterministic polynomial time).

The requirement in Item (2) suggests that solving a PPT -search problem may
be defined as strongly solving. This is a natural interpretation of the intention of
the original paper, and it is the one intended by Goldreich (as indicated in personal
communication). However, the search-to-decision in [Gol11, Theorem 3.5] only yields
an algorithm that weakly solves the problem,3 which suggests another interpretation:
namely, that we may also settle for weakly solving the problem.

2.3 Our suggested definition: Solving means weakly solving

One may try to provide explicit definitions now, although neither option seems ideal
to us. One option is to think of limbo solutions as inadmissible, and only allow search
algorithms that strongly solve the problem. However, in this case it is not clear why
we allow the verification algorithm V in Item (1) of Definition 1 to accept inadmissible
limbo solutions. In fact, since V may accept limbo solutions, some search problems
in the resulting class cannot be solved deterministically in any running time (i.e., this
does not align with our intention of formulating a class wherein solutions can be
verified efficiently, and hence found by brute-force). See Appendix A.1 for details.

Our suggested definition is to think of limbo solutions as adequate, although not
as good as solutions y such that (x, y) ∈ ΠY, and define that solving the problem
means weakly solving it. Note that the requirement in Item (2) is still intact: That is,

3The resulting algorithm is not presented in [Gol11] as weakly solving the problem, but rather as
strongly solving a related problem. Nevertheless, by inspecting the definition of the related problem,
what we obtain is indeed an algorithm that weakly solves the original problem.

3

from this view, solving a problem means finding y of quality that is adequate or better,
but a problem lies within the complexity class defined in Definition 1 only if there is a
ppt algorithm meeting the stricter requirement of finding y of good quality.

The reason for suggesting this definition is that the resulting complexity class is
useful: It captures important search problems that we are interested in, and it has
valuable technical properties that we would like a complexity class to have.

Technical results. To demonstrate the foregoing assertion, let us first present some
natural (and very general) search problems that are in PPT -search. We stress that
the following problems belong to this class regardless of how we define solving (i.e.,
weakly solving or strongly solving). However, if we define solving as weakly solv-
ing, then prBPP = prP implies that these problems can be solved in deterministic
polynomial time (in fact, this is true for all PPT -search problems – see Theorem 3).

Proposition 2 (interesting problems in PPT -search; informal, see Proposition 12). The
following problems all belong to the class outlined in Definition 1:

1. (Estimating the acceptance probability of a circuit.) Given a circuit C : {0, 1}n →
{0, 1} and an accuracy value 1t, estimate Prr[C(r) = 1], where estimations with accu-
racy 1/t or better are good and estimations with accuracy 2/t or worse are bad.

2. (Finding a fooling set for a circuit.) Given a circuit C : {0, 1}n → {0, 1} and an
accuracy value 1t, output a set S ⊆ {0, 1}n such that Prs∈S[C(s) = 1] approximates
Prr∈{0,1}n [C(r) = 1]. Sets S with approximation of 1/t or better are good, sets S with
approximation of 2/t or worse are bad.

3. (Polynomial identity testing.) Given an n-variate arithmetic circuit C over a finite
field F, output x ∈ Kn such that C(x) ̸= 0, where K ⊇ F may be an extension of F.

For all search problems above, if prBPP = prP then there is a deterministic polynomial-
time algorithm that (weakly) solves the problem.

The proof of Proposition 2 appears in Section B. Next, we state some technical
properties of PPT -search, when solving is defined as weakly solving. Importantly,
this class indeed supports a search-to-decision reduction (i.e., all problems in the class
are reducible to prBPP). In addition, the class has a natural (total) complete problem,
supports error-reduction for the search algorithm, and has a time hierarchy result.4

Theorem 3 (technical properties of our interpretation of PPT -search). Consider the
class of PPT -search problems wherein solving the problem means weakly solving. Then,
the following properties hold:

1. (Complete problem.) There is a total PPT -search problem denoted APEP such that
solving any PPT -search problem reduces in deterministic polynomial time to solving

4These properties are not trivial for randomized classes. For context, recall that in the study of decision
problems, a complete problem and a time hierarchy are known for prBPP but not for BPP .

4

APEP. (In fact, APEP is the problem of estimating the acceptance probability of a given
Boolean circuit, mentioned in Proposition 2.)

2. (Search-to-decision.) Solving any PPT -search problem is reducible to prBPP in
deterministic polynomial time.

3. (A form of error-reduction.) For any PPT -search problem and any c ∈ N, there
is a ppt algorithm that solves the problem with success probability 1− 2−nc

. (And this
statement remains true if we change the success probability in Item (2) of Definition 1 to
be 1/poly(n) rather than 2/3.)

4. (Hierarchy.) For every polynomial T(n) ≥ n there is a PPT -search problem that is
solvable in time Õ(T) but not in time T.

The proof of Theorem 3 appears in Section B. In addition, as mentioned in the
introduction, the class of PPT -search problems (when solving is defined as weakly
solving) is computationally equivalent to the optimization-based class of problems
that we propose; see Section 3.2 for details.

Remark 4. Some alternative “promise-problem” formulations of the class of search problems
solvable in ppt satisfy a subset of the properties stated in Theorem 3, but these alternatives
(provably) do not satisfy all of the properties. For further discussion see Appendix A, as well
as the discussion of “Type 2” and “Type 3” problems in [Gol24, Sections 2.1 and 2.2].

The main shortcomings of our suggested definition. When defining solving a PPT -
search problem as weakly solving, the rationale for insisting on the existence of an
algorithm strongly solving the problem in Definition 1 is not clear. One may think of
the resulting complexity class as a subclass of the broader class “all problems weakly
solvable in ppt”, but it is not clear what is the a-priori conceptual reason to focus on
this particular subclass (i.e., aside from the a-posteriori fact that it turns out to be a
useful class, as demonstrated in Proposition 2, Theorem 3 and Section 3.2).

Another issue is that the error-reduction in Item (3) of Theorem 3 is not what we
would ideally want: It starts with an algorithm that strongly solves the problem with
large error, and yields an algorithm that weakly solves the problem with small error.

3 Optimization: An alternative that avoids these shortcomings

As mentioned above, we suggest an alternative definition that avoids the shortcomings
mentioned in Section 2.3, and that is focused on a notion of optimization.

3.1 The suggested definition of PPT -optimization

To motivate the new definition, fix an instance x to a search problem, and consider
the tripartition of potential solutions from Section 2.3 to “good” solutions y ∈ ΠY(x),
“adequate” solutions y /∈ (ΠY(x) ∪ΠN(x)), and “bad” solutions y ∈ ΠN(x). Let us

5

think of each y as assigned a quality value q(x, y) ∈ {1, 1/2, 0}, where 1 and 1/2 and
0 represent the three foregoing cases, respectively. Instead of insisting on a discrete
tripartition, we will consider a smoother assignment of quality values, where each
(x, y) is assigned a real value q(x, y) ∈ [0, 1]. And instead of requiring an algorithm
that solves the promise-problem represented by the tripartition, we will require an
algorithm that (approximately) computes the quality q(x, y) of each (x, y).

This naturally yields a notion of an optimization problem, where each potential
solution is assigned a quality value, and we are interested in finding the solution of
best quality. Since we are interested in problems where quality can only be approx-
imated (rather than computed exactly), we will also allow outputting a solution of
approximately best quality. This yields the following definition:

Definition 5 (PPT -optimization). Let P ⊆ {0, 1}∗ (representing a promise on instances),
and let q : P × {0, 1}∗ → [0, 1]. We say that (P, q) is a PPT -optimization problem if the
following holds:

1. There is a ppt algorithm V that gets input (x, y, 1t) where x ∈ P, and satisfies
Pr[|V(x, y, 1t)− q(x, y)| ≤ 1/t] ≥ 2/3.

2. There is a ppt algorithm F that gets input (x, 1t) where x ∈ P, and satisfies
Pr[q(x, F(x, 1t)) ≥ q(x)− 1/t] ≥ 2/3, where q(x) = maxy {q(x, y)}.

We now explicitly define the notion of solving a PPT -optimization problem:
Given input (x, 1t), one is required to output a solution of quality at least q(x)− 1/t.
Indeed, the requirement in Definition 5 is that there exists a ppt algorithm solving the
problem, and there is now no inconsistency between the notion of solving the problem
and the requirements of the algorithm posed in the definition.

Thus, the formulation of PPT -optimization is more consistent than the formula-
tion of PPT -search, and its meaning is clearer.

Remark 6. The formulation in Definition 5 is almost identical to the main one suggested by
Goldreich [Gol24, Definition 2.4], the only difference being that we allow the promise P on the
instances. This difference seems meaningful when the promise is not efficiently recognizable.5

Also, for clarity, one may choose to enforce an additional condition that all solutions are of
length poly(|x|), although this does not seem technically necessary to us.

3.2 Equivalence of PPT -search and PPT -optimization

We show that the class of problems given in Definition 5 is computationally equiv-
alent to the class given by our interpretation of Definition 1, in the following sense:
Weakly solving any PPT -search problem is reducible in deterministic polynomial

5To see this, consider the naive reduction of any PPT -optimization problem (P, q) with a promise to
total PPT -optimization problem q′, obtained by defining q′ trivially on inputs outside the promise. The
issue is that q′ needs to be efficiently approximable, and this seemingly requires that P will be efficiently
recognizable. (For example, if we try to define q′ using the hypothesized ppt approximation algorithm
V for q, it may be that V “misbehaves” outside the promise and does not allow for defining q′.)

6

time to solving a PPT -optimization problem, and vice versa. This can be viewed as
analogous to the computational equivalence between search and optimization in the
context of NP problems (see, e.g., [Gol08, Section 2.2.2], [Aar16, Section 2.2.1]).

Theorem 7 (PPT -search and PPT -optimization are computationally equivalent). The
following two statements are true:

1. For any PPT -search problem Π there is a PPT -optimization problem (P, q) such that
weakly solving Π reduces in deterministic polynomial time to solving (P, q).

2. For any PPT -optimization problem (P, q) there is a PPT -search problem Π such that
solving q reduces in deterministic polynomial time to weakly solving Π.

Moreover, in both items, the reduction is extremely efficient (i.e., more than just “determin-
istic polynomial time”): In one direction the reduction maps instance x to instance (x, 14), and
in the other direction the reduction maps instance (x, 1t) to (x, 12t).

Before turning to the proof of Theorem 7, let us point out some implications of the
computational equivalence:

• The class PPT -optimization captures a set of problems with essentially the same
complexity as the set of problems captured by PPT -search, so we did not lose
or overshoot when moving from search to optimization.

• Moreover, examining the proof below, there is a close correspondence between
each problem in PPT -search and its reduction target in PPT -optimization, and
vice versa. Thus, the two classes seem to capture very similar sets of problems.

• When trying to bound the complexity of search problems solvable in ppt, we can
equivalently use either formulation (i.e., PPT -search or PPT -optimization),
according to what is technically expedient.

In addition, the equivalence lends further support to our suggestion to define solv-
ing PPT -search problems as weakly solving in Section 2 (since this definition yields
a class that is computationally equivalent to PPT -optimization).

Proof of Theorem 7. For Item (1), let Π = (ΠY, ΠN) and let V, F be the algorithms for
Π from Definition 1. We define P ⊆ {0, 1}∗ as the set of instances x such that ΠY(x) ̸=
∅, and for every x ∈ P and y ∈ {0, 1}∗, we define q(x, y) = min {Pr[V(x, y) = 1], 2/3}.
Indeed, (P, q) is a PPT -optimization problem, since we can approximate q in ppt (i.e.,
by simulating V), and since given x ∈ P we can find in polynomial time a solution y
of quality q(x), whp (i.e., since Prz←F(x)[q(z) = 2/3] ≥ 2/3).6

To reduce (weakly) solving Π to solving (P, q), we map an instance x for Π to
an instance (x, 14) for (P, q). For any algorithm Fq that solves (P, q), we have that
q(x, Fq(x, 14)) ≥ q(x)− 1/4. Hence, for every x such that ΠY(x) ̸= ∅ (meaning that

6Indeed, note that the search algorithm for q gets input (x, 1t) and finds a solution of optimal quality
q(x), rather than of near-optimal quality q(x)− 1/t.

7

q(x) = 2/3), the algorithm Fq(x, 4) outputs z such that Pr[V(x, z)] ≥ q(x, z) ≥ 2/3−
1/4 > 1/2, which implies that z /∈ ΠN(x).

For Item (1), let (P, q) be a PPT -optimization problem, and let V, F be the algo-
rithms from Definition 5. We define a promise-problem Π = (ΠY, ΠN) in which in-
stances are of the form (x, 1t), and ΠY(x, 1t) = {y : q(x, y) ≥ q(x)− 1/t} and ΠN(x, 1t) =
{y : q(x, y) ≤ q(x)− 2/t}.

Let us first argue that Π is a PPT -search problem. We can solve the decision
problem of Π by using both F and V: We first use F(x, 1t2

) to approximate q(x) with
accuracy 1/t2, then use V(x, y, 1t2

) to approximate q(x, y) with accuracy 1/t2, and we
accept (x, y) iff q̃(x, y) ≥ q̃(x)− 3/2t, where q̃ denotes our approximation of q in both
cases. Also, we can solve the search problem of Π using F (since F(x, 1t) outputs z
such that whp q(x, z) ≥ q(x)− 1/t, meaning that z ∈ ΠY(x, 1t)).

The reduction of (P, q) to Π maps an instance (x, 1t) for (P, q) to an instance (x, 12t)
for Π. Any algorithm that (weakly) solves Π finds y /∈ ΠN(x, 12t), meaning that
q(x, y) > q(x)− 2/(2t) = q(x)− 1/t, as required for solving (P, q).

3.3 Properties of PPT -optimization

The class PPT -optimization captures natural problems that we are interested in.
First, the three problems mentioned in Proposition 2 have direct analogues in PPT -
optimization.7 And secondly, any probabilistic polynomial-time FPTAS (i.e., a fully
polynomial-time approximation scheme) for a function taking values in [0, 1] yields a
corresponding PPT -optimization problem; see [Gol24, Theorem 2.6].

In addition, since any PPT -optimization problem is reducible to a PPT -search
problem and vice versa, the class of PPT -optimization problems enjoys valuable tech-
nical properties analogous to the ones mentioned in Theorem 3. That is, for each
property asserted in Theorem 3, an analogous property for PPT -optimization can
be established by reductions to PPT -search and back.8 However, it may be more
informative to present the foregoing properties of PPT -optimization explicitly and
provide direct proofs. Let us do so now:

Theorem 8 (technical properties of PPT -optimization). The class of PPT -optimization
problems satisfies the following properties:

7For estimating the acceptance probability of a circuit, we present a problem called OAPEP that
is complete for PPT -optimization; see Theorem 8. For finding fooling sets for a circuit, we can define
solutions as sets, where the quality of a set S with respect to a circuit C : {0, 1}n → {0, 1} is |Prs∈S[C(s) =
1]− Prr∈{0,1}n [C(r) = 1]|. For the search version of PIT, given circuit C, we define the quality of x as the
binary indicator of whether C(x) ̸= 0 (to be more precise, a solution for PIT also includes a representation
of K ⊇ F where x ∈ Kn; see the proof of Proposition 12).

8Specifically, the class of PPT -optimization problems has a complete problem (obtained by reducing
to PPT -search, reducing to APEP, and reducing APEP back to PPT -search); a search-to-decision re-
duction (obtained by reducing to PPT -search and then reducing to prBPP); error-reduction (obtained
by reducing to PPT -search and using the small-error algorithm for the latter); and a time hierarchy
(again obtained by the two-way reductions, which are time-efficient).

8

1. (Complete problem.) There is a total PPT -optimization problem denoted OAPEP
such that any PPT -optimization problem reduces to OAPEP in deterministic poly-
nomial time. (Intuitively, OAPEP asks to find a near-optimal approximation for the
acceptance probability of a given circuit.)

2. (Search-to-decision.) Solving PPT -optimization problem is reducible to prBPP in
deterministic polynomial time.

3. (Error-reduction.) For any PPT -optimization problem and any c ∈N, there is a ppt
algorithm that solves the problem with success probability 1− 2−nc

. (This remains true
if we change the success probability in Item (2) of Definition 5 to be 1/poly(n).)

4. (Hierarchy.) For every polynomial T(n) ≥ n, there is a PPT -optimization problem
that is solvable in time Õ(T) but not in time T.

Proof. For proofs of Items (2) and (3), see [Gol24, Section 4.1].
For Item (1), consider the following definition of OAPEP. The instances are Boolean

circuits C : {0, 1}n → {0, 1}, and for any solution v ∈ [0, 1], we define its quality to
be q(C, v) = |Prr[C(r) = 1] − v|. Note that OAPEP is indeed a PPT -optimization
problem, since given (C, v, 1t) we can estimate q(C, v) up to accuracy 1/t in time
poly(|C|, |v|, t); and since given (C, 1t) we can output v such that |Prr[C(r) = 1]− v| ≤
1/O(t) in time poly(t, |C|), by naive sampling.

To see that any PPT -optimization problem reduces to OAPEP in deterministic
polynomial time, observe that by Item (2), any PPT -optimization problem reduces to
a decision problem prBPP . Since CAPP is complete for prBPP ,9 the latter decision
problem reduces to CAPP. Finally, CAPP for a circuit C reduces to OAPEP for (C, 1/7)
(i.e., since solving OAPEP on input (C, 1/7) allows obtaining an approximation of C’s
acceptance probability up to accuracy smaller than 1/6, which suffices for CAPP).

For Item (4), we formulate any decision problem in prBPP as a PPT -optimization
problem, and rely on the known hierarchy result for prBPP (see, e.g., [Bar02]). Specif-
ically, we will consider PPT -optimization problems wherein solutions are bits, and
the quality of each bit is binary. Letting Π = (ΠY, ΠN) ∈ prBPP , define a PPT -
optimization problem (P, q) by P = ΠY ∪ΠN, and for any x ∈ ΠY define q(x, b) = b,
and for any x ∈ ΠN define q(x, b) = 1− b (where b ∈ {0, 1}). The fact that (P, q) is a
PPT -optimization problem follows since Π ∈ prBPP .10

Now, let Π ∈ prBPT IME [Õ(T)] \ prBPT IME [O(T)], for some polynomial
T, and let (P, q) be the PPT -optimization problem described above. Since Π =
prBPT IME [Õ(T)] it follows that q is solvable in time Õ(T) (i.e., given (x, 1t) where
x ∈ P we can compute the exact value of q(x, 0) and of q(x, 1) in time Õ(T)). Assum-
ing towards a contradiction that q is solvable by an algorithm F running in time T, we

9Recall that CAPP is the promise-problem of distinguishing between circuits with acceptance proba-
bility at least 2/3 and circuits with acceptance probability at most 1/3.

10Specifically, using the decision algorithm for Π, for any x ∈ P we can compute the quality of (x, 0)
and of (x, 1), which also means that we can find b ∈ {0, 1} with the best quality.

9

can also solve Π in time O(T); specifically, given x ∈ ΠY ∪ΠN, run F(x, 14) to find b
such that q(x, b) is maximal and output b.

Appendix A Critiques of some other alternatives

In this appendix we discuss three alternative definitions for the class of search prob-
lems solvable in ppt that are based on promise-problems.

In all the definitions below, a search problem is represented as a promise-problem
Π = (ΠY, ΠN) over pairs (i.e., ΠY and ΠN are disjoint relations as in Definition 1),
and we assume that a ppt verification algorithm can solve the decision problem of Π.
Thus, the main difference is in the search algorithm that we require for a problem to
be in the class, and in what we define solving a problem to mean.

A.1 The first alternative: Solving means strongly solving

Starting from Definition 1, we can define solving a problem as strongly solving, in
which case there is no inconsistency between the requirements from the algorithm in
Item (2) of Definition 1 and the requirements for solving the problem.

The main problem in this formulation is that the requirement from a search al-
gorithm (i.e., strongly solving) is stricter than the requirement from the verification
algorithm V (i.e., limbo solutions can be accepted). To see why this is a serious prob-
lem, recall that we are looking for a class in which solutions can be found efficiently
and verified efficiently, where “efficiently” means probabilistic polynomial-time. In
particular, we expect all search problems in the class to be solvable in deterministic ex-
ponential time, by brute-force enumeration over all candidate solutions. However, for
some problems satisfying the requirements of Definition 1, no deterministic algorithm
(of any running time) can strongly solve the problem. That is:

Claim 9. There is a problem Π satisfying Definition 1 such that there does not exist a deter-
ministic uniform algorithm (of any running time) strongly solving Π.

Proof. The instances in Π are unary. For every n ∈ N, we define ΠY(1n) as the
set of n-bit strings with Kolmogorov complexity at least n − O(1), and we define
ΠN(1n) = {0n}. Note that Π satisfies Definition 1, because there is a polynomial-time
algorithm V that solves the decision problem of Π (i.e., the algorithm accepts (1n, y) iff
y ∈ {0, 1}n \ {0n}) and there is a ppt algorithm that gets 1n and outputs y ∈ ΠY(1n),
whp (i.e., by sampling y ∈ {0, 1}n at random). However, no deterministic algorithm
can map 1n to an n-bit string with Kolmogorov complexity n−O(1).

The reason that Claim 9 holds is that the verification algorithm V accepts any
string in {0, 1}∗ \ {0n}, whereas the search algorithm is required to find a solution in
the smaller set ΠY(1n). As one corollary of Claim 9, the formulation in which solving
means strongly solving does not support a deterministic search-to-decision reduction
(i.e., a deterministic reduction of strongly solving the problem to prBPP ⊆ prEXP).

10

A.2 The second alternative: Only require weakly solving to be in the class

Alternatively, we may modify Item (2) of Definition 1, and only require a ppt algorithm
that weakly solves the problem in order to say that a problem is in the class. We now
define solving the problem as weakly solving, and there is no inconsistency between
the notion of solving and the requirements in (the modified) Item (2). Also, unlike the
alternative in Section A.1, the requirement from a search algorithm is not stricter than
the requirement from the verification algorithm V.

The main problem is that this formulation is overly broad, capturing infeasible
problems that we do not want our notion to capture. In fact, for any search problem R
in which solutions are verifiable (e.g., the problem of finding a satisfying assignment
for a given Boolean circuit), a padded version of R belongs to the resulting class:

Claim 10. Let R ⊆ {0, 1}∗ × {0, 1}∗ such that R ∈ BPP , and let Π = (ΠY, ΠN) such
that ΠY = {(x, y1) : (x, y) ∈ R}, and ΠN = {(x, y1) : (x, y) /∈ R}, and limbo solutions are
strings ending in zero. Then, the search problem Π satisfies the formulation above.

Proof. The claim follows since a search algorithm can output a string ending with
zero (which is a limbo solution).

In addition, this formulation does not support an efficient (deterministic) search-
to-decision reduction. Specifically:

Claim 11. Assuming that NP ̸⊆ BPP , there is a problem Π satisfying the requirements of
the formulation above such that there is no deterministic polynomial-time reduction of solving
Π to prBPP .

Proof. Consider the problem Π = (ΠY, ΠN) in which instances are Boolean circuits
C : {0, 1}n → {0, 1}, and for every C we define

ΠY(C) =
{
(x, y) ∈ {0, 1}n × {0, 1}|C|2 : C(x) = 1

}
ΠN(C) =

{
(x, y) ∈ {0, 1}n × {0, 1}|C|2 : C(x) = 0∧K(y) ≤ |C|2 −O(1)

}
,

where K(y) is the Kolmogorov complexity of y. Observe that Π satisfies the require-
ments of the formulation above, since there is an algorithm solving the decision prob-
lem Π (i.e., it accepts (C, (x, y)) iff C(x) = 1) and there is a ppt algorithm that gets C
and finds solutions not in ΠN(C) (i.e., it chooses a uniformly random string y, which
has high Kolmogorov complexity whp, and outputs (1n, y)).

Assume towards a contradiction that there is a deterministic polynomial-time or-
acle machine A such that AprBPP weakly solves Π. Observe that there are at most
finitely many inputs C : {0, 1}n → {0, 1} such that AprBPP (C) prints (x, y) with K(y) >
|C|2−O(1); this is the case since AprBPP can be simulated by a deterministic exponential-
time algorithm A′, and since for every such C we have that K(y) ≤ |A′|+ |C|+O(1) =
O(|C|). Hence, for all but finitely many inputs C the algorithm AprBPP (C) prints (x, y)
such that C(x) = 1 (since (x, y) /∈ ΠN(C) and K(y) ≤ |C|2 −O(1)). This means that
AprBPP solves the NP-complete problem CircuitSAT, and hence NP ⊆ BPP .

11

A.3 The third alternative: Reductions to prBPP
Starting from Definition 1, let us consider a stricter efficieny requirement on the search
algorithm in Item (2): Instead of requiring a ppt algorithm that finds solutions in
ΠY(x), we require a deterministic polynomial-time reduction of finding solutions
in ΠY(x) to prBPP (i.e., there is a deterministic polynomial-time machine making
queries to prBPP that gets x for which ΠY(x) ̸= ∅ and outputs y ∈ ΠY(x)).

The advantage in this formulation is that search-to-decision and error-reduction
are built-in to the class from the definition, regardless of whether we define solving
a problem as strongly solving or as weakly solving. The main disadvantage is that
there is no evidence that this formulation captures the intuitive notion that we are
interested in. In fact, the set of problems satisfying this formulation is a strict subset of
PPT -search problems as in Definition 1 (where strictness is due to Claim 9).

Nevertheless, this set of search problems seems to be of independent interest. An
intuitive meaning for this set is “the subset of PPT -search problems that can be
strongly solved by deterministic polynomial-time reductions to prBPP”. We therefore
suggest the following natural open problem:

Open Problem 1. Find interesting characterizations of the subset of PPT -search problems
that can be strongly solved by deterministic polynomial-time reductions to prBPP .

As shown in [Gol11, Discussion after Theorem 3.5], any PPT -search problem that
has a companion problem in PPT -search belongs to the foregoing subset.

Appendix B Deferred proofs

Finally, we include formal statements of Proposition 2 and of Theorem 3 and proofs
for them. Let us begin with Proposition 2.

Proposition 12 (Proposition 2, stated formally). The following problems are all PPT -
search problems:

1. APEP (Acceptance Probability Estimation Problem [PDV21]):

• The instances are pairs (C, 1t) where C : {0, 1}n → {0, 1} is a Boolean circuit and
t ∈N is an integer. Solutions are real numbers v ∈ [0, 1].

• “Yes” solutions for (C, 1t) satisfy |Prr[C(r) = 1]− v| ≤ 1/t.

• “No” solutions for (C, 1t) satisfy |Prr[C(r) = 1]− v| ≥ 2/t.

2. FoolingSet:

• The instances are pairs (C, 1t) where C : {0, 1}n → {0, 1} is a Boolean circuit and
t ∈N is an integer. Solutions are sets S ⊆ {0, 1}n.

• “Yes” solutions for (C, 1t) satisfy |Prr[C(r) = 1]− Prs[C(s) = 1]| ≤ 1/t.

• “No” solutions for (C, 1t) satisfy |Prr[C(r) = 1]− Prs[C(s) = 1]| ≥ 2/t.

12

3. search-PIT:

• The instances are pairs (ρ, C) where ρ is a representation of a field F (i.e., a prime
number and possibly an irreducible polynomial), and C is an n-variate arithmetic
circuit over F. Solutions are pairs (ρ′, x) where ρ′ is a representation of a field
K ⊇ F (it may be that K = F) and x ∈ Kn.

• “Yes” solutions for (ρ, C) satisfy C(x) ̸= 0.

• “No” solutions for (ρ, C) satisfy C(x) = 0.

For all problems above, if prBPP = prP then there is a deterministic polynomial-time
algorithm that (weakly) solves the problem.

Proof. The fact that APEP is in PPT -search follows using the natural algorithm that
estimates the acceptance probability of a given circuit up to accuracy (say) 1/t2 (i.e.,
we use this algorithm both for verification V and for finding F).

For FoolingSet, the verification algorithm V gets (C, S, 1t) and distinguishes be-
tween the “yes” and “no” cases by estimating Prr[C(r) = 1] up to accuracy (say)
1/t2, using naive sampling; and the search algorithm F outputs a random sample
S ⊆ {0, 1}n of size O(t2).

As for search-PIT, verifying a solution is straightforward (i.e., by evaluating C(x)).
To find solutions, let d ≤ 2|C| be the degree of the given circuit C, and note that:
(1) We can find a field K ⊇ F of size at least 3d in probabilistic time polylog(d) ≤
poly(|C|), with high probability (see, e.g., [Sho90, Theorem 5.1]); (2) By the De-
Millo–Lipton–Schwartz–Zippel lemma, a random element x ∈ Kn is a solution, with
probability at least 1− d/|K| (see, e.g., [Gol08, Lemma 6.8], [AB09, Lemma 7.5]).

The fact that prBPP = prP implies deterministic polynomial-time algorithms for
these problems follows from Item (2) of Theorem 3 (which will be proved below).

Let us restate Theorem 3 formally and prove it:

Theorem 13 (technical properties of our interpretation of PPT -search; Theorem 3,
restated). Consider the class of PPT -search problem wherein solving the problem means
weakly solving. Then, the following properties hold:

1. (Complete problem.) There is a total PPT -search problem APEP such that solving
any PPT -search reduces in deterministic polynomial time to solving APEP.

2. (Search-to-decision.) Solving any PPT -search problem is reducible to prBPP in
deterministic polynomial time.

3. (Some form of error-reduction.) For any PPT -search problem and any c ∈ N,
there is a ppt algorithm that solves the problem with success probability 1− 2−nc

. (And
this statement remains true if we change the success probability in Item (2) of Definition 1
to be 1/poly(n) rather than 2/3.)

13

4. (Hierarchy.) For every polynomial T(n) ≥ n there is a PPT -search problem that is
solvable in time Õ(T) but not in time T.

Proof. Item (2) was proved in [Gol11, Theorem 3.5]. (The original statement did not
use this terminology, but the statement immediately implies Item (2).)

For Item (1), to see that APEP is complete for PPT -search, we first reduce any
problem in PPT -search to prBPP (i.e., using the search-to-decision reduction of
Item (2)), and then reduce prBPP to APEP. For the latter reduction, recall that prBPP
reduces to CAPP, and note that CAPP reduces to APEP in the obvious way.

For Item (3), given x we invoke F(x) multiple times and test each outcome using the
algorithm for Π, trying to find an outcome that does not belong to ΠN(x). Specifically,
assume that F(x) succeeds in finding y ∈ ΠY(x) with probability 1/poly(n). First, we
increase the success probability of the verification algorithm V to 1− 2−poly(n) (using
naive error-reduction). Running F for poly(n) times, with probability 1− 2−poly(n) the
following two statements hold: There is at least one outcome in ΠY(x), and V rejects
all outcomes that are in ΠN(x).

For Item (4), similarly to the proof of Theorem 8, we formulate any decision prob-
lem in prBPP as a PPT -search problem, and rely on the time hierarchy for prBPP .
Specifically, letting Π0 = (ΠY

0 , ΠN
0) ∈ prBPT IME [Õ(T)] \ prBPT IME [O(T)], for

any x ∈ ΠY
0 define ΠY(x) = {1} and ΠN(x) = {0}, and for any x ∈ ΠN

0 define
ΠY(x) = {0} and ΠN(x) = {1}. Then Π = (ΠY, ΠN) is in PPT -search, and Π is
solvable in time Õ(T), and an algorithm F that solves Π in time T yields an algorithm
that decides Π0 in time O(T).

References

[Aar16] Scott Aaronson. “P ?
= NP”. In: Open Problems in Mathematics. Ed. by John

Forbes Nash Jr. and Michael Th. Rassias. Springer International Publishing,
2016, pp. 1–122.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[Bar02] Boaz Barak. “A probabilistic-time hierarchy theorem for “slightly non-uniform”
algorithms”. In: Proc. 6th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RANDOM). Vol. 2483. 2002, pp. 194–
208.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[Gol11] Oded Goldreich. “In a World of P=BPP”. In: Studies in Complexity and Cryp-
tography. Miscellanea on the Interplay Randomness and Computation. 2011, pp. 191–
232.

[Gol24] Oded Goldreich. On Defining PPT-Search Problems. 2024.

14

[PDV21] A. Pavan Peter Dixon and N.V. Vinodchandran. “Promise Problems Meet
Pseudodeterminism”. In: Electronic Colloquium on Computational Complexity:
ECCC 28 (2021), p. 043.

[Sho90] Victor Shoup. “New algorithms for finding irreducible polynomials over
finite fields”. In: Mathematics of Computation 54.189 (1990), pp. 435–447.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

