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Abstract

A natural model of a source of randomness consists of a long stream of symbols X =
X1 ◦ . . .◦Xt, with some guarantee on the entropy of Xi conditioned on the outcome of the prefix
x1, . . . , xi−1. We study unpredictable sources, a generalization of the almost Chor–Goldreich (CG)
sources considered in [DMOZ23]. In an unpredictable source X , for a typical draw of x ∼ X ,
for most i, xi has a low probability of occurring given x1, . . . , xi−1. Such a model relaxes the
unrealistic assumption of a CG source that for every i, and every x1, . . . , xi−1, the next symbol Xi

has sufficiently large entropy. Unpredictable sources subsume all previously considered notions
of almost CG sources, including those for which it was unknown whether random walks using
X mix, and including those that are equivalent to general sources with high min entropy.

We prove that random walks using unpredictable sources do mix, and as a result obtain
seeded online condensers with constant entropy gap, and (seedless) deterministic condensers
outputting a constant fraction of the entropy. In particular, our condensers run in space compa-
rable to the total entropy of the stream X , even when its length is not known ahead of time. As
another corollary, we obtain a new extractor based on expander random walks handling lower
entropy than the classic expander based construction relying on spectral techniques [Gil98].

As our main technical tool, we provide a novel analysis covering a key case of adversarial
random walks on lossless expanders that [DMOZ23] fails to address. As part of the analysis,
we provide a “chain rule for vertex probabilities”. The standard chain rule states that for
every x ∼ X and i, Pr(x1, . . . , xi) = Pr[Xi = xi|X[1,i−1] = x1, . . . , xi−1] · Pr(x1, . . . , xi−1). If
W (x1, . . . , xi) is the vertex reached using x1, . . . , xi, then the chain rule for vertex probabilities
essentially states that the same phenomena occurs for a typical x:

Pr[Vi = W (x1, . . . , xi)] . Pr[Xi = xi|X[1,i−1] = x1, . . . , xi−1] · Pr[Vi−1 = W (x1, . . . , xi−1)],

where Vi is the vertex distribution of the random walk at step i using X .
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1 Introduction

Randomness is an extremely useful and ubiquitous tool in computer science. However, obtaining
a truly uniform random string U ∼ {0, 1}n is a challenge on its own. A natural question is what
kind of weak randomness can we reasonably obtain from nature (or engineering), and whether
we can make such randomness as useful as true randomness. This has spawned a long line of
research with many deep and interesting results. One general and common assumption about
a weak source is that overall, it has min-entropy. X ∼ {0, 1}n has min-entropy k, H∞(X) ≥ k, if
maxx∼X Pr[X = x] ≤ 2−k. We call such an X a k-source.

A natural family of k-sources is one whereX is a long stream of short symbols,X = X1, . . . , Xt ∼
{0, 1}dt=n, with each symbol being revealed one at a time. This streaming corresponds to common
sources of randomness in practice. Probably the most popular sources of entropy involve the
exact timing of interrupts from mouse movements, keyboard strokes, disk I/O, receiving network
packets, and other unpredictable events. Other sources include thermal noise and repeatedly
looking at the last few digits of a clock timed according to an independent clock.

To model such streaming sources, one would need some property that implies that each
Xi ∼ {0, 1}d has some entropy, even conditioned on the previously observed x1, . . . , xi−1 (we often
abbreviate this as x[1,i−1]). Commonly studied notions such as sequences of independent sources,
Santha–Vazirani sources [SV86], and Chor–Goldreich sources [CG88] indeed have these properties.

In order to utilize (most of) the entropy present in the stream X , say k, we would like to convert
the stream into a distribution that is closer to uniform. An extractor is a function Ext : {0, 1}n ×
{0, 1}` → {0, 1}m that uses an independent and uniform `-bit seed Y to convertX into a distribution
Ext(X,Y ) that is statistically close to uniform. Meanwhile, a condenser is a function Cond : {0, 1}n×
{0, 1}` → {0, 1}m that converts X into a distribution with high entropy rate: if Cond(X,Y ) is close
to a k′-source, then a successful condensing means that k′/m� k/n. In certain cases, deterministic
extraction and condensing, where ` = 0, is also possible.

In this work, we present a natural and general class of randomness streams that we call
unpredictable sources, for which condensing is possible in an online manner.

Definition 1.1 (unpredictable source). We say that X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, is a (δ, ρ)
unpredictable source, if, when defining

ρi(X, δ) = Pr
x∼X

[
Pr
[
Xi = xi | X[1,i−1] = x[1,i−1]

]
> D−δ

]
,

it holds that Ei∼[t][ρi(X, δ)] ≤ ρ.

In words, in an unpredictable source, on average over an x ∼ X , most symbols xi are unlikely,
conditioned on the prefix x1, . . . , xi−1.1 This notion forgoes an unrealistically demanding assump-
tion made by the types of sources mentioned above: it is no longer true that Xi has high entropy
regardless of the outcome of the previous symbols. The notion is also weak enough that conversely,
general (1− ρ)n-sources are (1/2, 2ρ) unpredictable sources, as we will discuss later on.

1.1 Online Extracting and Condensing

Due to the streaming nature of our source X , one would like a condenser (or extractor) for such
sources to process each symbol sequentially as it is received. The notion of online condensing

1On a first read, one may find it easier to consider the case where all ρi(X, δ) = ρ for some small constant ρ.
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achieves exactly this. As in the model from Dodis, Guo, Stephens-Davidowitz, and Xie [DGSX21a,
DGSX21b], in (deterministic) online condensing, the function Cond is implemented by a procedure
that starts in a state S0, and makes a sequence of calls to an update procedure

Si+1 ← Update(Si, Xi+1).

The length of each state Si should be not much larger than the final output length m. The procedure
may then output the final state St ∈ {0, 1}m (or perhaps some function of St). In the case of
seeded online condensing, one may consider an update procedure that also takes as input a seed
Y ∈ {0, 1}` that is independent of the stream X , and computes Si+1 ← Update(Si, Xi+1, Y ).

Since the seed length ` typically depends on t, when the length of the stream t is not known
in advance, one can model the use of a uniform seed by also viewing it as a stream of uniform
and independent bits. For example, the seed can be initialized to the empty string (or some
constant length uniform string), and Cond may call, in conjunction with each update, an additional
procedure,

Y ← ExtendSeed(Si, Y ),

that may choose to increase the length of Y by one or several bits, depending on the current state
Si. Generally, the choice to extend Y will depend on how many symbols Cond has seen so far,
which would be stored in the state. The guarantee of such a Cond should be that at any point in
the stream i, the state Si should contain most of the entropy seen so far in X1, . . . , Xi, and the
length of Y relative to i should be small. The hope is that the update procedure accumulates the
additional entropy from Xi in each step into the state Si, and thus the final state St contains most
of the entropy in X . The advantage of such an online model of condensing is that it allows one to
utilize most of the k ≈ m entropy that was overall contained in entire stream X , even if X may be
too long to store in memory, and one may not even know the length of the stream t ahead of time.

1.2 Online Condensing via Random Walks

In a previous work [DMOZ23], the authors showed that a natural way to condense a randomness
stream is to use its symbols as instructions for a random walk over an expander G, starting from
an arbitrary fixed vertex. The intuition is that if a step in a random walk makes progress towards
mixing, then that step accumulates the entropy from the instruction into the vertex distribution.
Thus, using the current vertex in the walk as our “state” yields a (deterministic) condenser with
output length m = logM , where M is the number of vertices of G.2

In this work, we are primarily focused on sequences X1, . . . , Xt that may not mix on every step,
as is the case for unpredictable sources, where some steps may have no entropy to contribute. We
now give broad intuition of how such erroneous steps affect condensing. Suppose that a symbol Xi

is highly correlated with the previous instructions x1, . . . , xi−1 (or even a deterministic function of
them). Also, assume that the vertex distribution at step i− 1 is uniform on some set S of size K. If
G is a D-regular graph, then an adversarially chosen Xi may cause the walk to “consolidate” the
vertices of S into groups of size D. This would result in a vertex distribution that is uniform on a
set of size K/D, and hence d = logD bits of entropy were lost. In general, one can show that this is

2One might object that committing to a graph of size M may be problematic when the length of the stream is not
known ahead of time, as one would like m to be comparable to t. This can be fixed with a trick of repeatedly increasing
the size of the graph at regular intervals. We discuss this more in Section 1.5.1, and for most of the introduction, we will
assume that t is known ahead of time.
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the worst that can happen, and so if there are very few bad steps overall, then overwhelmingly,
mixing, and thus condensing, indeed occurs. Realizing this intuition for unpredictable sources
poses several challenges, that we discuss further in Section 1.5.

1.3 CG-Sources, Lossless Expanders, and the [DMOZ23] Condenser

Towards discussing unpredictabile sources, let us first review in more detail the previous work,
[DMOZ23], on condensers via random walks. Both here, and in [DMOZ23], we study random
walks on lossless expanders. A degree-D (K, ε)-lossless expander on M vertices is an undirected
graph G such that for any set S ⊆ V, |S| ≤ K, the size of the neighborhood Γ(S) satisfies |Γ(S)| ≥
(1− ε)D|S|.3

The first natural notion of a sequentially unpredictable source, as considered in [DMOZ23], is a
Chor–Goldreich (CG) source [CG88]. A δ-CG source is a sequence of random blocks X = X1 ◦ . . . ◦Xt,
each Xi ∼ {0, 1}d, such that for any i and any prefix a ∈ {0, 1}d(i−1), it holds that H∞(Xi|X[1,i−1] =
a) ≥ δd. [DMOZ23] proved that a random walk using X , starting from an arbitrary fixed vertex,
on a sufficiently good lossless expander, accumulates entropy and thus yields a deterministic
condenser.

Theorem 1.2 ([DMOZ23], informal). Let δ, η be constants. Suppose that for every M , there exists an
explicitly computable D = 2d-regular (K, ε)-lossless expander on M vertices, with ε � D−(1−δ), and
K = M/poly(D). Then, for any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δdt)

such that given a δ-CG source X , Cond(X) is η-close to an m−O(log(1/η))-source. Moreover, Cond can
be computed in an online manner.4

That is, Cond condenses X to within a constant entropy gap, where we say that the entropy gap
(with error ε) of a distribution Z ∼ {0, 1}m is ∆ if Z is ε-close to an (m−∆)-source.

Nevertheless, one can argue that an exact CG-source is an unrealistic model of low quality
randomness. In practice, it may be unreasonable to assert that for every i and every prefix x1, . . . , xi,
the next symbol Xi is highly unpredictable. To address this, [DMOZ23] does consider generalized
versions of CG sources, although the guarantee about Cond(X) from Theorem 1.2 for such sources
is much weaker there. In particular, the situation (before this work) becomes quite bleak when
introducing the generalization coined as ρ-error in [DMOZ23].

Definition 1.3 (ρ-almost CG source). A ρ-almost δ-CG source is a sequence of random variables X =

X1 ◦ . . . ◦Xt with Xi ∼ {0, 1}d, such that for each i ∈ [t], we have that for at least probability 1− ρ over
the prefix a ∈ {0, 1}d(i−1) ∼ X1 ◦ . . . ◦Xi−1, it holds that H∞(Xi|X[1,i−1] = a) ≥ δd.

It turns out that in the presence of ρ-error (together with other error types discussed shortly),
general min-entropy sources are almost CG-sources in some regime of parameters (see [DMOZ23,
Section 8]). Thus, in general, deterministic condensing to within a constant entropy gap of such

3More technically, we consider bipartite graphs ([M ], [M ], E), as these are what the known explicit constructions
yield. However, at a high level, this distinction is not necessary.

4[DMOZ23], also handled almost δ-CG sources. In this definition, instead of each Xi being a δd-source for every
prefix, each Xi is only γ-close to being a δd-source.
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sources is impossible. Moreover, before this work, it was unknown whether or not a random walk
using a ρ-almost CG-source mixes well in any sense at all. In this paper we show that it is indeed
the case that random walks mix even for the notion unpredictable sources, which captures all
previously considered generalizations of CG-sources.

1.4 Unpredictable Sources

As discussed previously, the notion of CG sources is unrealistic since the assumption that every
prefix leads to a high entropy distribution is quite strong. An unpredictable source does not make
such an assumption. Indeed, notice that in the definition of an unpredictable source, we do not di-
rectly insist on any guarantee on the (smooth) min-entropy of the distribution Xi|X[1,i−1] = x[1,i−1],
only that usually, the next symbol xi is unlikely conditioned on x[1,i−1]. We give unpredictable
sources their name as it closely resembles the intermediate objects of the same name that show
up in pseudorandom constructions such as reconstructive extractors [Tre01, SU05, TZS06] (for the
precise definition of reconstructive extractors, see, e.g., [TU06]).

When talking about (δ, ρ) unpredictable sources, we informally refer to δ as the “entropy rate”
of the unpredictable source, and ρ as its “error rate”.5 It is easy to see that this definition captures
almost-CG sources with all previously considered error parameters.

Definition 1.4 (almost CG source with all error parameters). We say that X = X1 ◦ . . . ◦Xt, each
Xi ∼ {0, 1}d, is a (δ, γ, ρ, λ) almost CG source, if, for at least (1− λ) fraction of i ∈ [t], the following holds:

Pr
x∼X

[
Hγ
∞
(
Xi|
{
X[1,i−1] = x[1,i−1]

})
< δd

]
≤ ρ.

Indeed, a (δ, γ, ρ, λ) almost CG source is a (δ, γ + ρ+ λ) unpredictable source.6 Additionally, as
was the case for almost CG sources with all error parameters, every general source with (1− ρ)n
min entropy is an unpredictable source, with a much more straightforward argument, with fewer
constraints on ρ, and with less loss in converting ρ into the error parameters of an almost CG
source (see Proposition 6.4). In this work, we give the following result for unpredictable sources,
analogous to Theorem 1.2:

Theorem 1 (main theorem (informal); see Corollary 3.16). Let δ, ρ be constants, and let D and ε be
constants that satisfy ε < D1−δ. Suppose that for every M , there exists an explicitly computable D = 2d-
regular (K, ε)-lossless expander on Θ(M) vertices, with K = M/poly(D). Then, for any positive integer t,
there exists an explicit function

Cond : {0, 1}n=dt × {0, 1}`=log t−1 → {0, 1}m=Ω(δdt)

such that given a (δ, ρ) unpredictable source X , Cond(X,Y ) is O
(

1
δ (εD1−δ + ρ)

)
-close to an m −

O(log(1/ε)) source. Moreover, Cond can be computed in an online manner.7

As suggested by prior discussion, the construction is again to simply use X as instructions
for a random walk on a lossless expander, with the random seed indicating the stopping time. In

5An (δ, ρ) unpredictable source is indeed, roughly, ρ-close to an δn sources.
6It is also true that the converse holds via several averaging arguments, although with a large loss in parameters. We

prefer to study and phrase our results for unpredictable sources, as the statements are clean, and with minimal artifacts
of analysis.

7See Appendix B for a more detailed description of the online version.
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order to show that such a walk mixes, we develop a new analysis, different than that of [DMOZ23],
which we discuss in detail in Section 1.5.

Let us briefly discuss the error term in the theorem’s statement. First, roughly speaking, the
term εD1−δ is the probability that a set S “does not expand” in some sense. For example, εD1−δ

is the probability over a uniformly chosen vertex v ∈ S and uniform neighbor Γ(v), that Γ(v)
has another neighbor in S. Broadly speaking, events such as this are undesirable: they represent
“collisions” of paths in the random walk. Thus we expect such an error term, as it corresponds to
the (inherent) error of the expander. We should also expect the error rate ρ to appear for the same
reason: this corresponds to the probability that “expansion does not occur” due to low quality
randomness (as opposed to the expander’s error). Indeed, if one considers the (1, ρ) unpredictable
distribution X that is 0n with probability ρ, and uniform otherwise, one can see that at every step
of a random walk using X , some vertex will have probability mass at least ρ.

Finally, we comment on the relationship between these parameters. In general, as ρ is an
error probability over the entire space of X , it is possible for it to be subconstant. While ρ can be
subconstant, the constant-ρ regime is more interesting, and our theorem handles the case when ρ
is in fact fairly large, for example ρ ≥ D−δ. Thus, the error term can be thought of as O(ρ/δ), and
in fact it is necessary that ρ < δ. Intuitively, using a (δ, ρ) unpredictable source, in a typical run
of the random walk, one expects there to be roughly t steps each accumulating δd bits of entropy
(for a total of δdt entropy gained), and roughly ρt steps that lose d bits of entropy (for a total of ρdt
entropy lost). Thus overall, one should not expect anything good to happen when the entropy rate
of the unpredictable source is smaller than the error rate.

We can also show that even without a random stopping time, we can use our new analysis of
random walks to get a result about deterministic condensing, although, as expected, the entropy
gap is not constant.

Theorem 2 (deterministic condensing (informal); see Corollary 3.17). Let δ, ρ be constants and let D
and ε be constants that satisfy ε < D1−δ. Suppose that for every M , there exists an explicitly computable
D = 2d-regular (K, ε)-lossless expander on Θ(M) vertices, with K = M/poly(D). Then, for any positive
integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δdt)

such that given a (δ, ρ) unpredictable source X , Cond(X) is O
(√

εD1−δ + ρ
)

-close to a (1− β)m-source,

where β = O
(

1
δ ·
√
εD1−δ + ρ

)
. Moreover, Cond can be computed in an online manner.

Overall, Theorem 1 and Theorem 2 indicate that it is indeed possible to condense a very general
class of sources in an online manner while only using space roughly δn.

1.4.1 A Two-Stage Construction, and Recent Developments in Lossless Expanders

An expert reader may notice that the statements of Theorem 1.2, Theorem 1, and Theorem 2 are
slightly weaker than what is actually achievable. In each of these theorems, we require explicit
expanders with ε � D−(1−δ). In other words, as the entropy rate δ of the source gets smaller,
the error of the expander that we use must improve. Optimal, non-explicit expanders (as well
as random ones) can achieve a dependence of ε ≈ 1/D and would thus allow us to handle any
constant entropy rate δ. However, the [CRVW02] explicit construction only achieves ε ≈ D1/6, and
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more recent works can improve this to ε ≈ D1/2 [CRT23, Gol24]. Thus, even considering recent
improvements, Theorem 1.2, Theorem 1, and Theorem 2 can only support entropy rate δ > 1/2.

Fortunately, explicit optimal constructions are not necessary. A trick from [DMOZ23], the
two-stage construction, utilizes constant-sized optimal expanders (found by brute force) to condense
small blocks of the stream X1, . . . , Xt into a higher entropy rate δ′ > δ larger blocks, that is high
enough to use the known (suboptimal) explicit constructions. For details of the construction for
unpredictable sources, see Section 4.

Nevertheless, we choose to present our results and phrase our theorems assuming optimal
expanders for several reasons. The first is that the parameters are better, aesthetically simpler, and
easier to analyze when no two stage construction is required. Moreover, we wish to highlight that
the novelty of this work is the analysis of random walks on a single expander, without the trick
of the two-stage construction. Finally, because of the two-stage construction, the current lack of
better constructions of explicit expanders is not an inherent barrier to the plausibility of explicit
condensing for smaller δ.

We give instantiations of Theorem 1, and Theorem 2 for any entropy rate δ > 0 in Theorem 5.3
and Theorem 5.5, using currently known explicit expanders and the two-stage construction. As the
statement is relevant for the next discussion, we give an informal version of the latter here, which
considers deterministic condensing.

Theorem 3 (informal; see Theorem 5.5). Let δ > 0 be any constant, let d ≥ poly(1/δ), and ρ ≤ poly(δ).
Then, for any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m

with m = Ω(δdt) such that for any (δ, ρ) unpredictable source X = X1 ◦ · · · ◦Xt with each Xi ∼ {0, 1}d,
Cond(X) is ≈ ρ1/C close to a (1− β)m, source, where β ≈ ρ1/C , for some universal constant C.

1.4.2 Perspective: Condensing from Unpredictable Sources vs. General Sources

Having presented our main results about seeded condensing to within constant entropy gap, and
deterministic condensing outputting a constant fraction of the entropy, we provide a few observations
about the nature of unpredictable sources.

First, we know that general sources are unpredictable sources in the high entropy regime (see
Proposition 6.4). Indeed, if H(X) ≥ (1 − ρ)n, then X is already a (δ = 0.99, 100ρ) unpredictable
source. Thus, essentially for any δ, nontrivial condensing requires seed, and we provide a simple
such condenser that is even online.

However, this does not imply that for every δ, an unpredictable source is as hard to deal with as
a general source of the same entropy rate. Indeed, Theorem 3 shows that for small entropy rate δ,
deterministic condensing is possible to with output entropy rate roughly 1− ρ1/C . Thus, one can
deterministically condense unpredictable sources from entropy rate 0.01 to entropy rate 0.99. Such
a feat is not possible for general sources! Indeed, if X is a general source with entropy rate, say, 0.6,
a simple argument shows that it cannot be deterministically condensed to entropy rate, say, 0.7
(see Claim A.1). This suggests an interesting property about unpredictable sources: Deterministic
condensing “past the entropy rate” of such sources is easy, while the hard part is condensing “past
the error rate.” In particular, although our analysis only achieves an output entropy rate of 1−ρ1/C ,
we suspect that deterministic condensing to an entropy rate of 1 − O(ρ) is possible. Moreover,
there is good reason to believe that there is a barrier to condensing past this entropy rate: When

7



considering general (1− ρ)n sources, the entropy gap ρ becomes the error rate when thinking of it
as an unpredictable source.

We end the discussion by leaving as an open line of inquiry to determine the exact threshold of
the output entropy rate of deterministic condensers.

1.5 Technical Overview: Random Walks Using Unpredictable Sources

We are now ready to present a technical overview of how we analyze random walks via unpre-
dictable sources. Since unpredictable sources subsume CG sources, we’ll start with discussing
the challenges inherent to both sources, and the previous solution for CG sources. An initial
observation is that for both types of sources, spectral analysis fails, and for two main reasons. The
first one is that spectral expanders may not be lossless, and even the best spectral expanders may
only be (K, ε = 1/2)-lossless. Such expansion is insufficient for us, as it intuitively means that for a
distribution on a set of vertices S, at least half of all edges leaving S may lead to collisions (with
perhaps D other nodes in S). Since, as discussed before, collisions imply a loss in entropy, even the
good high entropy steps fail to mix, unless the steps were almost uniform.

The second reason is that random walks using CG sources and unpredictable sources are
non-Markovian: The distribution of the next step depends on the entire history of the walk up
until that point. Therefore, we cannot analyze the evolution of the vertex distribution at each
step by repeatedly applying a transition matrix and bounding the norm of the corresponding
probability vector. Moreover, the distribution of the next instruction Xi+1, given a prefix x1, . . . , xi,
can be adversarial. That is, whatever the vertex distribution pi may be for each i, Xi+1 could be the
worst possible edge distribution that yields the least amount of improvement for pi+1 (while still
satisfying the overall conditions on the source X).

Nevertheless, [DMOZ23] provides a direct analysis that shows that the norm of the vertex
distribution does evolve favorably over time. Specifically, they show that for the q-norm, setting
q = 1 + α, if pi is the vertex distribution of the random walk at step i, then ‖pi+1‖qq ≤

1
Dδα
‖pi‖qq.

More concretely they prove:

Theorem 1.5 (informal; see [DMOZ23], Theorem 5). Let G = (U = [M ], V = [M ], E) be a sufficiently
good lossless expander, and let q = 1 + α for some sufficiently small constant α.

Fix any i, and let ru, for each u ∈ Supp(pi), be a distribution over {0, 1}d ≡ [D], each being a δd source.
For any u ∈ U and v ∈ V let ru(u, v) denote the probability that the edge leading from u to v is chosen
under ru. By definition, pi+1 is defined as pi+1(v) =

∑
u∈Γ(v) ru(u, v)pi(u). Then,

‖pi+1‖qq ≤ O
(

1

Dδα

)
· ‖pi‖qq ,

as long as ‖pi‖qq is not already smaller than 1/Kα.

This essentially implies that the entropy of the vertex distribution increases by at least δd. Thus,
inductively, the final distribution will have ‖pt‖qq ≤

1
Kα , implying that it has min entropy roughly k.

For ease of exposition, for the remainder of the section, we consider unpredictable sources
where for every i, ρi = ρ for some constant ρ. This case captures most of the intuition and difficulty
at a high level.
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The q-norm analysis fails. Unfortunately, in the case of unpredictable sources, the q-norm analysis
cannot give a good bound on the norm of the final vertex distribution, ‖pt‖q. To see this, consider
a distribution X that is 0n with probability ρ, and is a δ-CG source otherwise. This is both a
CG source with ρ-error and a (δ, ρ)-unpredictable source. However, the norm of the final vertex
distribution will always be at least ‖pt‖q ≥ ρ. Thus, the q-norm will not help us to establish that
the final (smoothed) min entropy is large. But note that it is true in this example, where clearly we
are ρ-close to having high min-entropy. It has been an open question since [DMOZ23] to give an
analysis that shows this is always the case.

Beating the union bound, once again. Naively, one might try to fix the q-norm analysis as follows.
For each i, condition on the event that Xi+1 has “high entropy” given x1, . . . , xi. The original q-
norm analysis could then work on this conditional distribution, and since the probability that this
event does not happen is at most ρ, we can conclude that in the i-th step, the q-norm decreases
“except with error ρ.” Unfortunately, it is not clear how to chain such an argument multiple times
over all steps t, without using a union bound which would require ρ < 1/t.

We remark that originally, in the case of CG sources, [DMOZ23] uses the q-norm analysis in
part to beat the union bound over the expander error ε. As we’ve seen from the discussion above,
the q-norm analysis does not allow you to do the same for ρ. Thus, beating the union bound over ρ
is yet another challenge to overcome.

Probability evolution, not distribution evolution: a “chain rule” for vertex probabilities. The
issue with the approaches above is that they attempt to make a statement about the quality of the
vertex distribution at every step i. As discussed, it is not clear how to make any such statement.
This leads us to search for an alternative approach. Denote by W (x1, . . . , xi) as the vertex reached
when taking the instructions x1, . . . , xi. In an unpredictable source, given a typical x ∼ X , one
expects to see roughly (1− ρ)t “good” steps i in which

Pr[Xi = xi|X[1,...,i−1] = x[1,...,i−1]] ≤ D−δ,

and ρt “bad” steps in which Pr[Xi = xi|X[1,...,i−1] = x[1,...,i−1]] > D−δ. One would like to argue that
this directly translates to good steps and bad steps in the random walk. In other words, for every
good step,

pi(W (x1, . . . , xi)) ≤
1

Dδ
· pi(W (x1, . . . , xi−1)),

and for every bad step, pi(W (x1, . . . , xi)) ≤ D · pi(W (x1, . . . , xi−1)).
Notice that such an approach does not directly make a statement about the distribution at

each step: we do not claim that for each i, the overall entropy of pi increases. Rather, we say that
individually, each path of vertices that the random walk takes is on its own journey of ups and
and downs in individual probability, and typically there are few downs. We are able to make this
approach concrete with the following key lemma.

Theorem 4 (chain rule for vertex probabilities, see Theorem 3.6, Corollary 3.7). LetG be aD-biregular
(K, ε) lossless expander. Let X = X1 ◦ · · · ◦Xt, each Xi ∼ {0, 1}d, and fix some 0 < δ ≤ 1. Then, for any
i ∈ [t], there is a subset Si ⊆ {0, 1}n=dt with Pr[X ∈ Si] ≥ 1− 4εD1−δ − 2ρ, such that for every x ∈ Si,

pi(W (x1, . . . , xi)) ≤ max

(
2

Dδ
· pi−1(W (x1, . . . , xi−1)),

DO(log 1/ε)

K

)
.
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We believe that this chain rule for vertex probabilities is interesting in its own right. The
standard chain rule for probability states that for every x ∈ Supp(X), and every i the probability of
x1, . . . , xi decreases from the probability of x1, . . . , xi−1 by a factor of Pr[Xi = xi|X[1,i−1] = x1,i−1].
The chain rule for vertex probabilities states that the same evolution of probabilities occurs when
considering W (x1, . . . , xi) and W (x1, . . . , xi−1), as long as the conditional probability of xi+1 “has
entropy” (as is needed for expansion), and accounting for the probability of a collision due to the
inherent error of the expander or the probability the next step has no entropy.8

Analyzing a full random walk. So far, we’ve shown that at every step, there is a high probability
over x ∼ X that the corresponding vertex probabilities decrease. Notice we have made no assertion
yet about how drastically the vertex probability might increase when the event Si does not occur.
However, it is not too hard to show that it is extremely unlikely for the probability to increase
drastically. Overall, we can argue that in expectation over x ∼ X , there are roughly (1 − ρ)t
steps for which the vertex probability goes down by a factor of roughly D−δ, more accurately,
pi(W (x1, . . . , xi) ≤ 2

Dδ
· pi−1(W (x1, . . . , xi−1)), and the total factor increase from the remaining ρt

steps, is roughly Dρt.
This argument so far is essentially all we need to obtain Theorem 2: When ρ is small, for a

typical x, the number of good steps is overwhelmingly large comparing to the number of bad steps,
and therefore one expects most runs of the random walk to end up at a vertex that has probability
at most pt(W (x1, . . . , xt)) ≤ D−(δt−ρt).

Using a random stopping time. To obtain a seeded condenser with constant entropy gap, as
in Theorem 1, we must characterize a bit more accurately how a typical run of the random walk
behaves. In reality, Theorem 4 states that if i is a good step for x1, . . . , xt (that is, x ∈ Si), then
the probability of the vertex reached at step i decreases by ≈ 1

D as long as the vertex probability has
not already reached the “capacity” DO(log 1/ε)/K, which is a constant factor smaller than 1/M , for M
being the number of vertices in the expander.9 If we can prove that over a random x ∼ X , and a
random stopping time i, that the vertex probability is at capacity with high probability, then we
have proven Theorem 1.

Suppose we choose M to be noticeably less than Dδt, say, D(δ/2)t. Then, we expect that in a
typical run of the random walk, the vertex probability reaches the capacity (or is close to it) after
t/2 steps. We can assume for simplicity that the vertex probability is exactly at capacity after t/2
steps. Now, let us consider what happens in the last t/2 steps, under this assumption. There are
only ρt < t/2 steps for which the vertex probability can increase, each of which increases it by a
factor of roughly D. Thus, most of the other t/2 steps either keep the vertex probability at capacity,
or “repairs” a deficit from capacity by a factor of 1/Dδ. Overall, this means that over a random
stopping time in the last t/2 steps, the probability of not being at capacity (meaning the walk has
recently taken one of the ρt bad steps, or one of the (ρ/δ)t “repairing” good steps), is roughly
ρ+ ρ/δ = O(ρ/δ).

8An expert reader might ask how the Theorem 4 compares to the standard statement about lossless expanders as
lossless conductors. In the standard case, when δ = 1 and ρ = 0, the property of lossless conductors states that if pi−1 is
a source with min entropy k′ < k = logK, then pi is ε-close to a k + d-source. Theorem 4 on the other hand, requires no
assumption on the entropy of the input source pi−1, and is still able to conclude that the distribution “improves” in one
step.

9In general, for constant degree lossless expanders, K = M/poly(D).
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1.5.1 Making Our Condensers Fully Online

A random walks based condenser is online if each symbol Xi is processed and used to update the
state sequentially in a “read-once” fashion. However, there is an issue when the length of the stream
t is not known ahead of time. Indeed, if one must settle on a graph of size M ahead of time, then
one cannot hope for a final output entropy larger than m. This is problematic if the length of the
stream t is not known ahead of time, and ends up being much larger than m, as we will miss out on
most of the entropy of the stream. Broadly speaking, the workaround to this issue is as follows: If
we know how much entropy we expect overall in each X1, . . . , Xi, then we can repeatedly increase
the size of the graph at regular intervals, to accommodate the additional entropy expected. This
allows us to maintain the guarantee that the entropy of the vertex distribution is close to m for all
(or most) steps.

In a bit more detail, for simplicity, assume that the total length of the stream is a power of two
(although still unknown). We begin the random walk from a fixed vertex on a small D-regular
graph of size 2C for some constant C. If we see more than ≈ C symbols from the stream, we embed
the current vertex into a D-regular graph of size 22C and walk for another C steps. If a node in the
smaller graph is represented by v ∈ {0, 1}C , then one can embed it in the larger graph as v ◦ 0C .
Such an embedding provides a one-to-one mapping from the vertex distribution in the small graph
to one with the same entropy in the large graph. We repeat this embed-and-walk process until the
stream ends. This idea essentially suffices to implement the deterministic condenser of Theorem 2
in an online fashion.

To implement the condenser from Theorem 1, we use the same embed-and-walk process, but
we must take care to implement the random stopping time in an online fashion as well. Once again,
for simplicity, assume that t is a power of two. We once again begin the walk on a constant sized
graph of size 2C , and initialize a seed of length ≈ c = logC to pick a random stopping time in case
t ≤ c. When the random stopping time is reached, we save the resulting vertex additionally in the
state, and we continue the random walk until time c. If the stream ends at time c, output the saved
vertex. Otherwise, we embed the current vertex into a graph of size 22C , and use ExtendSeed to add
one more bit to the seed. Now, Y represents a random stopping time between 1 and 2c, and we
can repeat this process until the stream ends. Ultimately, this shows that for every i ∈ [t] that is a
power of two, the distribution obtained from using X1, . . . , Xi as a random walk (with a random
stopping time) contains most of the entropy k seen so far, within a graph whose size M is not too
much larger than K = 2k, all the while only needing to generate log i bits of seed.

As the details of such an online implementation are mostly minor alterations to the main results
of our work, we defer a more detailed explanation to Appendix B.

1.6 Improved Random Walk-Based Extractors for High Min-Entropy Sources

So far, the main takeaway from our results is that lossless expanders can handle unpredictable
sources with low entropy rate. On the other hand, spectral expanders can handle unpredictable
sources with high entropy rate, as can be seen by looking at the classic random walks based
extractor.

However, even for the case of sources with high entropy, the lossless expander random walk
yields a quantitatively better result. In the classic expander random walk extractor (or sampler),
based on the expander Chernoff bound, in order to achieve an error of ρ in the output distribution,
it is necessary for the entropy of the input source X to be at least (1− ρ2/C)n for some constant C.
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Theorem 1.6 (standard RW-based extractor; see Theorem 6.2). There exists a universal constant C such
that the following holds. For every positive integer n, and any ρ > 0, there exists an explicit (k, ρ) extractor

Ext : {0, 1}n × {0, 1}`=logn−O(1) → {0, 1}m=Ω(k)

for any k ≥ (1− ρ2/C)n+ log(1/ρ).

The ρ2 factor is inherent in the use of the expander Chernoff bound (see Theorem 6.1). On the
other hand, if one uses our new lossless expander random walk to condense to constant entropy
gap (and then apply known constructions of extractors for sources with constant entropy gap with
short seed length), one only needs the input source to have entropy (1− ρ/C ′)n for some constant
C ′ in order to obtain final output error ρ. In addition, all of this can be implemented in a fully
online manner, even when n is not known ahead of time.

Theorem 5 (new RW-based extractor; see Theorem 6.6). There exist universal constants ρ0 ∈ (0, 1)
and C > 1 such that the following holds. For every positive integer n, and any constant ρ ∈ (0, ρ0), there
exists an explicit (k, ρ) extractor

Ext : {0, 1}n × {0, 1}`=logn+O(log(1/ρ)) → {0, 1}m=Ω(k) ,

for any k ≥ (1− ρ/C)n.

1.7 Related Work

Before introducing ρ-almost CG-sources, [DMOZ23] first generalizes CG-sources by introducing
what is coined λ-error.

Definition 1.7 (λ-almost CG source). A λ-almost δ-CG source is a sequence of random variables X =

X1 ◦ . . . ◦ Xt with Xi ∼ {0, 1}d, such that for at least (1 − λ)t of i ∈ [t], we have that for any prefix
a ∈ {0, 1}d(i−1), it holds that H∞(Xi|X[1,i−1] = a) ≥ δd.

Unlike ρ-error, for λ-error, [DMOZ23] is still able to construct condensers by running a random
walk usingX , although not with a constant entropy gap. Instead, the gap is roughly λm, for reasons
inherent to the random walk construction itself. Intuitively, for the λ fraction of bad indices i, Xi

could be completely determined (and adversarially chosen) based on xi−1. Therefore, whatever
edge xi−1 instructs the walk to take, xi could instruct to return via the same edge, effectively wiping
out the progress made from xi−1. Overall, when all the bad indices are at the end, it can wipe out λt
steps of entropy accumulation, leaving an entropy gap of λt.10 The case of λ-error is interesting in
its own right. In fact, a recent work of Chattopadhyay, Gurumukhani, and Ringach [CGR24], shows
that deterministic condensing of λ-almost δ-CG sources is impossible, even with large entropy gap,
in the regime where λ ≥ 1

2 .
Goodman, Li, and Zuckerman [GLZ24] showed how to condense CG-sources even when the

blocks are long, and the entropy rate is subconstant. However, their constructions are not online,
and they don’t address the case of almost-CG sources.11

10When λ > 0 but the λ-fraction of bad blocks is nicely distributed in the sense that each suffix contains at most
λ-fraction of bad blocks (up to an additive term), we can regain constant entropy gap. See [DMOZ23, Section 3.1], where
this property is called suffix friendliness.

11However, their constructions work for suffix-friendly CG-sources.
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Previous works that directly consider (deterministic) online extraction [DGSX21a, DGSX21b]
assume a strong notion of unpredictability, wherein the Xi-s are independent (but with some
min-entropy). In their model, they assume that for every i, |Si| = |Xi| = n, with the length of the
stream t sufficiently long that the total entropy k of X is at least n. Recall that in our work, we
generally think of each Xi ∼ {0, 1}d for some constant d, n = dt, and |St| ≈ k � n. More specifically,
[DGSX21a] considers how entropy accumulates for specific update functions that are based off
of practical random number generation. They show that entropy accumulates when the Xi-s
are independent draws from certain classes of distributions known as 2-monotone distributions.
[DGSX21b], considers linear update functions and shows that entropy accumulates when the Xi-s
are independent k-sources.

Other previously studied notions of sequential sources (although not in an online setting)
include Somewhere Honest Entropy Look Ahead (SHELA) sources [AOR+20], also known as one-
sided Non-Oblivious Symbol Fixing (o-NOSF) sources [CGR24]. Such sources are essentially the
λ-error CG-sources discussed above, except the good steps are all high entropy distributions that
are independent from each other. [AOR+20] shows that extracting from SHELA sources is impossible,
however one can convert SHELA sources into uniform SHELA sources. A uniform SHELA (or
oNOSF) sources is one where every high entropy good step is in fact a uniform distribution.

A recent work by Xun and Zuckerman [XZ24] provides constructions of strong offline extractors
whose seed length has nearly optimal dependence on n and ε: for any desired α > 0, their
construction gives an extractor with seed length (1 + α) log(n − k) + (2 + α) log 1/ε + O(1), as
long as the entropy rate k/n is sufficiently close to 1 (depending on α). To compare, our results
discussed in Section 1.6 provide online extractors with seed length log n+O(log 1/ε) +O(1) when
k/n > 1−Θ(ε).

1.8 Organization

Section 2 gives preliminary definitions and results needed for our work. Section 3 provides our
novel analysis of random walks using unpredictable sources on lossless expanders. Section 4 gives
the analysis using the idea of a two-stage construction from [DMOZ23], while Section 5 plugs in
known explicit constructions of lossless expanders to give explicit (with and without two-stage)
constructions of online condensers. Finally, Section 6 compares and contrasts the extractors we
obtain from classic random walks expanders to the ones we get from our lossless expanders.

2 Preliminaries

For integers denoted by lowercase letters such as n,m, k, d, we typically use capital letters to denote
their power N = 2n,M = 2m,K = 2k, D = 2d.

2.1 Random Variables and Entropy

The support of a random variable X distributed over some domain Ω is the set x ∈ Ω for which
Pr[X = x] 6= 0, which we denote by Supp(X).

The total variation distance (or, statistical distance) between two random variables X and Y
over the same domain Ω is defined as |X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). Whenever
|X − Y | ≤ ε we say that X is ε-close to Y and denote it by X ≈ε Y . We denote by Un the random
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variable distributed uniformly over {0, 1}n. We say a random variable is flat if it is uniform over its
support. Whenever we write x ∼ A for A being a set, we mean x is sampled uniformly at random
from the flat distribution over A.

For a function f : Ω1 → Ω2 (even a random one) and a random variable X distributed over
Ω1, f(X) is the random variable distributed over Ω2 obtained by choosing x according to X and
computing f(x). For a set A ⊆ Ω1, f(A) = {f(x) : x ∈ A}. For every f : Ω1 → Ω2 and two random
variables X and Y distributed over Ω1 it holds that |f(X)− f(Y )| ≤ |X − Y |, and is often referred
to as a data-processing inequality.

The (Shannon) entropy of a random variable X is H(X) =
∑

x∈Supp(X) Pr[X = x] log 1
Pr[X=x] .

The min-entropy of X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
,

and it always holds that H∞(X) ≤ H(X). For some ε > 0, we define the smooth min-entropy of X
by

Hε
∞(X) = max

X′:X′≈εX
H∞(X).

We record the following easy claim.

Claim 2.1. Let X ∼ {0, 1}n be a random variable such that X ≈ε Un. Then, H∞(X) ≥ log 1
ε .

A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy
at least k. We refer to k

n as the random variable’s entropy rate. When n is clear from context we
sometimes omit it and simply say that X is a k-source.

Claim 2.2. Let X ∼ {0, 1}d be a random variable, then the following hold:

• If Hε
∞(X) ≥ δd, then Prx∼X [Pr[X = x] ≥ 2D−δ] ≤ 2ε.

• Suppose δd ≤ d− 2. If Prx∼X [Pr[X = x] ≥ D−δ] ≤ ε then Hε
∞(X) ≥ δd

Proof: For the first bullet, let H be the set of x-s such that Pr[X = x] ≥ 2D−δ. On the one
hand, Pr[X ∈ H] ≤ ε + |H|

Dδ
. On the other hand, Pr[X ∈ H] ≥ |H| · 2D−δ. Thus |H| ≤ εDδ. So

Pr[X ∈ H] ≤ 2ε.
For the second bullet, let p be the distribution of x (i.e. p(x) = Pr[X = x]). Let H1 be the set of

x-s such that p(x) > D−δ and let H2 be the set of x-s such that 1
2D
−δ ≤ (x) ≤ D−δ. Consider the

following probability distribution r.

r(x) =


0 if x ∈ H1,
p(x) if x ∈ H2,

p(x) +

∑
y∈B1

p(y)

|{0,1}n\(H1∪H2)| otherwise.

By construction, r is ε-close to p. So it suffices to show that r is a δd source. Observe that:

| {0, 1}d \ (H1 ∪H2)| ≥ 2d − 2δd+1 ≥ 2δd+2 − 2δd+1 = 2δd+1.

Therefore, for any x ∈ {0, 1}d \ (H1 ∪H2), p(x) ≤ D−δ.
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Claim 2.3. Suppose thatX = (1−ρ)X ′+ρX ′′, whereX ′ is γ-close to a δd source. Then, X is (γ+ρ)-close
to a δd source.

Proof: Let X? be the δd source that X ′ is γ-close to. Then,∑
x∈Supp(X)

|Pr[X = x]− Pr[X? = x]| =
∑

x∈Supp(X)

∣∣(1− ρ) Pr[X ′ = x] + ρPr[X ′′ = x]− Pr[X? = x]
∣∣

≤ ρ+
∑

x∈Supp(X)

∣∣Pr[X ′ = x]− Pr[X? = x]
∣∣ ≤ ρ+ γ.

Claim 2.4. Let X,Y be random variables with X ∼ {0, 1}d. Assume that δd ≤ d− 2, and that

Pr
(x,y)∼(X,Y )

[Pr[X = x|Y = y] > D−δ] ≤ ρ.

Then, Prx∼X
[
Pr[X = x] > 2D−δ

]
≤ 4
√
ρ.

Proof: Let A(x, y) be the indicator random variable for the event that Pr[X = x|Y = y] > D−δ.
Then E(x,y)∼(X,Y )[A(X,Y )] = Ey∼Y Ex∼X|Y=y[A(x, y)] ≤ ρ. By Markov’s, with probability at least
1−√ρ over y, Ex∼X|Y=y[A(x, y)] ≤ √ρ. Therefore, by the second bullet of Claim 2.2, with probability
at least 1−√ρ over y, the conditional distribution X|Y = y is

√
ρ-close to a δd-source. Call such

fixed y-s “good”, and “bad” otherwise. Then:

X = (X|y is good) Pr[y is good] + (X|y is bad) Pr[y is bad]

However, the distribution (X|y is good) is convex combination of distributions that are
√
ρ-close to

a δd source, and is thus itself a δd source. By Claim 2.3, we see that X is 2
√
ρ-close to a δd source.

Finally, the first bullet of Claim 2.2 yields the result.

Lemma 2.5. Let X,Y be random variables with X ∼ {0, 1}d and Y . Assume that δd ≤ d− 2, and that

Pr
(x,y)∼(X,Y )

[
Pr[X = x|Y = y] > D−δ

]
≤ ρ.

Then, for any deterministic function f : Supp(Y )→ Ω, for some finite range Ω, it holds that

Pr
(x,ω)∼(X,f(Y ))

[
Pr[X = x|f(y) = ω] > 2D−δ

]
≤ 5ρ1/4.

Proof: We have:

ρ ≥ Pr
(x,y)∼(X,Y )

[
Pr[X = x|Y = y] > D−δ

]
=
∑
ω∈Ω

Pr[f(Y ) = ω] Pr
(x,y)∼(X,Y )

[
Pr[X = x|Y = y] > D−δ

∣∣∣f(Y ) = ω
]
.

Therefore, by Markov’s, with probability at least 1−√ρ over ω ∼ f(Y ), we have that

Pr
(x,y)∼(X,Y )

[
Pr[X = x|Y = y] > D−δ

∣∣∣f(Y ) = ω
]
≤ √ρ.
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Therefore, by Claim 2.4, for every such good ω, we have:

Pr
x∼X

[
Pr[X = x] > 2D−δ

∣∣∣f(Y ) = w
]
≤ 4ρ1/4

Finally we can conclude that

Pr
(x,ω)∼(X,f(Y ))

[Pr[X = x|f(y) = ω] > 2D−δ] ≤ 4ρ1/4 + ρ1/2 ≤ 5ρ1/4.

2.2 Bipartite Graphs and Lossless Expanders

We say a bipartite graph G = (V1, V2, E) is D-regular if it’s D left-regular. We denote by ΓG(v)
the set of neighbors of v in G (whenever v ∈ V1, ΓG(v) ⊆ V2, and likewise whenever v ∈ V2).
When G is clear from context, we will simply write Γ. When we refer to a step over G, we mean
taking a step from V1 to V2. Our constructions utilize long walks over G, and specifically we will
walk on a layered graph from left to right, with copies of G between consecutive layers. For a
D-regular bipartite G = ([N ], [N ], E), a length-t walk over G starting from v ∈ [N ] according to the
instructions (i1, . . . , it) ∈ [D]t is the sequence (v0, v1, . . . , vt), where vj is the ij-th neighbor of vj−1.

Definition 2.6 (bipartite expander). We say a bipartite graph G = ([N ], [M ], E) is a (K,A)-expander
if for all subsets S ⊆ [N ] of size at most K, the neighborhood set ΓG(S) has size at least A · |S|.

When G is D-regular we can hope for A to be very close to D up to K ≈M/D. When indeed
A = (1− ε)D we say G is a (K, ε) lossless expander.12 The expanders we work with will general be
balanced: N = M , and biregular, so every node in the bipartite graph has exactly D neighbors.

Theorem 2.7 (nonexplicit lossless expanders). There exists a universal constant c? such that for every
positive integers N and D, there exists a D-biregular bipartite graph G = ([N ], [N ], E) that is a (K, ε)
lossless expander for ε ≤ c∗

D and K = N
c∗D2 . By brute-force, such an expander can be found deterministically

in time NO(ND).

We make use of recent constructions of explicit biregular expanders, that simplify the seminal
[CRVW02] construction, and improve upon its dependence between ε and D.

Theorem 2.8 ([CRT23, Gol24]). There exists a universal constant c? such that for every positive integers
N and D, there exists an explicit D-regular bipartite graph G = ([N ], [N ], E) that is a (K, ε = c?

D1/3 )

expander and K = N
Dc?

.

Remark 2.9. The actual dependence between ε and D in the new constructions is even better, roughly
D = O

(
log 1/ε
ε2

)
. However, in order for us to state a simple theorem for all D-s, we use the weaker bound

ε = O(1/D1/3). We note that the fact that the new constructions are biregular greatly simplify the analysis.
On the other hand, the improvement in dependence between ε and D from [CRVW02] only marginally
improves upon the entropy rate δ that we can handle without a two stage construction.

Remark 2.10. For simplicity, for the remainder of the paper, we consider the global c? from both of the above
theorems the same.

12For brevity, we use K rather than the more standard Kmax. It is useful to keep in mind that K = ΩD(M).
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2.2.1 The Expander’s Error for Entropy Rate δ

Given a (K, ε)-expander G = (U, V,E), it is a well known fact that for any set of size |S| ≤ K, there
are at least (1− 2ε)D|S| unique neighbors of S. Assume for simplicity that each vertex u ∈ S has
exactly (1− 2ε)D unique neighbors. This mean that the probability over a choice of u ∈ S (using
any distribution over S), and a uniform random neighbor v ∈ Γ(u), that p(v) ≤ 1

Dp(u) is at least
1− 2ε.

In the case when the distribution over neighbors is no longer uniform, but a flat source over
Dδ, the new probability of a “successful dampening”, i.e. that p(v) ≤ 1

Dδ
p(u), is at least 1− 2εD1−δ.

Under these simplifying assumptions, we can consider the term εD1−δ as the error of the expander
for entropy rate δ. Indeed we will be able to show that the intuition above holds in the general case,
with a similar error term appearing in the full analysis. Notice that when δ = 1, the error of the
lossless expander is essentially equivalent to the error of the “conductor” corresponding to G (see
[CRVW02]).

As a final remark, note that the expanders from Theorem 2.7 and Theorem 2.8 yield errors
roughly D−δ and D1/2−δ for entropy rate δ respectively. Thus, while an optimal lossless expander
can yield a nontrivial error for any entropy rate δ > 0, current explicit constructions can only do so
for sufficiently large error rates δ > 1/2.

2.3 Seeded Extractors, Condensers, and Samplers

Definition 2.11 (extractor). A function

Ext : {0, 1}n × {0, 1}` → {0, 1}m

is a (k, ε) (seeded) extractor if the following holds. For every (n, k) source X it holds that Ext(X,Y ) ≈ε
Um, where Y is uniformly distributed over {0, 1}` and is independent of X . We say Ext is strong if
(Ext(X,Y ), Y ) ≈ Um × Y .

We’ll make use of extractors that work well when X has a small entropy gap.

Theorem 2.12 ([GW97]). For every positive integer n, and any ∆ < n and ε > 0, there exists an
explicit (k = n − ∆, ε) extractor ExtGW : {0, 1}n × {0, 1}` → {0, 1}m, where ` = O(∆ + log 1

ε ) and
m = n−O(∆ + log 1

ε ).

In seeded condensers, the goal is to improve the quality of a random source X using few
additional random bits, albeit not necessarily into the uniform distribution.

Definition 2.13. A function
Cond : {0, 1}n × {0, 1}` → {0, 1}m

is a (k, k′, ε) (seeded) condenser for a class of sources X over n bits if the following holds. For every
source X ∈ X it holds that Hε

∞(Cond(X,Y )) ≥ k′, where Y is uniformly distributed over {0, 1}` and is
independent of X . When ` = 0, we say that X admits deterministic condensing.

We next define density samplers.

Definition 2.14 (sampler). Let Γ: [N ]× [D]→ [M ].
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• We say x ∈ [N ] is ε-bad for B ⊆ [M ] if∣∣∣∣ Pr
y∼U[D]

[Γ(x, y) ∈ B]− µ(B)

∣∣∣∣ > ε.

• We say Γ is a (δ, ε) sampler if for every B ⊆ [M ] we have that

|{x ∈ [N ] : x is ε-bad for B}| < δN.

Lemma 2.15 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) extractor. Then, Ext is also a
(δ = 2k−n+1, ε) sampler.

Conversely:

Lemma 2.16. Let Γ: {0, 1}n×{0, 1}d → {0, 1}m be a (δ, ε) sampler. Then, Γ is also a (k = n− log 1/δ+
log 1/ε, 2ε) extractor.

3 Condensing Unpredictable Sources via Random Walks

In this section we demonstrate our novel analysis of random walks via (δ, ρ) unpredictable sources,
on (K, ε)-lossless expanders. We state our theorems in full generality, for any δ, ρ, and ε, without
regard to the quality of these parameters. Naturally, the theorems will only give interesting results
(and we will only apply them) with sufficiently large δ, and sufficiently small ε and ρ.

3.1 The Expander Framework

We use the following framework, which was also used in [DMOZ23].

Definition 3.1 (weight function). Let G = (U, V,E) be a bipartite graph. Let w : U → R≥0 be a weight
function. Let |w| =

∑
u∈U w(u). We define a weight function on N (w) : V → R≥0 as:

N (w)(v) = max
u∈Γ(v)

w(u)

We denote uv as the node that achieves maxu∈Γ(v)w(u).

Theorem 3.2 (weight expansion, see Lemma 4.2 in [DMOZ23]). Let G be a (K, ε)-expander. Suppose
that w is a weight function supported on K nodes. Then, |N (w)| ≥ (1− ε)D|w|.

The following corollary is immediate.

Corollary 3.3. Let G = (U, V,E) be a (K, ε)-expander. Suppose that w is a weight function supported on
K nodes. Then, ∑

v∈V

∑
u∈Γ(v)\uv

w(u) ≤ εD|w|.

Proof: Observe that

D|w| =
∑
v∈V

∑
u∈Γ(v)

w(u) =
∑
v∈V

w(uv) +
∑
v∈V

∑
u∈Γ(v)\uv

w(u),

and then apply Theorem 3.2.

18



3.2 A Warmup

To help illustrate the ideas of proving our main technical result, we first reprove a generalized
notion of unique neighbor expansion (see also [DMOZ23, Appendix D]).

Theorem 3.4. Let G = (U, V ) be a D-biregular (K, ε) lossless expander. Let p be a probability distribution
supported on at most K nodes of V . Then,

∑
v∈V

 1

D
p(uv)−

∑
u∈Γ(v),u6=uv

1

D
p(u)

 ≥ 1− 2ε. (1)

Proof: Observe that

1 =
∑
v∈V

 1

D
p(uv) +

∑
u∈Γ(v),u 6=uv

1

D
p(u)

 .

By Corollary 3.3,
∑

v∈V
∑

u∈Γ(v),u6=uv
1
Dp(u) ≤ ε. Thus, subtracting twice this quantity from both

sides yields the result.

We now turn to interpreting the above theorem. Let V + ⊆ V be the set of vertices v for which
1
Dp(uv) −

∑
u∈Γ(v),u6=uv

1
Dp(u) ≥ 0. Or in other words, p(v) =

∑
u∈Γ(v)

1
Dp(u) ≤ 2

Dp(uv). It must
still be the case that ∑

v∈V +

 1

D
p(uv)−

∑
u∈Γ(v),u6=uv

1

D
p(u)

 ≥ 1− 2ε,

and also
1

D

∑
v∈V +

p(uv) ≥ 1− 2ε. (2)

Observe that the quantity on the left-hand side of Equation (2) measures the total probability (over a
choice of u from p, and a uniformly random neighbor of u), that a step in the graph leads to a v ∈ V +

from its heaviest weight neighbor uv. By the definition of V +, this means that with probability at
least 1− 2ε, a vertex u moves from having a probability of p(u), to having a probability of 2

Dp(u).
So far, we have shown that given any initial probability distribution p(u), with support size at

most K, a uniform random step on the expander will send u to a neighbor with probability at most
2/D times smaller than the original p(u). In order to handle the general case, we must generalize
the argument to work when p(u) is supported on more than K vertices, and when the next step
is not uniform, but only usually (with probability at least 1 − ρ over the choice of u and a next
step) a low probability outcome. Intuitively, the latter adds an extra −ρ to the right-hand side of
Equation (1). To handle the former, considering only nodes with probability at least 1/K according
to p yields a support of size at most K. We hope to argue that the the contribution of nodes with
probability smaller than 1/K to the overall probability is small and can also be subtracted from the
right-hand side of Equation (1). For technical reasons, we will need to instead consider only nodes
with probability at least Da/K for some parameter a.
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3.3 Analyzing a Single Step in the Random Walk

Definition 3.5. Let X = X1 ◦ · · · ◦Xt be a sequence of random variables, each Xi ∼ {0, 1}d. Let G =
(U, V,E) be a balanced bipartite D-regular graph. For i ∈ [t], we define the random variable Wi = Wi(X)
to be the vertex in U reached upon a walk over G for i steps using the instructions x1, . . . , xi ∼ X[1,i].13

Let p0 be a distribution concentrated entirely on an arbitrary start vertex. Define pi : U → R as the
probability distribution over the vertices in U after those i steps. We also overload this notation, by defining
pi : X → R as

pi(x1, . . . , xt) = pi(Wi(x1, . . . , xt)).

Furthermore, let `G : E → [D] be a labelling function for G’s edges such that for every u, every edge
leaving u is assigned a unique label in [D]. When considering a single step onG from distribution pi−1 = pU
to pi = pV , we define ru(u, v) = Pr[Xi = `G(u, v)|Wi−1 = u].

We are now ready to give our main technical result. In order to use the ideas presented in
Section 3.2, we will decompose the total probability weight into “good events”, such as the one
measured in the left-hand side of Equation (2), and “bad events” whose measure we will bound.

Theorem 3.6. Let G be a D-biregular (K, ε) lossless expander. Let X = X1 ◦ · · · ◦Xt, each Xi ∼ {0, 1}d,
and fix some 0 < δ ≤ 1. For every i ∈ [t], we abbreviate ρi = ρi(X, δ) (see Definition 1.1).

Then, for any i ∈ [t] and any parameter a > 2, there is a subset Si ⊆ {0, 1}n=dt with Pr[X ∈ Si] ≥
1− 2εD1−δ − 2ρi − 2D−(a−2), such that for every x ∈ Si,

pi(x) ≤ max

(
2

Dδ
· pi−1(x),

Da+1

K

)
.

Before we prove the theorem we note that we will commonly instantiate the theorem so
that the term D−(a−2) is absorbed by the εD1−δ term, by setting a = log(1/ε)/d + 2, so that
D−(a−2) ≤ ε ≤ εD1−δ.

Corollary 3.7. Keeping the notation above, for every i ∈ [t] there is a subset Si ⊆ {0, 1}n=dt with
Pr[X ∈ Si] ≥ 1− 4εD1−δ − 2ρi, such that for every x ∈ Si,

pi(x) ≤ max

(
2

Dδ
· pi−1(x),

D3+log(1/ε)/d

K

)
.

For a (K, ε)-expander G, we’ll often refer to the quantity

kcapacity = k − log(1/ε)− 3d

as the capacity of G, as this is intuitively the highest the “entropy” can accumulate to in the graph.

Proof (of Theorem 3.6): Fix i ∈ [t], and denote pU = pi−1, pV = pi, and ρi = ρ. Note that

pV (v) =
∑

u∈Γ(v)

Pr
X

[Xi = `G(u, v)|Wi−1 = u] · pU (u) =
∑

u∈Γ(v)

ru(u, v) · pU (u).

13Formally, along an (i+ 1)-partite graph with a copy of G between each two layers.
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For any vertex u, define Bu ⊆ Supp(X) as

Bu =
{
x : Wi−1(x) = u ∧ Pr

[
Xi = xi|X[1,i−1] = x[1,i−1]

]
> D−δ

}
. (3)

That is, Bu is the set of paths reaching u at step i, but whose next instruction has high probability of
occurring. We can then write ru(u, v) conditioned on being in Bu or not as follows:

ru(u, v) = Pr[x ∈ Bu|Wi−1 = u] Pr[Xi = `G(u, v)|x ∈ Bu,Wi−1 = u]

+ Pr[x 6∈ Bu|Wi−1 = u] Pr[Xi = `G(u, v)|x 6∈ Bu,Wi−1 = u]

, θu,b · ru,b(u, v) + θu,g · ru,g(u, v).

Notice that: ∑
v∈V

∑
u∈Γ(v)

θu,b · ru,b(u, v) · pU (u) = ρ. (4)

Notice also that by definition, for any u, v, ru,g(u, v) ≤ D−δ. The idea will be to decompose∑
v∈V

∑
u∈Γ(v) ru(u, v) · pU (u) into different parts. First, we’ll separate those v which will definitely

have sufficiently small probability from those that might not. To this end, let Ha for a parameter
a be the set of u ∈ U with pU (u) ≥ Da

K , and let VHa be the set of vertices v ∈ V with at least one
neighbor into Ha. In other words, VHa = ΓG(Ha). Define also H = H0 as the set of nodes with
probability at least 1/K. Then,

∑
v∈V

∑
u∈Γ(v)

ru(u, v) · pU (u) =
∑
v 6∈VHa

 ∑
u∈Γ(v)

ru(u, v) · pU (u)


+
∑
v∈VHa

 ∑
u∈Γ(v)

ru(u, v) · pU (u)

 .

For any v 6∈ VHa , we know that pV (v) ≤ Da+1/K, and therefore is already sufficiently small
probability. Hence ultimately, the term

∑
v 6∈VHa

measures a “good event.” Next, for nodes v ∈ VHa ,
we can separate the contribution to pV (v) (the inner sum) from “good” next steps (those with low
probability) and the “bad” ones.

∑
v∈V

∑
u∈Γ(v)

ru(u, v) · pU (u) =
∑
v 6∈VHa

 ∑
u∈Γ(v)

ru(u, v) · pU (u)


+
∑
v∈VHa

∑
u∈Γ(v)

θu,g · ru,g(u, v) · pU (u) (5)

+
∑
v∈VHa

∑
u∈Γ(v)

θu,b · ru,b(u, v) · pU (u). (6)

Notice we can bound the summand in (6) by ρ, whereas we hope to work with (5) as in the warmup,
as this summand corresponds to “high entropy steps.” Specifically, for summand (5), we can
partition the neighbors u ∈ Γ(v) into three categories:

• The u that is uv. Note that uv is always in Ha ⊂ H .
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• The u-s in H (but not uv).

• The u-s not in H .

Therefore, we can rewrite once again according to these classifications:

∑
v∈V

∑
u∈Γ(v)

ru(u, v) · pU (u) =
∑
v 6∈VHa

 ∑
u∈Γ(v)

ru(u, v) · pU (u)


+
∑
v∈VHa

θuv ,g · ruv ,g(uv, v) · pU (uv)

+
∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u) (7)

+
∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u) (8)

+
∑
v∈VHa

∑
u∈Γ(v)

θu,b · ru,b(u, v) · pU (u).

The following claim bounds the summand in (7).

Claim 3.8. ∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u) ≤ εD1−δ.

Proof: Let w : U → R be the weight function that is w(u) = 0 if u 6∈ H and w(u) = pU (u) otherwise.
Notice that |w| = Pr[x ∈ H]. We make use of the fact that ru,g ≤ D−δ:∑

v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u) =
∑
v∈VHa

∑
u∈Γ(v)\uv

θu,g · ru,g(u, v) · w(u)

≤ 1

Dδ

∑
v∈V

∑
u∈Γ(v)\uv

w(u) ≤ 1

Dδ
· εD|w| ≤ εD1−δ,

where the penultimate inequality follows from Corollary 3.3.

The next claim now bounds summand (8):

Claim 3.9. It holds that ∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u) ≤ 1

Da−2
.

Proof: First, ∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

ru,g(u, v) · pU (u) ≤
∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

1

K
,

where we used the fact that pU (u) ≤ 1/K for every u 6∈ H . We observe that the number of terms
in the double sum is at most the number of edges touching VHa . Ha has size at most K/Da, and
therefore there are at most K/Da−2 edges overall that touch VHa (assuming the right degree is also
D). Thus overall, the sum is at most (1/K) ·K/Da−2 = 1/Da−2.
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Using these claims, and the bound on ρ from (4), we can conclude that

1− 2εD1−δ − 2ρ− 2D−(a−2) ≤
∑
v 6∈VHa

 ∑
u∈Γ(v)

ru(u, v) · pU (u)


+
∑
v∈VHa

θuv ,g · ruv ,g(uv, v) · pU (uv)

−
∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u)

−
∑
v∈VHa

∑
u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u)

−
∑
v∈VHa

∑
u∈Γ(v)

θu,b · ru,b(u, v) · pU (u).

Now, let V+ ⊆ VHa be the set of v-s such that

θuv ,g · ruv ,g(uv, v) · pU (uv)

−
∑

u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u)

−
∑

u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u)

−
∑

u∈Γ(v)

θu,b · ru,b(u, v) · pU (u) ≥ 0.

It follows that

1− 2εD1−δ − 2ρ− 2D−(a−2) ≤
∑
v 6∈VHa

 ∑
u∈Γ(v)

ru(u, v) · pU (u)

 (9)

+
∑
v∈V+

θuv ,g · ruv ,g(uv, v) · pU (uv). (10)

We observe that the above inequality suggests a subset of x ∈ Supp(X) (of large density) for
which good things happen:

• The term (9) measures the probability of the set of x-s that lead to a vertex in v ∈ VH , but no
neighbor of this v has probability weight pU (u) > Da/K. Such vertices have weight at most
Da+1

K .

• The term (10) measures the probability of x-s that lead to each v ∈ V+ from uv.
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But for any v ∈ V+,

pV (v) = θuv ,g · ruv ,g(uv, v) · pU (uv)

+
∑

u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u)

+
∑

u∈(Γ(v)\uv)∩H

θu,g · ru,g(u, v) · pU (u)

+
∑

u∈Γ(v)

θu,b · ru,b(u, v) · pU (u)

≤ 2 · θuv ,g · ruv ,g(uv, v) · pU (uv) ≤
2

Dδ
· pU (uv).

Overall, we can consider the corresponding events:

E1 =
{
x ∈ Supp(X) : Wi(x) ∈ V Ha

}
E2 =

{
x ∈ Supp(X) : Wi(x) ∈ V+, Wi−1(x) = uWi(x), Pr

(
Xi = xi|X[1...i−1] = x[1...i−1]

)
≤ D−δ

}
,

and set Si = E1 ∪ E2. Recalling that V+ ⊆ VHa , we see that the two events are disjoint. Thus,
indeed, we have our lower bound on Pr[X ∈ Si], and for each x ∈ Si, either pV (x) ≤ Da+1

K or
pV (x) ≤ 2

Dδ
· pU (x).

The next lemma states that upon walking over any graph G (not necessarily an expander), and for
any next-step distribution, the probability of a node increasing by a large amount cannot be too
large.

Lemma 3.10. LetG = (U, V,E) be a balancedD-biregular graph. LetX = X1◦· · ·◦Xt, eachXi ∼ {0, 1}d.
Then, for every i ∈ [t], and any parameter a > 2, there is a subset Si ⊆ {0, 1}n=dt with Pr[X ∈ Si] ≥
1−D−(a−2), such that for every x ∈ Si,

pi(x1, . . . , xt) ≤ Da+1 · pi−1(x1, . . . , xt).

Proof: As before, fix an i, and let pU = pi−1 and pV = pi. For every v ∈ V , define

Tv =

{
u ∈ Γ(v) : pU (u) ≥ 1

Da
pU (uv)

}
,

and recall that uv is the neighbor of v with the heaviest probability under pU . Then, we have that

1 =
∑
v∈V

∑
u∈Tv

ru(u, v) · pU (u) +
∑

u∈Γ(v)\Tv

ru(u, v) · pU (u)

 ,

however, ∑
v∈V

∑
u∈Γ(v)\Tv

ru(u, v) · pU (u) ≤ 1

Da

∑
v∈V

∑
u∈Γ(v)\Tv

ru(u, v) · pU (uv) ≤
D2

Da
.
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Therefore:
1−D−(a−2) ≤

∑
v∈V

∑
u∈Tv

ru(u, v) · pU (u).

We conclude by observing that the RHS measures the density (under X) of a set of x-s for which

pV (x1, . . . , xt) ≤ Da+1 · pU (x1, . . . , xt).

This is because, for every v, and any u ∈ Tv, pU (u) ≥ 1/Da · pU (uv) and pV (v) ≤ D · pU (uv). The
set in question is Si = {x ∈ Supp(X) : Wi−1(x) ∈ TWi(x)

}.

3.4 Analyzing the Entire Random Walk

In this section we analyze how the vertex probabilities evolve (on average) over multiple steps on
the graph. The next lemma says that if many steps add a lot of entropy, and the total entropy lost
in “bad” steps is low, then many time steps must have high entropy. We use the notation t′ below
instead of t, because we will eventually use the lemma on a suffix (of length t′) of a sequence of
length t.

Lemma 3.11. Let a, b, t′, kcapacity, kstart be positive integers, with kstart ≤ kcapacity. Let y1, . . . , yt′ be a
sequence of real numbers. Suppose that

∑
i:yi<0 yi ≥ −b, and that yi ≥ a whenever yi ≥ 0.

Define the sequence z0 = kstart, and

zi =

{
min(zi−1 + yi, kcapacity) yi ≥ 0,

max(zi−1 + yi, 0) yi < 0.

Then, the number of zi-s that are smaller than kcapacity is at most

2 · |{i : yi < 0}|+
kcapacity − kstart + 2b

a
.

Proof: Call zi good if zi = kcapacity. Call zi bad otherwise. Call a step yi bad if yi < a.
First, there must be some good zi? in the first

ϕ = |{i : yi < 0}|+
kcapacity − kstart + b

a

of the i-s. This is because even in the worst case, if all bad steps are within the first ϕ i-s, the
remaining kcapacity−kstart+b

a good steps will bring the value of zi back to capacity from the worst case
deficit of kcapacity − kstart + b. We thus add ϕ to our upper bound on the number of zi-s that are bad.
We can then assume that z0 = kcapacity, and count the number of bad zi-s in this special case. To do
so, we write the sequence y1, . . . , yt′ as W0, Y1,W1, . . . , Ys,Ws, where:

• Every Wj is a contiguous sequence of i-s such that yi ≥ a.

• Every Yj starts with some i? such that yi? < 0, and ends at the first i? + ` such that∑
i∈[i?,i?+`]:yi<0

−yi ≤
∑

i∈[i?,i?+`]:yi≥0

yi.
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• The last Ys may end prematurely.

Observe that it suffices to count the length of each of the sequences Yj , as this will be the number of
times zi is bad. Towards this end, denote bj =

∑
i:yi<a,yi∈Yj −yi. Then, the length of each Yj is

|{i ∈ Yj : yi < 0}|+ |{i ∈ Yj : yi ≥ 0}| ≤ |{i ∈ Yj | yi < 0}|+ bj
a
.

Therefore, the sum of the lengths of the Yi-s is at most |{i | yi < 0}| + b
a . Therefore, overall, the

number of bad zi-s is at most ϕ+ |{i : yi < 0}|+ b
a .

The following lemma is similar to the previous one, and states that if there are many good steps,
and small entropy loss overall, then after a large number of steps, the entropy should be large.

Lemma 3.12. Let b, t, kcapacity be positive integers. Let Y1, . . . , Yt be a sequence of real valued random
variables over the domain {0, 1}n. Suppose that E

[∑t
i=1−1Yi<0 · Yi

]
≤ b. Define the random variables

Z0 = 0, and

Zi =

{
min(Zi−1 + Yi, kcapacity) Yi ≥ 0,

max(Zi−1 + Zi, 0) Yi < 0.

Suppose further that for some `, it holds that E
[∑`

i=1 1Yi≥0 · Yi +
∑t

i=1 1Yi<0 · Yi
]
≥ kcapacity. Then, it

also holds that
E[Z`] ≥ kcapacity − b.

Proof: Define the event C ⊆ {0, 1}n to be the set of x-s such that Zi is at capacity for some i ∈ [`].
Notice that if x ∈ C then Z`(x) ≥ kcapacity +

∑`
i=1 1Yi<0 · Yi. If x 6∈ C then Z`(x) ≥

∑`
i=1 Yi(x) ≥∑`

i=1 1Yi≥0(x) · Yi(x) +
∑t

i=1 1Yi<0(x) · Yi(x). So we have

E[Z`] = (1− Pr[C]) · E[Z` | C] + Pr[C] · E[Z` | C]

≥ (1− Pr[C]) · E

[∑̀
i=1

1Yi≥0 · Yi +

t∑
i=1

1Yi<0 · Yi

]
+ Pr[C] · E

[
kcapacity +

∑̀
i=1

1Yi<0 · Yi

]

≥ kcapacity + E

[
t∑
i=1

1Yi<0 · Yi

]
≥ kcapacity − b.

We can now state a result that tells us how for a typical x ∼ X , the “surprise” h(x1, . . . , xi)
changes as i increases from 1 to t. Since the true surprises (which we denote Zi) may behave
differently than the “worst case” bounds developed in Theorem 3.6, we define a proxy sequence,
Z ′i, that captures the worst case behaviour for those surprises.

Lemma 3.13. Let G be a D-biregular (K, ε) lossless expander. Let X = X1 ◦ · · · ◦Xt, each Xi ∼ {0, 1}d,
and fix some 0 < δ ≤ 1. For every i ∈ [t], recall that we defined

ρi = Pr
x∼X

[
Xi = xi|

{
X[1,i−1] = x[1,i−1]

})
> D−δ].
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For every i, let Si be defined as in Corollary 3.7, and let kcapacity = k − log(1/ε) − 3d, recalling that
k = logK and d = logD. Define Zi(x) = − log pi(x) for i ∈ {0, . . . , t}. Define Yi(x) = Zi(x)−Zi−1(x)
for i ∈ [t]. Also for i ∈ [t], let:

Y ′i (x) =


δd− 1 x ∈ Si
−4d x 6∈ Si, − 4d ≤ Yi(x) < δd− 1

Yi(x) x 6∈ Si, Yi(x) < −4d

and

Z ′i(x) =

{
min(Z ′i−1(x) + Y ′i (x), kcapacity) Y ′i (x) ≥ 0

max(Z ′i−1(x) + Y ′i (x), 0) Y ′i (x) < 0

with Z ′0(x) = 0. Then, the following holds.

1. For all i ∈ [t] and x ∈ Supp(X), Zi(x) ≥ Z ′i(x).

2. EX [|{i : Y ′i < 0}|] ≤ 4εD1−δt+ 2
∑

i∈[t] ρi.

3. EX [
∑

i−1Y ′i<0 · Y ′i ] ≤ (16εD1−δ + 20D−1)dt+ 8d ·
∑

i∈[t] ρi.

Proof: We prove Item 1 by fixing any x and inducting on i. As a base case, we have that Z0(x) =
Z ′0(x) = 0. For the inductive step, first suppose that x ∈ Si. Notice that by Corollary 3.7, for each
i ∈ [t], if x ∈ Si we have Zi+1(x) ≥ min

(
Zi(x) + δd− 1, kcapacity

)
. Then:

Zi(x) ≥ min
(
Zi−1(x) + δd− 1, kcapacity

)
≥ min

(
Z ′i−1(x) + Y ′i (x), kcapacity

)
= Z ′i(x).

Suppose now that x 6∈ Si. Then:

Zi(x) = Zi−1(x) + Yi(x) = max (Zi−1(x) + Yi(x), 0) ≥ max
(
Z ′i−1(x) + Y ′i (x), 0

)
= Z ′i(x).

The second equality here uses the fact that the Zi-s are, by definition, always nonnegative. The
inequality follows from the inductive hypothesis, and the fact that if x 6∈ Si then Yi(x) ≥ Y ′i (x). For
Item 2, we simply have

E
X

[
|{i : Y ′i < 0}|

]
≤
∑
i

E
X

[
1Si

]
≤ 4εD1−δt+ 2

∑
i

ρi.

For Item 3, we bound EX
[
−1Y ′i<0 · Y ′i

]
for each i:

E
X

[
−1Y ′i<0 · Y ′i

]
≤ 4d · Pr[x 6∈ Si,−4d ≤ Y ′i < δd− 1] +

∞∑
a=3

(a+ 2)d · Pr[x 6∈ Si,−(a+ 2)d ≤ Y ′i < −(a+ 1)d]

≤ 4d · Pr[x 6∈ Si] +
∞∑
a=3

(a+ 2)d · Pr[Y ′i < −(a+ 1)d]

≤ 4d · Pr[x 6∈ Si] +

∞∑
a=3

(a+ 2)d ·D−(a−2)

≤ 4d · (4εD1−δ + 2ρi) +
5D − 4

(D − 1)2
d ≤ (16εD1−δ + 8ρi)d+

20

D
d.
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The third inequality is from Lemma 3.10 since Pr[Y ′i < −(a+1)d] = Pr[Yi < −(a+1)d] by definition,
when a ≥ 3. The result then follows by linearity of expectation.

3.5 Using a Random Stopping Time

With the framework to analyze the behavior of the vertex probabilities over the entire random
walk, we can now show what kind of distributions over the vertices we can obtain.

We can first give a weak result, without the need of random stopping time, to give a deterministic
condenser for unpredictable sources with a linear entropy gap. This result will also be useful for
the two stage construction in Section 4.

Theorem 3.14 (deterministic condensing). Let G be a D-biregular (K, ε) lossless expander. Let X =

X1 ◦ · · · ◦ Xt, each Xi ∼ {0, 1}d, be a (δ, ρ) unpredictable source for some 0 < δ ≤ 1. Suppose that
k = logK is such that

kcapacity ≤ (δd− 1)
(
t− 4εD1−δt− 2tρ

)
− (16εD1−δ + 20D−1)dt− 8tdρ,

where
kcapacity = k − log(1/ε)− 3d.

Then, Wt(X1, . . . , Xt) is η-close to a kcapacity − ηdt source, where

η =
√

36εD1−δ + 8ρ.

Proof: First, we have that E[Zt] ≥ E[Z ′t]. By the condition on kcapacity, we can apply Lemma 3.12
and get

E[Zt] ≥ E[Z ′t] ≥ kcapacity − (16εD1−δ − 20D−1)dt− 8d
∑
i

ρi,

where again, we abbreviate ρi = ρi(X, δ). By an averaging argument, with probability at most η
over x ∼ X , we have:

kcapacity − Z ′t(x)

dt
> η.

Therefore with probability at most η, we have that Zt < kcapacity − ηdt.

Finally, a random stopping time allows us to get close to capacity.

Theorem 3.15 (random stopping time). Let G be a D-biregular (K, ε) lossless expander. Let X =

X1 ◦ · · · ◦ Xt, each Xi ∼ {0, 1}d, be a (δ, ρ) unpredictable source for some 0 < δ ≤ 1. For any given `,
suppose that k = logK is such that

kcapacity ≤ (δd− 1)
(
`− 4εD1−δt− 2tρ

)
− (16εD1−δ + 20D−1)dt− 8tdρ,

where
kcapacity = k − log(1/ε)− 3d.

Then, the probability over random stopping time ` ≤ i ≤ t, and a random x ∼ X , that Zi(x) is not at
capacity (i.e., Zi(x) < kcapacity) is at most

224

δ
·
εD1−δt+

∑
i ρi

t− `
.
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Before proving the theorem, we note that we will commonly use the theorem in the case where
0 < δ < 1 and 1

t

∑
i ρi are constant, and ε is sufficiently is small so that εD1−δ ≈ D−δ. In such a

scenario, setting, say, ` = t/2 tells us that the error is O
(

1
δt

∑
i ρi
)
.

Proof: The probability over i ∈ [`, t] and x ∼ X that Zi(x) is not at capacity is:∑
x

Pr
X

[X = x] Pr
i

[Zi(x) is not at capacity] ≤
∑
x

Pr
X

[X = x] Pr
i

[Z ′i(x) is not at capacity]

=
1

t− `
· E
x∼X

[
t∑
i=`

1Z′i(x)<kcapacity

]
,

where we used the notation of Lemma 3.13, and the fact that for every i and x, Z ′i(x) ≤ Zi(x). For
any fixed x we can use Lemma 3.11 to bound the number of Z ′i(x)-s not at capacity and so we can
bound the above expectation by

E

[
t∑
i=`

1Z′i(x)<kcapacity

]
< E

[
2
∣∣{i : Y ′i (x) < 0

}∣∣+
kcapacity − Z ′`(x) + 2

∑
i−1Y ′i (x)<0 · Y ′i (x)

δd− 1

]
.

We can upper bound E [|{i : Y ′i < 0}|] and E
[∑

i−1Y ′i<0 · Y ′i
]

via Lemma 3.13. We lower bound
E[Z ′`] via Lemma 3.12, noting that we can apply it because the assumed upper bound on kcapacity

implies that it is at most kcapacity ≤ E
[∑`

i=1 1Yi≥0 · Yi +
∑t

i=1 1Yi<0 · Yi
]
. Therefore,

E[Z ′`] ≥ kcapacity − (16εD1−δ + 20D−1)dt− 8

(∑
i

ρi

)
d.

Overall, this gives us:

Pr
i,x

[Zi(x) is not at capacity] ≤ 1

t− `

(
2

(
4εD1−δt+ 2

∑
i

ρi

)
+ 3 ·

(16εD1−δ + 20D−1)dt+ 8d
∑

i ρi
δd− 1

)

≤ 1

t− `

(
2

(
4εD1−δt+ 2

∑
i

ρi

)
+

6

δ
·

(
(16εD1−δ + 20D−1)t+ 8

∑
i

ρi

))

≤ 1

δ

224εD1−δt+ 52
∑

i ρi
t− `

.

We next give a corollary with simpler parameters by setting ` = t/2 and setting ρ sufficiently small.
For simplicity, the corollary makes no attempt to optimize the output entropy of the random walk
relative to the entropy of the source, which is roughly δdt.

Corollary 3.16. Let G be a D-biregular (K, ε) lossless expander. Let X = X1 ◦ · · · ◦Xt, each Xi ∼ {0, 1}d,
be a (δ, ρ) unpredictable source for some 0 < δ ≤ 1. Let εD1−δ = D−α for some α, and suppose that
d ≥ 1000

δ·α and ρ ≤ δ
1000 . Also, suppose that k = logK is such that

kcapacity ≤ (δ/4)dt,
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where
kcapacity = k − log(1/ε)− 3d.

Then, the probability over random stopping time t/2 ≤ i ≤ t, and a random x ∼ X , that Zi(x) is not at
capacity (i.e., Zi(x) < kcapacity) is at most

500

δ
(D−α + ρ).

Proof: By the constraints on d and ρ, one can verify that δd−1 ≥ 0.99δd, and every other summand
except the first term, (δd− 1)(t/2), in

(δd− 1)
(
t/2− 4εD1−δt− 2tρ

)
− (16εD1−δ + 20D−1)dt− 8tdρ

is at most .01δdt. And so overall, the expression is at least (δ/4)dt. Therefore, applying Theorem 3.15
with ` = t/2 yields the result.

We also provide a simplified analogue of Theorem 3.14 too, using the same argument, and the fact
that
√
x+ y ≤

√
x+
√
y

Corollary 3.17. Let G be a D-biregular (K, ε) lossless expander. Let X = X1 ◦ · · · ◦Xt, each Xi ∼ {0, 1}d,
be a (δ, ρ) unpredictable source for some 0 < δ ≤ 1. Let εD1−δ = D−α for some α, and suppose that
d ≥ 1000

δ·α and ρ ≤ δ
1000 . Also, suppose that k = logK is such that

kcapacity ≤ (δ/2)dt,

where
kcapacity = k − log(1/ε)− 3d.

Then, Wt(X1, . . . , Xt) is η-close to a kcapacity − ηdt source, where

η = 6(D−α/2 + ρ1/2).

Proof: Again, by the constraints, every term except δdt in

(δd− 1)
(
t− 4εD1−δt− 2tρ

)
− (16εD1−δ + 20D−1)dt− 8tdρ

is at most 0.01δdt and so overall the expression is at least (δ/2)dt. Thus applying Theorem 3.14
yields the result.

4 The Two Stage Construction

So far we have shown our novel analysis that unpredictable sources mix well on an lossless ex-
pander with error ε that is sufficiently small relative to the sources entropy rate δ. Unfortunately,
due to the limitations of currently known constructions of lossless expanders, one cannot immedi-
ately apply our analysis to obtain condensers for unpredictable sources of any constant entropy
rate. To handle any constant entropy rate δ > 0, we utilize the idea from [DMOZ23] of a two stage
construction, and generalize its analysis to the case of unpredictable sources. We make no attempt
to optimize parameters, and only use this section to serve as a proof of concept that the lack of
sufficiently good lossless expanders is not an inherent barrier to condensing from any rate. We first
recall the construction here.
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Definition 4.1. Let X = X1 ◦ · · · ◦Xt, with each Xi ∈ {0, 1}d. We define the new sequence,

X ′ = X ′1, . . . , X
′
t/b

with each X ′i = X[(i−1)b+1,ib] ∈ {0, 1}db. We often refer to b as the epoch or block length.

We can then define the big graph, the small graph and the two level random walk between
them.

Definition 4.2. Let H be a degree D = DH -biregular (KH , εH)-expander on DG vertices. Let G be a
degree DG-biregular, (KG, εG)-expander on M vertices. Given instructions x1, . . . , xt, with xi ∈ {0, 1}d,
denote WH(x1, . . . , xt) as the vertex reached on H after using x1, . . . , xt as instructions. Also, define
X ′′i = WH(X ′i), and Wi,G(x′′1, . . . , x

′′
t/b) as the vertex reached at step i on G using the x′′-s as instructions.

We often refer to X ′′i as the unpredictable source of the second stage.

First, we give a general lemma that we use to show that no matter whether the previous small
walks WH(X ′1), . . . ,WH(X ′i−1) mixed or not, the next steps will still be unpredictable. We state
the theorem with the assumption that the entropy rate δ < 0.99. This assumption simplifies some
arguments, and we note that no two stage construction is necessary for such high entropy rates
anyways.

Lemma 4.3. Let X = X1, . . . , Xt, with Xi ∈ {0, 1}d be a (δ, ρ) unpredictable source, and let D−αH =
εHD

1−δ. Let b > 0 be any epoch length, and assume that

• δ ≤ 0.99,

• d ≥ 1000
δ·αH ,

• ρ ≤ δ16

1064
,

and
kcapacity,H ≤ (δ/4)db,

where
kcapacity,H = kH − log(1/εH)− 3d.

Let
η = 12(D−αH/2 + ρ1/32).

Then, X ′′ = X ′′1 , . . . , X
′′
t/b is a

(
δ′ =

kcapacity,H−ηdb
dG

, ρ′ = 3η
)

unpredictable source.

Proof: Since δ ≤ 0.99, and d ≥ 200, we have that δd ≤ d− 2. For every i ∈ [t], define fi : {0, 1}d(i−1)

as follows. On input

X1, . . . , Xi−1 = X ′1, . . . , X
′
b(i−1)/bc, Xb(i−1)/bc·b+1, . . . , Xi−1,

fi outputs
fi(X1, . . . , Xi−1) = X ′′1 , . . . , X

′′
b(i−1)/bc, Xb(i−1)/bc·b+1, . . . , Xi−1.
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In words, fi outputs the result of the random walks on H in all the epochs before the epoch
containing i, concatenated with the Xj-s in the epoch containing index i, up to but not including i.
Now let A(i, x) be the indicator random variable for whether

Pr
(xi,ω)∼(Xi,f(X1,...,Xi−1))

[Xi = xi|f(X1, . . . , Xi−1) = ω] ≥ 2D−δ.

By Lemma 2.5, for every i, Ex[A(i, x)] ≤ 5ρ
1/4
i . This implies that Ei Ex[A(i, x)] ≤ 5ρ1/4 (using

Jensen’s). Thus:

5ρ1/4b =
1

t/b

t∑
i=1

E
x
[A(i, x)]

=
1

t/b

t/b∑
i=1

b∑
j=1

E
x
[A((i− 1)b+ j, x)]

=
1

t/b

t/b∑
i=1

E
x

 b∑
j=1

A((i− 1)b+ j, x)

 .
By Markov’s inequality, for at least 1 − 3ρ1/8 fraction of i ∈ [t/b], Ex

[∑b
j=1A((i− 1)b+ j, x)

]
≤

3ρ1/8b, and therefore for such good i

E
x∼X

E
j∈[b]

[A((i− 1)b+ j, x)] ≤ 3ρ1/8.

Now fix any such good block i ∈ [t/b]. By yet another Markov’s we see that with probability at
least 1− 2ρ1/16 over a fixing of x′′1, . . . , x

′′
i−1 ∼ X ′′1 , . . . , X ′′i−1, we have that:

E
x′∼X′i|X′′1 ,...,X′′i−1=x′′1 ,...,x

′′
i−1

E
j∈[b]

[A((i− 1)b+ j, x)] ≤ 2ρ1/16.

In other words, in a good block i ∈ [t/b], with high probability over result of the outcome of
the previous small random walks X ′′1 , . . . , X

′′
i−1, the next block of instructions X ′i is a (δ/2, 2ρ1/16)

unpredictable source (using the fact that the true rate δ − 1/d > δ/2 by the constraints on d).
Applying Corollary 3.17 (using the constraints on d and ρ in the statement of this lemma to satisfy
the required constraints), we see that conditioned on such a good fixing of the previous small
random walks, X ′′i is η-close to a kcapacity,H − ηdb source.

Thus the probability over a random i, and random X ′′i that X ′′i is too likely conditioned on its
prefix is η + 2ρ1/16 + 3ρ1/8 ≤ 3η.

Using Lemma 4.3, we can finally apply Corollary 3.16 to our two-stage construction.

Theorem 4.4. Let H be a D = DH -biregular (KH , εH)-expander on DG vertices. Let G be a degree
DG-biregular, (KG, εG)-expander on M vertices. Define:

• kcapacity,H = kH − log(1/εH)− 3d, the capacity of H .

• kcapacity,G = kG − log(1/εG)− 3dG,, the capacity of G.
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• D−αH = εHD
1−δ, the expander error for entropy rate δ.

• η = 12(D−αH/2 + ρ1/32), the error of the second stage unpredictable source, according to Lemma 4.3.

• δ′ =
kcapacity,H−ηdb

dG
, the designated entropy rate of the second stage unpredictable source with block

length b, according to Lemma 4.3.

• D−αGG = εGD
1−δ′
G , the expander error for entropy rate δ.

Let X = X1 ◦ · · · ◦Xt, each Xi ∼ {0, 1}d, be a (δ, ρ) unpredictable source. Suppose that:

• δ ≤ 0.99,

• d ≥ 1000
δ·αH ,

• ρ ≤ δ16

1064
,

• dG ≥ 1000
δ′·αG ,

• 3η ≤ δ′

1000 ,

• kcapacity,H ≤ (δ/4)db, and,

• kcapacity,G ≤ (δ′/4)d(t/b).

Then, the probability over random stopping time t/(2b) ≤ i ≤ t/b, and a random x ∼ X , that

Pr[Wi,G(X ′′1 , . . . , X
′′
t/b) = Wi,G(x′′1, . . . , x

′′
t/b)] > 2−kcapacity,G ,

is at most
500

δ′
·
(
εGD

1−δ′
G + 2η

)
≤ 105

δ′
(D−αGG +D−αH/2 + ρ1/32).

We also give the deterministic version without a random stopping time, obtained by applying
Corollary 3.17 to the second stage unpredictable source instead.

Theorem 4.5. Assume the same premise as in Theorem 4.5. Then, Wt/b,G(X ′′1 , . . . , X
′′
t/b) is η′-close to a

kcapacity,G − η′dt-source, for

η′ = D
αG/2
G + 6

(
D−αH/4 + ρ1/64

)
5 Using Explicit Expanders

We now use known constructions of explicit lossless expanders to give our explicit condensers
results. We first give a theorem that does not use a two-stage construction, and only requires
applying Corollary 3.16 using the expanders from Theorem 2.8.

Theorem 5.1. Let d ∈ N, δ, ρ ∈ (0, 1) be constants that satisfy the following constraints:

• δ > 5
6 ,

• d > 104c?

δ ≥ 105c?, where c? is the constant from Theorem 2.8, and
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• ρ ≤ 1
2000 ≤

δ
1000 .

For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt × {0, 1}`=log(t)−1 → {0, 1}m

with m = Ω(δdt), such that for any (δ, ρ) unpredictable source X = X1 ◦ · · · ◦Xt with each Xi ∼ {0, 1}d,
Cond(X) is O(D−1/6 + ρ)-close to an m−O(d) source (recalling that D = 2d).

Proof: We utilize, from Theorem 2.8, the fact that for any M and D, there exists an explicit(
K = M

Dc?
, ε = c?

D1/3

)
expander. Notice that εD1−δ = c?D−1/3 = D−1/3+log(c?)/d , D−α ≤ D−1/6.

We use this explicit construction to construct a G on M vertices such that M = 2m satisfies

δ

4
· dt = kcapacity , k − log(1/ε)− 3d = m−O(d).

Or in other words, so that m = (δ/4)dt+O(d). Then, we can apply Corollary 3.16 observing that
the constraints on d and ρ are satisfied (we use the fact that α ≥ 1/6, so that d > 105 ≥ 1000

δα ).
This implies that the function Cond taking input the unpredictable sourceX , and an independent

and uniform Y ∼ [t/2, t], and outputs the Y -th vertex in the random walk on G using X , is the
desired condenser.

As a corollary, we record the result for almost CG sources, using the fact that a (δ, γ, ρ, λ) almost
CG source is a (δ, γ + ρ+ λ) unpredictable source.

Corollary 5.2. Let d ∈ N, δ, γ, ρ, λ ∈ (0, 1) be constants that satisfy the following constraints:

• δ > 5
6 ,

• d > 105c?, and,

• γ + ρ+ λ ≤ 1
2000 .

For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt × {0, 1}`=log(t)−1 → {0, 1}m

with m = Ω(δdt) such that for any (δ, γ, ρ, λ) almost CG source X = X1 ◦ · · · ◦Xt with each Xi ∼ {0, 1}d,
Cond(X) is O(D−1/6 + γ + ρ+ λ)-close to an m−O(d) source.

To remove the constraint on the entropy rate δ, we use the two stage construction from The-
orem 4.4. Again, we make no attempt here (or in any previous stage of the analysis) to optimize
the required dependence between δ and ρ, or the dependence on ρ in the final error. We give the
following theorems as a proof of concept that the two stage construction still works, and we note
again that with sufficiently good lossless expanders, no two stage construction is necessary, and
the dependence on ρ in both senses above is much more natural.

Theorem 5.3 (two-stage timed RWs with unpredictable sources). Let d ∈ N, δ, ρ ∈ (0, 0.99) be
constants such that ρ ≤ δ32

10300
and d ≥ 106c?

δ2
, where c? is the constant from Theorem 2.8. For any positive

integer t, there exists an explicit function

Cond : {0, 1}n=dt × {0, 1}`=log t−O(1) → {0, 1}m

with m = Ω(δdt) such that for any (δ, ρ) unpredictable source X = X1 ◦ · · · ◦Xt with each Xi ∼ {0, 1}d,
Cond(X,Y ) is O

(
D−δ/4 + ρ1/32

)
-close to an m−O(d) source.
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Proof: We utilize Theorem 2.7 to construct H , a size-DG D-biregular
(
KH = DG

c?D2 , εH = c?

D

)
ex-

pander. We will choose the constant DG later. For the large graph, we again follow Theorem 2.8,
that for any M and D, guarantees the existence of an explicit

(
K = M

Dc∗
, ε = c?

D1/3

)
expander, for

M to be chosen soon.
Notice we have

εHD
1−δ = c?D−δ = D−δ+log(c∗)/d , D−αH ≤ D−δ/2

and set η = 12(D−δ/2 + ρ1/32), which is the same η defined in Theorem 4.4. In order to apply Theo-
rem 4.4, we wish to choose the parameter b, the number of instructions in each block, appropriately,
as this determines kcapacity,H = (δ/8)db, which in turn determines DG and δ′. The main concern
is to ensure that the error term D−αGG = εGD

1−δ′
G is non trivial and the constraint dG ≥ 1000

δ′·αG is
satisfied. For any b, if we choose the size of H , DG, such that kcapacity,H = (δ/4)db, then:

dG = (δ/4)db+ log(1/εH) + 5d+ log c? ≤ (δ/4)db+ 6d+ log c?.

By choosing b = 105c∗

δ , we get that dG ≤ 1.01(δ/4)db. Hence,

δ′ =
kcapacity,H − ηdb

dG
≥ (δ/4)db− ηdb

1.01(δ/4)db
≥

1− 4η
δ

1.01
≥ 0.99

Where we used the constraints on d and ρ to show that 8η/δ < 0.0001. We can next compute

εGD
1−δ′
G ≤ c?D−1/3+0.01

G ≤ D−1/3+0.01+log c?/d
G = D−αGG ≤ D−1/6

G .

Thus, we can verify for our choice of b, that

dG ≥ (δ/4)db ≥ 250d ≥ 106 ≥ 1000

δ′ · αG
.

As before, we choose M , the size of G such that:

(δ′/4)d(t/b) = kcapacity,G = kG − log(1/εG)− 3dG = m−O(dG) = m−O(d).

We finally verify that every constraint required to apply Theorem 4.4 is satisfied:

• d ≥ 106c∗

δ2
≥ 1000

δ·αH (since αH ≥ δ/2).

• ρ ≤ δ16

1064
.

• dG ≥ 1000
δ′·αG , as computed above.

• 3η = 36(D−αH/2 + ρ1/32) ≤ 1
2000 ≤

0.99
1000 = δ′

1000 , by the constraints on d and ρ in the theorem
statement.

• kcapacity,H = (δ/4)db by construction.

• kcapacity,G = (δ′/4)d(t/b) by construction.
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Thus, we can conclude that the two-stage construction yields the desired Cond. With error
O
(
D
−1/6
G +D−δ/4 + ρ1/32

)
. Finally, using our choice of b, and that dG ≤ 1.01(δ/4)db, we get

that D−1/6
G ≤ D−1000 ≤ D−δ/4.

Corollary 5.4 (timed RWs with almost CG sources). Let d ∈ N, δ, γ, ρ, λ ∈ (0, 1) be constants such that
ρ + γ + λ ≤ δ32

10300
and d > 106c?

δ2
, where c? is the constant from Theorem 2.8. For any positive integer t,

there exists an explicit function

Cond : {0, 1}n=dt × {0, 1}`=log t−O(1) → {0, 1}m

with m = Ω(δdt) such that for any (δ, γ, ρ, λ) almost CG source X = X1 ◦ · · · ◦Xt with each Xi ∼ {0, 1}d,
Cond(X) is O

(
D−1/6 +D−δ/4 + (ρ+ γ + λ)1/32

)
-close to an m−O(d) source.

Finally, we give a result about deterministic condensing from any rate using the two-stage
construction. Utilizing the same constructions of explicit expanders, with the same parameters, but
with Theorem 4.5 instead of Theorem 4.4.

Theorem 5.5 (two-stage untimed RWs with unpredictable sources). Let d ∈ N, δ, ρ ∈ (0, 0.99) be
constants such that ρ ≤ δ32

10300
and d ≥ 106c?

δ2
, where c? is the constant from Theorem 2.8. For any positive

integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m

with m = Ω(δdt) such that for any (δ, ρ) unpredictable source X = X1 ◦ · · · ◦Xt with each Xi ∼ {0, 1}d,
Cond(X) is β-close to an m−O(βdt) = (1−O(β))m source, where β = O

(
D−δ/8 + ρ1/64

)
.

6 New Random Walks Based Extractors for High Min-Entropy Sources

In this section, we compare the extractor we can obtain using our new random walk analysis with
the standard random walk extractor.

First, we record the result for the classical random walk based extractor, that is implied by the
expander Chernoff bound, and the sampler it implies. We reproduce the proof in order to illustrate
the necessity of having at least ≈ (1− ρ2)n min-entropy, when one aims for error ρ. Indeed, the
bottleneck comes from the use of the expander Chernoff bound.

Theorem 6.1 (see, e.g., [Gil98] or Theorem 4.22 in [Vad12]). Let G = (V,E) be a D-regular λ-spectral
expander14 on M . Let X = V1 ◦X1 ◦ · · · ◦Xt−1 ∼ {0, 1}n be a uniformly distributed random variable,
with V1 ∼ [M ] ≡ {0, 1}m, and Xi ∼ [D] ≡ {0, 1}d. Let V1, V2, . . . , Vt be the sequence of vertices obtained
by a random walk that starts at V0 and uses the instructions X1, . . . , Xt−1. Then, for every set A ⊂ {0, 1}m,
it holds that

Pr
x∼X

[∣∣∣∣∣1t
t∑
i=1

1Vi∈A −
|A|
2m

∣∣∣∣∣ ≥ ρ
]
≤ e−b(1−λ)ρ2t

for some universal constant b < 1.

14Letting λn ≤ . . . ≤ λ1 = 1 be the eigenvalues of the normalized adjacency matrix of G, we say that G is a λ-spectral
expander if max {λ2,−λn} ≤ λ.
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We phrase the statement of the expander Chernoff based extractor, discussed in the introduction,
as first fixing a desired error ρ, and asking how large the entropy k of the source must be to achieve
that error.

Theorem 6.2 (standard RW-based extractor). There exists a universal constant C such that the following
holds. For every positive integer n, and any ρ > 0, there exists an explicit (k, ρ) extractor Ext : {0, 1}n ×
{0, 1}`=logn−O(1) → {0, 1}m=Ω(k) for any k ≥ (1− ρ2/C)n+ log(1/ρ).

Proof: For M to be chosen later, let G = (V = [M ], E) be a D-regular λ-spectral expander, where
λ = 1

2 , and such explicit expanders are known with D = O(1). The extractor interprets its input
x as a length-t random walk on G, namely x = v1, x1, . . . , xt−1. Letting v1, . . . , vt be the vertices
resulting from that random walk, the extractor, on a seed i ∈ [t], outputs vi. For concreteness (and
to guarantee a large enough m), we’ll choose t = n

4d , but the specific constant will not change our
theorem’s statement. Since n = m+ d(t− 1), this implies that m ≥ 3n

4 , and ` = log n−O(1).
To prove that the construction is an (k, ρ) extractor for some sufficiently large k, fix any A ⊆

{0, 1}m, and let B be the set of x ∈ {0, 1}n such that∣∣∣∣∣1t
t∑
i=1

1Vi(x)∈A −
|A|
2m

∣∣∣∣∣ ≥ ρ

2
.

Fix any flat k-source X , and let Y ∼ {0, 1}d be uniform and independent from X . Conditioning on
whether X ∈ B or not, and then using Theorem 6.1, we have that:∣∣∣∣ Pr

x∼Xy∼Y
[Ext(x, y) ∈ A]− Pr

u∼U
[u ∈ A]

∣∣∣∣ ≤ ρ

2
+ Pr[X ∈ B] ≤ ρ

2
+ |B| · 2−k

≤ ρ

2
+ 2n · 2−b(1−λ)ρ2t · 2−k =

ρ

2
+ 2n−k · 2−(b/2)ρ2n.

To make the second term at most ρ/2 (for sufficiently large n), we see that we need n − k ≤
(b/2)ρ2n− log(1/ρ)− 1, or k ≥ (1− ρ2/C)n+ log(1/ρ).

We can rephrase the result in the language of samplers using Lemma 2.15.

Corollary 6.3. There exists a universal constant C such that the following holds. For every positive integer

n, and any ρ > 0, there exists a
(

2−
ρ2

C
n, ρ

)
sampler Γ: {0, 1}n × {0, 1}`=logn−O(1) → {0, 1}m=Ω(k).

That is, the confidence parameter’s dependence on ρ is exponential in −ρ2n. Next, we give our
new random walk extractor and sampler, utilizing the random walk condenser achieved in the
previous sections. But before that, we give the following characterization of high entropy sources
as unpredictable sources.

Proposition 6.4. Let X ∼ {0, 1}n be a random variable with H(X) ≥ (1− ρ)n. For any positive integers
t, d with n = dt, write X = X1 ◦ . . . ◦Xt, with each Xi ∼ {0, 1}d. Then, for any constant c ∈ (0, 1), X is
a (δ = 1− 1

c , c · ρ) unpredictable source.

Proof: Define hi(x) = − log Pr[Xi = xi|X[1,i−1] = x[1,i−1]]. For every x, we have h(x) =
∑

i hi(x) ≥
(1− ρ)n. Therefore, by Markov’s inequality, for every x, for at most c · ρ fraction of the i-s, we have
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that hi(x) ≤ (1− 1/c)d. Defining the indicator random variable A(x, i) as 1 if Pr[Xi = xi|X[1,i−1] =

x[1,i−1]] > D−δ, we get:

cρ ≥ E
x

[
E
i

[A(x, i)]

]
= E

i

[
E
x

[A(x, i)]
]

= E
i

[ρi(X, δ)] .

We give the following instantiation of our random walk based condenser.

Lemma 6.5. For every positive integer n, and any ρ ∈ (0, 1
2000), there exists a (k, k′, ρ) condenser

Cond : {0, 1}n × {0, 1}`=logn−log log(1/ρ)−O(1) → {0, 1}m=Ω(k)

for any k ≥ (1− ρ/C)n, where C is some universal constant, and k′ = m−O(log(1/ρ)).

Proof: Let X ∼ {0, 1}n be a k = (1− φ/200)n source for some φ ≤ ρ to be chosen later. We divide
X into blocks of length d = max(105c?, 12 log(1/ρ)) where c∗ is the constant from Theorem 2.8. By
Proposition 6.4 set with c = 100, X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, is a ( 1

100 , φ/2) unpredictable
source. Finally, by Theorem 5.1, there is an explicit Cond : {0, 1}n × {0, 1}` → {0, 1}m such that
Cond(X) is O(D−1/6 + φ/2) = O(φ) close to an m − O(d) source. We choose φ = ρ/b for some
universal constant b such that the O(φ) term is at most ρ, and finally we set C = 200b, so that
k = (1− ρ/C)n.

We recall that Cond is our simple random walk over a lossless expander condenser, since the entropy
rate δ is large enough.

For our new random walk based extractor, we will use the high min-entropy extractor from
Theorem 2.12. We can compose our condenser with this extractor for a final statement comparable
to Theorem 6.2, using ∆ = log(1/ρ).

Theorem 6.6 (new RW-based extractor). There exists universal constants ρ0 ∈ (0, 1) and C > 1 such
that the following holds. For every positive integer n, and any ρ ∈ (0, ρ0), there exists an explicit (k, ρ)
extractor

Ext : {0, 1}n × {0, 1}`=logn+O(log(1/ρ)) → {0, 1}m=Ω(k) ,

for any k ≥ (1 − ρ/C)n. Moreover, the computation of Ext involves only walks over suitably chosen
expanders.

We remark that one can implement the extractor in Theorem 2.12 as a function Ext(x, y) that
associates x ∈ {0, 1}n with a vertex in a suitable N -vertex spectral expander, and uses y to take a
single step (or multiple independent steps) from x. Thus overall, we obtain a purely random-walks
based extractor that first uses a seed Y1 to pick a random stopping time for the random walk using
the original source X on a lossless expander on M vertices. This results in a vertex v ∈ {0, 1}m.
We then continue the random walk starting from v, but now on a suitable spectral expander on
M vertices, using an additional seed Y2 to take one additional uniform step (or multiple ones,
depending on the degree), on the new expander. Similar to before, the extractor readily implies a
random walk based sampler.

Corollary 6.7. There exists universal constants ρ0 ∈ (0, 1) and C > 1 such that the following holds.
For every positive integer n, and any ρ ∈ (0, ρ0), there exists a

(
2−

ρ
C
n, ρ
)

sampler Γ: {0, 1}n ×

{0, 1}`=logn+O(log(1/ρ)) → {0, 1}m=Ω(k).
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A Deferred Proofs

We give a theorem that deterministic condensing for general sources is impossible.

Claim A.1. Let α > 0 be constant, and let n > m be (sufficiently large) positive integers. Then, there is
no (deterministic) function f : {0, 1}n → {0, 1}m that is a ((1− α)n, (1− α)m+ 1, ε)-condenser, for any
ε < 1/2.

Proof: First, suppose that m ≤ αn. In this case, there exists a v ∈ {0, 1}m such that |f−1(v)| ≥
2(1−α)n. Thus, an X that is flat on f−1(v) is a (1− α)n source for which f(X) has no entropy.

Next, suppose that m > αn. Let A = 2m−αn and let S a set of size A of v ∈ {0, 1}m such that
f−1(v) is largest (that is, the top A elements v ∈ {0, 1}m when sorted according to |f−1(v)|). We
first claim that

∑
v∈S |f−1(v)| ≥ 2(1−α)n. Indeed, if not, then the v ∈ S with the smallest preimage

must satisfy |f−1(v)| < 2(1−α)n

A = 2n−m. Therefore, the size of any preimage f−1(u) for u /∈ S must
also be smaller than 2n−m, and overall, this means the total number of preimages is smaller than
(2m −A)2n−m + 2(1−α)n = 2n, a contradiction.

Now, consider a distribution X that is flat on S. Such a distribution has min-entropy (1− α)n,
and thus entropy rate 1 − α. However, f(X) is contained in a set of size A = 2m−αn. Thus f(X)
must be at least 1/2-far from any (1− α)m+ 1 source, since such a source must have at least half of
its probability mass outside of Supp(f(X)).
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B Making the Random Walk Fully Online

We now demonstrate how the construction of Corollary 3.16 can be made online. Recall that the
main trick is to repeatedly embed the current vertex distribution (when it is expected that the
distribution on the current graph is “saturated”) into a larger graph, so that entropy can continue
to accumulate. The embedding procedure is to simply pad the representation of the current vertex
with the appropriate amount of 0-s. Thus, for example, if v ∈ {0, 1}m is a vertex in the small graph,
and the larger graph has vertices associated with {0, 1}2m, then we simply pad v to v ◦ 0m. It is
clear such an embedding provides a one-to-one mapping between the vertex distribution on the
small graph, and an “isomorphic” vertex distribution on the large graph. Also, it is indeed true that
we can continue to apply Theorem 3.6 at each step after embedding, and so we can conclude that
the vertex probabilities continue to decrease in expectation at every step. Therefore, it would be
nice to say that after walking on the small graph, embedding in a larger graph, and then continuing
to walk on the larger graph, we get a resulting distribution that is identical to the one we would
get if we had always just been walking on the larger graph to begin with. If that were the case,
we can readily apply the analysis from the main portion of the paper.

Unfortunately, this is not quite true. The issue is that while walking on the small graph, some
paths may have reached the capacity of the small graph quite early. Thus, the vertex probabilities
on this path would have stagnated at the capacity of the small graph. On the other hand, the
same path, had it been used to walk solely on the larger graph, would not have such stagnation.
Therefore, we expect to accumulate less entropy overall when using the embedding trick rather
than not.

This issue also affects the choice of random stopping time. Recall that in Section 3.5 we pick a
random stopping time between t/2 and t, with the understanding that after t/2 steps, the vertex
probabilities are expected to be close to the capacity of the graph. However, in the streaming case,
after t/2 steps, the vertex probabilities are only expected to be close to the capacity of the small
graph. Therefore, we do not expect a random stopping time between t/2 and t to be at the capacity
of the large graph with high probability. The solution is to instead pick the size of the large graph
accordingly, so that the steps between t/2 and 3t/4 properly “burn-in” the vertex probabilities to
the capacity of the large graph. We can then pick a random stopping time between 3t/4 and t, with
the assumption that the total entropy lost, roughly ρdt, is significantly smaller that the entropy
gained in t/4 steps of the random walk.

Most of the section here will demonstrate that the entropy loss from the embedding trick is
manageable, and in the end we can still obtain an online condenser that accumulates most of
the entropy of the source. The idea will be to generalize the analysis in Section 3.4 to the case
when Z0, the random variable representing the initial vertex probability, is not identically 0 (as is
the case when starting a walk from a fixed vertex), but instead represents the vertex probability
obtained after embedding the final vertex in a walk of the smaller graph into the larger graph (these
generalizations can be easily seen by inspection of the proofs). For simplicity, we assume that we
take t/2 steps in the small graph before embedding in the larger graph and taking the remaining
t/2 steps.

We first generalize Corollary 3.7 to this scenario.

Theorem B.1. LetG = (V = [M ], [M ], E) be aD-biregular (K, ε) lossless expander. LetX = X1◦· · ·◦Xt,
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each Xi ∼ {0, 1}d, and fix some 0 < δ ≤ 1. For every i ∈ [t], recall that we defined

ρi = Pr
x∼X

[
Pr
[
Xi = xi | X[1,i−1] = x[1,i−1]

]
> D−δ

]
,

Let f(x1, . . . , xt/2) ∈ V be some arbitrary function of the first t/2 instructions. Define pi(x) for i ∈ [t/2, t],
as the probability of the vertex reached starting from vertex f(x1, . . . , xt/2), and then using xt/2+1, . . . , xi
as instructions for a random walk, with pt/2(x) = Pr[f(X1, . . . , Xt/2) = f(x1, . . . , xt/2)].

Then, for every i ∈ [t/2 + 1, t] there is a subset Si ⊆ {0, 1}n=dt with Pr[X ∈ Si] ≥ 1− 4εD1−δ − 2ρi,
such that for every x ∈ Si,

pi(x) ≤ max

(
2

Dδ
· pi−1(x),

D3+log(1/ε)/d

K

)
.

Next, we do a similar generalization for Lemma 3.13, changing only the definition of the initial
Z0 (now Zt/2).

Lemma B.2. Let G = (V = [M ], [M ], E) be a D-biregular (K, ε) lossless expander. Let X = X1 ◦ · · · ◦Xt,
each Xi ∼ {0, 1}d, and fix some 0 < δ ≤ 1. Let f(x1, . . . , xt/2) ∈ V be some arbitrary function of the first
t/2 instructions. Define Zt/2(x) = Z ′t/2(x) = − log pt/2(x).

For every i, let Si be defined as in Theorem B.1, and let kcapacity = k− log(1/ε)− 3d, recalling that k =
logK and d = logD. Define Zi(x) = − log pi(x) for i ∈ {t/2+1, . . . , t}. Define Yi(x) = Zi(x)−Zi−1(x)
and let:

Y ′i (x) =


δd− 1 x ∈ Si
−4d x 6∈ Si, − 4d ≤ Yi(x) < δd− 1

Yi(x) x 6∈ Si, Yi(x) < −4d,

and

Z ′i(x) =

{
min(Z ′i−1(x) + Y ′i (x), kcapacity) Y ′i (x) ≥ 0

max(Z ′i−1(x) + Y ′i (x), 0) Y ′i (x) < 0.

Then, the following holds.

1. For all i ∈ [t/2, t] and x ∈ Supp(X), Zi(x) ≥ Z ′i(x).

2. EX [|{i ∈ [t/2 + 1, t] : Y ′i < 0}|] ≤ 4εD1−δ t
2 + 2

∑
i∈[t/2+1,t] ρi.

3. EX [
∑

i∈[t/2+1,t]−1Y ′i<0 · Y ′i ] ≤ (16εD1−δ + 20D−1)d t2 + 8d ·
∑

i∈[t/2+1,t] ρi.

Finally, we generalize Lemma 3.12

Lemma B.3. Let b, t, kcapacity be positive integers. Let Y1, . . . , Yt be a sequence of real valued random
variables over the domain {0, 1}n. Suppose that E

[∑t
i=1−1Yi<0 · Yi

]
≤ b. Let Z0 be a random variable,

and define:

Zi =

{
min(Zi−1 + Yi, kcapacity) Yi ≥ 0,

max(Zi−1 + Zi, 0) Yi < 0.

Suppose further that for some `, it holds that E
[
Z0 +

∑`
i=1 1Yi≥0 · Yi +

∑t
i=1 1Yi<0 · Yi

]
≥ kcapacity.

Then, it also holds that
E[Z`] ≥ kcapacity − b.
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We now demonstrate a setting of parameters for which one step of the embedding procedure
works.

Theorem B.4. Let G1 = (V1 = [M1], [M1], E1) be a D-regular (K1, ε)-expander on M1 = poly(D) ·K1

vertices, and let G2 = (V2 = [M2], [M2], E2) be a D-regular (K2, ε)-expander on M2 = poly(D) · K2

vertices. Suppose that

k1,capacity = k1 − log(1/ε)− 3d = (δ/8)d(t/2) = (δ/16)dt,

and
k2,capacity = k2 − log(1/ε)− 3d = (δ/8)dt.

Let α be such that εD1−δ = α. Let X = X1 ◦ . . . ◦Xt, Xi ∼ {0, 1}d, be a (δ, ρ)-unpredictable source for
d ≥ 1000

δ·α and ρ ≤ δ
1000 . Consider the process that first uses x1, . . . , xt/2 as a random walk on G1 from a

fixed start vertex, then embeds the final node into G2 (by concatenating the appropriate amount of 0), then
continues the walk on G using x1, . . . , xt/2. Define pi(x1, . . . , xi) as the probability of the vertex reached
using x1, . . . , xi (on whichever graph G1 or G2 makes sense depending on i ≤ t/2 or not). Finally, define
Zi(x) = − log pi(x) and Yi(x) = Zi(x)− Zi−1(x) and define Z ′i and Y ′i as in Lemma B.2.

Assume that E[Zt/2(x)] ≥ k1,capacity + E
[∑t/2

i=1−1Yi<0 · Yi
]
. Then the following two properties hold:

• E[Zt] ≥ k2,capacity + E
[∑t

i=1 1Yi<0 · Yi
]

• The probability over x ∼ X and a random stopping time i ∈ [3t/4, t] that Zi(x) < k2,capacity is at
most O

(
1
δ (D−α + ρ)

)
.

Proof (sketch): To prove both bullet points we use Lemma B.3. For the first point, we apply it on
Z ′t/2+1, . . . , Z

′
t. Indeed we can see that:

E

Z ′t/2 +

t∑
i=t/2+1

1Y ′i≥0 · Y ′i +

t∑
i=t/2+1

1Y ′i<0 · Y ′i


= (δ/16)dt+ E

 t∑
i=t/2+1

1Y ′i≥0 · Y ′i

+ E

[
t∑
i=1

1Y ′i<0 · Y ′i

]

≥ (δ/16)dt+ (δ/2)d(t/2) + E

[
t∑
i=1

1Y ′i<0 · Y ′i

]
≥ (δ/8)dt = k2,capacity.

In the last inequality we use the fact that EX [
∑

i∈[1,t]−1Y ′i<0 · Y ′i ] ≤ (16εD1−δ + 20D−1)dt + 8d ·∑
i∈[1,t] ρi, and, as before, used the constraints on d and ρ to show each term is at most 0.01δdt.

Thus we conclude that E[Zt] ≥ E[Z ′t] ≥ k2,capacity + E
[∑t

i=1−1Yi<0 · Yi
]
.

For the second bullet point, we observe that we can make the same statement using Lemma B.3
up to 3t/4 instead of t. Indeed, one can verify that:

E

Z ′t/2 +

3t/4∑
i=t/2+1

1Y ′i≥0 · Y ′i +
t∑

i=t/2+1

1Y ′i<0 · Y ′i


≥ (δ/16)dt+ (δ/2)d(t/4) + E

[
t∑
i=1

1Y ′i<0 · Y ′i

]
≥ (δ/8)dt = k2,capacity.
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And so, E[Z3t/4] ≥ k2,capacity + E
[∑t

i=1−1Yi<0 · Yi
]
. Thus, we can argue as in Section 3.5 that a

random stopping time between [3t/4, t] yields the result.

We can now inductively apply the above theorem to give a guarantee in the streaming scenario. We
first state the result without the context of streaming.

Theorem B.5. Let c > 1 be some sufficiently large constant. Suppose that {Gj}j∈[s] is a sequence of
D-regular (Kj , ε)-expanders on Mj = poly(D) ·Kj vertices, such that:

kj,capacity = kj − log(1/ε)− 3d = (δ/8)d · 2c−1+j .

Let α be such that εD1−δ = α. Assume that d ≥ 1000
δ·α , ρ ≤ δ

1000 and that t = 2c+s. Let X = X1 ◦ . . . ◦Xt,
Xi ∼ {0, 1}d be such that for every j ∈ [s], X1 ◦ . . . ◦X2c+j is a (δ, ρj) unpredictable source.

Consider the process that starts with a fixed vertex on G1, then uses X1, . . . , X2c as a random walk,
then embeds the resulting vertex in G2. In subsequent iterations j ∈ [2, s] it uses X2c+j−1+1, . . . , X2c+j to
walk on Gj , then embeds the vertex in Gj+1. Then, for every j ∈ [s], using a random stopping time between[

3
4 · 2

c+j , 2c+j
]

yields a distribution over the vertices of Gj that isO
(
D−α+ρj

δ

)
-close to an mj−O(log 1/ε)

source, for mj = Ω(δd · 2c+j).

Proof (sketch): The proof is by induction. In the base case, for sufficiently large c, we’ll have
E[Z2c(x)] ≥ k1,capacity + E

[∑2c

i=1 1Yi<0 · Yi
]
, and also the conclusion will hold true. Inductively,

assume that

E[Z2c+j (x)] ≥ k1,capacity + E

2c+j∑
i=1

1Yi<0 · Yi

 .
Then, we can apply Theorem B.4, to see that the above property also holds for Z2c+j+1 , and that the
conclusion of the theorem also holds for j + 1.15

Finally, we remark that it is clear that the above process can be implemented in an online fashion,
where the state begins with a node in G1, and is updated by stepping in the expander using
instructions from X . When it is time to embed, the length of the state is increased appropriately.
Moreover, if a seed of length 2c+j−2 is used in the j-th embedding to pick a random stopping time
between

[
3
4 · 2

c+j , 2c+j
]
, the seed can be extended by 1, to then represent a random stopping time

between
[

3
4 · 2

c+j+1, 2c+j+1
]

when the j + 1-th embedding is encountered.

15Technically, Theorem B.4 assumes that the walk in the first half is a pure walk with no embedding. However, it is
clear that the argument can be adapted when the first half may be a sequence of walks and embeddings. For ease of
exposition we ignore this fact in the proof sketch.
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