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Abstract

We introduce two models of space-bounded quantum interactive proof systems, QIPL and
QIPUL. The QIPUL model, a space-bounded variant of quantum interactive proofs (QIP)
introduced by Watrous (CC 2003) and Kitaev and Watrous (STOC 2000), restricts verifier
actions to unitary circuits. In contrast, QIPL allows logarithmically many intermediate
measurements per verifier action (with a high-concentration condition on yes instances),
making it the weakest model that encompasses the classical model of Condon and Ladner
(JCSS 1995).

We characterize the computational power of QIPL and QIPUL. When the message number
m is polynomially bounded, QIPUL ⊊ QIPL unless P = NP:

• QIPL exactly characterizes NP.

• QIPUL is contained in P and contains SAC1 ∪ BQL, where SAC1 denotes problems
solvable by classical logarithmic-depth, semi-unbounded fan-in circuits.

However, this distinction vanishes when m is constant. Our results further indicate that in-
termediate measurements uniquely impact space-bounded quantum interactive proofs, unlike
in space-bounded quantum computation, where BQL = BQUL.

We also introduce space-bounded unitary quantum statistical zero-knowledge (QSZKUL),
a specific form of QIPUL proof systems with statistical zero-knowledge against any verifier.
This class is a space-bounded variant of quantum statistical zero-knowledge (QSZK) defined
by Watrous (SICOMP 2009). We prove that QSZKUL = BQL, implying that the statistical
zero-knowledge property negates the computational advantage typically gained from the
interaction.
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1 Introduction

Recent advancements in quantum computation with a limited number of qubits have been
achieved from both theoretical and experimental perspectives. Theoretical work began in the
late 1990s, focusing on feasible models of quantum computation operating under space restric-
tions, where the circuit acts on O(log n) qubits and consists of poly(n) elementary gates [Wat99,
Wat03a]. These models, referred to as quantum logspace, were later shown during the 2010s
to offer a quadratic space advantage for certain problems over the best known classical algo-
rithms [TS13, FL18], which saturates the classical simulation bound. In recent years, this area
has gained increased attention, particularly in eliminating intermediate measurements in these
models [FR21, GRZ21], and through further developments [GR22, Zha24]. Motivated by these
achievements in quantum logspace, we are interested in exploring the power of the quantum
interactive proof systems where the verifier is restricted to quantum logspace.

To put it simply, in a single-prover (quantum) interactive proof system for a promise problem
(Iyes, Ino), a computationally weak (possibly quantum) verifier interacts with a computationally
all-powerful but untrusted prover. In quantum scenarios, the prover and verifier may share
entanglement during their interactions. Given an input x ∈ Iyes ∪ Ino, the prover claims that
x ∈ Iyes, but the verifier does not simply accept this claim. Instead, an interactive protocol
is initiated, after which the verifier either “accepts” or “rejects” the claim. The protocol has
completeness parameter c, meaning that if x is in Iyes and the prover honestly follows the
protocol, the verifier accepts with probability at least c. The protocol has soundness parameter
s, meaning that if x is in Ino then the verifier accepts with probability at most s, regardless
of whether the prover follows the protocol. Typically, an interactive protocol for (Iyes, Ino) has
completeness c = 2/3 and soundness s = 1/3.

Interactive proof systems with time-bounded verifier. The exploration of classical in-
teractive proof systems (IP) was initiated in the 1980s [Bab85, GMR89]. In these proof systems,
the verifier is typically bounded by polynomial time, and IP[m] represents interactive proto-
cols involving m messages during interactions. Particularly, when the verifier’s messages are
merely random bits, these public-coin proof systems are known as Arthur-Merlin proof sys-
tems [Bab85]. Shortly thereafter, it was established that any constant-message IP protocol
can be parallelized to two messages,1 and thus IP[O(1)] is contained in the second level of the
polynomial-time hierarchy [Bab85, GS86]. However, IP protocols with a polynomial number
of messages have been shown to be exceptionally powerful, as demonstrated by the seminal
result IP = PSPACE [LFKN92, Sha92]. Consequently, IP protocols with a polynomial num-
ber of messages generally cannot be parallelized to a constant number of messages unless the
polynomial-time hierarchy collapses.2

About fifteen years after the introduction of interactive proof systems (and a model of quan-
tum computation), the study of quantum interactive proof systems (QIP) began [Wat03b].
Remarkably, any QIP protocol with a polynomial number of messages can be parallelized to
three messages [KW00]. A quantum Arthur-Merlin proof system was subsequently introduced
in [MW05], and any three-message QIP protocol can be transformed into this form (QMAM). By
the late 2000s, the computational power of QIP was fully characterized: The celebrated result
QIP = PSPACE [JJUW11] established that QIP is not more powerful than IP as long as the
gap c − s is at least polynomially small. However, when the gap c − s is double-exponentially
small, this variant of QIP is precisely characterized by EXP [IKW12]. In the late 2010s, another
quantum counterpart of the Arthur-Merlin proof system was considered in [KLGN19], where
the verifier’s message is either random bits or halves of EPR pairs, leading to a quadrichotomy
theorem that classifies the corresponding QIP protocols.

1The resulting proof system is a two-message Arthur-Merlin proof system, denoted by AM.
2The assumption that the polynomial-time hierarchy does not collapse generalizes the conjecture that P ⊊ NP.
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Interactive proof systems with space-bounded verifier. The investigation of (classical)
interactive proof systems with space-bounded verifiers started in the late 1980s [DS92, Con91],
alongside research on time-bounded verifiers. Notably, by using the fingerprinting lemma [Lip90],
Condon and Ladner [CL95] showed that the class of (private-coin) classical interactive proof sys-
tems with logarithmic-space verifiers using a logarithmic number of random bits exactly char-
acterizes NP. In parallel, public-coin space-bounded classical interactive proofs were explored
in the early 1990s [For89, FL93, Con92]. By around 2010, it was established that such space-
bounded protocols with a polynomial number of public coins precisely characterize P [GKR15].
More recently, the efficiency of such space-bounded protocols has been further improved [CR23].

Although research has been conducted on quantum interactive proofs where the verifier
uses quantum finite automata [NY09, NY15, Yak13], analogous to classical work [DS92], to
our knowledge no prior work has addressed space-bounded counterparts of quantum interactive
proofs that align with the circuit-based model defined in [KW00, Wat03b]. In the case without
interaction, space-bounded quantum Merlin-Arthur proof systems have been studied recently.
When the verifier has direct access to an O(log n)-qubit message, meaning it can process the
message directly in its workspace qubits, this variant (QMAL) is as weak as BQL [FKL+16, FR21].
However, when the (unitary) verifier has online access to a poly(n)-qubit message, where each
qubit in the message state is read-once, this variant is as strong as QMA [GR23].3

It is important to note that online and direct access to messages during interactions makes no
difference for time-bounded interactive or Merlin-Arthur-type proof systems, whether classical
or quantum. This distinction arises from the nature of space-bounded computation.4

1.1 Main results

Definitions of QIPL and QIPUL. We introduce space-bounded quantum interactive proof sys-
tems and their unitary variant, denoted as QIPL and QIPUL, respectively. In these proof systems,
the verifier V operates in quantum logspace and has direct access to messages during interaction
with the prover P . Specifically, in a 2l-turn (message) space-bounded quantum interactive proof
system for a promise problem (Iyes, Ino), this proof system P⇌V consists of the prover’s private
register Q, the message register M, and the verifier’s private register W. Both M and W are of
size O(log n), with M being accessible to both the prover and the verifier.5

Figure 1.1: A 2l-turn single-prover space-bounded quantum interactive proof system (QIPL).

The verifier V maps an input x ∈ Iyes ∪ Ino to a sequence (V1, · · · , Vl+1), with Vj for j ∈ [l]

3A space-bounded Merlin-Arthur-type proof system, where the verifier operates with classical logspace,
O(logn) random bits, and has online access to a poly(n)-bit message, exactly characterizes NP [Lip90]. An
exponentially up-scaled quantum counterpart, with classical messages, was also considered in [GR23], where
the variant with unitary quantum polynomial -space verifier (implicitly allowing poly(n) random bits) precisely
corresponds to NEXP.

4For a detailed discussion in classical non-deterministic settings, see [Gol08, Section 5.3.1], where the term
“direct access” is called “offline access”.

5Our definitions of QIPL and QIPUL can be straightforwardly extended to the corresponding proof systems
with an odd number of messages, as shown in Figure 4.1.
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representing the verifier’s actions at the (2j − 1)-th turn, and Vl+1 representing the verifier’s
action just before the final measurement. The primary difference between QIPL and QIPUL proof
systems lies in the verifier’s action Vj for j ∈ [l]:

• In QIPL proof systems, each Vj is an almost-unitary quantum circuit that includes O(log n)
intermediate measurements in the computational basis. For convenience, we apply the
principle of deferred measurements (e.g., [NC10, Section 4.4]), transforming the circuit that
implements Vj into an isometric quantum circuit with a newly introduced environment
register Ej ,6 which is measured at the end of that turn, with the measurement outcome
denoted by uj , as illustrated in Figure 1.1. Furthermore, each environment register Ej
remains private to the verifier and becomes inaccessible after the round that starts with
the verifier’s j-th action.

• In QIPUL proof systems, each Vj is a unitary quantum circuit.

The prover’s actions can be similarly described by unitary quantum circuits. A proof system
P⇌V is said to accept if, after the verifier performs Vl+1 and measures the designated output
qubit in the computational basis, the outcome is 1. Additionally, we require a strong notion of
uniformity for the verifier’s mapping: the description of the sequence (V1, · · · , Vl+1) must be
computable by a single deterministic logspace Turing machine.7 Lastly, for QIPL proof systems,
we impose an additional restriction on yes instances: the distribution of intermediate measure-
ment outcomes u = (u1, · · · , ul), conditioned on acceptance, must be highly concentrated. More
precisely, let ω(V )|u be the contribution of u to ω(V ), where ω(V ) is the maximum acceptance
probability of P⇌V . Then, there must exist a u∗ such that ω(V )|u∗ ≥ c(n).

We denote m-turn space-bounded quantum interactive proof systems with completeness c
and soundness s as QIPLm[c, s], and their unitary variant as QIPULm[c, s]. In particular, we
adopt the following notations, which naturally extend to QIPUL:

QIPLm := QIPLm[2/3, 1/3] and QIPL := ∪1≤m≤poly(n)QIPLm.

In constant-turn scenarios, it is crucial to emphasize that the proof systems QIPLO(1)[c, s] and
QIPULO(1)[c, s] can directly simulate each other, as the environment registers E1, · · · ,EO(1) col-
lectively holds O(log n) qubits.8 Therefore, for simplicity, we define QIPLO(1)[c, s] proof systems
in which the verifier’s actions are implemented by unitary quantum circuits.

Space-bounded (unitary) quantum interactive proofs. Our first theorem serves as a
quantum analog of the classical work by Condon and Ladner [CL95]:9

Theorem 1.1 (Informal of Theorem 3.1). QIPL = NP.

Interestingly, Theorem 1.1 suggests that the QIPL model can be viewed as the weakest
model that encompasses space-bounded (private-coin) classical interactive proofs, as considered
in [CL95]. Our definition of QIPL is motivated by the goal of defining a quantum counterpart
that includes these classical proof systems, ensuring that soundness against classical messages

6An isometric quantum circuit utilizes O(logn) ancillary gates, with each ancillary gate introducing an ancil-
lary qubit |0⟩. For further details, please refer to Definition 2.8.

7A weaker notion of uniformity only requires that the description of each Vj can be individually computed by
a deterministic logspace Turing machine. It is important to note that these distinctions do not arise in the time-
bounded setting, as the composition of a polynomial number of deterministic polynomial-time Turing machines
can be treated as a single deterministic polynomial-time Turing machine.

8This equivalence follows directly from the principle of deferred measurements. However, for constant-turn
space-bounded quantum interactive proofs, allowing each verifier action to involve polynomially many interme-
diate measurements might increase the proof system’s power beyond the unitary case. This is because current
techniques for proving results such as BQL = BQUL [FR21, GRZ21, GR22] do not directly apply in this context.

9More specifically, the NP containment in Theorem 1.1 holds for any QIPLm[c, s] proof system satisfying
c(n)− s(n) ≥ poly(n) and 1 ≤ m(n) ≤ poly(n).
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also holds for quantum messages. This guarantee is typically achieved by measuring the prover’s
quantum messages and treating the outcomes as classical messages (e.g., [AN02, Claim 1]).

However, space-bounded unitary quantum interactive proofs (QIPUL), which denote the most
natural space-bounded counterpart to quantum interactive proofs as defined in [KW00, Wat03a],
do not directly achieve the stated soundness guarantee. Hence, QIPUL may be computationally
weaker than QIPL. Our second theorem characterizes the computational power of QIPUL:

Theorem 1.2 (Informal of Theorem 3.3 and Theorem 4.2). The following holds:

SAC1 ∪ BQL ⊆ QIPUL ⊆ ∪c(n)−s(n)≥1/poly(n)QIPLO(1)[c, s] ⊆ P.

Theorems 1.1 and 1.2 suggest that QIPUL is indeed weaker than QIPL unless P = NP.
Interestingly, this distinction from the unitary case arises even when each verifier action is
slightly more powerful than a unitary quantum circuit. It is also noteworthy that the class
SAC1 is equivalent to LOGCFL [Ven91], which contains NL and is contained in AC1.10 Our
third theorem, meanwhile, focuses on space-bounded quantum interactive proof systems with a
constant number of messages:

Theorem 1.3 (Informal of Theorem 4.3). For any c(n)− s(n) ≥ Ω(1), QIPLO(1)[c, s] ⊆ NC.

To compare with time-bounded classical or quantum interactive proofs, we summarize our
three theorems in Table 1. Notably, our two models of space-bounded quantum interactive
proofs, QIPL and QIPUL, demonstrate behavior that is distinct from both:

• For (time-bounded) classical interactive proofs, all proof systems with m ≤ O(1) (the
regime of the last row in Table 1) are contained in the second level of the polynomial-time
hierarchy [Bab85, GS86], whereas the class of proof systems with m = poly(n) (the regime
of the second and third rows in Table 1) exactly characterizes PSPACE [LFKN92, Sha92].

• For (time-bounded) quantum interactive proofs, all proof systems with parameters listed
in Table 1 precisely capture PSPACE [Wat03b, KW00, JJUW11].

Models Constant gap
c(n)− s(n) ≥ Ω(1)

Polynomial small gap
c(n)− s(n) ≥ 1/ poly(n)

The number of messages:
m(n) = poly(n)

QIPL
NP

Theorem 1.1
NP

Theorem 1.1

The number of messages:
m(n) = poly(n)

QIPUL
contains SAC1∪BQL & in P

Theorem 1.2
contains SAC1∪BQL & in P

Theorem 1.2

The number of messages:
3 ≤ m(n) ≤ O(1)

QIPL & QIPUL
in NC

Theorem 1.3
contains SAC1∪BQL & in P

Theorem 1.2

Table 1: The computational power of QIPL and QIPUL with different parameters.

Space-bounded unitary quantum statistical zero-knowledge. We also introduce (honest-
verifier) space-bounded unitary quantum statistical zero-knowledge, denoted as QSZKULHV. This
term refers to a specific form of space-bounded quantum proofs that possess statistical zero-
knowledge against an honest verifier. Specifically, a space-bounded unitary quantum interactive
proof system possesses this zero-knowledge property if there exists a quantum logspace simulator
that approximates the snapshot states (“the verifier’s view”) on the registers M and W after each
turn of this proof system, where each state approximation must be very close (“indistinguish-
able”) to the corresponding snapshot state with respect to the trace distance.

10For more details on the computational power of SAC1 and related complexity classes, see Section 2.4.
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Our definition QSZKULHV serves as a space-bounded variant of honest-verifier (unitary)
quantum statistical zero-knowledge, denoted by QSZKHV, as introduced in [Wat02]. Our fourth
theorem establishes that the statistical zero-knowledge property completely negates the compu-
tational advantage typically gained through the interaction:

Theorem 1.4 (Informal of Theorem 5.2). QSZKUL = QSZKULHV = BQL.

In addition to QSZKULHV, we can define QSZKUL in line with [Wat09b], particularly con-
sidering space-bounded unitary quantum statistical zero-knowledge against any verifier (rather
than an honest verifier). Following this definition, BQL ⊆ QSZKUL ⊆ QSZKULHV. Interestingly,
Theorem 1.4 serves as a direct space-bounded counterpart to QSZK = QSZKHV [Wat09b].

The intuition behind Theorem 1.4 is that the snapshot states after each turn capture all
the essential information in the proof system, such as allowing optimal prover strategies to be
“recovered” from these states [MY23, Section 7]. In space-bounded scenarios, space-efficient
quantum singular value transformation [LGLW23] enables fully utilizing this information.

Finally, we emphasize that our consideration of this zero-knowledge property is purely
complexity-theoretic. A full comparison with other notions of (statistical) zero-knowledge is
beyond this scope. For more on classical and quantum statistical zero-knowledge, see [Vad99]
and [VW16, Chapter 5].

1.2 Proof techniques

Our proof techniques are mostly inspired by established methods for standard quantum
interactive proofs, while the nature of QIPL and QIPUL necessitates certain adaptations of these
techniques. We will highlight the challenges that arise and briefly explain how we address them.

1.2.1 Upper bounds for QIPL and QIPUL

QIPLO(1) ⊆ P. We establish this inclusion using a semi-definite program (SDP) for a given
QIPLO(1) proof system, adapted from the SDP formulation for QIP in [VW16, Wat16]. Together
with the turn-halving lemma, specifically Theorem 1.5(3), this inclusion implies that QIPUL ⊆ P.

Consider a (2l)-turn QIPLO(1) proof system P⇌V , where l ≤ O(1). Let ρMjWj and ρM′jWj , for
j ∈ [l], denote snapshot states in the register M and W after the (2j− 1)-st turn and the (2j)-th
turn in P⇌V , respectively, as illustrated in Figure 3.1. The variables in this SDP correspond to
these snapshot states after each prover’s action, particularly ρM′jWj for j ∈ [l], while the objective
function is the maximum acceptance probability ω(V ) of P⇌V . Since the verifier’s actions are
unitary circuits, these variables can be treated independently. Hence, the SDP program mainly
consists of two types of constraints, assuming that all variables are valid quantum states:

(i) Verifier’s actions only operate on the registers M and W:

ρMjWj = VjρM′j−1Wj−1
V †
j for j ∈ {2, · · · , l}, and ρM1W1 = V1|0̄⟩⟨0̄|MWV

†
1 .

(ii) Prover’s actions do not change the verifier’s private register:

TrMj (ρMjWj ) = TrM′j (ρM′jWj ) for j ∈ [l]. (1.1)

Since the variables in this SDP collectively holdO(log n) qubits, a standard SDP solver (e.g., [GM12])
provides a deterministic polynomial-time algorithm for approximately solving it.

QIPL ⊆ NP. We now extend the above SDP formulation to l-round QIPL proof systems, where
the verifier’s j-th action Vj is an almost-unitary quantum circuit that allows O(log n) intermedi-
ate measurements. We treat Vj as an isometric quantum circuit, introducing a new environment
register Ej that is measured at the end of the turn, with the outcome denoted by uj .
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Note that ω(V )|u denotes the contribution of the measurement outcomes u = (u1, · · · , ul)
to the maximum acceptance probability ω(V ). Since ω(V ) can be expressed as a sum over
all ω(V )|u, the soundness condition ω(V ) ≤ s(n) implies that each ω(V )|u ≤ s(n). With the
completeness condition ensuring the existence of u∗ such that ω(V )|u∗ ≥ c(n), we can focus
on a specific measurement outcome u and the unnormalized snapshot states ρMjWj⊗|uj⟩⟨uj |Ej

after measuring Ej in this SDP formulation. Building on the SDP formulation of QIPLO(1) proof
systems, we obtain a family of SDP programs depending on the measurement outcomes {u}.
Given a specific u, the SDP program includes two types of constraints:

(i’) ρMjWj⊗|uj⟩⟨uj |Ej
=

(
IMjWj⊗|uj⟩⟨uj |Ej

)
VjρM′j−1Wj−1

V †
j for j ∈ {2, · · · , l}, and

ρM1W1⊗|u1⟩⟨u1|E1 =
(
IM1W1⊗|u1⟩⟨u1|E1

)
V1|0̄⟩⟨0̄|MWV

†
1 .

(ii’) TrMj (ρMjWj⊗|uj⟩⟨uj |Ej
) = TrM′j (ρM′jWj⊗|uj⟩⟨uj |Ej

) for j ∈ [l].

Next, we explain the NP containment. The classical witness w consists of an l-tuple u, in-
dicating a specific SDP program, and a feasible solution (ρM′1W1 , · · · , ρM′lWl) to this SDP program.
This solution can be represented by l square matrices of dimension poly(n), thus having poly-
nomial size. The verification procedure involves checking (1) whether the solution encoded in
w satisfies these SDP constraints based on u; and (2) whether ω(V )|u ≥ c(n). All these checks
can be verified using basic matrix operations in deterministic polynomial time.

1.2.2 Basic properties for QIPL and QIPUL

We begin by outlining three basic properties of space-bounded (unitary) quantum interactive
proof systems, which are dependent on the parameters c(n), s(n), and m(n):

Theorem 1.5 (Properties for QIPL and QIPUL, informal of Theorem 3.2 and Lemma 4.5). Let
c(n), s(n), and m(n) be functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/ poly(n), and
1 ≤ m(n) ≤ poly(n). Then, it holds that :

(1) Closure under perfect completeness.

QIPLm[c, s] ⊆ QIPLm+2[1, 1− (c− s)2/2] and QIPULm[c, s] ⊆ QIPULm+2[1, 1− (c− s)2/2].

(2) Error reduction. For any polynomial k(n),

QIPLm[c, s] ⊆ QIPLm′
[
1, 2−k

]
and QIPULm[c, s] ⊆ QIPULm′

[
1, 2−k

]
.

Here, m′ := O
(
km/ log 1

1−(c−s)2/2
)
.

(3) Parallelization. QIPUL4m+1[1, s] ⊆ QIPUL2m+1[1, (1 +
√
s)/2].

Achieving perfect completeness for QIPL and QIPUL proof systems, particularly Theorem 1.5(1),
can be adapted from the techniques used in QIP proof systems [VW16, Section 4.2.1] (or [KW00,
Section 3]) by adding two additional turns. However, there are important subtleties to consider
when establishing the other properties in Theorem 1.5.

Error reduction via sequential repetition. Since each message is of size O(log n), error
reduction via parallel repetition does not apply to QIPL and QIPUL when the gap c − s is
polynomially small, regardless of the number of messages.11 Alternatively, error reduction via
sequential repetition requires that the registers M and W (the “workspace”) must be in the all-
zero state (“cleaned”) before each execution of the original proof systems. While this is trivial
for QIP proof systems, it poses a challenge for QIPL and QIPUL proof systems because the
(almost-)unitary quantum logspace verifier cannot achieve this on its own.

11Still, error reduction via parallel repetition works for QIPL when the gap c− s ≥ Ω(1); see Lemma 4.4.
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To establish Theorem 1.5(2), our solution is to have the prover “clean” the workspace while
ensuring that the prover behaves honestly. This is achieved through the following proof system:
The verifier applies a multiple-controlled adder before each proof system execution, with the
adder being activated only when the control qubits are all zero. The verifier then measures the
register that the adder acts on and accepts if (1) the workspace is “cleaned” for each execution
and (2) all outcomes of the original proof system executions are acceptance.

Parallelization and strict uniformity condition for the verifier’s mapping. The orig-
inal parallelization technique proposed in [KW00, Section 4] applies only to QIPUL (also QIPL)
proof systems with a constant number of messages. This limitation stems from the requirement
that the prover sends the snapshot states for all m turns in a single message. As m increases,
the size of this message grows to O(m log n), which becomes ω(log n) when m = ω(1).

To overcome this issue, we adapt the technique from [KKMV09, Section 4], a “dequantized”
version of the original approach that fully utilizes the reversibility of the verifier’s actions. Instead
of sending all snapshot states in one message, the new verifier performs the original verifier’s
action or its reverse at any turn in a single action. Specifically, when applying this method to a
(4m+ 1)-turn QIPUL proof system P⇌V , the prover starts by sending only the snapshot state
after the (2m + 1)-st turn. The verifier then chooses b ∈ {0, 1} uniformly at random: if b = 0,
the verifier continues to interact with the prover according to P ⇌ V , keeping the acceptance
condition unchanged; while if b = 1, the verifier executes P⇌V in reverse, and finally accepts if
its private qubits are all zero. This proof system, which halves the number of turns, is referred
to as the turn-halving lemma, as detailed in Theorem 1.5(3).

Next, we establish Theorem 1.2 by applying the turn-halving lemma O(log n) times.12 Specif-
ically, any QIPUL proof system with a polynomial number of messages can be parallelized to
three messages,13 while the gap c− s of the resulting proof system becomes polynomially small.
However, this reasoning poses a challenge: the resulting verifier must know all original verifier
actions, necessitating a strong notion of uniformity for the verifier’s mapping in our definition
of QIPUL. In addition, to prove Theorem 1.3, we adopt a similar approach to that used for
QIP, particularly QIP[3] ⊆ QMAM [MW05], which inspired the turn-halving lemma [KKMV09,
Section 4], and an exponentially down-scaling version of the work [JJUW11].

1.2.3 Lower bounds for QIPL and QIPUL

NP ⊆ QIPL. This inclusion draws inspiration from the interactive proof system in [CL95,
Lemma 2] and presents a challenge in adapting this proof system to the QIPL setting.

We start by outlining this QIPL proof system for 3-SAT. Consider a 3-SAT formula

ϕ = C1 ∨ C2 ∨ C3 = (x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ ¬x1 ∨ ¬x3)

with k = 3 clauses and n = 4 variables. An assignment α of ϕ assigns each variable xj for j ∈ [n]
a value αj of either ⊤ (true) or ⊥ (false). To verify whether ϕ is satisfied by the assignment α,
we encode ϕ(α) as Enc(ϕ(α)), consisting of 3k triples (l, i, v), where l denotes the literal (either
xj or ¬xj), i represents the i-th clause, and v denotes the value assigned to l. The prover’s
actions are divided into two phases:

(i) Consistency Check (for variables). The prover sends one by one all the triples (l, i, v)
in Enc(ϕ(α)), ordered by the variable var(l) corresponding to the literal l;

12An operation based on r random bits can be simulated by a corresponding unitary controlled by the state
|+⟩⊗r, where |+⟩ := 1√

2
(|0⟩ + |1⟩). Thus, simulating O(logn) random bits across all turns of the proof system

requires O(logn) ancillary qubits in total, which is feasible for the unitary quantum logspace verifier in QIPUL.
13Although the turn-halving lemma does not directly apply to QIPL proof systems, a similar reasoning works

for its reversible generalization QIPL⋄, reducing a constant number of messages to three.
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(ii) Satisfiability Check (for clauses). For each i ∈ {1, . . . , k}, the prover sends the three
triples (l1, i, v1), (l2, i, v2), and (l3, i, v3) in Enc(ϕ(α)).

The verifier’s actions are as follows. To prevent the prover from entangling with the verifier
and revealing the private coins, the verifier measures the received messages in the computational
basis at the beginning of each action, interpreting the measurement outcomes as the prover’s
messages. Therefore, it suffices to establish soundness against classical messages.

We now focus on this specific proof system. In Phase (i), the verifier checks whether the
assigned values to the same variable are consistent. Since the verifier’s actions are almost-unitary
circuits and cannot discard information, this seems challenging. Our solution is that the verifier
keeps only the current and the previous triples, returning the previous triple to the prover in
the next turn. In Phase (ii), the verifier checks whether each batch of three triples is satisfied
and returns them immediately. Lastly, to ensure that the multisets of triples from Phase (i) and
(ii) are identical, the verifier computes the “fingerprint” of these multisets,14 triple by triple, and
compares the fingerprints from both phases at the end. The verifier accepts if all checks succeed.

Using the fingerprinting lemma [Lip90], we prove the correctness of this proof system, showing
that 3-SAT ∈ QIPL8k[1, 1/3]. Interestingly, when combined with the inclusion QIPL ⊆ NP, this
protocol suggests an alternative approach to (indirect) error reduction for QIPL.

SAC1 ⊆ QIPUL. This inclusion is inspired by the interactive proof system in [For89, Section
3.4]. By using error reduction for QIPUL, specifically Theorem 1.5(2), it remains to demonstrate
that SAC1 ⊆ QIPUL[1, 1− 1/ poly(n)]. A Boolean circuit is defined as a (uniform) SAC1 circuit
C if it is an O(log n)-depth Boolean circuit that employs unbounded fan-in OR gates, bounded
fan-in AND gates, and negation gates at the input level.

The interactive proof system for evaluating the circuit C starts at its top gate. If the gate is
an OR, the prover selects a child gate; if it’s an AND, the verifier flips a coin to select one. This
process repeats until reaching an input xi or its negation, with the verifier accepting if xi = 1 or
xi = 0, respectively. Since the computational paths in C do not interfere, extending soundness
against classical messages, following directly from [For89, Section 3.4], to quantum messages
can be done by measuring the registers M and W in the computational basis at the end of the
verifier’s last turn. Finally, given that C has O(log n) depth, implementing the verifier’s actions
requires only O(log n) ancillary qubits, which is indeed achievable by a unitary verifier.

1.2.4 The equivalence of QSZKUL and BQL

We demonstrate Theorem 1.4 by introducing a QSZKULHV-complete problem:

Theorem 1.6 (Informal of Theorem 5.3). IndivProdQSD is QSZKULHV-complete.

We begin by informally defining the promise problem Individual Product State Dis-
tinguishability, denoted by IndivProdQSD[k(n), α(n), δ(n)], where the parameters satisfy
α(n)− k(n) · δ(n) ≥ 1/ poly(n) and 1 ≤ k(n) ≤ poly(n). This problem considers two k-tuples of
O(log n)-qubit quantum states, denoted by σ1, · · · , σk and σ′1, · · · , σ′k, where the purifications of
these states can be prepared by corresponding polynomial-size unitary quantum circuits acting
on O(log n) qubits. For yes instances, these two k-tuples are “globally” far, satisfying

T
(
σ1 ⊗ · · · ⊗ σk, σ′1 ⊗ · · · ⊗ σ′k

)
≥ α. (1.2)

While for no instances, each pair of corresponding states in these k-tuples are close, satisfying

∀j ∈ [k], T
(
σj , σ

′
j

)
≤ δ. (1.3)

Then we show that (1) the complement of IndivProdQSD, IndivProdQSD, is QSZKULHV-
hard; and (2) IndivProdQSD is in BQL, which is contained in QSZKULHV by definition.

14See Section 2.4 for the definition of the fingerprint of a multiset. The computation of each fingerprint requires
O(logn) random bits, which can be simulated in a QIPL proof system; see Footnote 12 for details.
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IndivProdQSD is QSZKULHV-hard. The hardness proof draws inspiration from [Wat02,
Section 5]. Consider a QSZKULHV[2k, c, s] proof system, denoted by B. The logspace-bounded
simulator SB produces good state approximations ξj and ξ′j of the snapshot states ρMjWj and
ρM′jWj after the (2j− 1)-st turn and the (2j)-th turn in B, respectively, satisfying ξj ≈δ ρMjWj and
ξ′j ≈δ ρM′jWj , where δB(n) is a negligible function.

Since the verifier’s actions are unitary and the verifier is honest, it suffices to check that
the prover’s actions do not change the verifier’s private register, corresponding to the type (ii)
constraints Equation (1.1) in the SDP formulation for QIPL proof systems. For convenience, let
σj := TrMj (ξj) and σ′j := TrM′j (ξ

′
j) for j ∈ [k]. We then establish QSZKLHV hardness as follows:

• For yes instances, the message-wise closeness condition of the simulator SB implies Equa-
tion (1.3) with δ(n) := 2δB(n).

• For no instances, the simulator SB produces the snapshot state before the final measure-
ment, which accepts with probability c(n) for all instances, while the proof system accepts
with probability at most s(n). The inconsistency between the simulator’s state approxi-
mations and the snapshot states yields Equation (1.2) with α(n) := (

√
c−
√
s)2/4(l − 1).

IndivProdQSD ∈ BQL. Since it holds that BQL = QMAL [FKL+16, FR21], it suffices to
establish that IndivProdQSD ∈ QMAL. By applying an averaging argument in combination
with Equation (1.2), we derive the following:∑
j∈[k]

T
(
σj , σ

′
j

)
≥ T

(
σ1 ⊗ · · · ⊗ σk, σ′1 ⊗ · · · ⊗ σ′k

)
≥ α ⇒ ∃j ∈ [k] s.t. T

(
σj , σ

′
j

)
≥ α

k
. (1.4)

The QMAL protocol works as follows: (1) The prover sends an index i ∈ [k] to the verifier;
and (2) The verifier accepts if Tr(σi, σ′i) ≥ α/k and rejects if Tr(σi, σ′i) ≤ δ, in accordance with
Equation (1.4) and Equation (1.3). The resulting promise problem to be verified is precisely an
instance of GapQSDlog, which is known to be BQL-complete [LGLW23].

1.3 Discussion and open problems

We introduce two models of space-bounded quantum interactive proof systems: QIPL and
QIPUL. Unlike BQL = BQUL, we show that QIPUL ⊊ QIPL unless P = NP. Our results highlight
the distinctive role of intermediate measurements in space-bounded quantum interactive proofs,
setting them apart from space-bounded quantum computation. This prompts an intriguing
question:

(a) What is the computational power of space-bounded quantum interactive proofs beyond
QIPL, specifically when allowing a general quantum logspace verifier?

A motivating example is a reversible generalization of QIPL, particularly space-bounded
isometric quantum interactive proof systems (QIPL⋄, see Remark 3.7), where all verifier actions
are space-bounded isometric quantum circuits.15 Notably, QMA ⊆ QIPL⋄.16 Given a local
Hamiltonian H =

∑m
i=1Hi, we can construct a QIPL⋄ proof system as follows:

(i) The verifier chooses a local term Hi uniformly at random from the set {H1, · · · , Hm}.

(ii) The prover sends a ground state |Ω⟩ qubit by qubit, while the verifier sends a state |0⟩ in
each round and retains only the qubits associated with Hi in its private registers.

(iii) The verifier performs the POVM corresponding to the decomposition I = Hi+(I−Hi).17

15An isometric quantum circuit is a generalization of a unitary quantum circuit that allows ancillary gates,
each introducing an ancillary qubit |0⟩. See Definition 2.8 for a formal definition.

16A similar approach is used in a streaming version of QMAL (with online access to the message) in [GR23].
17See the proof of [KSV02, Proposition 14.2] for an explicit construction of such POVMs.
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Further analysis indicates that the verifier accepts with probability 1 − m−1⟨Ω|H|Ω⟩, and
direct sequential repetition yields a QIPL⋄ proof system. Additionally, it is evident that all
candidate models of Question (a) are contained in QIP, and thus in PSPACE.

Furthermore, space-bounded unitary quantum interactive proofs (QIPUL) can simulate the
classical counterparts with O(log n) public coins [For89] (see Theorem 1.2), raising the question:

(b) Can we achieve a tighter characterization of QIPUL? For example, does QIPUL contain
space-bounded classical interactive proofs with ω(log n) public coins?

In addition to QIPL⋄ and QIPUL, QIPL exactly characterizes NP (see Theorem 1.1). How-
ever, the high concentration requirement for yes instances (the completeness condition) in the
definition of QIPL appears not entirely natural. This raises an interesting question:

(c) What is the computational power of the variant of QIPL without this high concentration
requirement in the completeness condition?

Finally, for constant-turn space-bounded quantum interactive proofs, the three models dis-
cussed here become equivalent due to the principle of deferred measurements, contrasting with
the aforementioned polynomial-turn settings. However, this equivalence does not directly extend
to more general verifiers (see Footnote 8), leading to the following question:

(d) What is the computational power of constant-turn space-bounded quantum interactive
proofs with a general quantum logspace verifier?

1.4 Related works

Several variants of (time-bounded) quantum interactive proofs with short messages were
explored in [BSW11, Per12]. These variants are as powerful as QMA or BQP, depending on
the specific settings. Recently, a space-bounded classical Merlin-Arthur-type proof system was
proposed in [GRZ24] that exactly characterizes BQL. This setting is very similar to [Lip90] (see
Footnote 3), but here, the honest prover’s power is limited to quantum logspace.

The concept of interactive proof systems has been extended to other computational models.
Quantum interactive proofs for synthesizing quantum states, known as stateQIP, were introduced
in [RY22]. Follow-up research established the equivalence stateQIP = statePSPACE [MY23]
and developed a parallelization technique for stateQIP [INN+22, Ros24]. A Merlin-Arthur-type
variant was also explored in [DLGLM23, DLG24]. More recently, quantum interactive proofs
for unitary synthesis and related problems have been studied in [BEM+23, LMW24]. Another
interesting but less related variant is the exploration of interactive proof systems in distributed
computing [KOS18, NPY20], and more recently, quantum distributed interactive proof systems
have been investigated [FPLGN21, LGMN23, HKN24].

Finally, space-bounded (classical) statistical zero-knowledge, where the verifier has read-
only (i.e., two-way) access to (polynomial-length) messages during interactions, was studied
in [DGRV11, AHT23, AGM+23]. More recently, a variant where the verifier has online (i.e.,
one-way) access to messages has also been explored [CDGH24].

2 Preliminaries

We assume that the reader is familiar with quantum computation and the theory of quantum
information. For an introduction, the textbooks by [NC10] and [dW19] provide a good starting
point, while for a more comprehensive survey on quantum complexity theory, refer to [Wat09a].

We introduce several conventions throughout the paper: (1) we denote [n] := {1, 2, . . . , n};
(2) we use the logarithmic function log(x) with base 2; and (3) we utilize the notation |0̄⟩ to
represent |0⟩⊗a with a > 1. In addition to these conventions, we provide two useful definitions.
We say that I = (Iyes, Ino) is a promise problem, if it satisfies that Iyes∩Ino = ∅ and Iyes∪Ino ⊆
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{0, 1}∗. For simplicity, we use the abbreviation x ∈ I to denote x ∈ Iyes ∪ Ino. A function µ(n)
is said to be negligible, if for every integer c ≥ 1, there is an integer nc > 0 such that for all
n ≥ nc, µ(n) < n−c.

2.1 Distance-like measures for quantum states

We will provide an overview of relevant quantum distances and divergences, along with useful
inequalities among different quantum distance-like measures. We say that a square matrix ρ is
a quantum state if ρ is positive semi-definite and Tr(ρ) = 1.

Definition 2.1 (Trace distance and fidelity). For any quantum states ρ0 and ρ1, we define two
distance-like measures:

• Trace distance. T(ρ0, ρ1) :=
1
2Tr|ρ0 − ρ1| =

1
2Tr(((ρ0 − ρ1)

†(ρ0 − ρ1))1/2).

• (Uhlmann) Fidelity. F(ρ0, ρ1) := Tr|√ρ0
√
ρ1|.

We begin by listing two useful bounds on tensor-product quantum states with respect to the
trace distance:

Lemma 2.2 (Trace distance on tensor-product states, adapted from Exercise 9.1.2 and Corollary
9.1.10 in [Wil13]). For any quantum states ρ1 ⊗ · · · ⊗ ρk and ρ′1 ⊗ · · · ⊗ ρ′k, where ρi and ρ′i use
the same number of qubits for all i ∈ [k], it holds that

(1) ∀i ∈ [k], T(ρi, ρ′i) ≤ T(ρ1 ⊗ · · · ⊗ ρk, ρ′1 ⊗ · · · ⊗ ρ′k).

(2) T(ρ1 ⊗ · · · ⊗ ρk, ρ′1 ⊗ · · · ⊗ ρ′k) ≤
∑

i∈[k]T(ρi, ρ
′
i).

We then provide two fundamental properties of the trace distance.

Lemma 2.3 (Data-processing inequality for the trace distance, adapted from [NC10, Theorem
9.2]). Let ρ0 and ρ1 be quantum states. For any quantum channel E, it holds that

T(E(ρ0), E(ρ1)) ≤ T(ρ0, ρ1).

Lemma 2.4 (Unitary invariance for the trace distance, adapted from [NC10, Equation (9.21)]).
Let ρ0 and ρ1 be quantum states. For any unitary transformation U , it holds that

T
(
Uρ0U

†, Uρ1U
†
)
= T(ρ0, ρ1).

Next, we present two basic properties for the fidelity.

Lemma 2.5 (Data-processing inequality for the fidelity, adapted from Theorem 9.6 in [NC10]).
Let ρ0 and ρ1 be quantum states. For any quantum channel E, it holds that

F(E(ρ0), E(ρ1)) ≥ F(ρ0, ρ1).

Lemma 2.6 ([SR01, Lemma 2] & [NS03, Lemma 3.3]). Let ρ0 and ρ1 be m-qubit quantum states.
Then, for any m-qubit quantum state ξ, it holds that

F(ρ0, ξ)
2 + F(ξ, ρ1)

2 ≤ 1 + F(ρ0, ρ1).

Lastly, we present a lemma concerning the freedom in purifications of quantum states:

Lemma 2.7 (Unitary equivalence of purifying the same state, adapted from [NC10, Exercise
2.81]). Let |ψ⟩AB and |ϕ⟩AB be pure states on the registers A and B such that

TrB(|ψ⟩⟨ψ|AB) = ρA = TrB(|ϕ⟩⟨ϕ|AB),

where ρA is a mixed state on the register A. Then, there exists a unitary transformation UB

acting on the register B such that |ψ⟩AB = (IA ⊗ UB)|ϕ⟩AB.
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2.2 Space-bounded quantum computation

We say that a function s(n) is space-constructible if there exists a deterministic space s(n)
Turing machine that takes 1n as an input and outputs s(n) in the unary encoding. Moreover,
we say that a function f(n) is s(n)-space computable if there exists a deterministic space s(n)
Turing machine that takes 1n as an input and outputs f(n). Our definitions of space-bounded
quantum computation are formulated in terms of quantum circuits. For a discussion on the
equivalence between space-bounded quantum computation using quantum circuits and quantum
Turing machines, we refer readers to [FL18, Appendix A] and [FR21, Section 2.2].

We begin by introducing three types of space-bounded quantum circuit families, as formalized
in Definition 2.8. Our definitions align with [VW16, Section 2.3]. Throughout this work, we
adopt the shorthand notation Cx to indicate that the circuit C|x| takes input x.

Definition 2.8 (Space-bounded quantum circuit families: unitary, almost-unitary, and isomet-
ric). Let us define three types of quantum circuits:

• Unitary quantum circuit. A unitary quantum circuit consists of a sequence of unitary
quantum gates, each of which belongs to some fixed gate set that is universal for quantum
computation, such as {H,CNOT,T}.

• Almost-unitary quantum circuit. An almost-unitary quantum circuit generalizes a uni-
tary quantum circuit acting on O(s(n)) qubits by allowing O(s(n)) single-qubit measurement
gates M in the computational basis, defined as:

ΦM(ρ) := |0⟩⟨0|Tr(M0ρ) + |1⟩⟨1|Tr(M1ρ), where Mb := |b⟩⟨b| for b ∈ {0, 1}.

• Isometric quantum circuit. An isometric quantum circuit extends a unitary quantum
circuit acting on O(s(n)) qubits by allowing O(s(n)) ancillary gates. An ancillary gate is a
non-unitary gate that takes no input and produces a single qubit in the state |0⟩ as output.

For convenience, we treat almost-unitary quantum circuits as a special case of isometric quan-
tum circuits.18 For a promise problem I = (Iyes, Ino), a family of unitary, almost-unitary, or
isometric quantum circuits {Cx : x ∈ I} is called s(n)-space-bounded if there is a deterministic
Turing machine that, given any input x ∈ I with input length n := |x|, runs in space O(s(n))
(and hence time 2O(s(n))) and outputs a description of Cx, where Cx accepts if x ∈ Iyes, rejects
if x ∈ Ino, acts on O(s(n)) qubits, and consists of 2O(s(n)) gates.

Remark 2.9 (Subtleties on space-bounded quantum circuit families). In the context of space-
bounded quantum circuits, as defined in Definition 2.8, there are important subtleties:
(1) Space-bounded almost-unitary quantum circuits are oblivious to the intermediate measure-

ment outcomes, implying that qubits in these circuits cannot be directly reset to zero.

(2) Space-bounded unitary and almost-unitary quantum circuits are equivalent for promise
problems via the principle of deferred measurements. However, such equivalences are un-
known in more general settings, analogous to the scenario in Footnote 20.

In this work, we focus on (log)space-bounded quantum circuits with s(n) = O(log n). The
complexity classes corresponding to space-bounded unitary and general quantum circuits with
s(n) = Θ(log(n)) are known as BQUL and BQL, respectively. As described in [VW16, Section
2.3], a general quantum circuit extends a unitary quantum circuit by including ancillary gates
and erasure gates.19 It has been established that BQUL = BQL for promise problems [FR21] (see

18More specifically, by applying the principle of deferred measurements (e.g., [NC10, Section 4.4]) to an almost-
unitary quantum circuit, we obtain an isometric quantum circuit in which each measurement gate is simulated
by an ancillary gate, and all ancillary qubits are measured at the end.

19An erasure gate is a non-unitary gate that takes a single qubit as input and produces no output. Alternatively,
a general quantum circuit can also be defined by extending a unitary quantum circuit with measurement gates
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also [GRZ21, GR22]), whereas such equivalences remain unproven in more general forms.20 For
detailed definitions and known properties of these classes, we refer to [LGLW23, Section 2.3] as
a brief introduction.

Lastly, we define logspace (many-to-one) reductions. We begin by slightly abusing notation
and considering parameterized promise problems of the form I = {In,t1,··· ,tr}n∈N for functions
t1, · · · , tr : N → R, where In,t1,··· ,tr consists of instances of size n which satisfy conditions ex-
pressed in terms of t1(n), · · · , tr(n). We say that I = {In,t1,··· ,tr}n∈N is (many-to-one) reducible
to I ′ =

{
I ′m,t′1,··· ,t′r′

}
m∈N if there exist (r + 1)-variable real polynomials p0, · · · , pr′ such that

for all n ∈ N, there exists a function gn : In,t1,··· ,tr → I ′m,t′1,··· ,t′r′
satisfying the following con-

ditions: (1) m = p0(n, t1(n), · · · , tr(n)); (2) t′j(m) = pj(n, t1(n), · · · , tr(n)) for all j ∈ [r′]; (3)
gn(x) ∈ I ′m,t′1,··· ,t′r′

for all x ∈ In,t1,··· ,tr . If the family of functions {gn}n∈N is computable in
deterministic logspace, we say that I is logspace-reducible to I ′, denoted by I ≤mL I ′.

2.3 Space-bounded quantum state testing

We begin by defining the space-bounded quantum state testing problem with respect to the
trace distance, denoted as GapQSDlog:

Definition 2.10 (Space-bounded Quantum State Distinguishability Problem, adapted from
Definition 4.1 and 4.2 [LGLW23]). Let α(n), β(n), r(n) be logspace computable functions such
that 0 ≤ β(n) < α(n) ≤ 1, α(n) − β(n) ≥ 1/poly(n) and 1 ≤ r(n) ≤ O(log n). Let Q0 and
Q1 be polynomial-size unitary quantum circuits acting on O(log n) qubits, with r(n) specified
output qubits. Here, n represents the total number of gates in Q0 and Q1. For b ∈ {0, 1}, let ρb
denote the quantum states obtained by running Qb on the all-zero state |0̄⟩ and tracing out the
non-output qubits, then the promise is that one of the following holds:

• Yes instances: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≥ α(n);

• No instances: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≤ β(n).

Moreover, we use the notation GapQSDlog to denote the complement of GapQSDlog with
respect to the chosen parameters α(n) and β(n). As established in [LGLW23], GapQSDlog is
BQL-complete, and we are particularly interested in the BQL containment:

Theorem 2.11 (GapQSDlog is in BQL, adapted from [LGLW23, Theorem 4.10]). Let α(n) and
β(n) be logspace computable functions such that α(n)− β(n) ≥ 1/ poly(n). It holds that

GapQSDlog[α(n), β(n)] ∈ BQL.

Lastly, it is worth noting that by removing the space constraints on the quantum cir-
cuits Q0 and Q1 and allowing r(n) ≤ n, where n denotes the input length of these state-
preparation circuits, we obtain a variant of Definition 2.10 that aligns with the definition of
GapQSD[α(n), β(n)]. This promise problem was considered in [Wat02] with the condition
α2 > β, referred to as QSD[α(n), β(n)].

2.4 Classical concepts, tools, and complexity classes

3-SAT. The 3-SAT problem is one of the simplest examples of NP-complete problems. We
provide only a brief introduction to 3-SAT here. For further details, see [AB09, Section 2.3].

and reset-to-zero gates, as in [FR21, GR22]. Notably, a reset-to-zero gate can be simulated by first applying an
erasure gate to remove the original qubit and then using an ancillary gate to introduce a new qubit.

20Specifically, this refers to the transformation of a unitary quantum logspace circuit C′ from a general quantum
logspace circuit C (with all-zero states as input) such that the final state of C and C′ are identical. This is a
stronger requirement than merely ensuring that the output qubits of these circuits are the same. This general
form only can be simulated in NC2 [Wat99, Wat03a].

13



A 3-SAT formula can be written as ϕ = C1 ∧ · · · ∧ Ck, where each clause Ci for i ∈ [k] is
of the form

(
l
(i)
1 ∨ l

(i)
2 ∨ l

(i)
3

)
, with each literal l(i)j being either one of the variables x1, · · · , xn

or its negation. For instance, (x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ ¬x1 ∨ ¬x3) illustrates
the structure. An assignment of a 3-SAT formula assigns each variable xj for j ∈ [n] a value of
either ⊤ (true) or ⊥ (false). The 3-SAT problem aims to decide whether a given formula ϕ is
satisfiable. We say that ϕ is satisfiable if there exists an assignment α such that Φ(α) = ⊤.

Lemma 2.12 ([AB09, Exercise 4.6]). 3-SAT is NP-complete under logspace reductions.

Fingerprinting of multisets. A fingerprint of a multiset {x1, · · · , xk}, where all elements
are non-negative integers and duplicates are allowed, is defined as Πki=1(xi + r) mod p, with p
being a prime and r ∈ [p− 1]. The fingerprinting lemma [Lip90] aims to compare whether two
multisets are equal by using short fingerprints:

Lemma 2.13 (Fingerprinting lemma, adapted from [Lip90, Theorem 3.1]). Let A := {x1, · · · , xℓ1}
and B := {y1, · · · , yℓ2} be two multisets in which all elements are b-bit non-negative integers, with
ℓ := max{ℓ1, ℓ2}. If the prime p is chosen uniformly at random from the interval [(bℓ)2, 2(bℓ)2]
and the integer r is chosen uniformly at random from the interval [1, p− 1], the probability that
the distinct multisets A and B produce the same fingerprint is at most O

( log b+log ℓ
bℓ + 1

b2ℓ

)
.

(Uniform) SAC1. The complexity class (uniform) SAC1 is a restricted subclass of (uniform)
AC1. Throughout this paper, SAC1 circuits will refer to (logspace-)uniform SAC1 circuits. We
define SAC1 circuits and their corresponding circuit evaluation problem as follows:

Definition 2.14 (Uniform SAC1 Circuit Evaluation, adapted from [BCD+89]). A Boolean
circuit C : {0, 1}n → {0, 1} is defined as an SAC1 circuit if it has depth O(log n), includes
unbounded fan-in OR (∨) gates, bounded fan-in AND (∧) gates (e.g., with fan-in 2), and has
negation (¬) gate restricted to the input level. The problem is to decide whether a given (logspace-
)uniform SAC1 circuit C, whose description can be computed by a deterministic logspace Turing
machine, evaluates to 1.

Venkateswaran [Ven91] established that SAC1 is equivalent to LOGCFL, the complexity class
consists of languages that are logspace-reducible to context-free languages [Sud78]. To compare
with other classes of logspace-uniform bounded-depth Boolean circuits, it is known that:

NL ⊆ SAC1 = LOGCFL ⊆ AC1 ⊆ NC2

Here, NL is a logspace version of NP with polynomial-length witness, AC1 captures the power of
O(log n)-depth Boolean circuits using unbounded fan-in gates, and NC2 characterizes the power
of O(log2 n)-depth Boolean circuits with bounded fan-in gates.

Similar to NL, LOGCFL (equivalently, SAC1) is closed under complementation [BCD+89].
However, whether SAC1 is contained in BPL or BQL remains an open problem.

3 Space-bounded (unitary) quantum interactive proofs

In this section, we introduce space-bounded quantum interactive proofs (QIPL), where the
verifier’s actions are implemented using space-bounded almost-unitary quantum circuits (see
Definition 2.8); along with the variant QIPUL, in which the verifier’s actions are restricted to
unitary circuits. Both QIPL and QIPUL are variants of single-prover quantum interactive proofs
(QIP) [Wat03b, KW00] that have a space constraint. We establish three theorems concerning
the classes QIPL and QIPUL, focusing on space-bounded (unitary) quantum interactive proofs
with a polynomial number of messages.

The first theorem shows that QIPL provides a new exact characterization of NP, as stated
in Theorem 3.1. This result can be seen as a quantum analog of classical works [Lip90, CL95].
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Theorem 3.1 (The equivalence of QIPL and NP). The following holds:

(1) For any logspace-computable function m(n) such that 1 ≤ m(n) ≤ poly(n),

∪c(n)−s(n)≥1/ poly(n)QIPLm[c, s] ⊆ NP.

(2) NP ⊆ QIPLm, where m(n) is some polynomial in n.

The second theorem addresses two fundamental but crucial properties of QIPL and QIPUL.
Specifically, closure under perfect completeness (Lemma 3.12) and error reduction through se-
quential repetition (Lemma 3.13):

Theorem 3.2 (Basic properties for QIPL and QIPUL). Let c(n), s(n), and m(n) be logspace-
computable functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/poly(n), and 1 ≤ m(n) ≤
poly(n). Then the following properties hold:

(1) Closure under perfect completeness.

QIPLm[c, s] ⊆ QIPLm+2[1, 1− (c− s)2/2] and QIPULm[c, s] ⊆ QIPULm+2[1, 1− (c− s)2/2].

(2) Error reduction. For any polynomial k(n),

QIPLm[c, s] ⊆ QIPLm′ [1, 2−k] and QIPULm[c, s] ⊆ QIPULm′ [1, 2−k].

Here, m′ is some polynomial in n.

The third theorem provides a lower bound for QIPUL, which serves as a quantum analog of
the space-bounded public-coin classical interactive proof for SAC1 established in [For89]:

Theorem 3.3. SAC1 ∪ BQL ⊆ QIPULm, where m(n) is some polynomial in n.

In the remainder of this section, we provide the definitions of space-bounded (unitary) quan-
tum interactive proofs, specifically the classes QIPL and QIPUL, in Section 3.1. We then formulate
QIPL proof systems as semi-definite programs in Section 3.2, leading to the inclusion QIPL ⊆ NP
(Theorem 3.8). Next, the proof of the two basic properties in Theorem 3.2 is presented in Sec-
tion 3.3. Lastly, the lower bounds for QIPL and QIPUL, particularly the inclusions NP ⊆ QIPL
(Theorem 3.14) and SAC1 ⊆ QIPUL (Theorem 3.3), are established in Section 3.4.

3.1 Definitions of space-bounded quantum interactive proof systems

Our definitions of space-bounded quantum interactive proofs follow that of [KW00, Section
2.3] and [Wat02, Section 2.3]. In this framework, a (log)space-bounded quantum interactive
proof system consists of two parties: an untrusted prover with unbounded computational power,
and a verifier constrained to using only O(log n) qubits, enabling at most polynomial-time quan-
tum computation. The primary distinction between standard single-prover quantum interactive
proofs and their space-bounded variants lies in this additional space constraint on the verifier,
which prompts a subtle question:

Problem 3.4. Is it necessary to allow O(log n) intermediate measurements in the computational
basis during each verifier’s action in space-bounded quantum interactive proof systems?

Interestingly, the answer to Problem 3.4 does not affect one-message proof systems, specifi-
cally (unitary) QMAL [FKL+16, FR21], where the unitary verification circuit acts on O(log n)
qubits and inherently allows O(log n) intermediate measurements (see also Remark 2.9).

To address Problem 3.4, we introduce two types of space-bounded quantum interactive proof
systems, denoted by QIPL and QIPUL. In both proof systems, the verifier has direct access to
the messages exchanged during interactions, which limits each message size to O(log n). The
key distinction between these proof systems lies in their differing responses to Problem 3.4.
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In QIPL, the verifier’s actions correspond to space-bounded almost-unitary quantum circuits
(see Definition 2.8), allowing O(log n) intermediate measurements in each verifier’s action. As
an additional restriction, for yes instances, the distribution of these intermediate measurement
outcomes, conditioned on acceptance, is highly concentrated. However, in QIPUL, the verifier’s
actions are implemented using space-bounded unitary quantum circuits. The former model
can be considered the weakest one that still encompasses space-bounded (private-coin) classical
interactive proof systems, particularly the model described in [CL95].21

Formal definitions of QIPL and QIPUL. Given a promise problem I = (Iyes, Ino), a quantum
verifier is logspace-computable mapping V , where for each input string x ∈ I ⊆ {0, 1}∗, V (x)
is interpreted as an encoding of a k(|x|)-tuple (V (x)1, · · · , V (x)k) of quantum circuits. These
circuits represent the verifier’s actions at each round of the proof system, with specific constraints
depending on the proof system, QIPL or QIPUL:

• In a QIPL proof system, each V (x)j is a space-bounded almost-unitary quantum circuit (an
isometry, see Definition 2.8) that takes qubits in registers (M,W) as input and outputs qubits
in registers (M,W,Ej), where Ej holds qEj

(|x|) qubits. At the end of the verifier’s j-th action
V (x)j , the (newly introduced) environment register Ej is measured in the computational
basis, with the measurement outcome denoted as uj . The total number of qubits satisfies
qM(|x|) + qW(|x|) + qEj

(|x|) ≤ O(log n), with both W and Ej private to the verifier.

• In a QIPUL proof system, each V (x)j is a space-bounded unitary quantum circuit acting
on two registers M and W, which hold qM(|x|) and qW(|x|) qubits, respectively. The total
number of qubits satisfies qM(|x|) + qW(|x|) ≤ O(log n), with W private to the verifier.

Furthermore, the logspace-computability of V (x) requires a strong notion of uniformity :
there must exist a logspace deterministic Turing machineM that, for each input x, outputs the
classical description of (V (x)1, · · · , V (x)k).22 Lastly, the verifier V is called m(|x|)-message if
k(|x|) = ⌊m(|x|)/2 + 1⌋ for all integer |x|, depending on whether m is even or odd.

Similar to standard quantum interactive proofs, the prover and the verifier in the same space-
bounded quantum interactive proof system must be compatible. This means that they must agree
on the maximum length qM(|x|) of each message exchanged in the proof system and the total
number m(|x|) of these messages. Hence, a quantum prover P is a function that maps each input
x ∈ I to an l(|x|)-tuple (P (x)1, · · · , P (x)l) of quantum circuits, where l(|x|) = ⌊(m(|x|) + 1)/2⌋.
Each circuit P (x)j acts on two registers Q and M with qQ(|x|) and qM(|x|) qubits, respectively,
satisfying that Q is private to the prover. Since there are no restrictions on the prover P , each
P (x)j can be viewed as an arbitrary unitary transformation in general.

Given an input x ∈ I, and a prover P and a verifier V that exchange m(|x|) messages,
we define an m(|x|)-turn space-bounded quantum interactive proof system (P⇌V )(x), namely
a QIPL proof system, as a quantum circuit acting on the registers Q, M, W, and additional
environment registers {Ej} as follows:

• If m(|x|) = 2l(|x|) is even, circuits V (x)1, P (x)1, · · · , V (x)l, P (x)l, V (x)l+1 are applied in
sequence to the registers M, W, and Ej , or to the registers Q and M accordingly. It is
important to note that the register Ej is inaccessible after the j-th round.

• If m(|x|) = 2l(|x|) + 1 is odd, the situation is similar, except that the prover starts the
protocol, so the circuits P (x)1, V (x)1, · · · , P (x)l+1, V (x)l+1 are applied in sequence.

21For any proof system that ensures soundness against classical messages, we can construct a corresponding
proof system that guarantees soundness against quantum messages by measuring the message in the computa-
tional basis at the beginning of each verifier’s action.

22This uniformity requirement is slightly stronger and less general than merely requiring all quantum circuits
V (x)1, · · · , V (x)k to be logspace-bounded (referred to as a weaker notion of uniformity), as the classical descrip-
tions of these quantum circuits may not be generated by a single logspace deterministic Turing machine (although
a polynomial-time deterministic Turing machine would suffice).
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Figure 3.1: A 2l-turn space-bounded quantum interactive proof system (with snapshots).

Analogously, for an m(|x|)-turn space-bounded unitary quantum interactive proof system,
namely a QIPUL proof system, the definition remains the same except that environment registers
{Ej} are no longer involved. Without the loss of generality, we assume that the prover always
sends the last message. See also Figure 3.1 for an illumination of the case when m(|x|) is even.
For convenience, we sometimes omit the dependence on x and |x| when describing P and V ,
e.g., using Pj and Vj to denote P (x)j and V (x)j , respectively, and m to denote m(|x|).

Assuming the mapping V (x) = (V (x)1, · · · , V (x)k) in a QIPL proof system is a collection
of almost-unitary quantum circuits,23 the state of the qubits in the circuit P ⇌ V is an (un-
normalized) pure state on the registers (Q,M,V,Ej) after the verifier’s j-th action.24 A similar
observation holds for QIPUL proof systems. Thus, for a given input x, the probability that P⇌V
accepts x is defined as the probability that measuring the designated output qubit – typically
the first qubit of (M,W) – of (P ⇌ V )(x)|0̄⟩Q|0̄⟩M|0̄⟩W in the computational basis yields the
outcome 1.

Let ω(V ) denote the maximum acceptance probability of the verifier V in the proof system
P ⇌ V . For QIPL proof systems, we impose an additional restriction on the distribution of
intermediate measurement outcomes u := (u1, · · · , ul), conditioned on acceptance, for yes in-
stances. We define ω(V )|u as the contribution of the measurement outcome u to ω(V ), where
all post-measurement states remain unnormalized. A direct calculation then implies that

ω(V ) =
∑

u∈{0,1}qE1+···+qEl
ω(V )|u. (3.1)

We are now ready to formally define space-bounded quantum interactive proof systems:

Definition 3.5 (Space-bounded quantum interactive proofs, QIPL). Let c(n), s(n), and m(n)
be logspace-computable functions of the input length n := |x| such that 0 ≤ s(n) < c(n) ≤ 1 and
1 ≤ m(n) ≤ poly(n). A promise problem I = (Iyes, Ino) is in QIPLm[c, s], if there exists an
m(n)-turn logspace-computable almost-unitary quantum verifier V such that :

• Completeness. For any x ∈ Iyes, there exists an m(n)-message prover P such that there
exists an intermediate measurement outcome u∗ = (u∗1, · · · , u∗l ) with

ω(V )|u∗ ≥ c(n).

• Soundness. For any x ∈ Ino and any m(n)-message prover P ,

ω(V ) ≤ s(n).

Furthermore, we define QIPLm := QIPLm[2/3, 1/3] and QIPL := ∪m≤poly(n)QIPLm.

23This assumption about the verifier’s actions is crucial for adapting several techniques from standard quantum
interactive proofs. For more on general verifiers in the standard scenario, see [VW16, Section 4.1.4].

24Specifically, a pure state occupies the registers (Q,M,V,E1) before the measurements at the end of the
verifier’s first action. To align with the proof of Lemma 3.11 (the upper bound for QIPL), which considers only
a specific measurement outcome, this post-measurement pure state will be unnormalized.

17



Interestingly, the completeness condition in Definition 3.5 can be relaxed to
∑

u∈J ω(V )|u ≥
c(n), where J is an index set of size polynomial in n. The resulting class, denoted by QIPL⋆,
remains equivalent to QIPL. Analogously, we can define space-bounded unitary quantum inter-
active proof systems, without imposing the additional restriction on yes instances:

Definition 3.6 (Space-bounded unitary quantum interactive proofs, QIPUL). Let c(n), s(n),
and m(n) be logspace-computable functions of the input length n := |x| such that 0 ≤ s(n) <
c(n) ≤ 1 and 1 ≤ m(n) ≤ poly(n). A promise problem I = (Iyes, Ino) is in QIPULm[c, s], if
there exists an m(n)-turn logspace-computable unitary quantum verifier V such that :

• Completeness. For any x ∈ Iyes, there exists an m(n)-message prover P such that

ω(V ) ≥ c(n).

• Soundness. For any x ∈ Ino and any m(n)-message prover P ,

ω(V ) ≤ s(n).

Furthermore, we define QIPULm := QIPULm[2/3, 1/3] and QIPUL := ∪m≤poly(n)QIPULm.

Remark 3.7 (A reversible generalization of QIPL). We introduce the class QIPL⋄ as a reversible
generalization of QIPL, primarily for convenience. A QIPL⋄ proof system is defined similarly to
a QIPL proof system, but with three crucial differences:

(1) All of the verifier’s actions are isometric quantum circuits, without restrictions. In partic-
ular, any unitary elementary gate can act on the ancillary qubits |0̄⟩, which are introduced
by O(log n) ancillary gates, and qubits in the message register M.

(2) The environment register Ek, introduced during the verifier’s k-th action, remains private
to the verifier and is accessible only during that turn. Importantly, the qubits in Ek are
not measured at the end of the turn. Consequently, the qubits in Ek remain unchanged
after that turn, although the entanglement shared among E1, · · · , Ek, and M may change.

(3) The completeness condition is simply ω(V ) ≥ c(n), without any addition restrictions.

3.2 An upper bound for QIPL via SDP formulations

We begin with the upper bound for the class QIPL:25

Theorem 3.8 (QIPL is in NP). Let c(n), s(n), and m(n) be logspace-computable functions such
that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/poly(n), and 1 ≤ m(n) ≤ poly(n), it holds that

QIPLm[c, s] ⊆ NP.

Before presenting the proof, we introduce the term snapshot registers to refer to the registers
Q, M, and W after each turn in a QIPL proof system. We also refer to the quantum state within
these snapshot registers as snapshot states. For example, the snapshot registers corresponding
to W at distinct time points are W0, · · · , Wl, as illustrated in Figure 3.1. More precisely, for an
l-round (i.e., 2l-turn) QIPL proof system, we define the following:

(1) Q0, M0, and W0, which contain the all-zero state, are the snapshot registers of registers Q,
M, and W, respectively, before the protocol begins;

(2) Mj and Wj (1 ≤ j ≤ l) are the snapshot registers of the registers M and W, respectively,
after the verifier sends the message in the j-th round;

25It is noteworthy that this upper bound also applies to two variants of QIPL: (1) when the verifier’s mapping
satisfies a weaker notion of uniformity (see Footnote 22 for details), and (2) to QIPL⋆, as defined in Section 3.1,
where the completeness condition is slightly relaxed.
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(3) M′j and Wj (1 ≤ j ≤ l) are the snapshot registers of the registers M and W, respectively,
after the verifier receives the message from the prover in the j-th round;

(4) Qj (1 ≤ j ≤ l) is the snapshot registers of the register Q immediately after applying the
prover’s j-th action Pj , i.e., after the prover sends the message in the j-th round;

(5) (Z, R) represents the snapshot registers of registers M and W, respectively, just before the
verifier performs the final measurement, where Z corresponds to the designated output
qubit of the verifier and R contains the remained qubits.

In the remainder of this subsection, we first present semi-definite programming (SDP) for-
mulations for QIPL proof systems in Section 3.2.1, and then establish an upper bound for QIPL
(Theorem 3.8) in Section 3.2.2.

3.2.1 Semi-definite program formulations for QIPL proof systems

To establish upper bounds for space-bounded (unitary) quantum interactive proofs, a com-
monplace approach involves solving the optimization problem of approximating the maximum
acceptance probability of a QIPL and QIPUL proof system over all prover strategies. For clarity,
we first present an SDP for characterizing QIPL proof systems (Lemma 3.9), directly extended
from [VW16, Section 4.3] and [Wat16, Section 4]. Next, we introduce another SDP characteri-
zation (Lemma 3.11) that fully incorporates all restrictions of QIPL proof systems.

First SDP formulation for QIPL proof systems. For an m-turn QIPL proof system with
even m,26 we formulate this optimization problem as a semi-definite program (SDP) from the
verifier’s perspective, following the approach described in [VW16, Section 4.3]:

Lemma 3.9 (First SDP formulation for QIPL proof systems). For any l(n)-round space-bounded
quantum interactive proof system P ⇌V with completeness c(n), soundness s(n), which corre-
sponds to a promise problem I = (Iyes, Ino) in QIPL2l[c, s], there is an SDP program to compute
the maximum acceptance probability ω(V ) of the proof system P⇌V :

maximize ω(V ) = Tr
(
Ṽ †
l+1|1⟩⟨1|outṼl+1ρM′lWlE1···El

)
subject to TrM′1

(
ρM′1W1E1

)
= TrM1

(
V1|0̄⟩⟨0̄|M0W0V

†
1

)
,

TrM′j

(
ρM′jWjE1···Ej

)
= TrMj

(
ṼjρM′j−1Wj−1E1···Ej−1

Ṽ †
j

)
, j ∈ [l] \ [1],

Tr
(
ρM′jWjE1···Ej

)
= 1, j ∈ [l],

ρM′jWjE1···Ej
⪰ 0, j ∈ [l]

(3.2)

Here, the verifier’s actions V1, · · · , Vl+1 are considered space-bounded isometric quantum circuits,
with the notation Ṽj := Vj⊗IE1···Ej−1

for each j ∈ [l + 1] \ [1]. The variables in this SDP are
ρM′1W1E1

, · · · , ρM′lWlE1···El
, collectively holding O(l2(n) · log n) qubits.

Remark 3.10 (The applicability of the first SDP formulation for QIPL). The SDP program in
Equation (3.2) essentially characterizes QIPL⋄ proof systems (Remark 3.7), a reversible general-
ization of QIPL where the verifier’s actions are isometric quantum circuits and the completeness
condition is simply ω(V ) ≥ c(n). Additionally, by disregarding all environment registers {Ej}
in Equation (3.2), we immediately obtain an SDP formulation for QIPUL proof systems, where
the variables are ρM′1W1 , · · · , ρM′lWl , collectively holding O(l(n) · log n) qubits.

Our SDP program in Equation (3.2) consists of two types of constraints, both of which can be
described by simple equations: (1) the verifier remains honest, and (2) the prover’s actions do not

26Adapting the proof to the case of odd m is straightforward, so we omit the details.
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interfere with the verifier’s private qubits. Importantly, every feasible solution to Equation (3.2)
corresponds to a valid strategy for the prover. We now proceed with the detailed proof:

Proof of Lemma 3.9. For any m(n)-turn proof system P ⇌ V , with completeness c, soundness
s, and m being even, which corresponds to a promise problem I in QIPLm[c, s], we consider the
verifier’s maximum acceptance probability ω(V ) as the objective function to be maximized. In
our SDP formulation for the QIPL proof system P⇌V , we focus on the verifier’s actions (e.g.,
Vj), specifically isometric quantum circuits that do not measure the new environment register
(e.g., Ej) at the end. As defined in Section 3.1, the verifier V is described by an (l + 1)-tuple
(V1, · · · , Vl+1) of space-bounded unitary quantum circuits {Vj}j∈[l+1], where l = m/2.

To represent the variables in our SDP program, which are the states in the snapshot registers
corresponding to the message register M, the verifier’s private register W, and the environment
registers E1 · · · ,Ej after the verifier’s j-th action in P⇌V , we use the notations defined in Fig-
ure 3.1. Specifically, let ρMjWjE1···Ej

denote the state in the snapshot registers (Mj , Wj ,E1, · · · ,Ej).
Similarly, we can define snapshot states ρM′jWjE1···Ej

for j ∈ [l] and ρZRE1···El+1
accordingly.

Assuming that P⇌V begins with the verifier, it follows that the objective function

ω(V ) = ∥|1⟩⟨1|outVl+1PlVl · · ·P1V1|0̄⟩Q0,M0,W0∥22
= Tr

(
TrQ

(
(Vl+1PlVl · · ·P1V1)

†|1⟩⟨1|out(Vl+1PlVl · · ·P1V1)|0̄⟩⟨0̄|Q0,M0,W0
))

= Tr
((
V †
l+1⊗IE1···El

)
|1⟩⟨1|out

(
V †
l+1⊗IE1···El

)
ρM′lWlE1···El

) (3.3)

Noting that the verifier V remains honest and the verifier’s j-th action does not act on the
environment registers E1, · · · ,Ej−1, we obtain the first type of constraints:

ρM1W1E1 = V1ρM0W0V
†
1 = V1|0̄⟩⟨0̄|M0W0V

†
1 ;

∀j ∈ {2, · · · , l}, ρMjWjE1···Ej
=

(
Vj⊗IE1···Ej−1

)
ρM′j−1Wj−1E1···Ej−1

(
V †
j ⊗IE1···Ej−1

)
;

ρZRE1···El+1
=

(
Vl+1⊗IE1···El

)
ρM′lWlE1···El

(
V †
l+1⊗IE1···El

)
.

(3.4)

Since the prover’s actions are described by unitary quantum circuits and the verifier’s actions
by isometric quantum circuits, all intermediate states in (Q,M,W,E1, · · · ,Ej) after the verifier’s
j-th action in P⇌V are pure states. These states, denoted by |ψ⟩Qj−1MjWjE1···Ej

and |ϕ⟩QjM′jWjE1···Ej

for j ∈ [l], satisfy the relation |ϕ⟩QjM′jWjE1···Ej
= Pj |ψ⟩Qj−1MjWjE1···Ej

. By the unitary freedom in
purifications (Lemma 2.7), we have:

∀j ∈ [l], TrQj−1Mj

(
|ψ⟩⟨ψ|Qj−1MjWjE1···Ej

)
= ρWjE1···Ej

= TrQjM′j

(
|ϕ⟩⟨ϕ|QjM′jWjE1···Ej

)
.

Here, the underlying unitary transformation corresponds to the prover’s action Pj in the j-th
round. As a consequence, the prover’s actions do not interfere with the verifier’s private register
W or the environment registers E1, · · · ,Ej (after the verifier’s j-th action) during the execution
of P⇌V . This property leads to the second type of constraints:

∀j ∈ [l], TrMj
(
ρMjWjE1···Ej

)
= TrM′j

(
ρM′jWjE1···Ej

)
. (3.5)

Putting Equation (3.3), Equation (3.4), and Equation (3.5) all together, we conclude our
SDP formulation for the given QIPL proof system P⇌V , as detailed in Equation (3.2).

Second SDP formulation for QIPL proof systems. The main challenge in fully utilizing
all restrictions of QIPL proof systems in an SDP program is effectively using the measurement
outcomes from the newly introduced environment register Ej after the verifier’s j-th action.
Specifically, when applying the principle of deferred measurements to the verifier’s j-th action
(almost-unitary quantum circuit), an environment register Ej is introduced. Thus, the variables
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in Equation (3.2) correspond to ρM′1W1E1
, ρM′1W1E1E2

, · · · , ρM′lWlE1···El
. In general, when the verifier’s

actions are isometric quantum circuits, the environment registers E1, · · · ,El may be entangled.27

However, an almost-unitary quantum circuit (the verifier’s j-th action) corresponds to a
specific type of isometric quantum circuit, followed by measuring the environment register Ej in
the computational basis at the end of the circuit. Therefore, the environment registers E1, · · · ,El
remain independent in this restricted setting, leading to the following SDP program:

Lemma 3.11 (Second SDP formulation for QIPL proof systems). For any l(n)-round space-
bounded quantum interactive proof system P ⇌ V with completeness c(n) and soundness s(n),
corresponding to a promise problem I = (Iyes, Ino) in QIPL2l[c, s], there is a family of SDP
programs for computing the contribution ω(V )|u of the measurement outcome u = (u1, · · · , ul)
to the maximum acceptance probability ω(V ) of the proof system P⇌V . Here, each uj for j ∈ [l]
is a measurement outcome from the environment register Ej following the verifier’s j-th action.
Specifically, an SDP program for computing ω(V )|u can be formulated as follows:

maximize ω(V )|u = Tr
(
V †
l+1|1⟩⟨1|outVl+1ρM′lWl

)
subject to TrM′1

(
ρM′1W1⊗|u1⟩⟨u1|E1

)
= TrM1

((
IM1W1⊗|u1⟩⟨u1|E1

)
V1|0̄⟩⟨0̄|M0W0V

†
1

)
,

TrM′j

(
ρM′jWj⊗|uj⟩⟨uj |Ej

)
= TrMj

((
IMjWj⊗|uj⟩⟨uj |Ej

)
VjρM′j−1Wj−1

V †
j

)
, j ∈ [l]\[1],

Tr
(
ρM′jWj⊗|uj⟩⟨uj |Ej

)
≤ 1, j ∈ [l],

ρM′jWj⊗|uj⟩⟨uj |Ej
⪰ 0, j ∈ [l]

(3.6)
Here, the verifier’s actions V1, · · · , Vl+1 correspond to space-bounded almost-unitary quantum
circuits, which we interpret as a special class of isometric quantum circuits. The variables in
this SDP are unnormalized states ρM′1W1 , · · · , ρM′lWl , collectively holding O(l(n) · log n) qubits.

Proof. Our proof strategy follows a similar approach to that of Lemma 3.9, so we will only
highlight the key differences. As defined in Section 3.1, the verifier V is described by an (l+1)-
tuple (V1, · · · , Vl+1) of space-bounded almost-unitary quantum circuits {Vj}j∈[l+1], which are a
special class of isometric quantum circuits, where l = m/2.

To represent the variables in this SDP program, which are the unnormalized states in the
snapshot registers corresponding to the message register M and the verifier’s private register
W, we use the notations from Figure 3.1. Assume that it suffices to consider the measurement
outcome uj obtained from measuring Ej in the computational basis at the end of the verifier’s
j-th action. Consequently, the state |uj⟩⟨uj | in the environment register Ej is treated as part
of the SDP constraints, not as the variables. In particular, we slightly abuse the notation by
letting ρMjWj⊗|uj⟩⟨uj |Ej

denote the unnormalized snapshot state in the registers (M,W,Ej) after
the j-th verifier’s action. Similarly, we define unnormalized snapshot states ρM′jWj⊗|uj⟩⟨uj |Ej

for
1 ≤ j ≤ l and ρZREl+1

for the corresponding registers.

Objective function and dependence on measurement outcomes. Assuming that P⇌V
begins with the verifier, it follows that the objective function is defined as

ω(V ) = ∥|1⟩⟨1|outVl+1PlVl · · ·P1V1|0̄⟩Q0M0W0∥22 = Tr
(
V †
l+1|1⟩⟨1|outVl+1ρM′lWl

)
. (3.7)

We now explain why it suffices to focus on a specific measurement outcome uj obtained
from measuring Ej for j ∈ [l], along with the unnormalized resulting state in the registers
(Q,M,W) after these intermediate measurements. For yes instances, the completeness condition

27For instance, the prover may send a highly-entangled n-qubit state ϱ in n/ logn batches, each containing
logn qubits. In this case, the verifier keeps only O(logn) qubits, which are not necessarily adjacent, and swaps
the remaining qubits with fresh qubits in the environment registers.
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in Definition 3.5 guarantees the existence of a measurement outcome u∗ = (u∗1, · · · , u∗l ) such that
ω(V )|u∗ ≥ c(n). However, for no instances, the inequality ω(V ) =

∑
u ω(V )|u ≤ s(n) implies

that ω(V )|u ≤ s(n) for any measurement outcome u ∈ {0, 1}qE1+···+qEl .

Constraints. Note that the verifier V remains honest, with the initial state given by ρM0W0 =
|0̄⟩⟨0̄|M0W0 . The first type of constraints arises from applying the verifier’s action Vj :

ρM1W1⊗|u1⟩⟨u1|E1 =
(
IM1W1⊗|u1⟩⟨u1|E1

)
V1|0̄⟩⟨0̄|M0W0V

†
1 ;

∀j ∈ {2, · · · , l}, ρMjWj⊗|uj⟩⟨uj |Ej
=

(
IMjWj⊗|uj⟩⟨uj |Ej

)
VjρM′j−1Wj−1

V †
j ;

ρZREl+1
= Vl+1ρM′lWlV

†
l+1.

(3.8)

Since the prover’s actions are described by unitary quantum circuits, and the verifier’s j-th
action is an isometric quantum circuit, followed by measuring the (newly introduced) environ-
ment register Ej at the end of this turn, all intermediate states in (Q,M,W,Ej) after the verifier’s
j-th action in P⇌V are pure states. These unnormalized states, denoted by |ψ⟩Qj−1MjWj⊗|uj⟩Ej

and |ϕ⟩QjM′jWj⊗|uj⟩Ej
for j ∈ [l], satisfy the relation |ϕ⟩QjM′jWj⊗|uj⟩Ej

= Pj |ψ⟩Qj−1MjWj⊗|uj⟩Ej
. By

the unitary freedom in purifications (Lemma 2.7), it follows that:

∀j ∈ [l], TrQj−1Mj

(
|ψ⟩⟨ψ|Qj−1MjWj⊗|uj⟩⟨uj |Ej

)
= ρWj⊗|uj⟩⟨uj |Ej

= TrQjM′j

(
|ϕ⟩⟨ϕ|QjM′jWj⊗|uj⟩⟨uj |Ej

)
.

Here, the underlying unitary transformation corresponds to the prover’s action Pj in the j-th
round. Consequently, the prover’s actions do not interfere with the verifier’s private register W
or the environment register Ej (introduced by the verifier’s j-th action) during the execution of
P⇌V . This property gives rise to the second type of constraints:

∀j ∈ [l], TrMj
(
ρMjWj⊗|uj⟩⟨uj |Ej

)
= TrM′j

(
ρM′jWj⊗|uj⟩⟨uj |Ej

)
. (3.9)

Replacing the constraints in Equation (3.2) by Equation (3.8) and Equation (3.9), we con-
clude the second SDP formulation for the given QIPL protocol, as specified in Equation (3.6).

3.2.2 QIPL is in NP

To establish that QIPL ⊆ NP (Theorem 3.8), we choose the classical witness for the NP
containment as consisting of the variables ρM′1W1 , · · · , ρM′lWl from the SDP program specified in
Lemma 3.11, along with the measurement outcomes u1, · · · , ul, which determine the SDP pro-
gram. Then, the verification procedure is simply performing the basic matrix operations on
polynomial-dimension matrices. We now proceed with the proof.

Proof of Theorem 3.8. Without loss of generality, we assume that the number of turns m(n)
is even, and particularly m(n) = 2l(n). For any l-round proof system P ⇌ V with complete-
ness c and soundness s, corresponding to a promise problem I in QIPL2l[c, s], we can leverage
Lemma 3.11 to obtain a family of SDP program, which depends on a measurement outcome
u = (u1, · · · , ul) obtained by the verifier, as detailed in Equation (3.6). Specifically, given the
measurement outcome u, this SDP program maximizes the contribution of u to the verifier’s
maximum acceptance probability ω(V )|u over all choices of unnormalized states ρM′1W1 , · · · , ρM′lWl .
Furthermore, for yes instances, there exists a measurement outcome u∗ such that ω(V )|u∗ ≥ c(n);
whereas for no instances, ω(V )|u ≤ s(n) holds for any measurement outcome u.

To establish an NP containment, we thus choose the classical witness, denoted by w, as
the classical description of the unnormalized states ρM′1W1 , · · · , ρM′lWl , alongside the binary strings
representing the measurement outcomes u1, · · · , ul. The size of w remains polynomial in n for
the following reasons: (i) the dimension of each unnormalized state ρM′

jWj
, for 1 ≤ j ≤ l, is at

most 2O(logn), which is polynomial in n; (ii) the length of each binary string uj is bounded by
O(log n); and (iii) the number of rounds l(n) is at most poly(n).
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We now describe the NP verification procedure to complete the proof. Given the classical
witness w, the procedure V̂ executes the following steps:

(1) Check whether w represents a feasible solution of the SDP program for computing ω(V )|u,
where u is the measurement outcome given in w, as specified in Equation (3.6).

(2) Compute the value of ω(V )|u by performing a polynomial number of matrix multiplications
and partial traces of polynomial-dimensional matrices.

It is evident that these steps can be accomplished in deterministic polynomial time. The ver-
ification procedure V̂ accepts if the witness w is a feasible solution to Equation (3.6) concerning
the given u and the value of ω(V )|u is at least c(n); otherwise, V̂ rejects.

3.3 Basic properties: Error reduction and perfect completeness

The verifier’s space constraint for the class QIPL presents several challenges when adapting
techniques from standard quantum interactive proofs. For instance, techniques such as error re-
duction through parallel repetition [KW00, Section 5] and the parallelization approach described
in [KW00, Section 4] are applicable to QIPL only under certain conditions. Nevertheless, two
basic properties can still be established without additional assumptions:

(1) Achieving perfect completeness in QIPL or QIPUL proof systems by adapting the technique
in [VW16, Section 4.2.1], as detailed in Lemma 3.12.

(2) Error reduction for QIPL and QIPUL via sequential repetition, as stated in Lemma 3.13;
We will provide detailed proofs of these properties in the remainder of this subsection.

3.3.1 Achieving perfect completeness for QIPL and QIPUL

Our construction and analysis in Lemma 3.12 are inspired by [VW16, Section 4.2.1].

Lemma 3.12 (QIPL and QIPUL are closed under perfect completeness). Let c(n), s(n), and
m(n) be logspace-computable functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/ poly(n),
and 1 ≤ m(n) ≤ poly(n). Then, it follows that

QIPLm[c, s] ⊆ QIPLm+2

[
1, 1− (c− s)2/2

]
and QIPULm[c, s] ⊆ QIPULm+2

[
1, 1− (c− s)2/2

]
.

Proof. Since QIPUL proof systems are a special subclass of QIPL proof systems, it suffices to
establish the inclusion for the latter. For anym-turn QIPL proof system P⇌V with completeness
c and soundness s, which corresponds to a promise problem I in QIPLm[c, s], P ⇌ V acts on
registers Q, M, and W = (Z, R), where Z represents the output qubit just before the final
measurement. To achieve perfect completeness, we propose a new proof system P ′⇌V ′ based
on P⇌V , as detailed in Protocol 3.1. In this proof system, we also introduce a new single-qubit
register Z′, which is initialized to be |0⟩ and is accessible only to V ′.

It is noteworthy that the environment register introduced by the verifier’s j-th action for
j ∈ ⌊(m+ 1)/2⌋ + 1 in P⇌V has no effect on the new proof system P ′⇌V ′. This is because
Ej is measured at the end of the turn in which it is introduced, it collapses to a quantum
state that contains only a binary string and becomes inaccessible afterward. Additionally, since
the verifier’s new turn in Protocol 3.1 does not involve any intermediate measurements, the
additional restriction in the completeness condition of QIPL also has no effect on P ′⇌V ′.

Next, we establish the correctness of Protocol 3.1:

• For yes instances, the state of the total system after step 2 can be adjusted with the help
of an honest prover to

|Φ⟩ =
√
1− α|00⟩Z′Z|ϕ0⟩+

√
α|11⟩Z′Z|ϕ1⟩,
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Protocol 3.1: Achieving perfect completeness for QIPL (or QIPUL).
Parameters: α is a dyadic rational number such that 3c+s

4 ≤ α ≤ c.
1. The verifier V ′ executes the original proof system P⇌V (with the prover P ′),
except for the verifier’s final measurement on the register Z;

2. The verifier V ′ creates a pseudo-copy of the output qubit of V by applying a
CNOTZ→Z′ gate, and then sends the register W = (Z, R) to the prover;

3. The verifier V ′ receives a single-qubit state from the prover, places it in the register
Z, and measures registers Z and Z′ in the binary-valued measurement
{|γ⟩⟨γ|, I − |γ⟩⟨γ|}, where |γ⟩ :=

√
1− α|00⟩+

√
α|11⟩. The verifier V ′ accepts if the

measurement outcome is consistent with |γ⟩; otherwise, it rejects.

where |ϕ0⟩ and |ϕ1⟩ are normalized states that may not be orthogonal. This adjustment
can be done because c ≥ α. The prover then applies a unitary U on all the qubits except
Z′ (which are owned by the prover) to “disentangle” |Φ⟩:

(IZ′ ⊗ U)|Φ⟩ =
(√

1− α|00⟩Z′Z +
√
α|11⟩Z′Z

)
⊗ |ϕ⟩, where |ϕ⟩ is a normalized state.

Consequently in Step 3, the verifier V ′ holds the state
(√

1− α|00⟩+
√
α|11⟩

)
= |γ⟩ in

registers Z and Z′, ensuring that V ′ accepts with certainty.

• For no instances, the original proof system P⇌V accepts with probability at most s = α−ε
where ε ≥ 3c+s

4 − s =
3
4(c− s). The reduced density matrix in the register Z′ after Step 2 is

ρZ′ =

(
1− α+ ε 0

0 α− ε

)
.

Let σZZ′ denote a two-qubit quantum state in registers (Z,Z′) after the verifier V ′ receives
the single-qubit state from the prover P ′ in Step 3. Regardless of the prover’s actions, V ′

accepts with probability

Tr(|γ⟩⟨γ|σZZ′) = F(|γ⟩⟨γ|, σZZ′)2

≤ F(TrZ(|γ⟩⟨γ|), ρZ′)2

= F

((
1− α 0
0 α

)
,

(
1− α+ ε 0

0 α− ε

))2

≤ 1− ε2

≤ 1− 1

2
(c− s)2.

Here, the second line owes to the data-processing inequality for the fidelity (Lemma 2.5),
the fourth line follows from [VW16, Equation (4.25)], and the last line is because of

1− ε2 ≤ 1−
(
3(c− s)

4

)2

≤ 1− 1

2
(c− s)2.

3.3.2 Error reduction for QIPL and QIPUL

The main challenge in performing sequential repetition of a given QIPL or QIPUL proof
system P⇌V lies in resetting the qubits in the verifier’s private register W to the all-zero state
after each execution of P⇌V . In non-interactive proof systems with a unitary logspace verifier,
the resetting operation can be achieved by running the inverse of the verification circuit, as
shown in [MW05, FKL+16]. However, in interactive proof systems with a restricted logspace
verifier – whether unitary or almost-unitary – the resetting operation requires assistance from
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the prover,28 who may not be honest. We now proceed to the formal statement:

Lemma 3.13 (Error reduction for QIPL and QIPUL). Let c(n), s(n), and m(n) be logspace-
computable functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/poly(n), and 1 ≤ m(n) ≤
poly(n). For any polynomial k(n), it holds that

QIPLm[c, s] ⊆ QIPLm′
[
1, 2−k

]
and QIPULm[c, s] ⊆ QIPULm′

[
1, 2−k

]
.

Here, the number of turns m′ := O
(
km/ log 1

1−(c−s)2/2
)
.

Proof. Since QIPUL proof systems are a special subclass of QIPL proof systems, it suffices to
establish the inclusion for the latter. For any m-turn proof system P ′⇌V ′ with completeness
c and soundness s, corresponding to a promise problem I in QIPLm[c, s], applying Lemma 3.12
yields a new (m+2)-turn proof system P⇌V with completeness 1 and soundness 1− (c−s)2/2.
This proof system P⇌V , viewed as an isometric quantum circuit, acts on registers Q, M, and
W = (Z, R), where Z denotes the output qubit just before the final measurement. Without loss
of generality, we can assume that registers M and V are of equal size.

Error reduction for the given proof system P ⇌ V is achieved using r-fold AND-type se-
quential repetition of P⇌V , as detailed in Protocol 3.2. In this resulting proof system P̂⇌ V̂ ,
we introduce two new ⌈log r⌉-qubit registers, Ŝ and T̂, which are initialized to be the all-zero
state and are private to V̂ . The procedure from Step 3.a to Step 3.c aims to reset the verifier’s
original private register W with the help of the prover. Moreover, the multiple-controlled adder
in Step 3.b can be implemented by O(q2W) uses of elementary quantum gates and the adder Uadd,
following from [BBC+95, Lemma 7.5 and Corollary 7.6].

A subtle but important point concerns the effect of the environment register Ej introduced
by the verifier’s j-th action for j ∈ [⌊(m+1)/2⌋+1] in P⇌V . Since Ej is measured at the end
of the turn in which it is introduced, it collapses to a state that contains only a binary string
and becomes inaccessible afterward. Therefore, this newly introduced register Ej has no impact
on our sequential repetition protocol.

It remains to establish the correctness of P̂ ⇌ V̂ . Let Xi be a random variable indicating
whether the i-th execution of P ⇌ V is accepted, with Pr [Xi = 1] denoting the verifier V ’s
maximum acceptance probability of the i-th execution. By a direct calculation, it holds that

Pr [Cntacc = r] = Pr [X1 = 1 ∧ · · · ∧Xr = 1] = ω(V )r. (3.10)

As a consequence, we conclude the following:

• For yes instances, an honest prover always sends |O⟩ = |0⟩⊗qW , and runs each of the execu-
tions independently, ensuring that the condition Cntclean = r− 1 is satisfied. By combining
Equation (3.10) with the completeness condition of P ⇌ V , it follows that Protocol 3.2
accepts with certainty. Furthermore, since the resulting proof system P̂⇌ V̂ accepts only if
all executions of P⇌V accept, there exists û∗, which is formed by concatenating r copies
of u∗, such that ω(V̂ )|û∗ = 1. In other words, this specific form of sequential repetition
aligns with the completeness condition in the definition of QIPL.

• For no instances, it is enough to analyze the acceptance probability when the prover always
sends |0⟩⊗qW at Step 3.a, as the verifier will otherwise reject. Although the random variables
Xi may not be independent, the probability of Xi = 1 is at most 1 − (c − s)2/2 for any
prover. Therefore, we can be upper bound the acceptance probability using independent
binary random variables X ′

i, where the probability of X ′
i = 1 is 1−(c−s)2/2. Consequently,

28In the case of QIPL⋄ proof systems, where the verifier’s actions are isometric quantum circuits, implementing
the reset operation becomes straightforward. However, for QIPL proof systems, the O(logn) intermediate mea-
surements conducted during each verifier action are insufficient for re-using the workspace qubits. This limitation
arises because the measurement outcome yields merely a binary string encoded in a state.
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Protocol 3.2: Error reduction for QIPL (or QIPUL) via sequential repetition.
Parameters: r := O

(
k/(c− s)2

)
.

For i← 1 to r :
1. The verifier V̂ executes the original proof system P⇌V (with the prover P̂ ),
except for the verifier’s final measurement on the register Z;

2. The verifier V̂ performs a controlled adder, where the single-qubit control register
is Ẑ, and the ⌈log r⌉-qubit target register is Ŝ;

If i < r :
3.a The prover P̂ sends a qW-qubit state |O⟩ to the verifier V̂ , where
|O⟩ = |0⟩⊗qW for an honest prover;

3.b The verifier V̂ performs a multiple-controlled adder, where the qW-qubit
control register is M̂ (containing |O⟩), the ⌈log r⌉-qubit target register is T̂, and
the adder is activated if |O⟩ = |0⟩⊗qW ;

3.c The verifier V̂ performs a SWAP gate between registers M̂ and Ŵ;

4. The verifier V̂ measures the registers Ŝ and T̂ in the computational basis, with the
outcomes denoted as Cntacc and Cntclean, respectively;

5. The verifier V̂ accepts if both Cntclean = r − 1 and Cntacc = r are satisfied.

applying Equation (3.10) (by substituting Xi with X ′
i), we can obtain that Protocol 3.2

accepts with probability at most 2−k by choosing r = O
(
k/ log 1

1−(c−s)2/2

)
. This choice

results in m′ = r(m+ 2) = O
(
km/ log 1

1−(c−s)2/2

)
.

3.4 Lower bounds for QIPL and QIPUL

Our lower bounds for QIPL and QIPUL are motivated by the prior works on space-bounded
classical interactive proofs, particularly those involving either private coins [CL95] or public
coins [For89, FL93, Con92, GKR15, CR23]:29

• Private-coin proof systems vs. QIPL: Soundness against classical messages may not
extend to quantum messages for private-coin proof systems. This is because the prover
could generate shared entanglement with the verifier, potentially leaking information about
the private coins. Consequently, space-bounded private-coin classical interactive proofs are
simulatable only by QIPL proof systems (Theorem 3.14).

• Public-coin proof systems vs. QIPUL: Public coins can be simulated by halves of EPR
pairs sent from the verifier in QIPUL proof systems, thus avoiding the soundness issue.
However, the verifier is limited to sending only O(log n) halves of EPR pairs, leading to
a limitation on completeness. Therefore, only the work of [For89] can be simulated by
QIPUL proof systems (Lemma 3.15 and thus Theorem 3.3).

In the remainder of this subsection, we first establish that NP ⊆ QIPL in Section 3.4.1, and
then demonstrate that SAC1 ∪ BQL ⊆ QIPUL in Section 3.4.2.

3.4.1 NP is in QIPL

Our approach in Theorem 3.14 draws inspiration from [CL95, Lemma 2]. Soundness against
classical messages is guaranteed by the fingerprinting lemma [Lip90], which is used for comparing
multisets through short fingerprints (see Section 2.4). To ensure soundness against quantum

29Space-bounded classical interactive proofs with poly(n) public coins are in P, see [Con92, Theorem 6].
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messages in private-coin proof systems, the verifier must measure the received quantum message
in the computational basis at the beginning of each action.

Theorem 3.14. NP ⊆ QIPLm, where m(n) is some polynomial in n.

Proof. We begin by noting that 3-SAT is NP-hard under logspace reductions (Lemma 2.12),
and QIPL is also closed under logspace reductions.30 It thus suffices to establish that 3-SAT is
in QIPL.

To verify whether a 3-SAT instance ϕ = C1 ∧ · · · ∧ Ck is satisfied by an assignment α,
we encode ϕ(α) as a collection of 3k tuples (l, i, v), denoted as Enc(ϕ(α)). In this encoding,
each (l, i, v) represents the literal l ∈ {xj}j∈[n] ∪ {¬xj}j∈[n] in the clause Ci is assigned the
value v ∈ {⊤,⊥}. Hence, Enc(ϕ(α)) forms a multiset of ℓ = 3k elements, with each element
representable by b = 2⌈log n⌉+ ⌈log k⌉+1 = O(log(kn)) bits. For convenience, let a(l,i,v) denote
the non-negative integer that encodes the triple (l, i, v), and let var(l) be the variable in the
literal l. Next, we proceed with the detailed QIPL protocol, as outlined in Protocol 3.3.

To establish the correctness of Protocol 3.3, we first observe that since k is a polynomial
in n, the integer 2(bl)2 can be represented using O(log n) bits. Following the argument in the
proof [CL95, Lemma 2],31 a classical logspace verifier can find the prime p and the integer r in
Step 1 of Protocol 3.3 with probability at least 3/4, using O(log n) random bits. Since a classical
operation depending on r random bits can be simulated by a corresponding unitary controlled
by the state |+⟩⊗r, Step 1 can be implemented using O(log n) ancillary qubits, which remain
untouched throughout the rest of the proof system. Additionally, because the state |ψvarl,Ci

⟩,
which encodes the triple (l, i, v), requires at most O(log n) qubits, space-bounded almost-unitary
quantum circuits suffice to implement the verifier’s actions in Protocol 3.3.

Although there are 3k + k = 4k rounds in Protocol 3.3, the verifier’s actions are of only
constantly many kinds. Therefore, the verifier’s mapping is logspace computable. We now turn
to the analysis required to finish the proof:

• For yes instances, where the 3-SAT formula ϕ is satisfiable, there is a prover strategy such
that the verifier in Protocol 3.3 accepts with certainty. Additionally, the intermediate
measurement outcome u∗ corresponds to this prover strategy, specifically the classical
messages sent by the prover, implying that ω(V )|u∗ = 1.

• For no instances, we first bound the probability that the verifier in Protocol 3.3 accepts
an unsatisfiable ϕ, assuming the prover sends only classical messages. This event may
happen if: (1) the verifier fails to successfully choose the random prime p and the random
integer r; or (2) the two multisets sent by the prover – specifically in Step 2 and Step 3
of Protocol 3.3 – are unequal but still yield the same fingerprint. According to the proof
of [CL95, Lemma 2], the former occurs with probability at most 1/4. And the fingerprinting
lemma (Lemma 2.13) ensures that the latter occurs with probability at most

O

(
log b+ log ℓ

bℓ
+

1

b2ℓ

)
= O

(
log log(kn) + log(3k)

log(kn) · 3k
+

1

log(kn)2 · 3k

)
= O

(
1

k

)
.

Therefore, the acceptance probability is at most 1/4 +O(1/k) ≤ 1/3.

Next, let ω(V )|u be the verifier V ’s maximum acceptance probability conditioned on the
intermediate measurement outcome u. A direct calculation shows that ω(V ) is a convex

30QIPL is closed under logspace reductions if, for any logspace reduction R such that I ≤m
L I′, it holds that

I ∈ QIPL if I′ ∈ QIPL. Let MI′ and MR be the deterministic logspace Turing machines that compute (the
description of) the verifier’s mapping associated with I′ and the reduction R, respectively. The closure under
logspace reductions for QIPL is then achieved by considering the concatenation MI := MR ◦ MI′ . A similar
argument applies to a weaker notion of the uniformity of the verifier’s mapping discussed in Footnote 22.

31See the first paragraph on Page 515 in [CL95] for the details.
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Protocol 3.3: A QIPL proof system for 3-SAT.
Parameters: ϕ(α) is a 3-SAT formula ϕ with an assignment α; n and k are the

number of variables and clauses in ϕ, respectively.
1. The verifier V chooses a prime p and an integer r uniformly at random from the
intervals [(bℓ)2, 2(bℓ)2] and [1, p− 1], respectively. The verifier then initializes the
(partial) fingerprints Fvar = 1 and Fcl = 1.

2. Consistency Check (for each variable) :
• The prover P sends the triples (l, i, v) in Enc(ϕ(α)), represented as quantum
states |ψvar(l),Ci

⟩, to the verifier V , ordered by the variable var(l) in the literal l
and then by the clause index i;
• For each state |ψvar(l),Ci

⟩ received :
2.a V measures the state |ψvar(l),Ci

⟩ in the computational basis, with the
measurement outcome denoted by the triple (l, i, v);

2.b V rejects if the following conditions hold: (i) (l, i, v) is not the first triple in
Enc(ϕ(α)), (ii) var(l) = var(l′), and (iii) the value v and v′ are inconsistent;

2.c V updates the fingerprint Fvar = Fvar ·
(
a(l,i,v) + r

)
mod p;

2.d V sends the previous triple (l′, i′, v′) back to P , if applicable. V then retains
the current triple (l, i, v) in its private memory, unless (l, i, v) is the last triple
in Enc(ϕ(α)).

3. Satisfiability Check (for each clause) :
• The prover P sends the triples (l1, i, v1), (l2, i, v2), and (l3, i, v3) in Enc(ϕ(α)),
represented as states |ψCi⟩, to the verifier V , ordered by the clause index i;
• For each clause Ci, with the state |ψCi⟩ received :

3.a V measures the state |ψCi⟩ in the computational basis, where this state is
expected to be |ψvar(l1),Ci

⟩⊗|ψvar(l2),Ci
⟩⊗|ψvar(l3),Ci

⟩. The measurement
outcomes are denoted by the triples (l1, i, v1), (l2, i, v2), and (l3, i, v3);

3.b If v1 ∨ v2 ∨ v3 = ⊥, V rejects;
3.c V updates the fingerprints Fcl = Fcl ·

∏
j∈[3]

(
a(lj ,i,vj) + r

)
mod p;

3.d V returns the triples (l1, i, v1), (l2, i, v2), and (l3, i, v3) to P .

4. The verifier V accepts if the fingerprints Fvar = Fcl; otherwise, it rejects.

combination of ω(V )|u over all obtainable measurement outcomes u. Since each verifier
action begins with a measurement that forces the prover’s message to be classical, we have:

ω(V ) =
∑

u∈Jobt

pu · ω(V )|u ≤
∑

u∈Jobt

pu ·
1

3
=

1

3
.

Here, pu denotes the probability of obtaining the measurement outcome u, Jobt represents
the index set of all obtainable intermediate measurement outcomes, and the inequality
follows from the established soundness against classical messages.

In conclusion, we complete the proof by establishing that 3-SAT ∈ QIPL8k[1, 1/3].

3.4.2 SAC1 ∪ BQL is in QIPUL

Our approach follows [For89, Section 3.4]. To establish Theorem 3.3, along with error re-
duction for QIPUL (Lemma 3.13) and BQL ⊆ QIPUL, we need to prove the following:

Lemma 3.15. SAC1 ⊆ QIPULO(logn)[1, 1− 1/p(n)], where p(n) is some polynomial in n.

Proof. For any promise problem I = (Iyes, Ino) in SAC1 where Iyes ∪ Ino = {0, 1}∗, it suffices
to consider the corresponding (uniform) SAC1 circuit evaluation problem, as defined in Defini-
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tion 2.14. Let C be the (uniform) SAC1 circuit associated with I, taking x ∈ I as input, such
that C(x) = 1 if and only if x ∈ Iyes.

We now present the QIPUL proof system for SAC1, as detailed in Protocol 3.4.

Protocol 3.4: A QIPUL proof system for (uniform) SAC1.
1. The prover P and verifier V start at the output level of the circuit C :
• If the top gate G is an OR gate :

2.1 P selects one of G’s child gates;
2.2 P sends the selection to V by sending a quantum state |ψ⟩;

• If the top gate G is an AND gate :
2.a V selects one of the two child gate of G uniformly at random;
2.b V send the selection to P using half of an EPR pair;

2. At each intermediate level of the circuit C, the prover P and verifier V repeat this
process on the selected child gate, as outlined in Step 1.

3. At the input level of the circuit C :
3.1 The verifier V measures the register containing the currently selected child gate
in the computational basis. Here, the measurement outcomes corresponds to either
xj or ¬xj for some j ∈ [n];

3.2 The verifier V checks the following :
• For an input xi: V accepts if xi = 1; otherwise, V rejects;
• For a negation of an input xi: V accepts if xi = 0; otherwise, V rejects.

To establish the correctness of Protocol 3.4, we first observe that the depth of the circuit
C is O(log n), implying that the size is polynomial in n. Consequently, each prover’s selection
can be represented by an O(log n)-bit string. This observation also implies that Protocol 3.4
has O(log n) rounds, but the verifier’s actions are of only three kinds. Therefore, the verifier’s
mapping is logspace computable. We now turn to the analysis required to complete the proof:

• For yes instances, for any choices made by the verifier V at the AND gates, there exist
corresponding choices at the OR gates that lead to the circuit C to accept. Therefore, the
prover P has a winning strategy for all verifier choices, ensuring that the verifier V accepts
with certainty.

• For no instances, since the computational paths in the circuit C do not interfere with
each other, it suffices to establish soundness against classical messages. Note that certain
verifier choices will cause V to reject. Given the O(log n) depth of the circuit C, V
makes one choice out of two at each AND gate, resulting in a rejection probability of at
least 2−O(logn) = 1/p(n) for some polynomial p(n). Therefore, the verifier accepts with
probability at most 1− 1/p(n).

4 Constant-message space-bounded quantum interactive proofs

In this section, we investigate space-bounded quantum interactive proof systems with a
constant number of messages. Building on the definitions in Section 3.1, we define the classes
QIPLO(1) and QMAML with constant promise gap as follows:

QIPLO(1) := ∪m≤O(1)QIPULm[2/3, 1/3] and QMAML := QMAML[1, 1/3]. (4.1)

Here, the class QMAML possesses public-coin three-message space-bounded unitary quantum
interactive proofs, which is the space-bounded variant of the class QMAM introduced in [MW05].
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Importantly, the definitions in Equation (4.1) align with those in Section 3.1 without loss of
generality. Specifically, the two notions of space-bounded quantum interactive proof systems,
QIPL and QIPUL, coincide when the number of messages is constant:

Remark 4.1 (The equivalence of QIPLO(1) and QIPULO(1)). In a QIPLO(1) proof system (or its
reversible generalization, QIPL⋄O(1), see Remark 3.7), the number of turns (i.e., messages) is a
constant. Consequently, the verifier’s actions during the execution of the proof system introduce
only a constant number of additional environment registers, each containing O(log n) qubits.
Therefore, a QIPLO(1) proof system (even its reversible generalization) can be straightforwardly
simulated by a QIPULO(1) proof system with the same parameters m(n), c(n), and s(n).

We establish the following upper bounds for QIPUL and QIPLO(1). The first theorem, as
detailed in Theorem 4.2, is obtained by combining Corollary 4.8 and Lemma 4.9, where the
former is a direct corollary of the parallelization.32 It is noteworthy that the second inclusion in
Theorem 4.2 applies to the case where m(n) ≤ O(1) and c(n)− s(n) ≥ 1/ poly(n).

Theorem 4.2 (QIPUL ⊆ P). Let c(n), s(n), and m(n) be logspace-computable functions such
that 0 ≤ s(n) < c(n) ≤ 1, c(n)−s(n) ≥ 1/ poly(n), and 1 ≤ m(n) ≤ poly(n). Then, it holds that

QIPULm[c, s] ⊆ QIPL3

[
1, 1− 1

q(n)

]
⊆ P, where q(n) :=

2(m(n) + 1)2

(c(n)− s(n))2
.

The second theorem, as stated in Theorem 4.3, is derived by combining Corollary 4.7 and
Lemma 4.10. The class NC captures the power of (logspace-uniform) classical poly-logarithmic
depth computation using bounded fan-in gates. Specifically, Corollary 4.7 is a direct conse-
quence of the parallelization, while the NC containment (Lemma 4.10) follows directly from the
celebrated QIP = PSPACE result [JJUW11].

Theorem 4.3 (QIPLO(1) ⊆ NC). Let c(n), s(n), and m(n) be logspace-computable functions
such that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ Ω(1), and 1 ≤ m(n) ≤ O(1). Then, it holds that

QIPLO(1)[c, s] = QMAML ⊆ NC.

Unlike standard quantum interactive proofs, constant-message space-bounded quantum in-
teractive proofs with constant promise gap (QIPLO(1)) are unlikely to be as computationally pow-
erful as their polynomial-message counterparts (QIPL). Furthermore, space-bounded quantum
interactive proofs (QIPL) appears to be more powerful than their unitary counterparts (QIPUL).
These distinctions align with the widely believed conjectured separations NC ⊊ P ⊊ NP.

In the remainder of this section, we first demonstrate error reduction for QIPLO(1) via parallel
repetition in Section 4.1. Then, Section 4.2 provides the parallelization technique for QIPUL
and QIPLO(1), drawing inspiration from [KKMV09], with a focus on the turn-halving lemma
(Lemma 4.5) and its corollaries. Next, we proceed to establish an upper bound for QIPLO(1)
with weak error bounds in Section 4.3. Finally, Section 4.4 presents the equivalence of QIPLO(1)
and QMAML (Corollary 4.11) and the NC containment (Lemma 4.10), using a simplified version
of the turn-halving lemma.

4.1 Error reduction for QIPLO(1) via parallel repetition

Beyond the sequential repetition approach presented in the proof of Lemma 3.13, another
common method for error reduction is the parallel repetition of the original proof system P⇌V .

32Importantly, Theorem 4.2 holds only when we define the class QIPUL with the strong notion of uniformity
for the verifier’s mapping, as detailed in Section 3.1. If the verifier’s mapping satisfies only a weaker notion of
uniformity, as specified in Footnote 22, then the verifier’s action in the resulting proof system may not be space-
bounded. This is because its description might not be produced by a logspace deterministic Turing machine.
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In this approach, k pairs of provers and verifiers execute P⇌V in parallel, where all k provers
are independent only when they are honest. However, when adapting this approach for QIPL
(or QIPUL), the message size in the parallelized protocol P ′⇌V ′ becomes O(k log n), meaning
P ′⇌V ′ remains a QIPL (or QIPUL) proof system only when k is constant.

Next, we provide the formal statement and its proof inspired by [VW16, Section 4.3]:

Lemma 4.4 (Error reduction for QIPLO(1) via parallel repetition). Let c(n), s(n), and m(n)
be logspace-computable functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n) − s(n) ≥ 1/poly(n), and
1 ≤ m(n) ≤ O(1). For any constant k(n), it holds that

QIPLm[c, s] ⊆ QIPLm
[
ck, sk

]
.

Proof. For convenience, we prove the inclusion for QIPL⋄O(1) proof systems, which serves as a
reversible generalization of QIPLO(1) (see Remark 3.7) and is equivalent to it (see Remark 4.1).

For any l-round proof system P⇌V with completeness c and soundness s, corresponding to
a promise problem I in QIPL⋄m[c, s], the maximum acceptance probability of the verifier, denoted
by ω(V ), serves as the objective function in the SDP formulation provided in Lemma 3.9. See
also Remark 3.10 for the applicability of the SDP to QIPL⋄ proof systems.

Now, consider a k-fold parallel repetition of P⇌V , involving k verifiers V (i) :=
(
V

(i)
1 , · · · , V (i)

l+1

)
for i ∈ [k]. Let V (1)⊗· · ·⊗V (k) be the combined verifier, obtained by executing V (1), · · · , V (k) in
parallel, with the output bit being the AND of the output bits of V (1), · · · , V (k). It follows that

ω
(
V (1) ⊗ · · · ⊗ V (k)

)
≥ ω

(
V (1)

)
· · ·ω

(
V (k)

)
,

since dishonest provers P (1), · · · , P (k) may apply entangled actions. However, due to the strong
duality of the SDP program for computing ω

(
V (i)

)
for each i ∈ [k], the equality also holds:

ω
(
V (1) ⊗ · · · ⊗ V (k)

)
= ω

(
V (1)

)
· · ·ω

(
V (k)

)
. (4.2)

In particular, the SDP formulation specified in Lemma 3.9 serves as the primal form of an
SDP program for computing ω

(
V (i)

)
, with the corresponding dual form obtainable similarly

to [VW16, Figure 4.7]. Following an argument analogous to Equation (4.49) through (4.53)
in [VW16, Section 4.3], we arrive at Equation (4.2), with details omitted here.

4.2 Parallelization via the turn-halving lemma

Our approach to do parallelization for QIPLO(1) is inspired by [KKMV09, Section 4]. We
begin with the key lemma that halves the number of turns (i.e., messages) in the proof system:

Lemma 4.5 (Turn-halving lemma). Let s(n) and m(n) be logspace-computable functions such
that 0 ≤ s(n) ≤ 1 and 1 ≤ m(n) ≤ poly(n). Then, it holds that

QIPUL4m+1[1, s] ⊆ QIPUL2m+1

[
1, (1 +

√
s)/2

]
.

Remark 4.6 (Limitations on the turn-halving lemma). The parallelization technique described
in [KKMV09, Section 4] requires the verifier’s actions to be reversible. This requirement implies
that these actions must be implemented using either unitary or isometric quantum circuits.
Therefore, it is straightforward to extend Lemma 4.5 to QIPL⋄, a reversible generalization of
QIPL. However, this extended version can be applied recursively at most a constant number
of times; otherwise, the new verifier in the resulting proof system would no longer be space-
bounded. Specifically, if the extended version is applied ω(1) times, it will introduce 2ω(1)

environment registers, each containing O(log n) qubits, during a single verifier action.

Before presenting the proof, we provide two corollaries of the turn-halving lemma (Lemma 4.5)
with their proofs to illuminate its applications, as stated in Corollary 4.7 and Corollary 4.8.
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Corollary 4.7 (QIPLO(1) ⊆ QIPL3). Let c(n), s(n), and m(n) be logspace-computable functions
with 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ Ω(1), and 3 ≤ m(n) ≤ O(1). Then, it holds that

QIPLm[c, s] ⊆ QIPL3[1, 1/16].

Proof. It suffices to prove the following inclusions:

QIPLm[c, s] ⊆ QIPLm+2

[
1, 1− (c− s)2

2

]
⊆ QIPL3

[
1, 1− (c− s)2

2(m+ 1)2

]
⊆ QIPL3

[
1,

1

16

]
. (4.3)

The first inclusion in Equation (4.3) follows directly from Lemma 3.12. To show the last
inclusion in Equation (4.3), we consider an r-fold (AND-type) parallel repetition of this three-
message QIPL proof system. By applying Lemma 4.4 with r = O

(
k/ log 1

1−(c−s)2/(2(m+1)2)

)
, we

derive the following inclusions:

QIPL3

[
1, 1− (c− s)2

2(m+ 1)2

]
⊆ QIPL3

[
1,

(
1− (c− s)2

2(m+ 1)2

)r]
⊆ QIPL3

[
1,

1

16

]
.

It remains to show the second inclusion in Equation (4.3). By repeatedly applying the
turn-halving lemma (Lemma 4.5) l times, where l satisfies 2l+1 ≤ m+2 ≤ 2l+1+1, we obtain:

QIPLm+2

[
1, 1− (c− s)2

2

]
⊆ QIPL2l+1+1

[
1, 1− (c− s)2

2

]
⊆ QIPL3

[
1, 1− (c− s)2

2(m+ 1)2

]
. (4.4)

Here, in the last inclusion, the reasoning behind the parameters – particularly m(n), c(n), and
s(n) – follows directly from the proof of [KKMV09, Lemma 4.2], so we omit the details.

Let P ⇌ V be the original proof system. For the resulting proof system P ′ ⇌ V ′, we now
need to establish that the verifier’s actions are space-bounded unitary circuits, and that the
verifier’s mapping is logspace computable. This follows because (1) an operation depending
on r random coins can be simulated by applying a corresponding unitary controlled by |+⟩⊗r,
meaning that simulating l random coins in all of the verifier’s actions requires l ancillary qubits;
and (2) since a logspace deterministic Turing machine (DTM) can produce the description of all
verifier’s actions in P ⇌ V , there is another logspace DTM which can produce the description
of each verifier’s action in P ′⇌V ′.

Corollary 4.8 (QIPUL is parallelized to three messages with weaker error bounds). Let c(n),
s(n), and m(n) be logspace-computable functions with 0 ≤ s(n) < c(n) ≤ 1, c(n) − s(n) ≥
1/poly(n), and 3 ≤ m(n) ≤ poly(n). Then, it holds that

QIPULm[c, s] ⊆ QIPUL3

[
1, 1− 1

q(n)

]
where q(n) :=

2(m(n) + 1)2

(c(n)− s(n))2
.

Proof. It suffices to prove the following inclusions:

QIPULm[c, s] ⊆ QIPULm+2

[
1, 1− (c− s)2

2

]
⊆ QIPUL3

[
1, 1− (c− s)2

2(m+ 1)2

]
. (4.5)

The first inclusion in Equation (4.5) follows directly from Lemma 3.12. The second inclusion
in Equation (4.5) is achieved using a similar approach as that used to prove Equation (4.4) in
Corollary 4.7. Finally, we need to show that the verifier’s actions in the resulting proof system
are space-bounded unitary circuits, and that the verifier’s mapping is logspace computable.
By noticing that l = O(log n), we can achieve this using reasoning analogous to the proof of
Corollary 4.7, and we omit the details for brevity.

4.2.1 Proof of the turn-halving lemma

Next, we proceed with the detailed proof of the turn-halving lemma (Lemma 4.5):
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Proof of Lemma 4.5. Our proof strategy is inspired by the proof of [KKMV09, Lemma 4.1].
For any (4m + 1)-message QIPUL proof system P ⇌ V with completeness c and soundness s,
corresponding to a promise problem I ∈ QIPUL, we can construct a new (2m+1)-message proof
system P̂ ⇌ V̂ . We use the notations specified in Figure 4.1 to denote the snapshot states on
registers Q, M, and W (resp., Q̂, M̂, and Ŵ) during the execution of P⇌V (resp., P̂⇌ V̂ ), with
slight adjustments for convenience compared to Figure 3.1 in Section 3.2.

Figure 4.1: A (2l + 1)-turn space-bounded unitary quantum interactive proof system.

We now describe the new proof system P̂ ⇌ V̂ in an intuitive manner: the verifier V̂ first
receives the snapshot state ρMm+1Wm , which corresponds to the state after the prover P sent
the (2m + 1)-st message in P ⇌ V . The verifier V̂ then executes P ⇌ V either forward or
backward from the given snapshot, with equal probability. In the forward execution, V̂ accepts
if V accepts; while in the backward execution, V̂ accepts if Ŵ0 contains the all-zero state.33 The
detailed proof system P̂⇌ V̂ is presented in Protocol 4.1.

Protocol 4.1: A QIPL proof system for halving the number of messages in P⇌V .

1. The verifier V̂ receives the snapshot state ρm+1 = ρMm+1Wm from the prover P̂ , and
then transfers the qubits corresponding to Wm in ρm+1 to its private register Ŵ;

2. The verifier V̂ chooses b ∈ {0, 1} uniformly at random, and executes the original
proof system P⇌V either forward (if b = 0) or backward (if b = 1) :
• Forward execution of P⇌V (b = 0) :

2.1 V̂ applies Vm+1 to (M̂, Ŵ), and then sends b and ρ
M̂

to P̂ ;
2.2 For j ← m+ 2 to 2m :

V̂ receives ρj = ρMj from P̂ , applies Vj on (M̂, Ŵ), and sends ρ
M̂

to V̂ ;

2.3 V̂ receives ρ2m+1 = ρM2m+1 from P̂ , applies V2m+1 on (M̂, Ŵ). V̂ accepts if
(M̂, Ŵ) contains an accepting state of P⇌V ; otherwise, it rejects;

• Backward execution of P⇌V (b = 1) :
2.a V̂ sends b and ρ

M̂
= ρMm+1 to P̂ ;

2.b For j ← m to 2 :
V̂ receives ρj = ρMj from P̂ , applies V †

j on (M̂, Ŵ), and sends ρ
M̂

to V̂ ;

2.c V̂ receives ρ1 = ρM1 from P̂ , applies V †
1 on (M̂, Ŵ). V̂ accepts if Ŵ contains

the all-zero state; otherwise, it rejects;

It remains to establish the correctness of the proof system P̂ ⇌ V̂ . Since the verifier V ’s
mapping (of P⇌V ) is logspace computable, and in each turn, the verifier V̂ ’s action corresponds
to one of two possible actions of V (depending on b),34, the verifier V̂ ’s mapping is likewise
logspace computable. Moreover, we need the following analyses:

33Since the proof system A begins with the prover P , the verifier V̂ does not need to measure M̂0.
34The random bit b can be simulated by a fresh qubit and an intermediate measurement, following an argument
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• For yes instances, an honest prover P̂ can prepare the pure state |ψQm+1Mm+1Wm⟩, which
corresponds to the state in (Q,M,W) after the (2m + 1)-st turn in P ⇌ V . Depending on
the value of b, the prover P̂ then applies the corresponding prover’s actions Pj (if b = 0) or
P †
j (if b = 1) in P⇌V during the execution of Step 2 in Protocol 4.1. For any x ∈ Iyes, as

(P⇌V )(x) accepts with certainty, it follows that (P̂⇌ V̂ )(x) also accepts with certainty.

• For no instances, let |ψ⟩ be the state in (Q̂, M̂, Ŵ) just after the first turn in P̃ ⇌ V̂ . Let
P̃

(b)
j be the prover P̃ ’s action, which is an arbitrary unitary transformation on (Q̂, M̂), at the

(2j − 1)-st turn for 2 ≤ j ≤ m + 1. We can then define unitary transformations U (0) and
U (1) corresponding to the forward and backward execution of P⇌V , respectively:

U (0) := V2m+1P̃
(0)
m+1V2m · · · P̃

(0)
2 and U (1) := V †

1 P̃m+1 · · ·V †
mP̃2. (4.6)

Based on Equation (4.6), we define the snapshot state |Ψ(b)⟩ at Step 2.3 for b = 0 and at
Step 2.c for b = 1, respectively, before the corresponding final measurement:

|Ψ(0)⟩ := 1√
p
(0)
acc

Π(0)
accU

(0)|ψ⟩, where p(0)acc :=
∥∥∥Π(0)

accU
(0)|ψ⟩

∥∥∥2
2

and Π(0)
acc := |1⟩⟨1|out = Πacc,

|Ψ(1)⟩ := 1√
p
(1)
acc

Π(1)
accU

(1)|ψ⟩, where p(1)acc :=
∥∥∥Π(1)

accU
(1)|ψ⟩

∥∥∥2
2

and Π(1)
acc := |0̄⟩⟨0̄|Ŵ.

As a result, the acceptance probability p(b)acc for b ∈ {0, 1} can be expressed as:

∀b ∈ {0, 1}, p(b)acc =
1∥∥∥Π(b)

accU(b)|ψ⟩
∥∥∥2
2

∣∣∣⟨ψ|U (b)†Π(b)
accU

(b)|ψ⟩
∣∣∣2 = ∣∣∣⟨ψ|U (b)†|Ψ(b)⟩

∣∣∣2. (4.7)

Note that the acceptance probability of the proof system (P̃ ⇌ V̂ )(x) for x ∈ Ino can be
written as pacc = 1

2

(
p
(0)
acc + p

(1)
acc

)
. Substituting Equation (4.7) into this equality, we obtain:

pacc =
1

2

(
F
(
U (0)†|Ψ(0)⟩⟨Ψ(0)|U (0), |ψ⟩⟨ψ|

)2
+ F

(
U (1)†|Ψ(1)⟩⟨Ψ(1)|U (1), |ψ⟩⟨ψ|

)2
)

≤ 1

2

(
1 + F

(
U (0)†|Ψ(0)⟩⟨Ψ(0)|U (0), U (1)†|Ψ(1)⟩⟨Ψ(1)|U (1)

))
≤ 1

2

(
1 +

∥∥∥ΠaccU
(0)U (1)†|Ψ(1)⟩

∥∥∥
2

)
≤ 1

2
(1 +

√
s).

Here, the second line follows from Lemma 2.6, and the last line is due to the fact that

pacc =
∥∥∥ΠaccU

(0)U (1)†|Ψ(1)⟩
∥∥∥2
2
≤ s, as guaranteed by the soundness condition of P⇌V .

4.3 Weakness of QIPLO(1) with weak error bounds

We demonstrate an upper bound for QIPLO(1) with weak error bounds:

Lemma 4.9 (QIPLO(1) is in P). Let c(n), s(n), and m(n) be logspace-computable functions such
that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/poly(n), and 1 ≤ m(n) ≤ O(1), it holds that

QIPLm[c, s] ⊆ P.

Our approach parallels the proof of QIP ⊆ EXP, as outlined in [Wat16, Page 31] and originally
established in [KW00, Section 6]. Specifically, the SDP program for characterizing constant-
turn QIPL proof systems, as detailed in Lemma 3.9, has a dimension of poly(n). Therefore, we
conclude a deterministic polynomial-time algorithm using a standard SDP solver.

similar to the proof of Theorem 3.14 concerning Step 1 in Protocol 3.3
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Proof of Lemma 4.9. For any m-turn proof system P ⇌ V , with completeness c, soundness s,
and m being even, which corresponds to a promise problem I in QIPLm[c, s], we can utilize
Lemma 3.9 to obtain an SDP program, as specified in Equation (3.2). This SDP program
maximizes the verifier’s maximum acceptance probability ω(V ) over all choices of quantum states
(variables) ρM′1W1E1

, · · · , ρM′lWlE1···El
, where the number of rounds l := m/2. Since the number of

turns m(n) ≤ O(1), the variables in this SDP collectively hold O(log n) qubits. Thus, we can
compute a description of this SDP program in deterministic polynomial time.

Next, consider the Frobenius norm defined as ∥X∥F :=
√
Tr(X†X), and let {σi(X)} be the

singular values of a square matrix X. We then have the following:

∥ρM′1W1E1
⊗ · · · ⊗ ρM′lWlE1···El

∥F =

√
Tr

(
ρ2
M′1W1E1

⊗ · · · ⊗ ρ2
M′lWlE1···El

)
=

√√√√ D∑
i=1

σ2i

(
ρM′1W1E1

⊗ · · · ⊗ ρM′lWlE1···El

)
≤
√
D.

Here, D represents the dimension of ρM′1W1E1
⊗ · · · ⊗ ρM′lWlE1···El

, which is bounded by 2O(logn),
indicating that it is in poly(n). The last line follows from the fact that all singular values of the
density matrix ρM′1W1E1

⊗ · · · ⊗ ρM′lWlE1···El
are at most 1.

As a consequence, by employing the standard SDP solver based on the ellipsoid method
(e.g., [GM12, Theorem 2.6.1]; see also [GLS93, Chapter 3]), we obtain an algorithm for approx-
imately solving the SDP program in Equation (3.2), ensuring that the condition ω(V ) ≥ c(n)
is satisfied. This algorithm runs in deterministic time poly(D) · polylog

(√
D/ε

)
, or expressed

as poly(D, log(1/ε)), outputting either an ε-approximate feasible solution X̂ or a certificate
indicating that no such solution exists. Particularly, the error parameter ε(n) ensures that
∥X̂ − X∥F ≤ ε(n) for some feasible solution X, with ω(V )|X̂ ≥ c(n) − ε(n), where ω(V )|X̂
represents the objective function evaluated at X̂. We conclude the proof by observing that
ε(n) ≤ 1/ poly(n) holds as long as c(n)− s(n) ≥ 1/poly(n).

4.4 Weakness of QIPLO(1): QMAML and NC containment

We present an upper bound of QIPLO(1):

Lemma 4.10. QIPL3[1, 1/16] ⊆ QMAML⊙[1, 5/8] ⊆ NC.

The proof of Lemma 4.10 relies crucially on the single-coin variant of public-coin three-
message quantum interactive proofs QMAML⊙, where the second message is a single random
coin. Specifically, the first inclusion corresponds to a space-bounded variant of QIP(3) ⊆
QMAM [MW05, Section 5], and the turn-halving lemma (Lemma 4.5) naturally extends this re-
sult. The second inclusion is exactly a down-scaling version of QMAM⊙ ⊆ NC(poly) [JJUW11].35

Furthermore, the first inclusion in Lemma 4.10 implies the following:36

Corollary 4.11. QIPL3 = QMAML.

We now move to the proof of Lemma 4.10.
35This inclusion does not extend to the variant with 1/ poly(n) promise gap. Specifically, applying the parallel

SDP solver in [JJUW11], the resulting algorithm runs in parallel time (i.e., circuit depth) poly log(n) · poly(1/ϵ),
using poly(n) processors (i.e., circuit width), as noted in the first paragraph of [JY11]. Since the parameter ε for
QMAML⊙[1, 1 − 1/p(n)] is polynomially small, this algorithm does not run in NC as the parallel running time
becomes poly(n). This issue also arises when applying width-independent parallel SDP solvers [JY11, AZLO16].

36The inclusion QMAML⊙[1, 5/8] ⊆ QMAML[1, 125/512] ⊆ QMAML[1, 1/3] is obtained by applying three-fold
parallel repetition (Lemma 4.4), where the second message in the resulting proof system is three random coins.
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Proof of Lemma 4.10. We begin by proving the first inclusion using a variant of the turn-halving
lemma (Lemma 4.5). Let P⇌V denote the original QIPL3 proof system, which acts on registers
Q, M, and W, following the notations in Figure 4.1 with l = 1. We propose a QMAML⊙

proof system P̂ ⇌ V̂ , which acts on registers Q̂, M̂, and Ŵ, as described in Protocol 4.2. It is
noteworthy that this proof system is a simplified version of Protocol 4.1.

Protocol 4.2: A QMAML⊙ proof system for verifying a QIPL3 proof system P⇌V .

1. The verifier V̂ receives the qubits contained in W1 from the prover P̂ , and then
transfers them to Ŵ.

2. The verifier V̂ chooses b ∈ {0, 1} uniformly at random and sends b to the prover P̂ .
3. The verifier V̂ receives the qubits written in M̂ from the prover P̂ :
• If b = 0, the verifier V̂ applies V2 on (M̂, Ŵ). V̂ accepts if (M̂, Ŵ) contains an
accepting state of P⇌V , and rejects otherwise.
• If b = 1, the verifier V̂ applies V †

1 on (M̂, Ŵ). V̂ accepts if Ŵ contains the all-zero
state, and rejects otherwise.

It remains to establish the correctness of Protocol 4.2. This is straightforward for yes in-
stances. For no instances, the desired bound essentially follows from the inequality in Lemma 2.6,
using reasoning similar to that in the proof of Lemma 4.5. We omit the details.

Next, we address the second inclusion. We start by observing that Protocol 4.2 aligns with
the definition of single-coin quantum Arthur-Merlin games as described in [JJUW11, Section
2.4], with two key differences: the message length m is log(n) rather than poly(n), and the
verifier is space-bounded instead of polynomial-time bounded. This proof system achieves com-
pleteness 1 and soundness 5/8 due to the first inclusion. Consequently, we can obtain the
corresponding primal-dual SDP programs of dimension poly(n), as opposed to exp(poly(n)),
following [JJUW11, Section 2.5]. Therefore, we conclude an NC containment by applying the
parallel SDP solver from [JJUW11] to the resulting SDP programs of dimension poly(n).

5 Space-bounded unitary quantum statistical zero-knowledge

We now introduce (honest-verifier) space-bounded unitary quantum statistical zero-knowledge,
denoted as QSZKUL and QSZKULHV, as specific types of space-bounded unitary quantum inter-
active proofs (QIPUL) that possess an additional statistical zero-knowledge property.

Before presenting our results, we start by defining the promise problem IndivProdQSD,
which is analogous to QSD [Wat02] and GapQSDlog [LGLW23]:

Definition 5.1 (Individual Product State Distinguishability Problem, IndivProdQSD[k, α, δ]).
Let k(n), α(n), δ(n), and r(n) be logspace computable functions such that 1 ≤ k(n) ≤ poly(n),
0 ≤ α(n), δ(n) ≤ 1, α(n) − δ(n) · k(n) ≥ 1/poly(n), and 1 ≤ r(n) ≤ O(log n). Let Q1, · · · , Qk
and Q′

1, · · · , Q′
k be polynomial-size unitary quantum circuits acting on O(log n) qubits, each with

r(n) specified output qubits. For j ∈ [k], let σj and σ′j denote the states obtained by running
Qj and Q′

j on the all-zero state |0̄⟩, respectively, and tracing out the non-output qubits, then the
promise is that one of the following holds:

• Yes instances: Two k-tuples of quantum circuits (Q1, · · · , Qk) and (Q′
1, · · · , Q′

k) such that

T
(
σ1 ⊗ · · · ⊗ σk, σ′1 ⊗ · · · ⊗ σ′k

)
≥ α(n);

• No instances: Two k-tuples of quantum circuits (Q1, · · · , Qk) and (Q′
1, · · · , Q′

k) such that

∀j ∈ [k], T
(
σj , σ

′
j

)
≤ δ(n).
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Additionally, we denote the complement of IndivProdQSD[k(n), α(n), δ(n)], with respect
to the chosen parameters α(n), δ(n), and k(n), as IndivProdQSD.

With these definitions in hand, we now provide our first theorem in this section:

Theorem 5.2 (The equivalence of QSZKUL and BQL). The following holds:

(1) For any logspace-computable function m(n) such that 1 ≤ m(n) ≤ poly(n),

∪c(n)−s(n)≥1/poly(n)QSZKULHV[m, c, s] ⊆ BQL.

(2) BQL ⊆ QSZKUL ⊆ QSZKULHV.

The class QSZKUL consists of space-bounded unitary quantum interactive proof systems
that possess statistical zero-knowledge against any verifier, whereas QSZKL proof systems pos-
sess statistical zero-knowledge against only an honest verifier. Consequently, the inclusion in
Theorem 5.2(2) is straightforward, following directly from these definitions. To establish the
direction QSZKULHV ⊆ BQL, we proceed by proving the following:

Theorem 5.3 (IndivProdQSD is QSZKULHV-complete). The following holds:

(1) Let c(n) and s(n) be logspace computable functions such that 0 ≤ s(n) < c(n) ≤ 1. For
any logspace-computable function m(n) such that 3 ≤ m(n) ≤ poly(n),

IndivProdQSD[m/2, α, 2δ] is QSZKULHV[m, c, s]-hard.

Here, α := (
√
c−
√
s)2/(2m− 4) and δ is some negligible function.

(2) Let k(n), α(n) and δ(n) be logspace computable functions such that 1 ≤ k(n) ≤ poly(n),
0 ≤ α(n), δ(n) ≤ 1, and α(n)− δ(n) · k(n) ≥ 1/poly(n). Then, it holds that

IndivProdQSD[k, α, δ] ∈ BQL ⊆ QSZKULHV.

In the remainder of this section, we first provide the definition of honest-verifier space-
bounded quantum statistical zero-knowledge proofs (the class QSZKULHV) in Section 5.1. Next,
we establish that IndivProdQSD is QSZKULHV-hard (Theorem 5.3(1)) in Section 5.2. Subse-
quently, we present the BQL upper bound for QSZKULHV (Theorem 5.3(2)) in Section 5.3.

5.1 Definition of space-bounded unitary quantum statistical zero-knowledge

Our definition of (honest-verifier) space-bounded quantum statistical zero-knowledge follows
that of [Wat02, Section 3.1]. In this framework, an honest-verifier space-bounded unitary quan-
tum statistical zero-knowledge proof system is a space-bounded unitary quantum interactive
proof system, as defined in Section 3.1, that satisfies an additional zero-knowledge property. In-
tuitively, the zero-knowledge property in QIPUL proof systems requires that, after each message
is sent, the quantum states representing the verifier’s view – including snapshot states in the mes-
sage register M and the verifier’s private register W – should be approximately indistinguishable
by a space-bounded unitary quantum circuit on accepted inputs.

We then formalize this notion. Consider a set {ρx,i} of mixed states, we say that this state
set is logspace-preparable if there exists a family of m-tuples Sx := (Sx,1, · · · , Sx,m), where each
Sx,i for i ∈ [m] is a space-bounded unitary quantum circuit (see Definition 2.8) with a specified
collection of output qubits, such that for each input x and index i, the state ρx,i is the mixed
state obtained by running Sx,i on the input state |0̄⟩, and then tracing out all non-output qubits.
We refer to such {Sx}x∈I as the space-bounded simulator for the promise problem I.

Next, for any space-bounded quantum interactive proof system P⇌V , we define the verifier’s
view after the i-th turn, denoted by viewP⇌V (x, i), as the reduced state in registers (M,W)
immediately after i messages have been exchanged, with the prover’s private qubits traced out.

We are now ready for the formal definition:

37



Definition 5.4 (Honest-verifier space-bounded unitary quantum statistical zero-knowledge,
QSZKULHV). Let c(n), s(n), and m(n) be logspace-computable functions of the input length
n := |x| such that 0 ≤ s(n) < c(n) ≤ 1 and 1 ≤ m(n) ≤ poly(n). A promise problem
I = (Iyes, Ino) is in QSZKULHV[m, c, s], if there exists an m(n)-message space-bounded uni-
tary quantum interactive proof system (P⇌V )(x) such that :

• Completeness. For any x ∈ Iyes, there exists an m(n)-message prover P such that

Pr [(P⇌V )(x) accepts] ≥ c(n).

• Soundness. For any x ∈ Ino and any m(n)-message prover P ,

Pr [(P⇌V )(x) accepts] ≤ s(n).

• Zero-knowledge. There exists a space-bounded simulator {Sx}x∈I and a negligible func-
tion δ(n) such that for any x ∈ Iyes and each message i ∈ [m], the circuit Sx(i) produces
the corresponding state σx,i satisfying

T(σx,i, viewP⇌V (x, i)) ≤ δ(n).

We define QSZKULHV[m] := QSZKULHV
[
m, 23 ,

1
3

]
and QSZKULHV := ∪m≤poly(n)QSZKULHV[m].

Since the inequality condition in the zero-knowledge property holds independently for each
message in Definition 5.4, error reduction via sequential repetition (Lemma 3.13) directly applies
to an honest-verifier space-bounded quantum statistical zero-knowledge proof system, with the
zero-knowledge property automatically preserved.
Remark 5.5 (Robustness of the zero-knowledge property in QSZKULHV). Let QSZKUL

⋆
HV denote

a weaker version of QSZKULHV, where the threshold function δ(n) := (
√
c−
√
s)

2
/
(
2m2

)
,37

rather than being negligible. While it is clear that QSZKULHV ⊆ QSZKUL
⋆
HV, the standard

approach to establish the reverse direction does not apply to QSZKULHV.38 Instead, the inclusion
QSZKUL

⋆
HV ⊆ QSZKULHV only follows from QSZKUL

⋆
HV = BQL (Theorem 5.2).

5.2 IndivProdQSD is QSZKULHV-hard

Instead of directly proving that IndivProdQSD is QSZKULHV-hard, we establish a slightly
stronger result: the promise problem IndivProdQSD is hard for the class QSZKUL

⋆
HV that con-

tains QSZKULHV (Remark 5.5), as detailed in Theorem 5.6. This result mirrors the relationship
between QSD and the class QSZK.

Theorem 5.6 (IndivProdQSD is QSZKUL
⋆
HV-hard). Let c(n), s(n), and m(n) be logspace

computable functions such that 0 ≤ s(n) < c(n) ≤ 1, c(n)− s(n) ≥ 1/poly(n), and 3 ≤ m(n) ≤
poly(n).39 Then, it holds that

IndivProdQSD[⌈m(n)/2⌉, α(n), 2δ(n)] is QSZKUL
⋆
HV[m(n), c(n), s(n)]-hard.

Here, δ := (
√
c−
√
s)2/(2m2) and α := (

√
c−
√
s)2/(2m− 4).

Before presenting the proof, we will first illustrate the properties of the simulator and explain
the underlying intuition behind the proof. Our proof strategy follows some ideas from [Wat02,
Section 5]. Consider a space-bounded quantum interactive proof system P ⇌ V for a promise
problem I ∈ QSZKUL

⋆
HV[m(n), c(n), s(n)] that is statistical zero-knowledge against an honest

verifier. Without loss of generality, assume that the number of turns in P⇌V is even. We use
the notations introduced in Figure 3.1 and Section 3.2.

37This bound results from the reduction to the QSZKULHV-hard problem IndivProdQSD, see Theorem 5.6.
38In particular, the polarization lemma for the trace distance [Wat02, Section 4.1] is not applicable in the

space-bounded scenario due to message size constraints.
39Without loss of generality, we can assume that m ≥ 3 by adding one or two dummy messages when m < 3,

as discussed in Footnote 41.
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Let us now focus on the space-bounded simulator {Sx}x∈I . Let ξ′0, · · · , ξ′l and ξ1, · · · , ξl+1

denote the simulator’s approximation to the reduced snapshot states in registers (M,W) after
the (2j − 1)-st and the (2j)-th turn, respectively, during the execution of P ⇌ V , as specified
in Figure 5.1. For yes instances, these states closely approximate the actual view of the verifier
(the corresponding snapshot states) during the execution of P⇌V . However, there is no direct
closeness guarantee for no instances. Consequently, we can assume that the state ξl+1 satisfies
Tr(|1⟩⟨1|Zξl+1)) = c(n) for all instances.

Figure 5.1: Quantum states ξ′0, · · · , ξ′l and ξ, · · · , ξl+1 prepared by the simulator.

In addition, given that the verifier is always assumed to act honestly, we can take40

ξ′0 = (|0⟩⟨0|)⊗(qM+qW) and ξj = Vjξ
′
j−1V

†
j for j ∈ [l + 1]. (5.1)

Proof intuition. Notably, the space-bounded simulator {Sx}x∈I essentially produces an ap-
proximation solution, in the form of snapshot states, to the SDP program Equation (3.2) for
computing the maximum acceptance probability ω(V ) of the space-bounded unitary quantum
interactive proof systems P⇌V for I ∈ QIPUL. As we stated in the proof of Theorem 3.8, there
are only two types of constraints: (1) Verifier’s actions are honest; and (2) Prover’s actions do
not affect the verifier’s private qubits.

As mentioned in Equation (5.1), these states produced by the simulator exactly satisfy the
first type of constraints for all instances, but satisfy the second type of constraints only for
yes instances. This observation leads to our proof and the hard problem IndivProdQSD.
Specifically, we consider two tensor product states, each consisting of a polynomial number of
O(log n)-qubit states, where all components are defined in Figure 5.1:

TrM(ξ1)⊗ · · · ⊗ TrM(ξl) and TrM
(
ξ′1
)
⊗ · · · ⊗ TrM

(
ξ′l
)
. (5.2)

For yes instances, the zero-knowledge property ensures a component-wise closeness bound
TrM(ξj) ≈ TrM(ξ′j) for j ∈ [l]. For no instances, we need to show that the two states in Equa-
tion (5.2) are far from each other, given that ω(V ) ≤ s(n). This follows directly from [Wat02,
Lemma 15]. We state the counterpart result below and omit the detailed proof:

Proposition 5.6.1 (Adapted from [Wat02, Lemma 15]). Let P ⇌ V be an m(n)-turn space-
bounded quantum interactive proof system, with even m := 2l, such that ω(V ) ≤ s(n). Let
ξ′0, · · · , ξ′l and ξk, · · · , ξl+1 be the states produced by the simulators as defined in Figure 5.1.
Assume that Tr(|0̄⟩⟨0̄|M0W0ξ′0) = 1 and Tr(|1⟩⟨1|Zξl+1) = c. Then, it holds that

T
(
TrM(ξ1)⊗ · · · ⊗ TrM(ξl),TrM

(
ξ′1
)
⊗ · · · ⊗ TrM

(
ξ′l
))
≥ (
√
c−
√
s)2

4(l − 1)
.

Then, we proceed with the formal proof of Theorem 5.6:

Proof of Theorem 5.6. Let P ⇌ V be an m(n)-turn honest-verifier unitary quantum statistical
zero-knowledge proof system for a promise problem I ∈ QSZKL⋆HV[m, c, s], with completeness

40Consequently, the simulator only needs to prepare ξ′j−1, since ξj is obtained by applying Vj to this state.
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c(n) and soundness s(n). Without loss of generality, we assume that m is even for all x ∈
I.41 Hence, we can denote the verifier’s actions by V1, · · · , Vl+1 for l = m/2, and the verifier
initiates the protocol. Let {σx,i}x∈I,i∈[m+2] represent the mixed states produced by the simulator
{Sx}x∈I , with the threshold function δ(n) := 1/m(n)2. For any x ∈ I, we can define states
ξ′0, · · · , ξ′l and ξ1, · · · , ξl+1 as illustrated in Figure 5.1:

• Initial state before executing P⇌V : ξ′0 := |0̄⟩⟨0̄|M0W0 .

• (2j)-th message for j ∈ [l] in P⇌V : ξ′j := σx,2j , where σx,2j satisfies:

∀x ∈ Iyes, T(σx,2j−1, viewP⇌V (x, 2j)) = T
(
σx,2j−1, ρMjWj

)
≤ δ(n). (5.3)

• (2j + 1)-st message for j ∈ [l] in P⇌V : ξj := Vjξ
′
j−1V

†
j .

• State before the final measurement in P⇌V : ξl+1 := Vl+1ξ
′
lV

†
l+1 satisfies

Tr(|1⟩⟨1|Zξl+1) = c(n).

Let Q1, · · · , Qk and Q′
1, · · · , Q′

k be polynomial-size unitary quantum circuits acting on
O(log n) qubits which satisfy that Qj = Sx,2j−1 and Q′

j = Sx,2j for j ∈ [l], and the output qubits
are qubits in the verifier’s private register W. It is evident that Qj and Q′

j prepare the states
TrM(ξj) and TrM

(
ξ′j
)
, respectively. We claim that the l-tuples (Q1, · · · , Ql) and (Q′

1, · · ·Q′
l)

form an instance of IndivProdQSD[l(n), α(n), δ′(n)], satisfying the following conditions:

∀x ∈ Iyes, T
(
TrM(ξj),TrM

(
ξ′j
))
≤ 2δ =

(
√
c−
√
s)2

4l2
:= δ′ for j ∈ [l]; (5.4)

∀x ∈ Ino, T
(
TrM(ξ1)⊗ · · · ⊗ TrM(ξl),TrM

(
ξ′1
)
⊗ · · · ⊗ TrM

(
ξ′l
))
≥ (
√
c−
√
s)2

4(l − 1)
:= α. (5.5)

By substituting Equation (5.4) into Lemma 2.2, it follows that:

T
(
TrM(ξ1)⊗ · · · ⊗ TrM(ξl),TrM

(
ξ′1
)
⊗ · · · ⊗ TrM

(
ξ′l
))
≤

∑
j∈[l]

T
(
TrM(ξj),TrM

(
ξ′j
))

≤ (
√
c−
√
s)2

4l
.

(5.6)

Consequently, by comparing Equations (5.4) to (5.6), we can conclude the parameter requirement
of IndivProdQSD[l(n), α(n), δ′(n)], specifically that α(n)− δ′(n) · l(n) ≥ 1/ poly(n).

It remains to establish Equation (5.4) and Equation (5.5). The latter follows directly from
Proposition 5.6.1. To prove the former, note that the prover’s actions do not affect the verifier’s
private register for yes instances, we thus derive the following for j ∈ {2, · · · , l}:

T
(
TrM(ξj),TrM

(
ξ′j
))
≤ T

(
ξj , ξ

′
j

)
≤ T

(
ξj , ρMjWj

)
+T

(
ρMjWj , ρM′jWj

)
+T

(
ρM′jWj , ξ

′
j

)
= T

(
ξ′j−1, ρM′j−1Wj−1

)
+T

(
ρMjWj , ρM′jWj

)
+T

(
ρM′jWj , ξ

′
j

)
≤ δ(n) + 0 + δ(n)

= 2δ(n).

Here, the first line follows from the data-process inequality (Lemma 2.3), the second line is due
to the triangle inequality, the third line owes to the unitary invariance (Lemma 2.4) and the
fact that ρMjWj = VjρM′j−1Wj−1

V †
j , and the fourth line is because of Equation (5.3). We complete

the proof by noting that similar reasoning applies to the case of j = 1, using T(ξ1, ρM1W1) = 0
instead of at most δ(n).

41If m is odd, we can add an initial turn to P ⇌V in which the verifier sends the all-zero state to the prover.
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5.3 QSZKULHV is in BQL

We will establish the hard direction in the equivalence of QSZKULHV and BQL. The key
lemma underlying the proof involves a logspace (many-to-one) reduction IndivProdQSD to
an “existential” version of GapQSDlog, where GapQSDlog is a BQL-complete problem (see
Section 2.3). This reduction leads to a BQL containment for IndivProdQSD:

Lemma 5.7 (IndivProdQSD is in BQL). Let k(n), α(n) and δ(n) be logspace computable
functions such that 1 ≤ k(n) ≤ poly(n), 0 ≤ α(n), δ(n) ≤ 1, and α(n)−δ(n) ·k(n) ≥ 1/ poly(n).
Then, it holds that

IndivProdQSD[k(n), α(n), δ(n)] ∈ BQL.

As IndivProdQSD is QSZKULHV-hard (Theorem 5.6), and given that BQUL is closed under
complement [Wat99, Corollary 4.8] and the equivalence BQL = BQUL [FR21], we can directly
conclude the following corollary:

Corollary 5.8. QSZKULHV ⊆ BQL.

We now proceed with the formal proof of the key lemma:

Proof of Lemma 5.7. We first establish a logspace (many-to-one) reduction from IndivProdQSD
to an “existential” version of GapQSDlog. Let (Q1, · · · , Qk) and (Q′

1, · · · , Q′
k) be an instance of

IndivProdQSD[k, α, δ]. For each j ∈ [k], let σj and σ′j denote the states obtained by running
Qj and Q′

j on the all-zero state |0̄⟩, respectively, and tracing out the non-output qubits. We
now need to decide which of the following cases in Equation (5.7) and Equation (5.8) holds:

T
(
σ1 ⊗ · · · ⊗ σk, σ′1 ⊗ · · · ⊗ σ′k

)
≥ α(n). (5.7)

∀j ∈ [k], T
(
σj , σ

′
j

)
≤ δ(n). (5.8)

By combining Lemma 2.2 with Equation (5.7), we obtain:∑
j∈[k]

T
(
σj , σ

′
j

)
≥ T

(
σ1 ⊗ · · · ⊗ σk, σ′1 ⊗ · · · ⊗ σ′k

)
≥ α(n). (5.9)

Applying an averaging argument to Equation (5.9), we can conclude that

∃j ∈ [k], T
(
σj , σ

′
j

)
≥ α/k. (5.10)

Clearly, a violation of Equation (5.10) implies a violation of Equation (5.7), without con-
tradicting Equation (5.8). For each j ∈ [k], the pair of circuits Qj and Q′

j forms an instance
of GapQSDlog. The resulting promise problem is thus an “existential” version of GapQSDlog,
where yes instances satisfy Equation (5.10) and no instances satisfy Equation (5.8).

Next, we proceed by demonstrating the BQL containment. Given the equivalence of BQL
and QMAL [FKL+16, FR21], it remains to establish a QMAL containment for this “existential”
version of GapQSDlog. The verification protocol is outlined in Protocol 5.1.

Protocol 5.1: A QMAL proof system for IndivProdQSD.
1. The verifier receives an index j ∈ [k] from the prover.
2. The verifier executes the quantum logspace algorithm A for GapQSDlog[α/k, δ]
underlying in Theorem 2.11, using the pair of circuits Qj and Q′

j as the GapQSDlog
instance. The verifier accepts (or rejects) if A accepts (or rejects).

To complete the proof, we establish the correctness of Protocol 5.1. Since the algorithm A
is a BQL containment for GapQSDlog[α/k, δ] (Theorem 2.11), we conclude the following:

• For yes instances, Equation (5.10) ensures that there exists an j ∈ [k] (the witness) such
that T

(
σj , σ

′
j

)
≥ α/k. Consequently, A accepts with probability at least 2/3.
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• For no instances, Equation (5.8) yields that for all j ∈ [k], T
(
σj , σ

′
j

)
≤ δ. This statement

implies that A accepts with probability at most 1/3.
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