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Abstract

Trevisan and Vadhan (FOCS 2000) introduced the notion of (seedless) extractors for samplable distri-
butions as a possible solution to the problem of extracting random keys for cryptographic protocols from
weak sources of randomness. They showed that under a very strong complexity theoretic assumption, there
exists a constant α > 0 such that for every constant c ≥ 1, there is an extractor Ext : {0, 1}n → {0, 1}Ω(n),
such that for every distribution X over {0, 1}n that has H∞(X) ≥ (1−α)·n, Ext(X) is ϵ-close to uniform
for ϵ = 1

nc , and furthermore, Ext is computable in time poly(nc).
Recently, Ball, Goldin, Dachman-Soled and Mutreja (FOCS 2023) gave a substantial improvement,

and achieved the same conclusion under the weaker (and by now standard) assumption that there exists a
constant β > 0, and a problem in E = DTIME(2O(n)) that requires size 2βn nondeterministic circuits.
In this paper we give an alternative proof of this result with the following advantages:

• Our extractors have “multiplicative error”. More specifically, it is guaranteed that for every event
A ⊆ {0, 1}m, Pr[Ext(X) ∈ A] ≤ (1 + ϵ) · Pr[Um ∈ A]. (This should be contrasted with the
standard notion that only implies Pr[Ext(X) ∈ A] ≤ ϵ+ Pr[Um ∈ A]).
Consequently, unlike the extractors of Trevisan and Vadhan, and Ball et al., our multiplicative extrac-
tors guarantee that in the application of selecting keys for cryptographic protocols, if when choosing
a random key, the probability that an adversary can steal the honest party’s money is n−ω(1), then
this also holds when using the output of the extractor as a key.
A related notion of multiplicative extractors was defined by Applebaum, Artemenko, Shaltiel and
Yang (CCC 2015) who showed that black-box techniques cannot yield extractors with additive error
ϵ = n−ω(1), under the assumption assumed by Ball et al. or Trevisan and Vadhan. This motivated
Applebaum et al. to consider multiplicative extractors, and they gave constructions based on the
original hardness assumption of Trevisan and Vadhan.

• Our proof is significantly simpler, and more modular than that of Ball et al. (and arguably also than
that of Trevisan and Vadhan). A key observation is that the extractors that we want to construct,
easily follow from a seed-extending pseudorandom generator against nondeterministic circuits (with
the twist that the error is measured multiplicatively, as in computational differential privacy). We
then proceed to construct such pseudorandom generators under the hardness assumption. This turns
out to be easier (utilizing amongst other things, ideas by Trevisan and Vadhan, and by Ball et al.)

Trevisan and Vadhan also asked whether lower bounds against nondeterministic circuits are necessary to
achieve extractors for samplable distributions. While we cannot answer this question, we show that the
proof techniques used in our paper (as well as those used in previous work) produce extractors which
imply seed-extending PRGs against nondeterministic circuits, which in turn imply lower bounds against
nondeterministic circuits.
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1 Introduction

1.1 Multiplicative Pseudorandomness

Pseudorandomness is a viewpoint that says that a distribution Z over {0, 1}m is “similar” to the uniform distri-
bution Um from the point of view of a function C : {0, 1}m → {0, 1}, if the quantities p1 = Pr[C(Um) = 1]
and p2 = Pr[C(Z) = 1] are “similar”. Typically, this similarity is measured by choosing a parameter

0 < ϵ ≤ 1 and using the relation ad∼ϵ on [0, 1] defined as follows:

p1
ad∼ϵ p2 ⇐⇒ |p2 − p1| ≤ ϵ,

We can generalize this approach to define pseudorandomness with respect to different relations.

Definition 1.1 (Pseudorandomness with respect to a relation). Let ∼ be a relation on [0, 1]. Given a function
C : {0, 1}m → {0, 1}, a distribution Z over {0, 1}m is pseudorandom for C with respect to ∼, if

Pr[C(Um) = 1] ∼ Pr[C(Z) = 1].

We will abbreviate “with respect to” as “w.r.t.” for brevity. Given a class C of functions C : {0, 1}m → {0, 1}
we say that Z is pseudorandom for C w.r.t. ∼, if it is pseudorandom for every C in C w.r.t. ∼. Z is close to
uniform w.r.t. ∼, if it is pseudorandom w.r.t. ∼ for the class of all boolean functions on m bits.

The standard notion of ϵ-pseudorandomness is obtained when taking the relation ad∼ϵ. If the class C is
closed under complement then the standard notion is also obtained when using the (one sided) relation

p1
a∼ϵ p2 ⇐⇒ p2 ≤ p1 + ϵ,

in which the absolute value is removed. The generalized formulation of Definition 1.1 allows other relations.
This generality is used in differential privacy [DMNS06] that uses the following multiplicative relation:

p1
m∼ϵ p2 ⇐⇒ p2 ≤ eϵ · p1.

Note that for 0 ≤ ϵ ≤ 1, eϵ = 1 + Θ(ϵ), and therefore, pseudorandomness with respect to m∼ϵ, implies
pseudorandomness with respect to a∼ϵ.1 The field of differential privacy also considers a generalization of m∼
with two parameters: a “large” multiplicative ϵ, and a “small” additive δ, defined as follows:

p1
m∼(ϵ,δ) p2 ⇐⇒ p2 ≤ eϵ · p1 + δ.

Note that m∼ϵ is obtained as m∼(ϵ,0), and pseudorandomness w.r.t. m∼(ϵ,δ) implies pseudorandomness w.r.t. a∼ϵ+δ.
We call the pseudorandomness obtained by these relations “multiplicative pseudorandomness”.2 We can
continue and define two fundamental objects of pseudorandomness (pseudorandom generators and seedless
extractors) in this generalized way (which we will later use with the multiplicative relations).

Definition 1.2 (Pseudorandom generators and extractors w.r.t. a relation). Let ∼ be a relation on [0, 1].

1Pseudorandomness w.r.t. m∼ϵ makes sense also for ϵ ≥ 1, and such choices are sometimes used in differential privacy. However,
in this paper we will only consider the case where 0 ≤ ϵ ≤ 1, so that 1 + ϵ ≤ eϵ ≤ 1 + 3ϵ.

2It is known that in the standard definition (w.r.t. ad∼ϵ or a∼ϵ) Z is ϵ-close to uniform iff Z has statistical distance at most ϵ from
Um. The multiplicative notion also has a natural information theoretic meaning, specifically note that Z is close to uniform w.r.t. m∼ϵ

iff for every z ∈ {0, 1}m, Pr[Z = z] ≤ eϵ · 2−m.
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• G : {0, 1}d → {0, 1}m is a PRG for a class C w.r.t. to ∼ (which we will also shorten to “∼-PRG for
C”) if G(Ud) is pseudorandom for C w.r.t. ∼. G is seed-extending if the function G′(x) = (x,G(x))
is a PRG for the considered class C, w.r.t. the considered relation ∼.

• A function Ext : {0, 1}n → {0, 1}m is a (k,∼)-extractor for a class D of distributions over {0, 1}n, if
for every distribution X in D with H∞(X) ≥ k, the distribution Ext(X) is close to uniform w.r.t. ∼.

Once again, the standard notions of extractors and pseudorandom generators are obtained for the relation
ad∼ϵ (the same holds also for a∼ϵ for extractors, and also for PRGs in case C is closed under complement).

We will consider multiplicative variants of pseudorandom generators and seedless extractors. Some
multiplicative versions of these objects (with a slightly different definition) have been considered before
[AASY15, AIKS16, LZ19, SS24] (and we elaborate on these works below). The main contribution of this
paper is improved constructions, under weaker hardness assumptions.

A motivating example: using seedless extractors to select keys for cryptographic protocols. Consider
a cryptographic protocol which is known to be secure when the key of an honest party is chosen according
to Um. That is, the probability that an adversary can steal the honest party’s money is smaller than some
“negligible” α > 0. A signature application of seedless extractors is choosing keys for cryptographic proto-
cols by extracting randomness from weak random sources. (Note that seeded extractors do not apply for this
application). When using a seedless extractor, the key will be “close to uniform” rather than “truly uniform”.

If the key is chosen according to a distribution that is ϵ-close to uniform (using to the standard notion)
then we are only guaranteed that the adversary’s probability to cheat is smaller than α + ϵ, which may be
unacceptable if ϵ is “large” compared to α.

In contrast, if we replace the standard notion by the multiplicative notion (w.r.t. m∼ϵ), then the probability
that the adversary can cheat is bounded by eϵ · α ≤ (1 + 3ϵ) · α, which is still very small even for constant ϵ.
The same holds when using the multiplicative version with two parameters ϵ and δ (that is w.r.t. m∼(ϵ,δ)), even
if ϵ is large, as long as δ is sufficiently small and is comparable to α.

Indeed, this advantage of the multiplicative notion over the additive notion is the rational for using these
multiplicative relations in differential privacy (where it is often impossible or expensive to obtain small ϵ).

1.2 Extractors for Samplable Distributions

An influential paper by Trevisan and Vadhan [TV00] introduced the notion of (seedless) extractors for sam-
plable distributions. Their goal was to identify a class of distributions that contains “sources of randomness
that are available to computers” and allows seedless extractors that run in poly-time.

We say that a distribution X over {0, 1}n is sampled by a circuit A : {0, 1}r → {0, 1}n if X = A(Ur)
(See more formal definition in Section 3.1). Trevisan and Vadhan considered extractors for distributions that
are samplable by poly-size circuits, namely distributions samplable by circuits of size nc for some constant
parameter c. They showed that such extractors cannot run in time smaller than nc, and considered extractors
that run in time poly(nc). They showed that such extractors imply circuit lower bounds, and so, motivated by
the hardness vs. randomness paradigm, they gave a conditional construction based on hardness assumptions.

Hardness assumptions against various types of nondeterministic circuits. We say that “E is hard for
exponential size circuits of some type”, if there exist a problem L ∈ E = DTIME(2O(n)) and a constant
β > 0, such that for every sufficiently large n, circuits of size 2β·n (of the specified type) fail to compute the
characteristic function of L on inputs of length n. (See Section 3.3 for a more formal definition).

The assumptions that E is hard for exponential size (deterministic) circuits was used by the celebrated
paper of Impagliazzo and Wigderson [IW97] to imply that BPP = P. The stronger assumption that E is hard
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for exponential size nondeterministic circuits3, originated in works on hardness versus randomness for AM,
and is now standard, and used in many results [AK02, KvM02, MV05, SU05, BOV07, GW02, GST03, SU06,
SU09, Dru13, AASY15, BV17, AIKS16, HNY17, DMOZ22, BDL22, CT22, BGDM23, BSS24, SS24]. It
can be viewed as a scaled, nonuniform version of the widely believed assumption that EXP ̸= NP.

In their seminal paper on extractors for samplable distributions, Trevisan and Vadhan [TV00] introduced
a version of the assumption for a stronger circuit class. A Σi-circuit, is a circuit that in addition to the standard
gates, is also allowed to use a special gate (with large fan-in) that solves the canonical complete language for
the class ΣP

i (the i’th level of the polynomial time hierarchy).4 The extractor of Trevisan and Vadhan [TV00]
relies on the extremely strong assumption that E is hard for exponential size Σ5-circuits.5

Previous work on extractors for samplable distributions. The main result of Trevisan and Vadhan [TV00]
is that under a hardness assumption for Σ5-circuits, there is an extractor for distributions samplable by poly-
size circuits with k = n−∆, where ∆ = αn for some constant α > 0. Below is a precise statement.6

Theorem 1.3 ([TV00]). If E is hard for exponential size Σ5-circuits then there exists a constant α > 0,
such that for every constant c > 1, and for every sufficiently large n, there is a function Ext : {0, 1}n →
{0, 1}αn that is a ((1−α) ·n, a∼ϵ)-extractor for distributions samplable by circuits of size nc, where ϵ = n−c.
Furthermore, Ext is computable in time poly(nc).7

Note that this extractor only achieves an additive error of ϵ = n−c. It is not known how to achieve a
smaller error of ϵ = n−ω(1). Moreover, Applebaum et al. [AASY15] showed that “black-box techniques”
cannot be used to achieve ϵ = n−ω(1) in Theorem 1.3, even if one replaces Σ5-circuits with Σi-circuits for
any number i. We note that all existing results (including the one in this paper) use “black-box techniques”.

This led Applebaum et al. [AASY15] to consider multiplicative extractors.8 Applebaum et al. [AASY15]
showed that the construction and proof of Trevisan and Vadhan [TV00] can be extended to yield multiplicative
extractors in Theorem 1.3. Recently, Ball et al. [BGDM23] improved upon Theorem 1.3 in two respects:

• The assumption was significantly improved to assuming that E is hard for exponential size nondeter-
ministic circuits. This is a significant improvement as this assumption is weaker and more standard.

• The class of distributions was extended to include “samplable distributions with postselection”.9 This
is a richer class of distributions. More specifically, a distribution X over {0, 1}n is samplable with
postselection by size s circuits, if there is a size s “sampling circuit” A : {0, 1}r → {0, 1} and a size

3A precise definition of nondeterministic circuits appears in Section 3.2.
4A Σi-circuit is a nonuniform analogue of the class PΣP

i that contains ΣP
i , and recall that P = ΣP

0 and NP = ΣP
1 . See Section 3.2

for a formal definition.
5We remark that following [TV00] there is some later work that relies on hardness for Σi-circuits for i > 1 [GW02, AS14,

AASY15, AIKS16, BDL22].
6The parameter ∆ is known as the “entropy deficiency”, and a result is stronger when ∆ is larger. All the known results, as well

as our new results, achieve ∆ = αn, for some constant α > 0. See discussion and open problem in Section 6.1.
7The result stated in [TV00] gives an extractor with shorter output length of m = Θ(logn). Nevertheless, Applebaum et al.

[AASY15] observe that the result of [TV00] extends to larger output length, as stated in Theorem 1.3.
8Applebaum et al. [AASY15] use a more stringent definition of multiplicative extractors than the one we use here. In our

terminology, they consider extractors w.r.t to the (double-sided) relation:

p1
md∼ ϵ p2 ⇐⇒ p1

m∼ϵ p2 and p2
m∼ϵ p1,

which they call “relative-error extractors”. However, for the suggested applications of such extractors (for example, the motivating
application of selecting keys for cryptographic protocols), extractors w.r.t. m∼ϵ suffice, and one does not benefit from considering
extractors w.r.t. md∼ ϵ. For this reason, we focus on extractors w.r.t. m∼ϵ in this paper. Jumping ahead, we remark that our technique is
also applicable to construct extractors w.r.t. md∼ ϵ, and we discuss the two notions in Section 6.2.

9Ball et al. [BGDM23] also consider distributions samplable by quantum circuits, which we will not discuss in this paper.
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s “postselection circuit” P : {0, 1}r → {0, 1}, such that X = (A(Y )|P (Y ) = 1) for Y ← Ur.
(See precise definition in Section 3.1). Loosely speaking, this allows A to first sample A(Y ), and
then, “postselect” the obtained distribution, and condition it on the event {P (Y ) = 1}. This class of
distributions contains samplable distributions, as well as recognizable distributions (Defined in [Sha09]
and studied in [KvMS09, AASY15, LZ19, SS24], see precise definition in Section 3.1).

Ball et al. [BGDM23] use the same construction as [TV00, AASY15], however their analysis is significantly
more complicated, and introduces new conceptual ideas, as well as some considerable technical sophistication.
The price of achieving a weaker hardness assumption is that the proof is less modular, and significantly
more complicated than that of [TV00]. Additionally, Ball et al. [BGDM23] only achieve standard (additive)
extractors.

1.3 Our Results

1.3.1 Multiplicative Extractors for Samplable Distributions

In this paper we prove a version of Theorem 1.3 that achieves multiplicative extractors w.r.t. m∼ϵ, together
with the two improvements of Ball et al. [BGDM23]. This achieves the best of both worlds. The precise
result (stated below) is identical to Theorem 1.3, except for the weaker hardness assumption, the addition of
“postselection”, and that a∼ϵ is replaced by m∼ϵ.

Theorem 1.4 (Multiplicative extractors for samplable distributions). If E is hard for exponential size non-
deterministic circuits then there exists a constant α > 0, such that for every constant c > 1, and for every
sufficiently large n, there is a function Ext : {0, 1}n → {0, 1}αn that is a ((1−α) ·n, m∼ϵ)-extractor for distri-
butions samplable with postselection by circuits of size nc, where ϵ = n−c. Furthermore, Ext is computable
in time poly(nc).

We use (essentially) the same construction as the previous papers [TV00, AASY15, BGDM23] but suggest
a different analysis that is more modular, and significantly simpler than the approach of Ball et al. [BGDM23].
In fact, in our opinion, this approach is simpler and more natural than that of the original work of Trevisan
and Vadhan [TV00]. Loosely speaking, our proof borrows some of the new ideas of Ball et al. [BGDM23],
but avoids the technical complications by considering an intermediate object that is a “multiplicative PRG”.
(We elaborate on our approach and compare it to that of [TV00, BGDM23] in Section 2).

Theorem 1.4 achieves m = Ω(n) bits. As in previous work [TV00, BGDM23], we can also obtain
extractors that extract almost all the randomness (rather than a constant fraction) under the same assumption.
In this result we obtain multiplicative extractors w.r.t m∼(ϵ,δ), for an exponentially small additive error term δ.

Theorem 1.5 (Multiplicative extractors with larger output length). If E is hard for exponential size nonde-
terministic circuits then for every sufficiently small constant γ > 0, every constant c > 1, and for every
sufficiently large n, there is a function Ext : {0, 1}n → {0, 1}(1−O(γ))·n that is a ((1−γ) ·n, m∼(ϵ,δ))-extractor
for distributions samplable with postselection by circuits of size nc, where ϵ = n−c and δ = 2−Ω(γ·n). Fur-
thermore, Ext is computable in time poly(nc).

Both [TV00] and [BGDM23] got extractors with the same output length. However, their extractor is
additive (w.r.t. a∼ϵ for ϵ = n−c) and are not suitable for the application of selecting keys for cryptographic
protocols. In contrast, our extractors are mutliplicative w.r.t m∼(ϵ,δ) for the same ϵ, and an exponentially small
δ = 2−Ω(n) which (as explained before) is suitable for the intended application.

As in the previous works [TV00, BGDM23], enlarging the output length is achieved by composing the
basic extractor with a seeded-extractor (which can be set up to have exponentially small additive error δ).
We observe that when the basic extractor is multiplicative (as in the case of Theorem 1.4) one obtains a
multiplicative extractor (with two parameters ϵ and δ) as in Theorem 1.5 (see Section 4.3).
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1.3.2 Consequences and Necessary Assumptions for Extractors for Samplable Distributions

Hardness assumptions for extractors for samplable distributions. As mentioned previously, Trevisan
and Vadhan [TV00] observed that extractors for samplable distributions imply circuit lower bounds. Specifi-
cally that if Ext : {0, 1}n → {0, 1} is an (n− 1,

a∼ 1
5
)-extractor for distributions samplable by size s circuits,

then Ext cannot be computed by circuits of size slightly smaller than s. This lower bound seems significantly
weaker than the hardness assumption used in Theorem 1.4. A natural question is whether hardness against
nondeterministic circuits (as in Theorem 1.4) is necessary for obtaining extractors for samplable distributions?

Following [BGDM23], we observe that our proof of Theorem 1.4 (as well as the proofs of the previous
results [TV00, BGDM23]) yield extractors for a richer class of distributions: The class of distributions that
are samplable by size s = nc deterministic circuits, with postselection by size s nondeterministic circuits.10

This is a richer class than both distributions samplable by size nc circuits (as in Theorem 1.3) and distributions
samplable with postselection by size nc circuits (as in [BGDM23] and Theorem 1.4). See precise definition
of this class in Section 3.1, and a formal statement and discussion in Section 4.

We show that an extractor for this richer class of distributions does imply circuit lower bounds against
nondeterministic circuits. More specifically, that Ext cannot be computed by nondeterministic circuits of size
slightly smaller than s.

In fact, we get the stronger conclusion that computing the extractor is hard on average for nondeterministic
circuits. Specifically, we show that an (n − log(1/ϵ),

a∼ϵ)-extractor for this richer class is a function that is
hard on average for nondeterministic circuits, meaning that every nondeterministic circuit of size slightly
smaller than s, computes the extractor correctly on at most a (12 +O(ϵ))-fraction of the inputs. (In the case of
extractors for the original class, this result gives average-case lower bounds against deterministic circuits).

Summing up, our results imply that hardness assumptions against nondeterministic circuits cannot be
avoided as long as one uses proof techniques that immediately give extractors against this richer class of dis-
tributions (as is the case for all previous work). We remark that the lower bounds that we get are quantitatively
weaker than the hardness assumption used in Theorem 1.4. See discussion in Section 5.

Extractors for samplable distributions and seed-extending PRGs. We show that extractors for the richer
class imply a stronger object than a hard on average function. Specifically, an extractor w.r.t m∼ϵ (rather than
a∼ϵ) for the richer class (as is the case in Theorem 1.4) is a seed-extending a∼O(ϵ)-PRG for nondetrministic
circuits of size slightly smaller than s. This result holds for every output length m, and is achieved by adapting
an argument of Kinne, van Melkebeek and Shaltiel [KvMS09].

Jumping ahead, we remark that the key idea in our construction of multiplicative extractors of Theorem
1.4, is to construct (multiplicative) seed-extending PRGs for nondeterministic circuits, and show that such
PRGs are multiplicative extractors. See Section 2 for a detailed explanation.

Together, these results give a formal connection between seed-extending PRGs for nondeterministic cir-
cuits and extractors (at least for some ranges of parameters) and we believe that it may be beneficial to explore
further connections between these objects. See section 5 for a detailed discussion.

10Loosely speaking, the property of samplable distributions that is used in [TV00, BGDM23] (and this paper) is that for a smaplable
distribution X sampled by a poly-size circuit A, a nondeterministic poly-size circuit can check whether a given x is in the support of
X (or more generally that a poly-size Σ1-circuit can compute a multiplicative approximation to Pr[X = x]). These properties also
hold for postselecting samplable distributions even if one allows nondeterministic postselection.
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2 Technique

2.1 A Brief Overview of the Approach Used in the Previous Work

Extractors from functions that are very hard functions on average. Trevisan and Vadhan [TV00] started
from a simple observation that if a function Ext : {0, 1}n → {0, 1} is sufficiently hard on average (against
Σ1-circuits) then Ext is an extractor (that outputs a single bit) for distributions samplable by poly-size (deter-
ministic) circuits. More specifically, using our terminology they showed that:

Lemma 2.1 (Extractors from very hard on average functions [TV00]). Let f : {0, 1}n → {0, 1} be a function
such that for every Σ1-circuit C of size s ≥ n, it holds that PrX←Un [C(X) = f(X)] ≤ 1

2 + ϵ
2∆

. Then, f is
an (n−∆,

a∼4ϵ)-extractor for distributions samplable by circuits of size s′ = (sϵ)Ω(1).

This means that constructing extractors for samplable distributions from worst-case assumptions can be
potentially achieved by “hardness amplification” which is the task of converting worst-case hard functions
(as in hardness assumptions) into functions that are sufficiently hard on average. This seems promising as
hardness amplification is a successful paradigm with many classical results [IW97, STV01].

Unfortunately, even if we settle for constant ϵ, unless the entropy deficiency is very small, and ∆ =
O(log n), there are no known hardness amplification results with suitable parameters. (Note that in Theorems
1.3 and 1.4, a much larger entropy deficiency of ∆ = Ω(n) is obtained).

In fact, later work [AASY15] shows that it is impossible to use “black-box techniques” to start from the
assumption that E is hard for Σi-circuits, and obtain a function that is this hard on average (and this holds for
every i). This means that results like Theorem 1.3 cannot be obtained by hardness amplification.

Bypassing the barrier of obtaining functions that are very hard on average. Because of this barrier,
Trevisan and Vadhan (and following work) could not use Lemma 2.1 directly. Instead, Trevisan and Vadhan
used a construction by Sudan, Trevisan and Vadhan [STV01] (that is based on error-correcting codes, and was
used to obtain hardness amplification) to design their function Ext : {0, 1}n → {0, 1}.

As they could not show that Ext is sufficiently hard on average, they instead directly showed that Ext is an
extractor for samplable distributions. This leads to technical complications (that do not arise when analyzing
Ext in the realm of hardness amplification). Specifically, in the case of hardness amplification one is interested
in the behavior of Ext on a uniform X ← Un. In contrast, when analyzing Ext as an extractor, one needs to
analyze Ext on an arbitrary samplable distribution X with H∞(X) ≥ n−∆.

On a technical level, the function Ext designed by Trevisan and Vadhan (which we will soon review
in detail) relies on an error-correcting code with block length 2n. Analyzing it on a distribution X that is
substantially different than Un runs into difficulties, as error-correcting codes give the “same importance” to
every one of the symbols of the 2n bit long codeword, whereas the distribution X does not.

The recent and exciting work of Ball et al. [BGDM23] uses the same function Ext, and uses considerable
technical sophistication to analyze the behavior of Ext on distributions X that have high min-entropy but are
not uniform. This indeed allows Ball et al. to make the reduction use “less levels of nondeterminism” and
start from a weaker hardness assumption, but leads to a complicated and technical proof (as modularity is
sacrificed in order make the reduction use less levels of nondeterminism). Moreover, [BGDM23] do not get a
multiplicative extractor.

2.2 Multiplicative Extractors from Seed-Extending Multiplicative PRGs

In Lemma 2.2 of this paper, we introduce a new approach to construct extractors from samplable distributions.
More specifically, we prove an analogous result to Lemma 2.1 with the difference that rather than starting from
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a function that is hard on average for nondeterministic circuits, we start from a seed-extending multiplicative
PRG for nondeterministic circuits (as in Definition 1.2). This has several advantages:

• This approach is applicable to any output length m, and not just to m = 1, as is the case of Lemma 2.1.

• The approach gives multiplicative extractors w.r.t. m∼ϵ rather than additive extractors w.r.t. a∼ϵ.11

• Most importantly, as we shoe in Theorem 2.3 below, the starting point of the new approach in Lemma
2.2, can be achieved under the weak assumption that E is hard for exponential size nondeterministic
circuits. In contrast (as we explained previously) there are barriers to obtaining the starting point of
Lemma 2.1 even under significantly stronger assumptions against Σi-circuits [AASY15], and these
barriers apply even for (additive) extractors that output a single bit.

The new approach is stated in the lemma below.

Lemma 2.2 (Multiplicative extractors from Multiplicative PRGs). If G : {0, 1}n → {0, 1}m is a seed-
extending PRG for nondeterministic circuits of size s ≥ n ≥ m w.r.t. m∼(ϵ, ϵ

2∆+m ). Then, G is an (n−∆,
m∼12ϵ)-

extractor for distributions samplable by circuits of size s′ = (sϵ)Ω(1).

We will soon show in Section 2.3 that essentially the same function Ext used by Trevisan and Vad-
han, can be shown to be a seed-extending multiplicative PRG, with parameters that yield Theorem 1.4 using
Lemma 2.2. This approach will lead to a simple and modular proof that produces a multiplicative extractor.

A more general version of Lemma 2.2 (which applies to the richer class of samplable distributions with
postselection) is stated and proven in Section 4.1. Below is a proof sketch.

Proof sketch for Lemma 2.2. Let us now explain the idea behind the proof of Lemma 2.2. For this purpose,
we will consider a simpler case in which we are only interested in extracting from samplable distributions W
over {0, 1}n which are flat. That is, that W is uniform over a set T ⊆ {0, 1}n of size 2n−∆. The advantage
of assuming that W is flat, is that this immediately implies that there is a small nondeterministic circuit B
which given x ∈ {0, 1}n, answers one iff x ∈ T . This follows because if A : {0, 1}r → {0, 1}n is the
size s′ sampling circuit such that W = A(Ur), then when given x, B can verify that x ∈ T by “guessing”
v ∈ {0, 1}r such that A(v) = x, and v serves as a witness that x ∈ T .

Assume that G : {0, 1}n → {0, 1}m is not an (n − ∆,
m∼12ϵ)-extractor for W . This means that there

exists z ∈ {0, 1}m such that Pr[G(W ) = z] > e12ϵ · 2−m. We now design a nondeterministic circuit
D : {0, 1}n × {0, 1}m → {0, 1} of size s that shows that G′(x) = (x,G(x)) is not a m∼(ϵ, ϵ

2∆+m )-PRG.
On input (x, y) ∈ {0, 1}n × {0, 1}m, D(x, y) will answer one if x ∈ T and y = z. (Note that D can do

this by using the circuit B). By construction D is a nondeterministic circuit of size s for s slightly larger than
s′. Let us consider the random variables X ← Un, and Y ← Um, we compute:

p1 = Pr[D(X,Y ) = 1] = Pr[X ∈ T ∧ Y = z] = Pr[X ∈ T ] · Pr[Y = z] = 2−∆ · 2−m.

p2 = Pr[D(G(X)) = 1] = Pr[D(X,G(X)) = 1] = Pr[X ∈ T ∧G(X) = z]

= Pr[X ∈ T ] · Pr[G(X) = z|X ∈ T ] = 2−∆ · Pr[G(W ) = z] > 2−∆ · e12ϵ · 2−m,

In particular, we have that

p2 > e12ϵ · p1 ≥ (1 + 12ϵ) · p1 = (1 + 11ϵ) · p1 + ϵ · p1 ≥ eϵ · p1 + ϵ · 2−(∆+m),

11Note that for small output length m, say m = 1, the multiplicative and additive notions of ”close to uniform” essentially coincide.
The difference between the additive and multiplicative notions increases with m. The fact that the new approach works directly for
large m is one of the reasons that allow it to get multiplicative extractors.
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and we indeed conclude that p1 ̸
m∼(ϵ, ϵ

2∆+m ) p2, and get a contradiction.
The case where W is not flat is handled in the formal proof in Section 4.1 by replacing the check whether

x is in the support of W , by a quantitative check that approximates Pr[W = x], and using the fact that
nondeterministic circuits can approximate this quantity (in the sense that using Goldwasser-Sipser protocol
[GS86], nondeterministic circuits can verify that this quantity is approximately larger than a given threshold,
see Section 3.8 for details).

2.3 A Construction of Seed-Extending Multiplicative PRGs

In light of Lemma 2.2, in order to obtain the extractor stated in Theorem 1.4, it is sufficient to start from the
assumption that E is hard for exponential size nondeterministic circuits, and construct multiplicative seed-
extending PRGs for nondeterministic circuits.

Our PRG construction (which is specified formally in Figure 1) is essentially the same as that of the
extractor of Trevisan and Vadhan [TV00], which builds on an adaptation of [STV01]. More specifically, we
start from a hard function f : {0, 1}ℓ → {0, 1} (which is the characteristic function of the language in the
hardness assumption). When shooting to get the extractor of Theorem 1.4, we set ℓ = O(log n), so that
the assumption gives that f cannot be computed by nondeterministic circuits of size slightly larger than nc.
With this choice, f is computable in time 2O(ℓ) = poly(nc). As is common in this area, the first step is to
extend f : {0, 1}ℓ → {0, 1} into a low degree polynomial f̂ : Fd

q → Fq using the “low degree extension”
a.k.a. the Reed-Muller code. Specifically, for an appropriately chosen constant d, we set h = 2ℓ/d, and set
f̂ : Fd

q → Fq to be a polynomial of individual degree h (and total degree hd) that coincides with f on a
“subcube” of size hd = 2ℓ of the qd inputs (see Figure 1 for a more formal description). In coding theoretic
terms, this means that the truth table of f̂ is a Reed-Muller encoding of the truth table of f . As in [TV00], we
choose a non-standard and huge alphabet size q, which will be exponential in n when proving Theorem 1.4.

The next step is to use “code concatenation” to obtain an m bit output. This concatenation is done using
the seeded-extractor SExt : {0, 1}log q × {0, 1}log q → {0, 1}m of the leftover hash lemma [ILL89] (see
precise statement in Theorem 3.10).12 The final PRG G(x) is obtained by thinking of x ∈ {0, 1}n as a pair
(w, y) ∈ Fd

q × {0, 1}log q and defining Ext(x) = SExt(f̂(w), y). A precise formal description appears in
Figure 1. We will prove the following theorem.

Theorem 2.3. [Multiplicative PRG] If E is hard for exponential size nondeterministic circuits, then there
exists a constant a ≥ 1 such that for every sufficiently large s, m ≤ s, and 1

2s ≤ ρ ≤ 1
s . The function

G : {0, 1}a·(m+log(1/ρ)) → {0, 1}m defined in Figure 1 is a seed-extending m∼( 1
s
,ρ)-PRG for nondeterministic

circuits of size s. Furthermore, G can be computed in time poly(s).

Theorem 1.4 follows directly from Lemma 2.2 and Theorem 2.3, the details appear in Section 4. Note that
in Theorem 2.3 the output length m is smaller than the input length. While this is suitable for our application,
this raises the question of whether PRGs with larger stretch are possible. See Section 6.3 for a discussion and
related results by Artemenko et al. [AIKS16].

In the remainder of this section we prove Theorem 2.3. That is, we will show that given a size s nonde-
terministic circuit D that breaks the PRG, we can construct a small nondeterministic circuit A that computes
f and contradicts the hardness assumption.

The main technical difficulty in this argument is that we want A to have size polynomial in s even though
1
ρ and q are not polynomial in s. This means that we cannot run list-decoding algorithms for the underlying

code, and this holds also if we restrict f̂ to a line in Fd
q (which corresponds to a Reed-Solomon code) as the

12Here there is a slight difference from previous work [TV00, AASY15, BGDM23] and we can use a seeded-extractor SExt,
whereas previous work required SExt to be a 2-source extractor (which is a stronger requirement).
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Figure 1: Construction of multiplicative PRG

Hardness assumption: We are assuming that E is hard for exponential size nondeterministic circuits. Namely, that
there exist constants 0 < β < 1 < B and a function f : {0, 1}∗ → {0, 1} such that:

Easiness: f is computable in time 2Bℓ on inputs of length ℓ.
Hardness: For every sufficiently large ℓ, nondeterministic circuits of size 2βℓ fail to compute f on inputs of

length ℓ.
Input parameters: We are given integers m ≤ s and ρ > 0, such that 1

2s ≤ ρ ≤ 1
s , and are assuming that s is

sufficiently large.
Goal: A seed-extending m∼( 1

s ,ρ)
-PRG for size s nondeterministic circuits, with output length m and seed length O(m+

log(1/ρ)).
Construction:

Low degree extension: Let c0, cq be sufficiently large universal constants that will be chosen in the proof. We set
h = s, d = c0

β , ℓ = d log h and q = 2m

ρcq . Let Fq be the field with q elements (we will be assuming that q is
a power of 2) and fix some set H ⊆ Fq of size h. Note that |Hd| = 2ℓ, and we can identify between {0, 1}ℓ
and Hd. We define f̂ : Fd

q → Fq be the “low degree extension” of f (a precise statement is given in Lemma
3.12). This is a polynomial of degree ĥ = hd such that for every x ∈ {0, 1}ℓ, f̂(x) = f(x) (where in the
l.h.s. we view x as element in Hd ⊆ Fd

q). We have that f̂ is computable in time poly(2Bℓ, log q) = poly(s).

Leftover hash lemma seeded extractor: Let ϵ = ρ
100s , and SExt : {0, 1}log q × {0, 1}log q → {0, 1}m be the

(m + 2 log(1/ϵ), ϵ)-strong seeded extractor of the “Leftover hash lemma” (formally specified in Theorem
3.10). Note that by choosing cq to be sufficiently large, we have that the log q > m+ 2 log(1/ϵ).

Construction of seed-extending PRG: We define G : {0, 1}(d+1) log q → {0, 1}m as follows: Given a seed
x ∈ {0, 1}(d+1) log q we interpret it as a pair (w, v) ∈ Fd

q × {0, 1}log q and define:

G(x) = SExt(f̂(w), v).

Note that by our choices, the seed length is (d + 1) log q = a · (m + log(1/ρ)), for some constant a that
depends only on β. Furthermore, G is computable in time 2B·ℓ+1 + poly(2ℓ, log q) = poly(s) (where the
exponent of the polynomial in s is a universal constant times B

β ).

line is of length q ≥ 1/ρ. Instead, following Trevisan and Vadhan [TV00] (who in turn attribute the idea to
Feige and Lund [FL97]) we will use nondeterminism to “speed up” such computation, so that it does run in
time poly(s). Our approach also builds on some of the improvements of Ball et al. [BGDM23] to reduce the
number of “levels of nondeterminism” used in the argument. The full proof appears in Section 2.3.1 below.

2.3.1 Proof of Theorem 2.3

Assume that G is not a seed-extending m∼( 1
s
,ρ)-PRG for nondeterministic circuits of size s. Let D : Fd

q ×
{0, 1}log q × {0, 1}m → {0, 1} be a size s nondeterministic circuit that breaks G. Throughout this proof we
will consider a probability space with the following independently chosen random variables:

W ← Fd
q , V ← {0, 1}log q, R← Um, T ← Fq \ {0} .

We define p1 = Pr[D(W,V,R) = 1] and p2 = Pr[D(W,V,SExt(f̂(W ), V )) = 1]. By the assumption that

D breaks G we have that p1
m
̸∼( 1

s
,ρ) p2, meaning that p2 > e

1
s · p1 + ρ.
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We will design a nondeterministic circuit A that computes f and contradicts the hardness assumption.
This will be done by using (a variant of) the celebrated list-decoding algorithm of Sudan, Trevisan and Vadhan
[STV01]. In this variant we will use “curves” instead of “lines” in a way that resembles the PRG of [SU05].
This will be simpler to analyze, and will produce a self contained proof.13

Definition 2.4 (Degree r curve passing through given r+1 points). For distinct r+1 elements t0, . . . , tr ∈ Fq

and (not necessarily distinct) y0, . . . , yr ∈ Fd
q we define C t0,...,tr

y0,...,yr

: Fq → Fd
q to be the unique degree r

polynomial such that for every 0 ≤ j ≤ r, C t0,...,tr
y0,...,yr

(tj) = yj .

The main technical lemma in the proof of Theorem 2.3 is the following lemma. It shows that for every
x ∈ Fd

q , there is a low-degree univariate polynomial p̂x such that p̂x(0) = f̂(x), and furthermore, there is a
specific test (specified in the lemma) that p̂x passes, but no other low degree polynomial does.

More specifically, the lemma shows that for some sufficiently large constant r, there exist t1, . . . , tr ∈
Fq \ {0} and y1, . . . , yr ∈ Fd

q , such that for every x ∈ Fd
q , if we define Cx = C 0,t1,...,tr

x,y1,...,yr

to be the degree r

curve passing through the points (0, x), (t1, y1), . . . , (tr, yr), then the polynomial p̂x = f̂ ◦Cx (which indeed
satisfies p̂x(0) = f̂(x)) is the only low-degree polynomial p such that Pr[D(Cx(T ), V, SExt(p(T ), V )) = 1]
is large. This is useful (as we will explain in detail below) as we aim to construct a nondeterministic circuit
and this circuit will guess a polynomial p, verify that it passes the test, and then we have that f̂(x) = p̂x(0).

Lemma 2.5. Let r = cr · d = cr·c0
β for a sufficiently large universal constant cr, let γ1 = p1 + 4ϵ, and

γ2 = p2− ϵ. There exist distinct t1, . . . , tr ∈ Fq \ {0} and y1, . . . , yr ∈ Fd
q such that for every x ∈ Fd

q , setting

Cx = C 0,t1,...,tr
x,y1,...,yr

, we have that γ2 > e
1
4s · γ1, and furthermore:

The correct polynomial passes: For the degree ĥ · r polynomial p̂x : Fq → Fq defined by p̂x = f̂ ◦ Cx, we
have that for every j ∈ [r], p̂x(tj) = f̂(yj), p̂x(0) = f̂(x) and

Pr[D(Cx(T ), V, SExt(p̂x(T ), V )) = 1] ≥ γ2.

No incorrect polynomial passes: For every degree ĥ · r polynomial p : Fq → Fq such that p ̸= p̂x, that
satisfies that for every j ∈ [r], p(tj) = f̂(yj), we have that

Pr[D(Cx(T ), V, SExt(p(T ), V )) = 1] ≤ γ1.

Showing that Theorem 2.3 follows from Lemma 2.5. We will use the conclusion of Lemma 2.5 to con-
tradict the hardness assumption, and show that there is a nondeterministic circuit A of size 2βℓ that computes
f . The circuit A will be hardwired with γ1, γ2, t1, . . . , tr, y1, . . . , yr and f̂(y1), . . . , f̂(yr). Given input
x ∈ {0, 1}ℓ (which we can think of as x ∈ Fd

q ⊆ Hd so that it is an input to f̂ ) the nondeterministic circuit A
will guess a polynomial p : Fq → Fq of degree ĥ · r, (by guessing its coefficients) and do the following:

• Verify that for every j ∈ [r], p(tj) = f̂(yj).
• Construct the nondeterministic circuit Dx(t, i) = D(Cx(t), i,SExt(p(t), i)), which is of size poly(s, log q).
• Goldwasser and Sipser [GS86] showed that there is an AM-protocol that given a circuit C of size
s and γ2 > e1/s · γ1 solves the promise problem of distinguishing whether Pr[C(Un) = 1] ≥ γ2 or

13The argument of [STV01] requires an additional step of “self correction”, and in our setting, showing that this step can be
performed by a nondeterministic circuit (rather than a Σ1-circuit) requires repeating the self-correction argument. Moreover, the
argument we present here is arguably simpler and more direct than that used in [STV01, TV00]. It should be noted however, that our
argument gives slightly inferior parameters as a list-decoding algorithm, but this difference is immaterial when proving Theorem 2.3.
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Pr[C(Un) = 1] ≤ γ1. It is standard that this protocol extends to the case where C is nondeterministic.14

Using Adleman’s argument that AM ⊆ NP/poly, our size poly(s) nondeterministic circuit A, can
indeed verify that Pr[Dx(T, V ) = 1] ≥ γ2.

• If all verification steps pass, then A outputs p(0).

Overall, using Lemma 2.5, this gives a nondeterministic circuit A that computes f .15 This circuit is of
size poly(s, log q) = sc0 for some universal constant c0, and we have that sc0 = hdβ = 2βℓ as required.

2.3.2 Proof of Lemma 2.5

A calculation gives γ2 > e
1
4s · γ1. Specifically, let η = 1

s , and recall that p2 > eη · p1 + ρ > max(ρ, eη · p1),
implying ϵ = ρη

100 ≤
p2η
100 . Using that ∀x ∈ [0, 1], 1 + x ≤ ex ≤ 1 + 3x and 1− x ≤ e−x ≤ 1− x/3, we get:

γ2
γ1

=
p2 − ϵ

p1 + 4ϵ
>

p2 − p2η
100

p2 · e−η + 4p2η
100

=
p2 · (1− η

100)

p2 · (e−η + 4η
100)

≥ e−
3η
100

1− η
3 + 4η

100

≥ e−
3η
100

e−(
η
3
− 4η

100
)
= e

η
3
− 4η

100
− 3η

100 > e
η
4 .

We will use the probabilistic method to show the existence of t1, . . . , tr and y1, . . . yr. For this purpose we
consider a probability space in which we choose y1, . . . , yr ← Fd

q and distinct t1, . . . , tr ← Fq \ {0}. For
every x ∈ Fd

q we define (the random variable) Cx = C 0,t1,...,tr
x,y1,...,yr

. It is standard that the random variables

(Cx(t))t̸=0 are r-wise independent.16 Lemma 2.5 follows from the following claim by a union bound over
the qd choices of x ∈ Fd

q .

Claim 2.6. For every x ∈ Fd
q , except for probability 1

5qd
over the choice of t1, . . . , tr, y1, . . . , yr we have that

p̂x = f̂ ◦ Cx satisfies:

• For every j ∈ [r], p̂x(tj) = f̂(yj), and Pr[D(Cx(T ), V, SExt(p̂x(T ), V )) = 1] ≥ γ2.
• For every degree ĥ · r polynomial p ̸= p̂x such that Pr[D(Cx(T ), V, SExt(p(T ), V )) = 1] > γ1, there

exists a j ∈ [r] such that p(tj) ̸= f̂(yj),

Proof of Claim 2.6. By a standard application of an r-wise independent tail inequality [BR94] we get that
for every x ∈ Fd

q , the values p1 = Pr[D(W,V,R) = 1] and p2 = Pr[D(W,V, SExt(f̂(W ), V )) = 1] (which
are probabilities over the choice W ← Fd

q) are approximated by values px,1, px,2 (which are defined below by
replacing W with Cx(T ) for T ← Fq \ {0}). This is stated formally in the next claim.

Claim 2.7 (Sampling preserves p1 and p2). For every x ∈ Fd
q , except for probability 1

10qd
over the choice of

t1, . . . , tr, y1, . . . , yr we have that:
• px,1 = Pr[D(Cx(T ), V,R) = 1] ≤ p1 + ϵ, and
• px,2 = Pr[D(Cx(T ), V, SExt(f̂(Cx(T )), V )) = 1] ≥ p2 − ϵ = γ2 > γ1.

14This follows as the AM protocol of Goldwasser and Sipser [GS86] works in the framework of “constant round” AM-protocols,
which allows Merlin to speak many times, and such protocols are later collapsed to a 2-message public coin AM protocol. See precise
statement in Section 3.8.

15In fact, the circuit that we construct is a “single-valued nondeterministic circuit”. This means that on every input x there is an
accepting nondeterministic guess that outputs f(x), and there does not exist an accepting nondeterministic guess that outputs a value
different than f(x).

16Note that this holds even though one of the points on the curve (specifically Cx(0)) is fixed to x, and is not random. Indeed this
is where we can see the advantage of using curves over lines, as they give us r-wise independence, even when some points are fixed.
Another advantage is that by increasing r, we get more independence, which allows us to use stronger tail inequalities.
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The proof of Claim 2.7 follows by a straightforward application of the r-wise independent tail inequality
of [BR94] (stated in Theorem 3.15). The calculation appears in Section 4.5.

We continue with the proof of Claim 2.6. Fix some x ∈ Fd
q . By Claim 2.7 with probability 1 − 1

10qd
of

the choices of t1, . . . , tr and y1, . . . , yr we have that px,1 ≤ p1 + ϵ and px,2 ≥ p2 − ϵ. Fix some specific
choice of t1, . . . , tr which satisfies this condition. We define Listx to be the set of all degree ĥ · r polynomials
p : Fq → Fq such that Pr[D(Cx(T ), V, SExt(p(T ), V )) = 1] > γ1. We have seen that p̂x = f̂ ◦ Cx ∈ Listx.
For every polynomial p ∈ Listx we have that:

Pr[D(Cx(T ), V, SExt(p(T ), V )) = 1]−Pr[D(Cx(T ), V,R) = 1] > γ1− px,1 > (p1 +4ϵ)− (p1 + ϵ) = 3ϵ.

As T is uniform over Fq \{0} and independent of (V,R), by an averaging argument, it follows that there exist
a subset Vx,p ⊆ Fq \ {0} of size ϵ(q − 1) such that for every t ∈ Vx,p, we have that:

Pr[D(Cx(t), V, SExt(p(t), V )) = 1]− Pr[D(Cx(t), V,R) = 1] > 2ϵ.

For every t ∈ Fq \ {0} we define:

Listx,t = {a : Pr[D(Cx(t), V, SExt(a, V )) = 1]− Pr[D(Cx(t), V,R) = 1] > ϵ} ,

so that for t ∈ Vx,p, we have that p(t) ∈ Listx,t. As SExt is a (k, ϵ)-strong extractor for k = m+ 2 log(1/ϵ),
we have that for every t ∈ Fq \{0}, |Listx,t| ≤ 2k (as otherwise the uniform distribution on Listx,t violates the
guarantee of strong extractors (see Definition 3.9) with respect to the distinguisher Dt(i, z) = D(Cx(t), i, z)).

We have the setup of the celebrated Reed-Solomon list-decoding algorithm of Sudan [Sud97] (stated
formally in Theorem 3.8). More precisely, there are prs = (q − 1) · 2k points (namely, all pairs (t, y) for
t ∈ Fq \{0} and y ∈ Listx,t) such that every degree deg = ĥ · r polynomial p ∈ Listx, p passes through agr =

ϵ · (q − 1) of the points. By Sudan’s theorem, if agr >
√
2 · prs · deg then |Listx| ≤ 2prs

agr = 2·2k
ϵ = 2m+1

ϵ3
.17

The requirement on prs translates to q − 1 > 2·2m·ĥ·r
ϵ3

. Recall that ĥ = h · d ≤ s2, r ≤ s, ϵ = ρ
100·s , and we

have that s ≤ 1
ρ . We choose the constant cq to be sufficiently large so that q = 2m

ρcq satisfies the requirement.

Using that (t1, . . . , tr) and Cx are independent to trim the list. We observe that for every x ∈ Fd
q ,

in the probability space of choosing t1, . . . , tr and y1, . . . , yr, the random variables px,1, px,2 and Listx de-
pend only on the “shape” of the curve Cx. More formally, px,1, px,2 and Listx are determined by the set
{(t, Cx(t)) : t ∈ Fq} which is determined by the polynomial Cx. However, for every specific fixing of the
polynomial Cx, every choice of distinct values for t1, . . . , tr ∈ Fq \ {0} is still possible, and equally likely.
More formally, this says that the random variable Cx is independent of the random variable (t1, . . . , tr)).

Consider conditioning the probability space of choosing t1, . . . , tr and y1, . . . , yr, on a specific fixing of
Cx, such that px,1 ≤ p1 + ϵ and px,2 ≥ p2 − ϵ. By Claim 2.7 such a fixing occurs with probability 1− 1

10qd
.

We’ve seen that Listx is fixed, and yet (t1, . . . , tr) are distributed like t random distinct values in Fq \ {0}.
We also have that p̂x ∈ Listx, and that for every j ∈ [r], p̂x(tj) = f̂(Cx(tj)) = f̂(yj). Every p ∈ Listx that
is different from p̂x agrees with p̂x in at most ĥ · r elements. Therefore, the probability (in this conditioned
probability space) that p and p̂x agree on the (still random) t1, . . . , tr is at most

(
ĥ·r
q−1

)r
≤ 1

10qd
. The last

inequality follows as ĥ · r = hdr = s · cr · d2 ≤ s3 ≤ 1
ρ3

and by taking the constant cq to be sufficiently large,

we have that for q = 2m

ρcq ,
(

ĥ·r
q−1

)r
≤

(
1√
q

)cr·d
≤ 1

10qd
by choosing the constant cr to be sufficiently large.

Overall, we have that except for probability 1
10qd

+ 1
10qd

= 1
5qd

over the choice of t1, . . . , tr and y1, . . . , yr,

Pr[D(Cx(T ), V, SExt(p̂x(T ), V )) = 1] ≥ γ2 and for every degree ĥ · r polynomial p ̸= p̂x such that
Pr[D(Cx(T ), V, SExt(p(T ), V )) = 1] > γ1, there exist j ∈ [r] such that p(tj) ̸= p̂x(tj) = f̂(yj).

17Note that here (similar to [TV00, BGDM23] and in contrast to [STV01]) we only use combinatorial list-decoding, and do not
rely on the efficiency of Sudan’s algorithm, and we could have used a combinatorial list-decoding result like the Johnson bound.
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Paper Organization

In Section 3 we review some of the definitions and components used in this paper. In Section 4 we restate
Lemma 2.2 in a more general way, and use it (together with Theorem 2.3) to prove the two main theorems
(Theorems 1.4 and 1.5). In Section 5 we give the formal statements of the results described in Section 1.3.2
on consequences of extractors for samplable distributions, and elaborate on our interpretation of these results.
Finally, in Section 6 we discuss open problems.

3 Preliminaries

Probabilistic notation: For a distribution D, we use the notation X ← D to denote the experiment in
which X is chosen according to D. For a set A, we use X ← A to denote the experiment in which X is
chosen uniformly from the set A. We often also identify a distribution X , with the random variable X chosen
from this distributions. For a random variable X and an event A we use (X|A) to denote the distribution
which chooses an element according to X , conditioned on A. We use Un to be the uniform distribution on n
elements.

Relations from the introduction. For completeness, we repeat the definition of the various relations defined
in the Section 1.

Definition 3.1 (Definitions of relations from Section 1). Given numbers p1, p2, ϵ, δ ∈ [0, 1], we define the
following relations:

p1
ad∼ϵ p2 ⇐⇒ |p2 − p1| ≤ ϵ.

p1
a∼ϵ p2 ⇐⇒ p2 ≤ p1 + ϵ.

p1
m∼ϵ p2 ⇐⇒ p2 ≤ eϵ · p1.

p1
m∼(ϵ,δ) p2 ⇐⇒ p2 ≤ eϵ · p1 + δ.

p1
md∼ ϵ p2 ⇐⇒ p1

m∼ϵ p1 and p2
m∼ϵ p1.

Note that while some of these relations (e.g. m∼ϵ) are interesting for ϵ > 1, in this paper we will always
have that 0 ≤ ϵ ≤ 1 so that 1 + ϵ ≤ eϵ ≤ 1 + 3ϵ, and 1 − ϵ ≤ e−ϵ ≤ 1 − ϵ

3 . We will use these inequalities
throughout this paper.

3.1 Samplable Distributions and Postselection

Samplable distributions. We use the following standard definition of samplable distributions. In the defi-
nition below, we will typically be interested in the case where C is the class of functions computable by size
nc circuits for a constant parameter c.

Definition 3.2 (Samplable distributions). We say that a distribution X over {0, 1}n is sampled by a function
A : {0, 1}r → {0, 1}n, if X = A(Ur). Let C be a class of functions. A distribution X over {0, 1}n is
samplable by A, if there exists a function A : {0, 1}r → {0, 1}n in the class A such that X is sampled by A.
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Samplable distributions with postselection. Ball et al. [BGDM23] consider a more general class which
allows the sampling circuit to perform “postselection”. More specifically, given a “sampling procedure”
A : {0, 1}r → {0, 1}n and a “postselection” procedure P : {0, 1}r → {0, 1}, we will say that the distribution
sampled by the pair (A,P ) is the distribution X over {0, 1}n obtained by taking Y ← Ur and setting X =
(A(Y )|P (Y ) = 1). A formal definition appears below.

Definition 3.3 (Samplable distributions with postselection). We say that a distribution X over {0, 1}n is sam-
pled by a function A : {0, 1}r → {0, 1}n with postselection by P : {0, 1}n → {0, 1}, if X = (A(Y )|P (Y ) =
1) for Y ← Ur. Let A and P be classes of functions. A distribution X over {0, 1}n is samplable by C with
postselection by P if there exists a function A : {0, 1}r → {0, 1}n in the class A, and P : {0, 1}r → {0, 1}
in the class P such that X is sampled by A with postselection by P . In the case that A and P coincide, we
will say that X is samplable with postselection by A.

Following Ball et al. [BGDM23] we are interested in distributions that are samplable with postselection
by size s = nc circuits. Obviously, every distribution that is samplable by circuits of size s is also samplable
with postselection by circuits of size s. However, sampling with postelection allows conditioning on events
{Y : P (Y ) = 1} ⊆ {0, 1}r that occur with low probability, and seems to give a richer class of distribution.

Distributions samplable by deterministic circuits with postselection by nondeterministic circuits. The
reason that we allow the class A (of sampling circuits) to be different than the class P (of postselecting cir-
cuits) is that we want to consider the yet richer class of distributions that are samplable by size s (deterministic)
circuits with postselection by size s nondeterministic circuits. See discussion in Section 4 and Section 5.

Recognizable distributions. Distributions that are Samplable with postselection can also be seen as a
generalization of the notion of “recognizable distribution” defined by Shaltiel [Sha09], see also [KvMS09,
AASY15, LZ19, SS24], which in this terminology is the special case of distribution samplable with postse-
lection, but restricted to the case that the sampling circuit A is the identity function (so that A(Un) samples
the uniform distribution on n bits).

3.2 Definition of Circuits of Various Types

We formally define the circuit types that will be used in this paper.

Definition 3.4 (randomized circuits, nondeterministic circuits, oracle circuits and Σi-circuits). A randomized
circuit C has additional wires that are instantiated with uniform and independent bits.

A nondeterministic circuit C has additional “nondeterministic input wires”. We say that the circuit C
evaluates to 1 on x iff there exist an assignment to the nondeterministic input wires that makes C output 1
on x.

An oracle circuit C(·) is a circuit which in addition to the standard gates uses an additional gate (which
may have large fan in). When instantiated with a specific boolean function A, CA is the circuit in which the
additional gate is A. Given a boolean function A(x), an A-circuit is a circuit that is allowed to use A gates
(in addition to the standard gates). An A||-circuit is a circuit that makes nonadaptive queries to its oracle A.
(Namely, on every path from input to output, there is at most a single A gate).

An NP-circuit is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where
A is the canonical ΣP

i -complete language. The size of all circuits is the total number of wires and gates.18

18An alternative approach to define these circuit classes is using the Karp-Lipton notation for Turing machines with advice. For
s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic circuit is equivalent to
NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to
DTIMEΣP

i (sΘ(1))/sΘ(1).
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3.3 Hardness Assumptions

We will rely on assumptions of the following form, introduced by Impagliazzo and Wigderson [IW97]

Definition 3.5 (E is hard for exponential size circuits). We say that “E is hard for exponential size circuits
of type X” if there exist constants 0 < β < B, and a language L in E = DTIME(2B·n), such that for every
sufficiently large n, the characteristic function of L on inputs of length n is hard for circuits of size 2βn of
type X.

We will also consider functions that are hard on average.

Definition 3.6 (average-case hard functions). We say that a function f : {0, 1}m → {0, 1}m′
is ϵ-hard for a

class C, if for every C ∈ C, such that C : {0, 1}m → {0, 1}m′
,

Pr
X←Um

[C(X) = f(X)] < ϵ.

We say that f is hard for C if f is 1-hard for C.

3.4 Averaging Arguments for Multiplicative Relations

In the standard setup of pseudorandomness (that is w.r.t. a∼ϵ) we have that if a randomized circuit D dis-
tinguishes the output of some G : {0, 1}r → {0, 1}m from uniform, in the sense that Pr[D(Um) = 1] ̸ a∼ϵ

Pr[D(G(Ur)) = 1], then there exists a fixing to the random coins of D, such that the non-randomized circuit
obtained by employing this fixing also distinguishes.

The next lemma states that this property also holds for pseudorandomness w.r.t. m∼(ϵ,δ).

Lemma 3.7. Let G : {0, 1}r → {0, 1}m be a function, and let D be a randomized circuit. If Pr[D(Um) =
1] ̸m∼(ϵ,δ) Pr[D(G(Ur)) = 1], then there exists a fixing to the random coins of D such that the obtained
(non-randomized) circuit D′ satisfies Pr[D(Um) = 1] ̸m∼(ϵ,δ) Pr[D(G(Ur)) = 1].

Proof. Let D(x, y) denote the output of D on input x and random coins y, and let:

p1 = Pr[D(Um) = 1] = Ey[Pr[D(Um, y) = 1]].

p2 = Pr[D(G(Ur)) = 1] = Ey[Pr[D(G(Ur), y) = 1]].

We have that p2 > eϵ · p1 + δ. If there does not exists a fixing y′ such that

Pr[D(G(Ur)), y
′) = 1] > eϵ · Pr[D(Um, y′) = 1] + δ,

then

p2 − p1 = Ey[Pr[D(G(Ur), y) = 1]− Pr[D(Um, y) = 1]]

≤ Ey[Pr[D(Um, y) = 1] · (eϵ − 1) + δ]

= (eϵ − 1) · Ey[Pr[D(Um, y) = 1]] + δ

= (eϵ − 1) · p1 + δ,

which implies the contradiction p2 ≤ eϵ · p1 + δ.
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3.5 Sudan’s List-Decoding Algorithm

We will rely on Sudan’s celebrated list-decoding algorithm for the Reed-Solomon code [Sud97].

Theorem 3.8 (Sudan’s list-decoding algorithm [Sud97]). Let prs, agr, deg be integers. Given prs distinct
pairs (xi, yi) in field F with agr >

√
2 · deg · prs, there are at most 2prs/agr polynomials g of degree deg

such that g(xi) = yi for at least agr pairs. Furthermore, a list of all such polynomials can be computed in
time poly(prs, log |F |).

We remark that in this paper (as in the previous work [TV00, BGDM23]) we will rely only existence of
small lists, and do not use the efficiency of list-decoding algorithm.

3.6 Seeded Extractors

We use the following standard definition of seeded extractors. We remark that in many cases these are called
“extractors” and this paper we use the term “seeded extractor” to differentiate them from seedless extractors.

Definition 3.9 (Seeded extractors). A function SExt : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ϵ)-seeded extractor
if for every distribution X over {0, 1}n, with H∞(X) ≥ k, SExt(X) is ϵ-close to Um.

SExt is a strong (k, ϵ)-seeded extractor if the function SExt′ : {0, 1}n × {0, 1}d → {0, 1}d+m defined by
SExt′(x, y) = (y,SExt(x, y)) is a (k, ϵ)-seeded extractor.

We use the following result known as the “leftover hash lemma” by Impagliazzo, Levin and Luby [ILL89]

Theorem 3.10 (Leftover hash lemma [ILL89]). For every integers m ≤ n, and ϵ > 0, there is a (m +
2 log(1/ϵ), ϵ)-strong extractor SExt : {0, 1}n × {0, 1}n → {0, 1}m. Furthermore, SExt can be computed in
time poly(n).

We remark that in some sources this lemma is stated with d = 2n rather than d = n, but the statement
also holds for d = n (as stated above).

We also use the following result by Guruswami, Umans and Vadhan [GUV07].

Theorem 3.11 ([GUV07]). For every constant α > 0, and for every k ≤ n and ϵ > 0, there is a (k, ϵ)-seeded
extractor SExt : {0, 1}n×{0, 1}d → {0, 1}m for d = O(log n+log(1/ϵ)) and m = (1−α)k. Furthermore,
SExt can be computed in time poly(n).

3.7 The Low Degree Extension

Many results in complexity theory and derandomization rely on the low-degree extension. Loosely speaking,
this is a technique to extend a given function f : {0, 1}ℓ → {0, 1} to a low-degree d-variate polynomial
f̂ : Fd

q → Fq. The standard precise statement is given below.

Lemma 3.12. Let f : {0, 1}ℓ → {0, 1} be a function and d ≤ h ≤ q be integers such that hd ≥ 2ℓ and q is
a power of 2. Given H ⊆ Fq of size h, and a one-to-one map ϕ : {0, 1}ℓ → Hd, there is a degree ĥ = h · d
polynomial f̂ : Fd

q → F such that for every x ∈ {0, 1}ℓ, f(x) = f̂(ϕ(x)). Furthermore, f̂ can be computed
in time poly(2ℓ, log q) given oracle access to f .
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3.8 The Goldwasser-Sipser AM Protocol and Consequences

A classical result by Goldwasser and Sipser [GS86] shows that there is an AM protocol for showing that
the fraction of accepting inputs of a given circuit is above some threshold. The same approach translates
immediately to the case where the given circuit is nondeterministic (rather than deterministic). Below is a
formal definition.

Definition 3.13 (The nondeterministic large set promise problem). Given λ > 0, we define a promise problem
NondetLargeλ over pairs (C, γ) where C is a nondeterministic circuit, and 0 ≤ γ ≤ 1.

• The Yes instances are pairs (C, γ) such that C accepts at least a γ-fraction of its inputs.

• The No instances are pairs (C, γ) such that C accepts less than a γ · e−λ-fraction of its inputs.

Note that a circuit C of size s can have at most s input bits. Throughout the paper we will always assume
w.l.o.g. that C has s input bits (and may ignore some of them). We also note that because the number of
possible inputs to C is at most 2s, we can always assume that the number of bits needed to represent γ is at
most s (which implies that the input to the promise problem is of length that is dominated by the length of the
description of C, which is O(s log s)).

Theorem 3.14 (Goldwasser and Sipser [GS86]). For every integer s and λ > 0, there is a nondeterministic
circuit A of size poly(s, 1

λ) which solves the promise problem NondetLargeλ.

Theorem 3.14 is stated in a somewhat nonstandard way. The more standard formulation discusses deter-
ministic circuits C, and gives an AM protocol that solves the promise problem. However, the same result
immediately applies to nondeterministic circuits. This is because in the Goldwasser-Sipser AM protocol,
Merlin sends inputs x to C on which C(x) = 1, and if C is nondeterministic, whenever Merlin sends an
x, he can also supply a witness showing that C(x) = 1. This gives an AM-protocol with time poly(s, 1

λ)
for NondetLargeλ, and the result in the theorem follows because one can transform an AM-protocol into a
nondeterministic circuits, as in the proof that AM ⊆ NP/poly.

3.9 An r-wise Independent Tail Inequality

We need the following tail inequality by Bellare and Rompel [BR94].

Theorem 3.15 (r-wise independent tail inequality [BR94]). Let r > 4 be an even integer. Suppose X1, X2, . . . , Xn

are r-wise independent random variables taking values in [0, 1]. Let X =
∑

Xi, µ = E[X] and A > 0. Then:

Pr[|X − µ| ≥ A] ≤ 8 ·
(
rµ+ r2

A2

)r/2

.

In particular, if r ≤ n, setting A = ϵn, for some ϵ > 0, it follows that:

Pr[|X − µ| ≥ ϵn] ≤ 8 ·
(

2r

ϵ2n

)r/2

.

4 Constructions of Multiplicative Extractors for Samplable Distributions

In this section we prove our main theorems (Theorem 1.4 and Theorem 1.5). We start by restating the two
theorems for the richer class of distributions samplable by deterministic circuits with postselection by nonde-
terministic circuits.
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Remark 4.1 (Distributions samplable by deterministic circuits with postselection). As we explained in the
introduction, Ball et al. [BGDM23] obtained extractors not only for distributions samplable by (deterministic)
circuits, but also for the richer class of distributions samplable with postselection by deterministic circuits.

In fact, their approach also immediately extends to distributions samplable by deterministic circuits with
postselection by nondeterministic circuits. This is also the case for our results stated in Theorem 4.2 and
4.3. In all cases, handling this richer class of distributions requires no extra effort, and is immediate from the
proof. See Remark 4.6.

The reason that we find this interesting is that (as explained in Section 1.3.2) extractors for this richer
class of distributions imply lower bounds against nondeterministic circuits. This observation shows that
hardness assumptions against nondeterministic circuits cannot be avoided as long as we use proof techniques
that immediately give extractors against the richer class of distributions samplable by deterministic circuits
with postselection by nondeterministic circuits. See Section 5 for a discussion.

Theorem 4.2 (Multiplicative extractors for samplable distributions). If E is hard for exponential size non-
deterministic circuits then there exists a constant α > 0, such that for every constant c > 1, and for every
sufficiently large n, there is a function Ext : {0, 1}n → {0, 1}αn that is a ((1 − α) · n, m∼ϵ)-extractor for
distributions samplable by deterministic circuits of size nc with postselection by nondeterministic circuits of
size nc, where ϵ = n−c. Furthermore, Ext is computable in time poly(nc).

Theorem 4.3 (Multiplicative extractors with larger output length). If E is hard for exponential size nonde-
terministic circuits then for every sufficiently small constant γ > 0, every constant c > 1, and for every
sufficiently large n, there is a function Ext : {0, 1}n → {0, 1}(1−O(γ))·n that is a ((1−γ) ·n, m∼(ϵ,δ))-extractor
for distributions samplable by deterministic circuits of size nc with postselection by nondeterministic circuits
of size nc, where ϵ = n−c and δ = 2−Ω(γ·n). Furthermore, Ext is computable in time poly(nc).

Remark 4.4 (About the constants in Theorems 4.2 and 4.3). The assumption that E is hard for exponential
size nondeterministic circuits (defined in Assumption 3.5) asserts the existence of two constants β,B. Some
of the constants in Theorems 4.2 and 4.3 depend on β and B. We now list the precise dependence.

• The polynomial specified by the poly(nc) term in both theorems depends on both β and B, and in both

cases the extractor runs in time n
O(c·B

β
).

• The constant α in Theorem 4.2 and the constant hidden in the O(γ) term in Theorem 4.3 depend on the
constant β, but not on B. In both cases the dependence is of the form O( 1β ).

• The constant hidden in the Ω(γ · n) in Theorem 4.3 is a universal constant.

Outline for this section. In Section 4.1 we show that multiplicative PRGs yield extractors. More specifi-
cally, we restate Lemma 2.2 in a more general way, and prove it. In Section 4.2 we use Lemma 2.2 to derive
Theorem 4.2 from the multiplicative PRG construction of Theorem 2.3. In Section 4.3 we observe that one
can compose a seeded extractor with a multiplicative extractor for samplable distributions and obtain a multi-
plicative extractor, and in Section 4.4 we use this composition to derive Theorem 4.3 from Theorem 4.2 and
known seeded extractors. Finally in Section 4.5 we provide a proof of Claim 2.7.

4.1 Multiplicative Seed-Extending PRGs imply Multiplicative Extractors

The following lemma generalizes Lemma 2.2 and shows that a multiplicative extractor (with the same pa-
rameters as stated in Lemma 2.2) yields an extractor not only for distributions samplable with postselection
ny deterministic circuits, but also to the richer class of distribution samplable by deterministic circuits with
postselection by nondeterministic circuits.
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Lemma 4.5. For every ϵ > 0 and ∆ > 0, if G : {0, 1}n → {0, 1}m is a seed-extending m∼(ϵ,ρ)-PRG for
nondeterministic circuits of size s ≥ n ≥ m, where ρ = ϵ

2m+∆ , then G is an (n − ∆,
m∼12ϵ)-extractor for

distributions samplable by deterministic circuits of size s′ = (sϵ)Ω(1) with postselection by nondeterministic
circuits of size s′.

The proof below generalizes the argument sketched in Section 2. The technique is inspired by results by
Kinne et al. [KvMS09] and Shaltiel and Silbak [SS24] (that show that PRGs with sufficiently low (additive)
error for deterministic circuits imply extractors for distributions recognizable by deterministic circuits). Here,
we adapt the argument to handle the case where the PRG is multiplicative and fools nondeterministic circuits,
and want to obtain an extractor for distributions samplable by deterministic circuits. This presents more
complications (partly because classes of languages accepted by nondeterministic circuits are not closed under
complement). We also remark that Li and Zuckerman [LZ19] gave a quantitatively better version of the result
of [KvMS09], and while we believe that it may be possible to adapt the (more complicated) proof of Li and
Zuckerman to this setting, this will not result in improvements in the parameters of the final extractor.

Proof. (of Lemma 4.5) Let W be a distribution over {0, 1}n with H∞(W ) ≥ n−∆ that is sampled by a size s′

circuit A : {0, 1}s′ → {0, 1}n, with postselection by a size s′ nondeterministic circuit P : {0, 1}s′ → {0, 1}.
If G is not a extractor for W w.r.t m∼η for η = 12ϵ, then there exists z ∈ {0, 1}m, such that for p1 =

Pr[Um = z] = 2−m, and p2 = Pr[G(W ) = z], we have that p1
m
̸∼η p2, meaning that p2 > eη · p1 = eη · 2−m.

We will show that there exists a size s nondeterministic circuit D : {0, 1}n+m → {0, 1} that breaks the
seed-extending PRG. We will start by designing a randomized nondeterministic circuit Dλ : {0, 1}n+m →
{0, 1}, which will also rely on a parameter 0 ≤ λ ≤ 1. Later on, we will choose the parameter λ appropriately,
and use an averaging argument to convert the randomized nondeterministic circuit, into a non-randomized
nondeterministic circuit. The description of Dλ appears in Figure 2.

Figure 2: The distinguisher Dλ : {0, 1}n+m → {0, 1}
We first describe a randomized nondeterministic circuit Bλ : {0, 1}n → {0, 1} (that will be used as a component
Dλ). The circuit Bλ(x) works as follows:

• Given x ∈ {0, 1}n, we prepare a nondeterministic circuit Cx that is defined as follows: On input v ∈ {0, 1}s′ ,
Cx will run A(v), and output one iff A(v) = x and P (v) = 1.
Consequently, for every x ∈ {0, 1}n, Pr[Cx(Us′) = 1] = Pr[W = x].

• Pick a uniform α← [0, 1].
• Let τ = 2−(n−∆), so that by the min-entropy requirement on W , Pr[Cx(Us′) = 1] = Pr[W = x] ≤ τ . By

Theorem 3.14 there is a circuit Aλ of size poly(s′, 1
λ ) which solves the promise problem NondetLargeλ on

input (Cx, α · τ).
• Output Aλ(Cx, α · τ).

The randomized nondeterministic circuit Dλ(x, y) is hardwired with the string z ∈ {0, 1}m, and works as follows:

• Given x ∈ {0, 1}n, and y ∈ {0, 1}m, output one iff Bλ(x) = 1 and y = z.

By Theorem 3.14, for every λ > 0, Dλ is a nondeterministic circuit of size poly(s′, 1
λ). We will first ana-

lyze the case where λ = 0 (namely, the case in which A solves NondetLarge0, meaning that A is “errorless”,
and such an A may have exponential size). Later, we will show that the analysis also applies with small losses
for λ = O(ϵ).

Note that for λ = 0, the circuit B0(x) answers one iff Pr[W = x] ≥ α · τ . In other words, B0(x) is
a randomized nondeterministic circuit that outputs a random bit that is one with probability Pr[W=x]

τ . For
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X ← Un we conclude that:

Pr[B0(X) = 1] =
∑

x∈{0,1}n
Pr[X = x ∧B0(x) = 1] =

∑
x∈{0,1}n

2−n · Pr[W = x]

τ
=

2−n

τ
= 2−∆.

which implies that:

Pr[X = x|B0(X) = 1] =
Pr[X = x ∧B0(X) = 1]

Pr[B0(X) = 1]
=

Pr[X = x ∧B0(x) = 1]

2−∆
=

2−n · Pr[W=x]
τ

2−∆
= Pr[W = x],

which gives that the distribution (X|B0(X) = 1) is distributed precisely like W .
We will use this to show that D0 breaks the PRG G. More specifically, we consider X ← Un and

Y ← Um and define: p
(λ)
1 = Pr[Dλ(X,Y ) = 1] and p

(λ)
2 = Pr[Dλ(X,G(X)) = 1]. We will start by

showing that p(0)1

m
̸∼η p

(0)
2 .

p
(0)
1 = Pr[D0(X,Y ) = 1] = Pr[B0(X) = 1 ∧ Y = z] = Pr[B0(X) = 1] · Pr[Y = z] = 2−∆ · 2−m.

p
(0)
2 = Pr[D0(X,G(X)) = 1] = Pr[B0(X) = 1 ∧G(X) = z] = Pr[B0(X) = 1] · Pr[G(X) = z|B0(X) = 1].

Using the fact that (X|B0(X) = 1) is distributed like W , we conclude that:

p
(0)
2 = Pr[B0(X) = 1] · Pr[G(X) = z|B0(X) = 1] = 2−∆ · Pr[G(W ) = z] = 2−∆ · p2 > eη · 2−∆ · 2−m.

This means that p(0)1

m
̸∼η p

(0)
2 . However, for λ = 0 we do not control the size of the circuit Dλ. Therefore, we

will try to argue that approximately the same inequality holds for small λ > 0. Indeed, by the definition of
Dλ, it immediately follows that for every 0 ≤ λ ≤ 1 and every x ∈ {0, 1}n and y ∈ {0, 1}m,

PrDλ(x, y) = 1] ≤ Pr[D0(x, y) = 1] ≤ eλ · PrDλ(x, y) = 1].

This implies that if we set µ = 2−(m+∆), for every 0 ≤ λ ≤ 1

p
(λ)
1 ≤ p

(0)
1 = 2−(m+∆) = µ.

p
(λ)
2 ≥ p

(0)
2 · e

−λ > eη−λ · 2−(m+∆) = eη−λ · µ,

meaning that setting λ = η/2, we have that p(λ)1

m
̸∼ η

2
p
(λ)
2 , and for ρ = ϵ

2m+∆ ≤ ηµ
4 we have that

p
(λ)
2 > e

η
2 · µ ≥ (1 +

η

2
) · µ = (1 +

η

4
) · µ+

η

4
· µ ≥ e

η
12 · µ+ ρ = eϵ · p(λ)1 + ρ,

giving that p(λ)1

m
̸∼(ϵ,ρ) p

(λ)
2 , as required. We have obtained that Dλ breaks the PRG. We now turn to analyzing

the complexity of Dλ. For λ = η/2 = 6ϵ, the size of the randomized nondeterministic circuit Dλ is s =
poly(s′, 1ϵ ). By Lemma 3.7 the coins of this randomized nondeterministic circuit can be fixed to yield a
(non-randomized) nondeterministic of the same size.

Remark 4.6. We remark that in the proof above, no additional effort was needed to argue that the extractor
works not only for samplable distributions, but also for distribution samplable by deterministic circuits with
postselection by nondeterministic circuits. The only place where this came up, is in the first item in the
definition of the circuit Dλ. More specifically, in the first item, the nondeterministic circuit Cx applies the
postselecting circuit P .

In fact, the same approach can be applied in the previous proofs of [TV00, BGDM23] and lead to extrac-
tors for the richer class of distribution samplable by deterministic circuits with postselection by nondetermin-
istic circuits.
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4.2 Proof of Theorem 4.2

Theorem 4.2 now follows immediately from composing the PRG of Theorem 2.3 with Lemma 4.5. The
precise calculation follows.

We are assuming that E is hard for exponential size nondeterministic circuits. Let a ≥ 1 be the constant
guaranteed by Theorem 2.3 under this assumption. We set α = 1

4a . We are then given a constant c, and
are aiming to construct the extractor guaranteed in Theorem 4.2. By Lemma 4.5, for sufficiently large n, in
order to obtain an ((1 − α) · n, m∼n−c)-extractor Ext : {0, 1}n → {0, 1}αn for distributions samplable by
deterministic circuits of size nc with postselection by nondeterministic circuits of size nc, it is sufficient to
obtain a seed extending m∼( 1

s
,ρ)-PRG G : {0, 1}n → {0, 1}αn for nondeterministic circuits of size s = nc′ , for

some constant c′ > c, with ρ = 2−3αn ≤ 1
nc·2m+αn .

When ρ is expressed as a function of s, ρ = 2−3αn = 2−3α·s
1
c′ satisfies the requirements of Theorem

2.3. We apply Theorem 2.3 and conclude that for every sufficiently large s, taking n = s
1
c′ and m = αn =

α · s
1
c′ ≤ s we obtain a seed-extending m∼( 1

s
,ρ)-PRG G : {0, 1}a·(m+log(1/ρ)) → {0, 1}αn for nondeterministic

circuits of size s = nc′ . By Theorem 2.3, G is computable in time poly(s) = poly(n).19 All that remains is
to check that the seed length

a · (m+ log(1/ρ)) = a · (αn+ 3αn) = n,

as required.

4.3 Composing a Multiplicative Extractor with an (Additive) Seeded Extractor

In this section we prove the following composition lemma, which shows that under certain conditions, one
can use the output of an extractor Ext for samplable distribution as a seed to a seeded extractor SExt, resulting
in an extractor for samplable distributions E with larger output length than Ext.

This approach was used in both [TV00, BGDM23] to increase the output length of their (additive) ex-
tractors. The lemma below asserts that if Ext is multiplicative, then the resulting extractor E is multiplicative
(with two parameters ϵ and δ) where the first is inherited from the Ext and the second is inherited from SExt.

Lemma 4.7 (Composition Lemma). Let ∆ ≤ n2 ≤ n1 ≤ s and let ϵ > 0. Assume that we have:

• An (n2 −∆ − log(1/ϵ),
m∼η)-extractor Ext : {0, 1}n2 → {0, 1}m2 for distributions samplable by size

3s deterministic circuits with postselection by size 3s nondeterministic circuits.

• A seeded (n1 −∆, ϵ)-extractor SExt : {0, 1}n1 × {0, 1}m2 → {0, 1}m1 .

The function E : {0, 1}n1+n2 → {0, 1}m1 defined by E(x1, x2) = SExt(x1,Ext(x2)) is an (n1 + n2 −
∆,

m∼(η,eη ·ϵ+ϵ))-extractor for distributions samplable by size s deterministic circuits with postselection by size
s nondeterministic circuits.

In Section 4.4 we use this lemma to derive Theorem 4.3. In the next section we prove Lemma 4.7.

4.3.1 Proof of the Composition Lemma

So far, we have only considered “multiplicative distance” from the uniform distribution. However, the same
concept can be defined in a more general way (which will be useful in the proof below).

19A more careful inspection of the parameters reveals that G is computable in time necB/β for some universal constant e > 1. and
where B and β are the constants from the hardness assumption, as in Figure 1.
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Definition 4.8. Let ∼ be a relation on [0, 1]. Let X,Y be two distributions over {0, 1}m. We say that X is
ϵ-close to Y w.r.t. ∼ (and write X ∼ Y ) if for every function C : {0, 1}m → {0, 1}, Pr[D(X) = 1] ∼
Pr[D(Y ) = 1].

In the two propositions below we observe that distance w.r.t m∼ satisfies some of the standard properties
satisfied by a∼ (such as a data processing inequality, and a suitable version of the triangle inequality). We will
use these properties in the proof.

Proposition 4.9 (A form of the triangle inequality). Let X1, X2, X3 be distributions over the same domain.

• If X1
a∼ϵ X2 and X2

m∼(η,δ) X3 then X1
m∼(η,eη ·ϵ+δ) X3.

• If X1
m∼(η,δ) X2 and X2

a∼ϵ X3 then X1
m∼(η,ϵ+δ) X3.

Proposition 4.10 (Data processing inequality for m∼). If X1
m∼(η,δ) X2 then for every function f , f(X1)

m∼(η,δ)

f(X2).

Proof of Lemma 4.7. Let X = (X1, X2) be a distribution over {0, 1}n1+n2 that is samplable by a size
s deterministic circuit A : {0, 1}s → {0, 1}n1+n2 with postselection by a size s nondeterministic circuit
P : {0, 1}s → {0, 1}. We start with the following claim.

Claim 4.11.

• For every x1 ∈ Supp(X1), the distribution (X2|X1 = x1) is samplable by a size 3s deterministic
circuit with postselection by a size 3s nondeterministic circuit.

• There is a set B ⊆ {0, 1}n1 such that Pr[X1 ∈ B] ≤ ϵ and for every x1 ̸∈ B, H∞(X2|X1 = x1) ≥
n2 −∆− log 1

ϵ .

Proof. We start with the first item. For every x1 ∈ Supp(X1), the distribution (X2|X1 = x1) is samplable
with postselection as follows: Let A1, A2 be deterministic circuits such that on input v, A1(v) outputs the first
n1 bits of A(v) and A2(v) outputs the last n2 bits of A(v). Let Px1(v) be the nondeterministic circuit that
on input v answers one if P (v) = 1 and A1(v) = x1. Note that Px1 is a nondeterministic circuit of size 3s.
It is immediate that for every x1 ∈ Supp(X1), the distribution (X2|X1 = x1) = (A2(Y )|Px1(Y ) = 1) for
Y ← Us, and is therefore samplable by the deterministic circuit A2, with postselection by the nondeterministic
circuit Px1 .

For the second item we define B =
{
x1 ∈ {0, 1}n1 : Pr[X1 = x1] < 2−(n1+log(1/ϵ))

}
, and observe that:

Pr[X1 ∈ B] ≤
∑
x1∈B

Pr[X1 = x1] ≤ 2n1 · 2−(n1+log(1/ϵ)) = ϵ,

and for every x1 ̸∈ B, and x2 ∈ {0, 1}n2 .

Pr[X2 = x2|X1 = x1] ≤
Pr[X2 = x2 ∧X1 = x1]

Pr[X1 = x1]
≤ 2−(n1+n2−∆)

2−(n1+log(1/ϵ))
= 2−(n2−∆−log 1

ϵ
).

By Claim 4.11 we have that for every x1 ̸∈ B, (Ext(X2)|X1 = x1) is close to uniform w.r.t. m∼η. We will
use this to prove the following claim.

Claim 4.12. (X1, Um2)
m∼(η,ϵ) (X1,Ext(X2)).
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Proof. Let D : {0, 1}n1+m2 → {0, 1} be some function.

Pr[D(X1,Ext(X2)) = 1] ≤ Pr[X1 ∈ B] + Pr[D(X1,Ext(X2)) = 1 ∧X1 ̸∈ B]

≤ ϵ+
∑
x1 ̸∈B

Pr[D(X1,Ext(X2)) = 1 ∧X1 = x1]

= ϵ+
∑
x1 ̸∈B

Pr[X1 = x1] · Pr[D(x1,Ext(X2)) = 1|X1 = x1]

≤ ϵ+
∑
x1 ̸∈B

Pr[X1 = x1] · eη · Pr[D(x1, Um2) = 1]

≤ ϵ+ eη ·
∑

x1∈Supp(X1)

Pr[X1 = x1] · Pr[D(x1, Um2) = 1]

= ϵ+ eη · Pr[D(X1, Um2) = 1]

The fourth line follows because for every x1 ̸∈ B, we have obtained that Um2

m∼η (Ext(X2)|X1 = x1) and
can consider the function Dx1 : {0, 1}m2 → {0, 1} defined by Dx1(z) = D(x1, z).

We have that H∞(X1, X2) ≥ n1 +n2−∆ which implies that H∞(X1) ≥ n1 +n2−∆−n2 = n1−∆.
By the guarantee of SExt, we have that

Um1

a∼ϵ SExt(X1, Um2).

By Claim 4.12 and the data processing inequality of Proposition 4.10 we can conclude that

SExt(X1, Um2)
m∼(η,ϵ) SExt(X1,Ext(X2))

and note that the latter distribution is E(X1, X2). Using proposition 4.9 we conclude that

Um1

m∼(η,eη ·ϵ+ϵ) E(X1, X2)

as required.

4.4 Proof of Theorem 4.3

Theorem 4.3 now follows immediately from composing the extractor of Theorem 4.2 with a seeded extractor
(say the one by Guruswami, Umans and Vadhan [GUV07]) using Lemma 4.7. The precise calculation follows.

We are assuming that E is hard for exponential size nondeterministic circuits. Let α > 0 be the constant
guaranteed by Theorem 4.2. (This constant is not universal, and depends on the constants in the hardness
assumption). Let γ > 0 be a constant, such that γ < α

100 and let c > 1 be a constant. We are aiming to
construct E : {0, 1}n → {0, 1}(1−O(γ))·n that is a ((1 − γ) · n, m∼(n−c,2−Ω(γ·n)))-extractor for distributions
samplable by size nc deterministic circuits with postselection by size nc nondeterministic circuits.

We set t = α
2γ ≥ 50. We plan to use Lemma 4.7 and define ∆ = γ · n and write n as n = n1 + n2 for

n2 =
n
t and n1 =

t−1
t · n = (1− 1

t ) · n. We now choose the two components Ext and SExt for lemma 4.7.

• We take Ext : {0, 1}n2 → {0, 1}αn2 to be a ((1−α)·n2,
m∼n−(c+1))-extractor for distributions samplable

by deterministic circuits of size nc+1 with postselection by nondeterministic circuits of size nc+1 that
is guaranteed by Theorem 4.2.
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• By Theorem 3.11, there exists a constant a such that for ϵ ≤ 1
n , the extractor guaranteed in Theorem

3.11 has seed length a · log(1/ϵ). We will assume w.l.o.g. that a ≥ 2. We set ϵ = 2−
γ·n1
a and using

Theorem 3.11, we obtain a seeded ((1− t
t−1 · γ) ·n1, ϵ)-seeded extractor SExt : {0, 1}n1 ×{0, 1}d1 →

{0, 1}m1 for d1 = a log(1/ϵ) = γn1 and

m1 = (1− γ) · (1− t

t− 1
· γ) · n1 ≥ (1− 3γ) · n1 ≥ (1− 3γ)(1− 1

t
) · n = (1−O(γ)) · n,

where the hidden constant depends on α which depends on the constant β from the hardness assumption.

To apply Lemma 4.7 we need to check that:

• The output length of Ext is at least the seed length of SExt. We need that α · n2 ≥ d1 = γ · n1 =
γ · (t− 1) · n2. We indeed have that α ≥ γt, by our choice of t = α

2γ .

• The entropy deficiency of Ext is larger than ∆ + log(1/ϵ). We need that α · n2 ≥ γ · n + γ·n1

a . We
indeed have that α · n2 = α · nt = 2γ · n ≥ γ · n+ γ·n1

a .

By Lemma 4.7 we conclude that for η = 1
nc , and ρ = eη · ϵ+ ϵ, the function E : {0, 1}n → {0, 1}(1−O(γ))·n

defined in the lemma is a ((1 − γ) · n, m∼(eη ,ρ))-extractor for distributions samplable by size nc deterministic
circuits with postselection by size nc nondeterministic circuits. We have that ρ ≤ 3ϵ = 3 · 2−

γn1
a = 2−Ω(γ·n).

4.5 Proof of Claim 2.7

We have that: p1 = Pr[D(W,V,R) = 1] and p2 = Pr[D(W,V, SExt(f̂(W ), V )) = 1]. Define v1(w) =
Pr[D(w, V,R) = 1] and v2(w) = Pr[D(w, V, SExt(f̂(w), V )) = 1], so that p1 = Ew←Fd

q
[v1(w)] and p2 =

Ew←Fd
q
[v2(w)]. Recall that we are considering a probability space where r distinct elements t1, . . . , tr are

chosen from Fq \{0} and an independent experiment where r (not necessarily distinct) elements y1, . . . , yr ←
Fd
q are chosen. For every x ∈ Fd

q we have defined the random variable Cx = C 0,t1,...,tr
x,y1,...,yr

(t) which is the

unique degree r curve that passes through the points (0, x), (t1, y1), . . . , (tr, yr). For every x ∈ Fd
q and every

t ∈ Fq \ {0} we define the random variable Rx
t = Cx(t). Note that for every x ∈ Fd

q , the random variables
(Rx

t )t∈Fq\{0} are r-wise independent. This follows in a standard way because although the curve Cx passes
through the fixed point (0, x) (and is not completely random) it passes through r random points, and there are
still “sufficiently many degrees of freedom” to get r-wise independence. More formally, note that for every
fixing of t1, . . . , tr, and every choice of t distinct t′1, . . . , t

′
r ∈ Fq \ {0}, there is an invertible map from the

r-tuple y1 = Cx(t1), . . . , yd = Cx(tr) to the r tuple Cx(t
′
1), . . . , Cx(t

′
r)).

This means that we can apply the r-wise tail inequality from Theorem 3.15 to argue that for every x ∈ Fd
q ,

p1 and p2 are with high probability approximated by px,1 and px,2. More specifically, for every x ∈ Fd
q ,

Theorem 3.15 implies that the probability that |p1 − px,1| > ϵ is at most

8 ·
(

2r

ϵ2(q − 1)

)r/2

≤ 1

20qd
,

where the last inequality follows because we can choose the constants cr, cq in the definition of r = cr · d
and q = 2m

ρcq to be sufficiently large so that 2r
ϵ2·(q−1) ≤

1√
q and r ≥ 10d. The same reasoning gives that the

probability that |p2− px,2| > ϵ is at most 1
20qd

, and the claim follows by a union bound over these two events.
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5 Consequences of Extractors for Samplable Distributions

The extractors for samplable distributions of Theorem 4.2 relies on the assumption that E is hard for expo-
nential size nondeterministic circuits, which is then used to obtain a multiplicative seed-extending PRG for
nondeterministic circuits in Theorem 2.3, which is then shown to be an extractor in Lemma 4.5. This raises
two natural questions:

• Is the hardness assumption (which assumes hardness against nondeterministic circuits) necessary for
such extractors?

• Do extractors for samplable distributions imply seed-extending PRGs for nondeterministic circuits?

While we do not give a definitive answer to these questions, we prove results that shed more light on these
two questions. We state and discuss our results in Section 5.1 and the proofs are given in Section 5.2.

5.1 Results and Discussion

5.1.1 Extractors that Imply Lower Bounds Against Nondeterministic Circuits

While we do not know whether extractors for samplable distributions imply lower bounds against nonde-
terministic circuits, we can show that extractors for distributions samplable by deterministic circuits with
postselection by nondeterministic circuits do imply lower bounds against nondeterministic circuits.

Recall that our Theorems 4.2 and 4.3 yield extractors for this richer class of distributions, and (as explained
in Remark 4.1) the proof techniques used in previous work (as well as the proofs this paper) immediately
extend to give extractors for this richer class.

This means that hardness for nondeterministic circuits cannot be avoided as long as we use proof tech-
niques that give extractors for this richer class of distributions.

This result is stated formally in the lemma below.

Lemma 5.1 (Extractors for the richer class imply lower bounds for nondeterministic circuits). If Ext :
{0, 1}n → {0, 1} is an (n − 10,

a∼ 1
100

)-extractor for distributions samplable by size s ≥ n deterministic
circuits with postselection by size s nondeterministic circuits, then Ext cannot be computed by circuits of size
s−O(1) nondeterministic circuits.

Trevisan and Vadhan [TV00] showed that if Ext is an (n−1,
a∼ 1

5
)-extractor for distributions samplable by

size s circuits then Ext cannot be computed by deterministic circuits of slightly smaller size. In Lemma 5.1
we get a lower bound against nondeterministic circuits if the extractor is for the richer class.

We remark that the constants stated in Lemma 5.1 can be improved by a more careful argument, and the
same conclusion holds for an (n − 1,

a∼ 1
5
)-extractor. We also remark that a stronger conclusion in which the

concluded lower bound is an average-case lower bound is stated below in Lemma 5.3.
A detailed comparison between the conclusion of Lemma 5.1 and the hardness assumption of Theorem

4.2 appears in Section 5.1.3

5.1.2 Extractors that Imply Seed-Extending PRGs for Nondeterministic Circuits

Lemma 4.5 shows that (for certain parameters) multiplicative PRGs for nondeterministic circuits are extractors
for the richer class of distribution samplable by deterministic circuits with postselection by nondeterministic
circuits. We are able to prove a partial converse, stated below.

Lemma 5.2. Let Ext : {0, 1}n → {0, 1}m be a function.
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• If Ext is an (n−∆,
m∼ϵ)-extractor for distributions samplable by size s ≥ n deterministic circuits with

postselection by size s nondeterministic circuits, and ∆ ≥ m + log(1/ϵ) then Ext is a seed-extending
a∼4ϵ-PRG for nondeterministic circuits of size s′ = s−O(m).

• If m = 1 and Ext is an (n −∆,
a∼ϵ)-extractor for distributions samplable by size s ≥ n deterministic

circuits with postselection by size s nondeterministic circuits, and ∆ ≥ log(1/ϵ) then Ext is a seed-
extending a∼4ϵ-PRG for nondeterministic circuits of size s′ = s−O(1).

• If m = 1 and Ext is an (n −∆,
a∼ϵ)-extractor for distributions samplable by size s ≥ n deterministic

circuits, and ∆ ≥ log(1/ϵ) then Ext is a seed-extending a∼5ϵ-PRG for deterministic circuits of size
s′ = Ω( s

log(1/ϵ)).

The proof of Lemma 5.2 appears in Section 5.2.1.

Comparing the conclusion of Lemma 5.2 to the assumption of Lemma 4.5.

• The first item of Lemma 5.2 asserts that for every output length m, a multiplicative extractor for the
richer class implies an (additive) seed-extending PRG for nondeterministic circuits. As we only get an
additive PRG in the conclusion of the first item of Lemma 5.2, the conclusion is not sufficiently strong
to apply Lemma 4.5. We do not know whether the conclusion of the first item of Lemma 5.2 can be
strengthened to give a multiplicative PRG.

• The second item of Lemma 5.2 asserts that for output length m = 1, even the weaker notion of an
additive extractor implies an (additive) seed-extending PRG for nondeterministic circuits. Note that
it is trivial that a a∼4ϵ-seed-extending PRG is automatically also a m∼(4ϵ,4ϵ)-PRG. This means that the
conclusion of the second item of Lemma 5.2 is sufficiently strong to apply Lemma 4.5.

This means that for s = nO(1), m = 1 and ϵ = 1
poly(n) we have the following: An (n− log(1/ϵ),

a∼ϵ)-
extractor for the richer class of distributions samplable by deterministic circuits with postselection by
nondeterministic circuits, is essentially equivalent to a seed-extending a∼ϵ-PRGs for nondeterministic
circuits (in the sense that starting from one, one can get the other while only increasing ϵ by a constant
factor).

We stress however that the extractors of [TV00, AASY15, BGDM23] and this paper, consider distri-
butions with min-entropy n − ∆ for ∆ = Ω(n), and not ∆ = log(1/ϵ) = O(log n), which is the
parameter regime for which the equivalence above holds.

• The third item of Lemma 5.2 discusses the original class of distributions samplable by deterministic
circuits (rather than the richer class discussed in the two items above) and in this case the PRG in the
conclusion fools deterministic circuits (and not nondeterministic circuits).

5.1.3 Extractors that imply hard on average functions

The results of Lemma 5.1 can be strengthened to imply functions that are not only hard on the worst-case for
nondeterministic circuits, but rather hard on average for nondeterministic circuits. This is stated next using
the terminology of Definition 3.6.

Lemma 5.3 (Extractors for the richer class imply average-case hardness for nondeterministic circuits). If
Ext : {0, 1}n → {0, 1} is an (n −∆,

a∼ϵ)-extractor for distributions samplable by size s ≥ n deterministic
circuits with postselection by size s nondeterministic circuits, and ∆ ≥ log(1/ϵ) then Ext is (12 +O(ϵ))-hard
for nondeterministic circuits of size s−O(1).
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Comparing the conclusion of Lemma 5.3 to the assumption of Theorem 4.2. The extractors of [BGDM23]
and of our Theorems 4.2 and Theorem 4.3 are constructed under the assumption that E is hard for exponential
size nondeterministic circuits. This assumption is stronger than the conclusion of Lemma 5.3 for s = nc.

While it is true that both assumptions involve lower bounds against nondeterministic circuits. If we
apply Lemma 5.3 with s = nc and an extractor that is computed in time poly(nc), we obtain a function
f : {0, 1}n → {0, 1} such that:

• f is (12 + 1
nc )-hard for nondeterministic circuits of size nc (for every sufficiently large n).

• f is computable in time poly(nc).

However, if we scale the assumption that E is hard for exponential size nondeterministic circuits in the same
way (by taking the input length of the hard function from Definition 3.5 to be ℓ = c

β · log n) then we obtain a

function g : {0, 1}
c
β
·logn → {0, 1} such that:

• g cannot be computed by nondeterministic circuits of size nc (for every sufficiently large n).

• g is computable in time poly(nc).

In this range (where the function is computed in time exponential in its input length) there are hardness
amplification results [IW97, STV01] that transform a worst-case hard function into an average-case hard
function. Furthermore, there are such results that work against nondeterministic circuits [SU06], and using
these results would immediately give that g is (12+

1
nc )-hard for nondeterministic circuits of size nc (achieving

the same hardness as the function f , but on a shorter input length).
The reason that we highlight the difference between worst-case and average-case hardness in the conse-

quence of Lemma 5.3, is that in the parameter regime of the function f (where the running time is polynomial
in the input length) we do not know how to transform worst-case hard functions into average-case hard func-
tions. Furthermore, when working against nondeterministic circuits, even tools like Yao’s XOR lemma (that
transform weak average-case hardness into strong average-case hardness) are not applicable. Indeed, this is
why we feel that there is a big difference between showing that extractors imply worst-case hardness (as in
Lemma 5.1) and showing that extractors imply average-case hardness (as in Lemma 5.3).

Summing up, the function g that is obtained from the hardness assumption that E is hard for exponential
size nondeterministic circuits, implies the function f above, as we can always artificially lengthen the input
length of g to match that of f . The converse is not true, and it seems that assuming the existence of a function
like g is a stronger assumption than the existence of a function like f .

An average-case hard function in the case of samplable distributions. We can also prove a version of
Lemma 5.3 for the original class of distributions samplable by size s circuits (rather than the richer class of
distributions samplable by size s circuits with postselection by size s nondeterministic circuits) but here, in
the conclusion we only get an average-case lower bound against deterministic circuits.

Lemma 5.4 (Extractors for samplable distributions are hard on average for deterministic circuits). If Ext :
{0, 1}n → {0, 1} is an (n − log(1/ϵ),

a∼ϵ)-extractor for distributions samplable by deterministic circuits of
size s ≥ n, then Ext is (12 +O(ϵ))-hard for deterministic circuits of size s′ = Ω( s

log(1/ϵ)).

5.2 Proofs

In this section we prove the results stated in the previous section.
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5.2.1 Proof of Lemma 5.2

The proof of Lemma 5.2 adapts and extends an argument by Kinne, Shaltiel and van Melkebeek [KvMS09],
that shows that extractors with exponentially small error for distributions recognizable by deterministic cir-
cuits yield seed-extending PRGs for deterministic circuits.

Proof. We start with proving the first item. Let T : {0, 1}n × {0, 1}m → {0, 1} be a size s′ nondeterministic
circuit. We consider the probability space where X ← Un and R ← Um are chosen independently. We will
show that the function G(x) = (x,Ext(X)) is a a∼4ϵ-PRG for T . For this purpose we compute:

p1 = Pr[T (X,R) = 1]

=
∑

r∈{0,1}m
Pr[T (X, r) = 1 ∧R = r]

=
∑

r∈{0,1}m
Pr[T (X, r) = 1] · Pr[R = r]

=
∑

r∈{0,1}m
Pr[T (X, r) = 1] · 2−m.

p2 = Pr[T (X,Ext(X)) = 1]

=
∑

r∈{0,1}m
Pr[T (X, r) = 1 ∧ Ext(X) = r]

=
∑

r∈{0,1}m
Pr[T (X, r) = 1] · Pr[Ext(X) = r|T (X, r) = 1]

For every r ∈ {0, 1}m, we define a nondeterministic circuit Pr : {0, 1}n → {0, 1} as follows: Pr(x) = 1 iff
T (x, r) = 1. Note that for every r ∈ {0, 1}m, Pr is a nondeterministic circuit of size s′ + O(m) = s. Let
G =

{
r : Pr[T (X, r) = 1] ≥ 2−∆

}
. Note that for every r ∈ G, the distribution

Xr = (X|T (X, r) = 1) = (X|Pr(X) = 1)

has min-entropy at least n − ∆. Furthermore Xr is the distribution sampled by the circuit A(x) which
computes the identity function, with postselection by the nondeterministic circuit Pr.20 It follows that for
every r ∈ G, we have that

Pr[Ext(X) = r|T (X, r) = 1]− 2−m = Pr[Ext(Xr) = r]− 2−m ≤ eϵ · 2−m − 2−m ≤ 3ϵ · 2−m.

20In fact, Xr is a distribution recognizable by the nondeterministic circuit Pr which is of size s, and this proof works assuming
that Ext is an extractor for such distributions.
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Therefore, we have that:

p2 − p1 =
∑

r∈{0,1}m
Pr[T (X, r) = 1] · (Pr[Ext(X) = r|T (X, r) = 1]− 2−m)

=
∑
r∈G

Pr[T (X, r) = 1] · (Pr[Ext(X) = r|T (X, r) = 1]− 2−m)

+
∑

r∈{0,1}m\G

Pr[T (X, r) = 1] · (Pr[Ext(X) = r|T (X, r) = 1]− 2−m)

≤
∑
r∈G

Pr[T (X, r) = 1] · 3ϵ · 2−m +
∑

r∈{0,1}m\G

Pr[T (X, r) = 1]

≤ 2m · 3ϵ · 2−m + (2m − |G|) · 2−∆

≤ 3ϵ+ ϵ

≤ 4ϵ.

We now prove the second item. We are now assuming that m = 1, and observe that the only place where
we used the assumption that the extractor is w.r.t m∼ϵ and not a∼ϵ is when we argued that

Pr[Ext(X) = r|T (X, r) = 1]− 2−m ≤ eϵ · 2−m − 2−m ≤ 3ϵ · 2−m.

Note that for m = 1 and an extractor w.r.t. a∼ϵ we have that:

Pr[Ext(X) = r|T (X, r) = 1]− 2−m = Pr[Ext(Xr) = r]− 2−1 ≤ 2−1 + ϵ− 2−1 ≤ ϵ = 2ϵ · 2m,

and exactly the same proof applies, noting that there is at most one r ∈ {0, 1}m \G.
We now consider the third item. We are now assuming that m = 1 and that the relation is a∼ϵ (as

in the second item). However, here we are assuming that the class of distributions that Ext extracts from
is without postselection, and are aiming to show that the PRG is against deterministic circuits, rather than
nondeterministic circuits. We can repeat computation of p1, p2 under the assumption that T is a deterministic
circuit of size s′.

In the proof of the first two items, we argued that for every r ∈ G, Xr = (X|T (X, r) = 1) is a source
from the class for which Ext was designed. This no longer holds, as it is not clear that for r ∈ G, Xr is
samplable by small deterministic circuits. Nevertheless, we can argue instead that for every r ∈ G, there
exists a distribution X ′r over {0, 1}n such that:

• X ′r is samplable by size s = O(s′ · log(1/ϵ)) circuits.

• X ′r is ϵ-close to Xr.

• H∞(X ′r) ≥ H∞(Xr).

We will sample X ′r as follows. Choose t = log(1/ϵ) + 1 independent X1, . . . , Xt ← Un. If there does not
exist i ∈ [t− 1] such that T (Xi, r) = 1, we output X ′r = Xt. Otherwise let i′ be the smallest i ∈ [t− 1] such
that T (Xi′ , r) = 1, and we output Xi′ .

The three properties above immediately follow for every r ∈ G, and we can conclude that for every
r ∈ G,

Pr[Ext(X) = r|T (X, r) = 1] = Pr[Ext(Xr) = r] ≤ Pr[Ext(X ′r) = r] + ϵ ≤ 2−1 + 2ϵ.

This gives that for m = 1:
Pr[Ext(Xr) = r]− 2−m ≤ 2ϵ = 4ϵ · 2−m.

and we can conclude the proof as in the second item.
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5.2.2 A Seed-extending PRG for Nondeterministic Circuits is an Average-Case Hard Function

In this section we prove Lemma 5.1, Lemma 5.3 and Lemma 5.4. This is done by the following argument: By
Lemma 5.2, the assumptions of the three considered Lemmata imply certain seed-extending PRGs, and the
next lemma shows that such PRGs are functions that are hard on average. This immediately implies the three
Lemmata.

Lemma 5.5 (Seed-extending PRGs for nondeterministic circuits are hard on average for nondeterministic
circuits). Let f : {0, 1}n → {0, 1} be a function that is a seed-extending a∼ϵ-PRG for nondeterministic
circuits of size s ≥ n, then f is (12 + 9ϵ)-hard for nondeterministic circuits for circuits of size s−O(1).

Remark 5.6. It is easy and standard to prove a version of Lemma 5.5 in the case of deterministic circuits.
More specifically, given a function f : {0, 1}n → {0, 1}, if the distribution (X, f(X)) for X ← Un is
pseudorandom for size s deterministic circuits, w.r.t a∼ϵ, then for every circuit C : {0, 1}n → {0, 1} that
attempts to compute f , we can define the circuit D : {0, 1}n × {0, 1} → {0, 1} that on input (x, y) answers
one iff C(x) = y.

It immediately follows that Pr[D(X, f(X)) = 1] = Pr[C(X) = f(X)] and Pr[D(X,U1) = 1] = 1
2 ,

which provides the required result as D (that is of size slightly larger than C) cannot distinguish between
(X, f(X)) and (X,U1).

Note however, that if we assume that C is a nondeterministic circuit of size s, then it does not follow that
D can be implemented by a small nondeterministic circuit. This issue (that a nondeterministic procedure that
uses a nondeterministic procedure does not yield a nondeterministic procedure) causes many arguments that
hold for deterministic circuits to fail for nondeterministic circuits.

Somewhat surprisingly (at least to us) it turns out that in this case the problem can be bypassed. This is
done by considering a different distinguisher D(x, y) that checks whether C(x) = 1 and y = 1. Note that this
computation can be performed by a small nondeterministic circuit (assuming C is a small nondeterministic
circuit) and in the proof below, we will show that it proves the Lemma.

Proof. Note that by assumption we have that

1

2
− ϵ ≤ Pr

X←Un

[f(X) = 1] ≤ 1

2
+ ϵ.

This is because we can consider the deterministic circuits D(x, y) = y and D(x, y) = 1 − y, and we are
guaranteed that G(x) = (x, f(x)) is a a∼ϵ-PRG against both of them.

Assume for contradiction that there exists a nondeterministic circuit C of size s′ such that

Pr
X←Un

[C(X) = f(X)] >
1

2
+ 9ϵ.

We will construct a size s nondeterministic circuit D : {0, 1}n × {0, 1} → {0, 1} such that the function
G(x) = (x, f(x)) is not an a∼ϵ-PRG for D. Given inputs (x, y) ∈ {0, 1}n × {0, 1}, D(x, y) will answer one
iff C(x) = 1 and y = 1. Note that D is indeed a nondeterministic circuit of size s′ + O(1) = s. We will
consider an experiment in which X ← Un and R← {0, 1} are chosen independently. We have that:

p1 = Pr[D(X,R) = 1] = Pr[C(X) = 1 ∧R = 1] = Pr[C(X) = 1] · Pr[R = 1] =
1

2
· Pr[C(X) = 1].

p2 = Pr[D(X, f(X)) = 1] = Pr[C(X) = 1 ∧ f(X) = 1] = Pr[f(X) = 1] · Pr[C(X) = 1|f(X) = 1].
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We will get a contradiction by showing that p2 > p1 + ϵ. Let us denote ai := Pr[C(X) = 1|f(x) = i], and
compute:

1

2
+ 9ϵ < Pr[C(X) = f(X)]

= Pr[f(X) = 1] · Pr[C(X) = 1|f(X) = 1] + Pr[f(X) = 0] · Pr[C(X) = 0|f(X) = 0]

= Pr[f(X) = 1] · a1 + Pr[f(X) = 0] · (1− a0)

= Pr[f(X) = 0] + Pr[f(X) = 1] · a1 − Pr[f(X) = 0] · a0

≤ 1

2
+ ϵ+ (

1

2
+ ϵ) · a1 − (

1

2
− ϵ) · a0

≤ 1

2
+ 3ϵ+

1

2
· (a1 − a0)

We have obtained that:
a1 − a0

2
> 9ϵ− 3ϵ = 6ϵ

We observe that:

a := Pr[C(X) = 1] = Pr[f(X) = 0] · a0 + Pr[f(X) = 1] · a1 ≤ (
1

2
+ ϵ)(a0 + a1) ≤

a0 + a1
2

+ 2ϵ.

As the average a0+a1
2 = a1 − a1−a0

2 , we conclude that: a− 2ϵ ≤ a0+a1
2 = a1 − a1−a0

2 which gives:

a1 − a ≥ a1 − a0
2

− 2ϵ > 4ϵ.

Finally, we can compute

p2 − p1 = Pr[f(X) = 1] · Pr[C(X) = 1|f(X) = 1]− 1

2
· Pr[C(X) = 1]

≥ (
1

2
− ϵ) · a1 −

1

2
a

≥ a1 − a

2
− ϵ

> ϵ.

6 Discussion and Open Problems

We now describe some open problems and research directions.

6.1 Extractors for Samplable Distributions with Lower Min-Entropy

The constructions of extractors for samplable distribution in the literature [TV00, AASY15, BGDM23] and
the results of this paper, achieve extractors only for very large min-entropy. Specifically, min-entropy k =
n− αn where α > 0 is a small constant.

It is a longstanding open problem to construct extractors for lower min-entropy. The current approach
of [TV00] and subsequent work (including this paper) fails for k < n/2, and it seems that new ideas are
required.
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6.2 Other Notions of Multiplicative Extractors

In this paper we focus on extractors w.r.t. m∼ϵ. Previous work by Applebaum et al. [AASY15] (that we have
already described) considered a version which they call “extractors with relative error” which in the notation
of this paper is an extractor w.r.t. the relation md∼ ϵ define by:

p1
md∼ ϵ p2 ⇐⇒ p1

m∼ϵ p1 and p2
m∼ϵ p1.

This double sided multiplicative notion is stronger than the one we consider here. However, we are not aware
of an application which calls for extractors w.r.t. md∼ ϵ rather than extractors w.r.t. m∼ϵ. (Recall that extractors
w.r.t. m∼ϵ do give the standard double sided additive notion, as explained in Section 1).

Nevertheless, we mention that the results of this paper easily imply extractors w.r.t. md∼ ϵ under the assump-
tion that E is hard for exponential size Σ2-circuits, improving upon the result of Applebaum et al. [AASY15]
which achieves such extractors under the assumption that E is hard for exponential size Σ4-circuits.

It is open whether extractors w.r.t. md∼ ϵ follow under the weaker assumption used to obtain extractors w.r.t.
m∼ϵ in Theorem 4.2.

Loosely speaking, the reason that we need a stronger assumption to achieve the double sided relation is
that while nondeterministic circuits can verify that the number of accepting inputs of a given nondeterministic
circuit is larger than some threshold (as stated precisely in Section 3.8) it seems that they cannot verify
that the fraction is smaller than some threshold, and this (as far as we know) seems to require Σ2-circuits.
This difference makes the reduction more expensive, resulting in the need to assume a stronger hardness
assumption.

6.3 Multiplicative PRGs with Larger Stretch

The multiplicative seed-extending PRG of Theorem 2.3 achieves modest stretch. Its output length is shorter
than its input length. (This means that even when including the seed in the output the PRG has mild stretch).
While this is suitable for the application of constructing extractors, it is natural to ask whether it is possible to
construct a multiplicative PRG with larger stretch.

A multiplicative PRG with larger stretch was constructed by Artemenko et al. [AIKS16]. This PRG
builds on a stronger hardness assumption (the assumption that E is hard for exponential size Σ3-circuits) and
fools deterministic circuits. It stretches a seed length of length nΩ(1) into n bits and is a m∼( 1

nO(1)
,ρ)-PRG for

ρ = 2−Ω(
√
n). As pointed out in [AIKS16] one could expect a better dependence of the seed length on the

error parameter ρ.
We believe that using the techniques on this paper (as well as several additional ideas) it is possible to

construct a multiplicative PRG with large stretch and correct dependence of the seed length on the error
parameter. Moreover, we believe that this can be achieved under the weak assumption that E is hard for
exponential size nondeterministic circuits.

6.4 Minimal Assumptions for Extractors for Samplable Distribution

We showed that a lower bound against nondeterministic circuits follows from extractors for the richer class
of distributions samplable by deterministic circuits with postselection by nondeterministic circuits. Does this
follow for the original class of distributions samplable by deterministic circuits? Maybe one can hope to
construct extractors for this class without assuming a lower bound for nondeterministic circuits?

Even for the richer class, the lower bound obtained as a consequence of extractors in Section 5 is not
known to imply these extractors. Can we bridge this gap?
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6.5 Connection between Extractors for Samplable Distributions and Seed-Extending PRGs

The results of this paper show that extractors for distributions samplable by deterministic circuits with posts-
election by nondeterministic circuits are closely related to seed-extending PRGs for nondeterministic circuits
(at least for some choice of parameters). Can this connection be extended to other parameter regimes? A
more precise statement of this problem appears in Section 5.
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