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Abstract
We initiate the study of the randomness complexity of differential privacy, i.e., how

many random bits an algorithm needs in order to generate accurate differentially
private releases. As a test case, we focus on the task of releasing the results of d count-
ing queries, or equivalently all one-way marginals on a d-dimensional dataset with
boolean attributes. While standard differentially private mechanisms for this task have
randomness complexity that grows linearly with d, we show that, surprisingly, only
log2 d + O(1) random bits (in expectation) suffice to achieve an error that depends
polynomially on d (and is independent of the size n of the dataset), and furthermore
this is possible with pure, unbounded differential privacy and privacy-loss parameter
ε = 1/ poly(d). Conversely, we show that at least log2 d − O(1) random bits are also
necessary for nontrivial accuracy, even with approximate, bounded DP, provided the
privacy-loss parameters satisfy ε, δ ≤ 1/ poly(d). We obtain our results by establishing
a close connection between the randomness complexity of differentially private mecha-
nisms and the geometric notion of “secluded partitions” of Rd recently introduced and
studied by Vander Woude et al. (2022, 2023).
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1 Introduction

Differential privacy [DMNS06] is a widely accepted theoretical framework for protecting
the privacy of individuals in a database while analysts query the database for statistical
information. Differentially private (DP) mechanisms provide quantitative guarantees and
tradeoffs on the level of privacy afforded to individuals and the accuracy of answers to
queries. In order to provide these guarantees, DP mechanisms rely on the use of carefully
calibrated “random noise” to protect privacy. Thus, large-scale deployments of differential
privacy can require a massive amount of high-quality random (or cryptographically
pseudorandom) bits. Indeed, Garfinkel and LeClerc [GL20] estimate that the U.S. Census
Bureau’s differentially private TopDown Algorithm as used for the 2020 Decennial Census
required at least 90 terabytes of random bits, and described major engineering challenges
in generating those bits with sufficient efficiency and security. As they write in their
conclusion,

“The need to generate a large number of high-quality random numbers is a largely
unrecognized requirement of a production differential privacy system.”

Motivated by these challenges, and following the long line of inquiry in theoretical
computer science on the role and necessity of randomness in computation, we initiate the
study of the randomness complexity of differential privacy:

What is the minimum amount of randomness required by differentially private
mechanisms to achieve a specific level of accuracy?

We will quantify this “minimal amount of randomness” using either the maximum or
expected number of random bits used by a differentially private algorithm, as a function of the
dataset dimensions, privacy-loss parameters, and accuracy. For the sake of concreteness,
we focus in this work on a specific task, summation (or one-way marginal) queries, which asks
to provide an estimate of the sum of d-dimensional (binary) vectors, each corresponding
to a different individual in the dataset.

In more detail, the task of summation is as follows: the dataset x consists of data from
n individuals, each contributing a d-dimensional binary vector xi. We can think of x as a
n × d matrix with rows x1, ..., xn. The mechanism M(x) must output an estimate x̂ ∈ Rd

of the sum sum(x) = ∑n
i=1 xi, such that ∥x̂ − sum(x)∥∞ ≤ α with probability at least 1 − β.

We call such a mechanism (α, β)-accurate. (See Definition 2.3 for a formal definition.)
We require that the mechanism M also satisfies (ε, δ)-differential privacy ((ε, δ)-DP) for

some parameters ε ≥ 0, δ ∈ [0, 1], which means that for every pair of datasets x, x′ that
differ on one row, we have

∀S Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ.

When δ = 0, this is called pure differential privacy, and we say that M is ε-DP. Our
algorithm will work in the so-called unbounded DP setting, where the size n of the dataset
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is private information and thus needs to be protected by differential privacy like any other
statistic. In contrast, our lower bound applies to the (easier) bounded DP setting, where n
is public and fixed. (See Definitions 2.2 and 2.3 for formal definitions.)

We define the maximum randomness complexity R0(M) of a mechanism M : ({0, 1}d)n →
Rd as the maximum over databases x ∈ ({0, 1}d)n of the maximum number of random bits
used by M on input x. We define the expected randomness complexity R(M) of a mechanism
M : ({0, 1}d)n → Rd as the maximum over databases x ∈ ({0, 1}d)n of the expected number
of random bits used by M on input x.

Differentially private summation is a well-studied question, for which many approxi-
mately optimal (in terms of accuracy) DP mechanisms have been proposed and analyzed.
One of the simplest is the Laplace mechanism, which consists in adding d-dimensional
Laplace noise with scale parameter d/ε to the true value sum(x). This can be shown to
have ℓ∞ error Õ(d)/ε with high probability, which is optimal up to log factors. (Here Õ(f)
is shorthand for a function that is O(f · logc f) for an unspecified constant c > 0.) However,
this comes at a significant cost, as adding continuous Laplace noise would technically
require an infinite number of random bits. Instead, one can choose to add (independent)
geometric noise to each coordinate of the true count, using a symmetrized Geometric
random variable. This similarly will achieve nearly optimal ℓ∞ error, but now with a finite
expected randomness complexity. Unfortunately, the expected number of random bits
required, Õε(d), still scales at least linearly with the dimension. (Here the Õε means that ε
is treated as a constant, on which the hidden constants in the Õ can depend.)

At first, this linear scaling seems inherent: For d = 1, to achieve non-trivial accuracy
every DP mechanism must have entropy Ω(1):

Lemma 1.1. For every α < n/2 and β < 1/2 and every (α, β)-accurate ε-DP mechanism M :
{0, 1}n → R for binary counts, there is some database x ∈ {0, 1}n such that H(M(x)) ≥ 1 − ε

2 ln 2 .

Here H(M(x)) denotes the Shannon entropy of the output distribution M(x), which is
a lower bound on the expected number of random bits used by M . (We provide a simple
proof of Lemma 1.1 in Appendix A.) Given that, in the d-dimensional summation task, the
d dimensions are totally independent, one might expect the entropy required to be additive
across dimensions, leading to an Ω(d) lower bound on expected randomness complexity.

Our results. Surprisingly, the above intuition turns out to be false: by leveraging recent
work on deterministic rounding schemes, we show that the expected randomness complexity
can be made as low as log2 d + O(1), while still achieving good accuracy (i.e., an error that
is polynomial in the dimension d, independent of the size n of the database):

Theorem 1.2 (Informal; see Corollary 3.2). For every ℓ > 0 and ε > 0, there is an ε-DP
mechanism M : ({0, 1}d)∗ → Rd (in the unbounded DP setting) such that the expected randomness
complexity of M satisfies

R(M) ≤
⌈

d

ℓ

⌉
· log2(ℓ + 1) + O(1)
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and for every β ≥ 1/ poly(d), M is (α, β)-accurate for summation with

α = Õ(d) · ℓ

ε
.

Taking ℓ = d gives expected randomness complexity log2 d + O(1) as claimed. Further-
more, with this setting of ℓ and ε ≥ 1/ poly(d), the accuracy is α = poly(d), independent
of n. If we instead take ℓ = 1, we get near-optimal accuracy α = Õ(d)/ε, but then the
expected randomness complexity becomes d + O(1). Choosing 1 < ℓ < d provides a
tradeoff between these two extremes.

For bounding the maximum randomness complexity, we necessarily1 relax to approxi-
mate DP:

Theorem 1.3 (Informal; see Corollary 3.4). For every ℓ > 0, ε > 0, δ ∈ (0, 1/d), there is an
(ε, δ)-DP mechanism M : ({0, 1}d)∗ → Rd (in the unbounded DP setting) such that the maximum
randomness complexity of M satisfies

R0(M) ≤
⌈

d

ℓ

⌉
· log2(ℓ + 1) + log2(1/δ) + O(1)

and for every β ≥ 1/ poly(d), M is (α, β)-accurate for summation with

α = O

(√
d · ℓ · log(1/δ)

ε

)
.

Again, the randomness complexity is minimized at ℓ = d, which gives R0(M) ≤
log2 d + log2(1/δ) + O(1) and α = O(d3/2) · log(1/δ)/ε, and the latter is again a factor of
Θ(d ·

√
log(1/δ)) larger than the error achievable with unlimited randomness. Typically, δ

is taken to be cryptographically negligible, so δ ≤ d−ω(1) and our bound on the maximum
randomness complexity becomes R0(M) ≤ (1 + o(1)) · log2(1/δ).

Next, we prove lower bounds showing that the randomness complexity we achieve is
nearly optimal (in certain parameter regimes):

Theorem 1.4 (Informal; see Corollary 4.2). Suppose that M : ({0, 1}d)n → Rd is an (ε, δ)-DP
mechanism (in the bounded DP setting) that is (α, β)-accurate for summation, where α ≤ n/2 − 1.
Then the maximum randomness complexity of M satisfies

R0(M) ≥ min{d, log2(1/δ)}.

If in addition, β ≤ 1/d, ε ≤ 1/d, and δ ≤ 1/O(d2). Then both the maximum and expected
randomness complexities of M satisfy:

R0(M) ≥ R(M) ≥ log2 d − O(1).
1If M uses at most r random bits, then for every database x, the support of the distribution M(x) is of

size at most 2r. However, a pure DP algorithm must have the same support on every input database. A
summation mechanism with nontrivial accuracy on datasets of size n should at least distinguish the 2d

datasets where all n rows are the same, and thus must have r ≥ d.
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Let’s examine the constraint on the parameters. The constraint on α essentially just
requires that M has nontrivial accuracy. Indeed, accuracy n/2 on datasets of size n can triv-
ially be achieved by the deterministic mechanism that always outputs (n/2, n/2, . . . , n/2) ∈
Rd; this mechanism is (n/2, 0)-accurate, 0-DP, and has randomness complexity 0. The con-
straint on δ is quite mild, since δ is intended to be cryptographically small, and in particular
subpolynomial in input size parameters like d and n. The constraints on β and ε are more
nontrivial. They match our upper bound, in the sense that Theorem 1.2 achieves expected
randomness complexity log2 d + O(1) even when β, ε = 1/d. However, it would be inter-
esting to know whether even smaller randomness complexity is possible when ε and β are
constants.

Connection to geometry. The key ingredient in our results is a two-way connection to the
notion of deterministic rounding schemes recently introduced and studied by Vander Woude,
Dixon, Pavan, Radcliffe, and Vinodchandran [WDPRV22; WDPRV23]. Deterministic
rounding schemes provide methods for rounding data in Rd to nearby points so that any
ball of small enough radius rounds to only a small number of points. As discussed in
[WDPRV22; WDPRV23], such rounding schemes are equivalent to the geometric notion
of a secluded partition, which is a partition of Rd into sets of bounded radius such that
balls of a sufficiently small radius do not intersect too many sets of the partition. We tie
these ideas to the randomness complexity of accurate DP algorithms. In particular, our
log2 d ± Θ(1) = log2(d + 1) ± Θ(1) upper and lower bounds on randomness complexity are
intimately tied to the fact that in d dimensions, bounded-radius sets that cover Rd must
contain intersections of at least size d + 1 at certain points, and it is possible to find covers
where no more than d + 1 sets ever jointly intersect. In the theory of set intersections,
these ideas are closely related to KKM covers of bounded polyhedra and the Polytopal
Sperner lemma [DPS02], and in fact our initial proofs of our results (not included here)
came through these connections.

Related work on replicability. Recent work [DPVV23] has studied the randomness
complexity of replicable algorithms using similar geometric tools. There are bidirectional
conversions between replicable algorithms and approximate differentially private algo-
rithms [GKM21; BGHILPSS23] for problems about “population statistics,” where the
dataset consists of iid samples from an unknown distribution and the goal is to estimate
statistics abut the distribution. In contrast, our focus is on “empirical statistics,” where
there is no iid assumption on the dataset and the goal is to estimate statistics of the dataset
itself (as in the motivating use case of the 2020 U.S. Census). One can convert differen-
tially private algorithms for population statistics into ones for empirical statistics (see,
e.g., [BNSV15]), but this conversion incurs a high cost in randomness complexity (running
the DP algorithm for population statistics on a dataset formed by sampling n rows from
the input dataset independently with replacement). In the reverse direction, differentially
private algorithms for empirical statistics are also automatically differentially private
algorithms for population statistics (provided the dataset size n is large enough so that
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the empirical statistics approximate the population statistics with high probability), but
converting a DP algorithm for population statistics into a replicable algorithm also appears
to incur a large cost in randomness complexity. Thus neither our upper bound nor our
lower bound appear to follow as a black box from the existing results on replicability, but
it will be interesting to explore whether the techniques in either setting can be used to
improve or extend any of the results in the other.

Overview of the proofs. The high-level idea of our upper bound (algorithmic result)
starts with the following observation: if we could post-process the output of a DP mech-
anism M to only allow a small number of outcomes on every database without hurting
its accuracy too much, then we would be in good shape: for every database x, having
| supp(M(x))| ≤ k implies that H(M(x)) is at most log2 k, and so we obtain a new mech-
anism M ′ with low entropy but similar accuracy. Now, M ′ could still have very high
randomness complexity R(M ′) (since M itself could have been using a lot of random
bits), but it is a standard fact in information theory (based on Huffman coding) that any
discrete random variable Y can be generated using at most H(Y ) + O(1) random bits on
average. Thus, there is yet another mechanism M ′′ with randomness complexity at most
log2 k + O(1).

Unfortunately, if we want to achieve pure DP as in Theorem 1.2, it is too much to hope
for bounding the randomness complexity via support size. (See Footnote 1.) Instead, we
will ensure that there is a set Sx of size at most k such that M(x) ∈ Sx with probability at
least 1 − γ, for a small γ > 0; we’ll take γ = 1/d. If we can also ensure that the entropy
of M(x) conditioned on M(x) /∈ Sx is bounded by O(1/γ), then this suffices to achieve an
overall entropy of at most log2 k + O(1).

To implement the above plan, we start with any good ε-DP mechanism M , say one
based on the Laplace mechanism. The crucial step is then how to achieve the post-
processing step. This we do with a deterministic rounding scheme f . Such a scheme will
take the output M(x) and round it to a nearby point f(M(x)), say at ℓ∞ distance at most r
from M(x). We choose r to be large enough so that the noise in M(x) will be of magnitude
(in ℓ∞ norm) at most r · τ with high probability, for a sufficiently small τ . f is called a (k, τ)
deterministic rounding scheme of radius r if on every ℓ∞ ball of radius r · τ , f takes on at
most k distinct values. With such a scheme, we get that f(M(x)) lies in a set of size k with
high probability.

So then the question becomes what parameters (k, τ) are possible, and this is exactly
what is addressed in the work of Vander Woude et al. [WDPRV23]. In particular, they
construct a scheme with k = (d + 1)ℓ and τ = 1/(2ℓ), which is what we use in Theorem 1.2.
As noted above, completing the proof of the theorem requires controlling the entropy
of M(x) also conditioned on the event that the noise is large. This we achieve by an
additional coarsening of the output of M(x), via a standard rounding of every coordinate
to a multiple of r · τ/2, before applying the deterministic rounding scheme f .

For our upper bound on maximum randomness complexity (Theorem 1.3), we apply
the same strategy as above to the Gaussian mechanism for differential privacy. In this case,
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Figure 1: Using a deterministic rounding scheme (the square cells round to their center
points) to construct a DP mechanism M for sum(x) with low randomness complexity.
Given a dataset x with sum(x) at the annular dot, we add Laplace noise (depicted here by
the diamond cloud of points). With high probability this lands somewhere nearby (the
triangular dot). Next, we round that to the nearest point in a suitably chosen grid (the
square dot)—the limited grid options help keep the resulting entropy low. We then use
the given deterministic rounding scheme to jump to the center of the cell containing the
square dot. This defines a DP mechanism with low entropy, because there are only a small
number k (here, k = 3) of cell centers that could be in the high probability support of this
mechanism applied to x.
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we replace our use of Huffman coding with the fact that if we have a random variable Y
that lies in a set S of size at most k with probability at least 1 − γ, then for every η > 0,
using at most log2 k + log2(1/η) + O(1) random bits, we can generate a random variable Y ′

that is at total variation distance at most η + γ from Y .
To prove our lower bound of log2 d − O(1) (second part of Theorem 1.4) on expected

randomness complexity, we show how randomness-efficient DP mechanisms for sum-
mation with good accuracy imply the existence of deterministic rounding schemes with
good parameters: where the parameters k, τ of the rounding schemes are directly related
to the randomness complexity of the DP mechanism M . This allows us to invoke im-
possibility results from [WDPRV22; WDPRV23] on the existence of “too-good-to-be-true”
deterministic rounding schemes to rule out DP mechanisms which are simultaneously
accurate and randomness-efficient. In more detail, the main steps of the lower bound are
as follows: given a purported ε-DP mechanism M for summation with low randomness
complexity, (1) we embed the hypergrid [n]d into the space of d-dimensional datasets of
size n, ({0, 1}d)n, such that ℓ1 distance in the former maps to Hamming distance in the
latter and computing summation on a given dataset x = x(v) allows one to retrieve the
original hypergrid vector v ∈ [n]d. (2) We use the randomness guarantees of M to extract,
from its output distribution on a given database x(v), the highest-probability representative
output y(v), which defines a deterministic rounding scheme f :

v ∈ [n]d ⇝ x(v) M⇝ y(v) ∈ Rd︸ ︷︷ ︸
f

(3) we leverage the accuracy guarantees of M to argue that this rounding y is indeed close
to v; and, finally, (4) we invoke the (group) privacy guarantee of M to show that the image
of any given ℓ∞ ball by our newly-defined rounding scheme cannot contain too many
“representatives” y(v). There is one last step required, as the rounding scheme f outline
above is only defined on [n]d: to conclude, we need to “lift” this rounding scheme to the
whole of Rd while preserving its properties, which we do by a careful tiling of the space
Rd with translations and reflections of the hypergrid.

The lower bound of min{d, log2(1/δ)} on maximum randomness complexity follows
from observing that any (ε, δ)-DP mechanism that uses less than log2(1/δ) random bits
is ε′-DP for some finite ε′, and then we can apply the argument of Footnote 1 to deduce
R0(M) ≥ d.

Directions for Future Work. We conclude this introduction by mentioning some open
questions, and directions for future work.

The first question is whether one can close the gap between our upper and lower
bounds. Our upper bounds show that randomness complexity log2 d+O(1) can be achieved
with accuracy α = poly(d)/ε, but to achieve near-optimal accuracy α = Õ(d)/ε, we only
achieve randomness complexity d + O(1). Can our algorithm be improved to achieve
logarithmic randomness complexity with near-optimal accuracy? Or can our lower bound
be improved to show that linear randomness complexity is necessary for near-optimal
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accuracy? As discussed earlier, another question is to remove some of the constraints on
parameters, like ε and β, in our lower bound, or else show that sub-logarithmic randomness
complexity is possible when these parameters are constant.

A second question whether one can obtain efficient low-randomness DP mechanisms,
e.g., running in time poly(n, d). Recall that our mechanisms from Theorem 1.2 and Theo-
rem 1.3 rely on computationally inefficient procedures (e.g., Huffman coding) to convert a
mechanism with low output entropy into one with low randomness complexity. For this
reason, as well as the aforementioned accuracy loss, we would not recommend using our
mechanisms in practice (even though our work was inspired by the practical concerns
raised in [GL20]). Still, it raises the hope for practical DP mechanisms that are much more
randomness-efficient than ones currently used.

As a test case we focused in this paper on the task of differentially private summation:
extending our study of the randomness requirement of DP mechanisms to other statistical
releases, or attempting to provide a general treatment of the randomness complexity of
differential privacy, would be an interesting direction.

Finally, as mentioned earlier, exploring connections to recent work on replicable algo-
rithms may also prove to be fruitful.

2 Preliminaries

2.1 Differential Privacy

Consider a database x consisting of n entries chosen from some domain X : that is, x is
an element of X n. If each entry of the database consists of d numerical attributes, then X
might be Rd or Nd (for discrete data) or {0, 1}d (for binary data). It is convenient to think
of x as an n × d matrix, with each row of the matrix being the vector xi = (xij)1≤j≤d. In
general, when the size of the database n is unknown, or allowed to grow, we will denote it
by |x|, and accordingly consider databases in X ∗ = ∪∞n=0X n.

Definition 2.1 (Database metrics and adjacency). For two databases x, x′ ∈ X ∗, their insert-
delete distance (aka LCS distance) DID(x, x′) is the number of insertions and deletions of
elements of X to transform x into x′. For two databases x, x′ ∈ X ∗ such that |x| = |x′|, their
Hamming distance DHam(x, x′) is the number of rows i such that xi ̸= x′i. If |x| ̸= |x′|, we
define DHam(x, x′) = ∞. For a database metric D, we say that x and x′ are adjacent with
respect to D, denoted x ∼D x′ if D(x, x′) ≤ 1.

We use DID to capture unbounded differential privacy, where the size n of the dataset is
unknown and considered private information that needs to be protected. DHam captures
bounded differential privacy, where the size n is public information, known to a potential
adversary. Since DID(x, x′) ≤ 2 ·DHam(x, x′) for databases x, x′ of the same size,unbounded-
DP algorithms are also bounded DP, up to a factor of 2 in the privacy-loss parameters.
We state our positive result in the unbounded-DP setting and our negative result in the
bounded-DP setting, making both results stronger.
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Definition 2.2 (Differential privacy). Fix ε > 0 and δ ∈ [0, 1]. A randomized algorithm
M : X ∗ → Y is (ε, δ)-differentially private (or (ε, δ)-DP) with respect to database metric D if
for every pair of adjacent databases x ∼D x′ in X ∗ and every measurable S ⊆ Y , we have

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ.

If δ = 0, we simply say M is ε-DP.

We restrict our attention in this article to databases where each record has d binary
attributes, so X = {0, 1}d, and to mechanisms that output an estimate of the sum of the
attributes. This motivates the following definition:

Definition 2.3 (Accuracy). Given α ≥ 0 and β ∈ [0, 1], a randomized algorithm M : ({0, 1}d)n →
Rd is said to be (α, β)-accurate for summation if for every x ∈ ({0, 1}d)∗, we have

Pr[∥M(x) − sum(x)∥∞ > α] ≤ β,

where

sum(x) =
|x|∑
i=1

xi ∈ Rd.

Note that we used ({0, 1}d)n rather than ({0, 1}d)∗ as the domain of M . This allows for
the possibility that, even in the unbounded DP setting, the accuracy of the mechanism
depends on the size n of the dataset, as well as the dimension d and the privacy parameters
ε and δ.

Two key features of differential privacy are its immunity to post-processing and its group
privacy property:

Lemma 2.4 (Postprocessing). Let M : X → Y be an (ε, δ)-DP mechanism, and f : Y → Z be
any (possibly randomized) function. Then f ◦ M is (ε, δ)-DP.

Lemma 2.5 (Group privacy). Let M : X → Y be an (ε, δ)-DP mechanism with respect to
database metric D, and x, x′ ∈ X ∗ be two databases at distance D(x, x′) ≤ k. Then, for every
measurable S ⊆ Y , we have

Pr[M(x) ∈ S] ≤ ekε · Pr[M(x′) ∈ S] + ke(k−1)εδ.

We refer the reader to, e.g., [DR14; Vad17] for more background on differential privacy
and the proof of these properties. We also briefly recall the definition and guarantees
of two of the standard noise mechanisms used in differential privacy, the Laplace and
Gaussian mechanisms:

Lemma 2.6 (Laplace mechanism; see e.g., [DR14, Theorems 3.6 and 3.8]). Suppose f : X ∗ →
Rd has ℓ1 sensitivity ∆1(f), that is, ∆1(f) = maxx∼Dx′ ∥f(x) − f(x′)∥1. Then, for every ε > 0,
the mechanism M : X ∗ → Rd defined by

M(x) = f(x) + Lap(∆1(f)/ε)d
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is ε-DP, where Lap(b)d denotes the product distribution over Rd with i.i.d. marginals distributed as
a Laplace with scale parameter b > 0 (i.e., probability density function f(x) = 1

2b
e−|x|/b). Moreover,

its accuracy satisfies the following: for every β ∈ (0, 1],

Pr
[

∥M(x) − f(x)∥∞ ≥ ∆1(f)
ε

ln d

β

]
≤ β .

Lemma 2.7 (Gaussian mechanism; see e.g., [DR14, Theorems 3.22 and A.1]). Suppose
f : X ∗ → Rd has ℓ2 sensitivity ∆2(f), that is, ∆2(f) = maxx∼Dx′ ∥f(x) − f(x′)∥2. Then, for
every ε ∈ (0, 1] and δ ∈ (0, 1], the mechanism M : X ∗ → Rd defined by

M(x) = f(x) + N

0,

∆2(f)
ε

·
√

2 ln 1.25
δ

2


d

is (ε, δ)-DP, where N (0, σ2)d denotes the product distribution over Rd with i.i.d. marginals
distributed as a Normal distribution with mean 0 and variance σ2. Moreover, its accuracy satisfies
the following: for every β ∈ (0, 1],

Pr
[

∥M(x) − f(x)∥∞ ≥ ∆2(f)
ε

· 2
√

ln 1.25
δ

· ln 2d

β

]
≤ β .

2.2 Randomness Complexity

We work with a model of randomized algorithms where the algorithm has access to a
coin-tossing oracle that returns an independent, unbiased random bit on each invocation.
The number of random bits used by M on a particular execution is defined to be the number
of the calls to the coin-tossing oracle (which is a random variable, as the algorithm could
adaptively decide whether to call the oracle again or not depending on the results of prior
coin tosses). We require that on all inputs, the algorithm halts with probability 1 over the
coin tosses received.

We define below two natural measures of randomness complexity. Like with accuracy,
we will use X n as the domain rather than X ∗ to allow the possibility that the randomness
complexity depends on the size n of the dataset.

Definition 2.8 (randomness complexity). For a randomized algorithm M : X n → Y and
γ ∈ [0, 1], we define:

• R(M) = the maximum over x ∈ X n of the expected number of random bits used by
M on input x, where the expectation is taken over the coin tosses of M .

• R0(M): the maximum over x of the maximum number of random bits used by M on
input x.

Rather than work directly with randomness complexity, it is more convenient for us to
work with measures of output entropy:
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Definition 2.9. For a randomized algorithm M : X n → Y , we define

• H(M) = maxx H(M(x)), where H(Y ) denotes the Shannon entropy of random
variable Y (in bits), defined as Ey←Y [log2(1/ Pr[Y = y])].

• H∞(M) = maxx H∞(M(x)), where H∞(Y ) denotes the min-entropy of random vari-
able Y , defined as log2[1/(maxy Pr[Y = y])].

• H0(M) = maxx H0(M(x)), where H0(Y ) denotes the max-entropy of random variable
Y , defined as log2 | supp(Y )|.

• Hγ
0 (M) = maxx Hγ

0 (M(x)), where Hγ
0 (Y ) denotes the γ-smoothed max-entropy of

random variable Y , which is defined to be the minimum of H0(Y | E) over (proba-
bilistic) events E = E(Y ) of probability at least 1 − γ.

Some basic relations between the randomness complexity measures and the output
entropy measures are as follows:

Lemma 2.10. For any randomized algorithm M : X n → Y , the following hold:

1. H∞(M) ≤ H(M) ≤ H0(M), Hγ
0 (M) ≤ H0(M), R(M) ≤ R0(M).

2. H(M) ≤ R(M) and H0(M) ≤ R0(M).

3. For every M , there is an M ′ such that R(M ′) ≤ H(M) + O(1) and on every input x, M ′(x)
is identically distributed to x′.

4. For every M and γ, η > 0, there is an M ′ such that R0(M ′) ≤ ⌈Hγ
0 (M) + log2(1/η)⌉ and

for every x, M ′(x) is at total variation distance at most γ + η from M(x).

In particular, Item 2 says that a lower bound on output entropy is also a lower bound
on randomness complexity. Items 3 and 4 say that we can go in the other direction as well,
by modifying the mechanism.

Proof. The first two items follow from monotonicity of Rényi entropy, and standard facts
about the entropy of a random variables and its support size. Item 3 is the standard result in
information theory that any random variable Y can be sampled using H(Y )+O(1) random
bits on average, which is proven by Huffman coding (see, e.g., [CT06, Theorem 5.11.3]).

To establish Item 4, fix any x, and let Sx be the set corresponding the the event E in the
definition of hx := Hγ

0 (M(x)): that is, Sx is a set of size 2hx , such that Pr[M(x) ∈ Sx] ≥ 1−γ.
Now, for any integer r > 0, consider the mechanism M ′ defined on x by rounding down
the probabilities of every element in Sx to the nearest multiple of 2−r:

Pr[ M ′(x) = y ] = ⌊2r Pr[ M(x) = y ]⌋ · 2−r, y ∈ Sx

and setting all probabilities outside of Sx to 0: Pr[ M ′(x) /∈ Sx ] = 0. This does not (yet) nec-
essarily sum to one, as there is a total γ′ = 1 −∑

y∈Sx
⌊2r Pr[ M(x) = y ]⌋ · 2−r of probability
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mass up to hx/2r + γ still missing. Note that γ′ is a multiple of 1/2r. By redistributing this
γ′ as uniformly as possible over the elements of Sx by increments of 1/2r, M ′(x) defines a
probability distribution supported on Sx, where each probability is a multiple of 1/2r (and
so can one can sample from M(x) with r uniformly random bits), and at total variation
distance at most hx ·2−r +γ of the distribution of M(x). Setting r = ⌈Hγ

0 (M(x)) + log2(1/η)⌉
concludes the proof.

2.3 Deterministic Rounding Schemes and Secluded Partitions

A crucial building block for our results is the notion of deterministic rounding scheme, recently
introduced by Vander Woude, Dixon, Pavan, Radcliffe, and Vinodchandran. Although
they defined such a scheme as a function f : Rd → Rd, we generalize their definition
slightly to include functions f : S → Rd on an arbitrary domain S and a radius parameter
ρ that becomes necessary when S is not all of Rd:

Definition 2.11 ([WDPRV23]). For k ∈ N, ρ, τ ∈ R≥0, and S ⊆ Rd, a function f : S → Rd

is said to be a (k, τ)-deterministic rounding scheme of radius ρ on S if the following two
conditions hold:

1. for all z ∈ S, ∥f(z) − z∥∞ ≤ ρ;

2. for all z ∈ Rd, |{ f(y) : y ∈ B∞(z, 2τ · ρ) ∩ S }| ≤ k.

where B∞(z, r) denotes the closed ℓ∞ ball of radius r centered at z. That is, each f “rounds”
inputs to nearby points (within ρ), and inputs that are close (in a 2τ · ρ-ball) can only be
rounded to a small number k of representatives.

When S = Rd, the parameter ρ is not important; if f is a (k, τ) deterministic rounding
scheme of radius ρ, then for every c > 0, we see that f ′(x) = cf(x/c) is a (k, τ) deterministic
rounding scheme of radius cρ. When ρ is not specified, its default value is ρ = 1/2,
matching the radius of “round-to-the-nearest-integer.” However, we will also consider
deterministic rounding schemes on S = [0, 1]d; then the choice of ρ is more important.
Indeed, [0, 1]d has a trivial (1, ∞)-deterministic rounding scheme of radius 1/2, where
all points get rounded to the center of [0, 1]d, but it has no (1, ∞)-deterministic rounding
scheme of radius 1/4.

As pointed out by Vander Woude et al. [WDPRV23, Observation 1.3], deterministic
rounding schemes have a nice geometric interpretation as (k, τ)-secluded partitions: parti-
tions of of S by sets of ℓ∞ radius at most ρ such that every ℓ∞ ball of radius 2τ · ρ intersects
at most k sets in the partition. Using this geometric perspective, Vander Woude et al. prove
the following upper and lower bounds:

Theorem 2.12 ([WDPRV22; WDPRV23]). For every d ∈ N, there exists a (d+1, 1
2d

)-deterministic
rounding scheme f : Rd → Rd. More generally, for every ℓ ∈ N, there exists a ((ℓ + 1)⌈d/ℓ⌉, 1

2ℓ
)-

deterministic rounding scheme f : Rd → Rd.
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Figure 2: A (k, τ)-deterministic rounding scheme of radius ρ ≈ 0.14 on S = [0, 1]2, where
k = 3 and τ = 1

4 . Points in each cell round to one point inside that cell, never moving more
than ρ in ℓ∞-distance. The shaded box is a ℓ∞ ball of radius 2τ · ρ, and all balls of this size
will round to at most k = 3 points.

Theorem 2.13 ([WDPRV22; WDPRV23]). If f : Rd → Rd is a (k, τ)-deterministic rounding
scheme and τ > 0, then

k ≥ max{d + 1, (1 + 2τ)d}.

3 Upper bounds for summation

In this section, we establish our upper bound results, which state that good determinis-
tic rounding schemes imply differentially private mechanisms for summation with low
randomness complexity (Theorem 3.1).

We begin with our upper bound on expected randomness complexity.

Theorem 3.1. Suppose there exists a (k, τ)-deterministic rounding scheme f : Rd → Rd. Then for
every ε > 0, there is a mechanism M : ({0, 1}d)∗ → Rd that is ε-DP with respect to DID satisfying

H
1/d
0 (M) ≤ log2 k and
H(M) ≤ log2 k + O(1),

such that, for every β ∈ (0, 1], M is (α, β)-accurate for summation for

α = O

(
d · log(d/β)

ε
+ d · log d

τε

)
.

Combining this with Theorem 2.12 and the conversion from output entropy to random-
ness complexity (Lemma 2.10, Item 3), we get:
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Corollary 3.2. For every d, ℓ, ε > 0, there is a mechanism M : ({0, 1}d)∗ → Rd that is ε-DP with
respect to DID satisfying

R(M) ≤
⌈

d

ℓ

⌉
· log2(ℓ + 1) + O(1),

such that, for every β ∈ (0, 1], M is (α, β)-accurate for summation for

α = O

(
d · log(d/β)

ε
+ ℓ · d · log d

ε

)
.

In particular, taking ℓ = d, we obtain H(M) ≤ log2 d + O(1) and

α = O

(
d · log(d/β)

ε
+ d2 · log d

ε

)
.

Proof of Theorem 3.1. Let f : Rd → Rd be a (k, τ)-deterministic rounding scheme. Without
loss of generality, by scaling, we can assume that f has radius r/2, for a parameter r > 0 to
be determined later in the proof.Then we have that for every z ∈ Rd,

1. ∥f(z) − z∥∞ ≤ r/2, and

2. |{ f(y) : y ∈ B∞(z, r · τ) }| ≤ k.

Now define this mechanism M on a database x:

Mechanism M(x):

1. Draw η ∼ Lap(d/ε)d, and let y = roundr·τ (sum(x) + η),

2. Output f(y).

By the post-processing property of differential privacy and the ε-DP guarantees of the
Laplace mechanism, M is itself ε-DP: it remains to argue about its accuracy and randomness
complexity. By the accuracy of the Laplace mechanism (Lemma 2.6), we have that, with
probability at least 1 − β, the noise infusion introduces an error of at most

∥η∥∞ ≤ ln(d/β) · d

ε
.

Rounding the coordinates of sum(x) + η to the nearest multiple of r · τ and replacing y
with f(y) increase the ℓ∞ error by at most r · τ/2 + r/2, so we have (α, β)-accuracy for

α = (1 + τ) · r

2 + ln(d/β) · d

ε
.

For the randomness complexity, by the same analysis as in the accuracy above (but
replacing β with 1/d), we have that with probability at least 1 − 1/d, the following event E
holds:

event E : ∥η∥∞ ≤ r0 for r0 := 2d ln d

ε
.
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Conditioned on E, the point y lies in an ℓ∞ ball of radius r0 + r · τ/2 around sum(x).
By setting r = 2r0/τ , y lies in a ball of radius 2r0 = r · τ , and the fact that f is a (k, τ)
deterministic rounding scheme of radius r tell us that, conditioned on E, the support
size of M(x) is at most k, and in particular has entropy at most log2 k. Thus, we have
H

1/d
0 (M(x)) ≤ log2 k.

To bound H(M(x)) overall, we also need to bound the entropy of M(x) conditioned
on ¬E, which is upper bounded by the entropy of y = roundr·τ (sum(x) + η) conditioned
on ¬E. ¬E is the event that at least one coordinate of η has magnitude larger than r0; the
remainder may or may not have magnitude larger than r0. Conditional on ¬E, coordinate
i of y is distributed as roundr·τ (sum(x)i + ηi), where ηi is a mixture of Lap(d/ε) conditioned
on having magnitude at most r0 and Lap(d/ε) conditioned on having magnitude greater
than r0. Provided that r · τ/2 = Ω(d/ε), such a distribution has entropy O(1), similarly to
how a geometric distribution with parameter p = Ω(1) has entropy H(p)/p = O(1).2 By
our setting of r above, r · τ/2 is larger than d/ε by a factor of 2 ln(d) = Ω(1). With O(1)
entropy contributed from each coordinate, we get O(d) entropy overall conditioned on ¬E.
(The coordinates of y are not independent conditioned on ¬E, but entropy is subadditive
even for dependent random variables.)

Thus, letting I be the indicator random variable for event E, we have

H(M(x)) ≤ H(M(x), I)
= H(M(x) | I) + H(I)

≤ Pr[E] · H(M(x) | E) + Pr[¬E] · H(M(x) | ¬E) + H
(1

d

)
≤ 1 · log2 k + 1

d
· O(d) + 1

= log2 k + O(1).

The accuracy bound follows by plugging our setting for r0 and r = 2r0/τ into the expres-
sion for α above.

Now we turn to our upper bound on maximum randomness complexity.

Theorem 3.3. Suppose there exists a (k, τ)-deterministic rounding scheme f : Rd → Rd. Then
for every ε > 0, there is a mechanism M : ({0, 1}d)∗ → Rd that is (ε, δ)-DP with respect to DID
satisfying Hγ

0 (M) ≤ log2 k and such that, for every β ∈ (0, 1], M is (α, β)-accurate for summation

2For a bit more detail: observe that, before conditioning, the distribution of roundr·τ (sum(x)i + ηi) is
a mixture of a point mass and two geometric distributions: a point mass on m = roundr·τ (sum(x)i), a
geometric distribution on the multiples of r · τ/2 smaller than m (assuming wlog that m < sum(x)i), and
a geometric distribution supported on the multiples of r · τ/2 greater than or equal to sum(x)i. Under the
assumption that r · τ = Ω(d/ε), the parameter p of these geometric distributions is bounded away from 1, i.e.,
the probability mass of each point in the support is a constant factor smaller than the point in the support
closer to m. This latter property is preserved under conditioning on |ηi| ≤ r0 or conditioning on |ηi| > r0,
and suffices to ensure entropy O(1).
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for

α = O


√

d · log(1/δ) · log(d/β)
ε

+

√
d · log(1/δ) · log(d/γ)

τε

 .

Combining this with Theorem 2.12 and the conversion from output entropy to random-
ness complexity (Lemma 2.10, Item 4), we get:

Corollary 3.4. For every d, ℓ ∈ N, ε > 0 and δ ∈ (0, 1/d), there is a mechanism M : ({0, 1}d)∗ →
Rd that is (ε, δ)-DP with respect to DID satisfying

R0(M) ≤
⌈

d

ℓ

⌉
· log2(ℓ + 1) + log2

(1
δ

)
+ O(1),

such that, for every β ∈ (0, 1], M is (α, β)-accurate for summation for

α = O


√

d · log(1/δ) · log(d/β)
ε

+ ℓ ·
√

d · log(1/δ)
ε

 .

In particular, taking ℓ = d, we obtain R0(M) ≤ log2 d + log2(1/δ) + O(1) and

α = O


√

d · log(1/δ) · log(d/β)
ε

+ d3/2 · log(1/δ)
ε

 .

Proof Sketch of Theorem 3.3. Follow the proof of Theorem 3.1 but replace the use of the
Laplace mechanism (Lemma 2.6) with the Gaussian mechanism (Lemma 2.7), and define
the event E using the accuracy bound r0 that holds with probability at least 1 − γ (rather
than 1 − 1/d). In this proof, there is no need to analyze H(M(x)|¬E).

4 Lower bound for summation

We now turn to establishing a lower bound on the randomness complexity of any accurate
DP mechanism for summation. To strengthen the result, we will consider the bounded
DP setting and allow approximate DP mechanisms; and our conclusion will yield a lower
bound on the min-entropy H∞(M) of any such DP mechanism.

Theorem 4.1. Suppose that M : ({0, 1}d)n → Rd is a mechanism that is a (ε, δ)-DP mechanism
with respect to DHam with H∞(M) ≤ log2 K that is (α, β)-accurate for summation for β < 1/K
and α ≤ n/2 − 1. Then, for every τ > 0, there exists a (k, τ)-deterministic rounding scheme with

k ≤ K · eεh

1 − hKeεhδ

where
h = min

(
d ·
(

8(α + 1) · τ

1 − 2τ
+ 1

)
, n
)

.
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Observe that when we take τ → 0, we have h → min{d, n} ≤ d, so, at least when
δ = 0 our upper bound on k becomes k ≤ K · eεd. By the lower bound on deterministic
rounding schemes (Theorem 2.13), we know that k ≥ d + 1, so we obtain an entropy lower
bound of H∞(M) = log2 K ≥ log2(d + 1) − O(εd). When ε = O(1/d), this matches our
best upper bound on randomness complexity up to an additive constant (the case ℓ = d
in Corollary 3.2). For positive δ, we only lose an additive constant in the lower bound
provided that δ ≤ 1/(2dKeεd). Using the fact that H∞(M) ≤ H(M) ≤ R(M), we obtain:

Corollary 4.2. Suppose that M : ({0, 1}d)n → Rd is a mechanism that is (ε, δ)-DP mechanism
with respect to DHam with α ≤ n/2 − 1, ε ≤ 1/d, β < 1/d, and δ ≤ 1/(6d2). Then

R(M) ≥ log2 d − O(1).

(The conditions involving K in Theorem 4.1 disappear by doing a case analysis. If
H∞(M) > log2 d, then we are done. Otherwise, we can set K = d in Theorem 4.1.)

We will prove Theorem 4.1 by first constructing a deterministic rounding scheme for
the cube [0, 1]d and then lifting it to a deterministic rounding scheme for all of Rd by the
following lemma (whose proof we defer to later).

Lemma 4.3. Suppose there exists a (k, τ)-deterministic rounding scheme f : [0, 1]d → Rd of radius
ρ < 1/2, where τ ∈ (0, 1). Then there exists a (k, ζ)-deterministic rounding scheme f̃ : Rd → Rd,
for ζ = max{ τ

4−2τ
, τ

2+4ρ
}.

Proof of Theorem 4.1. By Lemma 4.3, it suffices to to construct a (k, τ ′)-deterministic round-
ing scheme f : [0, 1]d → Rd of radius ρ < 1/2 with τ ′ = 4τ/(1 + 2τ) or τ ′ = τ(2 + 4ρ).

Let G = {0, 1, 2, . . . , n}d be the d-dimensional hypergrid: we identify each point v ∈ G
of the grid with a dataset x(v) ∈ ({0, 1}d)n in the following fashion. For row i ∈ [n] and
column j ∈ [d], we have

x
(v)
ij = 1{vj≥i},

where 1 denotes the indicator function. That is, if v = (v1, . . . , vd), then x(v) is an n × d
matrix where in each column j, the first vj entries are ones and any remaining entries are
zeroes. It follows that sum(x(v)) = v, and if u, v are at ℓ1 distance at most a, then x(u) and
x(v) are at distance at most a from each other as datasets: DHam(x(u), x(v)) ≤ ∥u − v∥1.

Since H∞(M) ≤ log2 K, for every v ∈ G, there is some output y(v) ∈ Rd such that
Pr[M(x(v)) = y(v)] ≥ 1/K. (If there are several such outputs, choose the lexicographically
largest.)

Now we construct our function f : [0, 1]d → Rd as follows. For every z ∈ [0, 1]d, let
v = v(z) be a point in G obtained by rounding all coordinates of 2(α + 1) · z to the nearest
integer (and rounding up if halfway between integers). The resulting v is in G because
2(α + 1) ≤ n, and by construction v is at ℓ∞ distance at most 1/2 from 2(α + 1) · z. Then
y(v) exists as noted above. Set

f(z) = y(v)/(2α + 2).
To show that f is a deterministic rounding scheme, we analyze the two properties

separately.
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Figure 3: The hypergrid G for d = 2 and n = 3. Each integer point v ∈ G = {0, 1, 2, 3}2

corresponds to a dataset x(v) (a 3 × 2 matrix) with the property that sum(x(v)) = v (the
column sums of the matrix at v is just v). The figure shows how a point z ∈ [0, 1]2, scaled
by 2(α + 1), is rounded to the nearest v, here (2, 1). The given summation mechanism M
takes x(v) to a nearby point y(v). Not shown: this grid is then scaled back down to yield the
desired deterministic rounding scheme on [0, 1]2.

• To show that ∥f(z) − z∥∞ ≤ ρ < 1/2, we use the accuracy of the mechanism. Fix any
z ∈ [0, 1]d: by construction, 2(α + 1) · z and v = v(z) are at ℓ∞ distance at most 1/2.
Recall that we have

Pr[∥M(x(v)) − sum(x(v))∥∞ > α] ≤ β,

and
Pr[M(x(v)) = y(v)] ≥ 1

K
.

Since β < 1/K, the outcome of M(x(v)) has probability at most 1/K of being farther
than α from sum(x(v)). Since the particular outcome y(v) has probability greater than
1/K, then y(v) must be at ℓ∞ distance at most α from sum(x(v)) = v, and hence at
ℓ∞ distance at most α + 1/2 from 2(α + 1) · z. Hence, f(z) = y(v)/(2α + 2) is at ℓ∞
distance at most ρ = 1

2α+2 · 2α+1
2 < 1

2 from z.

• For the second, we use the privacy guarantee of the mechanism: consider a closed
ℓ∞ ball B(w, τ ′) and points z1, . . . , zk ∈ B(w, τ ′) such that there are k distinct outputs
f(z1), . . . , f(zk). Let v1, . . . , vk be the corresponding gridpoints, i.e., vi = v(zi). Recall
that f(zi) = y(vi)/(2α + 2), so the y(vi)’s are all distinct.

Since z1, . . . , zk are all in B(w, τ ′), the gridpoints v1, . . . , vk are all at ℓ∞ distance at
most 2(α + 1)τ ′ + 1/2 from 2(α + 1)w, which is itself at ℓ∞ distance at most 1/2 from
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some gridpoint v0. In particular, each vi is at ℓ1 distance at most d · (2(α + 1)τ ′ + 1)
from v0, so the dataset x(vi) is at distance at most h from x(v0) in Hamming distance,
for

h = min(d · (2(α + 1)τ ′ + 1), n).

By (group) differential privacy, for each 1 ≤ i ≤ k, we have

Pr[M(x(v0)) = y(vi)] ≥ e−ε·h · Pr[M(x(vi)) = y(vi)] − he(h−1)εδ ≥ e−ε·h · 1
K

− he−εδ.

Summing over 1 ≤ i ≤ k, we get

1 ≥
k∑

i=1
Pr[M(x(v0)) = y(vi)] ≥ e−ε·h · k

K
− khe−εδ.

Reorganizing and upper bounding e−ε ≤ 1, we have

k ≤ K · eεh

1 − hKehεδ

as desired.

As mentioned earlier, all that remains is to invoke Lemma 4.3 to lift our deterministic
rounding scheme from [0, 1]d to the whole of Rd.

It only remains to establish Lemma 4.3.

Proof of Lemma 4.3. Fix a (k, τ)-deterministic rounding scheme f : [0, 1]d → Rd of radius
ρ < 1/2, with τ < 1. Although the image of f might extend to points outside [0, 1]d
by ℓ∞-distance ρ < 1/2, we may assume without loss of generality that the image of f
is contained in [0, 1]d because projecting the outputs of f to the nearest point in [0, 1]d
preserves both properties of a deterministic rounding scheme.

We first modify f so that it behaves nicely near the faces of the cube to get a rounding
scheme f ′, then we show how to extend that to all of Rd to get the desired rounding scheme
f ′′.

We define f ′ : [0, 1]d → [0, 1]d by the following process, which is also illustrated in Fig-
ure 4.

1. Given x ∈ [0, 1]d, for each i ∈ [d], set

x′i =


0 if xi ≤ τ/2
1 if xi ≥ 1 − τ/2
xi otherwise.

That is, if x is in a “moat” of width τ/2, then it is τ/2-close to one (or possibly several)
face(s) of the cube and x′ is the projection of x onto (the intersection of) the face(s).
Otherwise, set x′ = x. Note that x′ is well-defined by our assumption that τ < 1.
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Figure 4: The trajectory of a point in [0, 1]2 as it moves from x to x′ to f(x′) to y. This
composition defines the rounding scheme f ′ on [0, 1]2, given any rounding scheme f on
[0, 1]2. In the case shown, f rounds points in each cell to a point inside. The shaded area is
a “moat” of thickness τ/2 where points get projected onto the boundary (and are otherwise
not moved) before applying f . The final step is rounding to a corner of [0, 1]2.

2. For each i ∈ [d], set

yi =

0 if 0 ≤ f(x′)i < 1
2

1 if 1
2 ≤ f(x′)i ≤ 1.

(Recall that we can assume without loss of generality that the image of f is in [0, 1]d.)
That is, we round f(x′) to the nearest corner of the cube.

3. Set f ′(x) := (y1, . . . , yd) ∈ Rd.

To understand the radius of f ′, consider Figure 4. The first step from x to x′ is bounded
(in ℓ∞ distance) by τ/2 (and is zero if x is not in the moat). The second step from x′ to f(x′)
is bounded by ρ (the radius of f ). The third step from f(x′) to y is bounded by 1/2 (since it
is rounding to a cube corner). The triangle inequality shows the total distance from x to
y is bounded by 1/2 + ρ + τ/2, but Figure 4 suggests we can improve this bound: some
cancellation is occurring in axes directions where x is close to the boundary. To make this
intuition precise, we do casework.

• If xi ≤ τ/2 or xi ≥ 1 − τ/2, then since |f(x′)i − x′i| ≤ ρ < 1/2, we see from yi’s
definition that yi = x′i so that

|yi − xi| = |x′i − xi| ≤ τ

2 .

21



Figure 5: The construction of a rounding scheme f ′′ on R2 from a rounding scheme f ′ on
the box [0, 1]2 that was illustrated in Figure 4. The definition of f ′ is reflected across the
sides of the box to fill out R2. Nearby points in the moats of each box have similar fates as
their reflections.

• If τ/2 < xi < 1 − τ/2, then since yi ∈ {0, 1}, we have

|yi − xi| < 1 − τ

2 .

But when τ/2 < xi < 1 − τ/2 we also have x′i = xi, which implies that

|yi − xi| ≤ |(yi − f(x′)i)| + |f(x′)i − x′i| ≤ 1
2 + ρ.

Since τ < 1, the bound τ/2 never exceeds either 1 − τ
2 or 1

2 + ρ. So, for all x,

∥f ′(x) − x∥∞ ≤ min
{

1 − τ

2 ,
1
2 + ρ

}
,

establishing the bound on the radius.
Observe that for every ℓ∞ ball B∞(z, τ/2) of radius τ/2, we have

|f ′(B∞(z, τ/2) ∩ [0, 1]d)| ≤ |f(B∞(z, τ) ∩ [0, 1]d)| ≤ k.

This is because if ∥x − z∥∞ ≤ τ/2, then ∥x′ − z∥∞ ≤ τ , and we obtain f ′(x) by applying f
to x′ and then projecting.

From f ′, we construct a deterministic rounding scheme f ′′ : Rd → Rd by using f ′ in
each unit cube, but reflected so that points on either side of a unit cube boundary behave
similarly. See Figure 5. We define f ′′ as follows:
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Given x ∈ Rd:

1. For each i ∈ [d], write xi = ri + siei, where ri ∈ 2Z, si ∈ {±1}, and ei ∈ [0, 1]. Note
that this is not unique when xi ∈ Z, as two decompositions are then possible with
either si = 1 and one with si = −1 (but both with the same value of ei ∈ {0, 1}).3 We
will show that the output f ′′(x) is independent of the choice we make.

2. Let e = (e1, . . . , ed) ∈ [0, 1]d.

3. For each i ∈ [d], set yi = ri + sif
′(e)i.

4. Set f ′′(x) = (y1, . . . , yd).

The fact that f ′′(x) is well-defined, regardless of the non-unique decompositions when xi

is boolean follows from the facts that (a) the vector e is independent of how those choices
are made (already noted above), and (b) when ei ∈ {0, 1}, we have e′i = ei and f ′(e)i = e′i
(shown earlier for points x where xi close to 0 or 1), so that yi = ri + sif

′(e)i = ri + siei = xi,
regardless of whether we chose to use si = 1 or si = −1.

We can now analyze the guarantees this f ′′ provides. For every x ∈ Rd, since |si| = 1
for all i we get

∥f ′′(x) − x∥∞ = ∥f ′(e) − e∥∞ ≤ min
{2 − τ

2 ,
1 + 2ρ

2

}
recalling the radius of f ′ established earlier. Next, consider any ℓ∞ ball B of radius at most
τ/2. We claim that |f ′′(B)| = |f ′′(B′)| for an ℓ∞ ball B′ ⊆ B that is entirely contained within
a single unit hypercube whose corners are in Zd, and thus |f ′′(B′)| ≤ k by the guarantees of
f ′. The reason is that if x ∈ Rd is within ℓ∞ distance τ/2 from a face F of a unit hypercube,
f ′′(x) = f ′′(x′), where x′ is the projection of x to F . Thus we can remove portions of B that
are on the opposite side of a face from its center without changing f(B). (More formally, if
we write B = [a1, b1] × [a2, b2] × · · · × [ad, bd], then for any dimension i where there is an
integer ci strictly between ai and bi, we can replace the interval [ai, bi] with the shorter of
[ai, ci] and [ci, bi] without changing f(B).)

Therefore, f ′′ is a (k, ζ)-deterministic rounding scheme of radius r = min
{

2−τ
2 , 1+2ρ

2

}
ζ = τ/2

2r
= max

{
τ

2(2 − τ) ,
τ

2(1 + 2ρ)

}
.
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A Omitted proof: entropy lower bound for d = 1
In this appendix, we provide the proof of Lemma 1.1, restated below:

Lemma A.1. For any α < n
2 and β < 1/2, any (α, β)-accurate ε-DP mechanism M for binary

counts must have H(M) ≥ 1 − ε
2 ln 2 .

Proof. Assume that M : {0, 1}n → R is ε-DP, and that, for every database x ∈ {0, 1}n,

Pr[ |M(x) − sum(x)| ≤ α ] ≥ 1 − β .

Define M̃ as the mechanism obtained by rounding M to the nearest multiple of 2α. Then
M̃ is ε-DP, takes values in Yα := {0, 2α, 4α, . . . , 2α/ ⌈2α⌉}, and

Pr
[ ∣∣∣M̃(x) − sum(x)

∣∣∣ ≤ 2α
]

≥ 1 − β

for every x ∈ {0, 1}n. Moreover, H(M̃) ≤ H(M) by the post-processing property of
entropy, and Pr

[
M̃(0n) = 0

]
≥ 1 − β, Pr

[
M̃(1n) = 2α/ ⌈2α⌉

]
≥ 1 − β.

Assume, by contradiction, that H(M̃) = maxx H(M̃(x)) ≤ 1 − p for some p > p(ε), with

p(ε) := 1 − ln(1 + e−ε)
ln 2 ≤ ε

2 ln 2 .

where the last inequality follows from e−ε > 1−ε. Note, for future use, that 1+e−ε = 21−p(ε).
This implies that H∞(M̃(x)) ≤ 1−p for every x, i.e., for every x, that there exists yx ∈ Yα

such that
Pr
[

M̃(x) = yx

]
≥ 1

21−p
≥ 1

2 + ln 2
2 p
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(in particular, as β < 1/2 we get y0n = 0, y1n = 2α/ ⌈2α⌉). Now, for any two adjacent x ∼ x′,

Pr
[

M̃(x′) = yx

]
≥ e−ε Pr

[
M̃(x) = yx

]
≥ 1

eε(21−p)

but also Pr
[

M̃(x′) = yx′

]
≥ 1

21−p . Then,

Pr
[

M̃(x′) = yx

]
+ Pr

[
M̃(x′) = yx′

]
≥ 1

eε(21−p) + 1
21−p

>
1

eε(21−p(ε)) + 1
21−p(ε) = 1

which implies yx = yx′ . It follows that

0 = y0n = y0n−11 = · · · = y01n−1 = 2α/ ⌈2α⌉ > 0

a contradiction.
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